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Abstract

MD-ONIOM2 has been previously used to model nevirapine in the polar solvent DMSO, accurately
predicting the 1TH NMR chemical shifts of all the protons, including the acidic amine proton that
suffers significant deshielding due to hydrogen bonding. In this work, MD-ONIOM2 is shown to be a
more generally applicable model by predicting the NMR shifts of four amines in DMSO solution with
acceptable accuracy. The solutes N-methylaniline and valerolactam with a single acidic proton, and
aniline and acetamide with two acidic protons were used, and the NMR predictions compared to
experimental values. Gasphase models and IEFPCM are shown to not predict the acidic proton

shifts well in comparison to MDONIOM2.

Keyword: MD-ONIOM2 "H-NMR Solvent effect
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ONIOM2.

MD-ONIOM2 has been previously used to model nevirapine in the polar solvent DMSO, accurately pre-
dicting the 'H NMR chemical shifts of all the protons, including the acidic amine proton that suffers sig-
nificant deshielding due to hydrogen bonding. In this work, MD-ONIOM2 is shown to be a more generally
applicable model by predicting the NMR shifts of four amines in DMSO solution with acceptable accuracy.
The solutes N-methylaninline and valerolactam with a single acidic proton, and aniline and acetamide
with two acidic protons were used, and the NMR predictions compared to experimental values. Gas-
phase models and IEFPCM are shown to not predict the acidic proton shifts well in comparison to MD-

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The use of the Molecular Dynamics-Our own N-layered Inte-
grated molecular Orbital and Molecular mechanics, with N=2,
(MD-ONIOM2) method for the prediction of 'H NMR chemical
shifts has been previous reported for nevirapine in DMSO [1], with
good results when compared to an experimentally measured spec-
trum. This included the acidic proton that forms a hydrogen bond
with a polar DMSO solvent molecule and suffers significant
deshielding as a result. In comparison, using a gas-phase model,
while cheap to calculate in terms of computer resources, gives
good results for all hydrogen NMR shifts except those of the acidic
protons. This is expected as there are no solvent interactions
included in such a simple model, and hydrogen bonding is a
significant interaction.

To show that the MD-ONIOM2 method has general application
for modelling acidic protons in polar solvents, the predicted
'H NMR shifts of four simple amine compounds in DMSO are re-
ported here and compared to experimentally measured shifts.
The molecules were chosen to represent a limited range of differ-
ent electronic environments for the acidic protons. N-methylani-
line is the simplest with only a single acidic proton with an
adjacent phenyl group. Aniline has a second equivalent acidic pro-
ton attached to the amine nitrogen. 5-Valerolactam has a carbonyl
group adjacent to the amine and its one acidic proton, and acetam-
ide has two acidic protons on the amine nitrogen adjacent to the
carbonyl group. Acetamide has the extra complication of keto-enol

* Corresponding author. Tel.: +66 34 281 105.
E-mail address: veeramol.v@ku.ac.th (V. Vailikhit).

0166-1280/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.theochem.2009.12.038

tautomerism preventing rotation around the C—N bond, and thus
the cis- and trans-amine protons are not equivalent.

The results were also compared to the Integral Equation For-
malism Polarisable Continuum Model (IEFPCM) which has also
been proposed to include solvent effects on the solute molecule.
This model treats the solvent as a continuum of polarisable dielec-
tric described by the solvent’s dielectric constant, and only consid-
ers relatively long range electrostatic interactions between the
solute molecule and the continuum. This may be appropriate for
non-polar solvents, but fails to include the localised strong effect
of hydrogen bonding between a solute and discrete solvent mole-
cules. The MD-ONIOM2 method, in comparison, attempts to model
the solute molecule with discrete solvent molecules bonded to it,
and so it incorporates short-range, localised interactions such as
hydrogen bonding.

2. Method

Modelling of the solute molecules was performed in two stages:
first MD of the molecule in a box of solvent molecules, followed by
ONIOM2 of sample snapshots from the MD stage to calculate
TH NMR shifts. This was described in detail previously [1] and only
a summary and differences given below.

The AMBERY software package was used for the MD with this
work. Each solute molecule, like DMSO previously, was generated
with the SYBYL7.0 program [2] and optimised with the Gaussian03
program [3] at B3LYP/6-31G™ level. The molecule ESP was gener-
ated using single point calculation at HF/6-31G" level with the
Merz-Kollman-Shigh charge scheme (MK). The Antechamber
module was used to generate the “prep” input file and atomic
charge, using the AMBER force-field parameters [4]. The solute
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Fig. 1. From the molecular dynamics simulations of each solute molecule in DMSO, the radial distribution of DMSO-oxygen atoms can be determined. The peaks show the
extent of the solvation shell, used for the cut-off in ONIOM2, and integration determined that one DMSO molecule was bonded to each acidic proton.

molecule model was placed in a box of DMSO molecules [1] for the
MD run and a radial distribution function (RDF) was used to deter-
mine the average distribution of DMSO-oxygen atoms around the
acidic protons. The RDF was used to determine the discrete models

>~
# Lowlevelof
g theory layer

/ =y
/ ,I-Iigh level of
theory layer

Fig. 2. Schematic of the two layers in the ONIOM2 model showing, in this case, an
aniline molecule which is treated at a high level of quantum mechanics theory, and
the combined aniline and H-bonded DMSO molecules treated at a low level of
quantum mechanics theory.

(Fig. 2), from 10 snapshots taken every 100 ps during the final 1 ns
of the production period, for the ONIOM2 modelling with the
Gaussian03 software package at B3LYP/6-311++G™//B3LYP/6-
31G™:HF/STO-3G//PM3, using TMS as the standard NMR reference.
The predicted "H NMR shifts from each of the ten snapshots were
averaged at the end.

For comparison, the solutes were modelled as isolated mole-
cules in the gas phase, and in with DMSO solvent using SCRF-
IEFPCM in Gaussian03. The accuracies of the predicted chemical
shifts were evaluated against experimentally measured NMR data
reported in the literature [5].

3. Results

During the MD simulations, the root mean square deviation
(RMSD) of heavy atoms in the solute molecules from the starting
geometry and the total energy of the whole system were observed
to ensure the MD simulations were stable.

For each solute MD run, the RDF of the acidic proton to the
DMSO-oxygen atoms was used to determine the radius of the sol-
vation shell; that is, the distance within which the DMSO mole-
cules are bonded to the acidic protons. This was obvious from
peaks in the RDF shown in Fig. 1, and integration of the area under
the peaks showed that on average only one DMSO molecule was
bonded to each acidic proton. The solvation shell radius was used
as the cut-off for the ONIOM2 model with only DMSO molecules
that were at least partially inside the radius included. All other
DMSO molecules where discarded. The cut-off radius was approx-
imately 3A for the molecules with only one acidic proton, and
approximately 4A for those with two acidic protons.
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Shown here are the experimentally measured NMR shifts of the acidic amine protons of the four solutes, and the predicted values form each of the three models. The difference,
experimental value—predicted value, is given to make comparison easier. The shifts for all protons are given as online Supplementary data.

Expt. ONIOM2 Gas phase IEFPCM

ppm ppm Difference ppm Difference ppm Difference
N-methylaniline 5.52 5.00 0.52 3.35 217 4.52 1.00
Aniline 4.99 5.16 -0.17 3.20 1.79 3.96 1.03

4.99 539 —0.40 3.20 1.79 3.96 1.03
Valerolactam 7.34 6.96 0.38 4.62 2.72 5.81 1.53
Acetamide 6.70 6.28 0.42 4.38 2.32 5.28 1.42

7.30 6.85 0.45 4.74 2.56 5.95 135

The ONIOM2 calculated NMR shifts for the acidic amine protons
can be seen in Table 1. Also seen are the experimental NMR shift
values, and the corresponding gas-phase model and IEFPCM re-

sults. The differences from the experimental value are shown for
clarity. The shifts from all protons are shown in Supplementary
Data available online.
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8 N-methylaniline Aniline
. 8
74 71
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£ 6+ £
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: | :
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Fig. 3. Modelled NMR shifts plotted against experimental values are shown. The slope and correlation are also given for least squares regression lines which are constrained
to go through the origin, since all shifts are relative to TMS. It can be seen that the MD-ONIOM2 results are very close to the ideal line which would have m = 1 and R? = 1. The

encircled points are the shifts of the acidic protons and show the large variation in their predicted values.
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The three models give similar predictions of NMR shifts for all
the non-acidic protons. However, for the acidic amine protons,
the gas-phase model gives the poorest predictions and ONIOM2
the best. The IEFPCM predictions are approximately halfway be-
tween the other two. This can be seen in the graphs of Fig. 3 which
plot the predicted shifts against the experimentally measured
shifts of all the protons. Using least squares regression analysis,
the slope and correlation for a line fitted to each set of points is also
given. The regression line is constrained to go through the origin as
both modelled and experimental shifts are relative to TMS with a
shift of 0 ppm. For a perfect model, the resultant points would lie
on a line with a slope, m =1, and correlation, R? = 1. MD-ONIOM2
gives results closest to the ideal. The gas-phase model especially
but also IEFPCM consistently give shifts for the acid protons that
are too low. The IEFPCM also consistently overestimates the shifts
of all the non-acid protons.

It should also be noted that the cis- and trans-protons in acet-
amide are also well modelled and different values for each pre-
dicted. Additionally, either acid proton can be chosen as the
centre for the RDF as all the bonded DMSO molecules will still be
observed and the same snapshots used in ONIOM2.

4. Conclusion

The MD-ONIOM2 method has been shown to be capable of
modelling the interaction between a solute with acidic protons
and a polar solvent, including the hydrogen bonding. MD shows
that in the solvation shell, a DMSO molecule is generally attached
to each acidic proton, and there is exchange of solvent molecules
over time. Averaging the ONIOM2 results from a sample set of

MD snapshots gives the final NMR shifts, with the desheilding from
H-bonding properly included, and the other protons well de-
scribed. The other two models are adequate if it is acceptable that
the acidic protons and their complex local electronic environments
do not need to be accurately described. This may be the case if
modelling a solute in an apolar solvent such as chloroform.
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