

**Abstract**

---

**Project Code : MRG 5180302**

**Project Title :** Applications of allicin, chitosan and allicin-chitosan complexes as antimicrobial agent in low fat pork sausage

**Investigator:** Dr. Tantawan Pirak, Department of Product Development, Faculty of Agro-Industry, Kasetsart University

**Mentor:** 1. Assoc.Dr. Anuvaj Jangchud, Department of Product Development, Faculty of Agro-Industry, Kasetsart University

2. Assoc.Dr. Pantipa Jantawat, Retired Government Officer

**E-mail Address :** [fagitwk@ku.ac.th](mailto:fagitwk@ku.ac.th), [tantawan.k@hotmail.com](mailto:tantawan.k@hotmail.com)

**Project Period :** 2 years 1 month (Including the extension period)

**Abstract:**

The application of allicin, chitosan and allicin-chitosan complexes as antimicrobial agent in low fat pork sausage as expressed in term of antimicrobial inhibition activity, product quality (physical and chemical properties), sensory characteristics and shelf life of low-fat pork sausage was studied in this research. The optimum condition and process for producing allicin-chitosan complexes was also studied. Chitosan was prepared with 2 different deacetylation steps in our laboratory. The obtained chitosan possessed molecular weight more than  $10^6$  Dalton and %degree of deacetylation (%DD) at 78 (sample 1) and 88% (sample 2), respectively. Allicin was extracted from fresh garlic and freshly used or kept in refrigerator at  $4^{\circ}\text{C}$  for using within 24 hours. The concentration of allicin in allicin solution was 13.5-14.2 mg/ml. The allicin-chitosan complexes were prepared using the optimum process at the weight ratio of allicin:chitosan at 1:1, 2:1 and 3:1. The result showed that the obtained complex solution possessed 20-21% total soluble solid with pH at 4.5-4.8. Among four drying methods, freeze drying, spray drying, vacuum drying and tray drying, freeze drying gave the highest yield at the optimum ratio at 1:1. The obtained complex had light cream color ( $L^*87.3$ ,  $a^*-0.45$ ,  $b^*16.82$ ) and can dissolve in water with the wide pH range. The disk diffusion test showed the ability of complex to inhibit *E. coli* and *S. aureus* with the minimum inhibition concentration at 6.25 mg/ml. Scanning electron microscope revealed the round shape structure of complexes with diameter at 5-15  $\mu\text{m}$ . FT-IR spectra of all complexes were not significantly different, exhibited that most of functional groups were similar. The result from XRD showed that crystal type of complexes was amorphous.

The application of allicin-chitosan complexes into low fat pork sausage resulted in increasing of lightness and reducing of water holding capacity ( $p \leq 0.05$ ). Moreover, the addition of the allicin-chitosan complexes also resulted in significant increase of hardness, cohesiveness, gumminess and chewiness ( $p \leq 0.05$ ), while springiness and adhesiveness was not significantly difference ( $p > 0.05$ ). The sensory results using 9-point hedonic scaling test exhibited that overall liking score of low fat pork sausages with allicin or chitosan alone was less than control. The highest score was found in sausage with 0.5% allicin-chitosan complex produced with 88% DD chitosan sample with the weight ratio of allicin to chitosan at 1:1. After keeping at 4°C for 15 days, all of sensory scores were found to be not acceptable by consumer. Retardation of bacterial growth and inhibition of yeast and mold growth in low fat pork sausage were received; moreover, the shelf life of low fat pork sausage was extended to 15 days at 4°C.

**Keywords : allicin, chitosan, allicin-chitosan complexes, antimicrobial agent, low fat pork sausage**

บทคัดย่อ

รหัสโครงการ: MRG 5180302

ชื่อโครงการ การประยุกต์ใช้สารสกัดอัลลิชินจากกระเทียม ไคโตซาน และสารประกอบ เชิงช้อนอัลลิชิน-ไคโตซาน เป็นสารต้านเชื้อจุลทรรศในผลิตภัณฑ์ไส้กรอก หมูไขมันต่า

ชื่อนักวิจัย และสถาบัน: ดร.ทานตะวัน พิรกษ์ ภาควิชาพัฒนาผลิตภัณฑ์ คณะ อุตสาหกรรมเกษตร มหาวิทยาลัยเกษตรศาสตร์

ชื่อนักวิจัยที่ปรึกษา: 1. รศ.ดร.อนุวัตร แจ้งชัดภาควิชาพัฒนาผลิตภัณฑ์ คณะ อุตสาหกรรมเกษตร มหาวิทยาลัยเกษตรศาสตร์  
2. รศ.ดร.พันธิพา จันทวัฒน์, ข้าราชการบำนาญ

E-mail Address: [fagitwk@ku.ac.th](mailto:fagitwk@ku.ac.th), [tantawan.k@hotmail.com](mailto:tantawan.k@hotmail.com)

ระยะเวลาโครงการ: 2 ปี 1 เดือน (รวมระยะเวลาที่ขอขยาย 7 เดือน)

บทคัดย่อ:

งานวิจัยนี้ศึกษาการประยุกต์ใช้อัลลิชิน ไคโตซานและสารประกอบเชิงช้อนอัลลิชิน-ไคโตซานเป็นสารต้านเชื้อจุลทรรศในไส้กรอกหมูไขมันต่า โดยแสดงผลในค่าความสามารถในการยับยั้งเชื้อจุลทรรศ คุณภาพของผลิตภัณฑ์ทางด้านกายภาพและเคมี คุณลักษณะทางด้านประสิทธิภาพ อายุการเก็บรักษา รวมทั้งศึกษาภาวะในการผลิตและกระบวนการผลิตสารประกอบเชิงช้อนอัลลิชิน-ไคโตซานที่เหมาะสม ไคโตซานที่ใช้ในงานวิจัยนี้เตรียมในห้องปฏิบัติการด้วยกระบวนการดึงหมู่อะเซททิลที่แตกต่างกัน 2 ระดับเพื่อให้ได้ไคโตซานที่มีน้ำหนักโมเลกุลมากกว่า  $10^6$  ดาลตันและมีระดับการดึงหมู่อะเซททิล (degree of deacetylation, %DD) 2 ระดับคือ 78 และ 88% อัลลิชินที่สกัดได้จากการเทียมใช้ในการทดลองทันทีหรือเก็บที่ 4 องศาเซลเซียสและใช้ภายในเวลาไม่เกิน 24 ชั่วโมง ความเข้มข้นของอัลลิชินที่สกัดได้อยู่ระหว่าง 13.5-14.2 mg/ml สารประกอบเชิงช้อนอัลลิชิน-ไคโตซานซึ่งเตรียมด้วยภาวะที่เหมาะสมจากงานวิจัยนี้ นำมาศึกษาท่อตราช่วงอัลลิชินต่อไคโตซาน 1:1 2:1 และ 3:1 ผลจากการทดลองพบว่า สารประกอบเชิงช้อนที่เตรียมได้มีปริมาณของแข็งที่ละลายได้ทั้งหมดอยู่ระหว่าง 20-21% และ pH 4.5-4.8 สำหรับตัวอย่างที่ทำแห้งทั้งหมด 4 วิธี ได้แก่ freeze drying spray drying vacuum drying และ tray drying พบว่า freeze drying ให้ผลผลิตสูงสุด อัตราส่วนที่เหมาะสมและให้ผลผลิตของสารประกอบเชิงช้อนอัลลิชิน-ไคโตซานสูงสุดคือ 1:1 สารประกอบที่ได้มีสีเหลืองครีม ( $L^*87.3$ ,  $a^*-0.45$ ,  $b^*16.82$ ) ละลายน้ำได้ที่ช่วง pH กว้าง ออกฤทธิ์ต้านเชื้อ *E. coli* และ *S. aureus* ได้ โดยปริมาณต่ำสุดที่สามารถยับยั้งเชื้อได้เท่ากับ 6.25

mg/ml จากการศึกษาด้วย scanning electron microscope พบร้าสารประกอบที่ได้มีลักษณะเป็นทรงกลม ขนาดเส้นผ่านศูนย์กลาง 5-15  $\mu\text{m}$  ขณะที่สเปคตรัมของทุกตัวอย่างจากเครื่อง FT-IR ไม่มีความแตกต่างกันอย่างชัดเจนแสดงให้เห็นว่าลักษณะโครงสร้างของสารประกอบทุกตัวอย่างคล้ายคลึงกัน และผลจากเครื่อง XRD แสดงลักษณะผลึกแบบสัณฐาน เมื่อนำสารประกอบเชิงชั้อนอลลิชิน-ไคโตซานมาประยุกต์ใช้ในไส้กรอกหมูไขมันต่ำ เป็นผลให้ไส้กรอกมีค่าความสว่างของสีเพิ่มขึ้น ความสามารถในการอุ้มน้ำลดลง ( $p \leq 0.05$ ) เนื้อสัมผัสริ้งอธิบายด้วย hardness cohesiveness gumminess และ chewiness เพิ่มขึ้น ( $p \leq 0.05$ ) ในขณะที่ springiness และ adhesiveness ไม่เปลี่ยนแปลง ( $p > 0.05$ ) ผลจากการทดสอบทางประสาทสัมผัสรแสดงให้เห็นว่า คะแนนความชอบโดยรวมของไส้กรอกผสมออลลิชินหรือไคโตซานอย่างใดอย่างหนึ่งมีค่าต่ำกว่าตัวอย่างควบคุม ขณะที่ไส้กรอกผสมสารประกอบเชิงชั้อนอลลิชิน-ไคโตซาน ที่อัตราส่วน 1:1 ความเข้มข้น 0.5% โดยนำหนักได้รับคะแนนความชอบโดยรวมสูงสุด หลังจากเก็บไส้กรอกไว้ที่ 4 องศาเซลเซียสเป็นเวลา 15 วัน ผู้ทดสอบไม่ยอมรับผลิตภัณฑ์อย่างไรก็ตามสารประกอบเชิงชั้อนอลลิชิน-ไคโตซานมีผลในการต้านเชื้อจุลทรรศย ยีสต์และราจีงทำให้อายุการเก็บรักษาผลิตภัณฑ์ยาวนานกว่าตัวอย่างควบคุม เป็นเวลา 15 วัน ที่ 4 องศาเซลเซียส

**คำสำคัญ:** ออลลิชิน ไคโตซาน สารประกอบเชิงชั้อนอลลิชิน-ไคโตซาน สารต้านเชื้อจุลทรรศย ไส้กรอกหมูไขมันต่ำ