บทคัดย่อ

งานวิจัยนี้เป็นการสกัดแยกสารหนูและสารปรอท ออกจากน้ำทิ้งที่ได้จากหลุมขุดเจาะ ก๊าซธรรมชาติ ด้วยเยื่อแผ่นเหลวที่พยุงด้วยเส้นใยกลวง โดยเยื่อแผ่นเหลวเป็นสารละลายผสม ระหว่างสารสกัดกับตัวทำละลายน้ำมันก๊าด ซึ่งทำการศึกษากับสารสกัด 6 ชนิดคือสารสกัดชนิด Aliquat336, สารสกัดชนิด Bromo-PADAP, สารสกัดชนิด TOA, สารสกัดชนิด Cyanex923, สารสกัดชนิด Cyanex921 และสารสกัดชนิด Cyanex471 ซึ่งสารละลายเยื่อแผ่นเหลวจะถูก นำไปเคลือบฝังในรูพรุนจุลภาคชนิดไม่ชอบน้ำของมอดูลเส้นใยกลวง ส่วนสารละลายสตริปเป็น สารละลาย 5 ชนิดที่ทำการศึกษานั่นคือ สารละลายไธโอยูเรีย สารละลายโซเดียมไฮดรอกไซด์ น้ำปราศจากไอออน สารละลายกรดกำมะถัน และสารละลายกรดในตริก โดยจะทำการศึกษา ปัจจัยต่างๆ ที่มีผลต่อการสกัดดังนี้คือชนิดและความเข้มข้นของทั้งสารสกัดและสารละลายสตริป ความเข้มข้นของกรดกำมะถันที่ใช้ในสารป้อน การสกัดแบบเสริมฤทธิ์กันของสารสกัด 2 ชนิด และจำนวนรอบในการปฏิบัติการ

จากผลการศึกษาพบว่าสารสกัดทุกชนิดสามารถสกัดสารปรอทได้ดีมากกว่าร้อยละ 94 ซึ่งสารสกัดที่สกัดสารปรอทได้มากที่สุดคือ สารสกัดชนิด TOA ส่วนสารสกัดที่สกัดสารหนู ได้มากที่สุดคือ Bromo-PADAP ซึ่งสามารถสกัดสารหนูได้มากที่สุดเท่ากับร้อยละ 66 โดยการ สกัดแบบเสริมฤทธิ์กันนั้น จะมีเพียงคู่ของสารสกัดผสมระหว่างสารสกัดชนิด Aliquat336 ที่ ความเข้มขัน 0.4 โมลต่อลิตรกับสารสกัดชนิด Cyanex471 ที่ความเข้มขัน 0.06 โมลต่อลิตร เท่านั้นที่เสริมฤทธิ์กัน นอกจากนี้ความเข้มขันของสารละลายกรดกำมะถันในสารป้อนเริ่มต้น ทำ ให้การสกัดเกิดขึ้นได้ดี โดยมีความเข้มขันของกรดกำมะถันที่เหมาะสมเท่ากับ 0.1 โมลต่อลิตร และจำนวนรอบของการปฏิบัติการที่เหมาะสมเท่ากับ 3 เพราะทำให้สารหนูและสารปรอทที่ เหลือมีปริมาณต่ำกว่าเกณฑ์มาตรฐาน

คำสำคัญ: การเสริมฤทธิ์, การสกัด, สารหนู, สารปรอท, เยื่อแผ่นเหลว, เส้นใยกลวง, น้ำทิ้งที่ ได้จากหลุมขุดเจาะก๊าซธรรมชาติ

Abstract

This research was examined the extraction of arsenic and mercury ions simultaneously from natural-gas-wells produced water through hollow fiber supported liquid membrane was examined. Aliquat336, Bromo-PADAP, TOA, Cyanex923, Cyanex921 and Cyanex471 were used as carrier extractants. The carrier dissolve in kerosene as liquid membrane was supported by hollow fiber hydrophobic micro-porous. Thiourea, sodium hydroxide, Deionized water, sulphuric acid, and nitric acid solution were used as stripping solution. The transport system were studied as function of types and concentrations of carriers in kerosene solvent and stripping solution, concentration of sulphuric acid in feed solution, synergistic of mixed 2 extractants and the number of run.

The results demonstrated that all of carriers have the percentage of mercury more than 94%. TOA was the best carrier for mercury extraction and Bromo-PADAP was the best carrier for arsenic extraction with 66% removal. Only mixed between 0.40 mol/l of Aliquat336 with 0.06 mol/l of Cyanex471 was the synergistic extraction. Furthermore, when sulphuric acid solution was added in feed, The percentage of arsenic and mercury removal was increased. It is found that the concentration of sulphuric acid in feed at 0.1 mol/l and the number of run equal to 3 is the optimal condition that can reduce arsenic and mercury residue lower that standard.

Keywords: Synergistic, Extraction, Arsenic, Mercury, Liquid membrane, Hollow fiber, natural gas wells, wastewater