บทคัดย่อ

รหัสโครงการ: MRG5180336

ชื่อโครงการ: การคัดกรองคลังฟาจดิสเพลย์เพื่อหาเฮกซะเพพไทด์ที่มีฤทธิ์ยับยั้งการเจริญของรา

ที่ก่อโรคในกล้วยไม้

ชื่อนักวิจัย และสถาบัน: ดร.ปาหนัน เริงสำราญ สังกัดจุฬาลงกรณ์มหาวิทยาลัย

อีเมล์: panan.r@chula.ac.th

ระยะเวลาโครงการ: 3 ปี

บทคัดย่อ:

ราที่ก่อโรคในกลัวยไม้ส่งผลทำให้ผลผลิตการปลูกกลัวยไม้และรายได้ของเกษตรกรลดลง จึงมีความต้องการวิธีในการควบคุมราที่ก่อโรคในกล้วยไม้โดยเป็นวิธีที่เป็นมิตรกับสิ่งแวดล้อมด้วย วิธีฟาจดิสเพลย์ถูกนำมาใช้เพื่อคัดกรองหาเพพไทด์ที่สามารถจับและยับยั้งการเจริญของราได้ คลัง ของเฮกซะเพพไทด์ถูกสร้างขึ้นโดยการตัดดีเอ็นเอของฟาจ M13KE ด้วยเอนไซม์ตัดจำเพาะ Eagl และ Acc65I จากนั้นนำไปไลเกตเข้ากับคลังของโอลิโกนิวคลีโอไทด์ที่สร้างให้ประมวลรหัสเฮกซะ เพพไทด์แบบสุ่มที่ตัดด้วยเอนไซม์เดียวกัน จากนั้นทรานสฟอร์มเข้าสู่ Escherichia coli ER2738 ซึ่งจะทำให้เกิดการเพิ่มจำนวนของฟาจที่แสดงออกคลังของเฮกซะเพพไทด์ที่แคปสิดโปรตีน pIII ของฟาจ ถึงแม้เป้าหมายของงานวิจัยคือเพื่อใช้คลังของเฮกซะเพพไทด์ที่สร้างได้ในการคัดกรองหา เพพไทด์ที่มีฤทธิ์ยับยั้งการเจริญของรา Colletotrichum gloeosporioides และ Sclerotium solfsii ที่ ก่อโรคในกล้วยไม้ แต่การสร้างคลังดังกล่าวไม่ประสบผลสำเร็จ ดังนั้นจึงเลือกใช้คลังสำเร็จรูปที่มี ความยาว 12 เพพไทด์แทน โดยนำไปทำ bio-panning ด้วยการผสมกับสปอร์ของราและบ่มไว้เป็น เวลา 2 วัน จากนั้นกรองสปอร์ที่งอกเป็นเส้นใยออก แล้วเก็บสปอร์ที่ไม่งอกซึ่งคาดว่ามีอนุภาคของ ฟาจที่แสดงออกโดเดคะเพพไทด์เกาะอยู่มาชะเอาอนุภาคของฟาจ แล้วนำไปเพิ่มจำนวนโดยการ นำไปอินเฟก *E. coli* ER2738 ซ้ำอีกครั้ง ภายหลังการทำ bio-panning จำนวน 3 รอบแล้ว นำ โคลนต่างๆไปทดสอบความสามารถในการยับยั้งการงอกของสปอร์และการเจริญของรา รวมทั้ง วิเคราะห์ลำดับนิวคลีโอไทด์บนอนุภาคของฟาจเหล่านั้น อย่างไรก็ตามไม่พบรูปแบบของลำดับ นิวคลีโอไทด์หรือลำดับกรดอะมิโนที่คล้ายคลึงกัน ซึ่งแสดงให้เห็นว่าตำแหน่งเป้าหมายบนสปอร์ของ ราที่เพพไทด์เกาะได้นั้นมีหลายตำแหน่งและมีความจำเพาะที่แตกต่างกัน

คำหลัก: ฟาจดิสเพลย์, รากล้วยไม้, เพพไทด์

Abstract

Project Code: MRG5180336

Project Title: Screening phage display libraries for bioactive hexapeptides against orchid-

pathogenic fungi

Investigator: Dr.Panan Rerngsamran

E-mail Address: panan.r@chula.ac.th

Project Period: 3 years

Abstract:

Fungal diseases of orchid are undesirable diseases leading to losses of flower cultivation and growers' incomes. Eco-friendly methodology that can reduce the infection of fungi in this ornament plant is not yet applicable. Hence, treatment that specifically target phytopathogenic fungi is needed. We used M13 phage display technology to screen for peptides that can bind and reduce the growth of fungi. We attempted to construct hexapeptide libraries for further applications. M13KE DNA was prepared and digested with Eagl and Acc65I. The random oligonucleotides which encode hexapeptide libraries and contain Eagl and Acc65I were synthesized and digested. Both DNA were ligated and transformed into Escherichia coli ER2738. The hexapeptide can then be displayed on the coat protein III of the bacteriophage. Although our aim is to use these hexapeptide libraries to screen for bioactive hexapeptide against orchid-pathogenic fungi such as Colletotrichum gloeosporioides and Sclerotium solfsii, however the construction of hexapeptide libraries was not succeeded. A commercial phages displaying dodecapeptides was hence selected. They were mixed with conidia and incubated for 2 days. Afterward, non-germinate conidia with bound phage particles were filtered through sterile cheesecloth. Bound phage particles were eluted, and enriched by infection of log-phase E. coli ER2738. After 3 rounds of biopanning, several clones were selected for determining the inhibition ability on fungal growth and conidia germination. Nucleotide sequences representing dodecapeptides on phage particles were analyzed. However no common sequence pattern was found which might be due to the presence of numerous different target receptor sites on the fungal conidia.

Keywords: phage display, orchid pathogenic fungi, peptide