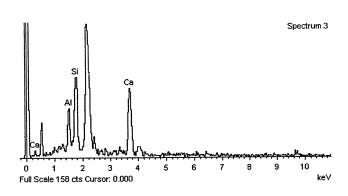
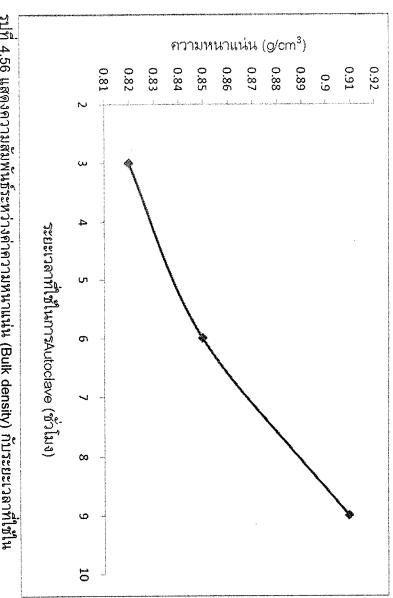

การศึกษาโครงสร้างทางจุลภาค


สัญลักษณ์

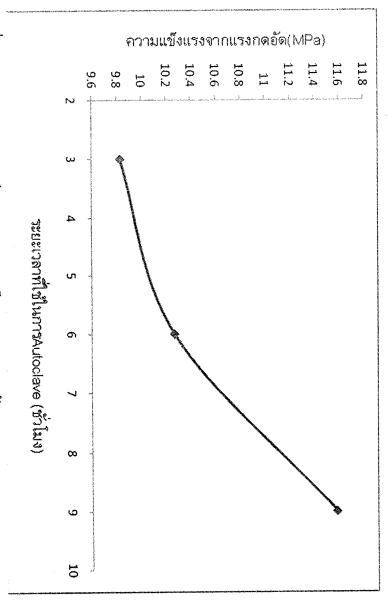
v			
Element	Weight%	Atomic%	
Al	9.30	11.11	
Si	46.39	53.25	
Ca	44.31	35.64	
T . 1	100.00		
Totals	100.00		

สัญลักษณ์ 🛆

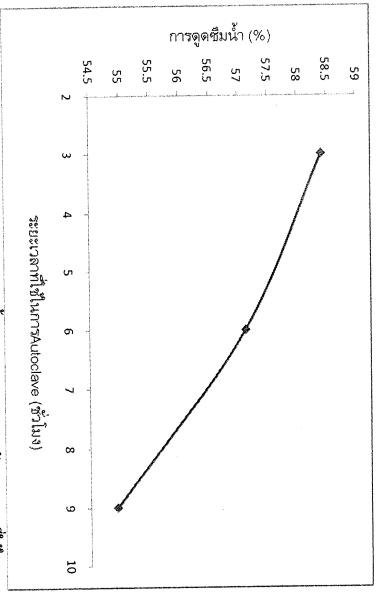
Element	Weight%	Atomic%
Al Si Ca	13.65 27.81 58.54	17.11 33.49 49.40
Totals	100.00	


รูป 4.55 แสดงโครงสร้างทางจุลภาค และการวิเคราะห์องค์ประกอบทางเคมีของอิฐที่ทำจากดิน เบาขนาดหยาบ (อนุภาคค้างตะแกรง 80 เมช (หรือ180µm))

บริเวณสัญลักษณ์ 💌 พบว่า มีปริมาณของธาฺดุ Ca และ Si ค่อนข้างสูง จึงคาดว่าน่าจะเป็น พบปริมาณของธาตุ Si และ Al ที่ต่ำกว่ามาก ดังนั้นโครงสร้างที่พบนี้น่าจะเป็นโครงสร้างของ Ca(OH)₂ ที่เกินจากการทำปฏิกิริยา หรือการเกิดปฏิกิริยายังไม่สมบูรณ์ โครงสร้างของ CSH และบริเวณสัญลักษณ์ 🛚 🛆 จากผล EDS ของอิฐเมื่อใช้ดินเบาขนาดอนุภาคค้างตะแกรง 80 mesh (หรือ180µm) ที่ พบว่ามีปริมาณของธาตุ Ca ค่อนข้างสูง แต่

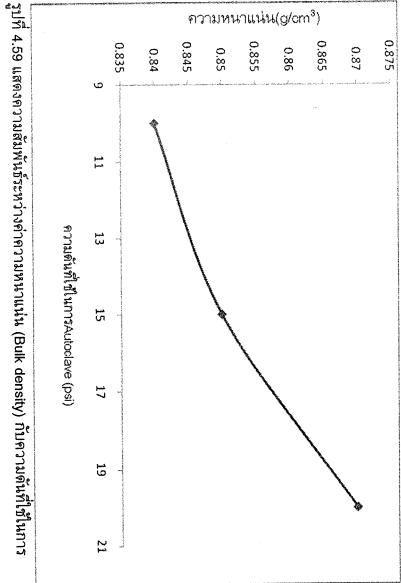

4.12 ผลการศึกษาอิทธิพลของระยะเวลาในการ Autoclave ที่มีต่อปฏิกิริยาปอชโชลานิก

ตาราง 4.18 ระยะเวลาที่ใช้ในการ Autoclave อิฐในการทดลอง และสมบัติเชิงกลของอิฐ

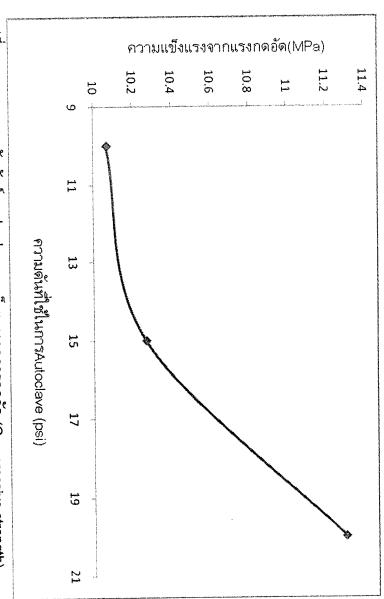

					Σ	<u> ઋ</u> -	ئ
9	6	ω		(ชั่วโมง)	Autoclave	ที่ใช้ในการ	ระยะเวลา
70	70	70		(%)	ดินเบา		
10	10	10			Ca(OH) ₂ (%) ยิปซัม(%)		ส่วนผสม
20	20	20			ยิปซัม(%)		
0.91	0.85	0.82		(g/cm ³)	หนาแน่น	ผาเม	
11.59	10.27	9.83	(MPa)	แรงกดอัด	แข็งแรงจาก	ความ	สมบัติเชิงกล
58.42	57.13	54.95			น้ำ (%)	การดูดซึม	

รูปที่ 4.56 แสดงความสัมพันธ์ระหว่างค่าความหนาแน่น (Bulk density) กับระยะเวลาที่ใช้ใน การบ่มด้วย Autoclave

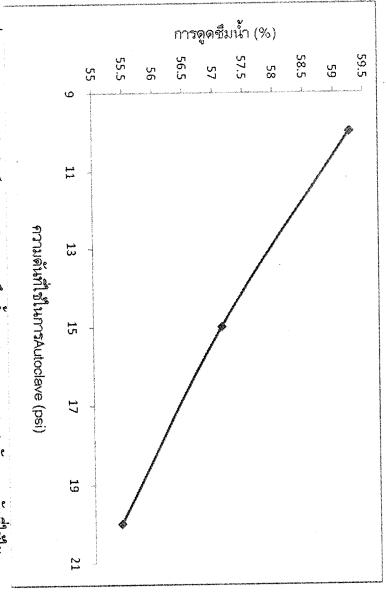
รูปที่ 4.57 แสดงความสัมพันธ์ระหว่างค่าความแข็งแรงจากการกดอัด (Compressive strength) กับระยะเวลาที่ใช้ในการบ่มด้วย Autoclave


รูปที่ 4.58 แสดงความสัมพันธ์ระหว่างค่าการดูดซึมน้ำ (Water absorption) กับระยะเวลาที่ใช้ใน การบ่มด้วย Autoclave

แข็งแรงมากขึ้นเนื่องจาก มากขึ้น รวมกั้งการใช้ระยะเวลาในการ Autoclave มากขึ้น ทำให้ไอน้ำที่อยู่ในรูพรุนของอิฐมี จัดเรียงตัวชิดกันมากขึ้น ซึ่งจะเอื้อต่อการเกิดปฏิกิริยาปอชโซลาน และเกิดโครงสร้างของ CSH ต้องการอิฐที่มีความพรุนตัวสูง ๆ และมีค่าความแข็งแรงที่เหมาะสม ดังนั้นจึงพิจารณาที่แรงกด เกิดปฏิกิริยาปอชโชลานมากขึ้น ดังนั้นโครงสร้างของ CSH ความอิ่มตัวมากขึ้น ไอน้ำที่อิ่มตัวจะใช้เวลาในการชะเอา Al และ Si ออกมามากขึ้น ซึ่งทำให้ พรุนตัวสูงด้วย อัดที่ใช้ในการขึ้นรูปอิฐที่ทำให้ได้ความแข็งแรงที่สามารถใช้ในการก่อสร้างได้จริง และให้ความ จากการทดลองพบว่า การใช้เวลาในการ Autoclave ยิ่งใช้เวลาในการ Autoclave มากขึ้น จะทำให้อนุภาคมีเวลาในการ จึงมากขึ้นด้วย แต่ในงานวิจัยนี้ อิฐมากขึ้น จะทำให้อิฐมีความ


4.13 ผลการศึกษาอิทธิพลของความดันที่ใช้ในการ Autoclave

ตาราง 4.19 ความคันที่ใช้ในการ Autoclave อิฐในการทดลอง และสมบัติเชิงกลของอิฐ


ความดันที่ ส่วนผสม	า ส 2		สมบัติเชิงกล
ใช้ในการ		เรเล	แเเษ
Autoclave ดินเบา Ca(OH	Ca(OH) ₂ (%) ยิปซัม(%)	นหมเหน	แข็งแรงจาก
(psi) (%)		(g/cm ³)	แรงกดอัด
10 70 10	20	0.83	
15 70 10	20	0.85	
20 70 10	0 20	0.90	

บ่มด้วย Autoclave

รูปที่ 4.60 แสดงความสัมพันธ์ระหว่างคำความแข็งแรงจากการกดอัด (Compressive strength) กับความดันที่ใช้ในการ Autoclave อิฐ

รูปที่ 4.61 แสดงความสัมพันธ์ระหว่างคำการดูดซึมน้ำ (Water absorption) กับความดันที่ใช้ใน การAutoclave อิฐ

มากขึ้น ไอน้ำที่อิ่มตัวจะไปทำการชะเอา AI และ Si ออกมามากขึ้น ซึ่งทำให้เกิดปฏิกิริยาปอช ขึ้น ทำให้อุณหภูมิสูงขึ้นด้วย เมื่ออุณหภูมิสูงขึ้นจะทำให้ไอน้ำที่อยู่ในรูพรุนของอิฐมีความอิมดัว ปอชโชลาน และเกิดโครงสร้างของ CSH มากขึ้น รวมทั้งการใช้ความดันในการ Autoclave มาก ชิดกันมากขึ้น ยิ่งใช้ความดันสูงจะทำให้อนุภาคบีบอัดกันมากขึ้น ซึ่งจะเอื้อต่อการเกิดปฏิกิริยา ความแข็งแรงมากขึ้นเนื่องจาก ความดันในหม้อ Autoclave จะทำการบึบอัดให้อนุภาคเข้าเรียง พรุนตัวสูงๆ และมีค่าความแข็งแรงที่เหมาะสม ดังนั้นจึงพิจารณาที่แรงกดอัดที่ใช้ในการขึ้นรูป โชลานมากขึ้น ดังนั้นโครงสร้างของ CSH จึงมากขึ้นด้วย แต่ในงานวิจัยนี้ต้องการอิฐที่มีความ อิฐที่ทำให้ได้ความแข็งแรงที่สามารถใช้ในการก่อสร้างได้จริง และให้ความพรุนตัวสูงด้วย จากการทดลองพบว่า การใช้ความดันที่ใช้ในการ Autoclave อิฐมากขึ้น จะทำให้อิฐมี

4.14 ผลการศึกษาอิทธิพลของการปรับสภาพด้วยความร้อนต่อปฏิกิริยาปอชโชลาหิก

ดาราง 4.20 สภาวะดินเบาลำปางที่ใช้ทำอิฐในการทดลองและสมบัติเชิงกลของอิฐ

calcine	non -	calcine					ดินเบา		
70		70		(%)	ยา	ดิ			
20		20		(%)	Ca(OH) ₂				ส่วนผสม
10		10		(%)	ಕ್ಕೇ	ยิป			
10 10.14		0.22		รัดษน	%การ				
1.23		1.02	(g/cm ³)	แม่น	7.8%		ลาม		
1.57		1.49	(g/cm ³)	ะหุ่น	C#.		ความ		สมบัติเชิงกล
13.6		10.99	(MPa)	ନ୍ଧ	จากแรงกด		แข็งแรง	ความ	ଅ
33.4		43.7		น้ำ(%)	•		ดูดซึม	การ	

สูงกว่าค่าความแข็งแรงที่ได้จากการใช้ดินเบาลำปางที่ ต้องการอิฐที่มีค่าความหนาแน่นที่ต่ำ ๆเนื่องจากต้องการทำอิฐมวลเบาที่มีคุณสมบัติในการเป็น สามารถนำอิฐไปใช้งานได้ แต่เห็นว่าจะให้ค่าความหนาแน่นที่ค่อนข้างสูงด้วย ซึ่งในงานวิจัยนี้ สามารถนำดินเบาที่ไม่ผ่านการ Calcine มาใช้ทำอิฐที่จะให้ค่าความแข็งแรงที่ได้มาตราฐานที่ จากผลการทดลอง การใช้ดินเบาลำปางที่ไม่ได้ Calcine พบว่าค่าความแข็งแรงที่ได้จะ Calcine ดังนั้นการทำอิฐชนิดไม่เผา

และให้ค่าความแข็งแรงที่เหมาะสมที่จะสามารถนำอิฐไปใช้งานได้ ฉนวนความร้อน ดังนั้นจึงเลือกสภาวะที่ใช้ดินเบาที่ Calcine เนื่องจากมีค่าความหนาแน่นที่ต่ำ

แตกต่างกัน ซึ่งความเข้มข้นของไอออนแต่ละชนิดจะส่งผลต่อชนิดของสารประกอบที่เกิดขึ้นใหม่ ให้ดินเบาที่ผ่านการแคลไซด์ เกิดเป็นสารประกอบที่มีความสามารถในการเชื่อมประสานได้มากกว่าหรือมีขนาดเล็กกว่าอิฐที่ ว่าดินเบาที่ไม่ผ่านการแคลไซด์ทำให้ระบบมีอัตราส่วนระหว่าง CaO/SiO₂ ที่ไม่ได้ผ่านการ Calcine น่าจะทำให้การละลายของไอออนต่างๆไนดินเบาทั้งสองสภาวะมีความ โดยสารประกอบเหล่านี้จะเป็นด้วรับผิดชอบความแข็งแรงของอิฐ จากการทดลองนี้ทำให้ทราบว่า การใช้ดินเบาที่ผ่านการ Calcineg เมื่อเทียบกับดินเบา ดังนั้นจึงอาจกล่าวได้ ที่เหมาะสมสามารถ

สรุปผลการทดลอง

หรือ แคลเซียมอะลูมิเนตไฮเดรด (CAH) และ/หรือ แคลเซียมอะลูมิโนซิลิเกตไฮเดรด (CASH) ที่ phase) ที่มีความต่อเนื่องกันของพันธะระหว่างโมเลกุลสูง ส่งผลให้วัสดุมีความแข็งแรงมาก และ โซลานิกของดินเบาลำปาง เพิ่มมากขึ้น จะบ่งชี้จากการเกิดปฏิกิริยาปอชโซลานิกจากโครงสร้างแคลเซียมซิลิเกตไฮเตรต (CSH) แล*ะเ* งานวิจัยนี้มีความมุ่งหมายในการศึกษาปฏิกิริยาโพลิเมอร์ไรเซชันและปฏิกิริยาปอช โดยปฏิกิริยาโพลิเมอร์ไรเซชันจะบ่งชี้จากการที่วัสดุเกิดเป็นเนื้อแก้ว โดยศึกษาถึงอิทธิพลที่ส่งผลทำให้ปฏิกิริยาเคมีทั้งสองดังกล่าว

ปฏิกิริยาโพลิเมอร์ไรเซชัน และ CSH และ/หรือ CAH และ/หรือ CASH ที่เกิดขึ้นจากปฏิกิริยา จุลภาคและองค์ประกอบทางแร่ของอิฐ ที่สามารถยืนยันโครงสร้างของ Glassy phase ที่ได้จาก และการดูดซึมน้ำซึ่งจะเป็นตัวบ่งชี้คุณภาพของอิฐ และเชิงกายภาพในด้านด่าง ๆ กล่าวคือ เปอร์เช็นด์การหดตัว, ความหนาแน่น, ความแข็งแรง โดยงานวิจัยนี้ทำการทดลองโดยขึ้นรูปวัสดุตัวอย่างเป็นอิฐ อีกทั้งยังพิจารณาได้จากโครงสร้างทาง และได้ศึกษาสมบัติเชิงกล

ความละเอียดของดินเบา ดินเบาแหล่งลำปางและเถ้าแกลบ โดยใช้อัตราส่วนโดยโมลของชิลิกาต่ออะลูมินาในช่วง อุณหภูมิและเวลาในการบ่มวัสดุ โดยศึกษาสมบัติเชิงกล เชิงความร้อนและโครงสร้างจุลภาคของ โซเดียมไฮดรอกไซด์และโปแดสเซียมไฮดรอกไซด์ ดรอกไซด์ให้ค่าความแข็งแรงทนต่อการกดอัดมากกว่าวัสดุที่กระตุ้นด้วยสารละลายไปแดสเซียม วัสดุจิโอโพลิเมอร์ และของโซเดียมออกไซด์ต่ออะลูมิหาใหช่วง 0.7-3.0 สำหรับการสังเคราะห์วัสดุจึโอโพลิเมอร์ที่มีน้ำหนักเบา ได้ใช้วัดถุดิบตั้งต้นสองชนิดคือ จากผลการทดลองพบว่าวัสดุจีโอโพลิเมอร์ที่กระดุ้นด้วยสาระลายโซเดียมไฮ อุณหภูมิในการเผาแคลไซด์ดินเบา อัตราส่วนระหว่างดินเบาและเถ้าแกลบ ในงานวิจัยนี้ได้ศึกษาปัจจัยของ ความเข้มข้นของสารละลาย

วันตามลำดับ แข็งแรงและความแห่นด้วของวัสดุจีโอโพลิเมอร์ขึ้นอยู่กับอัตราส่วนระหว่างโซเตียมต่ออะลูมินา หนาแน่นเพิ่มขึ้นเล็กน้อยเป็น 1,010 กิโลกรัมต่อลูกบาศก์เมดร นาเป็น 1.7 จะทำให้ค่าความแข็งแรงทนต่อการกดอัดเพิ่มขึ้นเป็น 2.4 เมกะปาสคาล และมีความ ระหว่างชิลิกาต่ออะลูมินาเปลี่ยนไปเป็น 22.5 และอัตราส่วนระหว่างโชเตียมออกไซด์ต่ออะลูมิ เมกะปาสคาล และเมื่อผสมเถ้าแกลบกับดินเบาในอัตราส่วน 40ต่อ60 ซึ่งจะทำให้ได้อัตราส่วน โดยรวมเท่ากับ 880 กิโลกรัมต่อลูกบาศก์เมตร และมีความแข็งแรงทนต่อการกดอัดเท่ากับ 1.5 โซเดียมออกไซด์ต่ออะลูมินาเท่ากับ ใฮดรอกไซด์ คือ คอว์ช นอกจากนี้ยังพบว่าดินเบาที่ไม่ผ่านการปรับสภาพไม่สามารถพัฒนาให้เกิดปฏิกิริยา จะมีเพิ่มขึ้น ของวัสดุจึโอโพลิเมอร์ พบว่าความต่อเนื่องของเฟสจะมีเพิ่มขึ้น หรือความเป็น Glassy phase โดยความแน่นตัวจะมีลดลงเมื่ออัตราส่วนดังกล่าวลดลง โพลิเมอร์ไรเซชันได้ โดยพบว่าองค์ประกอบทางแร่ที่เหลืออยู่โดยไม่ร่วมเกิดปฏิกิริยาโพลิเมอร์ไรเซชัน โดยอุณหภูมิและเวลาบ่มวัสดุที่เหมาะสมคือที่อุณหภูมิ 75 องศาเชลเซียสและ 5 และมีอัตราส่วนระหว่างซิลิกาต่ออะลูมินาเท่ากับ ---ชึ่งจะทำให้ได้วัสดุจีโอโพลิเมอร์ที่มีความหนาแน่น และจากการศึกษาโครงสร้างจุลภาค ಭ นอกจากนี้ยังพบว่าความ และมีอัตราส่วนระหว่าง

ของโชเดียมไฮดรอกไชด์ อุณหภูมิและเวลาในบ่ม และการปรับสภาพด้วยความร้อน จากผลการ สังเคราะห์คืออุณหภูมิในการเผาแคลไซด์ดินเบา ปริมาณแคลเซียมไฮตรอกไซด์ เพียงเล็กน้อยประมาณ 10% เท่านั้น และพบว่าอิฐที่ทำจากจินเบาที่ไม่ผ่านการปรับสภาพด้วย โดยใช้อุณหภูมิในการบ่มที่ 130 องศาเซลเซียส ทำให้ได้วัสดุที่มีความแข็งแรงทนต่อการกดอัด อุณหภูมิ 500 องศาเชลเซียส และใช้อัตราส่วนระหว่างแคลเซียมออกไซด์ต่อซิลิกาเท่ากับ 0.3 ทดลองพบว่าวัสดุที่มีน้ำหนักเบาที่มีคุณภาพดีได้จากการใช้ดินเบาที่ผ่านการเผาแคลไซด์ที่ ปรับสภาพ ที่มีความแข็งแรงถึง 10.9 เมกะปาสดาล ความร้อนมีความแข็งแรง 13.6 เมกะปาสคาล โดยมีค่ามากกว่าอิฐที่ทำจากดินเบาที่ผ่านการ และเมื่อใช้อุณหภูมิการบ่มสูงขึ้นเป็น เท่ากับ 10 เมกะปาสคาล และมีความหนาแผ่นโดยรวมเท่ากับ 870 กิโลกรัมต่อลูกบาศก์เมตร สำหรับการสังเคราะห์วัสดุที่มาจากปฏิกิริยาปอชโซลานิกได้ศึกษาปัจจัยที่มีผลต่อการ 180 องศาเชลเชียส ค่าความแข็งแรงต่อกดอัดเพิ่มขึ้น

ปฏิกิริยาปอชโชลานิกมากกว่าปฏิกิริยาโพลิเมอร์ไรเซชันในทุกกรณี สองวิธีดังกล่าว จากการพิจารณาจากสมบัติเชิงกลและเชิงความร้อนของวัสดุที่ได้จากการสังเคราะห์ทั้ง พบว่าวัตถุดิบตั้งต้นชนิดดินเบาเหมาะกับการเตรียมวัสดุที่มีน้ำหนักเบาโดยใช้

เอกสารอ้างอิง

- ชาญยุทธ สีแดง, อัมรินทร์ นันทเสน และ เกศรินทร์ จากดินเบาแหล่งลำปาง, เมษายน, กรุงเทพฯ, 2547 การนำเสนองานวิจัยสำหรับนักศึกษาปริญญาตรี พิมรักษา, การผลิตอิฐเบาชนิดไม่เผา (IRPUS),
- [2]ชนิดา จากดินเบาแหล่งลำปางเพื่อใช้ในงานก่อสร้างอาคารภายนอก, การนำเสนองานวิจัยสำหรับ นักศึกษาปริญญาตรี (IRPUS), พฤษภาคม, กรุงเทพฯ, 2548 นันทสว่าง, สุมิตร ห่วงนาคและ เกศรินทร์ พิมรักษา, การผลิตอิฐเบาชนิดไม่เผา
- [3]M. G. properties of blended cement, Cem. Concr. Comp. 25 (2003) 177-184 Stamatakis, D. Fragoulis, The influence of biogenic microsilica rock on the
- **E** Mat. Article in press, doi: 10.1016/j.conbuildmat.2006.12.010 工 Boeke, Oezlem, of lime produced from limestone containing diatoms, Constr. Build Basak Ipekoglu, E. Ugurlu, K. Serifaki, <u>.</u> Toprak,
- [5] T. Chareerat, K. Pimraksa, P. Chindaprasirt, A. Maegawa, S. Hatanaka, Composition and Innovation for Sustainable Development Conference, Khon Kaen, (2008) 168microstructure of fly ash geopolymer containing rice husk ash. Technology
- <u>_</u> ب ۷an, properties of fly ash and kaolinite-based geopolymers. Chem. Eng. J. 89 (2002) D. Van, G.C. Lukey, The effect of composition and temperature on the
- [7] P. Chindaprasirt, T. Chareerat, W. Kunawanakit, Geopolymer from Mae Moh fly ash. KKU Eng. J. 32 (2005) 715-724
- [8] กูวิศ ตรีสุวรรณ, ของจีโอพอลิเมอร์เพสด์ที่ทำจากเถ้าแกลบ-เปลือกไม้ผสมเถ้าถ่านหิน. เอกสารประ ผลกระทบของความละเอียดของเถ้าแกลบ-เปลือกไม้ต่อกำลังอัดและระยะเวลาการก่อตัว การประชุมวิชาการวิศวกรรมโยธาแห่งชาติ ครั้งที่ 13, พัทยา, MAT 306-MAT311, 2551 สมีตร ส่งพิริยะกิจ, ปริญญา จินดาประเสริฐ และ ชัย จาตุรพิทักษ์กุล
- [9] properties and durability of fly ash geopolymer. เอกสารประกอบการประชุมวิชาการ คอนกรีตและจีโอโพลิเมอร์แห่งชาติ ครั้งที่ 2, ขอนแก่น, 216-224, 2551 Chareerat, P. Chindaprasirt, S. Nontananandh, Effect of fly ash fineness on
- A. Sathonsaowaphak, P. Chindaprasirt, K. Pimraksa, Workability and lignite bottom ash geopolymer mortar. J. Haz. Mat. 168 (2009) 44-50. strength of
- [11] <u>ر</u> .× microstructural characteristics of waste-based geopolymers. Inter. Phair, J.S.J Van Deventer, Effect of the silicate activator PH on the

- [12] J.G.S. Van Jaarsveld, J.S.J Van Deventer, Effect of the alkali metal activator on the properties of fly-ash based geopolymers. Ind. Eng. Chem. Res. 38(10) (1999)
- [13] J.C. Swanepoel, C.A. Strydom, Utilisation of fly ash in a geopolymeric material. App. Geochem. 17(8) (2002) 1143-1148.
- [14] K. Sagoe-Crentsil, Properties and performance 2, มหาวิทยาลัยขอนแก่น, 5-13, 2551 systems. เอกสารประกอบการประชุมวิชาการคอนกรีตและจีโอพอลิเมอร์แห่งชาติ of Si-rich geopolymer binder ครูงที่
- [15] T. Bakharev, Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem. Concr. Res. 35 (2005) 1224-1232
- [16] K.Pimraksa, P.Chindaprasirt, Lightweight bricks made of diatomaceous earth lime and gypsum, Ceram. Inter. (2008)
- [17] D. Damidot, F.P.Glasser, Investigation of the CaO-Al₂0₃-Si0₂-H₂0 system at 25°C by thermodynamic calxulation, Cem. Concr. Res. (1995).

6. Output จากโครงการวิจัยที่ได้รับทุนจากสกว.

"Lightweight geopolymeric materials from highly siliceous materials" (จึงเอกสารแนบ) เตรียม Manuscript สำหรับดีพิมพ์ในวารสารวิชาการต่างประเทศเรื่อง

contratoritation and con-
annan uni annananahannan manapanana ulai, abana sa mhashdaakhanakhanakha san anna ipi si sa shiikikikikikikiki

Lightweight geopolymeric materials from highly siliceous materials

K. Pimraksa^{1*}, P. Chindaprasirt², T. Lertkhositpong¹, K. Sagoe-Crentsil⁴

Department of Civil Engineering, Faculty of Engineer, Khon Kaen University

³Department of Industrial Chemistry, Faculty of Science, Chiang Mai University

⁴CSIRO, Melbourne, Australia

Abstract

The syntheses of lightweight geopolymeric materials highly siliceous materials viz.

diatomaceous earth (DE) and rice husk ash (RHA) using SiO₂/Al₂O₃ ratios of 13.0-33.5 and

Na₂O/Al₂O₃ ratios of 0.7-3.0 were studied. The effects of fineness and calcination

temperature of DE, concentrations of NaOH and KOH, DE to RHA ratio, curing temperature

and time on the mechanical properties and microstructures of the geopolymer pastes were

studied. The optimum calcination temperature of DE was 800 °C. The increases in fineness

DE and in alkali concentration resulted in an increase in compressive strength of

geopolymer paste. Geopolymer pastes activated with NaOH gave higher compressive

strengths than those with KOH. The optimum curing temperature and time were 75 °C and 5

days. The lightweight geopolymeric material with bulk density of 880 kg/m³ and compressive

strength of 1.5 MPa was obtained. The SiO2/Al2O3 and Na2O/Al2O3 ratios of the material

13 of 1.0, respectively. The incorporation of 40% RHA that changed SiO₂/Al₂O₃ and

Na₂O/Al₂O₃ ratios to 22.5 and 1.7 enhanced the compressive strength of geopolymer paste to

2.4 MPa with only a slight increase of bulk density to 1,010 kg/m³

Keyword: Diatomaceous earth; Rice Husk Ash; Geopolymer; Lightweight materials

Corresponding author. Tel.:+66 53-943404; Fax: +66 53-892262:

E-mail address: kpimrakp@science.cmu.ac.th

1. Introduction

quarries. Efforts, therefore, have been made to develop alternative cementitious materials to dioxide of approximately 7% of global emission [1]. The process also produces pollution in Manufacture of Portland cement is energy intensive and emits a large amount of carbon depending on the SiO₂/Al₂O₃ ratio in the system [2]. The connection of the tetrahedral cavities nearby AlO₄ location. The reaction forms SiO₄ and AlO₄, tetrahedral frameworks those dissolved species in the presence of alkali ions for charge balancing in framework produced from the dissolution of alumino-silicate oxides and the polymerization reaction of material with low CO₂ emission and low energy requirement. The geopolymeric material is reduce the mentioned problems. One of the promising findings is to develop a geopolymeric microstructure therefore frameworks perceived as dense amorphous of dust, noise and vibration with operating machinery and during blasting shared oxygens as polysialates or polysialate-siloxo or is performed by covalent bonds in the long range. and/or semi-crystalline Geopolymer structure 3-D alumino-silicate polysialate-disiloxo

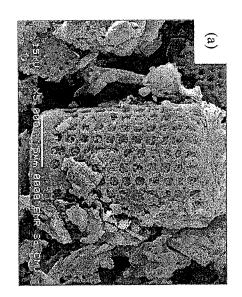
and/or alumina and are abundant in Thailand are diatomaceous earth (DE) and rice husk ash production of lightweight geopolymer. Suitable lightweight source materials containing silica structures and improve thermal insulation of buildings. This study, therefore, focused on the Nowadays, lightweight construction materials are used to reduce the weight of building and high surface area [3]. The deposit of DE in Lampang province in the north is quite large characteristics such as unique particulate structure, low bulk density, high absorptive capacity (RHA). DE is a sedimentary rock consisting principally of highly porous skeletons of diatom, a loosely packed mineral. The porous silica structure gives DE

subsequent polymerization stages [X: S. Detphan, P. Chindaprasirt, Preparation of fly ash and considered useful to help increase the dissolved SiO₄ species during dissolution and for minerals render DE as a suitable source for making geopolymer. Rice husk ash (RHA) with estimation of more than 100 million tons. The mineral composition consists primarily of Materials,.....]. with some clay minerals viz. montmorillonite, kaolinite and muscovite [4]. These clay husk ash geopolymer, International Journal of Minerals, Metallurgy and

silica are impeded due to its characteristic long ranged bonding of inorganic polymer chains. investigated. microstructure after the chemical reaction of polymerization. Thermal conductivity is also This research, therefore, aims to study reduction of unit weight, developments of strength and beneficial to the understanding of the mechanism and to develop the lightweight materials. Si. still not certain whether 3D built-up structures of geopolymer made of highly porous The knowledge of the production of DE lightweight geopolymer should

2. Materials and methods

2.1 Materials


some compositions DE was obtained from Lampang province in northern Thailand. It had particle size $(d_{4,3})$ of 73 µm, specific surface area by BET of 46.8 m²/g and specific gravity of 2.55. Mineralogical 32.39% SiO₂, 13.44 % Na₂O and 54.17% H₂O were used (NaOH) and potassium hydroxide (KOH) and industrial sodium silicate (Na₂SiO₃) with semi-crystalline phase and amorphous ofDE consisted of quartz, montmorillonite, muscovite, kaolinite, hematite, phases. Laboratory grade sodium hydroxide

containing fly ash and rice husk ash, Construction and Building Materials, 21, 2007, 1356obtained by burning rice husk at temperature lower than 700 °C [XX: P.Chindaprasirt, P. amorphous phase of silica with only small amount of cristobalite. Chemical compositions of Kanchanda, A. Sathonsaowaphak and HT. Cao, Sulfate resistance of blended cements obtained from burning of rice husk at 700 °C in oxidation atmosphere. Amorphous silica is RHA with particle size $(d_{4,3})$ of 62 µm, specific surface area by BET of 48.7 m²/g was DE and RHA are given in Table 1. Photomicrographs of DE and RHA are shown in Fig. 1. 1361]. XRD indicated that the mineralogical compositions of RHA composed basically of

Table 1 Chemical compositions of DE and RHA (Si/Al ratio is molar ratio of SiO₂/Al₂O₃)

Raw				Chemi	ical con	mpositi	Chemical composition (wt %)	%				Si/Al
materials	SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ Na ₂ O K ₂ O CaO MgO TiO ₂ P ₂ O ₅ SO ₃ LOI	Al ₂ O ₃	Fe ₂ O ₃	Na ₂ O	K ₂ 0	CaO	MgO	TiO ₂	P ₂ O ₅	SO_3	TOI	ratio
DE	77.46	77.46 10.97	9.08	tr	1.07	1.07 0.35 0.31	0.31	0.41	Ħ	Ħ	0.35	11.98
CDE800	66.48	13.18	18.31	Ħ	1.12	0.47	Ħ	0.43	Ħ	Ħ	Ħ	
MDE800	75.52	12.15	10.27	Ħ	1.24	0.39	Ħ	0.44	t	Ħ	Ħ	
FDE800	79.76	10.81	7.42	Ħ	1.26	0.33	Ħ	0.42	Ħ	Ħ	Ħ	
RHA	85.25	0.11	0.18	Ħ	1.80	0.79	0.3	0.03	1.10	0.08	10.29	1315
FRHA	96.47	0.00	0.32	tr	1.50	1.50 0.75	tr	0.02	0.61	Ħ	Ħ	

Tr = trace (0-0.049%)

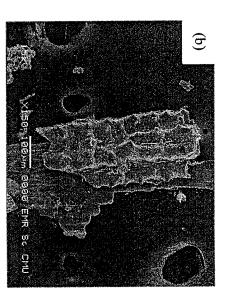


Fig.1 Photomicrographs of (a) DE and (b) RHA

DE calcination, DE was sieved into three lots of coarse, medium and fine particle sizes. Coarse DE of RHA was obtained from sieving passed also sieve No. 325. The chemical compositions of larger than sieve No. 200. Fine DE (FDE) was the portion passed sieve No. 325. Fine portion DE, sieved DE800 and RHA are shown in Table 1. was calcined at 400, 600, 800 and 1000 °C (DE400, DE600, DE800 and DE1000). After (CDE) was the portion larger than sieve No. 80. Medium DE (MDE) was the portion

liquid ratio of 1:10 for 24 h. The dissolved Si and Al ions were verified quantitatively using was carried out by stirring the calcined DE in 10 Molar (M) NaOH solution with solid to Atomic Absorption Spectroscopy (AAS) The leachings of Si and Al ions of calcined DE and RHA were measured. The leaching test

2.2 Details of tests

was then added and mixed for 5 min. The mixtures were cast in 50×50×50 mm acrylic cube with mixing of NaOH (or KOH) solution, sodium silicate (Na2SiO3) and DE for 5 min. Water each mix was stoichiometrically weighed according to Table 2. The mixing procedure started The mixing was done in an air conditioned room at approximately 25 °C. The proportion of

C109 ages. The compressive strength tests were performed at 7 days in accordance with ASTM cooled down in the oven and then demoulded the next day and kept at 23 °C until the testing delayed time of 1 hour, the specimens were cured in an electric oven. The specimens were mould. The specimens were then wrapped with plastic film to prevent moisture lost. After equipped with EDX microanalysis, respectively. Philips analysis were conducted on the broken specimens after compressive strength test using a measurement. The reported strength and density were the mean of three tests. XRD and SEM [5]. X'Celerator diffractometer with a Cu $K\alpha_1$ radiation and JSM-5910 LV microscope Density measurements were also conducted at age of 7 days using direct

2.3 Test series

2.3.1 Effect of pre-treatment

concentration of 10 M and the Na₂SiO₃/NaOH ratio of 1.23 were used. After delayed time of hour, specimens were cured at 60 °C for a period of 3 days this series, fineness and calcination temperature of DE were studied. NaOH with

2.3.2 Effect of synthesized condition on DE Geopolymer

800 °C (FDE800) was suitable source material. It was, therefore, selected for the following The results of section 2.3.1 indicated that fine DE with optimum calcination temperature of

(1) The concentrations of NaOH and KOH

The concentrations of NaOH and KOH of 4, 6, 1.23 were used. Compositions of geopolymer in mole ratios of samples No. 1 to 10 are shown 8, 10 and 12 M and Na₂SiO₃/NaOH ratio of

in Table 2. After delayed time of 1 hour, specimens were cured at 60 oC for a period of 3

(2) Curing temperature and time

specimens were cured in an oven for different time intervals of 1, 2, 3, 4 and 5 days at curing temperatures of 60, 75 and 90 °C. The 10 M NaOH and Na₂SiO₃/NaOH ratio of 1.23 were used. After one hour delayed time,

(3) Alkali content

°C for 3 days were used. Compositions of geopolymer in mole ratios of samples No. 11 to 13 are shown in Table 2. In this test, 10 M NaOH; three Na₂O/Al₂O₃ ratios of 1, 2 and 3; and curing temperature of 60

2.3.3 Effect of incorporation of RHA

The SiO₂/Al₂O₃ ratios. The compositions of samples No. 14 to 17 are given in Table 2. geopolymer pastes with different DE: RHA ratios were used to obtain

Table 2 Compositions of FDE800 geopolymer

0 10	нол	5	4	ယ	2	1 NaOH	No.	Sample	
	H 4	12	10	&	6	H 4		ide Molar	
12 0	13.0	13.0	13.0	13.0	13.0	13.0	SiO ₂ /Al ₂ O ₃		
0 76	0.66ª	1.09	1.00	0.90	0.79	0.68	Na ₂ O/Al ₂ O ₃	Mole ratio	
0.06	0.05 ^b	0.08	0.08	0.07	0.06	0.05	Na ₂ O/SiO ₂	atio	
16.20	19.53°	10.86	12.16	13.94	16.39	19.53	H ₂ O/Na ₂ O		

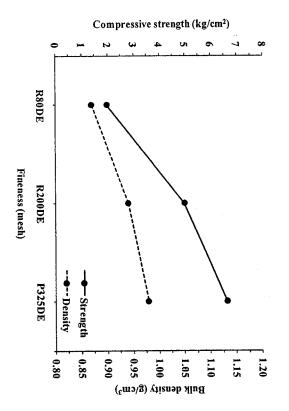
17	16	15	14	13	12	11	10	9	8
		NaOH				NaOH			
10	10	10	10	10	10	10	12	10	8
33.5	22.5	16.6	13.0	13.0	13.0	13.0	13.0	13.0	13.0
2.46	1.67	1.25	3.00	2.00	1.50	1.00	1.02	0.94	0.84
0.07	0.07	0.08	0.23	0.15	×	0.08	0.08	0.07	0.06
12.04	12.16	12.16	11.38	11.57	Y	12.16	10.53	11.89	13.96

3. Results and Discussion

3.1 Dissolubility of DE and RHA

dissolution was related to the particle size and fineness of DE. The amount of leached silicon ion of CDE was 2040 mg/L and increased to 2110 and 2750 mg/L for finer DE and FDE. The Results of dissolubility of DE and RHA in 10M NaOH activation are shown in Table 3. The temperature. The dissolved silicon ions of the DE400 (DE calcined at 400 °C), DE600 and Furthermore, the fine DE also contained high silica content (Table 1). For the calcined DE, finer DE possessed high surface area and allowed greater contact with the alkali solutions. dissolution of alumina ions respectively. High calcination temperature of 600 and 800 °C were need for the high DE800 were 1690, 3540 and 4140 mg/L while those of alumina were 158, 1010, 1260 mg/L, dissolution of silica and alumina were significantly affected by the calcination

active surfaces. Dissolution of silicate molecules at high pH (>10) resulted in the formation ions. The silica phase contained in DE was slightly changed with heat treatment. Kaolinite geopolymeric sytem were normally H₃SiO₄³ and SiO₄⁴. To these respects, the DE800 was of silicic acid; H₃SiO₄, H₂SiO₄², HSiO₄³ and SiO₄⁴, dependent on pH of the system [X]. and montmorillonite could transform to metakaolin and disrupted montmorillonite with more The silica and alumina contained in clay minerals contributed to the increase in dissolved screened through 325 mesh size sieve and used to prepare geopolymeric materials for further The measured pH of this experiment was around 14. Thus, the silicic acid species of

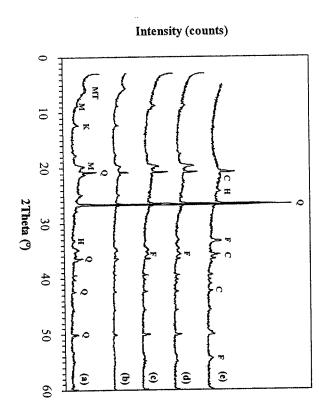

Table 3 Contents of aluminum and silicon ions leached from DE and RHA

Materials	Silicon ion (mg/L)	Aluminum ion (mg/L)	SiO ₂ /Al ₂ O ₃
			molar ratio
As-received DE	2090	219	
CDE	2040	296	
MDE	2110	230	
FDE	2750	205	
DE400	1690	158	
DE600	3540	1010	
DE800	4140	1260	
RHA	4840	0	
FRHA	5310	0	

A GOOD OF THE SAME

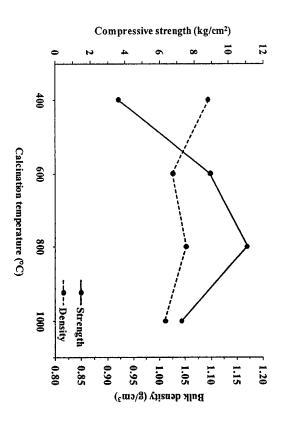
3.2.1 Fineness of DE

polymerization [6]. DE with higher surface area would undergo a faster dissolution. The the strength of the paste. Data of bulk density clearly testified this trend. would increase the amount of silicon and aluminum ions in the solution and thus increases with an increase in the DE fineness. The reaction of DE geopolymer includes dissolution and P325DE geopolymer pastes was 2.0, 5.0 and 6.6 kg/cm² respectively. The strength increases finenesses are shown in Fig. 2. The strength development at 7 days of R80DE, R200DE and compressive strength and bulk density of geopolymer pastes with the difference



of DE Fig. 2 Compressive strength and bulk density of geopolymer pastes with different finenesses

3.1.2 Calcination temperature of DE


destruction of chemical structures of monmorillonite and kaolinite containing in 600, 800 and 1000 °C calcined DE are observed from the disappearances of peaks at 20 of 6.5° and 12.5°. XRD patterns with different calcination temperatures of DE are shown in Fig. 3. The

strength of DE800 paste was significantly higher than those of noncalcined DE, DE400, compressive strength and bulk density of geopolymer pastes made of calcined DE. The reduced. Therefore, the strength of geopolymer made of DE1000 was relative low. cristobalite and the magnetite phase was also increased at the reactivity of DE1000, greatly aluminium ions was small. At high temperature of 1000 °C, quartz was transformed to DE600 and DE1000 °C. At low calcined temperature, the dissolution of silicon and Hematite (Fe₂O₃) is transformed into magnetite (Fe₃O₄). Fig. 4 shows the results of

F=Magnetite, C=Cristobalite MT=Montmorillonite, M=Muscovite, K=Kaolinite, Q=Quartz, H=Hematite,

DE1000 Fig. 3 XRD patterns of calcined DE (a) noncalcined DE (b) DE400 (c) DE600 (d) DE800 (e)

temperatures of DE Fig. 4 Compressive strength and bulk density of geopolymer pates with different calcination

3.2 Effect of synthesized condition on DE Geopolymer

3.2.1 Concentration of NaOH or KOH

NaOH and KOH as alkaline activators. The mechanical properties increased along with an provided better dissolving ability of DE particles and increased production of more reactive increase of concentration of NaOH or KOH. Hydroxide solution with higher concentration strength than that with KOH. Cation size of Na+ was smaller than K+, thus Na+ provided the very early stages, resulting in lower strength geopolymer. [W.K. Lee, J.S.J Van Deventer, concentration, excess hydroxide ion concentration caused aluminosilicate gel precipitation at concentration of hydroxide exceeded 10 M, the setting time was very fast. At high alkali higher bond strength than that of K^{+} Colloids Surf., A. 211 (2-3) (2002) 115-126]. The DE geopolymer with NaOH gave higher The effects of inorganic salt contamination on the strength and durability of geopolymer, Fig. for the 5 shows the results of compressive strength and bulk density of geopolymer with monomer, which increased geopolymerization of pastes [7]. When the

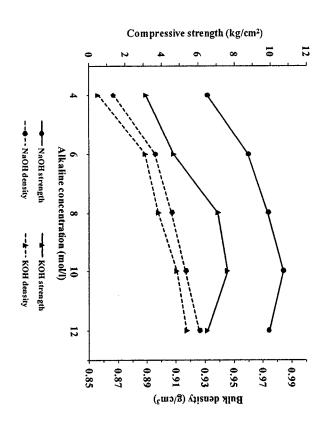
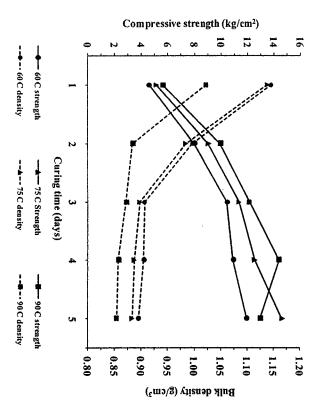



Fig. 5 NaOH or KOH Compressive strength and bulk density of geopolymer with different concentrations of

3.2.2 Curing temperature and time

gradually removed and the the increases in curing temperature and time. With the progress of polymerization, water was deterioration of strength would [8]. As expected, the density of geopolymer decreased with curing temperature, the sample could experience a substantial loss of moisture For the high curing temperature of 90 °C, the strength after 5 days curing dropped. At high °C and 4-5 days. The strengths increased with the increases in curing temperature and time. and times are given in Fig. 6. The optimum curing temperature and time were found to be 75 strength was reasonably high at 1.5 MPa geopolymers. The sample cured at 75 °C for 5 days has bulk density of 880 kg/m³ while the The results of compressive strength and bulk density with different curing temperatures SiO₄ and AlO₄ tetrahedral were linked to form amorphous and the

temperatures and times 6 Compressive strength and bulk density of geopolymers with different curing

3.2.3 Alkali content

Fig. increase in Na₂O/Al₂O₃ ratio. The increase in the density of geopolymer paste to this level less stable than Na₂O/Al₂O₃ ratio of 1 [XXX]. The density of geopolymer increased with an However, high alkali content (Na₂O/Al₂O₃ ratios of 2 and 3), makes polymerized networks Na₂O/Al₂O₃ molar ratios of 1-3. The strength increased with an increase in Na₂O/Al₂O₃ ratio. was undesirable. 7 shows the compressive strength and bulk density of geopolymer pastes with varying

ratios. seen for Na₂O/Al₂O₃ of 2 and 3 geopolymer (Fig. 8 (b) and (c)). The results of EDX analyses with Na₂O/Al₂O₃ of 1 (Fig. 8(a)). The dense amorphous glassy geopolymer matrices could be Na₂O/Al₂O₃ ratios of 2 and 3. Some voids and unreacted DE could be observed in the sample ∞ The geopolymer paste with Na₂O/Al₂O₃ of 1 was less dense demonstrates morphological aspects of geopolymer pastes at different Na₂O/Al₂O₃ than those with

particulate material. the and Al with the presence of a small amount of Na, K and Ca. Although the starting of the DE geopolymers are also shown in Figs. 8 (a), (b) and (c). The major elements are Si geopolymer pastes with Na/Al ratio of 2 was very similar to that of zeolite material which is dissolving. In addition, it was shown that excess sodium ions were likely more localized in Ħ. here that using low Na/Al ratio (~1), the dissolubility of aluminate phases such clay minerals synthesis of fly ash geopolymer, Mineral Engineering, 22, 12, 2009, 1073-1078]. It is shown respectively. The results suggested that the dissolubility of silica and alumina were dependent Si/Al ratios geopolymers obtained with different Na₂O/Al₂O₃ ratios were significantly different. The SiO₂/Al₂O₃ ratios of DE geopolymers were similar at 13.0, the ratios of SiO₂/Al₂O₃ for DE DE geopolymer structure with higher used Na/Al ratio. The characteristic of EDX peaks of Na/Al ratios [U. Rattanasak, is favorable. The higher Na/Al ratios, the silicate phases are more susceptible for DE geopolymers with Na/Al ratios of 1, 2 and 3 .P Chindaprasirt, Influence of NaOH solution were 9.9, 13.9 and 17.4 on the ij.

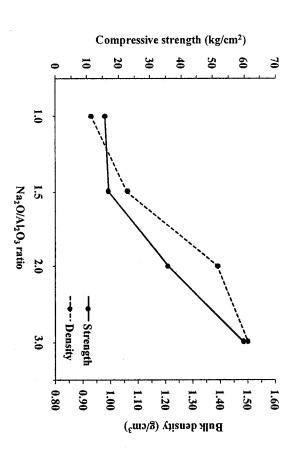


Fig. 7 Compressive strength and bulk density of geopolymer with different Na/Al ratios

Sugar Part Sugar Sugar

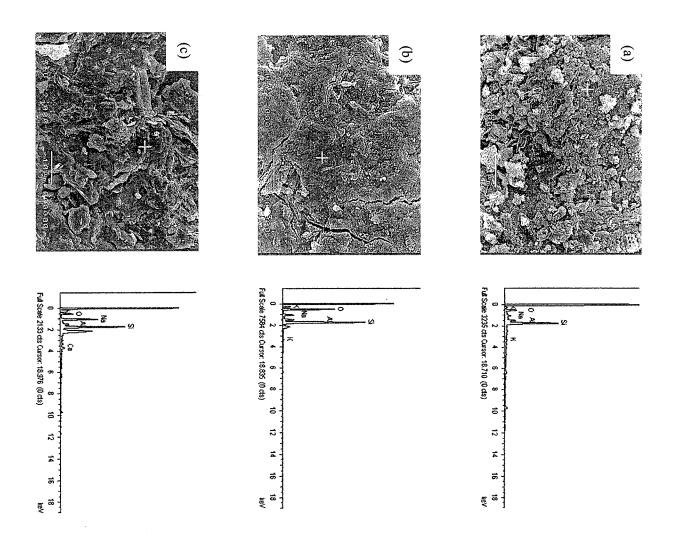


Fig. 8 SEM-EDX analyses of geopolymer pastes (a) $Na_2O/Al_2O_3 = 1$ (b) $Na_2O/Al_2O_3 = 2$ (c) $Na_2O/Al_2O_3 = 3$

ratios. Fig. 9 demonstrates the molecular bonding of geopolymer pastes at different SiO₂/Al₂O₃

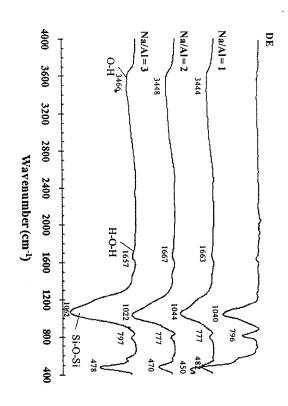
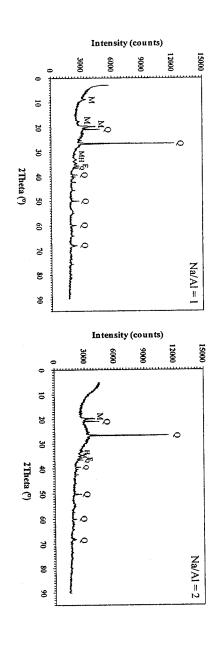
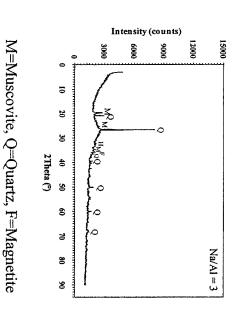




Fig. 9 IR spectra of diatomaceous earth and geopolymer with different Na/Al ratios.

Table 4 Peak area ratio from IR spectra of pastes at Si-O-Si stretching

Sample	Location of Si-O-Si (cm ⁻¹)) Corrected area	Peak area ratio
DE	1040	8.41	
$Na_2O/Al_2O_3 = 1$	1044	8.70	1.03
$Na_2O/Al_2O_3 = 2$	1022	10.45	1.24
Na2O/Al2O3 = 3	1062	15.14	1.80

10 XRD patterns of DE geopolymer pastes with different Na/Al ratios.

Q=Quartz,

F=Magnetite

Fig.

3.3 Effect of proportion of DE and RHA

strength of geopolymeric materials. Although, the strength increased, the density values were polymeric structure [XXXX]. Thus, they acted as defect sites and exerted a negative effect on RHA beyond this level resulted in a decrease in the strength. This is due to the obtained -Siobtained -Si-O-Al- bonds in geopolymeric structures. An increase in the replacement level of corresponded to Si/Al ratio of 22.5. The strength increased to 2.4 MPa due to the proper strengths increased with the increase in the amount of RHA up to 40% of solid powder which and bulk density of geopolymer pastes made of the mixtures of DE800 and RHA. low at 925-1010 kg/m³ which were highly desirable O-Al- bonds of high Si/Al ratio which did not favor for a condensation as long chain The RHA was used to adjust the dissolution of silica phase. The Si/Al ratios of 16.6 to of samples No. 15 to 17 are shown in Table 2. Fig. 11 shows the compressive strength

content as a result of increases in the glassy phase. The geopolymer pastes contained similar degree of crystalline structure decreased with the replacement of DE with RHA. This could Fig. 12 at the hump peaks around 18-30 degree shows XRD patterns of geopolymer pastes increased with the increase with 0, 20, 40 and 60% RHA. ₽.

strength. cristobalite which crystalline phases to those of original DE and RHA. Quartz, muscovite, magnetite and increase in the glassy phase of geopolymer pastes was responsible for the increase in was evident with the increase in RHA content. crystalline phase was observed, but the increase in RHA content. The broad below 80 of 20 mesoporous material were oforiginally found in DE poorly crystalline nature. This peak suggested the and RHA were undissolvable. No new Ē Alvarez-Ayuso, × formation of a Querol]. The

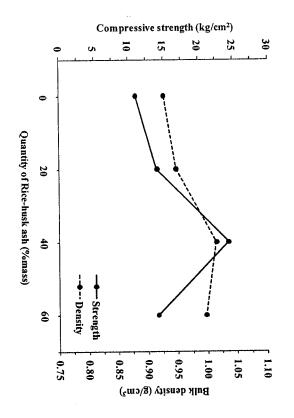
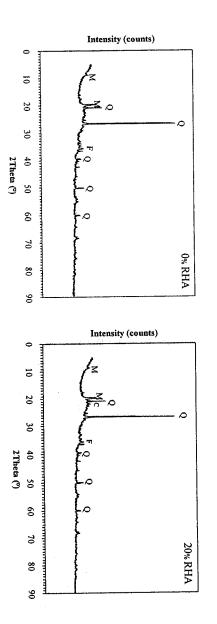



Fig. 11 Compressive strength and bulk density of geopolymer pastes with different RHA

contents.

No. of the last

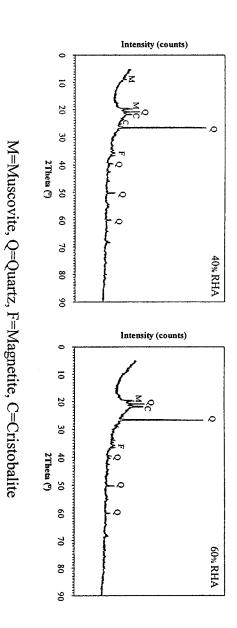


Fig. 12 XRD pattern of geopolymer pastes with 0, 20, 40 and 60% RHA

4. Conclusions

surface with alkali solution and hence a reactive due to the increase in the surface area. This allowed greater contact of DE particle be used to produce lightweight geopolymeric material. The DE should be calcined and sieved geopolymer pastes, RHA was incorporated to the mixed bulk density values also increased from 0.93 to 1.5 g/cm³. properties of the geopolymer pastes. At SiO₂/Al₂O₃ ratio of 13.0, the increase in Na₂O/Al₂O₃ and time were duration also affected the properties of the geopolymers. The optimum curing temperature possessed higher compressive strength than that with 10M NaOH. Curing temperature and was 800 °C. With regards to the types of alkali, geopolymer pastes activated with 10M NaOH montmorillonite and kaolinite. The optimum calcinations temperature of diatomaceous warth patterns ð ratios from 1.0 to 3.0 increased the compressive strength from 1.1 to 6.0 MPa. However, the obtain fine reactive particles suitable for use as a source material. The fine DE was more Based on the results of investigation, the following conclusions could be drawn. DE could of the 75 °C and 5 days. clacined DE indicated the The Na₂O/Al₂O₃ ratios of the mixtures also affected the faster leaching of silica and alumina. The transformation To maintain the low density of of chemical structures XRD

Acknowledgements

This work was supported by Thailand Research Fund (TRF) (MRG5180350).

References

- [1]VM. Maholtra, 2002. Introduction: Sustainable Development and Concrete Technology. ACI concrte International, 24(7): 22
- [2]J.Development of Very Early High Strength Cement. Journal of materials education, 16(2): Davitdivit, 1994. Geopolymer: Man Made Rock Geosynthesis and the Resulting
- [3]A. Chaisena et al, 2004. Effect of thermal and acid treatments on some physic-chemical properties of Lampang diatomite. Journal Science Technology, 11: 289-299
- [4] K. Pimraksa, P. Chindaprasirt, 2008. Lightweight bricks made of diatomaceous earth, lime and gypsum. Ceramic International, 35(1): 471-478
- [5] American Society for Testing and Materials, 2001. for compressive strength of hydraulic cement mortars. Annual Book of ASTM Standard. 4: 83-87. ASTM C109: Standard test method
- [6]P. Chindaprasirt et al, 2006. A comparative study of preparation and properties of high geopolymer: 63-71. calcium fly ash-based geopolymer. International Conferrence on pozzolan, concrete and
- [geopolymer et al, 2005. Colloids and Surfaces A: Physicochem, 268: 1-6 Synthesis and mechanical properties of metakaolinite-based
- [8] T. temperature curing. Cement and Concrete Research, 35(6): 1224–1232 Bakharev, 2005. Geopolymeric materials prepared using Class F fly ash and elevated

Salah Salah