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2.1 Class of Banach-valued function spaces with some certain properties
Let S be a non-empty set, let X be a Banach space, and let Z(S, X) be the
set of all functions from S into X. For any feX(S,X) and AcS, let

fia
For any teS and xe X, let e(t;x):S— X be defined by e(t;x)(t)=x and

:S — X be defined by f,,(x)=f(x) for all xe A and f,,(x)=0 otherwise.

e(t;x)(s) =0 otherwise. For any f €2(S,X) and any finite subset A of S, we
have f[A]=Ze(t;f(t)). Let F be the family of all finite subsets of S. Then

teA

F is directed by the order > defined by A>B if and only if Bc A. Next,
suppose that H|-|H:Z(S,X)—>[O,oo] satisfies the following properties:
(N1) For any f e2(S,X), H|f|H:SUp{H‘f[A]H‘:Ae F};
(N2) There is a positive real number M such that for any te€S and xe X,
Jlect: ] <
(N3) There is a positive real number K such that for any f e2(S,X) and
tes. [fol=k[f];
N4y It + ol <[Ifl] +[lof] for an f.geX(s.X);
(N5) H|af|H:|a|H|f|H forall f €2(S,X) and a€C, under the convention that
0-0=0.

From (N3), the following properties is obtained:
(N6) If || f]|=0, then f=0.
Let
ASXH) ={f exts. x): |t <o}
and

Aq (S, XH||H):{f e A(S, X, [[{]): the net {m o= £

It is obvious that f[A] belongs to AO(S,X,HHH) for all fe2(S,X) and AeF.

} converges to O; .
AeF

From the properties (N4)-(N6), we have the function HHH is indeed a norm on
A(S,X,HHH). From now on, we will assume for convenience that the constants M

and K appearing on (N2) and (N3) are equal to 1.



Theorem 2.1.1. Both A(S,X,HHH) and AO(S,X,HHH) equipped with the norm H||H
are Banach spaces.

Proof Let {f }” be a Cauchy sequence in A(S,X,HHH). Then by (N3), we
have for each teS that |f,(t)

o= | for all n,m. This implies that

{fn (t)}:=l is a Cauchy sequence in X for all teS. Thus, by the completeness of
X, there is, for each teS, anelement f(t)e X such that f (t) > f(t).
f:S—X be defined by ti> f(t). We will show that feA(S, X, |H) and

f,—> f. For each AeF, we have

(fn)[A] - f[A]‘ :H(f

=t )[A]‘ - g;e(t;( fo = Fha (t))
)

2 el O )
=S| f.®) - ()] >0 as n—oo.

teA
Then (fn)[A]—>f[A] as N—>oo for all AeF. Let £>0.Then thereisa

positive integer N such that,
H| fo = fm|H<§ for all nm>N .

Thus, by (N1), we have for each AeF that

£
H(fn—fm)w‘ <[fo-fall <5 for @l nm=N.
Hence, by taking the limitas m —> o, we have for each AcF that
£
H(fn_f)w‘ < for al n>N.

Thus, by (N1) again, we obtain
H|fn— f|H<£ for all n>N.
This implies that f € 2(S,X) and f, — f.

To see that AO(S,X,N-M) is a Banach space, suppose that {fn}oO is a sequence

n=1
in AO(S,X,HHH) converging to an element f in A(SXHHH) Let £>0. Then

there is a positive integer N such that H|fN—f|H<%. Since fy belongs to

AO(S X H| |H) there is an A, eF such that m

£
(A~ <§ forall A>A,.

Consequently, we have by (N1) that

mf[A]_fm H|f _fm H‘ [A]

[A] f[A]‘
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*H\( - f)w‘

+lt =l

o Rl & COYERN
S TRSTH TR
<%+%+%:g forall A= A,.

It follows that e Aq (S, X,[|]). :

The Banach space A(S, X,HHH) was first considered in [9] by O. Woatijirutikal , S.-

C. Ong, P. Chaisuruya, and J. Rakbud.

If the function HHH has the following additional property :

(N7) for any function A:S —C with |/1(t)| =1 for all teS, H|/1f|H < |/1|H| f |H
for all f e€2(S,X),where Af:S— X defined by Af(t)=A(t)f(t) for all
teS,

we call the Banach space A(S, X,H||H) the X -valued function space defined by H||H ,

or simply, an X -valued function space . For convenience, we may sometimes

denote the function space A(S,X,HHH) by just A(S,X). When S istheset N of
all positive integers, we call A(N , X,HHH) specifically the X -valued sequence space

defined by H||H , or simply, an X -valued sequence space .

2.2 Dual of A(S,X,|l|)
Let A(S,X,HHH) be an X -valued function space. For any (/)EZ(S,X*),

we define

o - ten(s ) il

If the supremum is finite, and H|¢)|H* =oo otherwise. For any ze€C, let

2 eM(f ()
teS

dirz)=2 if z#0 and dir@z)=1if z=0.
YA

Theorem 2.2.1. The set

AZ{(PEZ(S,X*):Z|¢>(t)(f(t))| converges for all f EA(SXHHH)}

teS

is the X ™ -valued function space defined by H||H* or symbolically, A = A(S, X *,HHH*)
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Proof We must show first that for any gpeZ(S,X*), H|go|H*<oo if and only if

@eA. Suppose that ¢ € A. Then the linear functional T on A(S,X) defined by

T(f)=2gp(t)(f(t)) for all feA(S,X) is well defined. For each AeF, we
teS

have by (N3) that the |linear functional T, on A(S,X) defined by

TA(f):Z(p(t)(f(t)) for all f eA(S,X) is bounded. For each f eA(S,X), we
teA

have [To(f)| <D |pt)(f ()| for all AeF. It follows by the uniform boundedness
teA

principle that sup{[T,|: Ae F}<o. Since To(f) >T(f), we obtain

sup{

Conversely, suppose that H|(p|H*<oo.Then Z(p(t)(f(t)) converges for all
teS

2. oM (1)

teS

-t en(s X)) H|f|HS1}=||T||Ssup{||TA||: AcF] <.

f eA(S,X). Let feA(S,X) with ||f]|<1, and let 21:S—>C be defined by
A(t) =dir(p(t)(f (1)) forall teS. Then |A(t)=1 for all t. Thus, by (N7), we
have H|/1f|H£H|f|H£1,and hence

2 e )] = > dir(p®)(f (E))pt)(f (1)

teS teS

=D pM)(dir(p®)(f ©)) f (1)

teS

=D p(OAWM T (1)

teS

converges. For any f eA(S,X), we have =1. Thus

1
o f
H

1
)| 7= (1)
y [mfm ]

The rest of the proof is to show that the function H||H* satisfies the properties

> le®CE =] t1>

teS teS

Converges for f e A(S,X).

(N1)-(N7).
(N1) Let @eA, and let T and T, for each AeF be the functions

defined in the preceding paragraph. It is clear that ”TA”:H‘(D[A]‘H for all Ae F,

and therefore we have H|(p " :||T || Ssup{”TA”: Ae F} :Sup{m(D[A]m* tAe F}. Let

f e A(S,X) with H|f|”£l and let A be the function defined in the preceding
paragraph. Then by (N7), H|/1f|HSH|f|HS1 This yields for each Ae F that
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Ta(F)] =20 @) < D [e®(f )]
teA teA

=2 dir(p®)(f O)eO)(f (1))

teA

=> AWM (1) =D oA f (1)

teA teA

= ‘T (A )y )‘ <|T MHM f )[Alm
<[lell 2l <lel]"

It follows that m(pwm* =||TA|| SH|(p|H* for all AeF. Consequently, (N1) holds.

(N2) For any teS and ye X", we have by (N4) that

ety = sup{ 2 et E)(F(): f e AE,X), |[f]] s1}

teS
=sup{le(t, O ®)]: F e A, X), || ]| <1
=sup{ly(f )] f e AGS, X), || f]| <1}
=[lsupll |- < a0, I l]<1} < vl
Thus (N2) holds.
(N3) Let pe A and teS. For any Xe X with ||X||Sl, we have by
(N2) (of [|{|) that [lect;x)]|<[x]|<1. Thus

P = |t )W) = <Jle]|"

2 P(S)(EX)(s))
seS

It follows that ||go(t)|| < H|¢)|H* and hence (N3) holds.

The properties (N4) and (N5) follow directly from the definition of H|(p|H*
(N7) Let ¢GZ(S,X*), and let A:S —C with |/1(t)|:1 for all teS.

Suppose that H|¢)|H* <oo. Then for any f € A(S, X) with H|f|”£l we have by the

property (N7) of HHH that
> A00M(f )| =X o0 f ©)| <[]
teS teS
Consequently, H|/1g0|H*SH|(p|H* O

We call the X*-valued function spaces A(S,X*,m-m*) defined by HHH*

the Kothe dual of A(S,X,HHH) and call H||H* the dual norm of H||H The main
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goal of this section is to identify the dual AO(S,X,N-”D* of AO(S,X,HHH) with the

) ot A(S X))

*

Kothe dual A(S, X,

Let ‘PeAO(S,X,W-”D We then define, for each teS, the function
Vi: X >C by Yy (x)=Y(e(;x)) for all xeX. Clearly, ||yt||S||‘P|| for all

teS,and hence Y, € X". Let ") :S — X* be defined by ti>Y,.

Theorem 2.2.2. AO(S,X,N-”D* is isometrically isomorphic to A(S,X*,

|H*) by the
isomorphism ¥ — QJ(\{/) .
Proof We will show first that (p(qj) eA(S, X*). To see this, let f € A(S,X), and

let A:S — C be defined by A(t) =dir(W(e(t; f(t)))) for all teS. Then we have
foreach AeF that

>l O ©) = S| (F©) = 2P Cett: f @)

teS teS teS

=Y AP (e f () =D P(AMe; f (1))

teS teS

=Y W(etAM) f 1) =V (Ze(t; At) f (t))J

teS teA

=¥ () =PI Opul] <1
This yields ¢*) e A(S, X) and mqy(q’)m*snwn. Next, we will show that

H‘(/,(‘P)m*zn\{f”_ To get this, let f eAy(S,X) and let 1:S— C be defined

above. Then foreach AeF,

\tp( fia )\ - “P[Ze(t; f (t))] <3 |W(ett; f @)

teA teA
=3 APt F©) =D v, (At) f (1))
teA teA

=2 oMM ) <
teA

o
Thus, by the continuity of ¥, we have |‘P(f)|£m¢(q})m forall f eAy(S,X) with

H|f|”£l. Hence H‘(o(%m*zn‘}’” and so mgo(ly)m*:”‘}’” Finally, we will show

that the linear map Wi oY) is onto. Let goeA(S,X*). Then the linear
functional ¥ : A, (S, X) —> C defined by ‘I’(f)ngp(t)(f(t)) forall feAy(S,X)

teS
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is bounded and (o“])=(p. Therefore, we have the linear map ‘PI—)(D(LV) is

onto as required. The proof is complete. O

In the following theorem, the space A(S,X*) will be regarded as the
space of all bounded linear functional @, on A(S,X) defined for each

goeA(S,X*) by ®@,(f)=D ot)(f(t)) for al feA(S,X). It is clear that

teS
A(S,X*) is a closed subspace of A(S,X)".

Theorem 2.2.3. If Ay(S,X)# A(S,X), then the annihilator Ay(S,X)" of Ay(S,X)
is a nontrivial closed subspace of A(S,X)" and

A(s,X)"‘:A(S,X*)@AO(S,X)L
Proof Suppose that Ay(S,X)#=A(S,X). Then by the Hahn-Banach extension

theorem, we have A,(S,X)" is a nontrivial closed subspace of A(S,X)*. For any
Y eA(S,X)", let Qg =‘P—CD¢(W) . Then Qg € Ay(S,X)", and hence A(S,X)* =
A(S,X*)+A0(S,X)L. For any (oeA(S,X*), it @, cAy(S,X)", then @, (f)=
lime @, (fia)=0 for all feA(S,X). It follows that A(S, X"} Ag(S,X)" =
{0}. Consequently, A(S,X)*:A(S,X*)(JBAO(S,X)l. O

2.3 Predual of A(S, X)

The aim of this section is to complete the duality relation among the
four function spaces {AO(S,X),A(S,X*),AO(S,X*),A(S,X)}. From the
previous section we have done the the duallty relation between the first two

spaces A,(S,X) and A(S,X*). The rest is to investigate the the duallty
relation between AO(S,X*) and A(S,X). We expectto have AO(S,X*)* is
isometrically isomorphic to  A(S, X).

For any f eA(S,X), we define a function (:)f:A(S,X*)—HC by

O (@)=Y p)(f (1)) forall (oeA(S,X*) and let @, be the restriction of ©; to
teS

AO(S,X*). It is clear that H®fHSH(:)fHSH|f|H for all f e A(S,X).

Proposition 2.3.1. For any f e A(S,X), H®f Hszm:H@)f H
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Proof Let f e A(S,X), let &>0,and let AeF. Then we have by the
Hahn-Banach extension theorem that there is ¥ e A(S, X)" with ||‘P||S1 such

that m f[A]“‘S“P(f[A])‘+£. By Theorem 2.2.3, we have ‘P(f[A]):(I)(D(\{,)(f[A]).
Thus, by Theorem 2.2.2 and the property (N1) of HHH* we have

sl < (fi )2 = ‘q)w(“ (fia)

= @f[A] ((D(T))‘+g: O, (((D(W))[A])

(7 ool

< ‘Gf Hmco(“ Cie= H®f H||‘P||+ €

+&

+&

*
+&

+e<|o|

[A]

<o+
Since & was given arbitrarily, we obtain m f[A]‘HSHGfH for all AeF . Thus, by

(N1) of H||H we have H|f|HSH®fH It follows that H®fH:H|f|H:H®fH o

We now have the function f > ®; is an isometric isomorphism from

A(S, X) into AO(S,X*). In the following theorem, we provide a necessary

and sufficient condition the function to be onto.

Theorem 2.3.2. The isometric isomorphism f 1> ®; from from A(S,X) into

AO(S, X*) is onto if and only if X is reflexive.

Proof Suppose that X is reflexive. We want to show that the map f > O

is onto. To see this, let lPGAO(S,X*), and for each teS, let ¢5t:X*—>C

be defined by ¢ (y)="VF(e(t;y)) for all yeX*. Then QGX** forall teS.
Thus, by the reflexivity of X, there exists, foreach teS, an X € X such that
4 (y)=y(x) for all yeX". Let f:S— X be defined by f(t)=x. We will
prove that f eA(S,X) and then ¥ =0;. Let AcF. Then we have for any

goeA(S, X*) with H|(p

<1 by (N1) of || that

Z(/)(t)(xt)‘

teA

2 Yt o)

teA

‘(P[A]m* <|¥|.

04 @[ Zo0 )

PNAO)

teA

=% ()| <[]
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It follows that H‘f[A]m:H@‘P[A] S”‘P” for all AeF. Hence, by (N1) of HHH

we obtain H|f|”£||‘l’|| and therefore f eA(S,X). To see that ¥ =0;, let
goer(S,X*). Then we have for each AeF that

¥ (o) = ‘P[Ze(t? (P(t))j =2 Plet o)

teA teA

=Y hle®) = Y o0 ) =0 (a1) -

teA teA
Thus, by the continuity of both ¥ and ®;, we have ¥ =0; as required.

Conversely, suppose that the map f > ®; is onto. To show that X is
reflexive, let ¢ e X™ and let tOeS be fixed. Then the linear functional ¥ on
A(S,X*) defined by W¥(¢)=d(p(t,)) for all gpeA(S,X*) is bounded. Thus,
by the assumption, there is an f e A(S,X) such that ®; =¥ . From this, we
have forany ye X" that

#(y) = p(e(ty; Y)(t)) = ¥ (e(t; ¥)) = O (e(ty; ¥)) = e(ty; Y)(to)(f (%)) = Y(f (%)) -

Therefore X is reflexive. O

2.4 Reflexivity
In this section, we establish a reflexivity theorem for our Banach-valued

function spaces. We denote here the isomorphism ‘{’H(p(q’) from

Ay (S, X) onto A(S,X*) by N, the isomorphism f > ®; from A(S, X)onto
AO(S,X*) by M. Let P be the isometric isomorphism from the subspace

(@ T eA(S,X)} of Ag(S,X") into A(S,X") defined by ©; -6, .

Lemma 2.41. N'PM(f)=Q(f) for all f eAy(S,X), where N*is the adjoint
of N and Q:Ay(S,X)— Ay(S,X)™ is the natural map.
Proof Let f eAy(S,X). Then foreach AeF,
NPM (i) =N"(P(M (f))) = N"P(©4, ) =0, N
Next, let ¥ e A(S,X)", then we have foreach AeF that
(:)f[A] N(¥)= (:)f[A] (¢(T)): ZA‘P(e(t; ) = lP( f[A]) - Q( f[Al)(\P)'
te

Accordingly, N*PM ( f[A]) = Q( f[A]) foreach Ae F. It follows by the continuous
of the maps N*PM and Q that N"PM(f)=Q(f). The proof is finished. o
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An X -valued function space A(S,X) is called a GAK-space (see [4] for
the original definition) if A, (S, X) =A(S, X).

Theorem 2.4.2. (Reflexivity theorem for the Banach-valued function spaces) Let
A(S,X) be an X -valued function space. Then the following are equivalent:

(1) A(S, X) is reflexive;

(2) Ay(S, X) is reflexive;

(38) X isreflexive and both A(S,X) and its Kbthe dual are GAK.
Proof (1) = (2). Obvious

(2) = (3). Suppose that (3) holds. If A(S,X) is not GAK, then we

have by Lemma 2.4.1 that A(S,X) is not reflexive. Next, suppose that X is
not reflexive or A(S,X*) is not GAK. We will prove that each of these two

conditions implies that

(6, :feAS, X)) #A(S,X") *)
If X is not reflexive , then (*) holds by Theorem 2.3.2. Suppose that
AO(S,X*);&A(S,X*). Then by the Hahn-Banach extension theorem, there

exists t//eA(S,X*>* such that ||y/||¢0 and AO(S,X*)gkerw. If 1//=C:)f for
some feA(S,X), then ®; =0. This vyields ||1//||:H(:)fH:H®fH:O, which is
a contradiction. Thus (*) holds. Since (*) holds, it follows immediately from

Lemma 2.4.1 that A, (S, X) is not reflexive.
(3)= (1). It follows directly from Theorem 2.3.2 and Lemma 2.4.1. i

2.5 Applications to the sequence spaces | (X) and | [X]

In this section, we show that the well-known results on duality and reflexivity
of the sequence spaces |,(X) and |[X] can easily be deduced from our
theorems.

It is clear that for each 1< p<o, the sequence spaces | (X) isthe X -

valued sequence space defined by ||||p and it is GAK, except for the case where

p=oo. Thus, by the duality theorem, Ip(X)* is isometrically isomorphic to its

Kothe dual A(NX*, ;) It can be shown by the unifiom boundedness

principle that for 1< p<o, A(NX*, )=|q(X),Where %+%=1. Thus

*
p
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A(NX*, ||;) is GAK for all 1< p<oo, whereas A(NX*, ||I) is not GAK.

Therefore, by the reflexivity theorem, I (X) and 1, (X) are not reflexive, while
for 1<p<oo, I,(X) is reflexive if and only if X is reflexive.

It is also clear that |,[X] is the X -valued sequence space defined by

HHHp where HHHD is given by

0 1/p
H\{xk};;\ = SuP [klef(xk)I”] feX’,

It was proved in [10] by C. K. Wu and Q. Y. Bu that the Ko&the dual of Ip[X] is

<1},

GAK for all 1l<p<o. Thus, by the reflexivity theorem, we have that the
sequence space | [X] is reflexive if and only if X is reflexive and I [X] is

GAK. This is exactly the same as that given in [1] by Q. Y. Bu.
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DUALITY THEOREM FOR BANACH-VALUED FUNCTION SPACES
JITTI RAKBUD AND SUTEP SUANTAI

ABSTRACT. In this paper, we provide some general theorems on duality and reflexivity
for a class of Banach-valued functions spaces. We also show that the known results on
the duality and reflexivity of the classical sequence space [,,(X) as well as the sequence

space [,[X] can be obtained from our results.

1. INTRODUCTION AND PRELIMINARIES

It is well known that ¢ = [; and l; = [, for 1 < p < oo with % + % = 1. General
studies of these classical results on the duality and preduality of the classical Banach
sequence spaces [, have been contributed by many people (see [1] [2] [3] [4] [5] [6] [7] [8]
[11] [10] for references). Most of them deal with the K6the dual of a fixed Banach-valued
sequence space which is a generalization of the sequence space [,. Well-known ones are
the following spaces:

[p(X) = {{xk}liol CX:) |l < OO} ;

k=1
and

L[ X] = {{xk}i"l CX:) |flm)lP <ooVfe X*} :
k=1
which are defined over any Banach space X. In this paper, we provide a general study

of these classical results by a way analogous to the following observation.

Observation: The duality and preduality of the classical sequence spaces [, can be
viewed in the form of the duality relation among the four spaces {A, B,C,[,}, in the
sense that A* = B and C* = [,, where A and C' are the closure of the set of scalar
sequences with finitely many non-zero terms, in /, and in B respectively. In the case
where 1 < p < oo, A is equal to [, itself, and B = C' = [, when % + % = 1. For p = o0,
we have A = ¢y, and B = C' = [;. Thus, in these two cases, the duality progression of
the three spaces {4, B,[,}, in the sense that A* = B and B* = [, holds. For p=1, we
have A =11, B = Iy, and C = ¢y.

Let S be a non-empty set, let X be a Banach space, and let ¥(S, X) be the set of
all functions from S into X. For any f € ¥(5,X) and A C S, let fi4): S — X be defined

2000 Mathematics Subject Classification. Primary 46A20; Secondary 46A45.

Key words and phrases. Duality, Preduality, Reflexivity.
1



DUALITY THEOREM FOR BANACH-VALUED FUNCTION SPACES 2

by fia = f on A and fi4) = 0 otherwise. For any t € S and z € X, let e(t;z) : S — X
be defined by e(t;x)(t) = x and e(t; z)(s) = 0 otherwise. For any f € ¥(5, X) and any
finite subset A of S, we have f14 = Ze(t; f(t)). Let F be the family of all finite subsets

teA

of S. Then F is directed by the order > defined by A > B if and only if B C A. Next,
suppose that ||| : 2(5, X) — [0, oo] satisfying the following properties.

(N1) For any f € X(S, X), || fll = iuI;mf[A]H“
€
(N2) There is a positive real number M such that for any ¢t € S and z € X, ||e(t; z)|| <

M ||z|.

(N3) There is a positive real number K such that for any f € ¥(S,X) and ¢t € S,
1F N < K-

(N4) {If + gl < A+ gl for all £, g € 3(S, X).

(NB) lafll = |l llf]] for all f € ¥(S,X) and o € C, under the convention that
0-00=0.

From (N3), the following property is obtained.
(N6) Tt [|f]] = 0, then f = 0.
Let
A, X () = {F € 205, X) = [IFIl < oo}
and
Ao(S. X M) = {7 € AGS. X1 ¢ the net {[| i — ]|} oo converges to 0}
It is obvious that fi4) belongs to Ag(S, X, ||-]|) for all f € A(S, X, ||-]|) and A € F. From
the properties N(4), N(5) and (N6), we have that the function [|-]|| is indeed a norm on

A(S, X, |I-I]). From now on, we will assume for convenience that the constants M and

K appearing in (N2) and (N3) are equal to 1.

Theorem 1.1. Both A(S, X, ||-||) and Ao(S, X, ||-|) equipped the norm |||-|| are Banach

spaces.

Proof. Let {f,}5°, be a Cauchy sequence in A(S, X, ||-||). Then by (N3), we have for
each t € Sthat || f.(t) — fi(®)|| < || fn — fml| for all n, m. This implies that { f,,(¢)}>2 is
a Cauchy sequence in the Banach space X for all t. Let, foreach t € S, f(t) = nh_)m fn(t),
and let f : S — X be defined by ¢t — f(t). We will show that f € A(S, X, |HT|T) and

|

fn — f asn — oo. For each A € F, we have

) = fall = = Dl = (| e (& (Fa = N @)

teA
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< D le (= Hra®)]

teA

= Zan(t) — f@®)|| = 0asn— .

teA
Thus (fy)a) — fla) as n — oo for all A € F. Let € > 0. Then there is a positive integer
N such that for any A € F

I = Gadiarll < o = Full < 5 for all mom = N,

Hence, by taking the limit as m — oo, we have for each A € F that ||(f.)ja — ()] <
§ for all n > N. Thus, by (N1), [|fn — f[| < € for all n > N. This implies that
feAS X)and f, — f as n — oo as required.

To see that Ag(S, X, ||-]]) is a Banach space, suppose that {f,,}°°, is a sequence
of functions in Ay(S, X, ||-||) converging to a function f in A(S, X, [|-]|). Let € > 0. Then
there is a positive integer N such that ||fx — f|| < §. Since fy € Ao(S, X, [|-]|), there
is Ag € F such that H|(fN)[A] — fN|H < ¢ for all A = Ag. Consequently, by (N1), we
obtain that

£ = £ < Wew = AU+ 1w = A+ 1 = Fal
=[x = I+ ) = Sl + [P = Pl
< v = £+ N = Al + v = 1
< f+t+S=cforall A= A,
It follows that f € Ao(S, X, ||-]])- O

The Banach space A(S, X, |||-||) was first considered in [9] by O. Woottijirutikal,
S.-C. Ong, P. Chaisuriya, and J. Rakbud.
If the function ||-||| has the following additional property:

(N7) for any function A\ : S — C with |[A(¢)] = 1 for all t € S and f € X(S, X),
AN < TIFIl, where Af(2) := A(£) f(#) for all £ € S,

we call the Banach space A(S, X, ||-|l) the X-valued function space defined by |||,
or simply, an X-valued function space. For convenience, we may sometimes denote
AGS, X, ||IFI) by just A(S,X). When S is the set N of all positive integers, we call
AN, X, |[-]]) specifically the X -valued sequence space defined by ||-||, or shortly, an

X-valued sequence space.
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2. DUAL OF Ay(S, X)

Let A(S, X, ||-]|) be an X-valued function space. For any ¢ € ¥(S, X*), we define

lell™ = sup {

if the supremum is finite, and ||p||" = oo otherwise. For any z € C, let dir(z) = Z if

z# 0 and dir(z) =1if z=0.

PRI ‘ £ e AS X, 1D 1 < 1}

tes

Theorem 2.1. The set

A= {gp € X(S, X7) Z|g0 | converges for all f € A(S, X, ||||||)}

tesS

is the X*-valued function space defined by ||-||*, or symbolically, I = A(S, X*, ||-|I")-

Proof. We must show first that [|¢||" < oo if and only if o € A. Suppose that ¢ € A.
Then the linear functional 7" on A(S, X) defined by T ng ) for all f €

tesS

A(S, X) is well defined. For each A € F, we have by (N3) that the linear functional Ty
on A(S, X) defined by Ta(f ng ) for all f € A(S, X) is bounded. For each

tecA

f e A(S, X), we have |T4(f)| < Z](p t))| for all A € F. It follows by the uniform

tes
boundedness principle that sup ||T4]| < co. Since Ta(f) — T'(f), we obtain
AeF

sup {

Conversely, suppose that [|¢[|* < co. Then ng(t)(f(t)) converges for all f € A(S, X).

tesS

Let f € A(S, X) with ||f|| = 1, and let X : S — C be defined by A(¢) = dir(p(¢)(f(t)))
for all t € S. Then |\(¢)| = 1 for all t. Thus, by (N7), we have ||[Af|| = ||f]] < 1, and

D @U@ = Y die(e)(f(E))et)(f(1))

tesS tesS

tesS

> (D) ‘ fe MS, X) Al < 1} =Tl < sup |IT4]| < oo.

hence

= > p(t)(dir((t)(f (1)) f(t))

tes

Y B0 f (1))

tesS

converges. For any f € A(S, X), we have ‘Hmfm = 1. Thus

Sl o) = 1Y o0 (7 0)

tesS tesS
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converges for all f € A(S, X).

The rest of the proof is to show that ||-||* satisfies the properties (N1)-(N7).

(N1). Let ¢ € A, and let T and T4 for each A € F be the linear functionals
defined in the beginning of the preceding paragraph. It is clear that ||T4]| =
" Let f € A(S, X)
with ||f|| < 1, and let A : S — C be the function defined by A(t) = dir(p(t)(f(t))) for
all t € S. Then |A(t)] =1 for all t € S and by (N7), [[Af[| < ||f]| < 1. This yields for
any A € F that

all A € F, and hence we have ||¢||" = || T|| < sup ||T4]| =
AcF

TNl = D) <D le)(f(E)

S OONEGIIG)
teA

= > Alt)y = )
teA tcA

= TN < ITIH[OS)pa

< el AL < el -

It follows that ||¢(4 ‘H |74l < |lell” for all A € F. Accordingly, (N1) holds.

(N2). For any ¢t € S and y € X*, we have by (N4) that

llet;y)II* = Sup{

Ze(t;y)(S)(f(S))‘ e A X)), IfIF < 1}

seS

= sup{le(t;y)()(f ()] - f € AS, X), If]l < 1}

= sup{ly(f ()| : f € A(S, X), IFIl <1}

IN

sup{[[y|l I/ (D] : f € AS, X), [IFIl < 1}

VAN

[yl (supd I = f e ACS, X) Al < 13) < llyll-

Thus (N2) holds.
(N3). Let p € A and t € S. For any € X with [|z|| < 1, we have by (N2) (of
1) that [le(t; z)]l < [[«]] < 1. Thus

(@) ()] = | () (e = > _els)(

seS

< flell™
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It follows that [[¢(¢)| < |l

The properties (N4) and (N5) follow directly from the definition of [|-]|".

(N7). Let ¢ € (S, X"), and let A : S — C with A(t) =1 for all ¢t € S. Suppose
that ||¢||" < oo. Then for any f € A(S,X) with ||f|| < 1, we have by the property
(NT) of ||-]| that

Y ABeOFO)| = D_eOADFE)] < el
tes tes
It follows that [|[Ae]|™ < [l#]l” O

We call the X *-valued function space A(S, X*, ||-||*) the Kothe dual of A(S, X, ||-]])
and call ||-|||" the dual norm of ||-||. The main goal of this section is to identify the dual
Ro(S, X, I-I)* of AolS, X, |-]}) with the Kothe dual A(S, X*, [|-]|%) of A(S, X, |-]).

Let ¥ € Ao(S, X, ||-||)*. We then define, for each t € S, the function y;, : X — C
by yi(z) = VU(e(t;x)) for all z € X. Clearly, ||y|| < ||¥] for all ¢ € S and hence y; € X*.
Let ™) : S — X* be defined by t — ,.

Theorem 2.2. Ao(S, X, ||-||)* is isometrically isomorphic to A(S, X*, ||-||*) by the iso-

morphism ¥ — %),

Proof. We will show first that o) € A(S, X*). To see this, let f € A(S, X), and let
A: S — C be defined by A(t) = dir(V(e(t; f(t)))) for all ¢t € S. Then for each A € F,

Y1 OUO)] = D lm(F@) =D 1 (e(t; (1))

teA teA teA

= Y ANOT(e(t; (1)) = D WAL)e(t; (1))

teA teA

= Y Ut ABF(1) = T (Zewwﬂt»)

teA teA

= U ((AN) < NIl < 1wl

Consequently, o) € A(S, X*) and [|¢™ " < ||| Next, we will show that ||¥] <
| " Let f € Ao(S,X) with ||f]| <1, and let X\ : S — C be the function defined
above. Then for each A € F,

W (fla)| = < Wle(t; £(1)))]

teA

v (Ze (t;f(t))>

teA
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= Y AOw0)) =Y n\O (1)

teA teA

= > MO0 0) < [l
teA

Thus, by the continuity of W, [U(f)| < [[¢™

Hence ||¥| = |[|&™|

Let ¢ € A(S,X*). Then the linear functional ¥ : Ay(S,X) — C defined by V(f) =

Z(p(t)(f(t)) for all f € Ag(S, X) is bounded and o) = ¢. O

tesS

" for all f € Ao(S, X) with [|f]| < 1.

Finally, we will show that the function ¥ — ¢™) is onto.

In the following theorem, the space A(S, X*) of functions will be considered as
the space of bounded linear functionals ®,, on A(S, X) defined for each ¢ € A(S, X*) by
Q.(f) = ng(t)(f(t)) for all f € A(S, X). It is clear that A(S, X*) is a closed subspace

tes
of A(S, X)*.
Theorem 2.3. If Ay(S, X) & A(S, X), then the annihilator Ao(S, X)* of Ao(S, X) is a
non-trivial closed subspace of A(S, X)*, and A(S, X)* = A(S, X*) @ Ao(S, X)*.

Proof. Suppose that Ayg(S, X) & A(S, X). Then by the Hahn-Banach extension theorem,
we have Ag(S, X)* is a non-trivial closed subspace of A(S, X)*. For any ¥ € A(S, X)*, let
Qu =¥ — P _w. Then Qy € Ag(S,X)", and hence A(S, X)* = A(S, X*) + Ao(S, X)*.
For any ¢ € A(S,X*), if @, € Ag(S,X)*, then ®,(f) = fl}g}@w (fia)) = 0 for all
f e A(S, X). Thus A(S, X*) N Ag(S, X))+ = {0}. It follows that A(S, X)* = A(S, X*) @
Ao(S, X)*. The proof is complete. O

3. PREDUAL OF A(S, X)

The aim of this section is to complete the duality relation among the four spaces:
Ao(S, X)), A(S, X*), Ao(S, X*), and A(S,X). From the previous section, we have ob-
tained Theorem 2.2 which shows the duality relation between the first two spaces
Ao(S, X) and A(S, X*). The rest is to investigate the preduality of the space A(S, X).
We expect to have Ag(S, X*)* = A(S, X).

For any f € A(S,X), we define a function @f : A(S, X*) — C by éf(go) =
ng(t)(f(t)) for all ¢ € A(S, X*) and let O be the restriction of (:jf to Ag(S, X*). It

tes

is clear that ||Of| < H@)f” < |IfI] for all f € A(S, X).

Proposition 3.1. For any f € A(S, X),

& = s = ey
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Proof. Let f € A(S,X), and let € > 0, and let A € F. Then we have by the Hahn-
Banach extension theorem that there is W € A(S, X)* with ||| < 1 such that |”f[A] |H <
}\IJ (f[A])’ + €. By Theorem 2.3, we have ¥ (f[A]) =D, (f[A}). Thus by Theorem 2.2
and the property (N1) of ||-]|", we have

Ifiall < [¥ (fin) |+ €= [@oen (frag)[ + e
= ’éf[A] (90(“”)‘ te= ‘C:)f ((%0(‘”)[,4])‘ +e
= 107 ((¢™) )| + e < 101 1 )all” +
< 1051 |e™]]" + € = IO/ 1%l + €
< [|Os] +e

Since e is arbitrary, || fia|| < [©/] for all A € F. Thus, by (N1) of ||-||, we obtain
£l < 1©;]]. It follows that HéfH = |I£1l = 18/ as asserted. 0

We now have the function f — Oy is an isometric isomorphism from A(.S, X) into
Ao(S, X*)*. In the following theorem, we provide a necessary and sufficient condition

for the function to be onto.

Theorem 3.2. The isomorphism f — O¢ from A(S,X) into Ao(S, X*)* is onto if and
only if X is reflexive.

Proof. Suppose that X is reflexive. We want to show that the isomorphism f — Oy is
onto. To see this, let ¥ € Ag(S, X*)*, and for each t € S, let ¢, : X* — C be defined by
o1(y) = Y(e(t;y)) for all y € X*. Then ¢ € X** for all t € S. Thus, by the reflexivity
of X, there exists, for each t € S, an z; in X such that ¢;(y) = y(x;) for all y € X*. Let
f(t) =z for all t € S. We will show that f € A(S,X) and ¥ = ©;. For each A € F,
we have for any ¢ € A(S, X*) with [[¢]|" <1 by (N1) of ||-||" that

O (0)| = Zs@(t)(f(t))‘ SZOLE
teA teA
= D _ailet)| = Z‘I’(e(t;w(t)))|
teA teA
= |V (gpa)| < I1¥].
It follows that H‘f[/ﬂm = H@</’IAJ < ||¥|| for all A € F. Consequently, by (N1) of |||,

we have [|f]| < ||V, and hence f € A(S,X). To see that ¥ = Oy, let p € Ag(S5, X*).
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Then we have for each A € F that

U (ppa) =W (Ze(t; w(ﬂ)) = We(t; (1))

teA te A

= 0ulet) = D t)(f () = O (1)

teA teA
Thus, by the continuity of both ¥ and ©;, we have ¥ = O as required. Conversely,
suppose that the isomorphism f +— ©; is onto. Let ¢ € X**, and let t; € S be fixed.
Then the linear functional ¥ on A(S, X*) defined by ¥(¢) = ¢(p(to)) for all ¢ € A(S, X*)
is bounded. Thus, by the assumption, there is an f € A(S, X) such that ©; = V. From
this, we have 6(y) = dlelto; y)(to)) = W(e(tory) = Opleltorn)) = elto; y)(to) (f(to) =
y(f(ty)) for all y € X*. Therefore, the reflexivity of X is obtained. O

4. REFLEXIVITY

In this section, we establish a reflexivity theorem for our Banach-valued function
spaces. We denote here the isomorphism ¥ — o) from A¢(S, X)* onto A(S, X*) by N,
the isomorphism f +— ©; from A(S, X) into A¢(S, X*)* by M. Let P be the isometric
isomorphism from the space {©; : f € A(S, X)} into A(S, X*)* defined by © — éf.

Lemma 4.1. N*PM(f) = Q(f) for all f € Ao(S,X), where N* is the adjoint of N
and Q : No(S, X) — Ao(S, X)*™ is the natural map.

Proof. Let f € Ag(S, X). Then for every A in F,

N'PM (fia) = N (P (M (fia)) = N" (P (©4,,) ) = 65, N.

Let U € A(S, X)*. Then we have for each A in F that
éf[A]N(\Ij) = éf[A] (90(‘1/)) = Z\D(e(t; f(t))) =V (f[A]) =@ (f[A}) (\D)
teA

It follows that N*PM (f[A]) =Q (f[A}) for all Ain F. Therefore, N*PM(f)=Q(f). O

An X-valued function space A(S, X) is called a GAK-space (see [4]) if Ag(S, X) =
A(S, X).

Theorem 4.2. (Reflexivity theorem for Banach-valued function spaces) Let A(S, X) be
an X -valued function space. Then the following are equivalent:

(1) A(S, X) is reflexive;

(2) Ao(S, X) is reflexive;

(3) X is reflexive, and both A(S, X) and its Kdthe dual A(S, X*) are GAK.
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Proof. (1) = (2). Obvious.
(2) = (3). Suppose that (3) doesn’t hold. If A(S, X) is not GAK, then we have
by Lemma 4.1 that A(S, X) is not reflexive. Next, suppose that X is not reflexive or
A(S, X*) is not GAK. We will show that each of these two conditions implies that

{éf . f e A(S, X)} £ A(S, X*)*. (%)

If X is not reflexive, then (x) holds by Theorem 3.2. Suppose that Ag(S, X*) # A(S, X*).
Then by the Hahn-Banach extension theorem, there exists ¢ € A(S, X*)* such that
[¢]| # 0 and Ag(S,X*) C kerep. If ¢ = Oy for some f € A(S,X), then ©; = 0.
This implies that [[¢|| = 0, which is a contradiction. Accordingly, () holds. Hence, by
Lemma 4.1, Ay(S, X) is not reflexive.

(3) = (1). It follows immediately from Theorem 3.2 and Lemma 4.1. The proof
is finished U

5. APPLICATIONS TO THE SEQUENCE SPACES [,(X) AND [,[X]

In this section, we show that the well-known results on the duality and reflexivity
of the sequence spaces [,(X) and [,[X] can be deduced from our reflexivity theorem.

It is clear that for any 1 < p < oo, [,(X) is the X-valued sequence space defined
by |||, and it is GAK, except for the case where p = co. Thus, by the duality theorem,
l,(X)* is isometrically isomorphic to its the Kothe dual A (N,X*, H||;) It is well-
known for each 1 < p < oo that A (N,X*, HH;) = 14(X™), where > + o = 1. Thus
A <N, X*, ||||;> is GAK for all 1 < p < oo, whereas A (N, X*, ||-||]) is not GAK. It follows
immediately from the reflexivity theorem that /(X)) and [, (X) are not reflexive, while
for 1 < p < 00, I, is reflexive if and only if X is reflexive.

It is also clear that [,[X] is the X-valued sequence space defined by ||-|[,, where
I is given by

oo 1/p
{ze 3, = L (;!f(fﬁk)lp> :
It was proved in [10] by C. X. Wu and Q. Y. Bu that the Kothe dual of [,[X] is GAK
for all 1 < p < oo. Thus, by the reflexivity theorem, we have that the sequence space
[,[X] for 1 < p < oo is reflexive if and only if X is reflexive and [,[X] is GAK. This is
exactly the same as that given in [1] by Q. Y. Bu.
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