

รายงานวิจัยฉบับสมบูรณ์

โครงการ ทฤษฎีบทภาวะคู่กันสำหรับปริญมิลำดับนพปริญมินาค

โดย ดร. จิตติ รักบุตร และคณะ

สัญญาเลขที่ MRG5180358

รายงานวิจัยฉบับสมบูรณ์

โครงการ ทฤษฎีบวกภาวะคุ้กันสำหรับปรัชญาลัมดับบันปรัชญาบนาค

ผู้วิจัย

1. ดร. จิตติ รักบุตร

สังกัด

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์
มหาวิทยาลัยศิลปากร

2. ศ. ดร. สุเทพ สวนไต้

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์
มหาวิทยาลัยเชียงใหม่

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุน

สนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

การวิจัยนี้ได้รับสนับสนุนด้านงบประมาณจากสำนักงานกองทุนสนับสนุนการวิจัย และสำนักงานคณะกรรมการการอุดมศึกษา ภายใต้ทุนพัฒนาศักยภาพการทำวิจัยของอาจารย์รุ่นใหม่ประจำปี 2551 ผู้วิจัยจึงขอขอบคุณผู้ให้ทุนมา ณ ที่นี่ และขอขอบคุณ ศ. ดร. สุเทพ สวนไช ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ ที่ได้ให้คำปรึกษาและแนะนำผู้วิจัยตลอดมา ตลอดจนขอขอบคุณวิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร จ. นครปฐม ต้นสังกัดของผู้วิจัย ที่อำนวยความสะดวกในการทำวิจัยนี้

จิตติ รักบุตร

15 พฤษภาคม 2553

รหัสโครงการ : MRG5180358

ชื่อโครงการ : ทฤษฎีบวกภาวะคู่กันสำหรับปริภูมิลำดับบนปริภูมิบานาค

ชื่อนักวิจัย : นายจิตติ รักบุตร ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์
มหาวิทยาลัยศิลปากร จังหวัดนครปฐม 73000

E-mail Address : jittrakbud@yahoo.com

ระยะเวลาโครงการ : 2 ปี

บทคัดย่อ ในงานวิจัยนี้ เราให้ทฤษฎีบวกโดยทั่วไปสำหรับภาวะคู่กันและการสะท้อนกลับสำหรับคลาส ๆ หนึ่งของปริภูมิลำดับค่าบานาค เราแสดงด้วยว่าผลที่ทราบกันดีของภาวะคู่กันและการสะท้อนกลับของปริภูมิลำดับ $I_p(X)$ และ $I_p[X]$ เป็นผลที่ได้โดยตรงจากทฤษฎีบวกของเรา

คำสำคัญ: ปริภูมิลำดับค่าบานาค ภาวะคู่กัน การสะท้อนกลับ

Project Code : MRG5180358

Project Title : Duality Theorem for Sequence Spaces over Banach Spaces

Investigator : Mr. Jitti Rakbud, Deaprtment of Mathematics, Faculty of Science
Silpakorn University, Nakorn Pathom, Thailand, 73000

E-mail Address : jitrakbud@yahoo.com

Project Period : 2 Years

Abstract: In this research, we provide some general theorems on duality and reflexivity for a class of Banach-valued sequence spaces. We also show that the known results on the duality and reflexivity of the classical sequence space $l_p(X)$ as well as the sequence space $l_p[X]$ can be obtained from our results.

Keywords : Banach-valued sequence space, Duality, Reflexivity

สารบัญ

	หน้า
กิตติกรรมประกาศ.....	1
บทคัดย่อภาษาไทย.....	2
บทคัดย่อภาษาอังกฤษ.....	3
บทที่ 1 บทนำ.....	5
บทที่ 2 ผลการวิจัย.....	7
บทที่ 3 บทสรุปและวิจารณ์ผลการวิจัย.....	19
Output.....	20
ภาคผนวก.....	21

บทที่ 1

บทนำ

1.1 บทนำ

เป็นที่ทราบกันดีว่า สำหรับ $1 \leq p < \infty$, l_p^* สมสัณฐานอย่างสมมาตรกับ l_q เมื่อ $\frac{1}{p} + \frac{1}{q} = 1$ และ c_0^* สมสัณฐานอย่างสมมาตรกับ l_∞ ผลที่เกี่ยวกับภาวะคู่กัน (duality) และภาวะคู่กันก่อน (preduality) สำหรับปริภูมิ l_p สำหรับ $1 \leq p \leq \infty$ นี้ได้ถูกวางแผนทั่วไปโดยนักคณิตศาสตร์หลาย ๆ ท่าน ซึ่งส่วนใหญ่จะศึกษาภาวะคู่ หรือ ปริภูมิคู่กันโคง (Köthe dual) ของปริภูมิล้าดับเฉพาะเจาะจงที่เป็นการวางแผนทั่วไปของปริภูมิ l_p เช่น ปริภูมิ

$$l_p(X) = \left\{ \left\{ x_k \right\}_{k=1}^{\infty} \subset X : \sum_{k=1}^{\infty} \|x_k\|^p < \infty \right\}$$

ແລະ

$$l_p(X) = \left\{ \left\{ x_k \right\}_{k=1}^{\infty} \subset X : \sum_{k=1}^{\infty} |f(x_k)|^p < \infty \ \forall f \in X^* \right\}$$

ชี้ว่า X (ดู [1], [2], [3], [4], [5], [6], [7], [8], [10], [11] สำหรับเอกสารอ้างอิง)

ในงานวิจัยนี้ เราจะให้แนวทางที่สมเหตุสมผลบางประการในการศึกษาผลทางภาวะคุ้กัน และภาวะคุ้กันก่อน ของปริภูมิ I_p สำหรับ $1 \leq p \leq \infty$ ที่เก่าแก่นี้โดยทั่วไป อันเกิดจากข้อสังเกตเกี่ยวกับผลดังกล่าวดังต่อไปนี้

ข้อสังเกต ภาวะคุ้งกัน และภาวะคุ้งกันก่อนของปริภูมิ l_p สำหรับ $1 \leq p \leq \infty$ สามารถถูกมองในรูปความ สัมพันธ์เชิงภาวะคุ้งกันของปริภูมิลำดับสี่ปริภูมิ (A, B, C, l_p) ในลักษณะที่ A^* สมสัณฐานอย่างสมมาตรกับ B และ C^* สมสัณฐานอย่างสมมาตรกับ l_p โดยที่ A และ C เป็นโคลเชอร์ของเซตของลำดับของจำนวนเชิงซ้อนที่เทอมที่ไม่เป็นศูนย์เป็นจำนวนจำกัด ใน l_p และใน B ตามลำดับ สำหรับกรณีที่ $1 < p < \infty$ เราได้ว่า $A = l_p$ และ $B = C = l_q$ เมื่อ $\frac{1}{p} + \frac{1}{q} = 1$ สำหรับ $p = \infty$ เราได้ว่า $A = c_0$ และ $B = C = l_1$ ซึ่งทั้งสองกรณีนี้ เราได้การเคลื่อนที่ไปข้างหน้าของภาวะคุ้งกันของปริภูมิลำดับสามปริภูมิ (A, B, l_p) ในลักษณะที่ A^* สมสัณฐานอย่างสมมาตรกับ B และ B^* สมสัณฐานอย่างสมมาตรกับ l_p และสำหรับ $p = 1$ เราได้ว่า $A = l_1$, $B = l_\infty$ และ $C = c_0$

1.2 ที่มาและความสำคัญของปัณฑต์

ปริภูมิลำดับค่าบanaค (Banch-valued sequence space) ได้ถูกศึกษา กันอย่างแพร่หลาย โดยนักคณิตศาสตร์หลาย ๆ ท่าน งานวิจัยส่วนหนึ่งเกี่ยวกับปริภูมิคู่กัน หรือปริภูมิคู่กันโคลีช่อง ปริภูมิลำดับค่าบanaคเฉพาะจะของปริภูมิ ชั้น ปริภูมิ $l_p(X)$ และ $l_p[X]$ จากการศึกษา งานวิจัยที่เกี่ยวข้องทำให้เราเห็นแนวทางทั่วไปแนวทางหนึ่งในการศึกษาปริภูมิคู่กันของปริภูมิ ลำดับค่าบanaค

1.3 วัตถุประสงค์

- สร้างทฤษฎีบทโดยทั่วไปบนภาวะคู่กันสำหรับคลาส ๆ หนึ่งของปริภูมิลำดับค่าบานาค
- นำเสนอการประยุกต์ทฤษฎีบทภาวะคู่กันในวัตถุประสงค์ข้อ 1
- ศึกษาการสะท้อนกลับของปริภูมิลำดับค่าบานาคที่ถูกศึกษาภาวะคู่ในวัตถุประสงค์ข้อ 1

1.4 วิธีการวิจัย

การวิจัยจะถูกแบ่งเป็น 4 ขั้น ดังนี้

ขั้นที่ 1 ศึกษาความรู้พื้นฐานและงานวิจัยที่เกี่ยวข้อง

ขั้นที่ 2 ดำเนินการวิจัยเพื่อบรรลุวัตถุประสงค์ข้อ 1

ขั้นที่ 3 ดำเนินการวิจัยเพื่อบรรลุวัตถุประสงค์ข้อ 2

ขั้นที่ 4 ดำเนินการวิจัยเพื่อบรรลุวัตถุประสงค์ข้อ 3

1.5 เอกสารอ้างอิง

- [1] Q. Y. Bu, *Some properties of Banach-valued sequence spaces $l_p[X]$* , $1 < p < \infty$, Int. J. Math. Math. Sci., 27(5) (2000), 289-300.
- [2] B. Choudhary, S. K. Miskra, *On the Köthe-Toeplitz duals of certain sequence spaces and their matrix transformations*, Indian J. pure & appl. math., 24(5) (1993), 291-301.
- [3] M. Gupta, Q. Bu, *On Banach-valued GAK-sequence spaces $l_p[X]$* , J. Anal. 2 (1994), 103-113.
- [4] M. Gupta, P. K. Kamthan, J. Patterson, *Duals of generalized sequence spaces*, J. Math. Anal. Appl. 82 (1981), 152-168.
- [5] I. E. Leonard, *Banach sequence spaces*, J. Math. Anal. Appl. 54(1)(1976), 245-265.
- [6] I. J. Maddox, *Generalized Köthe-Toeplitz duals*, Int. J. Math. Math. Sci., 3(3) (1980), 423-423.

- [7] J. Rakbud, O. Wootijiruttikal, P. Chaisuriya, *Spaces of sequences over function algebras*, J. of Anal. and Appl., 5(3) (2007), 185-199.
- [8] S. Suantai, W. Sanhan, *On β -duals of vector-valued sequences spaces of Maddox*, Int. J. Math. Math. Sci., 30(7) (2002), 383-392.
- [9] O. Wootijiruttikal, S.-C. Ong, P. Chaisuriya, J. Rakbud, *Banach spaces of functions taking values in a C^* -algebra*, Operators and Matrices, 3(3) (2009), 373-396.
- [10] C. X. Wu, Q. Y. Bu, *Köthe dual of Banach sequence spaces $l_p[X]$, $1 \leq p < \infty$ and Grothendieck space*, Comment. Math. Univ. Carolinae 34(2) (1993), 265-273.
- [11] C. X. Wu, Q. Y. Bu, *The vector-valued sequence spaces $l_p[X]$, $1 \leq p < \infty$ and Banach spaces not containing a copy of c_0* , A Friendly Collection of Mathematical Papers I, Jilin Univ. Press, Chanchun, China, 1990, 9-16.

บทที่ 2
ผลการวิจัย

2.1 Class of Banach-valued function spaces with some certain properties

Let S be a non-empty set, let X be a Banach space, and let $\Sigma(S, X)$ be the set of all functions from S into X . For any $f \in \Sigma(S, X)$ and $A \subseteq S$, let $f_{[A]} : S \rightarrow X$ be defined by $f_{[A]}(x) = f(x)$ for all $x \in A$ and $f_{[A]}(x) = 0$ otherwise. For any $t \in S$ and $x \in X$, let $e(t; x) : S \rightarrow X$ be defined by $e(t; x)(t) = x$ and $e(t; x)(s) = 0$ otherwise. For any $f \in \Sigma(S, X)$ and any finite subset A of S , we have $f_{[A]} = \sum_{t \in A} e(t; f(t))$. Let F be the family of all finite subsets of S . Then F is directed by the order \succ defined by $A \succ B$ if and only if $B \subseteq A$. Next, suppose that $\|\cdot\| : \Sigma(S, X) \rightarrow [0, \infty]$ satisfies the following properties:

- (N1) For any $f \in \Sigma(S, X)$, $\|f\| = \sup \{ \|f_{[A]}\| : A \in F \}$;
- (N2) There is a positive real number M such that for any $t \in S$ and $x \in X$, $\|e(t; x)\| \leq M \|x\|$;
- (N3) There is a positive real number K such that for any $f \in \Sigma(S, X)$ and $t \in S$, $\|f(t)\| \leq K \|f\|$;
- (N4) $\|f + g\| \leq \|f\| + \|g\|$ for all $f, g \in \Sigma(S, X)$;
- (N5) $\|\alpha f\| = |\alpha| \|f\|$ for all $f \in \Sigma(S, X)$ and $\alpha \in \mathbb{C}$, under the convention that $0 \cdot \infty = 0$.

From (N3), the following properties is obtained:

- (N6) If $\|f\| = 0$, then $f = 0$.

Let

$$\Lambda(S, X, \|\cdot\|) = \{ f \in \Sigma(S, X) : \|f\| < \infty \};$$

and

$$\Lambda_0(S, X, \|\cdot\|) = \left\{ f \in \Lambda(S, X, \|\cdot\|) : \text{the net } \left\{ \|f_{[A]} - f\| \right\}_{A \in F} \text{ converges to } 0 \right\}.$$

It is obvious that $f_{[A]}$ belongs to $\Lambda_0(S, X, \|\cdot\|)$ for all $f \in \Sigma(S, X)$ and $A \in F$.

From the properties (N4)-(N6), we have the function $\|\cdot\|$ is indeed a norm on $\Lambda(S, X, \|\cdot\|)$. From now on, we will assume for convenience that the constants M and K appearing on (N2) and (N3) are equal to 1.

Theorem 2.1.1. Both $\Lambda(S, X, \|\cdot\|)$ and $\Lambda_0(S, X, \|\cdot\|)$ equipped with the norm $\|\cdot\|$ are Banach spaces.

Proof Let $\{f_n\}_{n=1}^\infty$ be a Cauchy sequence in $\Lambda(S, X, \|\cdot\|)$. Then by (N3), we have for each $t \in S$ that $\|f_n(t) - f_m(t)\| \leq \|(f_n - f_m)(t)\|$ for all n, m . This implies that $\{f_n(t)\}_{n=1}^\infty$ is a Cauchy sequence in X for all $t \in S$. Thus, by the completeness of X , there is, for each $t \in S$, an element $f(t) \in X$ such that $f_n(t) \rightarrow f(t)$. Let $f : S \rightarrow X$ be defined by $t \mapsto f(t)$. We will show that $f \in \Lambda(S, X, \|\cdot\|)$ and $f_n \rightarrow f$. For each $A \in F$, we have

$$\begin{aligned} \|(f_n)_{[A]} - f_{[A]}\| &= \|(f_n - f)_{[A]}\| = \left\| \sum_{t \in A} e(t; (f_n - f)_{[A]}(t)) \right\| \\ &\leq \sum_{t \in A} \left\| e(t; (f_n - f)_{[A]}(t)) \right\| \\ &= \sum_{t \in A} \|f_n(t) - f(t)\| \rightarrow 0 \text{ as } n \rightarrow \infty. \end{aligned}$$

Then $(f_n)_{[A]} \rightarrow f_{[A]}$ as $n \rightarrow \infty$ for all $A \in F$. Let $\varepsilon > 0$. Then there is a positive integer N such that,

$$\|f_n - f_m\| < \frac{\varepsilon}{2} \text{ for all } n, m \geq N.$$

Thus, by (N1), we have for each $A \in F$ that

$$\|(f_n - f_m)_{[A]}\| \leq \|f_n - f_m\| < \frac{\varepsilon}{2} \text{ for all } n, m \geq N.$$

Hence, by taking the limit as $m \rightarrow \infty$, we have for each $A \in F$ that

$$\|(f_n - f)_{[A]}\| \leq \frac{\varepsilon}{2} \text{ for all } n \geq N.$$

Thus, by (N1) again, we obtain

$$\|f_n - f\| < \varepsilon \text{ for all } n \geq N.$$

This implies that $f \in \Sigma(S, X)$ and $f_n \rightarrow f$.

To see that $\Lambda_0(S, X, \|\cdot\|)$ is a Banach space, suppose that $\{f_n\}_{n=1}^\infty$ is a sequence in $\Lambda_0(S, X, \|\cdot\|)$ converging to an element f in $\Lambda(S, X, \|\cdot\|)$. Let $\varepsilon > 0$. Then there is a positive integer N such that $\|f_N - f\| < \frac{\varepsilon}{3}$. Since f_N belongs to $\Lambda_0(S, X, \|\cdot\|)$, there is an $A_0 \in F$ such that $\|(f_N)_{[A]} - f_N\| < \frac{\varepsilon}{3}$ for all $A \succ A_0$. Consequently, we have by (N1) that

$$\|f_{[A]} - f\| \leq \|f_N - f\| + \|(f_N)_{[A]} - f_N\| + \|(f_N)_{[A]} - f_{[A]}\|$$

$$\begin{aligned}
&= \|f_N - f\| + \| (f_N)_{[A]} - f_N \| + \| (f_N - f)_{[A]} \| \\
&\leq \|f_N - f\| + \| (f_N)_{[A]} - f_N \| + \|f_N - f\| \\
&< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \quad \text{for all } A \succ A_0.
\end{aligned}$$

It follows that $f \in \Lambda_0(S, X, \|\cdot\|)$. \square

The Banach space $\Lambda(S, X, \|\cdot\|)$ was first considered in [9] by O. Wootijirutikal, S.-C. Ong, P. Chaisuruya, and J. Rakbud.

If the function $\|\cdot\|$ has the following additional property :

(N7) for any function $\lambda: S \rightarrow \mathbb{C}$ with $|\lambda(t)| = 1$ for all $t \in S$, $\|\lambda f\| \leq |\lambda| \|f\|$ for all $f \in \sum(S, X)$, where $\lambda f: S \rightarrow X$ defined by $\lambda f(t) = \lambda(t) f(t)$ for all $t \in S$,

we call the Banach space $\Lambda(S, X, \|\cdot\|)$ the X -valued function space defined by $\|\cdot\|$, or simply, an X -valued function space. For convenience, we may sometimes denote the function space $\Lambda(S, X, \|\cdot\|)$ by just $\Lambda(S, X)$. When S is the set \mathbb{N} of all positive integers, we call $\Lambda(\mathbb{N}, X, \|\cdot\|)$ specifically the X -valued sequence space defined by $\|\cdot\|$, or simply, an X -valued sequence space.

2.2 Dual of $\Lambda_0(S, X, \|\cdot\|)$

Let $\Lambda(S, X, \|\cdot\|)$ be an X -valued function space. For any $\varphi \in \sum(S, X^*)$, we define

$$\|\varphi\|^* = \sup \left\{ \left| \sum_{t \in S} \varphi(t)(f(t)) \right| : f \in \Lambda(S, X, \|\cdot\|), \|f\| \leq 1 \right\}$$

If the supremum is finite, and $\|\varphi\|^* = \infty$ otherwise. For any $z \in \mathbb{C}$, let

$$\text{dir}(z) = \frac{\bar{z}}{z} \quad \text{if } z \neq 0 \text{ and } \text{dir}(z) = 1 \text{ if } z = 0.$$

Theorem 2.2.1. *The set*

$$\Delta = \left\{ \varphi \in \sum(S, X^*) : \sum_{t \in S} |\varphi(t)(f(t))| \text{ converges for all } f \in \Lambda(S, X, \|\cdot\|) \right\}$$

is the X^ -valued function space defined by $\|\cdot\|^*$, or symbolically, $\Delta = \Lambda(S, X^*, \|\cdot\|^*)$.*

Proof We must show first that for any $\varphi \in \sum(S, X^*)$, $\|\varphi\|^* < \infty$ if and only if $\varphi \in \Delta$. Suppose that $\varphi \in \Delta$. Then the linear functional T on $\Lambda(S, X)$ defined by $T(f) = \sum_{t \in S} \varphi(t)(f(t))$ for all $f \in \Lambda(S, X)$ is well defined. For each $A \in F$, we have by (N3) that the linear functional T_A on $\Lambda(S, X)$ defined by $T_A(f) = \sum_{t \in A} \varphi(t)(f(t))$ for all $f \in \Lambda(S, X)$ is bounded. For each $f \in \Lambda(S, X)$, we have $|T_A(f)| \leq \sum_{t \in A} |\varphi(t)(f(t))|$ for all $A \in F$. It follows by the uniform boundedness principle that $\sup \{\|T_A\| : A \in F\} < \infty$. Since $T_A(f) \rightarrow T(f)$, we obtain

$$\sup \left\{ \left| \sum_{t \in S} \varphi(t)(f(t)) \right| : f \in \Lambda(S, X, \|\cdot\|), \|f\| \leq 1 \right\} = \|T\| \leq \sup \{\|T_A\| : A \in F\} < \infty.$$

Conversely, suppose that $\|\varphi\|^* < \infty$. Then $\sum_{t \in S} \varphi(t)(f(t))$ converges for all $f \in \Lambda(S, X)$. Let $f \in \Lambda(S, X)$ with $\|f\| \leq 1$, and let $\lambda : S \rightarrow \mathbb{C}$ be defined by $\lambda(t) = \text{dir}(\varphi(t)(f(t)))$ for all $t \in S$. Then $|\lambda(t)| = 1$ for all t . Thus, by (N7), we have $\|\lambda f\| \leq \|f\| \leq 1$, and hence

$$\begin{aligned} \sum_{t \in S} |\varphi(t)(f(t))| &= \sum_{t \in S} \text{dir}(\varphi(t)(f(t))) \varphi(t)(f(t)) \\ &= \sum_{t \in S} \varphi(t)(\text{dir}(\varphi(t)(f(t))) f(t)) \\ &= \sum_{t \in S} \varphi(t)(\lambda(t) f(t)) \end{aligned}$$

converges. For any $f \in \Lambda(S, X)$, we have $\left\| \frac{1}{\|f\|} f \right\| = 1$. Thus

$$\sum_{t \in S} |\varphi(t)(f(t))| = \|f\| \sum_{t \in S} \left| \varphi(t) \left(\frac{1}{\|f\|} f(t) \right) \right|$$

Converges for $f \in \Lambda(S, X)$.

The rest of the proof is to show that the function $\|\cdot\|^*$ satisfies the properties (N1)-(N7).

(N1) Let $\varphi \in \Delta$, and let T and T_A for each $A \in F$ be the functions defined in the preceding paragraph. It is clear that $\|T_A\| = \|\varphi_{[A]}\|^*$ for all $A \in F$, and therefore we have $\|\varphi\|^* = \|T\| \leq \sup \{\|T_A\| : A \in F\} = \sup \{\|\varphi_{[A]}\|^* : A \in F\}$. Let $f \in \Lambda(S, X)$ with $\|f\| \leq 1$, and let λ be the function defined in the preceding paragraph. Then by (N7), $\|\lambda f\| \leq \|f\| \leq 1$. This yields for each $A \in F$ that

$$\begin{aligned}
|T_A(f)| &= \left| \sum_{t \in A} \varphi(t)(f(t)) \right| \leq \sum_{t \in A} |\varphi(t)(f(t))| \\
&= \sum_{t \in A} \text{dir}(\varphi(t)(f(t))) \varphi(t)(f(t)) \\
&= \sum_{t \in A} \lambda(t) \varphi(t)(f(t)) = \sum_{t \in A} \varphi(t)(\lambda(t)f(t)) \\
&= |T((\lambda f)_{[A]})| \leq \|T\| \|(\lambda f)_{[A]}\| \\
&\leq \|\varphi\|^* \|\lambda f\| \leq \|\varphi\|^*.
\end{aligned}$$

It follows that $\|\varphi_{[A]}\|^* = \|T_A\| \leq \|\varphi\|^*$ for all $A \in F$. Consequently, (N1) holds.

(N2) For any $t \in S$ and $y \in X^*$, we have by (N4) that

$$\begin{aligned}
\|e(t; y)\|^* &= \sup \left\{ \left| \sum_{s \in S} e(t, y)(s)(f(s)) \right| : f \in \Lambda(S, X), \|f\| \leq 1 \right\} \\
&= \sup \left\{ |e(t, y)(t)(f(t))| : f \in \Lambda(S, X), \|f\| \leq 1 \right\} \\
&= \sup \left\{ |y(f(t))| : f \in \Lambda(S, X), \|f\| \leq 1 \right\} \\
&= \|y\| \sup \left\{ \|f\| : f \in \Lambda(S, X), \|f\| \leq 1 \right\} \leq \|y\|.
\end{aligned}$$

Thus (N2) holds.

(N3) Let $\varphi \in \Delta$ and $t \in S$. For any $x \in X$ with $\|x\| \leq 1$, we have by (N2) (of $\|\cdot\|$) that $\|e(t; x)\| \leq \|x\| \leq 1$. Thus

$$|\varphi(t)(x)| = |\varphi(t)(e(t; x)(t))| = \left| \sum_{s \in S} \varphi(s)(e(t; x)(s)) \right| \leq \|\varphi\|^*.$$

It follows that $\|\varphi(t)\| \leq \|\varphi\|^*$, and hence (N3) holds.

The properties (N4) and (N5) follow directly from the definition of $\|\varphi\|^*$.

(N7) Let $\varphi \in \sum(S, X^*)$, and let $\lambda : S \rightarrow \mathbb{C}$ with $|\lambda(t)| = 1$ for all $t \in S$.

Suppose that $\|\varphi\|^* < \infty$. Then for any $f \in \Lambda(S, X)$ with $\|f\| \leq 1$, we have by the property (N7) of $\|\cdot\|$ that

$$\left| \sum_{t \in S} \lambda(t) \varphi(t)(f(t)) \right| = \left| \sum_{t \in S} \varphi(t)(\lambda(t)f(t)) \right| \leq \|\varphi\|^*.$$

Consequently, $\|\lambda\varphi\|^* \leq \|\varphi\|^*$. □

We call the X^* -valued function spaces $\Lambda(S, X^*, \|\cdot\|^*)$ defined by $\|\cdot\|^*$ the *Köthe dual* of $\Lambda(S, X, \|\cdot\|)$ and call $\|\cdot\|^*$ the dual norm of $\|\cdot\|$. The main

goal of this section is to identify the dual $\Lambda_0(S, X, \|\cdot\|)^*$ of $\Lambda_0(S, X, \|\cdot\|)$ with the Köthe dual $\Lambda(S, X^*, \|\cdot\|)$ of $\Lambda(S, X, \|\cdot\|)$.

Let $\Psi \in \Lambda_0(S, X, \|\cdot\|)^*$. We then define, for each $t \in S$, the function $y_t : X \rightarrow \mathbb{C}$ by $y_t(x) = \Psi(e(t; x))$ for all $x \in X$. Clearly, $\|y_t\| \leq \|\Psi\|$ for all $t \in S$, and hence $y_t \in X^*$. Let $\varphi^{(\Psi)} : S \rightarrow X^*$ be defined by $t \mapsto y_t$.

Theorem 2.2.2. $\Lambda_0(S, X, \|\cdot\|)^*$ is isometrically isomorphic to $\Lambda(S, X^*, \|\cdot\|)$ by the isomorphism $\Psi \mapsto \varphi^{(\Psi)}$.

Proof We will show first that $\varphi^{(\Psi)} \in \Lambda(S, X^*)$. To see this, let $f \in \Lambda(S, X)$, and let $\lambda : S \rightarrow \mathbb{C}$ be defined by $\lambda(t) = \text{dir}(\Psi(e(t; f(t))))$ for all $t \in S$. Then we have for each $A \in F$ that

$$\begin{aligned} \sum_{t \in S} |\varphi^{(\Psi)}(t)(f(t))| &= \sum_{t \in S} |y_t(f(t))| = \sum_{t \in S} |\Psi(e(t; f(t)))| \\ &= \sum_{t \in S} \lambda(t) \Psi(e(t; f(t))) = \sum_{t \in S} \Psi(\lambda(t) e(t; f(t))) \\ &= \sum_{t \in S} \Psi(e(t; \lambda(t) f(t))) = \Psi\left(\sum_{t \in A} e(t; \lambda(t) f(t))\right) \\ &= \Psi((\lambda f)_{[A]}) \leq \|\Psi\| \|\lambda f\|_{[A]} \leq \|\Psi\|. \end{aligned}$$

This yields $\varphi^{(\Psi)} \in \Lambda(S, X)$ and $\|\varphi^{(\Psi)}\|^* \leq \|\Psi\|$. Next, we will show that

$\|\varphi^{(\Psi)}\|^* \geq \|\Psi\|$. To get this, let $f \in \Lambda_0(S, X)$ and let $\lambda : S \rightarrow \mathbb{C}$ be defined above. Then for each $A \in F$,

$$\begin{aligned} |\Psi(f_{[A]})| &= \left| \Psi\left(\sum_{t \in A} e(t; f(t))\right) \right| \leq \sum_{t \in A} |\Psi(e(t; f(t)))| \\ &= \sum_{t \in A} \lambda(t) \Psi(e(t; f(t))) = \sum_{t \in A} y_t(\lambda(t) f(t)) \\ &= \sum_{t \in A} \varphi^{(\Psi)}(t)(\lambda(t) f(t)) \leq \|\varphi^{(\Psi)}\|^*. \end{aligned}$$

Thus, by the continuity of Ψ , we have $|\Psi(f)| \leq \|\varphi^{(\Psi)}\|^*$ for all $f \in \Lambda_0(S, X)$ with $\|f\| \leq 1$. Hence $\|\varphi^{(\Psi)}\|^* \geq \|\Psi\|$, and so $\|\varphi^{(\Psi)}\|^* = \|\Psi\|$. Finally, we will show that the linear map $\Psi \mapsto \varphi^{(\Psi)}$ is onto. Let $\varphi \in \Lambda(S, X^*)$. Then the linear functional $\Psi : \Lambda_0(S, X) \rightarrow \mathbb{C}$ defined by $\Psi(f) = \sum_{t \in S} \varphi(t)(f(t))$ for all $f \in \Lambda_0(S, X)$

is bounded and $\varphi^{(\Psi)} = \varphi$. Therefore, we have the linear map $\Psi \mapsto \varphi^{(\Psi)}$ is onto as required. The proof is complete. \square

In the following theorem, the space $\Lambda(S, X^*)$ will be regarded as the space of all bounded linear functional Φ_φ on $\Lambda(S, X)$ defined for each $\varphi \in \Lambda(S, X^*)$ by $\Phi_\varphi(f) = \sum_{t \in S} \varphi(t)(f(t))$ for all $f \in \Lambda(S, X)$. It is clear that $\Lambda(S, X^*)$ is a closed subspace of $\Lambda(S, X)^*$.

Theorem 2.2.3. *If $\Lambda_0(S, X) \neq \Lambda(S, X)$, then the annihilator $\Lambda_0(S, X)^\perp$ of $\Lambda_0(S, X)$ is a nontrivial closed subspace of $\Lambda(S, X)^*$ and*

$$\Lambda(S, X)^* = \Lambda(S, X^*) \oplus \Lambda_0(S, X)^\perp$$

Proof Suppose that $\Lambda_0(S, X) \neq \Lambda(S, X)$. Then by the Hahn-Banach extension theorem, we have $\Lambda_0(S, X)^\perp$ is a nontrivial closed subspace of $\Lambda(S, X)^*$. For any $\Psi \in \Lambda(S, X)^*$, let $\Omega_\Psi = \Psi - \Phi_{\varphi^{(\Psi)}}$. Then $\Omega_\Psi \in \Lambda_0(S, X)^\perp$, and hence $\Lambda(S, X)^* = \Lambda(S, X^*) + \Lambda_0(S, X)^\perp$. For any $\varphi \in \Lambda(S, X^*)$, if $\Phi_\varphi \in \Lambda_0(S, X)^\perp$, then $\Phi_\varphi(f) = \lim_{A \in F} \Phi_\varphi(f_{[A]}) = 0$ for all $f \in \Lambda(S, X)$. It follows that $\Lambda(S, X^*) \cap \Lambda_0(S, X)^\perp = \{0\}$. Consequently, $\Lambda(S, X)^* = \Lambda(S, X^*) \oplus \Lambda_0(S, X)^\perp$. \square

2.3 Predual of $\Lambda(S, X)$

The aim of this section is to complete the duality relation among the four function spaces $\{\Lambda_0(S, X), \Lambda(S, X^*), \Lambda_0(S, X^*), \Lambda(S, X)\}$. From the previous section we have done the the duality relation between the first two spaces $\Lambda_0(S, X)$ and $\Lambda(S, X^*)$. The rest is to investigate the the duality relation between $\Lambda_0(S, X^*)$ and $\Lambda(S, X)$. We expect to have $\Lambda_0(S, X^*)^*$ is isometrically isomorphic to $\Lambda(S, X)$.

For any $f \in \Lambda(S, X)$, we define a function $\tilde{\Theta}_f : \Lambda(S, X^*) \rightarrow \mathbb{C}$ by $\tilde{\Theta}_f(\varphi) = \sum_{t \in S} \varphi(t)(f(t))$ for all $\varphi \in \Lambda(S, X^*)$ and let Θ_f be the restriction of $\tilde{\Theta}_f$ to $\Lambda_0(S, X^*)$. It is clear that $\|\Theta_f\| \leq \|\tilde{\Theta}_f\| \leq \|f\|$ for all $f \in \Lambda(S, X)$.

Proposition 2.3.1. *For any $f \in \Lambda(S, X)$, $\|\Theta_f\| = \|f\| = \|\tilde{\Theta}_f\|$.*

Proof Let $f \in \Lambda(S, X)$, let $\varepsilon > 0$, and let $A \in F$. Then we have by the Hahn-Banach extension theorem that there is $\Psi \in \Lambda(S, X)^*$ with $\|\Psi\| \leq 1$ such that $\|\|f_{[A]}\|\| \leq |\Psi(f_{[A]})| + \varepsilon$. By Theorem 2.2.3, we have $\Psi(f_{[A]}) = \Phi_{\varphi^{(\Psi)}}(f_{[A]})$. Thus, by Theorem 2.2.2 and the property (N1) of $\|\cdot\|$, we have

$$\begin{aligned} \|\|f_{[A]}\|\| &\leq |\Psi(f_{[A]})| + \varepsilon = |\Phi_{\varphi^{(\Psi)}}(f_{[A]})| + \varepsilon \\ &= |\tilde{\Theta}_{f_{[A]}}(\varphi^{(\Psi)})| + \varepsilon = \left| \tilde{\Theta}_f \left((\varphi^{(\Psi)})_{[A]} \right) \right| + \varepsilon \\ &= \left| \Theta_f \left((\varphi^{(\Psi)})_{[A]} \right) \right| + \varepsilon \leq \|\Theta_f\| \left\| (\varphi^{(\Psi)})_{[A]} \right\|^* + \varepsilon \\ &\leq \|\Theta_f\| \left\| \varphi^{(\Psi)} \right\|^* + \varepsilon = \|\Theta_f\| \|\Psi\| + \varepsilon \\ &\leq \|\Theta_f\| + \varepsilon. \end{aligned}$$

Since ε was given arbitrarily, we obtain $\|\|f_{[A]}\|\| \leq \|\Theta_f\|$ for all $A \in F$. Thus, by (N1) of $\|\cdot\|$, we have $\|f\| \leq \|\Theta_f\|$. It follows that $\|\Theta_f\| = \|f\| = \|\tilde{\Theta}_f\|$. \square

We now have the function $f \mapsto \Theta_f$ is an isometric isomorphism from $\Lambda(S, X)$ into $\Lambda_0(S, X^*)^*$. In the following theorem, we provide a necessary and sufficient condition the function to be onto.

Theorem 2.3.2. *The isometric isomorphism $f \mapsto \Theta_f$ from $\Lambda(S, X)$ into $\Lambda_0(S, X^*)^*$ is onto if and only if X is reflexive.*

Proof Suppose that X is reflexive. We want to show that the map $f \mapsto \Theta_f$ is onto. To see this, let $\Psi \in \Lambda_0(S, X^*)^*$, and for each $t \in S$, let $\phi_t : X^* \rightarrow \mathbb{C}$ be defined by $\phi_t(y) = \Psi(e(t; y))$ for all $y \in X^*$. Then $\phi_t \in X^{**}$ for all $t \in S$. Thus, by the reflexivity of X , there exists, for each $t \in S$, an $x_t \in X$ such that $\phi_t(y) = y(x_t)$ for all $y \in X^*$. Let $f : S \rightarrow X$ be defined by $f(t) = x_t$. We will prove that $f \in \Lambda(S, X)$ and then $\Psi = \Theta_f$. Let $A \in F$. Then we have for any $\varphi \in \Lambda(S, X^*)$ with $\|\varphi\|^* \leq 1$ by (N1) of $\|\cdot\|$ that

$$\begin{aligned} \left| \Theta_{f_{[A]}}(\varphi) \right| &= \left| \sum_{t \in A} \varphi(t)(f(t)) \right| = \left| \sum_{t \in A} \varphi(t)(x_t) \right| \\ &= \left| \sum_{t \in A} \phi_t(\varphi(t)) \right| = \left| \sum_{t \in A} \Psi(e(t; \varphi(t))) \right| \\ &= \left| \Psi(\varphi_{[A]}) \right| \leq \|\Psi\| \left\| \varphi_{[A]} \right\|^* \leq \|\Psi\|. \end{aligned}$$

It follows that $\|f_{[A]}\| = \|\Theta_{f_{[A]}}\| \leq \|\Psi\|$ for all $A \in F$. Hence, by (N1) of $\|\cdot\|$, we obtain $\|f\| \leq \|\Psi\|$, and therefore $f \in \Lambda(S, X)$. To see that $\Psi = \Theta_f$, let $\varphi \in \Lambda_0(S, X^*)$. Then we have for each $A \in F$ that

$$\begin{aligned}\Psi(\varphi_{[A]}) &= \Psi\left(\sum_{t \in A} e(t; \varphi(t))\right) = \sum_{t \in A} \Psi(e(t; \varphi(t))) \\ &= \sum_{t \in A} \phi_t(\varphi(t)) = \sum_{t \in A} \varphi(t)(f(t)) = \Theta_f(\varphi_{[A]}).\end{aligned}$$

Thus, by the continuity of both Ψ and Θ_f , we have $\Psi = \Theta_f$ as required.

Conversely, suppose that the map $f \mapsto \Theta_f$ is onto. To show that X is reflexive, let $\phi \in X^{**}$, and let $t_0 \in S$ be fixed. Then the linear functional Ψ on $\Lambda(S, X^*)$ defined by $\Psi(\varphi) = \phi(\varphi(t_0))$ for all $\varphi \in \Lambda(S, X^*)$ is bounded. Thus, by the assumption, there is an $f \in \Lambda(S, X)$ such that $\Theta_f = \Psi$. From this, we have for any $y \in X^*$ that

$$\phi(y) = \phi(e(t_0; y)(t_0)) = \Psi(e(t_0; y)) = \Theta_f(e(t_0; y)) = e(t_0; y)(f(t_0)) = y(f(t_0)).$$

Therefore X is reflexive. \square

2.4 Reflexivity

In this section, we establish a reflexivity theorem for our Banach-valued function spaces. We denote here the isomorphism $\Psi \mapsto \varphi^{(\Psi)}$ from $\Lambda_0(S, X)^*$ onto $\Lambda(S, X^*)$ by N , the isomorphism $f \mapsto \Theta_f$ from $\Lambda(S, X)$ onto $\Lambda_0(S, X^*)^*$ by M . Let P be the isometric isomorphism from the subspace $\{\Theta_f : f \in \Lambda(S, X)\}$ of $\Lambda_0(S, X^*)^*$ into $\Lambda(S, X^*)^*$ defined by $\Theta_f \mapsto \tilde{\Theta}_f$.

Lemma 2.4.1. $N^*PM(f) = Q(f)$ for all $f \in \Lambda_0(S, X)$, where N^* is the adjoint of N and $Q : \Lambda_0(S, X) \rightarrow \Lambda_0(S, X)^{**}$ is the natural map.

Proof Let $f \in \Lambda_0(S, X)$. Then for each $A \in F$,

$$N^*PM(f_{[A]}) = N^*(P(M(f_{[A]}))) = N^*P(\Theta_{f_{[A]}}) = \tilde{\Theta}_{f_{[A]}}N.$$

Next, let $\Psi \in \Lambda(S, X)^*$, then we have for each $A \in F$ that

$$\tilde{\Theta}_{f_{[A]}}N(\Psi) = \tilde{\Theta}_{f_{[A]}}(\varphi^{(\Psi)}) = \sum_{t \in A} \Psi(e(t; f(t))) = \Psi(f_{[A]}) = Q(f_{[A]})(\Psi).$$

Accordingly, $N^*PM(f_{[A]}) = Q(f_{[A]})$ for each $A \in F$. It follows by the continuous of the maps N^*PM and Q that $N^*PM(f) = Q(f)$. The proof is finished. \square

An X -valued function space $\Lambda(S, X)$ is called a *GAK-space* (see [4] for the original definition) if $\Lambda_0(S, X) = \Lambda(S, X)$.

Theorem 2.4.2. (Reflexivity theorem for the Banach-valued function spaces) *Let $\Lambda(S, X)$ be an X -valued function space. Then the following are equivalent:*

- (1) $\Lambda(S, X)$ is reflexive;
- (2) $\Lambda_0(S, X)$ is reflexive;
- (3) X is reflexive and both $\Lambda(S, X)$ and its Köthe dual are GAK.

Proof (1) \Rightarrow (2). Obvious

(2) \Rightarrow (3). Suppose that (3) holds. If $\Lambda(S, X)$ is not GAK, then we have by Lemma 2.4.1 that $\Lambda(S, X)$ is not reflexive. Next, suppose that X is not reflexive or $\Lambda(S, X^*)$ is not GAK. We will prove that each of these two conditions implies that

$$\{\tilde{\Theta}_f : f \in \Lambda(S, X)\} \neq \Lambda(S, X^*)^* \quad (*)$$

If X is not reflexive, then (*) holds by Theorem 2.3.2. Suppose that $\Lambda_0(S, X^*) \neq \Lambda(S, X^*)$. Then by the Hahn-Banach extension theorem, there exists $\psi \in \Lambda(S, X^*)^*$ such that $\|\psi\| \neq 0$ and $\Lambda_0(S, X^*) \subseteq \ker \psi$. If $\psi = \tilde{\Theta}_f$ for some $f \in \Lambda(S, X)$, then $\Theta_f = 0$. This yields $\|\psi\| = \|\tilde{\Theta}_f\| = \|\Theta_f\| = 0$, which is a contradiction. Thus (*) holds. Since (*) holds, it follows immediately from Lemma 2.4.1 that $\Lambda_0(S, X)$ is not reflexive.

(3) \Rightarrow (1). It follows directly from Theorem 2.3.2 and Lemma 2.4.1. \square

2.5 Applications to the sequence spaces $l_p(X)$ and $l_p[X]$

In this section, we show that the well-known results on duality and reflexivity of the sequence spaces $l_p(X)$ and $l_p[X]$ can easily be deduced from our theorems.

It is clear that for each $1 \leq p \leq \infty$, the sequence spaces $l_p(X)$ is the X -valued sequence space defined by $\|\cdot\|_p$ and it is GAK, except for the case where $p = \infty$. Thus, by the duality theorem, $l_p(X)^*$ is isometrically isomorphic to its Köthe dual $\Lambda(\mathbb{N}X^*, \|\cdot\|_p^*)$. It can be shown by the uniform boundedness principle that for $1 \leq p < \infty$, $\Lambda(\mathbb{N}X^*, \|\cdot\|_p^*) = l_q(X)$, where $\frac{1}{p} + \frac{1}{q} = 1$. Thus

$\Lambda(\mathbb{N}X^*, \|\cdot\|_p^*)$ is GAK for all $1 < p < \infty$, whereas $\Lambda(\mathbb{N}X^*, \|\cdot\|_1^*)$ is not GAK.

Therefore, by the reflexivity theorem, $l_1(X)$ and $l_\infty(X)$ are not reflexive, while for $1 < p < \infty$, $l_p(X)$ is reflexive if and only if X is reflexive.

It is also clear that $l_p[X]$ is the X -valued sequence space defined by $\|\cdot\|_p$, where $\|\cdot\|_p$ is given by

$$\left\| \left\{ x_k \right\}_{k=1}^{\infty} \right\|_p = \sup \left\{ \left(\sum_{k=1}^{\infty} |f(x_k)|^p \right)^{1/p} : f \in X^*, \|f\| \leq 1 \right\}.$$

It was proved in [10] by C. K. Wu and Q. Y. Bu that the Köthe dual of $l_p[X]$ is GAK for all $1 < p < \infty$. Thus, by the reflexivity theorem, we have that the sequence space $l_p[X]$ is reflexive if and only if X is reflexive and $l_p[X]$ is GAK. This is exactly the same as that given in [1] by Q. Y. Bu.

บทที่ 3

บทสรุปและวิจารณ์ผลการวิจัย

จากการวิจัยนี้ ผู้วิจัยได้สร้างทฤษฎีบทภาวะคู่กันและทฤษฎีบทการสะท้อนกลับสำหรับคลาส ๆ หนึ่งของปริภูมิพังก์ชันค่าบานาค ทฤษฎีบทดังกล่าวเป็นการวางแผนที่ว่าไปของผลที่เก่าแก่ที่เกี่ยวกับภาวะคู่กันและการสะท้อนกลับของปริภูมิ L_p ในมุมมองตามข้อสังเกตที่ถูกกล่าวถึงในบทนำ ผู้วิจัยคาดหวังว่าทฤษฎีบทภาวะคู่กันและทฤษฎีบทการสะท้อนกลับที่ถูกสร้างขึ้นมาในงานวิจัยนี้ จะเป็นเครื่องมือหนึ่งในการศึกษาภาวะคู่กันและการสะท้อนกลับของปริภูมิพังก์ชันค่าบานาคเฉพาะเจาะจงที่อาจจะถูกนิยามขึ้นมาใหม่ในอนาคต หรือแม้แต่ปริภูมิพังก์ชันค่าบานาคที่มีอยู่แล้วในปัจจุบัน

Output

1. ชื่อบทความ *Duality theorem for Banach-valued function spaces,*
ผู้แต่ง Jitti Rakbud, Sutep Suantai
วารสาร กำลังจะส่งไปตีพิมพ์ ในวารสาร International journal of mathematics and mathematical sciences.

ภาคผนวก

DUALITY THEOREM FOR BANACH-VALUED FUNCTION SPACES

JITTI RAKBUD AND SUTEP SUANTAI

ABSTRACT. In this paper, we provide some general theorems on duality and reflexivity for a class of Banach-valued functions spaces. We also show that the known results on the duality and reflexivity of the classical sequence space $l_p(X)$ as well as the sequence space $l_p[X]$ can be obtained from our results.

1. INTRODUCTION AND PRELIMINARIES

It is well known that $c_0^* \cong l_1$ and $l_p^* \cong l_q$ for $1 \leq p < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. General studies of these classical results on the duality and preduality of the classical Banach sequence spaces l_p have been contributed by many people (see [1] [2] [3] [4] [5] [6] [7] [8] [11] [10] for references). Most of them deal with the Köthe dual of a fixed Banach-valued sequence space which is a generalization of the sequence space l_p . Well-known ones are the following spaces:

$$l_p(X) = \left\{ \{x_k\}_{k=1}^{\infty} \subset X : \sum_{k=1}^{\infty} \|x_k\|^p < \infty \right\};$$

and

$$l_p[X] = \left\{ \{x_k\}_{k=1}^{\infty} \subset X : \sum_{k=1}^{\infty} |f(x_k)|^p < \infty \ \forall f \in X^* \right\},$$

which are defined over any Banach space X . In this paper, we provide a general study of these classical results by a way analogous to the following observation.

Observation: The duality and preduality of the classical sequence spaces l_p can be viewed in the form of the duality relation among the four spaces $\{A, B, C, l_p\}$, in the sense that $A^* \cong B$ and $C^* \cong l_p$, where A and C are the closure of the set of scalar sequences with finitely many non-zero terms, in l_p and in B respectively. In the case where $1 < p < \infty$, A is equal to l_p itself, and $B = C = l_q$ when $\frac{1}{p} + \frac{1}{q} = 1$. For $p = \infty$, we have $A = c_0$, and $B = C = l_1$. Thus, in these two cases, the duality progression of the three spaces $\{A, B, l_p\}$, in the sense that $A^* \cong B$ and $B^* \cong l_p$, holds. For $p=1$, we have $A = l_1$, $B = l_{\infty}$, and $C = c_0$.

Let S be a non-empty set, let X be a Banach space, and let $\Sigma(S, X)$ be the set of all functions from S into X . For any $f \in \Sigma(S, X)$ and $A \subseteq S$, let $f_{[A]} : S \rightarrow X$ be defined

2000 *Mathematics Subject Classification.* Primary 46A20; Secondary 46A45.

Key words and phrases. Duality, Preduality, Reflexivity.

by $f_{[A]} = f$ on A and $f_{[A]} = 0$ otherwise. For any $t \in S$ and $x \in X$, let $e(t; x) : S \rightarrow X$ be defined by $e(t; x)(t) = x$ and $e(t; x)(s) = 0$ otherwise. For any $f \in \Sigma(S, X)$ and any finite subset A of S , we have $f_{[A]} = \sum_{t \in A} e(t; f(t))$. Let \mathcal{F} be the family of all finite subsets of S . Then \mathcal{F} is directed by the order \succeq defined by $A \succeq B$ if and only if $B \subseteq A$. Next, suppose that $\|\cdot\| : \Sigma(S, X) \rightarrow [0, \infty]$ satisfying the following properties.

- (N1) For any $f \in \Sigma(S, X)$, $\|f\| = \sup_{A \in \mathcal{F}} \|\|f_{[A]}\|\|$.
- (N2) There is a positive real number M such that for any $t \in S$ and $x \in X$, $\|e(t; x)\| \leq M \|x\|$.
- (N3) There is a positive real number K such that for any $f \in \Sigma(S, X)$ and $t \in S$, $\|f(t)\| \leq K \|f\|$.
- (N4) $\|f + g\| \leq \|f\| + \|g\|$ for all $f, g \in \Sigma(S, X)$.
- (N5) $\|\alpha f\| = |\alpha| \|f\|$ for all $f \in \Sigma(S, X)$ and $\alpha \in \mathbb{C}$, under the convention that $0 \cdot \infty = 0$.

From (N3), the following property is obtained.

- (N6) If $\|f\| = 0$, then $f = 0$.

Let

$$\Lambda(S, X, \|\cdot\|) = \{f \in \Sigma(S, X) : \|f\| < \infty\};$$

and

$$\Lambda_0(S, X, \|\cdot\|) = \left\{ f \in \Lambda(S, X, \|\cdot\|) : \text{the net } \{\|f_{[A]} - f\|\}_{A \in \mathcal{F}} \text{ converges to 0} \right\}.$$

It is obvious that $f_{[A]}$ belongs to $\Lambda_0(S, X, \|\cdot\|)$ for all $f \in \Lambda(S, X, \|\cdot\|)$ and $A \in \mathcal{F}$. From the properties N(4), N(5) and (N6), we have that the function $\|\cdot\|$ is indeed a norm on $\Lambda(S, X, \|\cdot\|)$. From now on, we will assume for convenience that the constants M and K appearing in (N2) and (N3) are equal to 1.

Theorem 1.1. *Both $\Lambda(S, X, \|\cdot\|)$ and $\Lambda_0(S, X, \|\cdot\|)$ equipped the norm $\|\cdot\|$ are Banach spaces.*

Proof. Let $\{f_n\}_{n=1}^\infty$ be a Cauchy sequence in $\Lambda(S, X, \|\cdot\|)$. Then by (N3), we have for each $t \in S$ that $\|f_n(t) - f_m(t)\| \leq \|f_n - f_m\|$ for all n, m . This implies that $\{f_n(t)\}_{n=1}^\infty$ is a Cauchy sequence in the Banach space X for all t . Let, for each $t \in S$, $f(t) = \lim_{n \rightarrow \infty} f_n(t)$, and let $f : S \rightarrow X$ be defined by $t \mapsto f(t)$. We will show that $f \in \Lambda(S, X, \|\cdot\|)$ and $f_n \rightarrow f$ as $n \rightarrow \infty$. For each $A \in \mathcal{F}$, we have

$$\|(f_n)_{[A]} - f_{[A]}\| = \|(f_n - f)_{[A]}\| = \left\| \sum_{t \in A} e(t; (f_n - f)_{[A]}(t)) \right\|$$

$$\begin{aligned}
&\leq \sum_{t \in A} \|(e(t; (f_n - f)_{[A]}(t))\| \\
&= \sum_{t \in A} \|f_n(t) - f(t)\| \rightarrow 0 \text{ as } n \rightarrow \infty.
\end{aligned}$$

Thus $(f_n)_{[A]} \rightarrow f_{[A]}$ as $n \rightarrow \infty$ for all $A \in \mathcal{F}$. Let $\epsilon > 0$. Then there is a positive integer N such that for any $A \in \mathcal{F}$

$$\|(f_n)_{[A]} - (f_m)_{[A]}\| \leq \|f_n - f_m\| < \frac{\epsilon}{2} \text{ for all } n, m \geq N.$$

Hence, by taking the limit as $m \rightarrow \infty$, we have for each $A \in \mathcal{F}$ that $\|(f_n)_{[A]} - (f)_{[A]}\| \leq \frac{\epsilon}{2}$ for all $n \geq N$. Thus, by (N1), $\|f_n - f\| < \epsilon$ for all $n \geq N$. This implies that $f \in \Lambda(S, X)$ and $f_n \rightarrow f$ as $n \rightarrow \infty$ as required.

To see that $\Lambda_0(S, X, \|\cdot\|)$ is a Banach space, suppose that $\{f_n\}_{n=1}^\infty$ is a sequence of functions in $\Lambda_0(S, X, \|\cdot\|)$ converging to a function f in $\Lambda(S, X, \|\cdot\|)$. Let $\epsilon > 0$. Then there is a positive integer N such that $\|f_N - f\| < \frac{\epsilon}{3}$. Since $f_N \in \Lambda_0(S, X, \|\cdot\|)$, there is $A_0 \in \mathcal{F}$ such that $\|(f_N)_{[A]} - f_N\| < \frac{\epsilon}{3}$ for all $A \supseteq A_0$. Consequently, by (N1), we obtain that

$$\begin{aligned}
\|f_{[A]} - f\| &\leq \|f_N - f\| + \|(f_N)_{[A]} - f_N\| + \|(f_N)_{[A]} - f_{[A]}\| \\
&= \|f_N - f\| + \|(f_N)_{[A]} - f_N\| + \|(f_N - f)_{[A]}\| \\
&\leq \|f_N - f\| + \|(f_N)_{[A]} - f_N\| + \|f_N - f\| \\
&< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon \text{ for all } A \supseteq A_0.
\end{aligned}$$

It follows that $f \in \Lambda_0(S, X, \|\cdot\|)$. □

The Banach space $\Lambda(S, X, \|\cdot\|)$ was first considered in [9] by O. Woottijirutikal, S.-C. Ong, P. Chaisuriya, and J. Rakbud.

If the function $\|\cdot\|$ has the following additional property:

(N7) for any function $\lambda : S \rightarrow \mathbb{C}$ with $|\lambda(t)| = 1$ for all $t \in S$ and $f \in \Sigma(S, X)$,
 $\|\lambda f\| \leq \|f\|$, where $\lambda f(t) := \lambda(t)f(t)$ for all $t \in S$,

we call the Banach space $\Lambda(S, X, \|\cdot\|)$ the *X-valued function space defined by $\|\cdot\|$* , or simply, an *X-valued function space*. For convenience, we may sometimes denote $\Lambda(S, X, \|\cdot\|)$ by just $\Lambda(S, X)$. When S is the set \mathbb{N} of all positive integers, we call $\Lambda(\mathbb{N}, X, \|\cdot\|)$ specifically the *X-valued sequence space* defined by $\|\cdot\|$, or shortly, an *X-valued sequence space*.

2. DUAL OF $\Lambda_0(S, X)$

Let $\Lambda(S, X, \|\cdot\|)$ be an X -valued function space. For any $\varphi \in \Sigma(S, X^*)$, we define

$$\|\varphi\|^* = \sup \left\{ \left| \sum_{t \in S} \varphi(t)(f(t)) \right| : f \in \Lambda(S, X, \|\cdot\|), \|f\| \leq 1 \right\}$$

if the supremum is finite, and $\|\varphi\|^* = \infty$ otherwise. For any $z \in \mathbb{C}$, let $\text{dir}(z) = \frac{\bar{z}}{|z|}$ if $z \neq 0$ and $\text{dir}(z) = 1$ if $z = 0$.

Theorem 2.1. *The set*

$$\Delta := \left\{ \varphi \in \Sigma(S, X^*) : \sum_{t \in S} |\varphi(t)(f(t))| \text{ converges for all } f \in \Lambda(S, X, \|\cdot\|) \right\}$$

is the X^* -valued function space defined by $\|\cdot\|^*$, or symbolically, $\Delta = \Lambda(S, X^*, \|\cdot\|^*)$.

Proof. We must show first that $\|\varphi\|^* < \infty$ if and only if $\varphi \in \Delta$. Suppose that $\varphi \in \Delta$. Then the linear functional T on $\Lambda(S, X)$ defined by $T(f) = \sum_{t \in S} \varphi(t)(f(t))$ for all $f \in \Lambda(S, X)$ is well defined. For each $A \in \mathcal{F}$, we have by (N3) that the linear functional T_A on $\Lambda(S, X)$ defined by $T_A(f) = \sum_{t \in A} \varphi(t)(f(t))$ for all $f \in \Lambda(S, X)$ is bounded. For each $f \in \Lambda(S, X)$, we have $|T_A(f)| \leq \sum_{t \in S} |\varphi(t)(f(t))|$ for all $A \in \mathcal{F}$. It follows by the uniform boundedness principle that $\sup_{A \in \mathcal{F}} \|T_A\| < \infty$. Since $T_A(f) \rightarrow T(f)$, we obtain

$$\sup \left\{ \left| \sum_{t \in S} \varphi(t)(f(t)) \right| : f \in \Lambda(S, X), \|f\| \leq 1 \right\} = \|T\| \leq \sup_{A \in \mathcal{F}} \|T_A\| < \infty.$$

Conversely, suppose that $\|\varphi\|^* < \infty$. Then $\sum_{t \in S} \varphi(t)(f(t))$ converges for all $f \in \Lambda(S, X)$. Let $f \in \Lambda(S, X)$ with $\|f\| = 1$, and let $\lambda : S \rightarrow \mathbb{C}$ be defined by $\lambda(t) = \text{dir}(\varphi(t)(f(t)))$ for all $t \in S$. Then $|\lambda(t)| = 1$ for all t . Thus, by (N7), we have $\|\lambda f\| = \|f\| \leq 1$, and hence

$$\begin{aligned} \sum_{t \in S} |\varphi(t)(f(t))| &= \sum_{t \in S} \text{dir}(\varphi(t)(f(t))) \varphi(t)(f(t)) \\ &= \sum_{t \in S} \varphi(t)(\text{dir}(\varphi(t)(f(t))) f(t)) \\ &= \sum_{t \in S} \varphi(t)(\lambda(t) f(t)) \end{aligned}$$

converges. For any $f \in \Lambda(S, X)$, we have $\left\| \frac{1}{\|f\|} f \right\| = 1$. Thus

$$\sum_{t \in S} |\varphi(t)(f(t))| = \|f\| \sum_{t \in S} \left| \varphi(t) \left(\frac{1}{\|f\|} f(t) \right) \right|$$

converges for all $f \in \Lambda(S, X)$.

The rest of the proof is to show that $\|\cdot\|^*$ satisfies the properties (N1)-(N7).

(N1). Let $\varphi \in \Delta$, and let T and T_A for each $A \in \mathcal{F}$ be the linear functionals defined in the beginning of the preceding paragraph. It is clear that $\|T_A\| = \|\varphi_{[A]}\|^*$ for all $A \in \mathcal{F}$, and hence we have $\|\varphi\|^* = \|T\| \leq \sup_{A \in \mathcal{F}} \|T_A\| = \sup_{A \in \mathcal{F}} \|\varphi_{[A]}\|^*$. Let $f \in \Lambda(S, X)$ with $\|f\| \leq 1$, and let $\lambda : S \rightarrow \mathbb{C}$ be the function defined by $\lambda(t) = \text{dir}(\varphi(t)(f(t)))$ for all $t \in S$. Then $|\lambda(t)| = 1$ for all $t \in S$ and by (N7), $\|\lambda f\| \leq \|f\| \leq 1$. This yields for any $A \in \mathcal{F}$ that

$$\begin{aligned} |T_A(f)| &= \left| \sum_{t \in A} \varphi(t)(f(t)) \right| \leq \sum_{t \in A} |\varphi(t)(f(t))| \\ &= \sum_{t \in A} \text{dir}(\varphi(t)(f(t))) \varphi(t)(f(t)) \\ &= \sum_{t \in A} \lambda(t) \varphi(t)(f(t)) = \sum_{t \in A} \varphi(t)(\lambda(t)f(t)) \\ &= |T((\lambda f)_{[A]})| \leq \|T\| \|\varphi_{[A]}\| \\ &\leq \|\varphi\|^* \|\lambda f\| \leq \|\varphi\|^*. \end{aligned}$$

It follows that $\|\varphi_{[A]}\|^* = \|T_A\| \leq \|\varphi\|^*$ for all $A \in \mathcal{F}$. Accordingly, (N1) holds.

(N2). For any $t \in S$ and $y \in X^*$, we have by (N4) that

$$\begin{aligned} \|e(t; y)\|^* &= \sup \left\{ \left| \sum_{s \in S} e(t; y)(s)(f(s)) \right| : f \in \Lambda(S, X), \|f\| \leq 1 \right\} \\ &= \sup \{ |e(t; y)(t)(f(t))| : f \in \Lambda(S, X), \|f\| \leq 1 \} \\ &= \sup \{ |y(f(t))| : f \in \Lambda(S, X), \|f\| \leq 1 \} \\ &\leq \sup \{ \|y\| \|f(t)\| : f \in \Lambda(S, X), \|f\| \leq 1 \} \\ &\leq \|y\| (\sup \{ \|f\| : f \in \Lambda(S, X), \|f\| \leq 1 \}) \leq \|y\|. \end{aligned}$$

Thus (N2) holds.

(N3). Let $\varphi \in \Delta$ and $t \in S$. For any $x \in X$ with $\|x\| \leq 1$, we have by (N2) (of $\|\cdot\|$) that $\|e(t; x)\| \leq \|x\| \leq 1$. Thus

$$|\varphi(t)(x)| = |\varphi(t)(e(t; x)(t))| = \left| \sum_{s \in S} \varphi(s)(e(t; x)(s)) \right| \leq \|\varphi\|^*.$$

It follows that $\|\varphi(t)\| \leq \|\varphi\|^*$.

The properties (N4) and (N5) follow directly from the definition of $\|\cdot\|^*$.

(N7). Let $\varphi \in \Sigma(S, X^*)$, and let $\lambda : S \rightarrow \mathbb{C}$ with $\lambda(t) = 1$ for all $t \in S$. Suppose that $\|\varphi\|^* < \infty$. Then for any $f \in \Lambda(S, X)$ with $\|f\| \leq 1$, we have by the property (N7) of $\|\cdot\|$ that

$$\left| \sum_{t \in S} \lambda(t) \varphi(t)(f(t)) \right| = \left| \sum_{t \in S} \varphi(t)(\lambda(t)f(t)) \right| \leq \|\varphi\|^*.$$

It follows that $\|\lambda\varphi\|^* \leq \|\varphi\|^*$. \square

We call the X^* -valued function space $\Lambda(S, X^*, \|\cdot\|^*)$ the *Köthe dual* of $\Lambda(S, X, \|\cdot\|)$ and call $\|\cdot\|^*$ the *dual norm* of $\|\cdot\|$. The main goal of this section is to identify the dual $\Lambda_0(S, X, \|\cdot\|)^*$ of $\Lambda_0(S, X, \|\cdot\|)$ with the Köthe dual $\Lambda(S, X^*, \|\cdot\|^*)$ of $\Lambda(S, X, \|\cdot\|)$.

Let $\Psi \in \Lambda_0(S, X, \|\cdot\|)^*$. We then define, for each $t \in S$, the function $y_t : X \rightarrow \mathbb{C}$ by $y_t(x) = \Psi(e(t; x))$ for all $x \in X$. Clearly, $\|y_t\| \leq \|\Psi\|$ for all $t \in S$ and hence $y_t \in X^*$. Let $\varphi^{(\Psi)} : S \rightarrow X^*$ be defined by $t \mapsto y_t$.

Theorem 2.2. $\Lambda_0(S, X, \|\cdot\|)^*$ is isometrically isomorphic to $\Lambda(S, X^*, \|\cdot\|^*)$ by the isomorphism $\Psi \mapsto \varphi^{(\Psi)}$.

Proof. We will show first that $\varphi^{(\Psi)} \in \Lambda(S, X^*)$. To see this, let $f \in \Lambda(S, X)$, and let $\lambda : S \rightarrow \mathbb{C}$ be defined by $\lambda(t) = \text{dir}(\Psi(e(t; f(t))))$ for all $t \in S$. Then for each $A \in \mathcal{F}$,

$$\begin{aligned} \sum_{t \in A} |\varphi^{(\Psi)}(t)(f(t))| &= \sum_{t \in A} |y_t(f(t))| = \sum_{t \in A} |\Psi(e(t; f(t)))| \\ &= \sum_{t \in A} \lambda(t) \Psi(e(t; f(t))) = \sum_{t \in A} \Psi(\lambda(t)e(t; f(t))) \\ &= \sum_{t \in A} \Psi(e(t; \lambda(t)f(t))) = \Psi \left(\sum_{t \in A} e(t; \lambda(t)f(t)) \right) \\ &= \Psi((\lambda f)_{[A]}) \leq \|\Psi\| \|\varphi^{(\Psi)}\|_{[A]} \leq \|\Psi\|. \end{aligned}$$

Consequently, $\varphi^{(\Psi)} \in \Lambda(S, X^*)$ and $\|\varphi^{(\Psi)}\|^* \leq \|\Psi\|$. Next, we will show that $\|\Psi\| \leq \|\varphi^{(\Psi)}\|^*$. Let $f \in \Lambda_0(S, X)$ with $\|f\| \leq 1$, and let $\lambda : S \rightarrow \mathbb{C}$ be the function defined above. Then for each $A \in \mathcal{F}$,

$$|\Psi(f_{[A]})| = \left| \Psi \left(\sum_{t \in A} e(t; f(t)) \right) \right| \leq \sum_{t \in A} |\Psi(e(t; f(t)))|$$

$$\begin{aligned}
&= \sum_{t \in A} \lambda(t) y_t(f(t)) = \sum_{t \in A} y_t(\lambda(t) f(t)) \\
&= \sum_{t \in A} \varphi^{(\Psi)}(t)(\lambda(t) f(t)) \leq \|\varphi^{(\Psi)}\|^*.
\end{aligned}$$

Thus, by the continuity of Ψ , $|\Psi(f)| \leq \|\varphi^{(\Psi)}\|^*$ for all $f \in \Lambda_0(S, X)$ with $\|f\| \leq 1$. Hence $\|\Psi\| = \|\varphi^{(\Psi)}\|^*$. Finally, we will show that the function $\Psi \mapsto \varphi^{(\Psi)}$ is onto. Let $\varphi \in \Lambda(S, X^*)$. Then the linear functional $\Psi : \Lambda_0(S, X) \rightarrow \mathbb{C}$ defined by $\Psi(f) = \sum_{t \in S} \varphi(t)(f(t))$ for all $f \in \Lambda_0(S, X)$ is bounded and $\varphi^{(\Psi)} = \varphi$. \square

In the following theorem, the space $\Lambda(S, X^*)$ of functions will be considered as the space of bounded linear functionals Φ_φ on $\Lambda(S, X)$ defined for each $\varphi \in \Lambda(S, X^*)$ by $\Phi_\varphi(f) = \sum_{t \in S} \varphi(t)(f(t))$ for all $f \in \Lambda(S, X)$. It is clear that $\Lambda(S, X^*)$ is a closed subspace of $\Lambda(S, X)^*$.

Theorem 2.3. *If $\Lambda_0(S, X) \subsetneq \Lambda(S, X)$, then the annihilator $\Lambda_0(S, X)^\perp$ of $\Lambda_0(S, X)$ is a non-trivial closed subspace of $\Lambda(S, X)^*$, and $\Lambda(S, X)^* = \Lambda(S, X^*) \oplus \Lambda_0(S, X)^\perp$.*

Proof. Suppose that $\Lambda_0(S, X) \subsetneq \Lambda(S, X)$. Then by the Hahn-Banach extension theorem, we have $\Lambda_0(S, X)^\perp$ is a non-trivial closed subspace of $\Lambda(S, X)^*$. For any $\Psi \in \Lambda(S, X)^*$, let $\Omega_\Psi = \Psi - \Phi_{\varphi^{(\Psi)}}$. Then $\Omega_\Psi \in \Lambda_0(S, X)^\perp$, and hence $\Lambda(S, X)^* = \Lambda(S, X^*) + \Lambda_0(S, X)^\perp$. For any $\varphi \in \Lambda(S, X^*)$, if $\Phi_\varphi \in \Lambda_0(S, X)^\perp$, then $\Phi_\varphi(f) = \lim_{A \in \mathcal{F}} \Phi_\varphi(f_{[A]}) = 0$ for all $f \in \Lambda(S, X)$. Thus $\Lambda(S, X^*) \cap \Lambda_0(S, X)^\perp = \{0\}$. It follows that $\Lambda(S, X)^* = \Lambda(S, X^*) \oplus \Lambda_0(S, X)^\perp$. The proof is complete. \square

3. PREDUAL OF $\Lambda(S, X)$

The aim of this section is to complete the duality relation among the four spaces: $\Lambda_0(S, X)$, $\Lambda(S, X^*)$, $\Lambda_0(S, X^*)$, and $\Lambda(S, X)$. From the previous section, we have obtained Theorem 2.2 which shows the duality relation between the first two spaces $\Lambda_0(S, X)$ and $\Lambda(S, X^*)$. The rest is to investigate the preduality of the space $\Lambda(S, X)$. We expect to have $\Lambda_0(S, X^*)^* \cong \Lambda(S, X)$.

For any $f \in \Lambda(S, X)$, we define a function $\tilde{\Theta}_f : \Lambda(S, X^*) \rightarrow \mathbb{C}$ by $\tilde{\Theta}_f(\varphi) = \sum_{t \in S} \varphi(t)(f(t))$ for all $\varphi \in \Lambda(S, X^*)$ and let Θ_f be the restriction of $\tilde{\Theta}_f$ to $\Lambda_0(S, X^*)$. It is clear that $\|\Theta_f\| \leq \|\tilde{\Theta}_f\| \leq \|f\|$ for all $f \in \Lambda(S, X)$.

Proposition 3.1. *For any $f \in \Lambda(S, X)$, $\|\tilde{\Theta}_f\| = \|f\| = \|\Theta_f\|$.*

Proof. Let $f \in \Lambda(S, X)$, and let $\epsilon > 0$, and let $A \in \mathcal{F}$. Then we have by the Hahn-Banach extension theorem that there is $\Psi \in \Lambda(S, X)^*$ with $\|\Psi\| \leq 1$ such that $\|\|f\|_A\| < |\Psi(f_A)| + \epsilon$. By Theorem 2.3, we have $\Psi(f_A) = \Phi_{\varphi(\Psi)}(f_A)$. Thus by Theorem 2.2 and the property (N1) of $\|\cdot\|^*$, we have

$$\begin{aligned} \|\|f\|_A\| &< |\Psi(f_A)| + \epsilon = |\Phi_{\varphi(\Psi)}(f_A)| + \epsilon \\ &= |\tilde{\Theta}_{f_A}(\varphi(\Psi))| + \epsilon = |\tilde{\Theta}_f((\varphi(\Psi))_{[A]})| + \epsilon \\ &= |\Theta_f((\varphi(\Psi))_{[A]})| + \epsilon \leq \|\Theta_f\| \|\|(\varphi(\Psi))_{[A]}\|^*\| + \epsilon \\ &\leq \|\Theta_f\| \|\|\varphi(\Psi)\|^*\| + \epsilon = \|\Theta_f\| \|\Psi\| + \epsilon \\ &\leq \|\Theta_f\| + \epsilon. \end{aligned}$$

Since ϵ is arbitrary, $\|\|f\|_A\| \leq \|\Theta_f\|$ for all $A \in \mathcal{F}$. Thus, by (N1) of $\|\cdot\|$, we obtain $\|f\| \leq \|\Theta_f\|$. It follows that $\|\tilde{\Theta}_f\| = \|f\| = \|\Theta_f\|$ as asserted. \square

We now have the function $f \mapsto \Theta_f$ is an isometric isomorphism from $\Lambda(S, X)$ into $\Lambda_0(S, X^*)^*$. In the following theorem, we provide a necessary and sufficient condition for the function to be onto.

Theorem 3.2. *The isomorphism $f \mapsto \Theta_f$ from $\Lambda(S, X)$ into $\Lambda_0(S, X^*)^*$ is onto if and only if X is reflexive.*

Proof. Suppose that X is reflexive. We want to show that the isomorphism $f \mapsto \Theta_f$ is onto. To see this, let $\Psi \in \Lambda_0(S, X^*)^*$, and for each $t \in S$, let $\phi_t : X^* \rightarrow \mathbb{C}$ be defined by $\phi_t(y) = \Psi(e(t; y))$ for all $y \in X^*$. Then $\phi_t \in X^{**}$ for all $t \in S$. Thus, by the reflexivity of X , there exists, for each $t \in S$, an x_t in X such that $\phi_t(y) = y(x_t)$ for all $y \in X^*$. Let $f(t) = x_t$ for all $t \in S$. We will show that $f \in \Lambda(S, X)$ and $\Psi = \Theta_f$. For each $A \in \mathcal{F}$, we have for any $\varphi \in \Lambda(S, X^*)$ with $\|\varphi\|^* \leq 1$ by (N1) of $\|\cdot\|^*$ that

$$\begin{aligned} |\Theta_{f_A}(\varphi)| &= \left| \sum_{t \in A} \varphi(t)(f(t)) \right| = \left| \sum_{t \in A} \varphi(t)(x_t) \right| \\ &= \left| \sum_{t \in A} \phi_t(\varphi(t)) \right| = \left| \sum_{t \in A} \Psi(e(t; \varphi(t))) \right| \\ &= |\Psi(\varphi_{[A]})| \leq \|\Psi\|. \end{aligned}$$

It follows that $\|\|f\|_A\| = \|\Theta_{\varphi_{[A]}}\| \leq \|\Psi\|$ for all $A \in \mathcal{F}$. Consequently, by (N1) of $\|\cdot\|$, we have $\|f\| \leq \|\Psi\|$, and hence $f \in \Lambda(S, X)$. To see that $\Psi = \Theta_f$, let $\varphi \in \Lambda_0(S, X^*)$.

Then we have for each $A \in \mathcal{F}$ that

$$\begin{aligned}\Psi(\varphi_{[A]}) &= \Psi\left(\sum_{t \in A} e(t; \varphi(t))\right) = \sum_{t \in A} \Psi(e(t; \varphi(t))) \\ &= \sum_{t \in A} \phi_t(\varphi(t)) = \sum_{t \in A} \varphi(t)(f(t)) = \Theta_f(\varphi_{[A]}).\end{aligned}$$

Thus, by the continuity of both Ψ and Θ_f , we have $\Psi = \Theta_f$ as required. Conversely, suppose that the isomorphism $f \mapsto \Theta_f$ is onto. Let $\phi \in X^{**}$, and let $t_0 \in S$ be fixed. Then the linear functional Ψ on $\Lambda(S, X^*)$ defined by $\Psi(\varphi) = \phi(\varphi(t_0))$ for all $\varphi \in \Lambda(S, X^*)$ is bounded. Thus, by the assumption, there is an $f \in \Lambda(S, X)$ such that $\Theta_f = \Psi$. From this, we have $\phi(y) = \phi(e(t_0; y)(t_0)) = \Psi(e(t_0; y)) = \Theta_f(e(t_0; y)) = e(t_0; y)(t_0)(f(t_0)) = y(f(t_0))$ for all $y \in X^*$. Therefore, the reflexivity of X is obtained. \square

4. REFLEXIVITY

In this section, we establish a reflexivity theorem for our Banach-valued function spaces. We denote here the isomorphism $\Psi \mapsto \varphi^{(\Psi)}$ from $\Lambda_0(S, X)^*$ onto $\Lambda(S, X^*)$ by N , the isomorphism $f \mapsto \Theta_f$ from $\Lambda(S, X)$ into $\Lambda_0(S, X^*)^*$ by M . Let P be the isometric isomorphism from the space $\{\Theta_f : f \in \Lambda(S, X)\}$ into $\Lambda(S, X^*)^*$ defined by $\Theta_f \mapsto \widetilde{\Theta}_f$.

Lemma 4.1. $N^*PM(f) = Q(f)$ for all $f \in \Lambda_0(S, X)$, where N^* is the adjoint of N and $Q : \Lambda_0(S, X) \rightarrow \Lambda_0(S, X)^{**}$ is the natural map.

Proof. Let $f \in \Lambda_0(S, X)$. Then for every A in \mathcal{F} ,

$$N^*PM(f_{[A]}) = N^*(P(M(f_{[A]}))) = N^*(P(\Theta_{f_{[A]}})) = \widetilde{\Theta}_{f_{[A]}}N.$$

Let $\Psi \in \Lambda(S, X)^*$. Then we have for each A in \mathcal{F} that

$$\widetilde{\Theta}_{f_{[A]}}N(\Psi) = \widetilde{\Theta}_{f_{[A]}}(\varphi^{(\Psi)}) = \sum_{t \in A} \Psi(e(t; f(t))) = \Psi(f_{[A]}) = Q(f_{[A]})(\Psi).$$

It follows that $N^*PM(f_{[A]}) = Q(f_{[A]})$ for all A in \mathcal{F} . Therefore, $N^*PM(f) = Q(f)$. \square

An X -valued function space $\Lambda(S, X)$ is called a *GAK-space* (see [4]) if $\Lambda_0(S, X) = \Lambda(S, X)$.

Theorem 4.2. (Reflexivity theorem for Banach-valued function spaces) *Let $\Lambda(S, X)$ be an X -valued function space. Then the following are equivalent:*

- (1) $\Lambda(S, X)$ is reflexive;
- (2) $\Lambda_0(S, X)$ is reflexive;
- (3) X is reflexive, and both $\Lambda(S, X)$ and its Köthe dual $\Lambda(S, X^*)$ are GAK.

Proof. (1) \Rightarrow (2). Obvious.

(2) \Rightarrow (3). Suppose that (3) doesn't hold. If $\Lambda(S, X)$ is not GAK, then we have by Lemma 4.1 that $\Lambda(S, X)$ is not reflexive. Next, suppose that X is not reflexive or $\Lambda(S, X^*)$ is not GAK. We will show that each of these two conditions implies that

$$\left\{ \tilde{\Theta}_f : f \in \Lambda(S, X) \right\} \neq \Lambda(S, X^*)^*. \quad (*)$$

If X is not reflexive, then (*) holds by Theorem 3.2. Suppose that $\Lambda_0(S, X^*) \neq \Lambda(S, X^*)$. Then by the Hahn-Banach extension theorem, there exists $\psi \in \Lambda(S, X^*)^*$ such that $\|\psi\| \neq 0$ and $\Lambda_0(S, X^*) \subseteq \ker \psi$. If $\psi = \tilde{\Theta}_f$ for some $f \in \Lambda(S, X)$, then $\Theta_f = 0$. This implies that $\|\psi\| = 0$, which is a contradiction. Accordingly, (*) holds. Hence, by Lemma 4.1, $\Lambda_0(S, X)$ is not reflexive.

(3) \Rightarrow (1). It follows immediately from Theorem 3.2 and Lemma 4.1. The proof is finished \square

5. APPLICATIONS TO THE SEQUENCE SPACES $l_p(X)$ AND $l_p[X]$

In this section, we show that the well-known results on the duality and reflexivity of the sequence spaces $l_p(X)$ and $l_p[X]$ can be deduced from our reflexivity theorem.

It is clear that for any $1 \leq p \leq \infty$, $l_p(X)$ is the X -valued sequence space defined by $\|\cdot\|_p$ and it is GAK, except for the case where $p = \infty$. Thus, by the duality theorem, $l_p(X)^*$ is isometrically isomorphic to its the Köthe dual $\Lambda\left(\mathbb{N}, X^*, \|\cdot\|_p^*\right)$. It is well-known for each $1 \leq p < \infty$ that $\Lambda\left(\mathbb{N}, X^*, \|\cdot\|_p^*\right) = l_q(X^*)$, where $\frac{1}{p} + \frac{1}{q} = 1$. Thus $\Lambda\left(\mathbb{N}, X^*, \|\cdot\|_p^*\right)$ is GAK for all $1 < p < \infty$, whereas $\Lambda\left(\mathbb{N}, X^*, \|\cdot\|_1^*\right)$ is not GAK. It follows immediately from the reflexivity theorem that $l_1(X)$ and $l_\infty(X)$ are not reflexive, while for $1 < p < \infty$, l_p is reflexive if and only if X is reflexive.

It is also clear that $l_p[X]$ is the X -valued sequence space defined by $\|\cdot\|_p$, where $\|\cdot\|_p$ is given by

$$\|\{x_k\}_{k=1}^\infty\|_p = \sup_{f \in X^*, \|f\| \leq 1} \left(\sum_{k=1}^\infty |f(x_k)|^p \right)^{1/p}.$$

It was proved in [10] by C. X. Wu and Q. Y. Bu that the Köthe dual of $l_p[X]$ is GAK for all $1 < p < \infty$. Thus, by the reflexivity theorem, we have that the sequence space $l_p[X]$ for $1 < p < \infty$ is reflexive if and only if X is reflexive and $l_p[X]$ is GAK. This is exactly the same as that given in [1] by Q. Y. Bu.

Acknowledgement This research is supported by the Thailand Research Fund and the Commission on Higher Education under the grant MRG5180358.

REFERENCES

- [1] Q. Y. Bu, *Some properties of Banach-valued sequence spaces $l_p[X]$ ($1 \leq p < \infty$)*, Int. J. Math. Math. Sci., 27(5) (2000), 289-300.
- [2] B. Choudhary, S. K. Miskra, *On Köthe-Toeplitz duals of certain sequence spaces and their matrix transformations*, Indian J. pure appl. math., 24(5) (1993), 291-301.
- [3] M. Gupta, Q. Bu, *On Banach-valued GAK-sequence spaces $l_p[X]$* , J. Anal. 2 (1994), 103-113.
- [4] M. Gupta, P. K. Kamthan, J. Patterson, *Duals of generalized sequence spaces*, J. Math. Anal. Appl. 82 (1981), 152-168.
- [5] I. E. Leonard, *Banach sequence spaces*, J. Math. Anal. Appl. 54(1)(1976), 245-265.
- [6] I. J. Maddox, *Generalized Köthe-Toeplitz duals*, Int. J. Math. Math. Sci., 3(3) (1980), 423-423.
- [7] J. Rakbud, O. Wootijiruttikal, P. Chaisuriya, *Spaces of sequences over function algebras*, J. of Anal. and Appl., 5(3) (2007), 185-199.
- [8] S. Suantai, W. Sanhan, *On β -duals of vector-valued sequences spaces of Maddox*, Int. J. Math. Math. Sci., 30(7) (2002), 383-392.
- [9] O. Wootijiruttikal, S.-C. Ong, P. Chaisuriya, J. Rakbud, *Banach spaces of functions taking values in a C^* -algebra*, Operators and Matrices, 3(3) (2009), 373-396.
- [10] C. X. Wu, Q. Y. Bu, *Köthe dual of Banach sequence spaces $l_p[X]$ ($1 \leq p < \infty$) and Grothendieck space*, Comment. Math. Univ. Carolinae 34(2) (1993), 265-273.
- [11] C. X. Wu, Q. Y. Bu, *The vector-valued sequence spaces $l_p(X)$ ($1 \leq p < \infty$) and Banach spaces not containing a copy of c_0* , A Friendly Collection of Mathematical Papers I, Jilin Univ. Press, Chanchun, China, 1990, 9-16.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, SILPAKORN UNIVERSITY, NAKORN PATHOM, 73000, THAILAND

E-mail address: jitti@su.ac.th

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, CHIANGMAI UNIVERSITY, CHIANG-MAI, 50200, THAILAND

E-mail address: suthep@math.science.cmu.ac.th