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บทที่ 1 
บทนํา 

 
1. 1  บทนํา 
  เปนที่ทราบกนัดีวา สําหรับ 1 p≤ < ∞ , pl

∗  สมสัณฐานอยางสมมาตรกับ เม่ือ ql
1 1 1
p q
+ =  และ  0c∗  สมสัณฐานอยางสมมาตรกับ  l∞  ผลที่เกี่ยวกับภาวะคูกัน (duality) และ

ภาวะคูกันกอน  (preduality)  สําหรับปริภูมิ   สําหรับ  1pl p≤ ≤ ∞  นี้ไดถูกวางนัยทั่วไปโดย
นักคณิตศาสตรหลาย ๆ  ทาน ซึ่งสวนใหญจะศึกษาภาวะคู  หรือ  ปริภูมิคูกันโคธี ( Ko  
dual)  ของปริภูมิลําดับเฉพาะเจาะจงที่เปนการวางนัยทั่วไปของปริภูมิ   เชน ปริภูมิ   

the

pl

                        { } 1
1

( ) : p
p k kk

k

l X x X x
∞

∞

=
=

⎧ ⎫= ⊂ <⎨ ⎬
⎩ ⎭

∑ ∞  

และ 

                       { } 1
1

( ) : ( ) p
p k kk

k

l X x X f x f X
∞

∞ ∗
=

=

⎧ ⎫= ⊂ < ∞ ∀ ∈⎨ ⎬
⎩ ⎭

∑  

ซึ่งนิยามบนปริภูมิบานาค X  (ดู [1], [2], [3], [4], [5], [6], [7], [8], [10], [11] สําหรับ
เอกสารอางอิง) 
 

ในงานวิจัยนี ้  เราจะใหแนวทางที่สมเหตุสมผลบางประการในการศึกษาผลทางภาวะคู
กัน และภาวะคูกันกอน ของปริภูมิ  สําหรับ pl 1 p≤ ≤ ∞  ที่เกาแกนี้โดยทั่วไป  อันเกิดจาก
ขอสังเกตเกี่ยวกับผลดังกลาวดังตอไปน้ี 
 
ขอสังเกต  ภาวะคูกัน และภาวะคูกันกอนของปริภูมิ  สําหรับ  1pl p≤ ≤ ∞  สามารถถูกมอง
ในรูปความ สมัพันธเชิงภาวะคูกันของปริภูมลําดับสี่ปริภูมิ ( ), , , pA B C l  ในลักษณะที่  สม

สัณฐานอยางสมมาตรกับ  

A∗

B   และ  C∗  สมสัณฐานอยางสมมาตรกับ    โดยที่  pl A  และ  
เปนโคลเชอรของเซตของลาํดับของจํานวนเชิงซอนที่เทอมที่ไมเปนศูนยเปนจํานวนจํากัด ใน  
และใน  

C

pl

B  ตามลําดับ  สําหรับกรณีที่  1 p< < ∞  เราไดวา  pA l=  และ  qB C l= =  เม่ือ  
1 1 1
p q
+ =   สําหรับ   เราไดวา  p = ∞ 0A c=  และ  1B C l= =   ซึ่งทั้งสองกรณีนี้  เราไดการ

เคลื่อนที่ไปขางหนาของภาวะคูกันของปริภูมลําดับสามปริภูมิ ( ), , pA B l  ในลกัษณะที่   สม

สัณฐานอยางสมมาตรกับ  

A∗

B  และ B∗  สมสัณฐานอยางสมมาตรกับ    และสําหรับ   
เราไดวา  ,  

pl 1p =

1A l= B l∞=  และ  0C c=
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1.2 ที่มาและความสําคัญของปญหา 
ปริภูมิลําดับคาบานาค (Banch-valued sequence space) ไดถูกศึกษากันอยางแพรหลาย

โดยนักคณิตศาสตรหลาย ๆ ทาน งานวิจัยสวนหนึ่งเกีย่วกับปริภูมิคูกัน หรือปริภูมิคูกันโคธีของ
ปริภูมิลําดับคาบานาคเฉพาะเจาะจงบางปริภูมิ  ชน ปริภูมิ  และ   จากการศึกษา
งานวิจัยที่เกี่ยวของทําใหเราเห็นแนวทางทั่วไปแนวทางหนึ่งในการศึกษาปริภูมิคูกนัของปริภูมิ
ลําดับคาบานาค 

( )pl X [ ]pl X

 
1.3 วัตถุประสงค 

1. สรางทฤษฎบีทโดยทั่วไปบนภาวะคูกันสาํหรับคลาส ๆ หนึ่งของปริภูมิลําดับคาบานาค 
2. นําเสนอการประยุกตทฤษฎีบทภาวะคูกันในวตัถุประสงคขอ1 
3. ศึกษาการสะทอนกลับของปริภูมิลําดับคาบานาคที่ถูกศึกษาภาวะคูในวัตถุประสงคขอ1 

 
1.4 วิธีการวิจัย 

การวิจัยจะถูกแบงเปน  4  ขั้น  ดังนี้ 
ขั้นที่ 1   ศึกษาความรูพ้ืนฐานและงานวจัิยที่เกี่ยวของ 
ขั้นที่ 2   ดําเนินการวิจัยเพ่ือบรรลุวตัถุประสงคขอ1 
ขั้นที ่3   ดําเนินการวิจัยเพ่ือบรรลุวตัถุประสงคขอ2 
ขั้นที ่4   ดําเนินการวิจัยเพ่ือบรรลุวตัถุประสงคขอ3 
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บทที่  2 
ผลการวิจัย 

 
2.1  Class of Banach-valued  function  spaces  with some  certain  properties 

Let  be a non-empty set, let S X  be a  Banach space, and let  be the 
set of all functions from   into  For any  

( ,S X∑ )
S .X ( ),f S X∈∑  and  , let  A S⊆

[ ] :Af S X→  be defined by [ ] ( ) ( )Af x f x=  for all x A∈  and   otherwise.  
For any  t  and 

[ ] ( ) 0Af x =

S∈ x X∈ , let  be defined by  and  
 otherwise. For any 

( ; ) :e t x S X→ ( ; )( )e t x t x=

( ; )( ) 0e t x s = ( , )f S X∈∑  and any finite subset A  of  ,  we 
have  

S

[ ] ( ; ( ))A
t A

f e t f t
∈

=∑ .  Let   be  the  family  of  all  finite  subsets of  . Then 

 is  directed by the order   defined  by  

F S

F A B  if  and  only  if  B A⊆ .  Next, 
suppose that : ( , ) [0, ]S X⋅ ∑ → ∞   satisfies  the  following  properties: 

   (N1)  For  any  ( , )f S X∈∑ ,  { }[ ]sup :Af f A F= ∈ ; 

   (N2)  There  is  a positive  real  number  M  such  that  for  any  t S∈  and  x X∈ ,   
           ( ; )e t x M x≤ ; 

   (N3)  There  is  a positive  real  number  K  such  that  for  any  ( , )f S X∈∑  and     
           t S , ∈ ( )f t K f≤ ; 

   (N4)  f g f g+ ≤ +   for  all  , ( , )f g S X∈∑ ; 

   (N5)  f fα α=   for all ( , )f S X∈∑  and  α ∈ ,  under  the  convention  that   

           0 0 . ⋅∞ =

 
From  (N3),  the  following  properties  is  obtained: 
   (N6)  If  0f = ,  then  . 0f =

Let     
            ( ) { }, , ( , ) :S X f S X fΛ ⋅ = ∈∑ < ∞ ; 

and  

            ( ) ( ) { }{ }0 [ ], , , , : the net converges to 0A
A F

S X f S X f f
∈

Λ ⋅ = ∈Λ ⋅ − . 

It is obvious  that  [ ]Af  belongs to ( )0 , ,S XΛ ⋅   for  all  ( , )f S X∈∑   and  A F∈ .  

From  the  properties  (N4)-(N6),  we  have  the  function  ⋅  is  indeed  a  norm  on  

( , ,S XΛ )⋅ . From  now on, we  will  assume  for convenience that the constants M  

and  K  appearing on  (N2)  and  (N3)  are  equal  to  1. 
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Theorem  2.1.1.  Both ( ), ,S XΛ ⋅  and ( )0 , ,S XΛ ⋅   equipped  with the norm  ⋅  

are Banach  spaces. 
Proof  Let  { } 1n n

f ∞

=
 be  a  Cauchy sequence  in  ( ), ,S XΛ ⋅ . Then  by  (N3), we 

have for each t  that S∈ ( ) ( )n m n mf t f t f f− ≤ −  for all  .  This  implies that 

 is   a  Cauchy sequence  in 

,n m

{ } 1
( )n n

f t ∞

=
X  for  all  t S∈ . Thus, by the completeness  of  

X ,  there  is,  for  each  , an element  t S∈ ( )f t X∈  such that ( ) ( )nf t f→ t .  Let  
:f S X→  be defined  by  .  We will  show that  ( )t f t ( ), ,f S X∈Λ ⋅  and  

nf f→ .  For  each  A F∈ , we  have   

( ) ( ) ( )( )[ ][ ] [ ] [ ]; (n A n nA A
t A

)Af f f f e t f f t
∈

− = − = −∑  

                                         ( )( )[ ]; (n A
t A

e t f f t
∈

≤ −∑ )  

                                         ( ) ( ) 0n
t A

f t f t
∈

= − →∑  as  n . →∞

Then  ( ) [ ][ ]n AAf f→   as    for  all  n →∞ A F∈ .    Let  0ε > . Then  there is a 

positive integer   such  that,   N

2n mf f ε
− <   for  all  . ,n m N≥

 Thus,  by  (N1),    we have  for  each  A F∈  that  

( )[ ] 2n m n mAf f f f ε
− ≤ − <   for  all  . ,n m N≥

Hence,  by taking the limit as  ,  we have  for  each m→∞ A F∈  that   

( )[ ] 2n Af f ε
− ≤   for  all  . n N≥

Thus,  by  (N1) again,  we obtain   
                         nf f ε− <   for  all  . n N≥

This  implies that  ( , )f S X∈∑  and  nf f→ . 

To  see that  (0 , ,S XΛ )⋅  is  a  Banach  space, suppose that  { }  is a sequence  

in  
1n nf ∞
=

(0 , ,S XΛ )⋅  converging to  an element  f   in ( ), ,S XΛ ⋅  .  Let  0ε > .  Then  

there is  a  positive integer   such that  N
3Nf f ε

− < .  Since  Nf  belongs to  

(0 , ,S XΛ )⋅ ,  there  is  an  0A F∈  such that  ( )[ ] 3N NAf f ε
− <  for all  .  

Consequently, we  have by (N1)  that  

0A A

( ) ( )[ ] [ ][ ] [ ]A N N N NA A Af f f f f f f f− ≤ − + − + −  
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                                  ( ) ( )[ ] [ ]N N N NA Af f f f f f= − + − + −  

                                  ( )[ ]N N N NAf f f f f≤ − + − + − f  

                                  
3 3 3
ε ε ε ε< + + =   for all  .   0A A

It  follows that    (0 , ,f S X )∈Λ ⋅ .                                                               

  
The  Banach space  ( , ,S XΛ )⋅   was first considered in [9] by O. Wootijirutikal ,  S.-

C. Ong,  P. Chaisuruya, and  J.  Rakbud. 
 
If  the function  ⋅   has the following additional  property :   

    (N7)  for  any  function  : Sλ →   with  ( ) 1tλ =   for  all  t S∈ ,   f fλ λ≤  

           for  all ( , )f S X∈∑ , where  :f S Xλ →  defined  by  ( ) ( ) ( )f t t f tλ λ=  for all   
           t S , ∈

we  call the Banach space ( , ,S XΛ ⋅ )  the X -valued  function space defined  by ⋅  , 

or  simply,  an X -valued  function space .  For  convenience,  we  may sometimes 
denote  the function space ( , ,S XΛ )⋅  by just  ( ),S XΛ . When   is the set   of  

all positive integers, we call  

S

( ), ,XΛ ⋅   specifically  the X -valued  sequence space 

defined  by ⋅  , or  simply,  an X -valued  sequence space .   

                     
2.2 Dual  of  ( )0 , ,S XΛ ⋅    

Let  ( , ,S XΛ )⋅  be  an  X -valued  function space.  For  any  ,   

we define   
( ),S X ∗∈∑ϕ

      ( )sup ( )( ( )) : , , , 1
t S

t f t f S X fϕ ϕ
∗

∈

⎧ ⎫⎪ ⎪= ∈Λ ⋅⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ≤  

If  the  supremum  is finite, and ϕ
∗
= ∞  otherwise.  For  any  z∈ ,  let   

dir( ) zz
z

=    if   and  0z ≠ dir(z) 1=  if  0z = . 

 
Theorem  2.2.1.  The set   

( ) ( ), : ( )( ( )) , ,
t S

S X t f t converges for all f S Xϕ ϕ∗

∈

⎧ ⎫
Δ = ∈∑ ∈Λ ⋅⎨ ⎬

⎩ ⎭
∑  

is the X ∗ -valued  function space defined  by ∗
⋅ , or symbolically, ( ), ,S X ∗∗Δ = Λ ⋅ .   
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Proof   We  must  show  first  that  for  any  ( ),S X ∗∈∑ϕ ,  ∗
< ∞ϕ  if  and  only  if  

∈Δϕ .  Suppose  that ∈Δϕ . Then  the  linear functional   on  T ( , )S XΛ  defined by 
 for  all  ( ) ( )( ( ))

t S
T f t f t

∈

=∑ϕ ( , )f S X∈Λ  is  well  defined.  For each A F∈ ,  we  

have  by (N3)  that  the  linear  functional AT  on ( , )S XΛ  defined  by  
 for  all  ( ) ( )( ( ))A

t A
T f t f t

∈

=∑ϕ ( , )f S X∈Λ  is  bounded.  For  each  ( , )f S X∈Λ , we 

have  ( ) ( )( ( ))A
t A

T f t f t
∈

≤∑ ϕ   for  all  A F∈ .  It  follows by the uniform boundedness  

principle  that  { }sup :AT A F∈ < ∞ .  Since  ,  we  obtain   ( ) ( )AT f T f→

( ) { }sup ( )( ( )) : , , , 1 sup :A
t S

t f t f S X f T T A F
∈

⎧ ⎫⎪ ⎪∈Λ ⋅ ≤ = ≤ ∈ < ∞⎨ ⎬
⎪ ⎪⎩ ⎭
∑ϕ . 

Conversely, suppose that ∗
< ∞ϕ .Then ( )( ( ))

t S
t f t

∈
∑ϕ  converges  for all  

( , )f S X∈Λ . Let  ( , )f S X∈Λ  with 1f ≤ ,  and  let : S →λ   be  defined  by  

( ) dir( ( )( ( )))t t f= tλ ϕ  for all  .  Then  t S∈ ( ) 1t =λ   for  all  t .  Thus, by  (N7), we 
have  1f f≤ ≤λ , and  hence 

( )( ( )) dir( ( )( ( ))) ( )( ( ))
t S t S

t f t t f t t f t
∈ ∈

=∑ ∑ϕ ϕ ϕ  

                                          ( )(dir( ( )( ( ))) ( ))
t S

t t f t f t
∈

=∑ϕ ϕ  

                                          = ( )( ( ) ( ))
t S

t t f t
∈
∑ϕ λ  

converges.  For  any  ( , )f S X∈Λ ,  we  have  1 1f
f

= . Thus 

1( )( ( )) ( ) ( )
t S t S

t f t f t f t
f∈ ∈

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ϕ ϕ  

Converges  for  ( , )f S X∈Λ . 

       The  rest  of  the  proof  is  to show  that  the function ∗
⋅  satisfies the properties  

(N1)-(N7). 
       (N1) Let  ∈Δϕ ,  and  let  T  and  AT  for each  A F∈  be  the  functions  

defined  in  the  preceding  paragraph.  It  is  clear that  [ ]A AT
∗

= ϕ  for all A F∈ ,  

and  therefore we have { } { }[ ]sup : sup :A AT T A F A
∗∗

= ≤ ∈ = ∈ϕ ϕ F . Let 

( , )f S X∈Λ   with 1f ≤ , and  let  λ  be  the  function  defined in the preceding  

paragraph. Then  by (N7),  1f f≤ ≤λ .  This yields  for  each  A F∈  that  



    
12 

 

( ) ( )( ( )) ( )( ( ))A
t A t A

T f t f t t f t
∈ ∈

= ≤∑ ∑ϕ ϕ  

      dir( ( )( ( ))) ( )( ( ))
t A

t f t t f t
∈

=∑ ϕ ϕ  

                                            = ( ) ( )( (
t A

t t f t
∈
∑λ ϕ )) = ( )( ( ) ( ))

t A
t t f t

∈
∑ϕ λ  

                                         ( )[ ] [ ]( ) ( )A AT f T f= ≤λ λ  

                                         .f
∗ ∗

≤ ≤ϕ λ ϕ  

It follows  that  [ ]A AT
∗ ∗
= ≤ϕ ϕ  for  all  A F∈ .  Consequently, (N1) holds. 

(N2)  For  any  t  and  S∈ y X ∗∈ , we have by (N4)  that   

( ; ) sup ( , )( )( ( )) : ( , ), 1
t S

e t y e t y s f s f S X f∗

∈

⎧ ⎫⎪ ⎪= ∈Λ⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ≤  

       { }sup ( , )( )( ( )) : ( , ), 1e t y t f t f S X f= ∈Λ ≤  

                               { }sup ( ( )) : ( , ), 1y f t f S X f= ∈Λ ≤  

    { }sup : ( , ), 1y f f S X f y= ∈Λ ≤ ≤ . 

Thus (N2) holds. 
 (N3)  Let  ϕ ∈Δ  and .  For  any  t S∈ x X∈  with  1x ≤ ,  we  have  by  
(N2)  (of ⋅ )  that  ( ; ) 1.e t x x≤ ≤   Thus   

( )( ) ( )( ( ; )( )) ( )( ( ; )( ))
s S

t x t e t x t s e t x sϕ ϕ ϕ ϕ
∗

∈

= = ∑ ≤ . 

It follows that ( )tϕ ϕ
∗

≤ , and  hence (N3) holds.  

  The  properties  (N4) and (N5)  follow directly from the  definition of  ϕ
∗ . 

 (N7)  Let  ,  and let  ( ,S Xϕ ∗∈∑ ) : Sλ →  with  ( ) 1tλ =   for all t .  

Suppose that  

S∈

ϕ
∗
< ∞ . Then for any ( , )f S X∈Λ  with  1f ≤ ,  we  have  by  the  

property  (N7)   of  ⋅   that   

( ) ( )( ( )) ( )( ( ) ( ))
t S t S

t t f t t t f tλ ϕ ϕ λ ϕ
∗

∈ ∈

= ≤∑ ∑ . 

Consequently,  λϕ ϕ
∗
≤

∗ .                                                                          

 

We call  the  X ∗ -valued  function  spaces  ( ), ,S X ∗∗Λ ⋅  defined  by  ∗
⋅  

the  Kothe dual  of  ( , ,S XΛ )⋅  and  call  ∗
⋅  the  dual  norm  of  ⋅ .  The  main  
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goal  of  this section is to identify the dual ( )0 , ,S X
∗

Λ ⋅   of  ( )0 , ,S XΛ ⋅  with  the  

  Kothe dual ( ), ,S X ∗∗Λ ⋅   of  ( ), ,S XΛ ⋅ . 

Let  (0 , ,S X
∗

Ψ∈Λ ⋅ ) .  We then  define, for each t S∈ ,  the function  

  by  :ty X → ( ) ( ( ; ))ty x e t x= Ψ   for  all  x X∈ .  Clearly,  ty ≤ Ψ   for  all  

, and hence  .  Let t S∈ ty X ∗∈ ( ) : S Xϕ Ψ ∗→   be defined  by  . tt y

 

Theorem  2.2.2.  (0 , ,S X
∗)Λ ⋅  is  isometrically  isomorphic to ( ), ,S X ∗∗Λ ⋅   by  the  

isomorphism  ( )ϕ ΨΨ . 
Proof   We will  show first that  ( )( ) ,S Xϕ Ψ ∗∈Λ . To see this, let  ( , )f S X∈Λ ,  and  

let  : S →λ  be defined by  ( ) dir( ( ( ; ( ))))t e t f t= Ψλ  for  all  t S∈ .  Then  we have 
for each  A F∈  that  

( ) ( )( ( )) ( ( )) ( ( ; ( )))t
t S t S t S

t f t y f t e t f tΨ

∈ ∈ ∈

= = Ψ∑ ∑ ∑ϕ  

                                               ( ) ( ( ; ( ))) ( ( ) ( ; ( )))
t S t S

t e t f t t e t f t
∈ ∈

= Ψ = Ψ∑ ∑λ λ  

                                         ( ( ; ( ) ( ))) ( ; ( ) ( ))
t S t A

e t t f t e t t f t
∈ ∈

⎛ ⎞
= Ψ = Ψ⎜ ⎟

⎝ ⎠
∑ ∑λ λ

                              ( )[ ] [ ]( ) ( )A Af f= Ψ ≤ Ψ ≤λ λ Ψ . 

This  yields  and  ( ) ( , )S XΨ ∈Λϕ ( ) ∗Ψ ≤ Ψϕ .  Next,  we  will  show  that  

( ) ∗Ψ ≥ Ψϕ .  To  get  this,  let  0 ( , )f S X∈Λ  and  let  : S →λ   be  defined  

above.  Then for each  A F∈ ,   

( )[ ] ( ; ( )) ( ( ; ( )))A
t A t A

f e t f t e t f t
∈ ∈

⎛ ⎞
Ψ = Ψ ≤ Ψ⎜ ⎟

⎝ ⎠
∑ ∑  

              ( ) ( ( ; ( ))) ( ( ) ( ))t
t A t A

t e t f t y t f t
∈ ∈

= Ψ =∑ ∑λ λ

     ( ) ( )( )( ( ) ( ))
t A

t t f t
∗Ψ

∈

=∑ϕ λ ϕ Ψ≤ .  

Thus, by the continuity  of  ,  we  have  Ψ ( )( )f
∗ΨΨ ≤ ϕ  for all  0 ( , )f S X∈Λ  with  

1f ≤ .  Hence  ( ) ∗Ψ ≥ Ψϕ ,  and  so  ( ) ∗Ψ = Ψϕ .  Finally,  we  will show  

that  the  linear  map  ( )ϕ ΨΨ  is  onto.  Let  ( ),S X ∗∈Λϕ .  Then  the  linear  

functional 0: ( , )S XΨ Λ →   defined  by  ( ) ( )( ( ))
t S

f t f t
∈

Ψ =∑ϕ  for all  0 ( , )f S X∈Λ  
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is  bounded  and  ( )Ψ =ϕ ϕ .  Therefore,  we  have  the  linear  map  ( )ϕ ΨΨ  is  
onto  as  required.  The  proof  is  complete.                                                       
 

In  the  following  theorem, the space  ( ),S X ∗Λ   will  be  regarded   as  the  

space of all bounded  linear  functional  Φϕ  on  ( , )S XΛ  defined for each  

  by  ( ,S X ∗∈Λϕ ) ( ) ( )( ( ))
t S

f t f t
∈

Φ =∑ϕ ϕ  for all  ( , )f S X∈Λ .  It  is  clear that  

  is  a  closed  subspace  of  ( ,S X ∗Λ ) ( , )S X ∗Λ .   

 
Theorem 2.2.3. If 0 ( , ) ( , )S X S XΛ ≠ Λ , then  the  annihilator  of    
is  a  nontrivial  closed  subspace of  

0 ( , )S X ⊥Λ 0 ( , )S XΛ

( , )S X ∗Λ  and   

( ) 0( , ) , ( , )S X S X S X∗ ∗ ⊥Λ = Λ ⊕Λ  

Proof  Suppose  that  .  Then  by  the  Hahn-Banach  extension  
theorem, we  have  is a nontrivial closed  subspace of  .  For any  

, let  

0 ( , ) ( , )S X S XΛ ≠ Λ

0 ( , )S X ⊥Λ ( , )S X ∗Λ

( , )S X ∗Ψ∈Λ ( )ΨΨΩ = Ψ −Φ
ϕ

. Then 0 ( , )S X ⊥
ΨΩ ∈Λ , and  hence   

. For any 

( , )S X ∗Λ =

( ) 0, ( ,S X S X∗ ⊥Λ +Λ ) ( ),S X ∗∈Λϕ , if 0 ( , )S X ⊥Φ ∈Λϕ , then ( )fΦ =ϕ   

 for  all ( )[ ]lim 0A F Af∈ Φϕ = ( , )f S X∈Λ . It  follows  that  ( ) 0, ( ,S X S X∗ ⊥)Λ ∩Λ =   

{ }0 .  Consequently,  ( ) 0( , ) , ( , )S X S X S X∗ ∗Λ = Λ ⊕Λ ⊥ .                                      

 
2.3  Predual  of ( , )S XΛ   
 The  aim  of  this  section  is to  complete  the  duality  relation  among  the  

four function  spaces  ( ) ( ){ }0 0( , ), , , , , ( , )S X S X S X S X∗ ∗Λ Λ Λ Λ .  From  the 

previous section  we  have  done  the  the  duallty relation  between  the first two  
spaces   and  0 ( , )S XΛ ( ,S X )∗Λ .  The  rest  is  to  investigate  the the  duallty 

relation  between  ( )0 ,S X ∗Λ  and  ( , )S XΛ .  We  expect to  have    is 

isometrically  isomorphic to   .   
( )0 ,S X

∗∗Λ

( , )S XΛ

 For  any  ( , )f S X∈Λ ,  we  define  a  function ( ): ,f S X ∗Θ Λ →   by  

 for all  ( ) ( )( ( ))f
t S

t f t
∈

Θ =∑ϕ ϕ ( ),S X ∗∈Λϕ  and  let  fΘ  be  the restriction of fΘ  to   

( )0 ,S X ∗Λ .  It  is  clear that  f f fΘ ≤ Θ ≤   for  all  ( , )f S X∈Λ .   

 
Proposition  2.3.1.   For  any  ( , )f S X∈Λ ,  f ffΘ = = Θ .  
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Proof  Let ( , )f S X∈Λ ,   let   0>ε , and  let  A F∈ .  Then  we  have  by  the 
Hahn-Banach  extension  theorem  that there is ( , )S X ∗Ψ∈Λ  with  1Ψ ≤   such  

that  ( )[ ] [ ]A Af f≤ Ψ +ε .  By  Theorem 2.2.3,  we have  ( ) (( )[ ] [ ] )A Af fΨΨ = Φ
ϕ

.  

Thus, by Theorem 2.2.2 and  the  property  (N1)  of  ∗
⋅ ,  we  have   

                                ( ) ( )( )[ ] [ ] [ ]A A Af f fΨ≤ Ψ + = Φ +
ϕ

ε ε  

                                         ( ) ( )( )[ ]
( ) ( )

[ ]Af f A
Ψ Ψ= Θ + = Θ +ϕ ε ϕ ε  

                                         ( )( ) ( )( ) ( )
[ ] [ ]f fA A

∗
Ψ Ψ= Θ + ≤ Θ +ϕ ε ϕ ε  

                                         ( )
f f

∗Ψ≤ Θ + = Θ Ψ +ϕ ε ε  

                                         f≤ Θ +ε . 

Since  ε  was  given  arbitrarily,  we  obtain  [ ]A ff ≤ Θ   for  all  A F∈ .  Thus, by 

(N1) of  ⋅ ,  we  have  .ff ≤ Θ  It  follows  that  f ffΘ = = Θ .               

 
 We  now  have  the  function  ff Θ  is an isometric  isomorphism  from  

 into  ( , )S XΛ ( )0 ,S X
∗∗Λ .   In  the following  theorem,  we  provide  a  necessary 

and sufficient   condition  the function to  be  onto. 
 
Theorem  2.3.2.  The  isometric  isomorphism  ff Θ  from  from   into  

 is onto  if  and  only  if  

( , )S XΛ

(0 ,S X
∗∗Λ ) X  is  reflexive. 

Proof   Suppose  that  X  is  reflexive.  We  want  to  show  that  the  map  ff Θ   

is  onto.  To  see this, let  ( )0 ,S X
∗∗Ψ∈Λ ,  and  for  each  t S∈ ,  let  :t X ∗ →φ   

be  defined  by  ( ) ( ( ; ))t y e t y= Ψφ  for all  y X ∗∈ .  Then   for all  t .  
Thus,  by  the  reflexivity  of  

*
t X ∗∈φ S∈

X ,  there  exists, for each t S∈ ,  an  tx X∈   such  that  
( ) ( )t ty y x=φ   for  all  .  Let  y X ∗∈ :f S X→  be  defined  by  ( ) tf t x= .  We  will  

prove  that  ( , )f S X∈Λ  and  then  fΨ = Θ .  Let A F∈ . Then  we  have  for  any 

  with  ( ,S X ∗∈Λϕ ) 1
∗
≤ϕ   by  (N1)  of   ∗

⋅   that   

[ ]
( ) ( )( ( )) ( )( )

Af t
t A t A

t f t t x
∈ ∈

Θ = =∑ ∑ϕ ϕ ϕ  

                                            ( ( )) ( ( ; ( )))t
t A t A

t e t
∈ ∈

= = Ψ∑ ∑φ ϕ ϕ t  

                                            ( )[ ] [ ]A A
∗

= Ψ ≤ Ψ ≤ϕ ϕ Ψ . 
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It  follows  that  
[ ][ ] AAf = Θ ≤ Ψϕ   for  all  A F∈ .   Hence,  by  (N1)  of  ⋅ ,   

we  obtain  f ≤ Ψ ,  and  therefore  ( , )f S X∈Λ .  To  see  that  fΨ = Θ ,  let  

.  Then  we  have  for  each (0 ,S X ∗∈Λϕ ) A F∈  that 

                                  ( )[ ] ( ; ( )) ( ( ; ( )))A
t A t A

e t t e t t
∈ ∈

⎛ ⎞
Ψ = Ψ = Ψ⎜ ⎟

⎝ ⎠
∑ ∑ϕ ϕ ϕ

                                             ( )[ ]( ( )) ( )( ( ))t f
t A t A

t t f t
∈ ∈

= = = Θ A∑ ∑φ ϕ ϕ ϕ  . 

Thus,  by  the  continuity  of  both  Ψ  and  fΘ ,  we  have  fΨ = Θ  as  required.   
 Conversely,   suppose  that  the  map ff Θ  is  onto.  To  show  that X  is 
reflexive,  let  X ∗∗∈ϕ ,  and  let  0t S∈  be  fixed.  Then  the  linear  functional   on  

  defined  by  
Ψ

( ,S X ∗Λ ) 0( ) ( ( ))tΨ =ϕ φ ϕ   for  all  ( ),S X ∗∈Λϕ   is  bounded.  Thus,  

by  the  assumption,  there  is  an  ( , )f S X∈Λ  such  that  fΘ = Ψ .  From  this, we  
have  for any    that  y X ∗∈

     0 0 0 0 0 0 0 0( ) ( ( ; )( )) ( ( ; )) ( ( ; )) ( ; )( )( ( )) ( ( ))fy e t y t e t y e t y e t y t f t y f t= = Ψ = Θ = =φ φ . 
Therefore  X  is  reflexive.                                                                                                    
 
2.4 Reflexivity 
 In  this  section,  we  establish  a  reflexivity  theorem  for  our  Banach-valued  
function  spaces.  We  denote  here  the  isomorphism  ( )ΨΨ ϕ  from  

onto  0 ( , )S X ∗Λ ( ),S X ∗Λ   by  ,  the  isomorphism  N ff Θ  from  onto  

  by  

( , )S XΛ

(0 ,S X
∗∗Λ ) M .  Let   be the isometric  isomorphism  from  the  subspace  P

{ }: ( ,f )f S XΘ ∈Λ   of  (0 ,S X )∗∗Λ   into ( ),S X
∗∗Λ   defined  by f fΘ Θ .   

 
Lemma 2.4.1.    for  all  ( ) ( )N PM f Q f∗ = 0 ( , )f S X∈Λ ,  where   is  the  adjoint  
of   and  

N ∗

N 0 0: ( , ) ( , )Q S X S X ∗∗Λ →Λ  is  the  natural  map.  
Proof   Let  0 ( , )f S X∈Λ .  Then  for each A F∈ ,   

( ) ( )( )( ) ( )[ ] [ ][ ] [ ] A AA A fN PM f N P M f N P N∗ ∗ ∗= = Θ = fΘ . 

Next, let  , then  we have  for each   ( , )S X ∗Ψ∈Λ A F∈  that  

( ) ( ) ( )[ ] [ ]
( )

[ ] [ ]( ) ( ( ; ( ))) ( )
A Af f A A

t A
N e t f t fΨ

∈

Θ Ψ = Θ = Ψ = Ψ = Q f Ψ∑ϕ . 

Accordingly,  ( ) ([ ] [ ] )A AN PM f Q f∗ =  for each A F∈ .   It  follows by  the continuous  

of  the   maps   and    that .  The proof  is  finished.     N PM∗ Q ( ) ( )N PM f Q f∗ =
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An  X -valued  function  space  ( , )S XΛ  is  called  a  GAK-space  (see [4] for 
the original  definition) if   .  0 ( , ) ( , )S X S XΛ = Λ

 
Theorem  2.4.2.  (Reflexivity  theorem  for the Banach-valued  function  spaces)  Let  

 be  an  ( , )S XΛ X -valued  function  space.  Then  the following  are  equivalent: 
       (1)   is  reflexive; ( , )S XΛ

       (2)   is  reflexive;   0 ( , )S XΛ

       (3)  X  is reflexive  and  both  ( , )S XΛ  and  its  dual  are  GAK.  Kothe

Proof   Obvious (1) (2).⇒

           Suppose  that  (3)  holds.  If  (2) (3).⇒ ( , )S XΛ   is   not  GAK, then we  
have  by  Lemma  2.4.1  that    is   not  reflexive. Next,  suppose that  ( , )S XΛ X   is   
not  reflexive  or   is  not  GAK.  We will  prove that  each  of  these two  

conditions  implies  that   
( ,S X ∗Λ )

                             { } ( ): ( , ) ,f f S X S X
∗∗Θ ∈Λ ≠ Λ                                         (*) 

If  X   is   not  reflexive ,  then  (*)  holds  by  Theorem  2.3.2.  Suppose  that  
.  Then  by  the  Hahn-Banach  extension  theorem,  there 

exists  

( ) (0 , ,S X S X∗Λ ≠ Λ )∗

)( ,S X
∗∗∈Λψ  such  that  0≠ψ   and  ( )0 , kerS X ∗Λ ⊆ ψ .  If  f= Θψ  for  

some  ( , )f S X∈Λ ,  then  .   This  yields  0fΘ = 0f f= Θ = Θ =ψ ,   which  is  

a  contradiction.   Thus  (*)  holds.  Since  (*)  holds,  it  follows  immediately  from  
Lemma 2.4.1  that   is not  reflexive.   0 ( , )S XΛ

   It  follows directly  from  Theorem 2.3.2 and  Lemma  2.4.1.            (3) (1).⇒

 
2.5 Applications  to  the  sequence  spaces    and   ( )pl X [ ]pl X

In  this  section,  we  show that the well-known  results on  duality  and  reflexivity  
of  the sequence  spaces    and    can  easily be deduced  from our  
theorems.   

( )pl X [ ]pl X

It  is  clear that  for  each  1 p≤ ≤ ∞ ,  the  sequence  spaces  is the  ( )pl X X -
valued  sequence space  defined  by  p⋅  and  it  is  GAK, except  for the case where 

p = ∞ .  Thus,  by  the  duality  theorem,  ( )pl X ∗  is  isometrically  isomorphic  to  its  

  Kothe dual ( , , )pX ∗∗Λ ⋅ .  It  can  be  shown  by  the unifiom  boundedness  

principle  that  for  1 ,  p≤ < ∞ ( ), , (qp )X l X∗∗Λ ⋅ = , where  1 1 1
p q
+ = .  Thus  
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( , , )pX ∗∗Λ ⋅  is GAK  for  all  1 p< < ∞ ,  whereas  ( )1, ,X ∗∗Λ ⋅   is  not  GAK.  

Therefore,  by  the  reflexivity  theorem,   and   are  not  reflexive, while  
for  1 ,   is  reflexive  if  and  only  if  

1( )l X ( )l X∞

p< < ∞ ( )pl X X  is  reflexive. 
It  is  also clear that   is the  [ ]pl X X -valued  sequence space  defined  by  

p
⋅ ,  where  

p
⋅    is  given by  

                { }
1/

1
1

sup ( ) : , 1
p

p
k kk p k

x f x f X
∞

∞ ∗
=

=

f
⎧ ⎫⎛ ⎞⎪ ⎪= ∈ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
∑ . 

It  was  proved in [10]  by C. K. Wu  and  Q. Y. Bu  that  the Kothe  of   is  
GAK  for  all  1 .  Thus,  by  the  reflexivity  theorem,  we have that  the 
sequence space    is  reflexive  if  and  only  if  

dual [ ]pl X

p< < ∞

[ ]pl X X  is  reflexive  and    is  
GAK.  This is exactly  the  same as that given  in  [1]  by  Q. Y. Bu. 

[ ]pl X
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บทที่  3 
บทสรุปและวิจารณผลการวิจัย 

 
จากการวิจัยนี้ ผูวิจัยไดสรางทฤษฎบีทภาวะคูกันและทฤษฎีบทการสะทอนกลับสําหรับ

คลาส ๆ หนึ่งของปริภูมิฟงกชันคาบานาค ทฤษฎีบทดังกลาวเปนการวางนัยทั่วไปของผลที่เกา 
แกที่เกี่ยวกบัภาวะคูกันและการสะทอนกลับของปริภูมิ pl  ในมุมมองตามขอสังเกตที่ถูกกลาวถึง
ในบทนํา ผูวิจัยคาดหวังวาทฤษฎบีทภาวะคูกันและทฤษฎีบทการสะทอนกลับทีถู่กสรางขึ้นมา
ในงานวิจัยนี้ จะเปนเครื่องมือหนึ่งในการศึกษาภาวะคูกันและการสะทอนกลับของปริภูมิฟงกชัน  
คาบานาคเฉพาะเจาะจงที่อาจจะถูกนิยามขึ้นมาใหมในอนาคต หรือแมแตปริภูมิฟงกชันคาบา
นาคที่มีอยูแลวในปจจุบัน 
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DUALITY THEOREM FOR BANACH-VALUED FUNCTION SPACES

JITTI RAKBUD AND SUTEP SUANTAI

Abstract. In this paper, we provide some general theorems on duality and reflexivity

for a class of Banach-valued functions spaces. We also show that the known results on

the duality and reflexivity of the classical sequence space lp(X) as well as the sequence

space lp[X] can be obtained from our results.

1. Introduction and preliminaries

It is well known that c∗0 ∼= l1 and l∗p ∼= lq for 1 ≤ p < ∞ with 1
p

+ 1
q

= 1. General

studies of these classical results on the duality and preduality of the classical Banach

sequence spaces lp have been contributed by many people (see [1] [2] [3] [4] [5] [6] [7] [8]

[11] [10] for references). Most of them deal with the Köthe dual of a fixed Banach-valued

sequence space which is a generalization of the sequence space lp. Well-known ones are

the following spaces:

lp(X) =

{
{xk}∞k=1 ⊂ X :

∞∑

k=1

‖xk‖p < ∞
}

;

and

lp[X] =

{
{xk}∞k=1 ⊂ X :

∞∑

k=1

|f(xk)|p < ∞ ∀f ∈ X∗
}

,

which are defined over any Banach space X. In this paper, we provide a general study

of these classical results by a way analogous to the following observation.

Observation: The duality and preduality of the classical sequence spaces lp can be

viewed in the form of the duality relation among the four spaces {A,B,C, lp}, in the

sense that A∗ ∼= B and C∗ ∼= lp, where A and C are the closure of the set of scalar

sequences with finitely many non-zero terms, in lp and in B respectively. In the case

where 1 < p < ∞, A is equal to lp itself, and B = C = lq when 1
p

+ 1
q

= 1. For p = ∞,

we have A = c0, and B = C = l1. Thus, in these two cases, the duality progression of

the three spaces {A,B, lp}, in the sense that A∗ ∼= B and B∗ ∼= lp, holds. For p=1, we

have A = l1, B = l∞, and C = c0.

Let S be a non-empty set, let X be a Banach space, and let Σ(S, X) be the set of

all functions from S into X. For any f ∈ Σ(S, X) and A ⊆ S, let f[A] : S → X be defined

2000 Mathematics Subject Classification. Primary 46A20; Secondary 46A45.

Key words and phrases. Duality, Preduality, Reflexivity.
1



DUALITY THEOREM FOR BANACH-VALUED FUNCTION SPACES 2

by f[A] = f on A and f[A] = 0 otherwise. For any t ∈ S and x ∈ X, let e(t; x) : S → X

be defined by e(t; x)(t) = x and e(t; x)(s) = 0 otherwise. For any f ∈ Σ(S, X) and any

finite subset A of S, we have f[A] =
∑
t∈A

e(t; f(t)). Let F be the family of all finite subsets

of S. Then F is directed by the order º defined by A º B if and only if B ⊆ A. Next,

suppose that ‖|·|‖ : Σ(S, X) → [0,∞] satisfying the following properties.

(N1) For any f ∈ Σ(S, X), ‖|f |‖ = sup
A∈F

∥∥∣∣f[A]

∣∣∥∥.

(N2) There is a positive real number M such that for any t ∈ S and x ∈ X, ‖|e(t; x)|‖ ≤
M ‖x‖.

(N3) There is a positive real number K such that for any f ∈ Σ(S, X) and t ∈ S,

‖f(t)‖ ≤ K ‖|f |‖.
(N4) ‖|f + g|‖ ≤ ‖|f |‖+ ‖|g|‖ for all f, g ∈ Σ(S, X).

(N5) ‖|αf |‖ = |α| ‖|f |‖ for all f ∈ Σ(S, X) and α ∈ C, under the convention that

0 · ∞ = 0.

From (N3), the following property is obtained.

(N6) If ‖|f |‖ = 0, then f = 0.

Let

Λ(S, X, ‖|·|‖) = {f ∈ Σ(S, X) : ‖|f |‖ < ∞};
and

Λ0(S, X, ‖|·|‖) =
{

f ∈ Λ(S,X, ‖|·|‖) : the net
{∥∥∣∣f[A] − f

∣∣∥∥}
A∈F converges to 0

}
.

It is obvious that f[A] belongs to Λ0(S,X, ‖|·|‖) for all f ∈ Λ(S,X, ‖|·|‖) and A ∈ F . From

the properties N(4), N(5) and (N6), we have that the function ‖|·|‖ is indeed a norm on

Λ(S, X, ‖|·|‖). From now on, we will assume for convenience that the constants M and

K appearing in (N2) and (N3) are equal to 1.

Theorem 1.1. Both Λ(S, X, ‖|·|‖) and Λ0(S, X, ‖|·|‖) equipped the norm ‖|·|‖ are Banach

spaces.

Proof. Let {fn}∞n=1 be a Cauchy sequence in Λ(S, X, ‖|·|‖). Then by (N3), we have for

each t ∈ S that ‖fn(t)− fm(t)‖ ≤ ‖|fn − fm|‖ for all n,m. This implies that {fn(t)}∞n=1 is

a Cauchy sequence in the Banach space X for all t. Let, for each t ∈ S, f(t) = lim
n→∞

fn(t),

and let f : S → X be defined by t 7→ f(t). We will show that f ∈ Λ(S,X, ‖|·|‖) and

fn → f as n →∞. For each A ∈ F , we have

∥∥∣∣(fn)[A] − f[A]

∣∣∥∥ =
∥∥∣∣(fn − f)[A]

∣∣∥∥ =

∥∥∥∥∥

∣∣∣∣∣
∑
t∈A

e
(
t; (fn − f)[A](t)

)
∣∣∣∣∣

∥∥∥∥∥
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≤
∑
t∈A

∥∥∣∣e (
t; (fn − f)[A](t)

)∣∣∥∥

=
∑
t∈A

‖fn(t)− f(t)‖ → 0 as n →∞.

Thus (fn)[A] → f[A] as n →∞ for all A ∈ F . Let ε > 0. Then there is a positive integer

N such that for any A ∈ F
∥∥∣∣(fn)[A] − (fm)[A]

∣∣∥∥ ≤ ‖|fn − fm|‖ <
ε

2
for all n,m ≥ N.

Hence, by taking the limit as m →∞, we have for each A ∈ F that
∥∥∣∣(fn)[A] − (f)[A]

∣∣∥∥ ≤
ε
2

for all n ≥ N . Thus, by (N1), ‖|fn − f |‖ < ε for all n ≥ N . This implies that

f ∈ Λ(S,X) and fn → f as n →∞ as required.

To see that Λ0(S,X, ‖|·|‖) is a Banach space, suppose that {fn}∞n=1 is a sequence

of functions in Λ0(S, X, ‖|·|‖) converging to a function f in Λ(S, X, ‖|·|‖). Let ε > 0. Then

there is a positive integer N such that ‖|fN − f |‖ < ε
3
. Since fN ∈ Λ0(S, X, ‖|·|‖), there

is A0 ∈ F such that
∥∥∣∣(fN)[A] − fN

∣∣∥∥ < ε
3

for all A º A0. Consequently, by (N1), we

obtain that

∥∥∣∣f[A] − f
∣∣∥∥ ≤ ‖|fN − f |‖+

∥∥∣∣(fN)[A] − fN

∣∣∥∥ +
∥∥∣∣(fN)[A] − f[A]

∣∣∥∥

= ‖|fN − f |‖+
∥∥∣∣(fN)[A] − fN

∣∣∥∥ +
∥∥∣∣(fN − f)[A]

∣∣∥∥

≤ ‖|fN − f |‖+
∥∥∣∣(fN)[A] − fN

∣∣∥∥ + ‖|fN − f |‖

< ε
3

+ ε
3

+ ε
3

= ε for all A º A0.

It follows that f ∈ Λ0(S, X, ‖|·|‖). ¤

The Banach space Λ(S, X, ‖|·|‖) was first considered in [9] by O. Woottijirutikal,

S.-C. Ong, P. Chaisuriya, and J. Rakbud.

If the function ‖|·|‖ has the following additional property:

(N7) for any function λ : S → C with |λ(t)| = 1 for all t ∈ S and f ∈ Σ(S,X),

‖|λf |‖ ≤ ‖|f |‖, where λf(t) := λ(t)f(t) for all t ∈ S,

we call the Banach space Λ(S, X, ‖|·|‖) the X-valued function space defined by ‖|·|‖,
or simply, an X-valued function space. For convenience, we may sometimes denote

Λ(S, X, ‖|·|‖) by just Λ(S, X). When S is the set N of all positive integers, we call

Λ(N, X, ‖|·|‖) specifically the X-valued sequence space defined by ‖|·|‖, or shortly, an

X-valued sequence space.
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2. Dual of Λ0(S,X)

Let Λ(S, X, ‖|·|‖) be an X-valued function space. For any ϕ ∈ Σ(S,X∗), we define

‖|ϕ|‖∗ = sup

{∣∣∣∣∣
∑
t∈S

ϕ(t)(f(t))

∣∣∣∣∣ : f ∈ Λ(S, X, ‖|·|‖), ‖|f |‖ ≤ 1

}

if the supremum is finite, and ‖|ϕ|‖∗ = ∞ otherwise. For any z ∈ C, let dir(z) = z
|z| if

z 6= 0 and dir(z) = 1 if z = 0.

Theorem 2.1. The set

4 :=

{
ϕ ∈ Σ(S, X∗) :

∑
t∈S

|ϕ(t)(f(t))| converges for all f ∈ Λ(S, X, ‖|·|‖)
}

is the X∗-valued function space defined by ‖|·|‖∗, or symbolically, 4 = Λ(S, X∗, ‖|·|‖∗).

Proof. We must show first that ‖|ϕ|‖∗ < ∞ if and only if ϕ ∈ 4. Suppose that ϕ ∈ 4.

Then the linear functional T on Λ(S, X) defined by T (f) =
∑
t∈S

ϕ(t)(f(t)) for all f ∈

Λ(S, X) is well defined. For each A ∈ F , we have by (N3) that the linear functional TA

on Λ(S, X) defined by TA(f) =
∑
t∈A

ϕ(t)(f(t)) for all f ∈ Λ(S,X) is bounded. For each

f ∈ Λ(S,X), we have |TA(f)| ≤
∑
t∈S

|ϕ(t)(f(t))| for all A ∈ F . It follows by the uniform

boundedness principle that sup
A∈F

‖TA‖ < ∞. Since TA(f) → T (f), we obtain

sup

{∣∣∣∣∣
∑
t∈S

ϕ(t)(f(t))

∣∣∣∣∣ : f ∈ Λ(S, X), ‖|f |‖ ≤ 1

}
= ‖T‖ ≤ sup

A∈F
‖TA‖ < ∞.

Conversely, suppose that ‖|ϕ|‖∗ < ∞. Then
∑
t∈S

ϕ(t)(f(t)) converges for all f ∈ Λ(S,X).

Let f ∈ Λ(S, X) with ‖|f |‖ = 1, and let λ : S → C be defined by λ(t) = dir(ϕ(t)(f(t)))

for all t ∈ S. Then |λ(t)| = 1 for all t. Thus, by (N7), we have ‖|λf |‖ = ‖|f |‖ ≤ 1, and

hence ∑
t∈S

|ϕ(t)(f(t))| =
∑
t∈S

dir(ϕ(t)(f(t)))ϕ(t)(f(t))

=
∑
t∈S

ϕ(t)(dir(ϕ(t)(f(t)))f(t))

=
∑
t∈S

ϕ(t)(λ(t)f(t))

converges. For any f ∈ Λ(S, X), we have
∥∥∥
∣∣∣ 1
‖|f |‖f

∣∣∣
∥∥∥ = 1. Thus

∑
t∈S

|ϕ(t)(f(t))| = ‖|f |‖
∑
t∈S

∣∣∣∣ϕ(t)

(
1

‖|f |‖f(t)

)∣∣∣∣
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converges for all f ∈ Λ(S, X).

The rest of the proof is to show that ‖|·|‖∗ satisfies the properties (N1)-(N7).

(N1). Let ϕ ∈ 4, and let T and TA for each A ∈ F be the linear functionals

defined in the beginning of the preceding paragraph. It is clear that ‖TA‖ =
∥∥∣∣ϕ[A]

∣∣∥∥∗ for

all A ∈ F , and hence we have ‖|ϕ|‖∗ = ‖T‖ ≤ sup
A∈F

‖TA‖ = sup
A∈F

∥∥∣∣ϕ[A]

∣∣∥∥∗. Let f ∈ Λ(S,X)

with ‖|f |‖ ≤ 1, and let λ : S → C be the function defined by λ(t) = dir(ϕ(t)(f(t))) for

all t ∈ S. Then |λ(t)| = 1 for all t ∈ S and by (N7), ‖|λf |‖ ≤ ‖|f |‖ ≤ 1. This yields for

any A ∈ F that

|TA(f)| =

∣∣∣∣∣
∑
t∈A

ϕ(t)(f(t))

∣∣∣∣∣ ≤
∑
t∈A

|ϕ(t)(f(t))|

=
∑
t∈A

dir(ϕ(t)(f(t)))ϕ(t)(f(t))

=
∑
t∈A

λ(t)ϕ(t)(f(t)) =
∑
t∈A

ϕ(t)(λ(t)f(t))

= |T ((λf)[A])| ≤ ‖T‖
∥∥∣∣(λf)[A]

∣∣∥∥

≤ ‖|ϕ|‖∗ ‖|λf |‖ ≤ ‖|ϕ|‖∗ .

It follows that
∥∥∣∣ϕ[A]

∣∣∥∥∗ = ‖TA‖ ≤ ‖|ϕ|‖∗ for all A ∈ F . Accordingly, (N1) holds.

(N2). For any t ∈ S and y ∈ X∗, we have by (N4) that

‖|e(t; y)|‖∗ = sup

{∣∣∣∣∣
∑
s∈S

e(t; y)(s)(f(s))

∣∣∣∣∣ : f ∈ Λ(S,X), ‖|f |‖ ≤ 1

}

= sup{|e(t; y)(t)(f(t))| : f ∈ Λ(S, X), ‖|f |‖ ≤ 1}

= sup{|y(f(t))| : f ∈ Λ(S,X), ‖|f |‖ ≤ 1}

≤ sup{‖y‖ ‖f(t)‖ : f ∈ Λ(S, X), ‖|f |‖ ≤ 1}

≤ ‖y‖ (sup{‖|f |‖ : f ∈ Λ(S, X), ‖|f |‖ ≤ 1}) ≤ ‖y‖ .

Thus (N2) holds.

(N3). Let ϕ ∈ 4 and t ∈ S. For any x ∈ X with ‖x‖ ≤ 1, we have by (N2) (of

‖|·|‖) that ‖|e(t; x)|‖ ≤ ‖x‖ ≤ 1. Thus

|ϕ(t)(x)| = |ϕ(t)(e(t; x)(t))| =
∣∣∣∣∣
∑
s∈S

ϕ(s)(e(t; x)(s))

∣∣∣∣∣ ≤ ‖|ϕ|‖∗ .
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It follows that ‖ϕ(t)‖ ≤ ‖|ϕ|‖∗.
The properties (N4) and (N5) follow directly from the definition of ‖|·|‖∗.
(N7). Let ϕ ∈ Σ(S, X∗), and let λ : S → C with λ(t) = 1 for all t ∈ S. Suppose

that ‖|ϕ|‖∗ < ∞. Then for any f ∈ Λ(S,X) with ‖|f |‖ ≤ 1, we have by the property

(N7) of ‖|·|‖ that

∣∣∣∣∣
∑
t∈S

λ(t)ϕ(t)(f(t))

∣∣∣∣∣ =

∣∣∣∣∣
∑
t∈S

ϕ(t)(λ(t)f(t))

∣∣∣∣∣ ≤ ‖|ϕ|‖∗ .

It follows that ‖|λϕ|‖∗ ≤ ‖|ϕ|‖∗. ¤

We call the X∗-valued function space Λ(S, X∗, ‖|·|‖∗) the Köthe dual of Λ(S, X, ‖|·|‖)
and call ‖|·|‖∗ the dual norm of ‖|·|‖. The main goal of this section is to identify the dual

Λ0(S,X, ‖|·|‖)∗ of Λ0(S, X, ‖|·|‖) with the Köthe dual Λ(S, X∗, ‖|·|‖∗) of Λ(S, X, ‖|·|‖).
Let Ψ ∈ Λ0(S, X, ‖|·|‖)∗. We then define, for each t ∈ S, the function yt : X → C

by yt(x) = Ψ(e(t; x)) for all x ∈ X. Clearly, ‖yt‖ ≤ ‖Ψ‖ for all t ∈ S and hence yt ∈ X∗.

Let ϕ(Ψ) : S → X∗ be defined by t 7→ yt.

Theorem 2.2. Λ0(S, X, ‖|·|‖)∗ is isometrically isomorphic to Λ(S, X∗, ‖|·|‖∗) by the iso-

morphism Ψ 7→ ϕ(Ψ).

Proof. We will show first that ϕ(Ψ) ∈ Λ(S, X∗). To see this, let f ∈ Λ(S, X), and let

λ : S → C be defined by λ(t) = dir(Ψ(e(t; f(t)))) for all t ∈ S. Then for each A ∈ F ,

∑
t∈A

∣∣ϕ(Ψ)(t)(f(t))
∣∣ =

∑
t∈A

|yt(f(t))| =
∑
t∈A

|Ψ(e(t; f(t)))|

=
∑
t∈A

λ(t)Ψ(e(t; f(t))) =
∑
t∈A

Ψ(λ(t)e(t; f(t)))

=
∑
t∈A

Ψ(e(t; λ(t)f(t))) = Ψ

(∑
t∈A

e(t; λ(t)f(t))

)

= Ψ
(
(λf)[A]

) ≤ ‖Ψ‖
∥∥∣∣(λf)[A]

∣∣∥∥ ≤ ‖Ψ‖ .

Consequently, ϕ(Ψ) ∈ Λ(S,X∗) and
∥∥∣∣ϕ(Ψ)

∣∣∥∥∗ ≤ ‖Ψ‖. Next, we will show that ‖Ψ‖ ≤
∥∥∣∣ϕ(Ψ)

∣∣∥∥∗. Let f ∈ Λ0(S,X) with ‖|f |‖ ≤ 1, and let λ : S → C be the function defined

above. Then for each A ∈ F ,

∣∣Ψ (
f[A]

)∣∣ =

∣∣∣∣∣Ψ
(∑

t∈A

e (t; f(t))

)∣∣∣∣∣ ≤
∑
t∈A

|Ψ(e(t; f(t)))|
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=
∑
t∈A

λ(t)yt(f(t)) =
∑
t∈A

yt(λ(t)f(t))

=
∑
t∈A

ϕ(Ψ)(t)(λ(t)f(t)) ≤
∥∥∣∣ϕ(Ψ)

∣∣∥∥∗ .

Thus, by the continuity of Ψ, |Ψ(f)| ≤
∥∥∣∣ϕ(Ψ)

∣∣∥∥∗ for all f ∈ Λ0(S, X) with ‖|f |‖ ≤ 1.

Hence ‖Ψ‖ =
∥∥∣∣ϕ(Ψ)

∣∣∥∥∗. Finally, we will show that the function Ψ 7→ ϕ(Ψ) is onto.

Let ϕ ∈ Λ(S, X∗). Then the linear functional Ψ : Λ0(S,X) → C defined by Ψ(f) =∑
t∈S

ϕ(t)(f(t)) for all f ∈ Λ0(S, X) is bounded and ϕ(Ψ) = ϕ. ¤

In the following theorem, the space Λ(S, X∗) of functions will be considered as

the space of bounded linear functionals Φϕ on Λ(S, X) defined for each ϕ ∈ Λ(S, X∗) by

Φϕ(f) =
∑
t∈S

ϕ(t)(f(t)) for all f ∈ Λ(S, X). It is clear that Λ(S,X∗) is a closed subspace

of Λ(S, X)∗.

Theorem 2.3. If Λ0(S, X)  Λ(S,X), then the annihilator Λ0(S, X)⊥ of Λ0(S, X) is a

non-trivial closed subspace of Λ(S, X)∗, and Λ(S, X)∗ = Λ(S, X∗)⊕ Λ0(S, X)⊥.

Proof. Suppose that Λ0(S, X)  Λ(S, X). Then by the Hahn-Banach extension theorem,

we have Λ0(S, X)⊥ is a non-trivial closed subspace of Λ(S, X)∗. For any Ψ ∈ Λ(S,X)∗, let

ΩΨ = Ψ − Φϕ(Ψ) . Then ΩΨ ∈ Λ0(S, X)⊥, and hence Λ(S, X)∗ = Λ(S,X∗) + Λ0(S, X)⊥.

For any ϕ ∈ Λ(S, X∗), if Φϕ ∈ Λ0(S, X)⊥, then Φϕ(f) = lim
A∈F

Φϕ

(
f[A]

)
= 0 for all

f ∈ Λ(S,X). Thus Λ(S, X∗) ∩ Λ0(S, X)⊥ = {0}. It follows that Λ(S,X)∗ = Λ(S, X∗)⊕
Λ0(S,X)⊥. The proof is complete. ¤

3. Predual of Λ(S, X)

The aim of this section is to complete the duality relation among the four spaces:

Λ0(S,X), Λ(S, X∗), Λ0(S, X∗), and Λ(S,X). From the previous section, we have ob-

tained Theorem 2.2 which shows the duality relation between the first two spaces

Λ0(S,X) and Λ(S,X∗). The rest is to investigate the preduality of the space Λ(S,X).

We expect to have Λ0(S, X∗)∗ ∼= Λ(S, X).

For any f ∈ Λ(S,X), we define a function Θ̃f : Λ(S,X∗) → C by Θ̃f (ϕ) =∑
t∈S

ϕ(t)(f(t)) for all ϕ ∈ Λ(S,X∗) and let Θf be the restriction of Θ̃f to Λ0(S, X∗). It

is clear that ‖Θf‖ ≤
∥∥∥Θ̃f

∥∥∥ ≤ ‖|f |‖ for all f ∈ Λ(S,X).

Proposition 3.1. For any f ∈ Λ(S, X),
∥∥∥Θ̃f

∥∥∥ = ‖|f |‖ = ‖Θf‖.
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Proof. Let f ∈ Λ(S,X), and let ε > 0, and let A ∈ F . Then we have by the Hahn-

Banach extension theorem that there is Ψ ∈ Λ(S,X)∗ with ‖Ψ‖ ≤ 1 such that
∥∥∣∣f[A]

∣∣∥∥ <
∣∣Ψ (

f[A]

)∣∣ + ε. By Theorem 2.3, we have Ψ
(
f[A]

)
= Φϕ(Ψ)

(
f[A]

)
. Thus by Theorem 2.2

and the property (N1) of ‖|·|‖∗, we have

∥∥∣∣f[A]

∣∣∥∥ <
∣∣Ψ (

f[A]

)∣∣ + ε =
∣∣Φϕ(Ψ)

(
f[A]

)∣∣ + ε

=
∣∣∣Θ̃f[A]

(
ϕ(Ψ)

)∣∣∣ + ε =
∣∣∣Θ̃f

((
ϕ(Ψ)

)
[A]

)∣∣∣ + ε

=
∣∣∣Θf

((
ϕ(Ψ)

)
[A]

)∣∣∣ + ε ≤ ‖Θf‖
∥∥∣∣(ϕ(Ψ))[A]

∣∣∥∥∗ + ε

≤ ‖Θf‖
∥∥∣∣ϕ(Ψ)

∣∣∥∥∗ + ε = ‖Θf‖ ‖Ψ‖+ ε

≤ ‖Θf‖+ ε.

Since ε is arbitrary,
∥∥∣∣f[A]

∣∣∥∥ ≤ ‖Θf‖ for all A ∈ F . Thus, by (N1) of ‖|·|‖, we obtain

‖|f |‖ ≤ ‖Θf‖. It follows that
∥∥∥Θ̃f

∥∥∥ = ‖|f |‖ = ‖Θf‖ as asserted. ¤

We now have the function f 7→ Θf is an isometric isomorphism from Λ(S, X) into

Λ0(S,X∗)∗. In the following theorem, we provide a necessary and sufficient condition

for the function to be onto.

Theorem 3.2. The isomorphism f 7→ Θf from Λ(S, X) into Λ0(S, X∗)∗ is onto if and

only if X is reflexive.

Proof. Suppose that X is reflexive. We want to show that the isomorphism f 7→ Θf is

onto. To see this, let Ψ ∈ Λ0(S, X∗)∗, and for each t ∈ S, let φt : X∗ → C be defined by

φt(y) = Ψ(e(t; y)) for all y ∈ X∗. Then φt ∈ X∗∗ for all t ∈ S. Thus, by the reflexivity

of X, there exists, for each t ∈ S, an xt in X such that φt(y) = y(xt) for all y ∈ X∗. Let

f(t) = xt for all t ∈ S. We will show that f ∈ Λ(S, X) and Ψ = Θf . For each A ∈ F ,

we have for any ϕ ∈ Λ(S, X∗) with ‖|ϕ|‖∗ ≤ 1 by (N1) of ‖|·|‖∗ that

∣∣∣Θf[A]
(ϕ)

∣∣∣ =

∣∣∣∣∣
∑
t∈A

ϕ(t)(f(t))

∣∣∣∣∣ =

∣∣∣∣∣
∑
t∈A

ϕ(t)(xt)

∣∣∣∣∣

=

∣∣∣∣∣
∑
t∈A

φt(ϕ(t))

∣∣∣∣∣ =

∣∣∣∣∣
∑
t∈A

Ψ(e(t; ϕ(t)))

∣∣∣∣∣

=
∣∣Ψ (

ϕ[A]

)∣∣ ≤ ‖Ψ‖ .

It follows that
∥∥∣∣f[A]

∣∣∥∥ =
∥∥∥Θϕ[A]

∥∥∥ ≤ ‖Ψ‖ for all A ∈ F . Consequently, by (N1) of ‖|·|‖,
we have ‖|f |‖ ≤ ‖Ψ‖, and hence f ∈ Λ(S, X). To see that Ψ = Θf , let ϕ ∈ Λ0(S,X∗).
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Then we have for each A ∈ F that

Ψ
(
ϕ[A]

)
= Ψ

(∑
t∈A

e(t; ϕ(t))

)
=

∑
t∈A

Ψ(e(t; ϕ(t)))

=
∑
t∈A

φt(ϕ(t)) =
∑
t∈A

ϕ(t)(f(t)) = Θf

(
ϕ[A]

)
.

Thus, by the continuity of both Ψ and Θf , we have Ψ = Θf as required. Conversely,

suppose that the isomorphism f 7→ Θf is onto. Let φ ∈ X∗∗, and let t0 ∈ S be fixed.

Then the linear functional Ψ on Λ(S,X∗) defined by Ψ(ϕ) = φ(ϕ(t0)) for all ϕ ∈ Λ(S,X∗)

is bounded. Thus, by the assumption, there is an f ∈ Λ(S,X) such that Θf = Ψ. From

this, we have φ(y) = φ(e(t0; y)(t0)) = Ψ(e(t0; y)) = Θf (e(t0; y)) = e(t0; y)(t0)(f(t0)) =

y(f(t0)) for all y ∈ X∗. Therefore, the reflexivity of X is obtained. ¤

4. Reflexivity

In this section, we establish a reflexivity theorem for our Banach-valued function

spaces. We denote here the isomorphism Ψ 7→ ϕ(Ψ) from Λ0(S, X)∗ onto Λ(S, X∗) by N ,

the isomorphism f 7→ Θf from Λ(S, X) into Λ0(S, X∗)∗ by M . Let P be the isometric

isomorphism from the space {Θf : f ∈ Λ(S, X)} into Λ(S, X∗)∗ defined by Θf 7→ Θ̃f .

Lemma 4.1. N∗PM(f) = Q(f) for all f ∈ Λ0(S,X), where N∗ is the adjoint of N

and Q : Λ0(S, X) → Λ0(S, X)∗∗ is the natural map.

Proof. Let f ∈ Λ0(S, X). Then for every A in F ,

N∗PM
(
f[A]

)
= N∗ (

P
(
M

(
f[A]

)))
= N∗

(
P

(
Θf[A]

))
= Θ̃f[A]

N.

Let Ψ ∈ Λ(S, X)∗. Then we have for each A in F that

Θ̃f[A]
N(Ψ) = Θ̃f[A]

(
ϕ(Ψ)

)
=

∑
t∈A

Ψ(e(t; f(t))) = Ψ
(
f[A]

)
= Q

(
f[A]

)
(Ψ).

It follows that N∗PM
(
f[A]

)
= Q

(
f[A]

)
for all A in F . Therefore, N∗PM(f) = Q(f). ¤

An X-valued function space Λ(S,X) is called a GAK-space (see [4]) if Λ0(S,X) =

Λ(S, X).

Theorem 4.2. (Reflexivity theorem for Banach-valued function spaces) Let Λ(S,X) be

an X-valued function space. Then the following are equivalent:

(1) Λ(S, X) is reflexive;

(2) Λ0(S, X) is reflexive;

(3) X is reflexive, and both Λ(S,X) and its Köthe dual Λ(S,X∗) are GAK.
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Proof. (1) ⇒ (2). Obvious.

(2) ⇒ (3). Suppose that (3) doesn’t hold. If Λ(S, X) is not GAK, then we have

by Lemma 4.1 that Λ(S, X) is not reflexive. Next, suppose that X is not reflexive or

Λ(S, X∗) is not GAK. We will show that each of these two conditions implies that

{
Θ̃f : f ∈ Λ(S, X)

}
6= Λ(S,X∗)∗. (∗)

If X is not reflexive, then (∗) holds by Theorem 3.2. Suppose that Λ0(S, X∗) 6= Λ(S,X∗).

Then by the Hahn-Banach extension theorem, there exists ψ ∈ Λ(S, X∗)∗ such that

‖ψ‖ 6= 0 and Λ0(S, X∗) ⊆ ker ψ. If ψ = Θ̃f for some f ∈ Λ(S, X), then Θf = 0.

This implies that ‖ψ‖ = 0, which is a contradiction. Accordingly, (∗) holds. Hence, by

Lemma 4.1, Λ0(S, X) is not reflexive.

(3) ⇒ (1). It follows immediately from Theorem 3.2 and Lemma 4.1. The proof

is finished ¤

5. Applications to the sequence spaces lp(X) and lp[X]

In this section, we show that the well-known results on the duality and reflexivity

of the sequence spaces lp(X) and lp[X] can be deduced from our reflexivity theorem.

It is clear that for any 1 ≤ p ≤ ∞, lp(X) is the X-valued sequence space defined

by ‖·‖p and it is GAK, except for the case where p = ∞. Thus, by the duality theorem,

lp(X)∗ is isometrically isomorphic to its the Köthe dual Λ
(
N, X∗, ‖·‖∗p

)
. It is well-

known for each 1 ≤ p < ∞ that Λ
(
N, X∗, ‖·‖∗p

)
= lq(X

∗), where 1
p

+ 1
q

= 1. Thus

Λ
(
N, X∗, ‖·‖∗p

)
is GAK for all 1 < p < ∞, whereas Λ (N, X∗, ‖·‖∗1) is not GAK. It follows

immediately from the reflexivity theorem that l1(X) and l∞(X) are not reflexive, while

for 1 < p < ∞, lp is reflexive if and only if X is reflexive.

It is also clear that lp[X] is the X-valued sequence space defined by ‖|·|‖p, where

‖|·|‖p is given by

‖|{xk}∞k=1|‖p = sup
f∈X∗, ‖f‖≤1

( ∞∑

k=1

|f(xk)|p
)1/p

.

It was proved in [10] by C. X. Wu and Q. Y. Bu that the Köthe dual of lp[X] is GAK

for all 1 < p < ∞. Thus, by the reflexivity theorem, we have that the sequence space

lp[X] for 1 < p < ∞ is reflexive if and only if X is reflexive and lp[X] is GAK. This is

exactly the same as that given in [1] by Q. Y. Bu.
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