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Dielectric properties and gas sensing properties of
pervoskite oxide thin films

Satreerat Kampangkeaw Hodak, Jose Hector Hodak, Anurat Wisitsoraat,
Thidarat Supasai, Ornnicha Kongwut, Somsak Dangtip and Areerat Kornduangkeaw

Abstract

We have prepared SrTiOs/BaTiOsz thin films with multilayered structures
deposited on indium tin oxide (ITO) coated glass by a sol-gel deposition and heating at
300-650 °C. The optical properties were obtained by UV-Vis spectroscopy. The films
show a high transmittance (approximately 85%) in the visible region. The optical band
gap of the films is tunable in the 3.64-4.19 eV range by varying the annealing
temperature. An abrupt decrease towards the bulk band gap value is observed at annealing
temperatures above 600 °C. The multilayered film annealed at 650 °C exhibited the
maximum refractive index of 2.09-1.91 in the 450-750 nm wavelength range. The XRD
and AFM results indicate that the films annealed above 600 °C are substantially more
crystalline than the films prepared at lower temperatures. The ethanol sensors based on
SrTiOs/BaTiO; thin films annealed at 300 °C and 1000 °C on alumina substrates were
fabricated by applying interdigitated gold electrodes by sputtering technique. The ethanol

sensing characteristics of SrTiO3/BaTiO3 thin films were quantified by the change in

resistance of the sensors when they were exposed to ethanol. The sensitivity of crystalline
film annealed at 1000 °C is 2-3 times larger than that of amorphous film annealed at
300 °C. The optimum operating temperature of these sensors was found to be 350 °C. The
film annealed at 1000 °C exhibited p-type gas sensing behavior with the best sensitivity of
30-100 for low ethanol concentration in the range of 10-1000 ppm. In addition, the
changes in the transmittance spectra induced by gamma irradiation on the Fe-doped
BaTiOs thin films were quantified. The values for the optical energy band gap were in the
range of 3.42-3.95 eV depending on the annealing time. The refractive index of the film,
as measured in the 350-750 nm wavelength range was in the 2.17-1.88 range for the as
prepared film, and this increased to 2.34-1.95 after gamma irradiation at 15 kGy. The
extinction coefficient of the film was in the order of 10 and increased after gamma
irradiation. We obtained tuneable complex refractive index of the films by exposure to
various gamma rays doses.

Keywords: SrTiO3/BaTiOs thin films, Fe-doped SrTiO3s/BaTiO3 thin films, optical
properties, gas sensors
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YN,
UNANEo
We have prepared SrTiO3s/BaTiOs thin films with multilayered structures deposited on indium tin
oxide (ITO) coated glass by a sol-gel deposition and heating at 300-650 °C. The optical
properties were obtained by UV-vis spectroscopy. The films show a high transmittance
(approximately 85%) in the visible region. The optical band gap of the films is tunable in the
3.64-4.19 eV range by varying the annealing temperature. An abrupt decrease towards the bulk
band gap value is observed at annealing temperatures above 600 °C. The multilayered film
annealed at 650 °C exhibited the maximum refractive index of 2.09-1.91 in the 450-750 nm
wavelength range. The XRD and AFM results indicate that the films annealed above 600 ° C are
substantially more crystalline than the films prepared at lower temperatures which were used to
change their optical band gap and complex refractive index to an extent that depended on the

annealing temperature.

Keywords: Perovskites; Optical properties; Multilayers; Annealing; Sol-gel
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Article history: We have prepared SrTiOs/BaTiOg thin films with multilayered structures deposited on indium tin oxide
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1. Introduction

Thin films made of high dielectric constant materials based on
alkaline earth ritanates of BaTi0s (BTO) and SrTi0y (STO) have
received much attention due to their applications in dynamic
random access memories { DRANs) [ 1], high dielectric capacitors| 2-
4],and tunable microwave devices [5]. In addition, due to their large
electro-optical coefficient, loww optical losses, and excellent optical
rransparency in the visible region, these materals can be used in
optoelectronic devices, An application of these types of flms as
insulating layerin flar panel displays { FPD)com prising ofthe layer of
metal-electrode/phosphorfinsulator/transparent  electrode/glass
has recently been reported [6.7]. Tunable dielectric response for
BaTiy and SrTi0y via an applied electnc Aeld is a well established
charactenstic of these materals. However, the optimum tunability
occurs at vastly different temperatures | ~ 4=100 K for SrTi0,[4,8]
and ~ 250-400 K for BaTi(,[9,10]). Several approaches have been
employed toenhance the tunability of dielectric constant near room

* Corresponding authar at: Department of Physics, Faculty of Science. Chula-
longkorn University, Payathai Rd. Bangkok 10330, Thailand.
Tel: +66 2 218 7557; far: +66 2 253 1150,
E-mail address: Sateerat HiChulaacth (5K Hodak)

0169-433 24 - see front matter © 2010 Elsevier BV, All rights reserved.
doir10.1016/j.aps usc. 201 0.01.072
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temperature, Expenments s howed that an increase of the tunability
of dielectric constant at room temperature can be achieved through
film groweth of Ba; S, Ti0y compound [3,11,12] and by the use of
SrTi0y/BaTiOs multlayered thin films [13-16]. These composite
films have already been prepared with various deposition techni-
gues such as pulsed laser deposition [4.8,16-19], RF sputtering
[12,20], and by sol-gel method [3,13,21]. The dielectric response as
well as the structural and optical properties of these perovskite
materals depend on the growth conditions, the annealing
temperature [22], the type of substrate or buffer laver used
[23.24], the thickness [21], and the doping [25]. Xu et al. used a
sol-gel technigue to prepare polycrystalline SrTi0s/BaTiDs multi-
layered film on Pt/Ti/5i0,(Si substrate and compared the dielectric
response with the uniform BaTiOy and SrTi0y Glms [ 13]. They found
that the dielectric constant of the polycrystalline SrTi0a/BaTiC
multilayered films could reach the 400-600 range at 10 kHz while
keeping the dielectric loss near that of the uniform films. In another
work, epitaxial SrTi0y/BaTiO, multilayered films of 8 Aforeach layer
prepared by pulsed laser deposition yielded dielectric constants
even higher, ranging from 500 to 900 at 10 kHz at room temperature
[17]. Moo-Chin Wang's group have found the increase in the
dielectric constant of (SrTi0yBaTiOy ), multilayered thin Alms
grown by RF magnetron sputtering by increasing the number of
lavers up to 4 [26,27]. Relatively few worls dealt with the optical
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properties of SrTi0y/BaTiQy multilayered films despite of much
growing interestinthese films fordevice applications [28,29]. Inthis
worl, we focused on the effect of the annealing temperature SrTi0y/
BaTi0y multilayered thin films with different thickness prepared by
5ol -gel deposition on substrates made of indium tin oxide ([TO) on
glass. We found that the optical band gap and complex refractive
index of the films can be adjusted by controlling the annealing
remperature and the thickness.

2. Experimental details

Glass substrates were cleaned in an ultrasonic bath with
acetone, methanol, deionized water and dried with a nitrogen
stream. The substrates were then transferred to the deposition
chamber. Tin-doped indium oxide (indium tin oxide, ITO) was
deposited by rf-magnetron sputtering method under argon plasma
to a thickness of 100 nm. The ITO films were post-annealed at 400 ©
C for 90 min in an argon atmosphere. The typical resistivity of the
ITO filmwas 3 « 10~* ohm cm with transparency above 90% in the
visible region. The raw materials used for the synthesis BaTi0y and
SrTily solution were barum acetate (Ba{CHyC00), ), strontium
acetare (Sr{CHyC00),), titanium n-butoxide (Ti{ CiHg0);), acetic
acid as a solvent and methanol as a stabilizer. Banum acetate and
strontium acetate were dissolved in acetic acid at ca. 60° C with
stiming. After homogeneous solutions were obtained, 3.47 ml of
pure titanium n-butoxide was added to each solution. The
solutions were then diluted by addition of 1.75 ml of methanol.
This dilution is necessary to prevent the formation of a precipitace
of Ti0.. The deposition of the first layer was done with the Ba
solution by spin coating on [TO coated glass at 1000 rpm for 45 5.
After the first deposition, the films were preheated on a hot plate ar
120 = C for 20 min in order to remove the solvent, then the films
were heated at rate of 10°C/min from 25% C to the desired
annealing temperature which was maintained for 20 min in air
atmosphere. The same process was repeated for the second layer
using the Sr solution. The maximum annealing temperature was
limited at 650 C to avoid softening and deformation of the glass
substrate, The Ba and Sr solutions were spun on silicon (100)
substrates as well for comparison with films on ITO coated glass.
The crystal structure of the SrTiCy/BaTi0, multilayered thin films
were characterized by X-ray diffraction (XRD: Model DE Bruker
diffractrometer) using Cu Kl with the wavelength of 15406 A,
The surface morphology of the films were examined by atomic
force microscopy (AFM: Model Veeco Nanoscope V). The optical
transmission and absorbance of the films were recorded using V-
vis spectrometer [JENWAY: Model 6405 UV/Vis), and the oprical
band gap was calculated from transmittance spectra.

3. Results and discussion
3.1, Structural properties

The film thickness measurements were obtained from the
cross-section of scanning electron microscope images. The
prepared two layer films (STO/BTO) have guite reproducible
250420 nm  thicknesses. The crystallinity of the films was
investigated using X-ray diffraction. Fig. 1{a) shows rhe XRD
patterns of SrTi0L/BaTi0y films deposited on ITO coated glass
substrate as a function of the annealing temperature which varied
in the range of 300-650°“C. There were no BTO and STO
characteristic diffractinn peaks, nor we observed diffraction peals
from contaminating substances for the films annealed at the 300-
550 *C temperature range evenin the thicker four-layerfilms (data
not shown). The STO/BTO multilayered films showed distinct
crystalline peaks at the annealing temperatures of 600 and 650 “C,
as indicated by the appearance of characteristic peaks of BTO and
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Fig. 1. X-ray diffraction pattern of STO/ETO Alms annealed at various tfemperatunes
{a)on MOYGlass and (b) on 5i (10 0) substrate

STO. The peaks of the X-ray diffraction patterns are sharper and
more intense as the annealing temperature increases. However, X-
ray spectra of the films annealed ar 600 and 650° C show weak
signals suggesting that the films are not well crystallized. With the
same annealing temperature of 600 C, the thicker film (STO/BTO/
STO/BETO) showed intense characteristic peaks. Moreover, the full-
width at half maximum decreases with the temperature increases.
This result is consistent with increased crystallinity of the films at
higher annealing temperatures. The average crystallite size t
measured in a direction perpendicular to the surface of the
specimen was calculated using Scherrer formula as shown in Eg. 1,
where B represents a widrh measured in radians at an intensity
equal to half of the maximum intensity, 9y is the Bragg angle and k
is the shape factor of the average crystallice [30]:

ke, .
Zn Beos g )
The parameter B is the full widch half of the maximum {(FWHNM)
which increases as the crystal size decreases. The calculation was
done with k=094 by assuming a Gaussian peak shape and acubic
crystal structure. For this analysis, we have chosen the most
intense BTO (11 1) and STG {11 1) peaks which did not overlap
with [TO peaks. The crystal sizes of BTO and STO flms annealed at
650° Caredd+4 nm and 37+4 nm, respectively, while for BTO and
5TO film annealed ar 600° C are approximately 2645 nm and
1445 nm, respectively. Clearly, the crystal size of the SrTi0sf
BaTiCy films increases with increasing annealing tem perature. For
four layer Alm (STO/BTO/STO/BTO) annealed at 600 “C, the crystal
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Fig. 2 AFM 2D images (0.3 pm = 0.3 wm) of STO/BTO films depasited an ITO coated glass annealed at various temperatures for 20 min (a) 300 °C.(b) 500 °C (c) 550°C.(d)

600 = C and (e} 650 °C.

sizes of BTO and STO films are 44+4nm and 24 +4nm,
res pectively. The crystallite size of BTO is slightly larger than that
of 5T, This iz due to the fact that the BTO solution was deposited
on the first layer which was annealed for two times longer than
that of the top STO film. We further prove this assumption by
inverting the order of the film layer and depositing on Si{100)
substrates. By comparing the X-ray diffraction patterns of STO/BTO
and BTO/STO films as presented in Fig. 1{b), we clearly see that the
film located in the first layer showed higher and narrower peaks.
The ¥-ray diffraction pattemns of the films annealed at 600 and
6507 Cshowed a splitting of the BTO peaks. This suggests that BTO
adopted tetragonal structure. Durcalculated‘lattice parameters for
BTO were a=3995+5A and ¢ = 4.011 £+ 5 A while STO structure
exhibited a cubic structure with lattice constant of 3.9054+5 A We
did not observe any phase transition and all the films annealed at
600 and 650° C showed the same X-ray diffraction pattems. The
surface of morphology was investigated by atomic force micros-
copy (AFM), Fig, 2 presents AFM images of the STO/BTO films as a
function of annealing temperature, The grain sizes of the films also
increases with increasing annealing temperatures reaching ca.
30 nm at 650<C. This may result from higher atom mobility with
increasing temperature which causes a more effective recrystalli-
zation of the matenal of the films and resulting in larger grains.

3.2. Optical properties

Fig. 3 shows the optical transmission spectra of STO/BTO films
annealed at various temperatures in the 200-800 nm wavelength
range. The transmission spectra of glass and ITO/glass are shownin
the same figure for companson. All the films annealed at high
temperatures were transparent and exhibited optical transmit-
tance of ca. ~85% in the visible region. The oscillations in the
transmittance curve due to interference have low depths of
modulation indicating inhomogeneity of the films across the light
beam. Overall, the films annealed at higher temperatures displayed
lowwer transmittance. The thickness d of the film can be determined
using the envelope method according to Swanepoel [31] where
nihq ) and nidz ) are refractive indices of two adjacent maxima or
minima ar wavelengths Ay and A;, respectively:

hida

d= Z[n(Aq bz — AAa 0]

(2)
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The resulting film thickness of 250420 nm calculated from Eq. 2
i5 consistent with the cross-sectional image from scanning electron
microscopy. From the optical transmission spectra, the absorption
coefficient (&) of the films was determined from the equation:

1 1
(v} =d—l[] (f) (3}

where Tis the normalized transmittance and d is thickness of the
films [22]. All the films showed a sharp absorption onset in the
near-UV region. The absorption edge of the films shifts to longer
wavelengths as the annealing temperature increases. It is known
that exciton-phonon coupling or dynamic disorder is the main
factor contributing to absorption edge broadening for crystalline
materials [33]. In amorphous materals, imperfections and
disorder bring additional broadening due to static disorder. In
the films of smallest grains changes in Urbach-type absorption tail
manifest the static inhomogeneity due to the presence of localized
states within the gap and maybe guantified by the steepness of the
band edge [33 | which can be estimated from the slope of the plot of
o versus hv atthe beginning of band-to-band absorption [34]. The
band edge steepness of our film increased with increasing the
annealing temperature suggesting that the density of localized

120 ; T ; T T T

100
80 F
B0F

qof |

Transmittance (%)

20| ;!

k. 'l L '
a00 400 500 600 700 80a
Wavelength {nmj}
Fig. 3 Transmittance spectraofSTO/BTO flms annealed at various temperatures for

20min: (a)300°C, (b) 500°C, (c) 550°C.(d)600° C and () 650 "C; (&) glass and (B)
ITO glass.
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Fig. 4. Determination of the Urbach energy for STO/ETO Alms annealed at 500, 550
and 600 ° £ from the absorption cosfficient.

states decrease with heating temperature. A more guantitative
measurement of the band edge charactersticcan be obtained from
so-called Urbach rule [35). In general, an exponentially increasing
absorption edge can be seen in various types of materials:

. (*’””k_;ﬂnj s (hvE—UEa) il

where and oy and Ey are the Urbach bundle convergence point
coordinates, Ey is the absorption edge energy width interpreted as
the widch of the rails of localized states in the band gap and « is the
steepness parameter, k is the Boltzmann constant and T is the
remperature. Fig. 4 shows the plot of Ine versus hv at different
annealing temperatures. The calculated Urbach energy which is
inverse to the absorption edge slope value (Ey= (kT/o)) for STOY
BTO films annealed at 500, 550 and 600 °C, respectively, are 0.272,
0263 and 0.220 eV, respectively.

As the annealing temperature increases, larger grains are
formed which brings an increased hand edge steepness, This may
be explained by the reduction of the surface to volume ratio as
crystals grow larger since the localized states most likely arise from
surface stares.

The Tauc relation between the absorption coefficient and direct
and indirect band gap energies (E;) are given by [32,36]:

johv)® - (hv - K}, {3)
and
ahy'? - (hy — E¢), (6]

for allowwed direct transitions and indirect transitions, respectively,
where fiv is the energy of the incident photon. We plotted (whu)”
(n = 2 for direct transition and n = 1,/2 for indirect transition)
versus hv, and obtained E; by extrapolating the linear portion of
the plot to zero frequency. We found that the best fit to a straight
line was obtained for mn = 2 indicating thar a direct allowed
transition occurs at I” point in the Brillouin zone from the valence
band maximum to the conduction band minimum. Fig. 5shows the
plot of [crhu]2 as a function of hv at vardous annealing
remperatures. The same absorption region has been used to
evaluate optical band gap [37,38]. Fig. 6 shows the band gap energy
versus annealing temperatures, For the films annealed at lower
temperatures (300, 400, 500 and 550 <C), the value of the energy
gaps gradually decrease with annealing temperature in the range
of 4.19-4.03 eV, An abrupt decrease towards the bulk band gap
value isohserved for the films annealed above 600 * C yielding the
energy gap in the 3.64-3.74 eV range. The expernmental direct and
indirect band gap energies for BTO are 3.6 and 3.2 €V, respectively

N 42/54

1.0 —
- STORTO 300°C ! .E g
STOETO 400%C 1 i / II," i
0.8} - sTORTOS00%C I|' f r [y
nz STO/BTO 550°C . !/
'E STO/BTO B00°C J . f-.-f /
o 0B . sTomToesoc # f 'l',?f'."'
2 / / //
ol D4t ] |
: ]
§
0zt #
.f
B . o 4
0.0 [ e
28 30 32 34 36 38 40 42 44 48
hv ey

Fig. 5. Plot of {afi)® versus by for STO/BTO films annealed at various temperatures.

[39], while those for STO are 3.75 and 3.25 eV, respectively [40,41].
The band gap of the amomhous phase is about 0.3-0.5 eV larger
than that of the crystalline phase [39-41]. The abrupt decrease of
energy gap from around 4 to 3.74 eV is consistent with achange in
the structure of the films from amorphous tocrystalline phase. The
results of the energy gap are in agreement with the XRD results
that show a more crystalline phase obtained when the films
annealed above 600°C, Similar change in energy gap has been
observed for sol-gel derived BaTiOy[7] and SrTi0; films [21]. We
further investigated the thickness effect of optical band gap by
depositing four layers films (STO/BTO/STQYBTO) on ITO coated
glass, For the same annealing temperature, the thicker films
exhibited a reduction in the energy gap which is similar to that
cshown in Fig. 6. The crystallinity and the grain size of the films
increase with the film thickness resulting in a decrease of the
energy band gap. The shift of optical band gap energy can be also
explained in terms of guantum-size effect in which the films with
large crystallites will have red-shifted absorption onsets, By way of
comparison, we used the guantum confinement prediction for
energy gap [42].

el S 1
Egr) = Eg(bulk +—(—+—) 7)
sty =FaB At imal
. 2wk )
Egiry = Egbulk) +W (8)

where m,, my, g, rare the effective mass of electron, the effective
mass of hole, the reduced mass and the diameter of nanoparticle,
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Fig. 6. Temperature and thickness dependence of the band gap energy for STO/BTO
multilayered films.
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respectively. Mormally, if the particle size is smaller than the
comesponding DeBroglie wavelength, the size guantization effects
can be observed in the band gap. The theoretical calculated
DeBroglie wavelength for BTO and STO is about 15nm, ag =
[4JTF4;|F.,-H2],-"M62 where & is the dielectric constant. Fig. 7 shows a
comparison of the theory of guantum confinement model along
with the experiment values for the allowed direct and phonon
assisted indirect transitions. In the calculation for BTO, we
substituted m. for 0.81m, (I'— R direction) and my for
~278m, (R— X direction) for indirect transitions { p=0.62m,),
where m, is the mass of a free electron egual to 9.11 = 10 ke
[42,43]. The resulting values of direct band gap energies are larger
than those of indirect band gap energies. As the particle size gets
larger, the band gap energies approach the bulk values. For smaller
crystallite size, there is a shift in band gap from the theoretical
curve for both transitions. This is because the values for the
effective mass of electron and the effective mass of hole used in our
calculation were obtained from bulk assumption using the frst
principle calculation [43]. A better agreement between our data
and the theory can be obtained by adjusting the reduced mass.
Such procedure leads to a reduced mass of g=0.03m, which would
be consistent with band curvatures that are significantly larger
than the bullk predictions. One has to note that the band
discontinuities are not true infinite potential barriers which
softens the confinement of the camriers and may also cause a
deviation between the theory and our data. The shift of the energy
band gap to the higher energies with decreasing in particle size is
caused by destruction of the excitons [44].

We now turn our attention to the optical absorption. Our
films showed a sharp absorption near UV region but not in the
visible region. In the region of medium and weak absorption,
o+ 0 the complex refractive index {7 =n — ik, where n is the
refractive index and k is the extinction coefficient) can be
obtained by [31]:

2 1,2
n(A) = [N+ (N —r2) ] (9)

where

I:Tmu = T'rni:ll"

Tman Tipiin

1) ;

Nl oy (10)
2

where i, is the refractive index of [TO/glass substrate, Tie and T

are the maximum and minimum transmittances at the same

wavelength in the envelop curves, respectively.
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Fig. 7. Direct and indirect band gap energies versus the average particle size The
solid line is a prediction by guantum size effect The dashed lines are the pradiction
of the gquantum size effect with adjustable effective mass.
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The extinction coefficient k, the absorption coefficient o, and
the thickness d are related by the following equations [31]:

oA
k=g (11}

1, m= 1) = m)1 + (Tonax {Terin '

o
a7 (n4 1)(n +n)[1 = Tomax Tomin )17

(12)

Fig. & shows the variation of the dispersion curve of the films
with annealing temperature, The refractive index and the
extinction coefficient decrease with the wavelength following a
typical shape of dispersion curve near an electronic interband
transition, rising rapidly toward shorter wavelength [45]. The
refractive index increases with increasing annealing temperature.
The refractive index of perovskite thin films is known to
proportional to their electronic polarization per unit volume
which is inversely proportional to distance between atomic planes.
This result can be explained by an increase in the density of the film
due to better packing and increased crystallinity. The large
increase in refractive index and strain relaxation following
crystallization obtained for the films annealed at temperature
B50° C is due to crystallization of the perovskite phase. For
comparison with bulk STO (n = 2.30-265)[46] and BTO (n ~ 2.3)
[47] or well crystallized STO (n = 2.15-2.35) [48] and BTO thin
films (n=2.15-2.55) [49], the refractive index of our films is
lowver. This suggests that crystalline structure of our multilayer
films leads to a relatively low density [46-49]. The extinction
coefficient of our films is less than 0.05 in the 450-750 nm
wavelength range indicating low optical losses with the film
annealed at 650 C exhibiting the lowest loss.
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films as a function of wavelength
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4. Conclusions

Crystalline SrTi0Qy/BaTi0y multilavered thin films have been
prepared on ITO coated on glass by a sol-gel spin coating
technigue. The structural and optical properties of the films were
studied. Our results indicate that the films annealed above 600 C
show more pronounced crystallinity with large grain size. As the
grain decreases, the localized states increase leading to hroadening
in the absorbance. Tunable band gaps can be obtained by varying
annealing temperatures and the film thickness. The variation of the
band gap energy upon the particle size follows from guantum
confinement effects with somehow smaller carrier-effective
masses, The optical band gap of the film annealed at 650° C
approach the bulk value.
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We have prepared SrTiOs/BaTiO; multilayer film on alumina substrates by a sol-gel technique
and investigated their response for sensing ethanol vapor. The surface morphology of the films
were characterized by atomic force microscope (AFM) showing that the grain size of the films
increase up to 40 nm as the annealing temperature increased to 1000 °C. The ethanol sensors
based on SrTiO3s/BaTiO3 thin films were fabricated by applying interdigitated gold electrodes by
sputtering technique. The ethanol sensing characteristics of SrTiOs/BaTiO3 thin films were
quantified by the change in resistance of the sensors when they were exposed to ethanol. The
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We have prepared SrTiO,/BaTiO, multilayer film on alumina substrates by a sol-gel technique and
investigated their response for sensing ethanal vapor. The surface morphology of the films were
characterized by atomic force microscope (AFM) showing that the grain size of the films increase
up to 40 nm as the annealing temperature increased to 1000 *C. The ethanol sensors based on
SrTiO,/BaTiO, thin films were fabricated by applying interdigitated gold electrodes by sputtering
technigque. The ethanol sensing characteristics of SrTiO,/BaTiOy thin films were quantified by the
change in resistance of the sensors when they were exposed to ethanol. The optimum operating
tempearature of these sensors was found to be 350 *C. In addition, the film annealed at 1000 °C
exhibited p-type gas sensing behavior with the best sensitivity of 30-100 for low ethanol concen-

tration in the range of 100-1000 ppm.

Keywords: SiTiO;/BaTiO,, Gas Sensor, Sol-Gel Method.

1. INTRODUCTION

In the past decades, researchers have placed increasing
interest in gas sensor fabrication by various techniques to
detect wider variety of gases. The metal oxide materials
commonly studied in such sensors are TiOQ,‘ 51102,2 and
WO,.* Recently, semiconductor-based gas sensors made of
the peroskite oxides (ABO,) received interest due to the
the feasibility of doping with different metals to tailor their
particular sensitivity.* There are two cations (A and B)
with different sizes in the perovskite structure that can be
replaced by the various dopants. Furthermore, perovskite
oxides are suitable for detecting gas in high temperature
environment due to high melting temperature and high
stability in microstructure and surface morphology. Many
research groups have investigated barium titanate for the
detection of CO and CO, 2 and strontium titanate for the
detection of 0O,® but not much on solvent vapors such as
ethanol, methanol and acetone. In this work, we report
the ethanol sensing of amorphous SrTiO, thin film and
S5rTi0,/BaTiO; multilayer thin film prepared by a sol—gel
method. The advantage of such sol-gel coating is that uni-
form films in large area can be readily produced. It is also

* Author to whom correspondence should be addressed.
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cost effective and industrially scalable. The gas sensing
characteristics of the films with two distinctively differ-
ent phase structures, amorphous and polycrystalline, were
studied in terms of the sensitivity, the type of the sensors,
and the optimum temperature to operate the sensors.

2. EXPERIMENTAL DETAILS

In this work, BaTiO, (BTO) and SrTi0; (STO) thin films
were prepared on clean alumina substrates by sol—gel spin
coating technique. Alumina is an electrical insulator mate-
rial which is commonly used as a substrate for heating
metal oxide gas sensor. It has several advantages among
other types of commercial substrates such as low cost,
availability and high thermal conductivity resulting in uni-
form temperature across the device. We dissolved barium
acetate and strontium acetate in acetic acid in separate
beakers. Then we added titanium butoxide and methanol
as a stabilizer in BTO and STO precursors. This process
was done near 60 °C with stirring on a hot plate. Then the
solution was spincast onto clean substrates at 2000 rpm
for 45 seconds. After preheating at 120 °C for 20 min,
the films were annealed at two different temperatures,
300 °C and 1000 *C. We observed that it is important to
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Fig. 1. Top view of scanming electron microscopy (SEM) image of the
245 Sensor.

deposit one layer at a time through this process to produce
dense films. The obtained film deposited for four layers
was about 400 nm. We focused on two films, pure STO/S
STO/STO/STO film annealed at 300 °C and STO/BTO/
STO/BTO film annealed at 1000 =C. The gold/cromium
{Auw/Cr) interdigitated electrode was patterned on the film
through an electroplated shadow mask with gap width
about 100 microns using DC sputtering. Figure 1 shows a
miniature sensor with the gap width of 100 microns, with
the finger length of 14 mm and the overall size is 2 » 3 mm.
The gas sensing characteristics of BTO and STO thin films
were characterized with ethanol vapor (C,H;OH) which is
a reducing gas. To test the sensors, we fed purified air into
the chamber to generate the base line and than the ethanol
vapor with the desired concentrations was introduced for
5 min through mass flow controller. Ethanol vapor was gen-
erated by passing nitrogen gas through 99.99% ethanol.
The sensors were heated to different temperatures and the
resistances of sensor in the presence of air and in ethanol
vapor were recorded. The crystal structure of the result-
ing films were characterized by X-ray diffraction (XRD:
Model D& Bruker diffractrometer) using the wavelength of
CuKeal (1.5406 ﬁ\). The surface morphology of the films
was examined by atomic force microscopy (AFM: Model
Veeco Nanoscope V).

3. RESULTS AND DISCUSSION

Figure 2 shows the X-ray diffraction pattern of the
STO/BTO multilaver film prepared at 1000 *C on alumina
substrate. This film exhibited a polycrystalline structure.
There were no STO characteristic diffraction peaks for the
STO film annealed at 300 =C. There are no big grains
developed for the film annealed at low temperature as seen
from AFM images (data not shown). The film annealed at
1000 °C exhibited large grain with the size of 40 nm due
to the increasing of atom mobility at higher temperature.
The time responses of two sensors toward ethanol vapor
at 1001000 ppm concentrations are shown in Figure 3.
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Fig. 2. X-ray diffraction pattern of SrTi0,/BaTiO, multilayer thin film

on alumina substrate.

Figures 3(a) and (b) show the response of amorphous
STO film and the polyerystalline STO/BTO multilayer
film, respectively. The response time of the polycrystalline
film is quicker than that of the amorphous film while the
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Fig. 3. Time response to ethanol vapor at 350 *C of (a) SrTi0; film
annealed at 300 °C and (b) SrTiCy/BaTiO; multilayer thin film annealed
at 1000 *C on alumina substrate.
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Fig. 4. Sensitivity to ethanol vapor at 100-500 ppm concentrations
{a) 5rTi0)y film annealed at 300 °C and (k) SrTi0y/BaTi0, multilayer
thin film annealed at 1000 °C on alumina substrate.

recovery time is quite comparable. The film sensing prop-
erties are based on reactions between the film surface and
gases. Many possible reactions can occur on the surface
depending on the gas used and the type of semiconduc-
tor sensor. Ethanol vapor is a reducing gas in which acts
as electron donors. For a p-type semiconductors, the oxi-
dation of ethanol at the surface transfer electrons to the
film surface and the resistance of the film increases with
ethanol concentrations in the gas. Our results are consis-
tent with a p-type active film. Normally, the gas sensitivity
is difined as the ratio of the changes of resistance after the
sensor exposed to gas and the resistance of the sensor in
the presence of air.

R gas R air (1}

R

air

gas sensitivity =

To determine the optimum operating temperature of the
sensor, we plotted the sensitivity as a function of ethanol
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vapor concentrations at 250 *C, 300 °C and 350 °C, respec-
tively (see Fig. 4). Notice that the optimum temperature of
both films was found to be the same, at 350 *C regard-
less of their crystallinity. This can be explained that the
ethanol vapor give electrons to the film surface the most at
a certain temperature. The abrupt increase in the sensitivity
at 350 °C of the film annealed at 1000 “C, which is higher
than that of the film annealed at 300 °C, was observed.
The sensitivity of crystalline film annealed at 1000 =C is
2-3 times larger than that of amorphous film annealed at
300 °C. It is possible that the surface area of polycrys-
talline film which was larger than that of the amorphous
film increase the area of reaction. The film annealed at
1000 *C exhibited p-type gas sensing behavior with the
best sensitivity of 30-100 for low ethanol concentration
in the range of 100-1000 ppm. The sensitivity to ethanol
vapor of Sn0O, and WO, reported by Wisitsoraat et al. was
less than 10.! The hest sensitivity for these perovskite films
are higher than those obtained from other metal oxides.

4. CONCLUSIONS

In conclusion, we have developed a p-type gas-sensitive
material using BTO and STO thin films prepared by a sol
gel method. The sensitivity of crystalline film annealed at
1000 °C is larger than that of amorphous film annealed at
300 °C. The obtained sensitivity to low ethanol concen-
tration of the crystalline film is about ~30-100 which is
quite competitive to other sensors based on other metal
oxides. The optimum operating temperature of both films
is the same at 350 =C.
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Polycrystalline Fe-doped barium titanate (Fe-doped BaTiO3) thin films were grown by
thermal decomposition of the precursors deposited from a sol-gel system onto quartz substrates.
The changes in the transmittance spectra induced by gamma irradiation on the Fe-doped BaTiO3
thin films were quantified. The values for the optical energy band gap were in the range of 3.42 -
3.95 eV depending on the annealing time. The refractive index of the film, as measured in the
350 - 750 nm wavelength range was in the 2.17 - 1.88 range for the as prepared film, and this
increased to 2.34 - 1.95 after gamma irradiation at 15 kGy. The extinction coefficient of the film
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refractive index of the films by exposure to various gamma rays doses.
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Polycrystalline Fe-doped barium titanate | Fe-doped BaTiDg) thin flms were grown by thermal decamposi-
tion of the precursors deposited from a sol-gel system onta quartz substrates. The changes in the
transmittance spectra induced by gamma irradﬁ-liunun the Fe-doped BaTi0s thin films were quantified. The
values for the optical energy band gap were in the range of 342385V depending on the annealing time.
The refractive index of the flm as measured in the 350;?50 nm wavelength range was in the 2. IT_:E.EE @
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abtained tuneable complex refractive index al the films by exposume to various gamma fays doses,
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1. Introduction

Recently, the effects of the indusion of different transition metals on
the structural, optical, electrical and magnetic properties of perovskite
{ABOs ) thin films have been investigated. Various types of dopants and
cations of different sizes can be accommodated in the ABOs sibes [1-4).
Barium titanate (BaTiO,) is a ferroelectric material with a perovskite
structure { Ba®t as Aand TP as B ) that has gained much interest doe to
its many potential applications, such as high dielectric cons@nt
capacitors, dynamic random access memories, and piezoelectric and
optical wave guide devices [5-7) In addition, doping Fe ions into the
BaTi0y lattice leads to the acquisition of. both ferromagnetic and
ferroelectric properties |B). The ferromagnetism of Fe-doped BaTiOy
ceramics was reported to be dependent upon the anpealing atmos phere
2nd Fe-doping concentration, with the substitution by Fe* " occurring in
Ti sites being confirmed by Mossbauer measurements [9,10). Herner et
al. showed that doping barium strontium tiznate (BaSrTi0s) with Fe
could reduce the loss tangent [11], by means of improvi ng the dielectric
properties compared to pure BaSrTils Anocther way to change the
fundamental properties of these materials is by exposure to high energy
electromagnetic radiation or high energy particles, such as X-rays,
gammarays, elecron or neutron bombardment, The retined polariza-
tion, dielectric constant and coercive field of lead titanate films
decreased upon increasing gamma irradiation doses, but the material
was less sensitive to neutron irradiation [12], Recently, Arshak et al,
observed that the energy gap of a bismuth germanate film decreased

* Corresponding awthor. Department of Physics Faculty of Scence, Chulalengkorn
University. Banghok. 10330, Thailand.
E-mail addres satreerat hichula.ac th (5K, Hodak).

O0:40-6000,% - see front matter © 2010 Published by Elsevier BV
dod 010N & esf 2010005023

from 185 eV m 1.76 eV after exposure to gamma irradiation with a
0.228 mCy of gamma irradiation | 13]. Fasasi etal. have reported the use
of high dose gamma irradiation to study the thermoluminescence glow
curve characteristic of BaTiOx ceramics and the dose dependence on the
glow curve |14] These radiation imparted changes in BaTiOs are ex-
tremely useful for the effectve design of modern radiation dosimeters,

In this waorlk, the effect of gamma ray irradiation on the optical
properties of Fe-doped and undoped BaTiOy thin films was investi-
gated. The changes in transmit@ance spectra lnducerf'hy gamma
irradiation, and the corresponding changesin the film refractive index
and extinction coefficient, were measured as a function of the gamma
irradiation dose.

2. Experimental details

BaTi0y and Fe-doped BaTi0y thin films were deposited on quartz
substrates by a sol-gel method. The Fe-doping process was done by
dissolving iron [[[Tsulthe (Fes0y) in a mixture of barium acetate
(Ba[{CH3C00 ), ) and acetic acid. Then, pure titanium n-butoxide and
methanol were added to the solution. The precursor solution was
dropped onto the clean quartz substrate with a spinning speed of
1500 rpm to provide the first layer of the film. The film was preheated
at 120 “C for 20 min before annealingin anatmosphere of air at 800 “C
for 60 min in order to form the crystalline structure, This process was
repeated until the desired thickness was obtained. Different flm
thicknesses can be obtained by varying the number of deposition
oycles. A ™Co gamma radiation source with an activity of 10 kGi
(Gammacel 220 Excell) was used toirradiate the BaTiQy and Fe-doped
BaTi0y thin films. The radiation doses were varied via the exposure
time up to 15kGy at a rate of 10 kﬁyihi'lhe optical transmittance

Please cite this article as: 0. Kongwut, et al., Thin Solid Films (2010), doi:10.1016,5.t5f2010.05.023
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spectra of the films were measured using a Perkin-Elmer Lambda 750
UV-Vis-NIR spectrophotmmeter. The refractive index and the extinc-
tion coefficient of the films before and after gamma irradiation as a
function of the gamma dose were extracted from the transmittance
spectra using the envelope method [15], The band gap was also
calculated from the transmittance spectra using the Tauc relation [16].

The compositions of the films were obtained using a wavelength
dispersive X-ray spectrometer (WDX) equipped with an electron
probe microscopic spectrometer (EPMS: JECL model [XA-8100). The
oxidation state of Fe in the Fe-doped BaTiO; films was examined by X-
ray absorption spectroscopy near the edge structure (XANES) using a
synchrotron source. The X-ray diffraction (XRD: Bruker model D8-
Discover) patterns of BaTiO; and Fe-doped BaTi0y films were recorded
 determine their crystal structures. The surface morphology of
the films was observed using a Veeco Nanoscope IV atomic force
microscopy (AFM).

3. Results and discussion
3 1. Structural properties

The substitution site for the dopant cation depends more strongly
on its concentration and on the Ba,/Ti molar ratio than onits size [ 17)].
The ionic radius of Fe* (064 A) is comparable withthe ionic radius of
Ti** (068 A) but is significantly different fromthat 6f Ba®* (134 A)
|4]. However, the WDX shows signals that are 4f.ﬁl:msu-’.sl:ent with
Bay yFey2TiOy with the Fe doping occurring by substitution of Ba
sites in BaTiDs yielding 2 Ba/Ti ratio slightly smaller than 1. The
oxidation state determined from the energy of the X-ray absorption
edge (71305 eV) correspondsto Fe?* . In our case the Fe' * dopantacts

(a)

as a donor when it substitutes the Ba®* site, A similar result for this
substitution was found in the work of Battisha etal. [1].

The crystallinity of the Alms was investigated using X-ray
diffraction. Fig. 1 shows the XRD patterns of undoped BaTi0y with
two (220 mm) and six (375 nm) layers as well as that for Fe-doped
BaTi0y flms with eight layers (520 nm), derived from a sol_gel
method. We denoted each film by the material formula followed by the
number of layers (L), The tetragonal phase of BaTiOz was identified in
our films and it is indicated inFig Ify the peaks with the indices of its
crystallographic planes. The diffraction peaks are sharper and more
intense as the films grow thicker through the deposition of maore
layers. The peak positions slightly shifted to higher diffraction angles
after doping Fe in the film indicating that the lattice constants slightly
decreased. This could be attributed to the substitution of ions with
smaller size (Fe* ") to ions with bigger size (Ba® ). These results are
consistent with the work of other groups [4,18]

The surface of morphology of BaTi0s.and Fe-doped BaTiOy films
was investigated by atomic force microscopy, [AFM), where the
estimated average grain size of the Bag gFey;TiDy 8 L film at 40 nm is
smaller than the 54 nm graifi size forthe 6.1 film as seen in Fig, 2.
Devan et al. observed similar results with a decrease in grainsize with
doping concentrations [18). Indeed, many research groups have
reported that increasing the dopant concentration could reduce the
grain size due to competition between different phase structures in
the materials [24:19.20].

32. Optical properties

Fig.3 shows the optical transmission spectra in the 300, 1200 nm
wavelength range of the undoped BaTi0, and Fe-doped BaTiO, filmsof
comparable thickness (ca. 220 nm ) before and after gamma irradiation
at 15 kCy. The oscillation in the transmission curve is due to
interference between light reflecting from the film surface and from
the ﬁ!lli;_substrate interface. The depth of modulation indicates good
hoemogeneity of the films across the light beam (ca. 1 cmin diameter ).
The transmittance of both undoped and Fe-doped films was reduced
after the irradiation, and a brownish tint could be seen by the naked
eye in the irradiated films. However, our results revealed that gamma
irradiation causes a more marked change on the transmittance of the
Fe-doped BaTi0y film than to the undoped film. For comparison,
following gamma irradiation at 15 kGy, the transmitance decreased
by ~ 4% in the undoped BaTi0; film but by ~11% for the BagaFeq TiOy
film. It seems that the trapping process in the films after irradiation
occurs more readily in the doped films, presumably because they have
mare defects than in undoped films. There are two types of defects in
barium titanate; the type that preserves the stoichiometry [ Schottky)
and the type that changes the smichiometry that occurs at the dopant
substituted cells. Oxygen vacancy defects are commonly found in

(b)

Fig 2. Aromic force micrescopy images | 1.0« 1.0 um) of the films comprisad of {a) BaTioy with & layers (b) Fe-doped BaTi0y with 8 layers
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BaTiCy due to an insufficient oxygen supply during the film processing
|21]. Intrinsic Schottky defects in BaTiQs are believed to form
according to the following process: [14).

Bay, + Tig + 30,=V}, + V. + 3V + Ba, + T, + 30,

Where Baga, Tiri, 30u are occupied Baps, Tir and O sites,
respectively, V;-h_ V'TL and 3Vy are vacancies of Ba, Ti and O atoms,
respectvely, and Ba., Ti: and 30, are the Schottky defects, respec-
tively, Upon irradiation there are a number of phenomena that can
give rise to trap sites in BaTiDy. For example, a negative jon could be
removed and this ion vacancy can subsequentdy trap an electron
which constitutes the so-alled Fcenter [14). Another pathway is the
self-trapping of holes [22]. Fig. 4(a) shows the optical transmission
spectra of Fe-doped BaTiO, films with four and six layers (denoted by
BaggFeyTiDy 4L and BaggFey ,Ti0y 6L, respectively) in the _"’.l]]:_
1200 nm wavelength range and Fig 4(b) shows the same trend for the
Fe-doped BaTiOy film with eight layers (denoted by Ba, gFe, -Ti0y
81L). As expected, the thicker film shows deeper osdllations in the
transmission spectrum than the thinner film. The transmitznce also
decreased with the increasing gamma radiation doses. The doses used
in this study were 1,5, 10 and 15 kGy, respectively. We observed that
the transmittance of the films did not change amy further for gamma
radiation doses higher than ca, 10 kGy. The absorption edge shifted to
a lower energy as the films got thicker (Fig. 4(a )}, because the films
with a larger number of layers accumulated longer heating times
( 800 °C for 60 min for each layer) causing the growth of bigger grains.
However, there was little variation in the absorption edge between
the BagaFeqsTiDs 4 L film annealed for 4h and BageFe, -Ti0; 8L film
annealed for 8 . The film thickness of Ba; 4Feq s Ti0s ranging from four
to eight layérs was calculated via the envelope method derived by
Swanepoel |23]"and. was approximately 220 nm (4 L), 375 nm (6 L)
and 520nm (8 L), From the transmittance spectra, the energy for the
direct gap could be calculated by using the Eq. (1)

fothv)® = B(hu'—Es} i1

Whereais the absorption coefficient calculated by o = JInL hvis
the photon energy, E; isthe energy gapand B is a constant [16]. Fig_JS
shows a plot between l:ahvf versus f (eV) of the Fe-doped BaTiOy
thinfilms with 4, 6and 8 layers afthin filfhs. The resulting energy band
gaps were 342 €V, 3.69 eV and 3.95 eV for BagyFeq-Ti0Oy with 8,6 and
4 layers, respectively. For comparison, the energy band gap value of
pure BaTiDs powder, BaTi0s single crystal, and BaTiOs thin films are
3.92 eV [24), 36eV [25] and 3.?2;3.?7‘ eV |26], respectively. The
particle size in these films increases as the annealing cycle increases
|27]. The correspond ing reduction inband gap energy with increasing

100 -
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particle size can be explained by quantum confinement [28]. The 203
refractive index can be obtained using an envelope method: 204
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where N = g + 2t | === neis the refractive index of 206
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the subsmate, Tpna, and Ty, are the maximum and minimum trans- 207
mittances, The extinction coefficient can be obtained from 208
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B layers.
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where o is the absorption coefficient (a 1 {n=11{n—mn)

I R T ST

A Fry
Aot (e Tl L) and df s the film thickness:

Analysis of the variation of the dispersion curves of BaasFeq2TiOs
films after different (0-15 kGy) gamma irradiation doses reveal that
the refractive index and the extinction coefficient increase with the
wavelength rising more rapidly toward short wavelengths and
following a typical dispersion curve shape (Fig 6). When measured
in the 350750 nm wavelength range, the refractive index for the
Bay gFeg 2 TiD 4 L increased from the 2.1 ZL—‘LE-B range to the 2.3411.95
range upon the gamma irradiation at a dose of 15 kGy, with a cor-
responding increase in the extinction coefficient (Fig. 6(a)and (b)) The
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value of the extinction coefficient _for this film prior o gamma
irradiation was in the order of 11];‘ and this increased after the

irradiation with higher doses, indicating that higher optical losses result 2z

directly from the irradiation. With thidcer films, the refractive index is

also increased due to the inaeased film density and better crystallinity, 2
The extinction coefficient follows an approximately linear function of 22

the wavelength. The dispersion curves near the electronic band

transiton were significantly altered by the gamma irradiation. One of -
the main results of these experiments is that the complex refractive :

index of the films can be tuned by exposure to various gamma rays
doses. These observed phenomena could be useful for the development
of gamma irradiation dosimeters based on simple optical detection
propertes,
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4. Conclusions

Camma irradiation effects were found to be more pronounced for
theirondoped films (BaggFeq 5Ti0s) than for the undoped BaTiOy. The
transmittance of the films in the UV visible range decreased after
gamma irradiation with doses in the 115 kGy range. The refractive
index and the extinction coefficient of the films were increased by
exposure © higher gamma ray doses. These changes are due t© the
formation of color centers and the concomitant change in the complex
refractive index for the irradiated the Bay 4Feq -, Ti0y films,

Rclmowledglnenls

This work was supported by The Thailand Research Fund ( TRF), the
Thailand Toray Science Foundation ([ TTSF), National Research Council of
Thailand (MRCT) and a Graduate Thesis Grant. Also, this work was
supported by Research Funds from the Faculty of Science, Chulalong-
korn University (A1B1), the Thai Government Stimulus Package 2
(TKE2555) under the Project for Establishment of Comprehensive
Center for Innovative Food, Health Products and Agriculture, and
Chulalongkorn University Centenary A@demic Development Project.

References

[1] LK Battisha ABA Hamad, RM. Mahani Phys B 404 [2009) 2274
2] E Brzozowski M5 Castro, . Mater. Process. Technol 168 [2005) 464,

[3] K Daoudi T. Tsuchiya T Kumagai, Appl. Surf. Scl 253 [2007) 6527,
[4] ¥.¥e TL Guo, Ceram. Int_ 35 { 2009) 2761
[5) & Ke.H Huang H Fan HIW.Chan LM. Zhow Solid State lonics 179 (2008) 1632
6] F Zimmermanm M. Volgis W. Menesklow E hers Tiflee. |. Eur. Ceram. Soc. 3
(2004 1729,
[7) A Kumar, 5.G. Manavalan, Surf. Coat Technol. 198 [2005) 406
[8] TE.Kundw A Jana P Barik, Bull Mater. Sci. 31 (2008) 501.
[9] F.Lin D.Jiang X.Ma W.5hi Phys. B 403 | 2008) 2525.
(10§ F Lin D Jiang X Ma W_5Shi | Magn Magn Mater. 302 [2008) 691,
[11) 5B Herner. FA Selmi V. Varadan, VK Varadan, Mater_Lett 15 {1983) 317
[12] J Gao, L Zheng, Z Song C Lin [ Zhu Mater. Lett 42 (2000) 345.
113] K Arshak O. Korostynska ). Harris. D. Morris. A Arshak, E afer, Thin Solid Films
516 {2008) 1493,
[14) AY._ Fasasi, FA Balogun MK Fasasi, PO Ogunleye. CE Mokobia, EP. Inyang. Sens.
Actuators A 135 [2007) 598,
[15] M. Caglar, ¥. Caglar, 5. llican, | Optoelectron. Adv. Mater. & (2008) 1410,
18] J Tauc A Menth | Non-Crist Solids 8-10 (1972) 564
[17] M.T. Buscaglia V. Buscaglia M. Viviani P Nanni, M. Hanuskova, | Eur. Ceram. Soc
20 (2000) 1947,
[18] K5 Devan ¥R Ma BK. Chougule, Mater.Chem. Phys 115 (2004) 263.
1% Y. Huang, WH Tuan, Mater. Chem. Phys. 105 (2007) 320
[204 &Y. Lee BS. Chiow HH Lu, Mater. Chem. Phys: 108 [2008) 55.
[21] K Shimoyama K Kubo, T Maeda, K. ¥ amabe, |pn.). Appl Phys. 40 (2000 463
|22] A Stashans, H. Pinto, Radiat Meas 33 (2001) 553.
[23) KA Swanepoel | Phys E Soi. Instrem. 16 [ 1983) 1214,
[24] A Mansingh, CVR VasantagJoMate r Sci. Lett 7(1988) 1104
125] A Ontan, V. Marello, G. Lucovsky, FIL Galeener [Eds. . AIP Conf Proc. No. 31, AR,
New York 1976
|26] HX. Zhang. CH Kam,Y. Zhow 30, Han, YL Lam ¥.C Chan K Pita Mater. Chem
Phys. 63 {2000) 174.
127] XML S Zhu WY, Zhang 6.0 Ma YN Wang, Thin Solid Films 274 [ 1996) 165
[28] L Burs,]. Phys Chem. 90((19886) 2555

Please cite this article as: 0. Kongwut, et al., Thin Solid Films (2010), doi:10.1016 j.tsf2010.05.023

N 55/54

255
5T
258
254
28
2

2452
283
2id
25
2
T
L
2t
2T
am

an
a7
2
A5
2T
20T
278
2
24
28l

-
283
a4
255
284



