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1. Abstract

The project is concemed with robust motion estimation in image Sequences,
especially under varying lighting conditions. Since conventional approaches are
based on image intensities or gradients, they are sensitive to variations of lighting
conditions. To overcome this problem, we propose to use gradient orientation
information in place of image intensities and gradients because gradient orientation
is known to be notably invariant to varying illuminations. In this project, we have
developed three motion estimation techniques: the gradient orientation-based spatio-
temporal gradient method (GOGM), the gradient orientation structure tensor method
(GOSTM), and gradient orientation pattern matching technique (GOPM). They were
compared with their respective original methods: the spatio-temporal gradient
method (GM), the gradient structure tensor method (GSTM), and correlation-based
methods such as the sum-of-absolute differences (SAD) matching, the sum-of-
squared differences (SSD) matching, and the zero-mean normalized cross-
correlation (ZNCC). Our simulation results show that the proposed methods perform
motion estimation very well regardless of irregular lighting conditions, while the
conventional approaches fail to work under such conditions.

Keywords: 3-5 words
Motion estimation, mation vectors, template matching, the spatio-temporal gradient
method, and gradient structure tensor



2. Executive summary

We have developed three novel techniques for estimating motions in image
sequences that work robustly under irregular lighting conditions. The first two
techniques are based on a well-known constraint, the optical flow constraint
equation (OFCE), while the third belongs to correlation-based approaches. The first
technique developed is the gradient orientation based spatio-temporal gradient
method (GOGM) that is originated in the classical spatio-temporal gradient method
(GM). The second is the gradient orientation structure tensor method (GOSTM) that
is an improved version of the gradient structure tensor method (GSTM). Finally, the
third is the gradient orientation pattern matching technique (GOPM) that is related to
conventional template (or block) matching techniques, including sum-of-absolute
differences (SAD) matching, sum-of-squared differences (SSD) matching, and zero-
mean normalized cross-correlation (ZNCC). A common feature among the three
proposed techniques is that they employ gradient orientation information instead of
image intensities and gradients that are used by the existing methods mentioned
ahove. Both the GM and GSTM are image gradients-based, while SAD, SSD, and
ZNCC use image intensities. Since gradient orientation is remarkably invariant to
changing lighting conditions, all the developed techniques, i.e., GOGM, GOSTM,
and GOPM, work robustly under irregular illuminations, unlike the original techniques
that they are hased on.

3. Objective
The objective of this project is to develop a technique for estimating motions in
image sequences that work robustly under varying lighting conditions.

4. Research methodology
Gradient-based motion estimation techniques (e.g. aforementioned GM, GSTM) are
based on the optical flow constraint equation (OFCE) that assumes the intensity of
an image is constant along its motion trajectory over time. In place of the constraint,
we have introduced a new assumption, that is, the gradient orientation of an image
IS constant along its motion trajectory. Following the new assumption, we devised
two novel gradient-based techniques, GOGM and GOSTM. The derivation of those
techniques are fully described in the journal paper, “Robust motion estimation
methods using gradient orientation information”, published in Science Asia, Vol. 35,



No. 2, pp. 196-202, June 2009, together with the review of the existing methods,
GM and GSTM. Please see Appendix A for more details.

Correlation-based motion estimation techniques make use of image intensities or
gradients. In place of image intensities or gradients, we utilize gradient orientation
information by means of unit gradient vectors (or normalized gradient vectors). The
unit gradient vector can he expressed with two scalars, i.e., the x and y components
of the vector. These two scalars can be regarded as a certain signal as intensities.
This means that we obtain two intensity patterns from one image. We call them
gradient orientation patterns (GOPs). Those GOPs can be used in any correlation-
based techniques, such as popular sum-of-absolute differences (SAD) matching,
sum-of-squared differences (SSD) matching, zero-mean normalized cross correlation
(ZNCC) and so on. We have tested the motion estimation performance of this
concept using GOPs in the SAD matching strategy. The proposed method named
gradient orientation pattern matching method (GOPM) is described in the refereed
conference paper, “A block matching technique using unit gradient vectors’,
published in the proceeding of the IAPR Conference on Machine Vision Applications
(MVA2009), pp. 390-393, Japan, May 2009. Please see Appendix B for more details.

. Results

As mentioned above, the simulation results of the proposed techniques, the GOGM
and GOSTM, are shown in the paper attached as Appendix A, while those of the
GOPM are given in the paper attached as Appendix B. We have also achieved a
real-time implementation of the GOPM in C language with the OpenCV library
where the proposed matching technique is used for tracking a human eye at the
video rate during eye surgery. Please see Appendix C for more details.

. Conclusions and discussion

Conclusive remarks on the GOGM and GOSTM: The gradient orientation based
spatio-temporal gradient method (GOGM) and the gradient orientation structure
tensor method (GOSTM) are based on the spatio-temporal gradient method (GM)
and the gradient structure tensor method (GSTM), respectively. Unlike the
conventional approaches utilizing image gradients, we make use of gradient
orientation information (GOI) by means of unit gradient vectors. Since GOI is
insensitive to changes of image intensities, the proposed methods have achieved a



significant robustness to varying lighting conditions. They also perform better than
the conventional methods when encountering the aperture problem. The
implementation of the proposed methods is straightforward because image gradients
are commonly computed at an early stage in image sequence processing and
computer vision applications and are readily available.

Conclusive remarks on the GOPM: Most existing approaches for image matching
are hased on either image intensities or gradients. Consequently, it is inevitable that
these conventional techniques are susceptible to varying image intensities caused
by irregular lighting conditions. To cope with this illumination problem, we have
presented a novel matching technique that is based on gradient orientation patterns
(GOPs) that can be obtained as the x and y components of unit gradient vectors.

We do not use the angular values ¢ (rad) of gradient vectors directly to avoid
modulo computation, which enables a fast implementation of the proposed method.
Simulation results on hoth synthetic and real image sequences have revealed that
the proposed technique, GOPM, works much more robustly than SAD matching with
varying image intensities. The motion estimation performance of the GOPM is
comparable to that of ZNCC with uniformly changing intensities and also non-
uniformly but smoothly varying intensities. Furthermore, it is a significant advantage
of the GOPM over ZNCC that it can cope with non-uniform and rapid changes of
image intensities that may occur in outdoor environment. We have also shown that
the computational cost of the GOPM is less than that of ZNCC. Gradient vectors are
generally computed at an early stage of various image processing and computer
vision applications, and are readily available. The normalization of the gradient
vectors to obtain the unit gradient vectors can be performed prior to the computation
for image correspondence. Therefore, the GOPM will be well-suited to real-time
applications and also hardware implementation (see Appendix C).

. List of Appendixes

Please see the following papers attached to the end of this report.
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ABSTRACT: Changing lighting conditions cause temporal variations of image intensities and make most existing motion
estimation techniques ineffective. As a solution to this problem, we use gradient orientation information, which depends
very little on changes of image intensities, in place of commonly used image features such as intensities and gradients. By
employing gradient orientation, two conventional motion estimation techniques (the spatio-temporal gradient method and
the gradient structure tensor method) can be transformed into methods that are far more robust to changing image intensities.
Simulation results on both synthetic and real image sequences show that the proposed methods perform motion estimation
remarkably well irrespective of time-varying image intensities. In addition, the proposed methods also cope better with the
aperture problem in which only unidirectional gradients are available and large erroneous motion estimates are produced.

KEYWORDS: motion vectors, optical flow, spatio-temporal gradient method, gradient structure tensor

INTRODUCTION ing to their high computational cost.

This paper is concerned with gradient-based
Motion estimation is an important task in the fieldsmethods. They are based on the optical flow constraint
of image sequence processing and computer visiogguation which assumes that image intensities are
It has various applications, including object-basegonstant along motion trajectories. This assumption,
video coding (e.g. MPEG-4), object detection andiowever, is often violated by changes of lighting
tracking, scene change detection for video editingonditions that is a common occurrence in outdoor en-
image stabilization for camcorders, and dynamic 3-gironments. To circumvent this varying illumination
scene analysis for autonomous navigation. Motion eproblem, it is reasonable to employ a feature that is
timation techniques in the spatial domain may be clagess dependent on image intensities. Gradient orien-
sified as being either gradient-based or correlatioriation (or direction) is an attractive feature because it
based methods (also commonly referred to as blodk not sensitive to variations in illuminatidfr'4. In
matching or template matching) Gradient-based this paper, we propose the use of gradient orientation
techniques can be further divided into spatio-temporditformation, instead of the commonly used image
gradient methods (often simply referred to as gradiefiéatures such as intensities and gradients, to achieve
methods}= and gradient structure tensor methods robust performance for motion estimation.

(also referred to as gradient square tensor methods
or 3-d structure tensor method<}”. Gradient-based OPTICAL FLOW CONSTRAINT EQUATION

methods are in general used to obtain a dense optiggh optical flow field, showing dense motion vectors
flow field or motion vectors. These techniques arqiithin an image, is generally estimated under the
effective especially when the displacement betweegssumption that the image intensities of an object
images over time is small, typically a few pixels.are constant over time. By assuming that the image
On the other hand, correlation-based methods maytensities! at points(z, y) at timet are constant over
be the most intuitive approach as they search fqime¢ + dt, we have

similar patterns between two imades*®. Since they

can handle larger displacements, they are used not  [(z,y,t) = I(z +dz,y +dy,t +dt), (1)
only for motion estimation, but also for establishing

correspondence between images captured at differamhered2 anddy denote the displacements in the
viewpoints such as stereo vision. They are, howeveandy directions between two images recorded at times
not suitable for computing dense motion vectors owt and¢ + d¢. By taking the first-order Taylor series
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expansion of the right-hand side df)(we obtain given by
Tt dany + dy.t -+ di)  CLL) S LL) - (D B)(E L)
o Izt T ERER - LL)?
~ I(z,y,t) + L,dz + I,dy + L,dt, (2) z v o ®)
sy = L)L) = (SRS Iyl
where the subscripts denote partial derivatives. From Qo)1) — (X La1y)?
(1) and @), one can derive the well-known optical flow ] . ) )
constraint equation (OFCE), The implementation of) is easy and fast, and is often

used for obtaining dense motion vectors.

Lt Lyv+ 1 =0, ®)  THE GRADIENT STRUCTURE TENSOR

in which (u,v) = (dz/dt,dy/dt) are motion vec- METHOD

tors. Eq. B) is apparently underdetermined becauséhe gradient structure tensor method (GSTM) is a

it contains two unknownsy andv. There are two newer approach®’. With the rapid advance of

popular approaches to solv@) for (u,v), leading to computer technology, the GSTM has been employed

two motion estimation techniques, namely, the spatidor real-time motion estimation in recent ye&ts®.

temporal gradient method and the gradient structurEhe GSTM is based on orthogonal regression (or

tensor method. total least-squares fitting) using principal component
analysis (PCA). The gradient structure tengasf the

image intensitied is defined as
THE SPATIO-TEMPORAL GRADIENT

METHOD NI12ooS LI, Y LI

— 2
The spatio-temporal gradient method, which we will T=\Xhl. XI, X Iyzlt ) (6)
refer to as the gradient method (GM), is a traditional DLl YLl L

optical flow estimation methdd®. It is based on
regression analysis where the two unknownsv)

are computed by the least-squares method assumi . X _ i .
that I, is a dependent (or target) variable ahdand matrix of the spatio-temporal image gradients in PCA.

1, are independent variables. To solve the OFCE_CA can be gsed to find Fhe best-fitting plane to a
for (u,v) we may introduce either a global or local¥'ven set of point¢/s, I, I:) in the 3-d space spapned
smoothness constraint. The former constraint assum%lg the I, I,, and]; axes. The GSTM determines

that the optical flow changes smoothly over the entir € best-fitting plane by minimizing the sum of the

imagé€?, while the latter assumes that the optical ﬂov\fr?ualres Ofl the orthoggne;]l ogf\;lats of the p%:n;.s fré)m
in a small region is constaht To avoid the possibly the plane. In contrast, in the , EITOrS are gefined as

time-consuming iterative procedure involved in théhef sum of thg squared vertical offsets from the data
former approach, we employed the latter. Under thROINts to the fitted plar_le. In other_ Words_, errors are
local smoothness constraint, motion vectarsv) can measured along thi axis becausé, is considered as

be straightforwardly determined by minimizing the? variable_dgpendent onthe othgr two variz_at_nlgs,nd
quadratic cost-function, I,,. Such fitting model of the GM is often criticized for

its unequal treatment of spatial and temporal deriva-
tives!. When there is no clear relationship among
F=> (Lu+ILy+1), (4)  variables, whether they are independent or dependent
variables, it makes more sense to measure errors by
where the summation is performed over a small regioimeating all three variables equally and minimize the
or block. orthogonal offsets of the points to the plane. Our
The procedure of the GM is equivalent to deterprevious work also revealed that the GSTM performs
mining of the best-fitting plane to a given set of pointsnotion estimation much better than the GM largely
(I, I, I;) by minimizing the sum of the squares ofowing to this difference in fitting models.
the distances between the points and the plane along Another interpretation of the GSTM is that when
the I; axis. The normal vector of the plane gives the small objectP is moving at a constant speed in a
motion vector(u,v) of the small region. The least- certain direction in a series of time-sequential images,
squares solution ofj, which we denote bya, v), is  the trajectory of the moving objed? forms a tubular

where} indicates the summation within a local 3-d
ion such as a cub®: can be viewed as a covariance
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structure in 3-d spatio-temporal space. By appl
ing PCA to (I,,1,,1;), we obtain three eigenvec-
tors (e1, e2, e3) and their corresponding eigenvalues
()\1,)\2,)\3) where A = A = A3 = 0. The
first two eigenvectors will point in directions that
are perpendicular to the trajectory &f, while the
third eigenvectores = [z3ys3 tg]T, associated with
the smallest eigenvalug;, will indicate the direction
along the trajectory. Hence, motion vectors may b
estimated from

UGsTM = T3/t3, UgsTM = ¥3/13- 7

It is relevant to note that we may evaluate the cor..:
fidence of estimated motion vectors by analysine|;
the relationship between the three eigenvalues of tt.:
tensot 46715 For instance, if\; ~ Ay >> X3 >0, |
the trajectory forms a linear structure in the spatio |-
temporal space and the confidence is high. When ) o

Al 3> X\ & A3 > 0, the motion trajectory is plane- Fig. 1 (a? An 8-bit grey-scale 25& 256.p|xel |m<_'slge —
like, which indicates that there is an aperture probler{€ Lena image (b) an enlarged (332 pixel) subimage
where we can estimate motion only along the gradiet) SuPimage gradient vectors (d) subimage unit gradient
vector available. When; ~ Xy ~ A3 > 0, the VeCw©rs

corresponding local region may have impulsive noise

or motion discontinuities, and the resultant motion . .
vectors may be inaccurate. Finally, ¥ ~ Xy ~ preferable to using angular valuéglirectly because

A3 = 0, there is no gradient information and motiong_r;fgular VaLU?S requtlre modlulo calcu[[atlonsyff}e.g., the
estimation is impossible. ifference between two angles cannot excegd.

GRADIENT ORIENTATION INFORMATION

As a robust image feature, we propose using gradieltteénsity-invariance of gradient orientation

orientation information (GOI) rather than the conven©One way to model the intensity variations is to assume
tional image features such as intensities and gradient8.— 47 +bwherel andI’ are image intensities before
We now describe how to extract GOI and how to us@nd after a lighting condition is changed, whil@nd

itin a computationally efficient manner. b are scalar constarlfs Gradient-based, including
second order derivative-baséd methods can work
irrespective of additive variations of intensitigs £

Let I(x,y) be the image intensities at pixel coordi-0). They are, however, susceptible to multiplicative
nates(z, y). The gradient vectors are théh,, I,,). By  variations ¢ # 0). Fig. 2a shows the same subimage
convention, the upper left corner of the image is thas inFig. 1b, except that the intensities of the upper
origin, thex-axis is directed downwards, and thhe half of it are reduced by 50% (i.eq, = 0.5, b = 0).
axis is horizontal. The unit gradient vectdrs,,n,) Fig. 2o shows the gradient vectors of the subimage.
are obtained by dividing!,, I,)) by their magnitudes They differ considerably from those Bfg. 1c because
where we assign zeros tg,(z, y) andn,(z,y) if the  of the multiplicative changes of image intensities. On
magnitude is zero. Notice that unit gradient vectorthe other handFig. 2c shows unit gradient vectors
carry rich spatial information even in relatively low-that are identical to those dfig. 1d, except at the
contrast areag~g. 1d). As the unit gradient vectors boundary between the halves. Since the boundary acts
(ng,n,) are represented by two scalars, andn,, as a step edge, it disturbs its neighbouring gradient
ranging from—1 to 1, they can be treated as twoorientations. Therefore, except at such boundaries,
separate intensity patterns. We call them gradiemte may state that unit gradient vectors are insensitive
orientation patterns and make use of them as a robustboth additive and multiplicative changes of image
image feature for motion estimation. It should beéntensities and thus can maintain gradient orientation
emphasised that the use of unit gradient vectors fmtterns well regardless of varying illumination.

Extraction of gradient orientation information
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Fig. 3 Gradient orientation patterns of the Lena image:
(@)naz (b)ny.

factors that are dependent on the gradient orientation
patterns. Figs3a and3b show gradient orientation
patternsn, and n, of the Lena image irFig. 1a,
scaled between 0 and 255 for visualization purposes.
Vertical gradients (i.e., horizontal lines) are richnip,

Fig. 2 (a) Partially shaded subimage (b) gradient vector&hereas horizontal gradients (vertical lines) are more
(c) unit gradient vectors. dominant inn,. This observation indicates thaj is
more suitable for computing vertical motiarandn,,

is better for horizontal motion.
APPLICATION OF GRADIENT ORIENTATION The reliability of each motion estimate may be

INFORMATION TO MOTION ESTIMATION judged from the diversity of gradient orientations

Gradient orientation based gradient method (directions) in its local area. The diversity of gradient
|t{ientations can be measured by the two eigenvalues
the covariance matri€ betweem,, andn,,,

In the first proposed approach, we use the unit gradieﬁ
vectors(n,,n,), instead of image intensities and
assume thatn,, are constant over time:
atng, ny) C_ { Son?2 ang&y (11)
ng(z,y,t) = ng(z + dz,y + dy, t + dt), @®) 2onaty  Xony

ny(z,y,t) = ny(z +de,y + dy, t + dt). where \; > X, > 0 are the eigenvalues df. This
approach resembles the analysis of eigenvalues from
gradient covariance®® 715, but we can focus on the
Xpug + Xyv1 + Xy =0, analysis of gradient orientations regardless of varia-
(9) tions of image intensities by employing unit gradient
vectors. If\; >> Xy = 0, the gradients are unidirec-
whereX = n, andY = n,. We have used the tional and we can only estimate motion along the

Sobel operators for computing the partial derivative§irection parallel to the gradients. This is the so-
because they yield good approximations of the deriv&2/led aperture problem. In this case, vertical and
tives with minimal computatioH-. In place of @) we horizontal motion estimation should rely heavily on

From @), we obtain two modified OFCEs:

Y, uo + Yy’U2 +Y; =0,

have the following two cost functions the pattern ofx, andn,, respectively. Meanwhile, if
A1 & Ay > 0, there are omni-directional gradients and
F = Z(qul + X, + X,)2, similar weights can be used for motion estimates from
(10) n. andn, as they are considered equally reliable. In
F= Z(YmUQ + Y,vo + Y;)2. the proposed method this weight control is achieved

by using the following unified motion estimates
From 10), we then obtain two motion estimates,

(icoemz; Voemz) and (ticoemy, Ucoamy) UsiNg the , _ M A2 -

GM. UGOGM = ST UGOGMz T Mt UGOGMy
Because there should be only one motion vector _ Ao L 1

per block, we need to unify those two motion esti-  YGOGM = X177 WGOGM. MBVIES WL

mates into one. For this we introduce some weighting (12)
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We call this approach the gradient orientation basemhotion vectors are correct when they satisfy the con-
gradient method (GOGM). dition,

Gradient orientation structure tensor method max max(|Az|, |Ay|) < 0.5, (15)

In the second proposed method we sg, n,) in-
stead of the image intensitigs Thus, as in§), we
have two local tensorsy andTy

whereAz andAy denote the deviations (in pixels) be-
tween true and estimated motions. Hence, if rounded
motion vectors are equal to the true motion, those

X2 Y XX, YX.X, motion estimates are considered successful. Note
Ty =% Xys(x TX2 Y X,X, that the motion estimates are not integers, but real
Yy )
S XX, Y XX, Y X? 13 numbers.
Y, Y. Y, Y, Y, radient orientation based gradient metho
2 Yy Y, Gradient tation based gradient method
— 2 . : T
Iy =|XYY. Y5 X Yy);t : Prior to motion estimation it is always necessary to ap-
LYY, VY, Y ply a certain low-pass filter for gradient-based meth-

We use the 3-d Sobel operators for computin thods because the computation of gradients is sensitive
artial derivative?® B ap ving PCA toTp an?:l % high frequency components in an image. A Gaus-
P - By appying X sian low-pass filter of size 138 13 pixels whose stan-

Ty separately, we obtain two estimates of image MQz. ' yeviation is half of the filtering mask£13/2)
tions (ugostmz, UcosTmz) and (UGOSTMy>UGOSTMy)-

was applied to all the four image sequencesWe

Followmg the same pr_ocedur_e described apove, WRen computed 14 14 motion vectors for each se-
integrate these two motion estimates depending on the

: : : : . . guence with the blocks of size 2616 pixels.
diversity of local gradient orientations by using We first tested the GM and GOGM under mildly

B AN Ao noisy (40 dB) and constant lighting conditions. It
UGOSTM = muGOSTMr + m“GOSTMy’ is apparent that the GOGM achieves much higher
) Ao N success rates than the GM for'all thg four image
UGOSTM = mUGOSTMv + mveosmy. sequencesTable ). Next, the intensities of the

(14) second frame were uniformly reduced by 10% to
simulate a time-varying lighting condition. Note that

We call this approach the gradient orientation strudhis is a robustness test to temporal variation of image

ture tensor method (GOSTM). intensities that is different from a spatial variation of
image brightness shown iRig. 2a. The GM com-
RESULTS AND DISCUSSION pletely breaks down whereas the GOGM performs

We evaluate the motion estimates by GOGM an#nhotion estimation regardless of the variation of image

GOSTM by comparing their performances with thoséntensities Table J).

of conve ntional _approaches on four S“?‘”dafd test inairadient orientation structure tensor method

ages Fig. 1a, Fig. 4) converted to 8-bit grey-scale

256 x 256 pixel images. Next we compare the GOSTM with the GSTM in the
Synthetic time-sequential images were produceg®me settings as above. Both methods work equally

by translating the four test images by 2 pixels ivell under constant lighting conditionsgble 1. For

both the vertical and horizontal directions. GaussiaMarying lighting conditions, the stark contrast between

noise was added to all images (signal-to-noise ratio

40 dB). For evaluation, we assume that the estimate@ble 1 Percentage success rates of 196 motion estimates

of the true motion (2,2) by the GM, GOGM, GSTM, and

GOSTM under constant (Sim 1) and time-varying (Sim 2)

lighting conditions.

Image name GM GOGM GSTM  GOSTM
Sim: 1 2 1 2 1 2 1 2

Lena 38.3 0.5 62.8 64.3 97.4 0.0 98.0 98.0

P . : : = Girl 56.1 4.1 77.6 77.0 99.0 3.1 96.4 94.4

Fig. 4 Standard test images: (a) girl (b) cameramafr@meraman 42.9 5.1 60.7 57.7 90.8 6.1 86.2 81.6
House 27.6 0.0 48.0 49.0 77.6 0.5 77.0 73.5

(c) house.
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the GSTM and GOSTM clearly shows that even
slight change of image intensities makes the GST
completely ineffective, while the GOSTM performs| s
motion estimation irrespective of varying image inten;
sities. Notice that the successful motion estimate rate
in the cameraman and house images tend to be low f
every approach. This is because these images cont{ &
large extremely low-contrast areas, such as sky a
wall, where no gradient information is available.

Improved performance to the aperture problem

A close observation of the motion estimates by thy;
four methods also reveals that the proposed tec
nigues tend to work better where only one-directiong:
gradients are available in a local area (the apertu,
problem). For this comparison, the block size o
the GSTM and GOSTM has been reduced o 8
pixels to highlight the differences between them. Thit
modification is necessary because both methods pr.

. . e{g 5 Parts of the motion vectors estimated under mildly
duce equally high success rates when a block size

; . noisy constant lighting conditions using (a) GM (b) GOGM
of 16x 16 pixels is usedTable ). Under the new y ghing . g(. ). (b)
ti th t f the GSTM and GOST ) GSTM (d) GOSTM. White vectors indicate correctly
setling, et_sulccg§55$1 esc(j)77e60/ mi %2 ¢ estimated motions, i.e., displacements of (2,2) pixels after
are respec_lve y 57.57 an 070 lg , MOS rounding. Black vectors show incorrect estimations.
of the motion vectors along the vertical edges on
the left-hand side are incorrect. Similarligig. 5c

shows several large erroneous motion vectors alo%

the curved Iines_, located on Fhe right-hand side. Iﬂ hting condition. They produce numerous faulty
both cases the incorrect motion vectors tend to ha otion estimates in the background where there is no

large motion estimation errors in the direction tangent, «on on the other hand. both GOGMig. 6b)
to the edges. They are typical faulty motion vectors ' ’ '

resulting from the aperture problem. Many of these
unsuccessful motion estimations, however, have been
improved or corrected by the GOGM and GOST
(Fig. Bb,d). The improved performance may be at
tributed to the weighting factors based on the diversi
of local gradient orientations. To summarize, larg
erroneous motion estimates are well suppressed by
weighted sum of two motion estimates ih2f and
(14).

le motion estimates at all under the time-varying

Motion estimation on a real-image sequence
Finally, we demonstrate the feasibility of the GOG

240x 320 pixels that contain local motions. Thej
sequence shows a walking woman with stationa
background. We have reduced the image intens
uniformly by 10% in one frame in the sequence
The size of the block is set at>88 pixels. Since
there is no ground truth data for this sequence, t
proposed methods GOGM and GOSTM are compar
with the GM and GSTM based on visual inspectionFig. 6 Parts of the motion estimation results on a real im-
It is obvious that the conventional approaches GMge sequence under time-varying lighting conditions using
(Fig. 6a) and GSTM Fig. 6c) cannot produce reli- (&) GM (b) GOGM (c) GSTM (d) GOSTM.
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and GOSTM Fig. 6d) work reasonably well under 7.
the same condition, and there are far less faulty
responses to the stationary background. Therefore, it
is confirmed that the proposed techniques outperform
their conventional counterparts, especially under time-8-
varying illumination conditions.

CONCLUSIONS

We have presented two motion estimation techniques,
the gradient orientation based gradient method and t
gradient orientation structure tensor method that are
based, respectively, on the spatio-temporal gradieRy
method and the gradient structure tensor method.
Unlike the conventional approaches utilizing image
gradients, we make use of gradient orientation infor12.
mation (GOI) by means of unit gradient vectors. Since
GOl is insensitive to changes of image intensities,
the proposed methods have achieved a significadB-
robustness to time-varying lighting conditions. They
also perform better than the previous methods when
encountering the aperture problem. The implemen-
tation of the proposed methods is straightforwarc}4'
because image gradients are commonly computed at
an early stage in image sequence processing ang
computer vision applications and are readily available.
At present, we are testing a correlation-based method
using GOI. We plan to evaluate the performancess.
of these GOIl-based approaches further on more real
image sequences.
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Abstract

Irregular lighting causes temporal variations of image
intensities, which makes most existing block matching
techniques ineffective. For this, we propose a novel
matching technique based on gradient orientation that is
known to be insensitive to variations of intensities. We
show that gradient orientation information can be effec-
tively utilized by means of two intensity patterns that are
obtained as the x and y components of unit gradient vec-
tors. Simulation results show the proposed technique is
remarkably robust to both spatially uniform and
non-uniform changes of image intensities.

1. Introduction

Establishment of correspondence between two or more
images is an important task in image sequence processing
and computer vision applications. For instance, image
correspondence is an essential step for estimating motions
and depths. Motion estimation is concerned with the cor-
respondence between time-sequential images such as
video sequences. It finds a variety of applications, includ-
ing object-based video coding (e.g. MPEG-4), object
detection for surveillance systems, scene changes detec-
tion for video editing, and image stabilization technology
for image acquisition devices.

Techniques for image correspondence in the spatial
domain may be classified into two categories; gradi-
ent-based methods and matching methods. This paper is
concerned with the latter approach that is also widely re-
ferred to as block matching, template matching, or
correlation-based methods [1]-[5]. In either approach, the
intensities of objects in an image are assumed to be con-
stant over time. This assumption, however, is often
violated by changes of lighting conditions that is a com-
mon incident in outdoor environment. To circumvent this
irregular illumination problem, it is reasonable to employ
a feature that is less dependent on image intensities or
gradients.

This paper presents a novel block matching technique
using gradient orientation information, rather than relying
on conventional image features such as intensities and
gradients, because gradient orientation is known to be
insensitive to variations in illumination [6]-[9]. A com-
parative study with conventional block matching
techniques reveals that the proposed method is remarkably
robust to both uniformly and non-uniformly varying im-
age intensities.
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2. Method

2.1 Gradient orientation information

Let /(x, y) be the image intensities at pixel coordinates
(x, y). The gradient vectors of / may be expressed by (/,,
1,) where I, and I, are the partial derivatives of / in x and
y directions. Gradient orientation information (GOI) can
then be expressed using unit gradient vectors (n,, n,) that
are obtained by dividing (/,, /,) by their norms as

n ) = 1) 12 )+ 1,2 ()
n ) = 1) L2 ) + 1, ()

(M

where we assign zero to n,(x, y) and n,(x, y) when the de-
nominator is zero to avoid zero-division.

Fig. 1(a) shows I(x, y) of a test image of size 256 by
256 pixels with 256 gray levels. The upper left corner of
the image is the origin, and vertical and horizontal axes
are respectively denoted as x and y axes. The small region
of size 32 by 32 pixels encompassed by a white square in
Fig. 1(a) is cropped and enlarged in Fig. 1(b). Fig. 1(c)
shows the gradient vectors (/,, /,) within the cropped re-
gion while Fig. 1(d) shows the unit gradient vectors
(UGVs) in the same region. Note that UGVs carry rich
local gradient information even in relatively low-contrast
areas.

Origin

Figure 1. (a) A test image, (b) a cropped and
enlarged subimage, (c) gradient vectors and (d)
unit gradient vectors within the subimage.

Since UGVs are represented by two scalars #, and n,
ranging from —1 to 1, we may easily utilize GOI by treat-
ing these scalars as intensities. Fig. 2(a) shows the
gradient orientation pattern z, corresponding to the subi-



mage in Fig. 1(b) while Fig. 2(b) shows the gradient ori-
entation pattern n,. Both »n, and », are scaled and
visualized as 8-bit intensity patterns.

(a) (b)
Figure 2. (a) Gradient orientation pattern n, and (b)
gradient orientation pattern 7,.

It should be stressed that the use of UGVs is computa-
tionally more efficient than using angular values & (rad)
because UGVs require no modulo calculations [9].

2.2 Intensity-invariance of gradient orientation

Gradient orientation is known to be insensitive to varia-
tions of lighting conditions [6]-[9]. This is because the
order of image intensities in a local area is well preserved
under varying lighting conditions. For instance, the black
pupil is darker than the brown iris irrespective of illumi-
nation changes. Fig. 3 demonstrates such intensity
invariance of gradient orientation. Fig. 3(a) shows the
same subimage as in Fig. 1(b), except that the intensities
of the upper half of it are reduced by 50%. Figs. 3(b) and
3(c) show the gradient orientation patterns »n, and »,. The
comparison between the patterns in Fig. 2 and those in
Figs. 3(b) and 3(c) shows that gradient orientation patterns
remain unchanged before and after shading occurs, except
for slight changes along the border of the shade.

¥
i e B '
(a) (b) ©

Figure 3. (a) Subimage whose upper half is shaded,
(b) gradient orientation pattern n, and (c) gradient
orientation pattern », within the subimage.

2.3 Block matching technique with GOI

Instead of image intensities, we make use of gradient
orientation patterns as inputs to a conventional block
matching technique with the widely used matching metric,
the sum of absolute differences (SAD) criterion:

GOPM n (p.d) =

N/2 N/2

)

j=—N/2i=—N/2

nxl(x+i,y+j)—nx2(x+i+u,y+j+v)|

- (2)
GOPM_n,(p,d) =

N/2 N/2

z ZN/2|nyl(x+i,y+j)—ny2(x+i+u,y+j+v)|
J==N/2i=—

where p denotes a point (x,y) in the image coordinate,
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d a displacement (u,v) from that point, equivalent to

the motion vector between two time-sequential images
being compared, N the block size, n,; and n,; gradient
orientation patterns of the first frame (reference image),
and n,, and n,, the second frame where a best-matching
block is being searching for. Finally, these two may be
combined into one measure

GOPM(p,d) =

. . 3
GOPM _n,(p,d)+GOPM _n (p,d) ©)

The position of the best matching is indicated by the
minimum of Eq. (3). We call this proposed method the
gradient orientation pattern matching technique (GOPM).
Note that we also have evaluated the sum of squared dif-
ferences (SSD) criterion, but there was no noticeable
improvement of performance.

3. Results and Discussion

3.1 Simulations on synthetic image sequences

We compare GOPM with SAD block matching (SAD)
and zero-mean normalized cross-correlation (ZNCC) on
four synthetic image sequences. Four standard test images
of size 256 by 256 pixels with 256 gray levels are used as
the first frames or references. The second frames are then
generated by translating them by 5 pixels both horizon-
tally and vertically. We have computed 225 (15 by 15)
motion vectors in each sequence. The size of the block is
fixed at 16 by 16 pixels. The range for searching for the
best matching position in the second image is set at £8
pixels both horizontally and vertically. When a motion
vector points a correct pixel, it is considered as a success-
ful motion estimate. To make the simulation realistic,
zero-mean Gaussian noise is randomly generated and
added to every image where the SNR is set at approxi-
mately 40dB. Further, to test the robustness to varying
lightings, the intensities of the second image are modified
in four ways. One is a uniform reduction of intensities,
and the other three are non-uniform modifications of in-
tensities achieved by multiplying the masks shown in Fig.
4. Figs. 4(a) and 4(b) show realistic smooth linear and
Gaussian shadings. Fig. 4(c), on the other hand, shows
rapidly varying shadows that may simulate the case that a
spot light is flashed on an object.

i

() (b) ()

Figure 4. (a) Linear shadow mask, (b) Gaussian
shadow mask and (c) checkerboard shadow mask.

T

£

:
(2

HHE

Table 1 shows the successful motion estimation rates
(%) by the three methods in which the second images are
subject to the uniform intensity reduction by 20% (Simu-



lation 1). It is evident that SAD does not work at all while
ZNCC and GOPM work nearly perfectly. Tables 2 and 3
show the success rates under non-uniform but smooth
changes of image intensities. In Simulation 2, linear shad-
ing is applied to the second images where intensities are
linearly reduced from the left to the right end of the image
up to 50% (Fig. 4(a), Table 2). In Simulation 3, Gaussian
shading is applied so that intensities are reduced from the
center of the image following the profile of a Gaussian
function (Fig. 4(b), Table 3). Under non-uniform but
smooth variations of intensities, both ZNCC and GOPM
achieve high success rates. Unsuccessful motion estimates
are due to the lack of gradient information (e.g. sky) and
the aperture problem.

In Simulation 4, rapid and non-uniform shading is ap-
plied in which the image intensities in vertical and
horizontal stripes are reduced to 50% and the intensities in
the areas where two stripes overlap are reduced to 25%
(Fig. 4(c)). ZNCC can cope with both additive and multi-
plicative variations of intensities when those variations
occur uniformly within a block. By contrast, GOPM can
handle such rapid and non-uniform intensity changes
within a block, which is highlighted in Table 4.

Table 1. Success rates under a mildly noisy condi-
tion with uniformly varying image intensities.

Simulation1 SAD ZNCC GOPM
Lena 24.9 100 100
Girl 27.1 100 100
Cameraman  40.9 97.8 98.2
House 4.90 99.6 96.4

Table 2. Success rates under a mildly noisy condi-
tion with linear shading.

Simulation2 SAD ZNCC GOPM
Lena 25.8 99.1 100
Girl 27.1 100 100
Cameraman  39.1 98.7 99.1
House 4.89 97.3 96.0

Table 3. Success rates under a mildly noisy condi-
tion with Gaussian shading.

Simulation3 SAD ZNCC GOPM
Lena 449 97.3 99.6
Girl 21.3 100 99.6
Cameraman  36.9 98.2 97.3
House 41.8 94.2 92.9

Table 4. Success rates under a mildly noisy condi-
tion with rapid and non-uniform shading.

Simulation4 SAD ZNCC GOPM
Lena 10.2  20.0 97.3
Girl 13.8 262 100

Cameraman 13.3 333 91.6

House 2.2 5.33 88.0
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3.2 Simulations on real image sequences

We next evaluate the performances of SAD, ZNCC,
and GOPM on two real image sequences, A and B. Since
there is no ground truth data (i.e., true motion vectors)
available for these real sequences, we use the motion vec-
tors estimated under a constant illumination as references
shown in the left column of Fig. 5. Fig. 5 shows the image
sequence A in which the camera tracks a walking man.
The motion vectors in background are supposed to point
rightward while those on the man are small. Under such
ideal lighting condition, the motion estimates by the three
methods are similar to each other. We then apply the same
four intensity modifications as in 3.1. The robustness of
motion estimation is evaluated in terms of the means and

variances (m,o”) of the differences between the refer-

ences and the motion vectors estimated under varying
lighting conditions. Table 5 shows the differences when
the second image is subject to a uniform change of inten-
sities as described in Simulation 1. SAD shows large
variances while those of ZNCC and GOPM are far smaller,
indicating that the latter two methods work robustly with
uniform variations of intensities. Tables 6 and 7 show the
differences when the second image is subject to
non-uniform but smooth changes of intensities as depicted
in Simulations 2 and 3. SAD fails to estimate motion re-
liably. Conversely, ZNCC and GOPM withstand such
lighting conditions. Finally, Table 8 shows the differences
when the second image is subject to rapid and
non-uniform changes of intensities as in Simulation 4. As
shown in the right column of Fig. 5, SAD and ZNCC fail
to work properly under such condition, while GOPM still
estimates reasonably accurate motion vectors.

Table 5. Differences in the estimated motion vec-

tors before and after uniform shading is applied.

Sim 1 SAD ZNCC GOPM
Image A (5.02,24.0) (0.016,0.02) (0.067,0.25)
Image B (3.51,21.5) (0.067,0.55) (0.19, 1.77)

Table 6. Differences in the estimated motion vec-
tors before and after linear shading is applied.

Sim 2 SAD ZNCC GOPM
Image A (6.19,31.1) (0.013,0.63) (0.11,0.41)
Image B (3.67,20.3) (0.36,3.46) (0.34,2.79)

Table 7. Differences in estimated motion vectors
before and after Gaussian shading is applied.

Sim 3 SAD ZNCC GOPM
Image A (5.77,22.5) (0.78,4.74) (0.22,0.84)
Image B (4.19,28.1) (0.98,9.62) (0.70, 5.44)

Table 8. Differences in estimated motion vectors be-
fore and after rapid and non-uniform shading is
applied.

Sim 4 SAD ZNCC GOPM
Image A (6.99,17.9) (5.93,24.7) (0.88,4.11)
Image B (5.21,20.5) (3.69,23.5) (0.77,5.30)




Figure 5. Motion vectors estimated by (a), (b)
SAD, (c), (d) ZNCC and (e), (f) GOPM under con-
stant (left column) and varying lighting conditions
(right column).

3.3 Computational cost

We have compared the computational costs of SAD,
ZNCC, and GOPM. Table 9 shows the computation time
of each method for computing 225 motion vectors. The
three techniques are implemented in MATLAB (Ver. 7.0)
and executed on a PC with the Pentium 4 (2.80GHz) and
1GB of RAM. SAD is the fastest method among the three
owing to its simplest similarity measure whereas ZNCC is
the slowest because of the complexity of its computation
[4]. GOPM is slower than SAD because GOPM requires
an extra computation of Eq. (1) and also two
sums-of-differences have to be computed as in Eq. (2). It
is important to note that GOPM is faster than ZNCC.
GOPM can be computed more efficiently than ZNCC be-
cause the similarity measure of GOPM is the same as that
of SAD which is much simpler than that of ZNCC. An-
other advantage of GOPM is that it allows the use of
integers while real numbers are necessary for ZNCC.

Table 9: Computation times of SAD, ZNCC, and
GOPM.

SAD
0.94

ZNCC
3.97

GOPM
1.47

Computation time (sec)

4. Conclusions

Most existing approaches for image matching are based
on either image intensities or gradients. Consequently, it is
inevitable that these conventional techniques are suscepti-
ble to varying image intensities caused by irregular
lighting conditions. To cope with this illumination prob-
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lem, we have presented a novel matching technique that is
based on gradient orientation patterns that can be obtained
as the x and y components of unit gradient vectors. We do
not use the angular values @ (rad) of gradient vectors di-
rectly to avoid modulo computation, which enables a fast
implementation of the proposed method. Simulation re-
sults on both synthetic and real image sequences have
revealed that the proposed technique, GOPM, works much
more robustly than SAD with varying image intensities.
The motion estimation performance of GOPM is compa-
rable to that of ZNCC with uniformly changing intensities
and also non-uniformly but smoothly varying intensities.
Furthermore, it is a significant advantage of GOPM over
ZNCC that it can cope with non-uniform and rapid
changes of image intensities that may occur in outdoor
environment. We have also shown that the computational
cost of GOPM is less than that of ZNCC. Gradient vectors
are generally computed at an early stage of various image
processing and computer vision applications, and are
readily available. The normalization of the gradient vec-
tors to obtain the unit gradient vectors can be performed
prior to the computation for image correspondence.
Therefore, GOPM will be well-suited to real-time applica-
tions and also hardware implementation.
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Abstract—Eye tracking is a computer vision tech-
nique widely used in many fields especially in a med-
ical field. This paper introduced the new eye tracking
method based on gradient orientation pattern matching
and automatic template update technique. This pro-
posed method can be implemented in real-time appli-
cation and can provide high robustness to changing
lighting condition during tracking process.

Keywords- eye tracking, real-time tracking, template
matching, gradient orientation pattern, template up-
date.

I. INTRODUCTION

Eye tracking is one of the fields in computer vision,
used for measuring a focusing or an eye movement. The
technique of eye tracking can be applied into several other
fields such as cognitive study, human interface devices,
developing disable support equipments, and developing
diagnosis and treatment equipments in opthalmology.

There are many methods proposed for eye tracking, such
as gaze tracking method[l], Hough transform method[2],
fixation precision in non-contact eye-gaze tracking[3].
These techniques provide very reliable result with low
error, however, their require lots of computation and there-
fore hardly implemented in real-time application. Others
newly proposed technique such as horizontal and vertical
projection [4],[5], eye detection based on color informa-
tion[6], and eye-tracking using gray prediction[7]. These
technique aimed to improve the speed of eye tracking
algorithm so that can be used in real-time application.
But these techniques still have their limitations. These
real-time techniques used intensity data of the images as
an input for analyzing, therefore they are very sensitive
to changing lighting condition and obstacle and result in
miss-matching. This paper proposes a new eye-tracking
method using an gradient orientation pattern matching
and automatic template update technique together. The
gradient orientation pattern matching (GOPM) is the
newly introduced template matching technique that use
only the direction of images’ gradient for tracking, so
that it can provide the robustness to changing lighting
condition[8]. The GOPM is also fast enough to be imple-
mented in real-time applications[9]. The automatic tem-
plate update algorithm can also be applied to improve the

correctness of the matching result. By using this method,
the error in matching result due to lighting condition is
much more reduced.

The remaining parts of this paper are organized as
follows: section II briefly introduces the GOPM, section I1I
describes about template matching algorithm, section IV
describes the implementation method. Finally, we discuss
and the the simulation results in section V.

II. GRADIENT ORIENTATION PATTERN MATCHING

The gradient orientation pattern matching (GOPM)
is a matching technique based on gradient vectors of
image. Unlike the others traditional template matching
techniques, such as sum-of-squared differences(SSD) or
cross-correlation (CC) that use intensity information of
the images, GOPM uses unit gradient vectors, obtained
through the normalization of image’s gradient vector, for
establishing image correspondences. A main advantage of
GOPM is that it can provide a robustness to lighting-
condition changes and yields a very good matching result.

The GOPM uses x-axis and y-axis unit gradient vector
as an inputs, obtained through the normalization equation
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where I, and I, are the gradient of the image at (x,y)
coordinates. The € is a small constant that is added
to prevent zero-division during normalization. Then the
normalized gradient vectors n, and n, are used separately
using the sum-of-squared differences as
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where p’ denotes a point (x,y) in the image coordinate,
d denotes a intensity displacement (u,v) of the corre-
sponding points between two images, N the block size,
I, a block partitioned from the template, and I the



block partitioned from image being searched. Both n,
and n,; are the unit gradient vectors of template I; and
Ng2,My2 are the unit gradient vectors from the image I5.
Gradient orientation pattern matching can be obtained by
combining these two terms.
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GOPM (f,d) = GOPM _n,(§,d) + GOPM_n,(5,d) (3)

The point that shows the lowest gradient displacement d
is the best matching point in its local search region. Since
GOPM uses only the direction information of gradient, it
does not depend on intensities and can provide robustness
to varying lighting-condition.It should be noted that the
difference between two unit vectors can be also evaluated
by the angular dispersion 6 between them. However, it
requires a trigonometric calculations and modulo calcula-
tions (e.g. difference between two angles cannot exceed 7 )
[8]. Tt is computationally more advantageous to decompose
the unit vector into two scalars (i.e., the x and y com-
ponents) and compute the difference using the standard
matching metric such as SAD, SSD, and CC.

III. AutoMATIC TEMPLATE UPDATE

When GOPM is implemented for eye tracking, some-
times the appearance of pupil and iris is changed, so that
no exactly identical pattern of the template appears in the
input images. This error cause the miss-matching problems
in matching result. In this section, an automatic template
update algorithm is introduced in order to increase the
performance and reliability of the tracking result. The
main concept of automatic template update technique is
to reconstruct a new template in every frame using the
best-matching data corresponding to the previous input
image [10]. By using this technique, the template will be
very similar to the current input image, thus the matching
result will be improved.

A. Correct-matching Criterion

The usage of automatic template update technique
alone has a disadvantage that in case miss-matching oc-
curred, the template will be reconstruct using the miss-
matching result, and then yield the totally fail result
onward. In order to implement this technique, we need
a constrains to check whether the matching result is
acceptable or not before we can use it data to reconstruct
the template. By using the assumption that the video
sequence is fast enough so that no any suddenly change
in a location of the corresponding image, these constrains
are proposed to limit the acceptable range of the matching
results.
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where ng, and n,, are the normalized gradient of
a current template, ng p41 and nyn,41 the normalized
gradient of new template corresponding to the best-
matching position of the current frame, x,, and y, are the
coordinates of the best-matching position of the current
frame, z. and y. are the coordinates of the best-matching
position of latest correct matching result, § is a difference
value between current the template and the new created
template, D is a Euclidean distance between the best-
matching positions of the current frame and latest correct
matching frame, 7 is the threshold for Eq.(4), and T is the
threshold for Eq.(5). Both 7 and T can be any threshold
function, and these functions determine the efficiency of
this technique. In this paper, the value of 7 is 1000 and T’
is 30 thresholds, based on empirical method on authors’
video samples. and If the new template corresponding to
the matching result has a difference from the currently
used template larger than 7, this result should be con-
sidered as miss-matching frame by Eq.(4). The matching
result that its distance from the last correct result larger
than T is too far away and should also be considered as
miss-matching frame by Eq.(5). The matching result of
every frame need to pass both Eq.(4) and Eq.(5) to be
accepted as correct matching result and then be used as
new z. and y.. If the matching result is considered as miss-
matching frame, the new template corresponding to this
frame will be discard and the previous template is used
instead.

B. Template Update Algorithm

The traditional template matching technique is mostly
used for finding a part of the image that are identical to
the interesting pattern that called template. In general, for
real-time template matching, we use the same template
to perform template matching for all images in a video
sequence. However, it is difficult to design the template
that can suitable to entire the video sequence. Mostly
the pre-defined template will be created from the first
frame of the entire sequence or the general pattern for that
application. But this pre-define template is not guaranteed
that it can yield the good result when a sequence passed
along. So when the condition of the images in the sequence
change, the template will be out-of-date and cannot find
the corresponding point any more. To solve this problem,
the automatic template update is implemented to update
the template along with the video sequence.

Automatic template update algorithm uses the best-
matching position which passed the correct-matching cri-
terion to construct the new template for every frame. The
algorithm is as be shown in Fig. 1

For every frame, the template matching technique is
applied to input image, yield the best-matching location
that the corresponding image the template. This posi-
tion is then tested with the correct-matching criterion.
If the position fails the criterion and considered as miss-
matching, then this miss-matching position is rejected. If
the position pass the criterion, then a portion of input



image is cropped corresponding to this position . This crop
region with the same size to the old current template will
be used as a new template for the next frame. By using
this technique, the conditions of template will be almost
the same to the conditions of the current frame, helping
the matching result to be more success. However, the use
of template update technique may make the template to
slightly shift from the desire position so the appropriate
threshold in correct-matching criteria is needed to prevent
this shifting to occured.

IV. PROCEDURE
A. Simulation Environment

The method proposed in this paper is originally aimed
to be an eye-tracking system used for ophthalmic surgery,
the objective of this simulation is to show the robustness
to changing-lighting condition and the improved matching
efficiency. In order to response the surgeon work flow, all
implementation are developed in real-time. The program
is developed using OpenCV library based on C/C++
programming running on computer with Intel Core2 Duo
1.66 GHz processors and 4 GB of memory [11],[12],[13].
For this simulation, we use sample video sequences in
various situation including real ophthalmic surgery video.
The sample input from the surgery camera and our sample
video sequence are shown in Fig.2

The algorithm (Fig.3) consists of four steps: Prepro-
cessing, Gradient Orientation Pattern Matching, correct-
matching criterion, and automatic template update. Be-
fore running this algorithm, the initial template is needed
to be initialized.

B. Preprocesses

Before performing the tracking process in each frame,
preprocessing step can be applied to improve the efficiency
of the tracking process. This preprocessing step consists of
downsampling and low-pass filtering steps. Downsampling
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Figure 1: Template update algorithm.

is applied to the input video sequence and the template
in order to reduce the computation time of the template
matching. Since the template matching processes on every
single pixel, when the sizes of the input and template
decrease, the computation time is reduced [14],[15]. In
here, we reduce the size of the input video sequence and
template to 50 percent of the height and width. This
downsampling has no effect to the matching result since
both video and template are downsampled with the same
ratio.

Low-pass Filtering is applied in order the remove small
noise due to video input/output device or camera quality
[16]. This small noise are hard to noticed visually, but can
make an large effect on gradient pattern which create an
error on the matching result of GOPM. In this simulation,
the 3x3 rectangular low-pass filter is applied to both input
video sequence and template (Eq.(6)).

0.11 0.11 0.11
0.11 0.11 0.11 (6)
0.11 0.11 0.11

H(z,y) =

C. Gradient Orientation Pattern Matching

Gradient Orientation Pattern Matching (GOPM) is ap-
plied to perform template matching between input video
sequences and the template. The input image’s and tem-
plate’s gradient information are extracted into x and y
direction as shown in Fig.4. The result of GOPM is the
sum of squared differences between gradient of image
to those of template in both x and y directions. The
point which has the lowest difference will yield the (z,y)
coordinates of the best-matching position.

D. Correct-matching Criterion

The best-matching position’s coordinates from previous
step is checked with this correct-matching criterion (Eq.(4)
and Eq.(5)). If the position can satisfy these criterion,
then this best-matching position is consider as correct-
matching and can be use further. If the position cannot
satisfy the criterion, this matching result is considered as
miss-matching and be rejected.

E. Automatic Template Update

The best-matching position that can satisfy the previous
criterion will be used to update the new template which is
to use in step IV-C for the next frame. The algorithm for
automatic template update is already described in section
I11-B.

(a) (b)

Figure 2: Sample inputs from (a) a real surgery (b) a light-
varying video sequence.



Table I: Precision Error(%) of SSD, standart GOPM, and time-varying GOPM

Input Standard SSD Standard GOPM Time-varying GOPM
Average Precision Er- | Average Precision Er- | Average Precision Er-
computation | ror (%) computation | ror (%) computation | ror (%)
time (ms) time (ms) time (ms)

Video sequencel | 78.35 1.33 62.48 0 13.81 0

under constant

lighting

condition

(Resolution

320x240 px)

Video sequence2 | 78.63 40.47 63.09 12.87 12.92 0

under changing

lighting

condition

(Resolution

320x240 px)
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Figure 3: Algorithm of proposed eye-tracking method.

Figure 4: Gradient infomation of sample frame in (a) x direction
and (b) y direction

V. RESULTS

Most of the contents on this paper focus on the precision
of tracking and computational time. In Table. I, we com-
pare the recognition performance of SSD, standard GOPM
and time-varying GOPM in various conditions; constant
lighting condition, changing lighting condition and video
sequence from an actual surgery. The precision error is
defined as a number of frames that its best matching
position goes out of pupil area over the total number of
frames.

Firstly, the simulation of three techniques under the
uniformly varying or constant lighting condition provide
very well performance (i.e. 1.33% precision error of SSD
and 0% precision error for both GOPM and time-varying
GOPM). However the performance of SSD is rather poor
under the changing lighting condition, almost half of the
tracking (i.e. 40.47%) failed to estimate the eye’s centroid
position. Hence standard GOPM still keeps tracking eye’s
centroid with precision error of 12.87%.

Although standard GOPM yields higher precision than
the SSD under the changing lighting condition, the preci-
sion error is relatively far higher than the standard GOPM
under constant lighting condition. Fig.5b and 5d shows
result maps after performing GOPM. In Fig.5b, which is
the result map of corrected matching frame (Fig.5a) shows
an obviously best-matching peak (darkest spot) whereas
the result map of mis-matching frame(Fig.5a) shows many
of low amplitude peaks. This implies that matching tech-
nique might found the similar pattern of gradient in the
unexpected places. By inspection, source of the problems
came from the uncontrollable factor such as responsiveness
or luminous sensitivity of camera. Some frame might loss
significant content and cause an adjustment in gradient
information i.e. the template is out-of-date.

B. Error Rejection Using the Automatic Template Update
template and Correct Matching Criteria

In simulation, correct-matching criterion individually
could handle almost mis-matching frame. However the
criteria is to unable indicate all of the existence mis-
matching frame. As ideas presented in the previous sec-
tion, we made use of the template update algorithm with
correct matching criterion to prevent the mis-matching
from a large dissimilarity between template and sam-
ple component in difference time. As a result in Table
tab:comparetable, time-varying GOPM reduces precision
error of standard GOPM from 16.01% to 0.884% which
imply the great influence of template update algorithm
and correct-matching criterion on GOPM efficiency.

However in some circumstances, template update may
make the template which consists of no eye at all. This



(c) (d)

Figure 5: Matching results and corresponding GOPM map (a)
correct matching result, (b) corresponding GOPM map, (c)
mis-matching result, and (d) corresponding GOPM map.

fault template can fail the tracking result. In this case,
the template is needed to be reset to the initial template
before continue tracking process.

C. Computation Time

By performing downsampling to the video sequence,
the computation time of the proposed technique is far
faster than previous one. Table I clearly shows that the
computation time is reduced from about 60ms to about
15ms in standard SSD and GOPM after downsampling
is applied. After downsampling, the computation times
decrease to about 1/4 of the original-size video. With this
computation time, time-varying GOPM can process at
more than 50 frames per second, with is now enough for
implement to the camera which normally operate at 25
frames per second.

VI. CONCLUSION

We previously showed that a gradient orientation pat-
tern matching technique (GOPM) works remarkably well
under varying lighting conditions [8], [9]. In this paper, we
presented a time-varying GOPM for human eye tracking.
The proposed method updates the template over time,
which enhances the tolerance of the tracking method to
the variations in image acquisition conditions (in addi-
tion to lighting conditions), including slight changes of
the image sharpness, scales, and the camera view-points.
The template is updated only when two conditions are
satisfied, which ensures that the two templates before
and after updating are geometrically close enough to each
other and also resemble enough to avoid template drift.
Another notable improvement over the previous work is
that we have significantly shortened the computation time
by introducing a down-sampling step of the input video
sequences. Thus, the proposed method can work very
robustly and smoothly in real time. To summarize, we have
achieved a higher performance of real-time eye-tracking at
a reduced computation cost. For further improvement of
the technique, we plan to make the conditions for template

updating adaptive rather than the fixed criteria that are
currently used.
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