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1. Abstract 

The project is concerned with robust motion estimation in image sequences, 
especially under varying lighting conditions. Since conventional approaches are 

based on image intensities or gradients, they are sensitive to variations of lighting 
conditions. To overcome this problem, we propose to use gradient orientation 
information in place of image intensities and gradients because gradient orientation 
is known to be notably invariant to varying illuminations. In this project, we have 

developed three motion estimation techniques: the gradient orientation-based spatio-
temporal gradient method (GOGM), the gradient orientation structure tensor method 
(GOSTM), and gradient orientation pattern matching technique (GOPM). They were 
compared with their respective original methods: the spatio-temporal gradient 

method (GM), the gradient structure tensor method (GSTM), and correlation-based 
methods such as the sum-of-absolute differences (SAD) matching, the sum-of-
squared differences (SSD) matching, and the zero-mean normalized cross-

correlation (ZNCC). Our simulation results show that the proposed methods perform 
motion estimation very well regardless of irregular lighting conditions, while the 
conventional approaches fail to work under such conditions.  
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2. Executive summary 

We have developed three novel techniques for estimating motions in image 

sequences that work robustly under irregular lighting conditions. The first two 
techniques are based on a well-known constraint, the optical flow constraint 
equation (OFCE), while the third belongs to correlation-based approaches. The first 

technique developed is the gradient orientation based spatio-temporal gradient 
method (GOGM) that is originated in the classical spatio-temporal gradient method 
(GM). The second is the gradient orientation structure tensor method (GOSTM) that 
is an improved version of the gradient structure tensor method (GSTM). Finally, the 

third is the gradient orientation pattern matching technique (GOPM) that is related to 
conventional template (or block) matching techniques, including sum-of-absolute 
differences (SAD) matching, sum-of-squared differences (SSD) matching, and zero-
mean normalized cross-correlation (ZNCC). A common feature among the three 

proposed techniques is that they employ gradient orientation information instead of 
image intensities and gradients that are used by the existing methods mentioned 
above. Both the GM and GSTM are image gradients-based, while SAD, SSD, and 
ZNCC use image intensities. Since gradient orientation is remarkably invariant to 

changing lighting conditions, all the developed techniques, i.e., GOGM, GOSTM, 
and GOPM, work robustly under irregular illuminations, unlike the original techniques 
that they are based on.  

 

3. Objective  

The objective of this project is to develop a technique for estimating motions in 

image sequences that work robustly under varying lighting conditions.  
 

4. Research methodology 

Gradient-based motion estimation techniques (e.g. aforementioned GM, GSTM) are 
based on the optical flow constraint equation (OFCE) that assumes the intensity of 

an image is constant along its motion trajectory over time. In place of the constraint, 
we have introduced a new assumption, that is, the gradient orientation of an image 
is constant along its motion trajectory. Following the new assumption, we devised 
two novel gradient-based techniques, GOGM and GOSTM. The derivation of those 

techniques are fully described in the journal paper, “Robust motion estimation 
methods using gradient orientation information”, published in Science Asia, Vol. 35, 



 

No. 2, pp. 196-202, June 2009, together with the review of the existing methods, 
GM and GSTM. Please see Appendix A for more details.   
 
Correlation-based motion estimation techniques make use of image intensities or 

gradients. In place of image intensities or gradients, we utilize gradient orientation 
information by means of unit gradient vectors (or normalized gradient vectors). The 
unit gradient vector can be expressed with two scalars, i.e., the x and y components 
of the vector. These two scalars can be regarded as a certain signal as intensities. 

This means that we obtain two intensity patterns from one image. We call them 
gradient orientation patterns (GOPs). Those GOPs can be used in any correlation-
based techniques, such as popular sum-of-absolute differences (SAD) matching, 
sum-of-squared differences (SSD) matching, zero-mean normalized cross correlation 

(ZNCC) and so on. We have tested the motion estimation performance of this 
concept using GOPs in the SAD matching strategy. The proposed method named 
gradient orientation pattern matching method (GOPM) is described in the refereed 

conference paper, “A block matching technique using unit gradient vectors”, 
published in the proceeding of the IAPR Conference on Machine Vision Applications 
(MVA2009), pp. 390-393, Japan, May 2009. Please see Appendix B for more details.  

 

5. Results 

As mentioned above, the simulation results of the proposed techniques, the GOGM 
and GOSTM, are shown in the paper attached as Appendix A, while those of the 

GOPM are given in the paper attached as Appendix B. We have also achieved a 
real-time implementation of the GOPM in C language with the OpenCV library 
where the proposed matching technique is used for tracking a human eye at the 

video rate during eye surgery. Please see Appendix C for more details. 
 

6. Conclusions and discussion 

Conclusive remarks on the GOGM and GOSTM: The gradient orientation based 
spatio-temporal gradient method (GOGM) and the gradient orientation structure 
tensor method (GOSTM) are based on the spatio-temporal gradient method (GM) 
and the gradient structure tensor method (GSTM), respectively. Unlike the 

conventional approaches utilizing image gradients, we make use of gradient 
orientation information (GOI) by means of unit gradient vectors. Since GOI is 
insensitive to changes of image intensities, the proposed methods have achieved a 



 

significant robustness to varying lighting conditions. They also perform better than 
the conventional methods when encountering the aperture problem. The 
implementation of the proposed methods is straightforward because image gradients 
are commonly computed at an early stage in image sequence processing and 

computer vision applications and are readily available.  
 
Conclusive remarks on the GOPM: Most existing approaches for image matching 
are based on either image intensities or gradients. Consequently, it is inevitable that 

these conventional techniques are susceptible to varying image intensities caused 
by irregular lighting conditions. To cope with this illumination problem, we have 
presented a novel matching technique that is based on gradient orientation patterns 
(GOPs) that can be obtained as the x and y components of unit gradient vectors. 

We do not use the angular values θ (rad) of gradient vectors directly to avoid 
modulo computation, which enables a fast implementation of the proposed method. 

Simulation results on both synthetic and real image sequences have revealed that 
the proposed technique, GOPM, works much more robustly than SAD matching with 
varying image intensities. The motion estimation performance of the GOPM is 
comparable to that of ZNCC with uniformly changing intensities and also non-

uniformly but smoothly varying intensities. Furthermore, it is a significant advantage 
of the GOPM over ZNCC that it can cope with non-uniform and rapid changes of 
image intensities that may occur in outdoor environment. We have also shown that 

the computational cost of the GOPM is less than that of ZNCC. Gradient vectors are 
generally computed at an early stage of various image processing and computer 
vision applications, and are readily available. The normalization of the gradient 
vectors to obtain the unit gradient vectors can be performed prior to the computation 

for image correspondence. Therefore, the GOPM will be well-suited to real-time 
applications and also hardware implementation (see Appendix C).  
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ABSTRACT : Changing lighting conditions cause temporal variations of image intensities and make most existing motion
estimation techniques ineffective. As a solution to this problem, we use gradient orientation information, which depends
very little on changes of image intensities, in place of commonly used image features such as intensities and gradients. By
employing gradient orientation, two conventional motion estimation techniques (the spatio-temporal gradient method and
the gradient structure tensor method) can be transformed into methods that are far more robust to changing image intensities.
Simulation results on both synthetic and real image sequences show that the proposed methods perform motion estimation
remarkably well irrespective of time-varying image intensities. In addition, the proposed methods also cope better with the
aperture problem in which only unidirectional gradients are available and large erroneous motion estimates are produced.

KEYWORDS : motion vectors, optical flow, spatio-temporal gradient method, gradient structure tensor

INTRODUCTION

Motion estimation is an important task in the fields
of image sequence processing and computer vision.
It has various applications, including object-based
video coding (e.g. MPEG-4), object detection and
tracking, scene change detection for video editing,
image stabilization for camcorders, and dynamic 3-d
scene analysis for autonomous navigation. Motion es-
timation techniques in the spatial domain may be clas-
sified as being either gradient-based or correlation-
based methods (also commonly referred to as block
matching or template matching)1. Gradient-based
techniques can be further divided into spatio-temporal
gradient methods (often simply referred to as gradient
methods)1–3 and gradient structure tensor methods
(also referred to as gradient square tensor methods
or 3-d structure tensor methods)1,4–7. Gradient-based
methods are in general used to obtain a dense optical
flow field or motion vectors. These techniques are
effective especially when the displacement between
images over time is small, typically a few pixels.
On the other hand, correlation-based methods may
be the most intuitive approach as they search for
similar patterns between two images1,8–10. Since they
can handle larger displacements, they are used not
only for motion estimation, but also for establishing
correspondence between images captured at different
viewpoints such as stereo vision. They are, however,
not suitable for computing dense motion vectors ow-

ing to their high computational cost.
This paper is concerned with gradient-based

methods. They are based on the optical flow constraint
equation which assumes that image intensities are
constant along motion trajectories. This assumption,
however, is often violated by changes of lighting
conditions that is a common occurrence in outdoor en-
vironments. To circumvent this varying illumination
problem, it is reasonable to employ a feature that is
less dependent on image intensities. Gradient orien-
tation (or direction) is an attractive feature because it
is not sensitive to variations in illumination11–14. In
this paper, we propose the use of gradient orientation
information, instead of the commonly used image
features such as intensities and gradients, to achieve
a robust performance for motion estimation.

OPTICAL FLOW CONSTRAINT EQUATION

An optical flow field, showing dense motion vectors
within an image, is generally estimated under the
assumption that the image intensities of an object
are constant over time. By assuming that the image
intensitiesI at points(x, y) at timet are constant over
time t + dt, we have

I(x, y, t) = I(x + dx, y + dy, t + dt), (1)

wheredx anddy denote the displacements in thex
andy directions between two images recorded at times
t and t + dt. By taking the first-order Taylor series
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expansion of the right-hand side of (1), we obtain

I(x + dx, y + dy, t + dt)
≈ I(x, y, t) + Ixdx + Iydy + Itdt, (2)

where the subscripts denote partial derivatives. From
(1) and (2), one can derive the well-known optical flow
constraint equation (OFCE),

Ixu + Iyv + It = 0, (3)

in which (u, v) ≡ (dx/dt,dy/dt) are motion vec-
tors. Eq. (3) is apparently underdetermined because
it contains two unknowns,u and v. There are two
popular approaches to solve (3) for (u, v), leading to
two motion estimation techniques, namely, the spatio-
temporal gradient method and the gradient structure
tensor method.

THE SPATIO-TEMPORAL GRADIENT
METHOD

The spatio-temporal gradient method, which we will
refer to as the gradient method (GM), is a traditional
optical flow estimation method1–3. It is based on
regression analysis where the two unknowns(u, v)
are computed by the least-squares method assuming
that It is a dependent (or target) variable andIx and
Iy are independent variables. To solve the OFCE
for (u, v) we may introduce either a global or local
smoothness constraint. The former constraint assumes
that the optical flow changes smoothly over the entire
image2, while the latter assumes that the optical flow
in a small region is constant3. To avoid the possibly
time-consuming iterative procedure involved in the
former approach, we employed the latter. Under the
local smoothness constraint, motion vectors(u, v) can
be straightforwardly determined by minimizing the
quadratic cost-function,

F =
∑

(Ixu + Iyv + It)2, (4)

where the summation is performed over a small region
or block.

The procedure of the GM is equivalent to deter-
mining of the best-fitting plane to a given set of points
(Ix, Iy, It) by minimizing the sum of the squares of
the distances between the points and the plane along
the It axis. The normal vector of the plane gives the
motion vector(u, v) of the small region. The least-
squares solution of (4), which we denote by(ũ, ṽ), is

given by

ũGM =
(
∑

IxIy)(
∑

IyIt)− (
∑

I2
y )(

∑
IxIt)

(
∑

I2
x)(

∑
I2
y )− (

∑
IxIy)2

,

ṽGM =
(
∑

IxIy)(
∑

IxIt)− (
∑

I2
x)(

∑
IyIt)

(
∑

I2
x)(

∑
I2
y )− (

∑
IxIy)2

.

(5)

The implementation of (5) is easy and fast, and is often
used for obtaining dense motion vectors.

THE GRADIENT STRUCTURE TENSOR
METHOD

The gradient structure tensor method (GSTM) is a
newer approach1,4–7. With the rapid advance of
computer technology, the GSTM has been employed
for real-time motion estimation in recent years15,16.
The GSTM is based on orthogonal regression (or
total least-squares fitting) using principal component
analysis (PCA). The gradient structure tensorT of the
image intensitiesI is defined as

T =

 ∑
I2
x

∑
IxIy

∑
IxIt∑

IyIx

∑
I2
y

∑
IyIt∑

ItIx

∑
ItIy

∑
I2
t

 , (6)

where
∑

indicates the summation within a local 3-d
region such as a cube.T can be viewed as a covariance
matrix of the spatio-temporal image gradients in PCA.
PCA can be used to find the best-fitting plane to a
given set of points(Ix, Iy, It) in the 3-d space spanned
by the Ix, Iy, and It axes. The GSTM determines
the best-fitting plane by minimizing the sum of the
squares of the orthogonal offsets of the points from
the plane. In contrast, in the GM, errors are defined as
the sum of the squared vertical offsets from the data
points to the fitted plane. In other words, errors are
measured along theIt axis becauseIt is considered as
a variable dependent on the other two variables,Ix and
Iy. Such fitting model of the GM is often criticized for
its unequal treatment of spatial and temporal deriva-
tives1. When there is no clear relationship among
variables, whether they are independent or dependent
variables, it makes more sense to measure errors by
treating all three variables equally and minimize the
orthogonal offsets of the points to the plane. Our
previous work also revealed that the GSTM performs
motion estimation much better than the GM largely
owing to this difference in fitting models17.

Another interpretation of the GSTM is that when
a small objectP is moving at a constant speed in a
certain direction in a series of time-sequential images,
the trajectory of the moving objectP forms a tubular
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structure in 3-d spatio-temporal space. By apply-
ing PCA to (Ix, Iy, It), we obtain three eigenvec-
tors (e1, e2, e3) and their corresponding eigenvalues
(λ1, λ2, λ3) where λ1 > λ2 > λ3 > 0. The
first two eigenvectors will point in directions that
are perpendicular to the trajectory ofP , while the
third eigenvectore3 = [x3 y3 t3]

T, associated with
the smallest eigenvalueλ3, will indicate the direction
along the trajectory. Hence, motion vectors may be
estimated from

ũGSTM = x3/t3, ṽGSTM = y3/t3. (7)

It is relevant to note that we may evaluate the con-
fidence of estimated motion vectors by analysing
the relationship between the three eigenvalues of the
tensor1,4,6,7,15. For instance, ifλ1 ≈ λ2 >> λ3 > 0,
the trajectory forms a linear structure in the spatio-
temporal space and the confidence is high. When
λ1 >> λ2 ≈ λ3 > 0, the motion trajectory is plane-
like, which indicates that there is an aperture problem
where we can estimate motion only along the gradient
vector available. Whenλ1 ≈ λ2 ≈ λ3 > 0, the
corresponding local region may have impulsive noise
or motion discontinuities, and the resultant motion
vectors may be inaccurate. Finally, ifλ1 ≈ λ2 ≈
λ3 ≈ 0, there is no gradient information and motion
estimation is impossible.

GRADIENT ORIENTATION INFORMATION

As a robust image feature, we propose using gradient
orientation information (GOI) rather than the conven-
tional image features such as intensities and gradients.
We now describe how to extract GOI and how to use
it in a computationally efficient manner.

Extraction of gradient orientation information

Let I(x, y) be the image intensities at pixel coordi-
nates(x, y). The gradient vectors are then(Ix, Iy). By
convention, the upper left corner of the image is the
origin, thex-axis is directed downwards, and they-
axis is horizontal. The unit gradient vectors(nx, ny)
are obtained by dividing(Ix, Iy) by their magnitudes
where we assign zeros tonx(x, y) andny(x, y) if the
magnitude is zero. Notice that unit gradient vectors
carry rich spatial information even in relatively low-
contrast areas (Fig. 1d). As the unit gradient vectors
(nx, ny) are represented by two scalars,nx andny,
ranging from−1 to 1, they can be treated as two
separate intensity patterns. We call them gradient
orientation patterns and make use of them as a robust
image feature for motion estimation. It should be
emphasised that the use of unit gradient vectors is

(c) (d)

Fig. 1 (a) An 8-bit grey-scale 256× 256 pixel image –
the Lena image (b) an enlarged (32× 32 pixel) subimage
(c) subimage gradient vectors (d) subimage unit gradient
vectors.

preferable to using angular valuesθ directly because
angular values require modulo calculations (e.g., the
difference between two angles cannot exceedπ)14.

Intensity-invariance of gradient orientation

One way to model the intensity variations is to assume
I ′ = aI+b whereI andI ′ are image intensities before
and after a lighting condition is changed, whilea and
b are scalar constants18. Gradient-based, including
second order derivative-based19, methods can work
irrespective of additive variations of intensities (b 6=
0). They are, however, susceptible to multiplicative
variations (a 6= 0). Fig. 2a shows the same subimage
as inFig. 1b, except that the intensities of the upper
half of it are reduced by 50% (i.e.,a = 0.5, b = 0).
Fig. 2b shows the gradient vectors of the subimage.
They differ considerably from those ofFig. 1c because
of the multiplicative changes of image intensities. On
the other hand,Fig. 2c shows unit gradient vectors
that are identical to those ofFig. 1d, except at the
boundary between the halves. Since the boundary acts
as a step edge, it disturbs its neighbouring gradient
orientations. Therefore, except at such boundaries,
we may state that unit gradient vectors are insensitive
to both additive and multiplicative changes of image
intensities and thus can maintain gradient orientation
patterns well regardless of varying illumination.
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(b) (c)

Fig. 2 (a) Partially shaded subimage (b) gradient vectors
(c) unit gradient vectors.

APPLICATION OF GRADIENT ORIENTATION
INFORMATION TO MOTION ESTIMATION

Gradient orientation based gradient method

In the first proposed approach, we use the unit gradient
vectors(nx, ny), instead of image intensitiesI, and
assume that(nx, ny) are constant over time:

nx(x, y, t) = nx(x + dx, y + dy, t + dt),
ny(x, y, t) = ny(x + dx, y + dy, t + dt).

(8)

From (8), we obtain two modified OFCEs:

Xxu1 + Xyv1 + Xt = 0,
Yxu2 + Yyv2 + Yt = 0,

(9)

whereX ≡ nx and Y ≡ ny. We have used the
Sobel operators for computing the partial derivatives
because they yield good approximations of the deriva-
tives with minimal computation11. In place of (4) we
have the following two cost functions

F1 =
∑

(Xxu1 + Xyv1 + Xt)2,

F2 =
∑

(Yxu2 + Yyv2 + Yt)2.
(10)

From (10), we then obtain two motion estimates,
(ũGOGMx, ṽGOGMx) and (ũGOGMy, ṽGOGMy) using the
GM.

Because there should be only one motion vector
per block, we need to unify those two motion esti-
mates into one. For this we introduce some weighting

Fig. 3 Gradient orientation patterns of the Lena image:
(a)nx (b) ny.

factors that are dependent on the gradient orientation
patterns. Figs.3a and3b show gradient orientation
patternsnx and ny of the Lena image inFig. 1a,
scaled between 0 and 255 for visualization purposes.
Vertical gradients (i.e., horizontal lines) are rich innx,
whereas horizontal gradients (vertical lines) are more
dominant inny. This observation indicates thatnx is
more suitable for computing vertical motionu andny

is better for horizontal motionv.
The reliability of each motion estimate may be

judged from the diversity of gradient orientations
(directions) in its local area. The diversity of gradient
orientations can be measured by the two eigenvalues
of the covariance matrixC betweennx andny,

C =
[ ∑

n2
x

∑
nxny∑

nxny

∑
n2

y

]
, (11)

whereλ1 > λ2 > 0 are the eigenvalues ofC. This
approach resembles the analysis of eigenvalues from
gradient covariance1,4,6,7,15, but we can focus on the
analysis of gradient orientations regardless of varia-
tions of image intensities by employing unit gradient
vectors. Ifλ1 >>λ2 ≈ 0, the gradients are unidirec-
tional and we can only estimate motion along the
direction parallel to the gradients. This is the so-
called aperture problem. In this case, vertical and
horizontal motion estimation should rely heavily on
the pattern ofnx andny, respectively. Meanwhile, if
λ1 ≈ λ2 > 0, there are omni-directional gradients and
similar weights can be used for motion estimates from
nx andny as they are considered equally reliable. In
the proposed method this weight control is achieved
by using the following unified motion estimates

ũGOGM =
λ1

λ1 + λ2
ũGOGMx +

λ2

λ1 + λ2
ũGOGMy,

ṽGOGM =
λ2

λ1 + λ2
ṽGOGMx +

λ1

λ1 + λ2
ṽGOGMy.

(12)
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We call this approach the gradient orientation based
gradient method (GOGM).

Gradient orientation structure tensor method

In the second proposed method we use(nx, ny) in-
stead of the image intensitiesI. Thus, as in (6), we
have two local tensorsTX andTY

TX =

 ∑
X2

x

∑
XxXy

∑
XxXt∑

XyXx

∑
X2

y

∑
XyXt∑

XtXx

∑
XtXy

∑
X2

t

 ,

TY =

 ∑
Y 2

x

∑
YxYy

∑
YxYt∑

YyYx

∑
Y 2

y

∑
YyYt∑

YtYx

∑
YtYy

∑
Y 2

t

 .

(13)

We use the 3-d Sobel operators for computing the
partial derivatives20. By applying PCA toTX and
TY separately, we obtain two estimates of image mo-
tions (ũGOSTMx, ṽGOSTMx) and (ũGOSTMy, ṽGOSTMy).
Following the same procedure described above, we
integrate these two motion estimates depending on the
diversity of local gradient orientations by using

ũGOSTM =
λ1

λ1 + λ2
ũGOSTMx +

λ2

λ1 + λ2
ũGOSTMy,

ṽGOSTM =
λ2

λ1 + λ2
ṽGOSTMx +

λ1

λ1 + λ2
ṽGOSTMy.

(14)

We call this approach the gradient orientation struc-
ture tensor method (GOSTM).

RESULTS AND DISCUSSION

We evaluate the motion estimates by GOGM and
GOSTM by comparing their performances with those
of conventional approaches on four standard test im-
ages (Fig. 1a, Fig. 4) converted to 8-bit grey-scale
256×256 pixel images.

Synthetic time-sequential images were produced
by translating the four test images by 2 pixels in
both the vertical and horizontal directions. Gaussian
noise was added to all images (signal-to-noise ratio∼
40 dB). For evaluation, we assume that the estimated

Fig. 4 Standard test images: (a) girl (b) cameraman
(c) house.

motion vectors are correct when they satisfy the con-
dition,

max max(|∆x|, |∆y|) 6 0.5, (15)

where∆x and∆y denote the deviations (in pixels) be-
tween true and estimated motions. Hence, if rounded
motion vectors are equal to the true motion, those
motion estimates are considered successful. Note
that the motion estimates are not integers, but real
numbers.

Gradient orientation based gradient method

Prior to motion estimation it is always necessary to ap-
ply a certain low-pass filter for gradient-based meth-
ods because the computation of gradients is sensitive
to high frequency components in an image. A Gaus-
sian low-pass filter of size 13×13 pixels whose stan-
dard deviation is half of the filtering mask (σ=13/2)
was applied to all the four image sequences17. We
then computed 14×14 motion vectors for each se-
quence with the blocks of size 16×16 pixels.

We first tested the GM and GOGM under mildly
noisy (40 dB) and constant lighting conditions. It
is apparent that the GOGM achieves much higher
success rates than the GM for all the four image
sequences (Table 1). Next, the intensities of the
second frame were uniformly reduced by 10% to
simulate a time-varying lighting condition. Note that
this is a robustness test to temporal variation of image
intensities that is different from a spatial variation of
image brightness shown inFig. 2a. The GM com-
pletely breaks down whereas the GOGM performs
motion estimation regardless of the variation of image
intensities (Table 1).

Gradient orientation structure tensor method

Next we compare the GOSTM with the GSTM in the
same settings as above. Both methods work equally
well under constant lighting conditions (Table 1). For
varying lighting conditions, the stark contrast between

Table 1 Percentage success rates of 196 motion estimates
of the true motion (2,2) by the GM, GOGM, GSTM, and
GOSTM under constant (Sim 1) and time-varying (Sim 2)
lighting conditions.

Image name GM GOGM GSTM GOSTM

Sim: 1 2 1 2 1 2 1 2

Lena 38.3 0.5 62.8 64.3 97.4 0.0 98.0 98.0
Girl 56.1 4.1 77.6 77.0 99.0 3.1 96.4 94.4
Cameraman 42.9 5.1 60.7 57.7 90.8 6.1 86.2 81.6
House 27.6 0.0 48.0 49.0 77.6 0.5 77.0 73.5
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the GSTM and GOSTM clearly shows that even a
slight change of image intensities makes the GSTM
completely ineffective, while the GOSTM performs
motion estimation irrespective of varying image inten-
sities. Notice that the successful motion estimate rates
in the cameraman and house images tend to be low for
every approach. This is because these images contain
large extremely low-contrast areas, such as sky and
wall, where no gradient information is available.

Improved performance to the aperture problem

A close observation of the motion estimates by the
four methods also reveals that the proposed tech-
niques tend to work better where only one-directional
gradients are available in a local area (the aperture
problem). For this comparison, the block size of
the GSTM and GOSTM has been reduced to 8×8
pixels to highlight the differences between them. This
modification is necessary because both methods pro-
duce equally high success rates when a block size
of 16×16 pixels is used (Table 1). Under the new
setting, the success rates of the GSTM and GOSTM
are respectively 67.5% and 77.6%. InFig. 5a, most
of the motion vectors along the vertical edges on
the left-hand side are incorrect. Similarly,Fig. 5c
shows several large erroneous motion vectors along
the curved lines located on the right-hand side. In
both cases the incorrect motion vectors tend to have
large motion estimation errors in the direction tangent
to the edges. They are typical faulty motion vectors
resulting from the aperture problem. Many of these
unsuccessful motion estimations, however, have been
improved or corrected by the GOGM and GOSTM
(Fig. 5b,d). The improved performance may be at-
tributed to the weighting factors based on the diversity
of local gradient orientations. To summarize, large
erroneous motion estimates are well suppressed by the
weighted sum of two motion estimates in (12) and
(14).

Motion estimation on a real-image sequence

Finally, we demonstrate the feasibility of the GOGM
and GOSTM on a real image sequence of size
240×320 pixels that contain local motions. The
sequence shows a walking woman with stationary
background. We have reduced the image intensities
uniformly by 10% in one frame in the sequence.
The size of the block is set at 8×8 pixels. Since
there is no ground truth data for this sequence, the
proposed methods GOGM and GOSTM are compared
with the GM and GSTM based on visual inspection.
It is obvious that the conventional approaches GM
(Fig. 6a) and GSTM (Fig. 6c) cannot produce reli-

Fig. 5 Parts of the motion vectors estimated under mildly
noisy constant lighting conditions using (a) GM (b) GOGM
(c) GSTM (d) GOSTM. White vectors indicate correctly
estimated motions, i.e., displacements of (2,2) pixels after
rounding. Black vectors show incorrect estimations.

able motion estimates at all under the time-varying
lighting condition. They produce numerous faulty
motion estimates in the background where there is no
motion. On the other hand, both GOGM (Fig. 6b)

Fig. 6 Parts of the motion estimation results on a real im-
age sequence under time-varying lighting conditions using
(a) GM (b) GOGM (c) GSTM (d) GOSTM.
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and GOSTM (Fig. 6d) work reasonably well under
the same condition, and there are far less faulty
responses to the stationary background. Therefore, it
is confirmed that the proposed techniques outperform
their conventional counterparts, especially under time-
varying illumination conditions.

CONCLUSIONS

We have presented two motion estimation techniques,
the gradient orientation based gradient method and the
gradient orientation structure tensor method that are
based, respectively, on the spatio-temporal gradient
method and the gradient structure tensor method.
Unlike the conventional approaches utilizing image
gradients, we make use of gradient orientation infor-
mation (GOI) by means of unit gradient vectors. Since
GOI is insensitive to changes of image intensities,
the proposed methods have achieved a significant
robustness to time-varying lighting conditions. They
also perform better than the previous methods when
encountering the aperture problem. The implemen-
tation of the proposed methods is straightforward
because image gradients are commonly computed at
an early stage in image sequence processing and
computer vision applications and are readily available.
At present, we are testing a correlation-based method
using GOI. We plan to evaluate the performances
of these GOI-based approaches further on more real
image sequences.
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Abstract

Irregular lighting causes temporal variations of image 
intensities, which makes most existing block matching 
techniques ineffective. For this, we propose a novel 
matching technique based on gradient orientation that is 
known to be insensitive to variations of intensities. We 
show that gradient orientation information can be effec-
tively utilized by means of two intensity patterns that are 
obtained as the x and y components of unit gradient vec-
tors. Simulation results show the proposed technique is 
remarkably robust to both spatially uniform and 
non-uniform changes of image intensities. 

1. Introduction 

Establishment of correspondence between two or more 
images is an important task in image sequence processing 
and computer vision applications. For instance, image 
correspondence is an essential step for estimating motions 
and depths. Motion estimation is concerned with the cor-
respondence between time-sequential images such as 
video sequences. It finds a variety of applications, includ-
ing object-based video coding (e.g. MPEG-4), object 
detection for surveillance systems, scene changes detec-
tion for video editing, and image stabilization technology 
for image acquisition devices. 

Techniques for image correspondence in the spatial 
domain may be classified into two categories; gradi-
ent-based methods and matching methods. This paper is 
concerned with the latter approach that is also widely re-
ferred to as block matching, template matching, or 
correlation-based methods [1]-[5]. In either approach, the 
intensities of objects in an image are assumed to be con-
stant over time. This assumption, however, is often 
violated by changes of lighting conditions that is a com-
mon incident in outdoor environment. To circumvent this 
irregular illumination problem, it is reasonable to employ 
a feature that is less dependent on image intensities or 
gradients.  

This paper presents a novel block matching technique 
using gradient orientation information, rather than relying 
on conventional image features such as intensities and 
gradients, because gradient orientation is known to be 
insensitive to variations in illumination [6]-[9]. A com-
parative study with conventional block matching 
techniques reveals that the proposed method is remarkably 
robust to both uniformly and non-uniformly varying im-
age intensities.  

2. Method

2.1 Gradient orientation information 
Let I(x, y) be the image intensities at pixel coordinates 

(x, y). The gradient vectors of I may be expressed by (Ix,
Iy) where Ix and Iy are the partial derivatives of I in x and 
y directions. Gradient orientation information (GOI) can 
then be expressed using unit gradient vectors (nx, ny) that 
are obtained by dividing (Ix, Iy) by their norms as 
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where we assign zero to nx(x, y) and ny(x, y) when the de-
nominator is zero to avoid zero-division.  

Fig. 1(a) shows I(x, y) of a test image of size 256 by 
256 pixels with 256 gray levels. The upper left corner of 
the image is the origin, and vertical and horizontal axes 
are respectively denoted as x and y axes. The small region 
of size 32 by 32 pixels encompassed by a white square in 
Fig. 1(a) is cropped and enlarged in Fig. 1(b). Fig. 1(c) 
shows the gradient vectors (Ix, Iy) within the cropped re-
gion while Fig. 1(d) shows the unit gradient vectors 
(UGVs) in the same region. Note that UGVs carry rich 
local gradient information even in relatively low-contrast 
areas.

Figure 1. (a) A test image, (b) a cropped and 
enlarged subimage, (c) gradient vectors and (d) 
unit gradient vectors within the subimage. 

 
Since UGVs are represented by two scalars nx and ny

ranging from �1 to 1, we may easily utilize GOI by treat-
ing these scalars as intensities. Fig. 2(a) shows the 
gradient orientation pattern nx corresponding to the subi-

x

yOrigin

MVA2009 IAPR Conference on Machine Vision Applications, May 20-22, 2009, Yokohama, JAPAN13-2

390



mage in Fig. 1(b) while Fig. 2(b) shows the gradient ori-
entation pattern ny. Both nx and ny are scaled and 
visualized as 8-bit intensity patterns.  
 

 
(a) 

 
(b) 

Figure 2. (a) Gradient orientation pattern nx and (b) 
gradient orientation pattern ny.

It should be stressed that the use of UGVs is computa-
tionally more efficient than using angular values 	 (rad) 
because UGVs require no modulo calculations [9]. 

2.2 Intensity-invariance of gradient orientation 

Gradient orientation is known to be insensitive to varia-
tions of lighting conditions [6]-[9]. This is because the 
order of image intensities in a local area is well preserved 
under varying lighting conditions. For instance, the black 
pupil is darker than the brown iris irrespective of illumi-
nation changes. Fig. 3 demonstrates such intensity 
invariance of gradient orientation. Fig. 3(a) shows the 
same subimage as in Fig. 1(b), except that the intensities 
of the upper half of it are reduced by 50%. Figs. 3(b) and 
3(c) show the gradient orientation patterns nx and ny. The 
comparison between the patterns in Fig. 2 and those in 
Figs. 3(b) and 3(c) shows that gradient orientation patterns 
remain unchanged before and after shading occurs, except 
for slight changes along the border of the shade.  

(a) (b) (c) 

Figure 3. (a) Subimage whose upper half is shaded, 
(b) gradient orientation pattern nx and (c) gradient 
orientation pattern ny within the subimage. 

2.3 Block matching technique with GOI 

Instead of image intensities, we make use of gradient 
orientation patterns as inputs to a conventional block 
matching technique with the widely used matching metric, 
the sum of absolute differences (SAD) criterion:  
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where p
�

 denotes a point ),( yx  in the image coordinate, 

d
�

 a displacement ),( vu  from that point, equivalent to 
the motion vector between two time-sequential images 
being compared, N the block size, nx1 and ny1 gradient 
orientation patterns of the first frame (reference image), 
and nx2 and ny2 the second frame where a best-matching 
block is being searching for. Finally, these two may be 
combined into one measure 
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The position of the best matching is indicated by the 
minimum of Eq. (3). We call this proposed method the 
gradient orientation pattern matching technique (GOPM). 
Note that we also have evaluated the sum of squared dif-
ferences (SSD) criterion, but there was no noticeable 
improvement of performance.  

3. Results and Discussion 

3.1 Simulations on synthetic image sequences 

We compare GOPM with SAD block matching (SAD) 
and zero-mean normalized cross-correlation (ZNCC) on 
four synthetic image sequences. Four standard test images 
of size 256 by 256 pixels with 256 gray levels are used as 
the first frames or references. The second frames are then 
generated by translating them by 5 pixels both horizon-
tally and vertically. We have computed 225 (15 by 15) 
motion vectors in each sequence. The size of the block is 
fixed at 16 by 16 pixels. The range for searching for the 
best matching position in the second image is set at �8
pixels both horizontally and vertically. When a motion 
vector points a correct pixel, it is considered as a success-
ful motion estimate. To make the simulation realistic, 
zero-mean Gaussian noise is randomly generated and 
added to every image where the SNR is set at approxi-
mately 40dB. Further, to test the robustness to varying 
lightings, the intensities of the second image are modified 
in four ways. One is a uniform reduction of intensities, 
and the other three are non-uniform modifications of in-
tensities achieved by multiplying the masks shown in Fig. 
4. Figs. 4(a) and 4(b) show realistic smooth linear and 
Gaussian shadings. Fig. 4(c), on the other hand, shows 
rapidly varying shadows that may simulate the case that a 
spot light is flashed on an object.  

(a) (b) (c) 

Figure 4. (a) Linear shadow mask, (b) Gaussian 
shadow mask and (c) checkerboard shadow mask.    

Table 1 shows the successful motion estimation rates 
(%) by the three methods in which the second images are 
subject to the uniform intensity reduction by 20% (Simu-
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lation 1). It is evident that SAD does not work at all while 
ZNCC and GOPM work nearly perfectly. Tables 2 and 3 
show the success rates under non-uniform but smooth 
changes of image intensities. In Simulation 2, linear shad-
ing is applied to the second images where intensities are 
linearly reduced from the left to the right end of the image 
up to 50% (Fig. 4(a), Table 2). In Simulation 3, Gaussian 
shading is applied so that intensities are reduced from the 
center of the image following the profile of a Gaussian 
function (Fig. 4(b), Table 3). Under non-uniform but 
smooth variations of intensities, both ZNCC and GOPM 
achieve high success rates. Unsuccessful motion estimates 
are due to the lack of gradient information (e.g. sky) and 
the aperture problem.  

In Simulation 4, rapid and non-uniform shading is ap-
plied in which the image intensities in vertical and 
horizontal stripes are reduced to 50% and the intensities in 
the areas where two stripes overlap are reduced to 25% 
(Fig. 4(c)). ZNCC can cope with both additive and multi-
plicative variations of intensities when those variations 
occur uniformly within a block. By contrast, GOPM can 
handle such rapid and non-uniform intensity changes 
within a block, which is highlighted in Table 4.  
 

Table 1. Success rates under a mildly noisy condi-
tion with uniformly varying image intensities. 

Simulation 1 SAD ZNCC GOPM 
Lena 24.9 100 100 
Girl 27.1 100 100 
Cameraman 40.9 97.8 98.2 
House 4.90 99.6 96.4 

 
Table 2. Success rates under a mildly noisy condi-
tion with linear shading.  

Simulation 2 SAD ZNCC GOPM 
Lena 25.8 99.1 100 
Girl 27.1 100 100 
Cameraman 39.1 98.7 99.1 
House 4.89 97.3 96.0 

 
Table 3. Success rates under a mildly noisy condi-
tion with Gaussian shading.  

Simulation 3 SAD ZNCC GOPM 
Lena 44.9 97.3 99.6 
Girl 21.3 100 99.6 
Cameraman 36.9 98.2 97.3 
House 41.8 94.2 92.9 

 
Table 4. Success rates under a mildly noisy condi-
tion with rapid and non-uniform shading.  

Simulation 4 SAD ZNCC GOPM 
Lena 10.2 20.0 97.3 
Girl 13.8 26.2 100 

Cameraman 13.3 33.3 91.6 
House 2.2 5.33 88.0 

 

3.2 Simulations on real image sequences 

We next evaluate the performances of SAD, ZNCC, 
and GOPM on two real image sequences, A and B. Since 
there is no ground truth data (i.e., true motion vectors) 
available for these real sequences, we use the motion vec-
tors estimated under a constant illumination as references 
shown in the left column of Fig. 5. Fig. 5 shows the image 
sequence A in which the camera tracks a walking man. 
The motion vectors in background are supposed to point 
rightward while those on the man are small. Under such 
ideal lighting condition, the motion estimates by the three 
methods are similar to each other. We then apply the same 
four intensity modifications as in 3.1. The robustness of 
motion estimation is evaluated in terms of the means and 
variances ),( 2�m  of the differences between the refer-
ences and the motion vectors estimated under varying 
lighting conditions. Table 5 shows the differences when 
the second image is subject to a uniform change of inten-
sities as described in Simulation 1. SAD shows large 
variances while those of ZNCC and GOPM are far smaller, 
indicating that the latter two methods work robustly with 
uniform variations of intensities. Tables 6 and 7 show the 
differences when the second image is subject to 
non-uniform but smooth changes of intensities as depicted 
in Simulations 2 and 3. SAD fails to estimate motion re-
liably. Conversely, ZNCC and GOPM withstand such 
lighting conditions. Finally, Table 8 shows the differences 
when the second image is subject to rapid and 
non-uniform changes of intensities as in Simulation 4. As 
shown in the right column of Fig. 5, SAD and ZNCC fail 
to work properly under such condition, while GOPM still 
estimates reasonably accurate motion vectors. 

Table 5. Differences in the estimated motion vec-
tors before and after uniform shading is applied. 
Sim 1 SAD ZNCC GOPM  

Image A (5.02, 24.0) (0.016, 0.02) (0.067, 0.25) 
Image B (3.51, 21.5) (0.067, 0.55) (0.19, 1.77) 
 
Table 6. Differences in the estimated motion vec-
tors before and after linear shading is applied.   
Sim 2 SAD ZNCC GOPM  

Image A (6.19, 31.1) (0.013, 0.63) (0.11, 0.41) 
Image B (3.67,20.3) (0.36, 3.46) (0.34, 2.79) 
 
Table 7. Differences in estimated motion vectors 
before and after Gaussian shading is applied.  

Sim 3 SAD ZNCC GOPM  
Image A (5.77, 22.5) (0.78, 4.74) (0.22, 0.84) 
Image B (4.19, 28.1) (0.98, 9.62) (0.70, 5.44) 

 
Table 8. Differences in estimated motion vectors be-
fore and after rapid and non-uniform shading is 
applied.   

Sim 4 SAD ZNCC GOPM  
Image A (6.99, 17.9) (5.93, 24.7) (0.88, 4.11) 
Image B (5.21, 20.5) (3.69, 23.5) (0.77, 5.30) 
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(a)  (b) 

(c)  (d) 

(e)  (f) 
Figure 5. Motion vectors estimated by (a), (b) 
SAD, (c), (d) ZNCC and (e), (f) GOPM under con-
stant (left column) and varying lighting conditions 
(right column). 

3.3 Computational cost 
We have compared the computational costs of SAD, 

ZNCC, and GOPM. Table 9 shows the computation time 
of each method for computing 225 motion vectors. The 
three techniques are implemented in MATLAB (Ver. 7.0) 
and executed on a PC with the Pentium 4 (2.80GHz) and 
1GB of RAM. SAD is the fastest method among the three 
owing to its simplest similarity measure whereas ZNCC is 
the slowest because of the complexity of its computation 
[4]. GOPM is slower than SAD because GOPM requires 
an extra computation of Eq. (1) and also two 
sums-of-differences have to be computed as in Eq. (2). It 
is important to note that GOPM is faster than ZNCC. 
GOPM can be computed more efficiently than ZNCC be-
cause the similarity measure of GOPM is the same as that 
of SAD which is much simpler than that of ZNCC. An-
other advantage of GOPM is that it allows the use of 
integers while real numbers are necessary for ZNCC.  

 
Table 9: Computation times of SAD, ZNCC, and 
GOPM. 

 SAD ZNCC GOPM 
Computation time (sec) 0.94 3.97 1.47 

4. Conclusions

Most existing approaches for image matching are based 
on either image intensities or gradients. Consequently, it is 
inevitable that these conventional techniques are suscepti-
ble to varying image intensities caused by irregular 
lighting conditions. To cope with this illumination prob-

lem, we have presented a novel matching technique that is 
based on gradient orientation patterns that can be obtained 
as the x and y components of unit gradient vectors. We do 
not use the angular values 	 (rad) of gradient vectors di-
rectly to avoid modulo computation, which enables a fast 
implementation of the proposed method. Simulation re-
sults on both synthetic and real image sequences have 
revealed that the proposed technique, GOPM, works much 
more robustly than SAD with varying image intensities. 
The motion estimation performance of GOPM is compa-
rable to that of ZNCC with uniformly changing intensities 
and also non-uniformly but smoothly varying intensities. 
Furthermore, it is a significant advantage of GOPM over 
ZNCC that it can cope with non-uniform and rapid 
changes of image intensities that may occur in outdoor 
environment. We have also shown that the computational 
cost of GOPM is less than that of ZNCC. Gradient vectors 
are generally computed at an early stage of various image 
processing and computer vision applications, and are 
readily available. The normalization of the gradient vec-
tors to obtain the unit gradient vectors can be performed 
prior to the computation for image correspondence. 
Therefore, GOPM will be well-suited to real-time applica-
tions and also hardware implementation.  
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Abstract—Eye tracking is a computer vision tech-
nique widely used in many fields especially in a med-
ical field. This paper introduced the new eye tracking
method based on gradient orientation pattern matching
and automatic template update technique. This pro-
posed method can be implemented in real-time appli-
cation and can provide high robustness to changing
lighting condition during tracking process.
Keywords- eye tracking, real-time tracking, template

matching, gradient orientation pattern, template up-
date.

I. Introduction
Eye tracking is one of the fields in computer vision,

used for measuring a focusing or an eye movement. The
technique of eye tracking can be applied into several other
fields such as cognitive study, human interface devices,
developing disable support equipments, and developing
diagnosis and treatment equipments in opthalmology.

There are many methods proposed for eye tracking, such
as gaze tracking method[1], Hough transform method[2],
fixation precision in non-contact eye-gaze tracking[3].
These techniques provide very reliable result with low
error, however, their require lots of computation and there-
fore hardly implemented in real-time application. Others
newly proposed technique such as horizontal and vertical
projection [4],[5], eye detection based on color informa-
tion[6], and eye-tracking using gray prediction[7]. These
technique aimed to improve the speed of eye tracking
algorithm so that can be used in real-time application.
But these techniques still have their limitations. These
real-time techniques used intensity data of the images as
an input for analyzing, therefore they are very sensitive
to changing lighting condition and obstacle and result in
miss-matching. This paper proposes a new eye-tracking
method using an gradient orientation pattern matching
and automatic template update technique together. The
gradient orientation pattern matching (GOPM) is the
newly introduced template matching technique that use
only the direction of images’ gradient for tracking, so
that it can provide the robustness to changing lighting
condition[8]. The GOPM is also fast enough to be imple-
mented in real-time applications[9]. The automatic tem-
plate update algorithm can also be applied to improve the

correctness of the matching result. By using this method,
the error in matching result due to lighting condition is
much more reduced.
The remaining parts of this paper are organized as

follows: section II briefly introduces the GOPM, section III
describes about template matching algorithm, section IV
describes the implementation method. Finally, we discuss
and the the simulation results in section V.

II. Gradient Orientation Pattern Matching
The gradient orientation pattern matching (GOPM)

is a matching technique based on gradient vectors of
image. Unlike the others traditional template matching
techniques, such as sum-of-squared differences(SSD) or
cross-correlation (CC) that use intensity information of
the images, GOPM uses unit gradient vectors, obtained
through the normalization of image’s gradient vector, for
establishing image correspondences. A main advantage of
GOPM is that it can provide a robustness to lighting-
condition changes and yields a very good matching result.
The GOPM uses x-axis and y-axis unit gradient vector

as an inputs, obtained through the normalization equation

nx(x, y) = Ix(x, y)/
√
I2
x(x, y) + I2

y (x, y) + ε

ny(x, y) = Iy(x, y)/
√
I2
x(x, y) + I2

y (x, y) + ε
(1)

where Ix and Iy are the gradient of the image at (x, y)
coordinates. The ε is a small constant that is added
to prevent zero-division during normalization. Then the
normalized gradient vectors nx and ny are used separately
using the sum-of-squared differences as

GOPM_nx(~p, ~d) =
∑N/2
j=−N/2

∑N/2
i=−N/2

(nx1(x+ i, y + j)− nx2(x+ i+ u, y + j + v))2

GOPM_ny(~p, ~d) =
∑N/2
j=−N/2

∑N/2
i=−N/2

(ny1(x+ i, y + j)− ny2(x+ i+ u, y + j + v))2

(2)

where ~p denotes a point (x, y) in the image coordinate,
~d denotes a intensity displacement (u, v) of the corre-
sponding points between two images, N the block size,
I1 a block partitioned from the template, and I2 the



block partitioned from image being searched. Both nx1
and ny1 are the unit gradient vectors of template I1 and
nx2,ny2 are the unit gradient vectors from the image I2.
Gradient orientation pattern matching can be obtained by
combining these two terms.

GOPM(~p, ~d) = GOPM_nx(~p, ~d) +GOPM_ny(~p, ~d) (3)

The point that shows the lowest gradient displacement ~d
is the best matching point in its local search region. Since
GOPM uses only the direction information of gradient, it
does not depend on intensities and can provide robustness
to varying lighting-condition.It should be noted that the
difference between two unit vectors can be also evaluated
by the angular dispersion θ between them. However, it
requires a trigonometric calculations and modulo calcula-
tions (e.g. difference between two angles cannot exceed π )
[8]. It is computationally more advantageous to decompose
the unit vector into two scalars (i.e., the x and y com-
ponents) and compute the difference using the standard
matching metric such as SAD, SSD, and CC.

III. Automatic Template Update
When GOPM is implemented for eye tracking, some-

times the appearance of pupil and iris is changed, so that
no exactly identical pattern of the template appears in the
input images. This error cause the miss-matching problems
in matching result. In this section, an automatic template
update algorithm is introduced in order to increase the
performance and reliability of the tracking result. The
main concept of automatic template update technique is
to reconstruct a new template in every frame using the
best-matching data corresponding to the previous input
image [10]. By using this technique, the template will be
very similar to the current input image, thus the matching
result will be improved.

A. Correct-matching Criterion
The usage of automatic template update technique

alone has a disadvantage that in case miss-matching oc-
curred, the template will be reconstruct using the miss-
matching result, and then yield the totally fail result
onward. In order to implement this technique, we need
a constrains to check whether the matching result is
acceptable or not before we can use it data to reconstruct
the template. By using the assumption that the video
sequence is fast enough so that no any suddenly change
in a location of the corresponding image, these constrains
are proposed to limit the acceptable range of the matching
results.

~δ =
∑
i,j((nx,n+1 − nx,n)2 − (ny,n+1 − ny,n)2) ≤ τ

and
(4)

~D =
√

(xn − xc)2 + (yn − yc)2 ≤ T (5)

where nx,n and ny,n are the normalized gradient of
a current template, nx,n+1 and ny,n+1 the normalized
gradient of new template corresponding to the best-
matching position of the current frame, xn and yn are the
coordinates of the best-matching position of the current
frame, xc and yc are the coordinates of the best-matching
position of latest correct matching result, ~δ is a difference
value between current the template and the new created
template, ~D is a Euclidean distance between the best-
matching positions of the current frame and latest correct
matching frame, τ is the threshold for Eq.(4), and T is the
threshold for Eq.(5). Both τ and T can be any threshold
function, and these functions determine the efficiency of
this technique. In this paper, the value of τ is 1000 and T
is 30 thresholds, based on empirical method on authors’
video samples. and If the new template corresponding to
the matching result has a difference from the currently
used template larger than τ , this result should be con-
sidered as miss-matching frame by Eq.(4). The matching
result that its distance from the last correct result larger
than T is too far away and should also be considered as
miss-matching frame by Eq.(5). The matching result of
every frame need to pass both Eq.(4) and Eq.(5) to be
accepted as correct matching result and then be used as
new xc and yc. If the matching result is considered as miss-
matching frame, the new template corresponding to this
frame will be discard and the previous template is used
instead.

B. Template Update Algorithm
The traditional template matching technique is mostly

used for finding a part of the image that are identical to
the interesting pattern that called template. In general, for
real-time template matching, we use the same template
to perform template matching for all images in a video
sequence. However, it is difficult to design the template
that can suitable to entire the video sequence. Mostly
the pre-defined template will be created from the first
frame of the entire sequence or the general pattern for that
application. But this pre-define template is not guaranteed
that it can yield the good result when a sequence passed
along. So when the condition of the images in the sequence
change, the template will be out-of-date and cannot find
the corresponding point any more. To solve this problem,
the automatic template update is implemented to update
the template along with the video sequence.
Automatic template update algorithm uses the best-

matching position which passed the correct-matching cri-
terion to construct the new template for every frame. The
algorithm is as be shown in Fig. 1
For every frame, the template matching technique is

applied to input image, yield the best-matching location
that the corresponding image the template. This posi-
tion is then tested with the correct-matching criterion.
If the position fails the criterion and considered as miss-
matching, then this miss-matching position is rejected. If
the position pass the criterion, then a portion of input



image is cropped corresponding to this position . This crop
region with the same size to the old current template will
be used as a new template for the next frame. By using
this technique, the conditions of template will be almost
the same to the conditions of the current frame, helping
the matching result to be more success. However, the use
of template update technique may make the template to
slightly shift from the desire position so the appropriate
threshold in correct-matching criteria is needed to prevent
this shifting to occured.

IV. Procedure
A. Simulation Environment

The method proposed in this paper is originally aimed
to be an eye-tracking system used for ophthalmic surgery,
the objective of this simulation is to show the robustness
to changing-lighting condition and the improved matching
efficiency. In order to response the surgeon work flow, all
implementation are developed in real-time. The program
is developed using OpenCV library based on C/C++
programming running on computer with Intel Core2 Duo
1.66 GHz processors and 4 GB of memory [11],[12],[13].
For this simulation, we use sample video sequences in
various situation including real ophthalmic surgery video.
The sample input from the surgery camera and our sample
video sequence are shown in Fig.2

The algorithm (Fig.3) consists of four steps: Prepro-
cessing, Gradient Orientation Pattern Matching, correct-
matching criterion, and automatic template update. Be-
fore running this algorithm, the initial template is needed
to be initialized.

B. Preprocesses
Before performing the tracking process in each frame,

preprocessing step can be applied to improve the efficiency
of the tracking process. This preprocessing step consists of
downsampling and low-pass filtering steps. Downsampling

Figure 1: Template update algorithm.

is applied to the input video sequence and the template
in order to reduce the computation time of the template
matching. Since the template matching processes on every
single pixel, when the sizes of the input and template
decrease, the computation time is reduced [14],[15]. In
here, we reduce the size of the input video sequence and
template to 50 percent of the height and width. This
downsampling has no effect to the matching result since
both video and template are downsampled with the same
ratio.
Low-pass Filtering is applied in order the remove small

noise due to video input/output device or camera quality
[16]. This small noise are hard to noticed visually, but can
make an large effect on gradient pattern which create an
error on the matching result of GOPM. In this simulation,
the 3x3 rectangular low-pass filter is applied to both input
video sequence and template (Eq.(6)).

H(x, y) =

 0.11 0.11 0.11
0.11 0.11 0.11
0.11 0.11 0.11

 (6)

C. Gradient Orientation Pattern Matching
Gradient Orientation Pattern Matching (GOPM) is ap-

plied to perform template matching between input video
sequences and the template. The input image’s and tem-
plate’s gradient information are extracted into x and y
direction as shown in Fig.4. The result of GOPM is the
sum of squared differences between gradient of image
to those of template in both x and y directions. The
point which has the lowest difference will yield the (x, y)
coordinates of the best-matching position.

D. Correct-matching Criterion
The best-matching position’s coordinates from previous

step is checked with this correct-matching criterion (Eq.(4)
and Eq.(5)). If the position can satisfy these criterion,
then this best-matching position is consider as correct-
matching and can be use further. If the position cannot
satisfy the criterion, this matching result is considered as
miss-matching and be rejected.

E. Automatic Template Update
The best-matching position that can satisfy the previous

criterion will be used to update the new template which is
to use in step IV-C for the next frame. The algorithm for
automatic template update is already described in section
III-B.

(a) (b)

Figure 2: Sample inputs from (a) a real surgery (b) a light-
varying video sequence.



Table I: Precision Error(%) of SSD, standart GOPM, and time-varying GOPM
Input Standard SSD Standard GOPM Time-varying GOPM

Average
computation
time (ms)

Precision Er-
ror (%)

Average
computation
time (ms)

Precision Er-
ror (%)

Average
computation
time (ms)

Precision Er-
ror (%)

Video sequence1
under constant
lighting
condition
(Resolution
320x240 px)

78.35 1.33 62.48 0 13.81 0

Video sequence2
under changing
lighting
condition
(Resolution
320x240 px)

78.63 40.47 63.09 12.87 12.92 0

Figure 3: Algorithm of proposed eye-tracking method.

(a) (b)

Figure 4: Gradient infomation of sample frame in (a) x direction
and (b) y direction

V. Results

Most of the contents on this paper focus on the precision
of tracking and computational time. In Table. I, we com-
pare the recognition performance of SSD, standard GOPM
and time-varying GOPM in various conditions; constant
lighting condition, changing lighting condition and video
sequence from an actual surgery. The precision error is
defined as a number of frames that its best matching
position goes out of pupil area over the total number of
frames.

A. Changing Light Condition Robustness Using GOPM
Firstly, the simulation of three techniques under the

uniformly varying or constant lighting condition provide
very well performance (i.e. 1.33% precision error of SSD
and 0% precision error for both GOPM and time-varying
GOPM). However the performance of SSD is rather poor
under the changing lighting condition, almost half of the
tracking (i.e. 40.47%) failed to estimate the eye’s centroid
position. Hence standard GOPM still keeps tracking eye’s
centroid with precision error of 12.87%.
Although standard GOPM yields higher precision than

the SSD under the changing lighting condition, the preci-
sion error is relatively far higher than the standard GOPM
under constant lighting condition. Fig.5b and 5d shows
result maps after performing GOPM. In Fig.5b, which is
the result map of corrected matching frame (Fig.5a) shows
an obviously best-matching peak (darkest spot) whereas
the result map of mis-matching frame(Fig.5a) shows many
of low amplitude peaks. This implies that matching tech-
nique might found the similar pattern of gradient in the
unexpected places. By inspection, source of the problems
came from the uncontrollable factor such as responsiveness
or luminous sensitivity of camera. Some frame might loss
significant content and cause an adjustment in gradient
information i.e. the template is out-of-date.

B. Error Rejection Using the Automatic Template Update
template and Correct Matching Criteria
In simulation, correct-matching criterion individually

could handle almost mis-matching frame. However the
criteria is to unable indicate all of the existence mis-
matching frame. As ideas presented in the previous sec-
tion, we made use of the template update algorithm with
correct matching criterion to prevent the mis-matching
from a large dissimilarity between template and sam-
ple component in difference time. As a result in Table
tab:comparetable, time-varying GOPM reduces precision
error of standard GOPM from 16.01% to 0.884% which
imply the great influence of template update algorithm
and correct-matching criterion on GOPM efficiency.
However in some circumstances, template update may

make the template which consists of no eye at all. This



(a) (b)

(c) (d)

Figure 5: Matching results and corresponding GOPM map (a)
correct matching result, (b) corresponding GOPM map, (c)
mis-matching result, and (d) corresponding GOPM map.

fault template can fail the tracking result. In this case,
the template is needed to be reset to the initial template
before continue tracking process.

C. Computation Time
By performing downsampling to the video sequence,

the computation time of the proposed technique is far
faster than previous one. Table I clearly shows that the
computation time is reduced from about 60ms to about
15ms in standard SSD and GOPM after downsampling
is applied. After downsampling, the computation times
decrease to about 1/4 of the original-size video. With this
computation time, time-varying GOPM can process at
more than 50 frames per second, with is now enough for
implement to the camera which normally operate at 25
frames per second.

VI. Conclusion
We previously showed that a gradient orientation pat-

tern matching technique (GOPM) works remarkably well
under varying lighting conditions [8], [9]. In this paper, we
presented a time-varying GOPM for human eye tracking.
The proposed method updates the template over time,
which enhances the tolerance of the tracking method to
the variations in image acquisition conditions (in addi-
tion to lighting conditions), including slight changes of
the image sharpness, scales, and the camera view-points.
The template is updated only when two conditions are
satisfied, which ensures that the two templates before
and after updating are geometrically close enough to each
other and also resemble enough to avoid template drift.
Another notable improvement over the previous work is
that we have significantly shortened the computation time
by introducing a down-sampling step of the input video
sequences. Thus, the proposed method can work very
robustly and smoothly in real time. To summarize, we have
achieved a higher performance of real-time eye-tracking at
a reduced computation cost. For further improvement of
the technique, we plan to make the conditions for template

updating adaptive rather than the fixed criteria that are
currently used.
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