

รายงานวิจัยฉบับสมบูรณ์

โครงการ: การศึกษาคุณสมบัติจีโอโพลิเมอร์จากเถ้าถ่านหินผสม
(A Study on properties of blended coal ash-geopolymer)

โดย

ผู้ช่วยศาสตราจารย์ ดร.อุบลลักษณ์ รัตนศักดิ์ และคณะ

สัญญาเลขที่ MRG5280001

รายงานวิจัยฉบับสมบูรณ์

โครงการ: การศึกษาคุณสมบัติจีโอโพลิเมอร์จากเถ้าถ่านหินผสม
(A Study on properties of blended coal ash-geopolymer)

คณะผู้วิจัย

1. ผู้ช่วยศาสตราจารย์ ดร.อุบลลักษณ์ รัตนศักดิ์

2. ศาสตราจารย์ ดร.ปริญญา จินดาประเสริฐ

สังกัด

มหาวิทยาลัยบูรพา

มหาวิทยาลัยขอนแก่น

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

เทคโนโลยีระบบเตาเผาแบบฟลูอิดไดซ์เบด (Fluidized bed combustion, FBC) เป็นหนึ่งใน เทคโนโลยีถ่านหินสะอาดที่ดี โดยหินปูนจะถูกป้อนลงในเตาเผาของระบบ FBC เพิ่มดูดซับซัลเฟอร์ ดังนั้นเชื้อเพลิงคุณภาพต่ำที่มีปริมาณซัลเฟอร์สูงจึงสามารถถูกเผาอย่างมีประสิทธิภาพได้ ทำให้ปลดปล่อย มีก๊าซ SOx และ NOx ที่ต่ำลง โดยทั่วไปองค์ประกอบของเถ้าลอยที่ได้จากการเผาแบบ PBC จะต่างจาก องค์ประกอบของเถ้าลอยที่เผาแบบปกติอย่างซัดเจน เถ้าที่ได้มักมีปริมาณแคลเซียมซัลเฟตสูง และมี ความเป็นผลึกสูง ทำให้เถ้าชนิดนี้มีการนำไปใช้ในปฏิกิริยาปอซโซลานได้น้อย ซึ่งเถ้านี้จะประกอบด้วยซิลิ กา (SiO2) ยิปซัม (CaSO4) และหินปูน (CaO) เป็นองค์ประกอบหลัก การปรับปรุงความว่องไวในการ เกิดปฏิกิริยาของเถ้า FBC สามารถทำได้โดยการบดเถ้าให้ละเอียด ดังนั้นงานวิจัยนี้จึงเกี่ยวข้องกับการ ปรับปรุงเถ้า FBC โดยการบดและผสม และการนำเถ้าที่ได้ไปใช้งานต่อไป

วิธีในการใช้ประโยชน์เถ้า FBC มี 2 วิธี คือ 1) การบดเถ้า FBC และ 2) การเลือกใช้เฉพาะเถ้า ลอย FBC สำหรับวิธีแรก เถ้าลอยและเถ้ากันเตา FBC จะถูกนำมาผสมกันในหลายอัตราส่วนแล้วบดให้ ใชนาดเล็กลง เพื่อเพิ่มพื้นที่ผิวและความว่องไวในการเกิดปฏิกิริยา เถ้าทั้งหมดจะถูกนำไปพิสูจน์ เอกลักษณ์ด้วยเทคนิค XRD นอกจากนั้น เถ้าลอยจากการเผาแบบใช้ถ่านหินบด (Pulverized coal combustion, PCC) จะถูกนำมาผสมกับเถ้าผสมบด FBC และเถ้าลอย FBC เพื่อปรับปรุงคุณสมบัติของ วัสดุจีโอโพลิเมอร์ ทำการวิเคราะหืคุณสมบัติทางกายภาพและเคมีของผลิตภัณฑ์ เช่นการศึกษาโครงสร้าง จุลภาค ด้วยเทคนิค SEM, การวิเคราะห์การสูญเสียน้ำหนักด้วยเทคนิค TGA และการทดสอบกำลังอัด เป็นต้น จากผลการวิจัยแสดงให้เห็นว่าทั้งเถ้าผสมบด FBC และเถ้าลอย FBC สามารถใช้งานร่วมกับเถ้า ลอย PCC เพื่อเป็นได้สารตั้งต้นสำหรับจีโอโพลิเมอร์ได้ เถ้าลอย PCC จะช่วยเพิ่มความสามารถในการ ทำงานได้ และกำลังอัดของจีโอโพลิเมอร์ โดยได้กำลังสูงสุดประมาณ 40 เมกกะปาสคาลเมื่อใช้เถ้า FBC ปริมาณร้อยละ 40 ในส่วนผสม

คำสำคัญ: จีโอโพลิเมอร์, การเผาแบบฟลูอิดไดซ์เบด, โครงสร้างจุลภาค, เถ้าถ่านหิน

Abstract

Fluidized bed combustion (FBC) technology is one of the most promising Clean

Coal Technologies. Since limestone is added to the FBC boiler to absorb the sulfur, low-

grade fuels with high sulfur content can efficiently be burnt achieving low SOx and NOx

emission. In general, the FBC fly ash composition distinctly differs from that of fly ash

produced by conventional combustion. Ash with much higher calcium sulfate content

and higher portion of crystalline is achieved resulted in low usage of this ash in

pozzolanic reaction. Ash consists principally of silica (SiO₂), gypsum (CaSO₄) and lime

(CaO). Improvement of reactivity of the ash can be done by grinding the ash into fine

powder. Therefore, this research concerns the improvement of PBC ashes through

grinding and blending and its utilization.

There were 2 methods to utilize the FBC ashes: 1) grinding of FBC ash and 2) use

of FBC fly ash. For the first method, FBC fly ash and bottom ash were mixed at various

proportions and ground into small sizes in order to increase the surface area and the

reactivity. Ashes were characterized using XRD. Pulverized coal combustion (PCC) fly

ash was also used to mix with FBC blended ash and FBC fly ash to improve the

properties of geopolymer. Chemical and physical properties of the products viz.,

microstructure study by SEM, TGA weight loss analysis, and compressive strength were

examined. Results showed that both FBC blended ash and FBC-fly ash could be used in

conjunction with PCC-fly ash as source material for geopolymer. PCC-fly ash helped to

increase the workability and strength of the geopolymer. Relatively high strength of 45

MPa was obtained with 40% content of FBC ash in the blend material.

Keywords: Geopolymer, Fluidized bed combustion, Microstructure, Coal ash

- ii -

บทสรุปผู้บริหาร

1. บทน้ำ

ปัญหาสิ่งแวดล้อมที่น่าวิตกกังวลมีผลมาจากการปลดปล่อยก๊าซคาร์บอนไดออกไซด์สู่บรรยากาศ ในกระบวนการผลิตปูนซีเมนต์และของเสียจากอุตสาหกรรม ทำให้เกิดแรงกระตุ้นในการวิจัยและพัฒนาที่ จะลดปัญหาดังกล่าวมากขึ้น ในปัจจุบันได้มีการวิจัยที่จะนำวัสดุเหลือทิ้งจากอุตสาหกรรมมาผลิตวัสดุ ซีเมนต์ใหม่มากขึ้น เพื่อทดแทนการกำจัดโดยการฝังกลบ และลดการใช้ปริมาณปูนซีเมนต์ให้น้อยลง

วัสดุจีโอโพลิเมอร์เป็นวัสดุใหม่ที่มีคุณสมบัติการยึดประสาน หรือคุณสมบัติคล้ายสารซีเมนต์ ที่ สามารถผลิตจากวัสดุเหลือทิ้งที่มีชิลิกาและอะลูมิน่าเป็นองค์ประกอบ เช่นเถ้าถ่านหิน ดินเกาลีน เป็น ต้น โดยผสมกับสารละลายอัลคาไลน์ที่อุณหภูมิปกติ ทำให้ได้สารประกอบที่มีคุณสมบัติในการยึดประสาน โดยที่ไม่ต้องใช้ปูนซีเมนต์เป็นส่วนผสม ทำให้วัสดุจีโอโพลิเมอร์มีคุณสมบัติคล้ายคอนกรีต วัสดุจีโอโพลิ เมอร์สามารถผลิตขึ้นโดยการผสมเถ้าถ่านหินกับสารละลายอัลคาไลน์ที่เตรียมที่อุณหภูมิปกติ เพื่อให้ เกิดปฏิกิริยาโพลิคอนเดนเซชั่นได้สารเชื่อมประสานที่ดีหรือเรียกกันว่าสารประกอบอลูมิโนซิลิเกต งานวิจัยนี้คาดว่าจะเป็นการศึกษาแนวทางการพัฒนาวัสดุจีโอโพลิเมอร์ในประเทศไทย สามารถได้วัสดุ ใหม่ที่มีคุณสมบัติที่ดีกว่าคอนกรีต อีกทั้งเป็นการลดปริมาณของเสียจากอุตสาหกรรม และเพิ่มศักยภาพ การใช้ประโยชน์จากของเสียในเชิงพาณิชย์ด้วย

เถ้าลอยจากการเผาถ่านหินแบบใช้ถ่านหินบด (Pulverized coal combustion, PCC) ใช้กัน มากในการผสมกับปูนซีเมนต์ หรือผลิตวัสดุจีโอโพลิเมอร์ เนื่องจากเถ้าลอยชนิดนี้ปริมาณร้อยละ 70-90 มีคุณสมบัติที่เป็นสารปอชโซลาน ซึ่งมีความว่องไวต่อการเกิดปฏิกิริยามากกว่าเถ้าลอยจากการเผาแบบ อื่น เช่นเถ้าลอยที่ได้จากเตาเผาแบบฟลูอิดไดซ์เบด (Fluidized bed combustion, FBC) เนื่องจากการ เผา PCC จะเผาที่ความร้อนปานกลางอยู่ในช่วงระหว่าง 1100-1400°C ทำให้ได้เถ้าลอยในปริมาณมาก และเถ้าลอยที่ได้มีคุณสมบัติที่ดีต่อการทำปฏิกิริยาดังที่กล่าวข้างต้น ในขณะที่การเผาแบบ FBC เป็นการ เผาแบบความร้อนต่ำ คือช่วงอุณหภูมิการเผาต่ำกว่า 900°C เถ้าลอยที่ได้จึงมีรูปร่างที่ไม่แน่นอน (Irregular) และมีส่วนประกอบที่เป็นผลึกค่อนข้างสูง เนื่องจากอุณหภูมิการเผาถ่านหินที่ไม่สูงพอ แม้เถ้า ลอยจากการเผาแบบ FBC จะสามารถนำมาใช้เป็นสารปอชโซลานได้ แต่ก็ไม่ดีเท่ากับเถ้าลอยที่ได้จากการ เผาด้วยความร้อนปานกลางแบบใช้ถ่านหินบด อย่างไรก็ตามวิธีการเผาแบบ FBC นี้เริ่มมีการใช้มากขึ้น สำหรับการผลิตไฟฟ้าขนาดเล็กในโรงงานต่างๆ และเป็นเทคโนโลยีสะอาดในการเผาถ่านหินเมื่อเทียบกับ การเผาประเภทอื่นๆ เนื่องจากมีการพ่นหินปูนเข้าไปจับกับกัาซซัลเฟอร์ออกไซด์ (SOX) ทำให้ปริมาณ กำมะถันที่ปล่อยออกมาลดลงได้มากถึงร้อยละ 90 อีกทั้งยังลดปริมาณมลพิษที่เกิดจากก๊าซไนโตรเจน ออกไซด์ (NOX) จากถ่านหินได้อีกด้วย

เพื่อเป็นการใช้ประโยชน์เถ้าลอยที่ได้จากระบบการเผาถ่านหินแบบฟลูอิดไดซ์เบดให้มากยิ่งขึ้น งานวิจัยนี้จึงศึกษาคุณสมบัติของวัสดุจีโอโพลิเมอร์จากเถ้าลอยและเถ้าก้นเตาที่ได้จากการเผานี้ และหา แนวทางในการปรับปรุงคุณภาพวัสดุจีโอโพลิเมอร์ชนิดนี้ โดยการผสมกับเถ้าลอยที่ได้จากการเผาแบบ PCC จากนั้นทำการศึกษาสมบัติทางเคมีและทางกายภาพ เพื่อให้ได้วัสดุใหม่ที่มีคุณสมบัติใกล้เคียงกับ คอนกรีต และ/หรือวัสดุอื่นๆ ที่สำหรับการใช้งานที่เหมาะสม อีกทั้งเป็นการลดปริมาณของเสียจาก อุตสาหกรรม และเพิ่มศักยภาพการใช้ประโยชน์จากของเสียในเชิงพาณิชย์ด้วย

2. ความสำคัญของงานวิจัย

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาศักยภาพการใช้เถ้าถ่านหินจากระบบการเผาถ่านหินแบบฟลู อิดไดซ์เบดในการผลิตจีโอโพลิเมอร์ โดยการพัฒนาเป็นสารซีเมนต์ที่ไม่ใช้ปูนซีเมนต์สปอร์ตแลนด์เป็นสาร เชื่อมประสานที่สามารถใช้แทนปูนซีเมนต์ปอร์ตแลนด์ได้ ได้วัสดุใหม่ที่มีคุณสมบัติใกล้เคียงกับคอนกรีต และ/หรือวัสดุอื่นๆ ที่สำหรับการใช้งานที่เหมาะสม

3. ระเบียบวิธีวิจัย

เพื่อศึกษาศักยภาพการใช้เถ้าถ่านหินในการผลิตจีโอโพลิเมอร์ โดยการพัฒนาเป็นสารซีเมนต์ที่ไม่ ใช้ปูนซีเมนต์สปอร์ตแลนด์เป็นสารเชื่อมประสานที่สามารถใช้แทนปูนซีเมนต์ปอร์ตแลนด์ได้ จึงได้ผลิต วัสดุจีโอโพลิเมอร์จากเถ้าถ่านหินและทดสอบคุณสมบัติทางเคมีและกายภาพของจีโอโพลิเมอร์ได้ โดย ดำเนินการทดลองดังต่อไปนี้ คือ ทำการศึกษาผลของความเข้มข้นของสารละลายโซเดียมไฮดรอกไซด์ (NaOH) ต่อการเกิดปฏิกิริยาของอนุภาคเถ้าถ่านหิน ชนิดเถ้าลอยจากการเผาแบบใช้ถ่านหินบด (pulverized coal combustion, PCC) จากนั้นจึงเลือกความเข้มข้นของ NaOH ที่เหมาะสมนำไปผลิต วัสดุจีโอโพลิเมอร์จากเถ้าถ่านหินผสมต่อไป โดยแบ่งวิธีการใช้งานเถ้าถ่านหินจากการเผาแบบฟลูอิดไดซ์ เบด (Fluidized-bed combustion, FBC) ที่ได้จากโรงงานไฟฟ้าขนาดเล็ก ได้ 2 วิธี คือ 1) การบดเถ้า ลอยและเถ้ากันเตา FBC ร่วมกัน 2) การนำเฉพาะเถ้าลอย FBC มาใช้ประโยชน์ เถ้าที่เตรียมได้จาก 2 วิธี จะนำมาผสมกับเถ้าลอย PCC จากโรงไฟฟ้าแม่เมาะ เพื่อเพิ่มความสามารถในการทำงานได้และเพิ่ม ความว่องไวในการทำปฏิกิริยาได้ และใช้เถ้าผสมนั้นเป็นวัตถุดิบสำหรับผลิตจีโอโพลิเมอร์

เถ้าลอย PCC จะใช้แทนที่เถ้าผสม FBC บด (วิธีที่ 1) หรือเถ้าลอย FBC (วิธีที่ 2) ที่ปริมาณร้อย ละ 50, 60, 70, 80 เพื่อผลิตจีโอโพลิเมอร์ โดยใช้สารละลายโซเดียมไฮดรอกไซด์ที่ความเข้มข้น 10 โม ล่าร์ และสารละลายโซเดียมซิลิเกตที่มีปริมาณ SiO_2 31% และ Na_2O 9% อัตราส่วนเถ้าทั้งหมดต่อ สารละลายไฮดรอกไซด์ต่อสารละลายโซเดียมซิลิเกตคือ 60:16:24 โดยน้ำหนัก บ่มสารผสมที่ได้ที่ อุณหภูมิ 65° C เป็นเวลา 24 ชม.ก่อนนำไปศึกษาคุณสมบัติทางเคมีและทางกายภาพของจีโอโพลิเมอร์จาก เถ้าผสมที่ผลิตได้

เถ้าถ่านหิน และจีโอโพลิเมอร์เพสต์จะถูกศึกษาโครงสร้างทางจุลภาคเปรียบเทียบกันด้วยเทคนิค Scanning Electron Microscopy (SEM) โดยชิ้นตัวอย่างต้องเคลือบด้วยทองคำเพื่อเพิ่มค่าการนำไฟฟ้า พบการเปลี่ยนแปลงที่ผิวของเถ้าถ่านหิน เนื่องมาจากเกิดการเปลี่ยนแปลงเป็นสารจีโอโพลิเมอร์ โดย ซิลิกอน (Si) และอะลูมิเนียม (Al) ปฏิกิริยาจะเกิดขึ้นที่ผิวของเถ้าถ่านหินเท่านั้น และปฏิกิริยาที่เกิดขึ้น นั้นไม่สมบูรณ์เพราะยังพบว่ามีพื้นที่ผิวบางส่วนของเถ้าถ่านหินที่ยังคงเรียบและไม่มีเจลเกาะ นอกจากนั้น ทำการวิเคราะห์คุณสมบัติทางแร่ธาตุด้วยเทคนิค X-Ray Diffraction (XRD) คุณสมบัติด้านความร้อน ด้วยเทคนิค Thermogravimetric Analysis (TGA) ดัชนีการเกิดปฏิกิริยา และการทดสอบกำลังอัด

4. Output ที่ได้จากโครงการ

จากงานวิจัยนี้สามารถผลิต 3 บทความวิจัย ที่สามารถสืบค้นได้ในฐานข้อมูล ISI Web of Knowledge ดังมีรายชื่อบทความดังต่อไปนี้

- 1) **Ubolluk Rattanasak**, Prinya Chindaprasirt, 2009, Influence of NaOH solution on the synthesis of fly ash geopolymer, Minerals Engineering 22(12), 1073–1078. (2010 Impact factor: 1.333)
- 2) Prinya Chindaprasirt, **Ubolluk Rattanasak**, 2010, Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer, Waste Management 30, 667-672. (2010 Impact factor: 2.433)
- 3) Prinya Chindaprasirt, **Ubolluk Rattanasak**, Chai Jaturapitakkul, 2011, Utilization of fly ash blends from pulverized coal and fluidized bed combustions in geopolymeric materials, Cement and Concrete Composites 33, 55-61. (2010 Impact factor: 1.839)

สารบัญ

		หน้า
บทคัดย่อ		
Abstract		i
บทสรุปผู้บ	ริหาร	ii
บทที่ 1	บทนำ	1
1.1	ความสำคัญและที่มาของปัญหาที่ทำการวิจัย	1
1.2	วัตถุประสงค์ของโครงการ	2
1.3	ระเบียบวิธีวิจัย	2
1.4	ขอบเขตของการวิจัย	3
1.5	ประโยชน์ที่คาดว่าจะได้รับ	3
บทที่ 2	ทฤษฎีและงานวิจัยที่เกี่ยวข้อง	4
2.1	วัสดุจีโอโพลิเมอร์	4
2.2	ปฏิกิริยาของจีโอโพลิเมอร์	5
2.3	ระบบการเผาถ่านหิน	7
2.4	เทคนิคที่ใช้ในการทดสอบ	9
บทที่ 3	วิธีการทดลอง	14
3.1	เครื่องมือ อุปกรณ์ และสารเคมี	14
3.2	วิธีการทดลอง	15
บทที่ 4	ผลการทดลอง	22
4.1	องค์ประกอบของเถ้าถ่านหิน	22
4.2	การศึกษาผลของความเข้มข้นของสารละลายโซเดียมไฮดรอกไซด์	23
4.3	ขนาดของเถ้าถ่านหินบด	24
4.4	การศึกษาความเป็นอสัณฐานของเถ้าถ่านหิน	25
4.5	การวิเคราะห์ทางอสัณฐานวิทยา	26
4.6	โครงสร้างจุลภาคของจีโอโพลิเมอร์เพสต์	28
4.7	้ การศึกษาดัชนีการเกิดปฏิกิริยาของจีโอโพลิเมอร์	31

	4.8	การศึกษาคุณสมบัติด้านความร้อนของจีโอโพลิเมอร์	33
	4.9	การศึกษากำลังอัดของจีโอโพลิเมอร์มอร์ต้าร์	36
.!			
บทที	5	สรุปผลการทดลอง	38
		Output ที่ได้จากโครงการ	40
		เอกสารอ้างอิง	41
		ภาคผนวก	43

บทน้ำ

1.1 ความสำคัญและที่มาของปัญหาที่ทำการวิจัย

ปัญหาสิ่งแวดล้อมที่น่าวิตกกังวลมีผลมาจากการปลดปล่อยก๊าซคาร์บอนไดออกไซด์สู่บรรยากาศ ในกระบวนการผลิตปูนซีเมนต์และของเสียจากอุตสาหกรรม ทำให้เกิดแรงกระตุ้นในการวิจัยและพัฒนาที่ จะลดปัญหาดังกล่าวมากขึ้น ในปัจจุบันได้มีการวิจัยที่จะนำวัสดุเหลือทิ้งจากอุตสาหกรรมมาผลิตวัสดุ ซีเมนต์ใหม่มากขึ้น เพื่อทดแทนการกำจัดโดยการฝังกลบ และลดการใช้ปริมาณปูนซีเมนต์ให้น้อยลง

วัสดุจีโอโพลิเมอร์เป็นวัสดุใหม่ที่มีคุณสมบัติการยึดประสาน หรือคุณสมบัติคล้ายสารซีเมนต์ ที่ สามารถผลิตจากวัสดุเหลือทิ้งที่มีชิลิกาและอะลูมิน่าเป็นองค์ประกอบ เช่นเถ้าถ่านหิน ดินเกาลีน เป็น ต้น โดยผสมกับสารละลายอัลคาไลน์ที่อุณหภูมิปกติ ทำให้ได้สารประกอบที่มีคุณสมบัติในการยึดประสาน โดยที่ไม่ต้องใช้ปูนซีเมนต์เป็นส่วนผสม ทำให้วัสดุจีโอโพลิเมอร์มีคุณสมบัติคล้ายคอนกรีต วัสดุจีโอโพลิ เมอร์สามารถผลิตขึ้นโดยการผสมเถ้าถ่านหินกับสารละลายอัลคาไลน์ที่เตรียมที่อุณหภูมิปกติ เพื่อให้ เกิดปฏิกิริยาโพลิคอนเดนเซชั่นได้สารเชื่อมประสานที่ดีหรือเรียกกันว่าสารประกอบอลูมิโนซิลิเกต งานวิจัยนี้คาดว่าจะเป็นการศึกษาแนวทางการพัฒนาวัสดุจีโอโพลิเมอร์ในประเทศไทย สามารถได้วัสดุ ใหม่ที่มีคุณสมบัติที่ดีกว่าคอนกรีต อีกทั้งเป็นการลดปริมาณของเสียจากอุตสาหกรรม และเพิ่มศักยภาพ การใช้ประโยชน์จากของเสียในเชิงพาณิชย์ด้วย

เถ้าลอยจากการเผาถ่านหินแบบใช้ถ่านหินบด (Pulverized coal combustion, PCC) ใช้กัน มากในการผสมกับปูนซีเมนต์ หรือผลิตวัสดุจีโอโพลิเมอร์ เนื่องจากเถ้าลอยชนิดนี้ปริมาณร้อยละ 70-90 มีคุณสมบัติที่เป็นสารปอชโซลาน ซึ่งมีความว่องไวต่อการเกิดปฏิกิริยามากกว่าเถ้าลอยจากการเผาแบบ อื่น เช่นเถ้าลอยที่ได้จากเตาเผาแบบฟลูอิดไดซ์เบด (Fluidized bed combustion, FBC) เนื่องจากการ เผา PCC จะเผาที่ความร้อนปานกลางอยู่ในช่วงระหว่าง 1100-1400°C ทำให้ได้เถ้าลอยในปริมาณมาก และเถ้าลอยที่ได้มีคุณสมบัติที่ดีต่อการทำปฏิกิริยาดังที่กล่าวข้างต้น ในขณะที่การเผาแบบ FBC เป็นการ เผาแบบความร้อนต่ำ คือช่วงอุณหภูมิการเผาต่ำกว่า 900°C เถ้าลอยที่ได้จึงมีรูปร่างที่ไม่แน่นอน (Irregular) และมีส่วนประกอบที่เป็นผลึกค่อนข้างสูง เนื่องจากอุณหภูมิการเผาถ่านหินที่ไม่สูงพอ แม้เถ้า ลอยจากการเผาแบบ FBC จะสามารถนำมาใช้เป็นสารปอชโซลานได้ แต่ก็ไม่ดีเท่ากับเถ้าลอยที่ได้จากการ เผาด้วยความร้อนปานกลางแบบใช้ถ่านหินบด อย่างไรก็ตามวิธีการเผาแบบ FBC นี้เริ่มมีการใช้มากขึ้น สำหรับการผลิตไฟฟ้าขนาดเล็กในโรงงานต่างๆ และเป็นเทคโนโลยีสะอาดในการเผาถ่านหินเมื่อเทียบกับ การเผาประเภทอื่นๆ เนื่องจากมีการพ่นหินปูนเข้าไปจับกับก๊าซซัลเฟอร์ออกไซด์ (SOX) ทำให้ปริมาณ

กำมะถันที่ปล่อยออกมาลดลงได้มากถึงร้อยละ 90 อีกทั้งยังลดปริมาณมลพิษที่เกิดจากก๊าซไนโตรเจน ออกไซด์ (NOx) จากถ่านหินได้อีกด้วย

เพื่อเป็นการใช้ประโยชน์เถ้าลอยที่ได้จากระบบการเผาถ่านหินแบบฟลูอิดไดซ์เบดให้มากยิ่งขึ้น งานวิจัยนี้จึงศึกษาคุณสมบัติของวัสดุจีโอโพลิเมอร์จากเถ้าลอยและเถ้าก้นเตาที่ได้จากการเผานี้ และหา แนวทางในการปรับปรุงคุณภาพวัสดุจีโอโพลิเมอร์ชนิดนี้ โดยการผสมกับเถ้าลอยที่ได้จากการเผาแบบ PCC จากนั้นทำการศึกษาสมบัติทางเคมีและทางกายภาพ เพื่อให้ได้วัสดุใหม่ที่มีคุณสมบัติใกล้เคียงกับ คอนกรีต และ/หรือวัสดุอื่นๆ ที่สำหรับการใช้งานที่เหมาะสม อีกทั้งเป็นการลดปริมาณของเสียจาก อุตสาหกรรม และเพิ่มศักยภาพการใช้ประโยชน์จากของเสียในเชิงพาณิชย์ด้วย

1.2 วัตถุประสงค์ของโครงการ

- 1) เพื่อศึกษาศักยภาพการใช้เถ้าถ่านหินที่ได้จากการเผาถ่านหินแบบฟลูอิดไดซ์เบดในการผลิตจี โอโพลิเมอร์
- 2) เพื่อศึกษาคุณสมบัติทางเคมีและกายภาพของจีโอโพลิเมอร์ที่เตรียมจากเถ้าถ่านหินที่ได้จาก การเผาถ่านหินแบบฟลูอิดไดซ์เบด
- 3) ปรับปรุงคุณภาพจีโอโพลิเมอร์ที่เตรียมจากเถ้าถ่านหินที่ได้จากการเผาถ่านหินแบบฟลูอิด ไดซ์เบดให้ทัดเทียมกับเถ้าถ่านหินทั่วไป

1.3 ระเบียบวิธีวิจัย

เพื่อศึกษาศักยภาพการใช้เถ้าถ่านหินในการผลิตจิโอโพลิเมอร์ โดยการพัฒนาเป็นสารซีเมนต์ที่ไม่ ใช้ปูนซีเมนต์สปอร์ตแลนด์เป็นสารเชื่อมประสานที่สามารถใช้แทนปูนซีเมนต์ปอร์ตแลนด์ได้ จึงได้ผลิต วัสดุจิโอโพลิเมอร์จากเถ้าถ่านหินและทดสอบคุณสมบัติทางเคมีและกายภาพของจิโอโพลิเมอร์ได้ โดย ดำเนินการทดลองดังต่อไปนี้ คือ ทำการศึกษาผลของความเข้มข้นของสารละลายโซเดียมไฮดรอกไซด์ (NaOH) ต่อการเกิดปฏิกิริยาของอนุภาคเถ้าถ่านหิน ชนิดเถ้าลอยจากการเผาแบบใช้ถ่านหินบด (pulverized coal combustion, PCC) จากนั้นจึงเลือกความเข้มข้นของ NaOH ที่เหมาะสมนำไปผลิต วัสดุจิโอโพลิเมอร์จากเถ้าถ่านหินผสมต่อไป โดยแบ่งวิธีการใช้งานเถ้าถ่านหินจากการเผาแบบฟลูอิดไดซ์ เบด (Fluidized-bed combustion, FBC) ที่ได้จากโรงงานไฟฟ้าขนาดเล็ก ได้ 2 วิธี คือ 1) การบดเถ้า ลอยและเถ้ากันเตา FBC ร่วมกัน 2) การนำเฉพาะเถ้าลอย FBC มาใช้ประโยชน์ เถ้าที่เตรียมได้จาก 2 วิธี จะนำมาผสมกับเถ้าลอย PCC จากโรงไฟฟ้าแม่เมาะ เพื่อเพิ่มความสามารถในการทำงานได้และเพิ่ม ความว่องไวในการทำปฏิกิริยาได้ และใช้เถ้าผสมนั้นเป็นวัตถุดิบสำหรับผลิตจิโอโพลิเมอร์

เถ้าลอย PCC จะใช้แทนที่เถ้าผสม FBC บด (วิธีที่ 1) หรือเถ้าลอย FBC (วิธีที่ 2) ที่ปริมาณร้อย ละ 50, 60, 70, 80 เพื่อผลิตจีโอโพลิเมอร์ โดยใช้สารละลายโซเดียมไฮดรอกไซด์ที่ความเข้มข้น 10 โม ล่าร์ และสารละลายโซเดียมซิลิเกตที่มีปริมาณ SiO_2 31% และ Na_2O 9% อัตราส่วนเถ้าทั้งหมดต่อ สารละลายไฮดรอกไซด์ต่อสารละลายโซเดียมซิลิเกตคือ 60:16:24 โดยน้ำหนัก บ่มสารผสมที่ได้ที่ อุณหภูมิ 65° C เป็นเวลา 24 ชม.ก่อนนำไปศึกษาคุณสมบัติทางเคมีและทางกายภาพของจีโอโพลิเมอร์จาก เถ้าผสมที่ผลิตได้

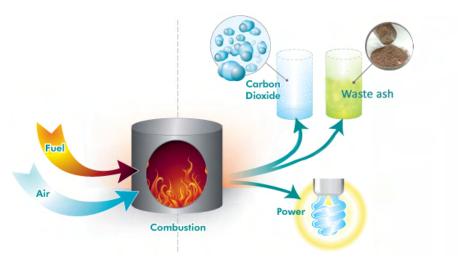
เถ้าถ่านหิน และจีโอโพลิเมอร์เพสต์จะถูกศึกษาโครงสร้างทางจุลภาคเปรียบเทียบกันด้วยเทคนิค Scanning Electron Microscopy (SEM) โดยชิ้นตัวอย่างต้องเคลือบด้วยทองคำเพื่อเพิ่มค่าการนำไฟฟ้า พบการเปลี่ยนแปลงที่ผิวของเถ้าถ่านหิน เนื่องมาจากเกิดการเปลี่ยนแปลงเป็นสารจีโอโพลิเมอร์ โดย ซิลิกอน (Si) และอะลูมิเนียม (Al) ปฏิกิริยาจะเกิดขึ้นที่ผิวของเถ้าถ่านหินเท่านั้น และปฏิกิริยาที่เกิดขึ้น นั้นไม่สมบูรณ์เพราะยังพบว่ามีพื้นที่ผิวบางส่วนของเถ้าถ่านหินที่ยังคงเรียบและไม่มีเจลเกาะ นอกจากนั้น ทำการวิเคราะห์คุณสมบัติทางแร่ธาตุด้วยเทคนิค X-Ray Diffraction (XRD) คุณสมบัติด้านความร้อน ด้วยเทคนิค Thermogravimetric Analysis (TGA) ดัชนีการเกิดปฏิกิริยา และการทดสอบกำลังอัด

1.4 ขอบเขตของการวิจัย

ในการวางแผนการทดสอบจะแบ่งการทดลองเป็น 3 ส่วนคือ

- 1) ทำการเตรียมเถ้าถ่านหิน FBC โดยการผสมเถ้าลอยและเถ้าก้นเตา FBC ที่อัตราส่วนต่างแล้ว บดให้มีขนาดต่างกัน คือให้มีขนาดค้างตะแกรงเบอร์ 345 (รูเปิด 45 ไมคอรน) ร้อยละ 35, 15 และ 5 แล้วผสมกับเถ้าลอย PCC สำหรับใช้เป็นวัตถุดิบสำหรับการผลิตจีโอโพลิเมอร์
- 2) ทำการเตรียมเถ้าถ่านหิน FBC โดยใช้เฉพาะเถ้าลอย FBC แล้วผสมกับเถ้าลอย PCC สำหรับ ใช้เป็นวัตถุดิบสำหรับการผลิตจีโอโพลิเมอร์
- 3) การศึกษาคุณสมบัติทางเคมี โครงสร้างทางจุลภาค และการศึกษาคุณสมบัติทางกายภาพของจี โอโพลิเมอร์จากเถ้าผสม

1.5 ประโยชน์ที่คาดว่าจะได้รับ


- 1) เพิ่มศักยภาพศักยภาพการใช้เถ้าถ่านหินที่ได้จากการเผาถ่านหินแบบฟลูอิดไดซ์เบดในการผลิต จีโอโพลิเมอร์
 - 2) ได้วัสดุใหม่ที่มีคุณสมบัติใกล้เคียงกับคอนกรีต แต่ให้กำลังรับแรงอัดที่สูงในระยะเวลาอันสั้น
- 3) เป็นการลดปริมาณของเสียจากอุตสาหกรรม และเพิ่มศักยภาพการใช้ประโยชน์จากของเสียใน เชิงพาณิชย์

บทที่ 2

ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

2.1 วัสดุจีโอโพลิเมอร์

จากปัญหาสิ่งแวดล้อมที่มีผลมาจากการปลดปล่อยก๊าซคาร์บอนไดออกไซด์สู่บรรยากาศใน กระบวนการผลิตปูนซีเมนต์ และปัญหาการกำจัดของเสียจากกระบวนการอุตสาหกรรม ทำให้เกิดแรง กระตุ้นในการวิจัยและพัฒนาที่จะลดปัญหาดังกล่าวมากขึ้น ในปัจจุบันได้มีการวิจัยที่จะนำวัสดุเหลือทิ้ง จากอุตสาหกรรมมาผลิตวัสดุใหม่มากขึ้นมาผสมกับปูนซีเมนต์ เพื่อลดการใช้ปริมาณปูนซีเมนต์ให้น้อยลง แต่ยังคงคุณสมบัติการเป็นวัสดุประสานที่ดี โดยสารที่ใช้ผสมดังกล่าวเป็นสารปอชโซลาน ซึ่งไม่มี คุณสมบัติเป็นปูนซีเมนต์ในตัวเอง แต่เมื่อผสมกับสารประกอบของแคลเซียมออกไซด์จะสามารถก่อตัวและ แข็งตัวได้ สารปอชโซลานที่ใช้กันมากที่สุดได้แก่เถ้าลอย โดยเถ้าลอยเป็นของเสียที่ได้จากกระบวนการ เผาถ่านหินสำหรับผลิตกระแสไฟฟ้า ดังแสดงในรูปที่ 2.1

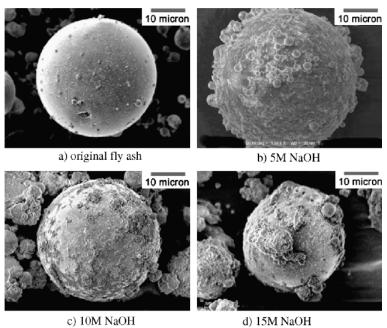
รูปที่ 2.1 กระบวนการเผาถ่านหินเพื่อผลิตกระแสไฟฟ้า

ในช่วงเวลาไม่นานนี้ นักวิจัยชาวต่างประเทศหลายท่าน [1-4] ได้พยายามศึกษาการผลิต คอนกรีตแบบใหม่โดยไม่ใช้ปูนซีเมนต์เป็นส่วนผสม คอนกรีตดังกล่าวได้จากการทำปฏิกิริยาระหว่างสารที่ มีซิลิกา (SiO₂) และอลูมินา (Al₂O₃) เป็นองค์ประกอบ กับสารละลายซิลิเกตและสารละลายเบสความ เข้มข้นสูง เพื่อให้เกิดปฏิกิริยาโพลิคอนเดเซชั่น ได้สารประกอบอะลูมิโนซิลิเกตที่มีคุณสมบัติคล้ายซีเมนต์ ซึ่งมีชื่อเรียกว่าจีโอโพลิเมอร์ (Geopolymer) หรือมีสูตรทางเคมีคือ

$M_n[-(SiO_2)_z-AlO_2]_n$ \bullet w H_2O

เมื่อ M คือโลหะอัลคาไลน์

- n คือจำนวนหน่วยโมเลกุลที่ต่อกันเป็นสายโซ่หรือ degree of polycondensation
- z คือตัวเลข 1. 2 หรือ 3 และ
- w คือจำนวนโมเลกุลของน้ำ


จากการวิจัยที่ผ่านมาพบว่า เถ้าถ่านหินมีส่วนประกอบ SiO_2 และ Al_2O_3 เป็นองค์ประกอบหลัก หากนำมาทำปฏิกิริยากับสารละลายอัลคาไลน์จะสามารถทำให้เกิดสารประกอบจีโอโพลิเมอร์ที่มีคุณสมบัติ แข็งตัวได้เหมือนคอนกรีต

2.2 ปฏิกิริยาของจีโอโพลิเมอร์

จีโอโพลิเมอร์เป็นสารพวกอลูมิโนซิลิเกต (Aluminosilicate) ที่มีโครงสร้างทางสัณฐานวิทยา (Morphology) แน่นอน เป็นส่วนประกอบของอสัณฐาน (Amorphous phase) และสารกึ่งผลึก (Semicrystalline) สารตั้งต้นในการทำจีโอโพลิเมอไรเซชั่น (Geopolymerization) จึงเป็นสารซิลิกาและอลูมิ น่าที่ว่องไวต่อการเกิดปฏิกิริยา เมื่อผสมสารละลายอัลคาไลเบสจึงสามารถเกิดปฏิกิริยาได้ทั้งอุณหภูมิปกติ หรืออุณหภูมิสูงได้ และก่อตัวและให้กำลังรับแรงได้ดี ปฏิกิริยานี้ทำให้เกิดความร้อนเช่นเดียวกับปฏิกิริยา ของปูนซีเมนต์กับน้ำ โดยปฏิกิริยาจีโอโพลิเมไรเซชั่นแบ่งเป็น 2 ขั้นตอนดังต่อไปนี้ [5]

1) การชะละลาย (Dissolution)

เถ้าหรือสารตั้งต้นเมื่อผสมสารละลายที่มีความเป็นเบสสูง เช่นโวเดียมไฮดรอกไซด์จะเกิดการ ชะลายของซิลิกาและอลูมิน่าออกมาจากผิว ซิลิกอนและอลูมิเนียมจะทำปฏิกิริยากับสารละลายเบสเกิด การก่อตัวเป็นเจลเกิดขึ้นที่ผิวอนุภาคของเถ้า ตัวอย่างเถ้าลอยที่ถูกชะด้วยสารละลายโซเดียมไฮดรอกไซด์ แสดงในรูป 2.2 [6] ความเข้มข้นของสารละลายโซเดียมไฮดรอกไซด์มีผลต่อการชะของเถ้า ความเข้มข้น ที่มากขึ้น ทำให้เกิดการชะของอิออนซิลิกอนและอลูมิเนียมออกมาจากผิวของเถ้ามาก

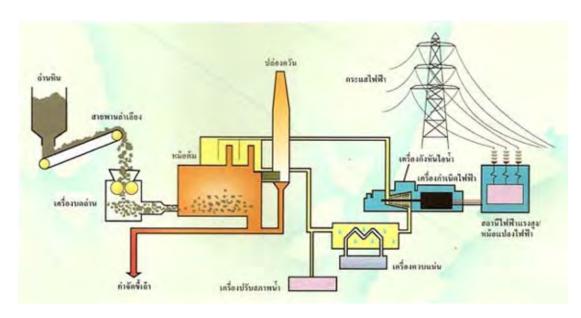
รูปที่ 2.2 ผิวของเถ้าลอยเมื่อชะด้วยสารละลายโซเดียมไฮดร[่]อกไซด์ที่ความเข้มข้นต่างๆ 10 นาที [6]

2) การทำปฏิกิริยาลูกโซ่ (Polymerization)

อิออนซิลิกอนและอลูมิเนียมที่จะถูกชะออกมาเกิดการรวมตัวกับอิออนออกซิเจนอยู่ใน รูปทรงเหลี่ยนสี่หน้า เกิดการเชื่อมต่อกันระหว่างหน่วยโมเลกุลของ Si และ Al ได้สารประกอบอลูมิโนซิลิ เกต [Si – O – Al – O] ดังกลไกที่เสนอโดย Hua และ van Deventer [7] ดังสมการต่อไปนี้

$$\begin{array}{c} \text{n(OH)}_3 - \text{Si} - \text{O} - \text{Al}^- - \text{O} - \text{Si} - (\text{OH})_3 + \text{NaOH/KOH} \rightarrow & | & | & | & | \\ & \text{(Na+,K+)-(-Si-O-Al-O-Si-O-)} + 4\text{H}_2\text{O} \\ & \text{OO}_2 & \text{OO}_1 & | & | & | \\ & \text{(geopolymer blackbone)} \end{array} \tag{2}$$

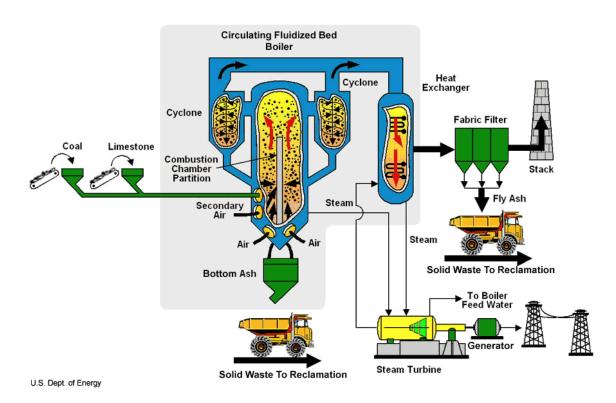
ปฏิกิริยาทางเคมีของจีโอโพลิเมอร์จะใกล้เคียงกับการสังเคราะห์ซีโอไลต์ (Zeolite) แต่ผลิตภัณฑ์ ที่ได้จะมีองค์ประกอบทางเคมีและโครงสร้างที่แตกต่างกัน ตารางที่ 2.1 แสดงการเปรียบเทียบระหว่าง การสังเคราะห์จีโอโพลิเมอร์และซีโอไลต์ การสังเคราะห์ซีโอไลต์จะใช้อุณหภูมิสูงกว่าจีโอโพลิเมอร์มาก และให้โครงสร้างที่เป็นผลึก อีกทั้งให้คุณสมบัติเชิงกลที่ต่ำ


ตารางที่ 2.1 การเปรียบเทียบการสังเคราะห์ซีโอไลต์และจีโอโพลิเมอร์

	การสังเคราะห์ซีโอไลต์	ปฏิกิริยาจีโอโพลิเมอไรเซชั่น
สารตั้งต้น	สารละลายเชิงซ้อน Al +	วัสดุที่มี Al-Si เป็นส่วนประกอบ +
	สารละลายเชิงซ้อน Si	สารละลายอัลคาไลน์ +
		ซิลิเกต (ในรูปของแข็งหรือของเหลว)
ปฏิกิริยาช่วงเริ่มต้น	การเกิดนิวเคลียส (nucleation) ใน	การชะของแข็งที่มี Al-Si เป็น
	สารละลาย	ส่วนประกอบออกมาสู่เพสต์
ปฏิกิริยาช่วงปลาย	การโตขึ้นของผลึกในสารละลาย	การแพร่และควบแน่นของสารเชิงซ้อน Al
		และ Si ที่ชะออกมาในเพสต์
อุณหภูมิในการทำปฏิกิริยา	90-300 °C	อุณหภูมิปกติ (ambient)
ช่วง pH	6-11	14
ผลิตภัณฑ์ที่ได้	ซีโอไลต์ที่เป็นผลึก	ของผสมของเจลและวัสดุที่มี Al-Si เป็น
		ส่วนประกอบ
องค์ประกอบทางเคมี	มีสูตรปริมาณสารสัมพันธ์ที่แน่นอน	มีสูตรปริมาณสารสัมพันธ์ที่ไม่แน่นอน
โครงสร้าง	ผลึกที่มีเอกลักษณ์เฉพาะตัว (unique	ของผสมของเฟสเจลแบบอสัณฐานและ
	crystal)	กึ่งอสัณฐาน และวัสดุที่มี Al-Si เป็น
		ส่วนประกอบ
ความแข็งแรงเชิงกล	ต่ำ	สูง

2.3 ระบบการเผาถ่านหิน

การเผาถ่านหินบดเป็นเชื้อเพลิงในการผลิตไฟฟ้ามีใช้กันอยู่ 3 ระบบ ได้แก่ระบบที่เผาด้วยความ ร้อนสูง ระบบที่เผาด้วยความร้อนปานกลาง และระบบที่เผาด้วยความร้อนต่ำ [5]

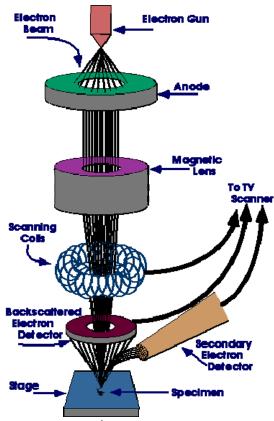

- 1) ระบบที่เผาด้วยความร้อนสูง ระบบนี้จะใช้อุณหภูมิในการเผาสูงถึง 1500-1700°C เป็น ระบบที่ใช้แรงลมแบบหมุนวน (Cyclone combustion) ที่อุณหภูมิสูง เถ้าถ่านหินส่วนใหญ่จะหลอม ละลายและปะทะรวมกันเป็นเม็ดหรือก้อน ได้เป็นเถ้ากันเตาตกลงในอ่างน้ำข้างล่าง เถ้าลอยขนาดเล็ก จากระบบการเผาแบบนี้จะมีปริมาณค่อนข้างน้อย และมักมีลักษณะเป็นเม็ดแก้วใส (Vitreous particle)
- 2) ระบบที่เผาด้วยความร้อนปานกลาง ระบบนี้ใช้อุณหภูมิในการเผาในช่วงระหว่าง 1100-1400 °C เป็นระบบที่เผาที่ใช้ถ่านหินบด (Pulverized coal combustion, PCC) ดังแสดงในรูป 2.3 เถ้าถ่านหินที่ได้ส่วนใหญ่เป็นเถ้าลอย ที่เหลือเป็นเถ้าหนักหรือเถ้าก้นเตา เถ้าลอยที่ได้จากระบบการเผา แบบนี้ประมาณร้อยละ 70-90 มีคุณสมบัติในการเป็นสารปอชโซลาน และเป็นเถ้าลอยที่เหมาะในการใช้ แทนที่ปูนซีเมนต์บางส่วนเพื่อทำคอนกรีต [8] หรือผลิตจีโอโพลิเมอร์ [9] ซึ่งโรงงานไฟฟ้าขนาดใหญ่เช่น โรงไฟฟ้าแม่เมาะใช้ระบบการเผาประเภทนี้

รูปที่ 2.3 ระบบเผาที่ใช้ถ่านหินบด

(http://inhumba.com/tag/knowledge/)

3) ระบบที่เผาด้วยความร้อนต่ำ ระบบนี้เป็นการเผาในเตาเผาแบบฟลูอิดไดซ์เบด (Fluidized-bed combustion, FBC) ดังแสดงในรูป 2.4 อุณหภูมิที่ใช้เผาค่อนข้างต่ำคือไม่เกิน 900 °C ถ่านหินที่ บดจนมีขนาดเล็กมากผสมกับหินปูนจะถูกพ่นเข้าไปในเตาเผาพร้อมอากาศร้อน ถ่านหินและหินปูนที่พ่น เข้าไปจะแขวนลอยอยู่ในคลื่นอากาศร้อน โดยมีลักษณะคล้ายของเหลวเดือด ขณะที่ถ่านหินเผาไหม้หินปูน จะทำหน้าที่คล้ายฟองน้ำดักจับก๊าซกำมะถันหรือซัลเฟอร์ออกไซด์ (SOx) ที่เกิดขึ้น ความร้อนที่เกิดจาก การเผาไหม้ถ่านหินจะนำมาต้มน้ำทำให้เกิดไอน้ำไปหมุนกังหันของเครื่องกำเนิดไฟฟ้า กระบวนการนี้ สามารถลดปริมาณก๊าซกำมะถันที่จะถูกปล่อยออกมาจากการเผาไหม้ได้มากถึงร้อยละ 90 นอกจากนี้ อุณหภูมิของหม้อไอน้ำที่ใช้กระบวนการนี้ยังต่ำกว่าอุณหภูมิที่ใช้ในวิธีการเดิม อีกประโยชน์ของการเผาไหม้ที่อุณหภูมิต่ำ คือลดปริมาณมลพิษที่เกิดจากก๊าซไนโตรเจนหรือไนโตรเจนออกไซด์ (NOx) ในถ่านหิน ได้อีกด้วย อย่างไรก็ตาม เถ้าถ่านหินที่ได้จากระบบนี้มีรูปร่างที่ไม่แน่นอน (Irregular) และมี ส่วนประกอบที่เป็นผลึกสูง เนื่องจากอุณหภูมิที่เผาไม่สูงพอ เถ้าลอยที่ได้นี้แม้สามารถนำมาใช้เป็นสาร ปอชโซลานได้ แต่ไม่ดีเท่ากับเถ้าลอยที่ได้จากระบบการเผาด้วยความร้อนปานกลาง อย่างไรก็ตามระบบ การเผาแบบนี้เริ่มมีใช้มากในโรงไฟฟ้าขนาดเล็ก หรือโรงงานต่างๆ

รูปที่ 2.4 ระบบเผาแบบฟลูอิดไดซ์เบด


(http://www.amrclearinghouse.org/Sub/landreclamation/cfb/wpcamr-cfbpower.htm)

ด้วยเหตุผลดังกล่าวขั้นต้น ในปัจจุบันการผลิตวัสดุจีโอโพลิเมอร์จึงนิยมใช้เถ้าลอยจากการเผา ถ่านหินแบบใช้ถ่านหินบด หรือ PCC เป็นวัตถุดิบ เนื่องจากเถ้าลอยชนิดนี้ปริมาณร้อยละ 70-90 มี คุณสมบัติที่เป็นสารปอซโซลาน ซึ่งมีความว่องไวต่อการเกิดปฏิกิริยา จีโอโพลิเมอร์ที่ผลิตจากเถ้าลอยที่ เผาแบบ PCC ให้ค่ากำลังอัดที่สูงกว่าและคงทนกว่าวัสดุที่ผลิตจากปูนซีเมนต์ในอายุเท่ากัน [10-12] และ ให้คุณสมบัติทางกายภาพที่ดีกว่าจีโอโพลิเมอร์ที่ผลิตจากวัสดุชนิดอื่นๆ เช่นดินขาวเผา

2.4 เทคนิคที่ใช้ในการทดสอบ

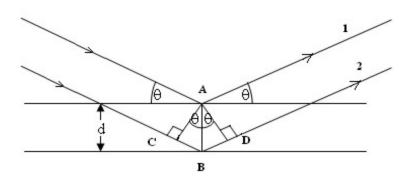
2.4.1 Scanning Electron Microscopy (SEM) [13,14]

กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด Scanning Electron Microscope (SEM) ใช้ใน การศึกษาลักษณะผิวหน้าของชิ้นตัวอย่าง หลักการคือใช้อิเล็กตรอนในการสร้างภาพ อิเล็กตรอนเกิดจาก เส้นลวดโลหะ (เช่น ลวดทั้งสเตน) ถูกให้ความร้อน ลำแสงอิเล็กตรอนจะไปตามแนวของคอลัมน์และผ่าน เลนส์ซึ่งทำหน้าที่รับโฟกัสของลำแสงของอิเล็กตรอนที่ตกลงบนชิ้นของตัวอย่าง การชนของอิเล็กตรอนแต่ ละครั้งจะเกิดสัญญาณสะท้อนกลับของอิเล็กตรอนหลายลักษณะ สัญญาณอิเล็กตรอนเหล่านี้จะถูกวัดด้วย เครื่องตรวจวัดและแปลงสัญญาณส่งไปแสดงผลเกิดเป็นภาพขึ้น ดังแสดงในรูป 2.5

รูปที่ 2.5 ส่วนประกอบของเครื่อง Scanning Electron Microscopy (SEM)

(http://www.purdue.edu/rem/rs/sem.htm)

เมื่อใช้เครื่อง SEM ทั้งคอลัมน์และชิ้นตัวอย่างต้องเป็นสุญญากาศ เนื่องมาจาก


- 1) ถ้ามีอากาศในคอลัมน์ อิเล็กตรอนจะเกิดการชนกับโมเลกุลของอากาศ เกิดการเปลี่ยนทิศทาง ทำให้ไม่ตกลงบนผิวหน้าของชิ้นตัวอย่าง
- 2) ถ้าโมเลกุลของอากาศทำปฏิกิริยากับชิ้นตัวอย่างอาจเกิดสารประกอบชนิดอื่นบนชิ้นตัวอย่าง ทำให้ภาพมีคุณภาพลดลง

สำหรับการเตรียมชิ้นตัวอย่าง ชิ้นตัวอย่างที่นำไฟฟ้าได้ไม่ต้องเตรียมอะไรเพิ่มเติม แต่ถ้าชิ้น ตัวอย่างไม่นำไฟฟ้าต้องเคลือบชิ้นตัวอย่างด้วยทองคำ โดยใช้เครื่องมือ Sputter Coater

2.4.2 X-Ray Diffraction (XRD) [15]

การเลี้ยวเบนของรังสีเอ็กซ์เป็นเทคนิคที่นิยมใช้ในการศึกษาโครงสร้างของผลึก ความเครียดของ โลหะ ขนาดของอนุภาคและการวิเคราะห์องค์ประกอบทางเคมี ซึ่งในผลึกแต่ละชนิดมีขนาดของหน่วย เซลล์ไม่เท่ากันและประกอบด้วยสารที่แตกต่างกัน รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ซึ่งแสดง ความสัมพันธ์ระหว่างมุมของการเลี้ยวเบนกับความเข้มสัมพัทธ์ของพีก การเลี้ยวเบนของรังสีเอ็กซ์ที่มี

ความยาวคลื่นใกล้เคียงกับขนาดของหน่วยเซลล์คือมีขนาดตั้งแต่ประมาณ 0.1-100 อังสตรอม จึงสามารถ เลี้ยวเบนได้ดีจากผลึก เช่นเดียวกับแสงที่สามารถเลี้ยวเบนจากดิฟแฟรคชั่นเกรตติ้ง

รูปที่ 2.5 การเลี้ยวเบนของรังสีเอ็กซ์เมื่อตกกระทบระนาบของผลึก

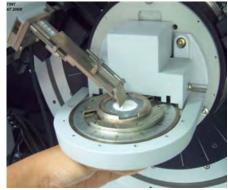
จากรูปที่ 2.5 จะพบว่ารังสีขนานตกลงบนผลึกที่จุด A และ B ตามลำดับ โดยทำมุม q กับระนาบ ของผลึก การเลี้ยวเบนของรังสีจะเกิดขึ้นเมื่อระยะทางที่รังสีเอ็กซ์ 1 และ 2 เดินทางต่างกันเป็นจำนวน เท่าของความยาวคลื่น จะได้ว่า

$$2 d \sin \theta = n \lambda$$

โดยกฎข้อนี้เรียกว่ากฎของแบรกก์ (Bragg's law) ซึ่งแสดงให้เห็นว่า ถ้ารังสีเอ็กซ์ตกกระทบมี ความยาวคลื่นที่คงที่แล้ว มุมของการเลี้ยวเบนรังสีเอ็กซ์จะเกิดขึ้นกับระยะห่างระหว่างระนาบของผลึก

ขั้นตอนการวิเคราะห์ตัวอย่าง

1) การเตรียมตัวอย่างต้องนำตัวอย่างมาบดให้ละเอียดเป็นผง บรรจุลงในเพลท ดังรูปที่ 2.6



รูปที่ 2.6 การเตรียมตัวอย่างสำหรับวิเคราะห์ XRD

(http://www.tint.or.th/adv/AmPly/XRD.html)

2) นำเข้าเครื่อง Diffractometer ดังแสดงในรูปที่ 2.7 ในขั้นตอนนี้จะสามารถกำหนดเวลาใน การตรวจวัดความเข้มของรังสีเลี้ยวเบน จากนั้นจะได้ข้อมูลตำแหน่งมุมที่เกิดการเลี้ยวเบนและค่าความเข้ม สัมพัทธ์ของเส้นการเลี้ยวเบน

รูปที่ 2.7 การบรรจุตัวอย่างเข้าเครื่อง XRD (http://www.tint.or.th/adv/AmPly/XRD.html)

3) นำข้อมูลมาวิเคราะห์ด้วยโปรแกรม EVA จะเปรียบเทียบกับแพทเทอร์นมาตรฐานที่เก็บ รวบรวมไว้แล้วสามารถจำแนกชนิดของสารประกอบนั้นได้

โดยการวิเคราะห์ด้วยวิธีนี้ค่อนข้างรวดเร็วและถูกต้อง สามารถนำไปใช้ประโยชน์ได้หลายกรณี อาทิเช่น

- ทางการแพทย์ ใช้จำแนกชนิดของนิ่วในไต สะดวกในการบำบัด โบราณคดี ใช้จำแนกสีเก่า ออกจากสีใหม่
 - ทางเภสัชกรรม ใช้วิเคราะห์ส่วนประกอบของยา
- นอกจากนี้ยังใช้ในงานอุตสาหกรรมหลายอย่าง (อุตสาหกรรมปูนซีเมนต์ อุตสาหกรรมเซรา มิกส์ อุตสาหกรรมโลหะ อุตสาหกรรมสี อุตสาหกรรมเหมืองแร่ เป็นต้น)

2.4.3 Thermogravimetric Analysis (TGA) [16,17]

Thermogravimetric Analysis (TGA) เป็นเทคนิคที่ใช้วิเคราะห์ความเสถียรของวัสดุโดยเฉพาะ พอลิเมอร์เมื่อได้รับความร้อนโดยการวัดน้ำหนักของวัสดุที่เปลี่ยนแปลงในแต่ละช่วงอุณหภูมิด้วยเครื่องชั่ง ที่มีความไวสูง เทคนิคนี้เหมาะสำหรับการวิเคราะห์การเปลี่ยนแปลงสภาพของวัสดุที่เกี่ยวข้องกับการดูด ซับแก๊สหรือระเหยของน้ำ การตกผลึก (Crystallization) อันเนื่องมาจากการเปลี่ยนเฟส การแตกตัว ของวัสดุ (Decomposition) ศึกษาการเกิดปฏิกิริยาออกซิเดชันและรีดักชัน หรือ ปริมาณสารสัมพันธ์ (Stoichiometry) ในการวิเคราะห์ตัวอย่าง ตัวอย่างจะถูกวางบนจานขนาดเล็ก ซึ่งเชื่อมต่อกับเครื่องชั่ง ละเอียดที่มีความไวต่อการเปลี่ยนแปลงสูง โดยที่ทั้งหมดจะอยู่ในเตาที่สามารถควบคุมอุณหภูมิและ บรรยากาศได้ บรรยากาศภายในอาจจะเป็นแก๊สเฉื่อย เช่น ในโตรเจน หรือแก๊สที่มีความว่องไว เช่น

อากาศ หรือ ออกซิเจน โดยน้ำหนักของตัวอย่างที่เปลี่ยนแปลงจะเกิดขึ้นที่อุณหภูมิเฉพาะของสารแต่ละ ชนิด โดยน้ำหนักที่หายไปนั้นเกิดมาจากการระเหย การย่อยสลาย หรือการเกิดปฏิกิริยาต่างๆ

เครื่อง TGA มีประโยชน์ต่อการวิเคราะห์ทั้งเชิงคุณภาพและปริมาณของตัวอย่าง เช่น พอลิเมอร์ ยาง และตัวอย่างทางวัสดุศาสตร์ เช่น เซรามิกส์ เป็นต้น ใช้ศึกษาวิเคราะห์หาปริมาณองค์ประกอบของ สาร เช่น ปริมาณตัวทำละลาย, ความชื้น, สารเติมแต่ง, คาร์บอนแบล็ก, พลาสติกไซด์เซอร์ และ การศึกษาความเสถียรภาพทางความร้อนของตัวอย่างพอลิเมอร์ ยาง วิเคราะห์ตัวอย่างได้ทั้งสถานะ ของแข็งของเหลว ผง แผ่นฟิลม์ และเส้นใย

ระบบเครื่องชั่งมีความละเอียดในการวิเคราะห์สูงถึง 0.1 ไมโครกรัม มีความถูกต้องของน้ำ มากกว่าร้อยละ 0.1 ความแม่นยำของอุณหภูมิ \pm 5°C แหล่งให้ความร้อนเป็นระบบเตาเผาสามารถ ควบคุมอุณหภูมิได้ตั้งแต่ 50-1500 °C มีอัตราการเพิ่มลดอุณหภูมิ 0.1-200 °C ต่อนาที มีระบบทำให้ เตาเผาเย็นอย่างรวดเร็วโดยใช้อากาศ ระบบการทำงานและการประมวลผลถูกควบคุมโดยระบบ คอมพิวเตอร์ แสดงผลการวิเคราะห์ในรูปเทอร์โมแกรมระหว่างร้อยละน้ำหนักที่เปลี่ยนแปลงกับอุณหภูมิ หรือเวลาที่ใช้ในการวิเคราะห์

รูปที่ 2.8 เครื่อง TGA (http://www.sec.psu.ac.th/tga.html)

บทที่ 3

วิธีการทดลอง

การทดลองนี้แบ่งเป็น 2 ส่วนคือ

ส่วนที่ 1 คือการเตรียมเถ้าถ่านหิน FBC โดยการผสมเถ้าลอยและเถ้าก้นเตา FBC ที่อัตราส่วน ต่างแล้วบดให้มีขนาดต่างกัน คือให้มีขนาดค้างตะแกรงเบอร์ 345 (รูเปิด 45 ไมคอรน) ร้อยละ 35, 15 และ 5 แล้วผสมกับเถ้าลอย PCC สำหรับใช้เป็นวัตถุดิบสำหรับการผลิตจีโอโพลิเมอร์

ส่วนที่ 2 คือทำการเตรียมเถ้าถ่านหิน FBC โดยใช้เฉพาะเถ้าลอย FBC แล้วผสมกับเถ้าลอย PCC สำหรับใช้เป็นวัตถุดิบสำหรับการผลิตจีโอโพลิเมอร์

จิโอโพลิเมอร์ที่เตรียมจากเถ้าทั้ง 2 ส่วนจะนำไปศึกษาคุณสมบัติทางเคมี โครงสร้างทางจุลภาค และการศึกษาคุณสมบัติทางกายภาพ

3.1 เครื่องมือ อุปกรณ์ และสารเคมี

เครื่องมือ

- 1) เครื่อง Scanning Electron Microscopy (SEM)
- 2) เครื่อง Scanning Electron Microscope (SEM) รุ่น Leo1455VP
- 3) เครื่อง X-ray Diffractometry (XRD) รุ่น Panalytical /Expert
- 4) เครื่องชั่งทศนิยม 4 ตำแหน่ง รุ่น METTLEP AE 200
- 5) เครื่องชั่งน้ำหนัก (5 กก.x1 ก.) รุ่น EKO 3
- 6) เครื่องผสมมือ (Hand mixer) Philips รุ่น Mixer HR 1456
- 7) เครื่องผสมออร์โต้ 5 ลิตร รุ่น LNK 530
- 8) ตู้อบ รุ่น BINDER
- 9) เครื่อง pH indicator (pH 0 14, Merck)
- 10) ตู้ดูดควัน
- 11) ปั้มสุญญากาศ รุ่น KNF NUMBERGER VP Series

อุปกรณ์

- 1) บีกเกอร์ ขนาด 500 มล.
- 2) บีกเกอร์พลาสติก ขนาด 250 มล.
- 3) ขวดพลาสติก ขนาด 500 และ 1000 มล.

- 4) หลอดหยดพลาสติก
- 5) แท่งแก้ว
- 6) ช้อนตักสาร
- 7) โกร่งบดสาร
- 8) ถ้วยอะลูมินา (Alumina pan)
- 9) ถ้วยพลาสติกขนาดเส้นผ่านศูนย์กลาง 4.5 ซม. สูง 3 ซม.
- 10) แบบหล่อมอร์ต้าพลาสติกขนาด 5x5x5 ซม.
- 11) เวอร์เนียร์
- 12) ฟิล์มห่อหุ้มอาหาร (Cling-film)

วัสดุและสารเคมี

- 1) โซเดียมไฮดรอกไซด์ (NaOH)
- 2) โซเดียมซิลิเกต (Na₂SiO₃) โดย SiO₂/Na₂O = 3.4:1 โดยน้ำหนัก
- 3) โพแทสเซียมโบรไมด์ (KBr)
- 4) น้ำปราศจากไอออน (Deionized water, DI)
- 5) ตัวอย่างเถ้าถ่านหินจากโรงผลิตไฟฟ้าแม่เมาะ จังหวัดลำปาง
- 6) ตัวอย่างเถ้าถ่านหินจากระบบการเผาแบบฟลูอิดไดซ์เบด จากโรงงานผลิตกระดาษ จ.ราชบุรี
- 7) ทราย ร่อนผ่านตะแกรงเบอร์ 16 ค้างตะแกรงเบอร์ 100
- 8) กรดไฮโดรคลอริก (HCl)
- 9) โซเดียมคาร์บอเนต (Na₂CO₃)

3.2 วิธีการทดลอง

3.2.1 การเตรียมสารละลาย

- 1) โซเดียมไฮดรอกไซด์สำหรับการทำจีโอโพลิเมอร์เพสต์ โซเดียมไฮดรอกไซด์เป็นสารมาตรฐาน ทุติยภูมิ ไม่มีความเสถียร ดังนั้นจึงไม่มีความจำเป็นที่ต้องเตรียมสารละลายโซเดียมไฮดรอกไซด์แบบ ละเอียด
 - 5 M NaOH 500 มล.
- ชั่ง NaOH 100 กรัม ละลายด้วยน้ำปราศจากไอออน ปรับปริมาตรเป็น 500 มล. ในปีก เกอร์

- 10 M NaOH 500 มล.

ชั่ง NaOH 200 กรัม ละลายด้วยน้ำปราศจากไอออน ปรับปริมาตรเป็น 500 มล. ในปีก

- 15 M NaOH 500 มล.

เกอร์

เกอร์

ชั่ง NaOH 300 กรัม ละลายด้วยน้ำปราศจากไอออน ปรับปริมาตรเป็น 500 มล. ในบีก

- 2) โซเดียมไฮดรอกไซด์สำหรับการทำจีโอโพลิเมอร์มอร์ต้า
 - 10 M NaOH 1000 มล.

ชั่ง NaOH 400 กรัม ละลายด้วยน้ำประปา ปรับปริมาตรเป็น 1000 มล. ในบีกเกอร์

3.2.2 การหาความเข้มข้นของสารละลายโซเดียมไฮดรอกไซด์ที่เหมาะสมต่อการเตรียมจีโอโพลิเมอร์

สารละลายโซเดียมไฮดรอกไซด์ (NaOH) 3 ความเข้มข้นคือ 5 M, 10 M และ 15 M ได้ถูกใช้ใน การผสมจีโอโพลิเมอร์ โดยทำการเลือกผสมจีโอโพลิเมอร์จากเถ้าลอย PCC โดยใช้ปริมาณเถ้าลอย 60 ส่วน สารละลายโซเดียมซิลิเกต (Na₂SiO₃) 24 ส่วน และสารละลาย NaOH 16 ส่วน ปริมาณที่ใช้เป็น ปริมาณโดยน้ำหนัก ซึ่งสัดส่วนสารละลายโซเดียมซิลิเกตต่อสารละลาย NaOH เท่ากับ 1.5 (24/16) ใน การทดลองนี้จะผลิตจีโอโพลิเมอร์มอร์ต้าร์เพื่อทดสอบค่ากำลังอัด ดังนั้นจึงเพิ่มทรายแม่น้ำคัดขนาดลงใน ส่วนผสมโดยใช้ทรายปริมาณ 2 เท่าของเถ้าลอย

การผสมเป็นจีโอโพลิเมอร์สามารถทำได้โดยผสมสารทุกชนิดคือเถ้าลอยและสารละลาย 2 ชนิดให้ เข้ากันในเครื่องผสม ผสมกันเป็นเวลา 1 นาทีด้วยความเร็วรอบที่ต่ำ จากนั้นเติมทรายส่งไปแล้วผสมด้วย ความเร็วรอบปานกลางอีก 1 นาที ได้เป็นจีโอโพลิเมอร์มอร์ต้าร์ เทลงแบบพลาสติกขนาดลูกบาศก์ 5 ซม. นำเข้าเครื่องเขย่าเพื่อกำจัดฟองอากาศเป็นเวลาประมาณ 10 วินาที ก่อนหุ้มแบบพลาสติกด้วยฟิล์ม ห่อหุ้มอาหาร เพื่อป้องกันการระเหยของน้ำที่ผิวหน้าจีโอโพลิเมอร์อย่างรวดเร็ว นำไปอบในเตาอบที่ อุณหภูมิ 60 °C เป็นเวลา 24 ซม. แกะแบบแล้วบ่มในตู้ความคุมอุณหภูมิ 25±5 °C ต่อ ทดสอบกำลังอัด จีโอโพลิเมอร์มอร์ต้าร์เมื่อตัวอย่างมีอายุ 7 วัน

3.2.3 การเตรียมตัวอย่างเถ้าลอย FBC

ทำการปรับปรุงความว่องไวของเถ้าถ่านหิน FBC โดยใช้วิธีการบดเถ้าให้มีขนาดเล็กลง เนื่องจาก เถ้ากันเตามีศักยภาพต่ำกว่าเถ้าลอยในการผลิตจีโอโพลิเมอร์และมีปริมาณการผลิตมากต่อวัน ดังนั้นเพื่อ ใช้ประโยชน์ทั้งเถ้าลอยและเถ้ากันเตา จึงทำการผสมเถ้าทั้งสองเข้าด้วยกัน แล้วบดด้วยอัตราส่วนผสมของ ระหว่างเถ้าลอยต่อเถ้ากันเตาที่ 80:20 และ 60:40 โดยน้ำหนักก่อนนำไปบดให้ได้ 3 ขนาดคือขนาด

ใหญ่ ขนาดกลาง และขนาดละเอียดโดยกำหนดโดยการร้อยละค้างตะแกรงขนาดรูเปิด 45 ไมครอน ซึ่ง ขนาดใหญ่จะมีร้อยละค้างตะแกรงใกล้เคียงกับเถ้าลอย PCC

3.2.4 การหาร้อยละของสารหลังบดที่ค้างบนตะแกรงเบอร์ 325 (รูเปิดขนาด 45 ไมครอน)

การหาร้อยละของสารหลังบด ดำเนินการดังต่อไปนี้

- 1) ซั่งน้ำหนักเถ้า FBC ผสมบดประมาณ 20 กรัม (ทราบน้ำหนักที่แน่นอน)
- 2) ร่อนสารในข้อแรกบนตะแกรงร่อนเบอร์ 325 โดยให้น้ำไหลผ่านจนกระทั่งน้ำที่ไหล ผ่าน ตะแกรงร่อนใส
- 3) เทสารที่ค้างบนตะแกรงลงในถ้วยอลูมิเนียม แล้วนำไปอบที่อุณหภูมิประมาณ 100 °C เป็น เวลาประมาณ 1-2 ซม.
 - 4) ชั่งน้ำหนักสารหลังจากการอบ
 - 5) คำนวณร้อยละของสารที่ค้างบนตะแกรงเบอร์ 325

ร้อยละเถ้า FBC ผสมบดที่ค้างบนตะแกรง =
$$\frac{น้ำหนักสารเริ่มต้น - น้ำหนักสารหลังอบ}{น้ำหนักสารเริ่มต้น$$

3.2.5 การหาร้อยละความเป็นอสัณฐาน

ศึกษาความเป็นอสัณฐานของเถ้าผสมระหว่างเถ้า FBC ผสมก่อนและหลังบด เพราะการบดเป็น การเพิ่มความเป็นอสัณฐาน ทำให้เถ้าที่บดแล้วมีความว่องไวต่อการเกิดปฏิกิริยาเพิ่มมากขึ้น ซึ่งมีวิธีการ ทดลองดังนี้ [18]

- 1) ซึ่งน้ำหนักเถ้าผสมก่อนบด 5 กรัม (ทราบน้ำหนักที่แน่นอน) ละลายด้วย 8 M NaOH
- 2) นำไปให้ความร้อนที่อุณหภูมิ 60 °C เป็นเวลา 1 ชม. พร้อมกวนตลอดเวลา โดยใช้เครื่อง Magnetic stirrer
 - 3) กรองเถ้าที่เหลือด้วยชุดกรองสุญญากาศ
 - 4) อบตะกอน (เถ้าที่เหลือ) ที่กรองได้ที่อุณหภูมิ 100 °C
 - 5) ชั่งน้ำหนักตะกอนที่อบแห้ง
 - 6) คำนวณหาร้อยละความเป็นอสัณฐาน

3.2.6 การเตรียมจีโอโพลิเมอร์เพสต์

สารผสมในการเตรียมจีโอโพลิเมอร์เพสต์ประกอบด้วย เถ้าลอยร้อยละ 60 โดยน้ำหนัก สารละลาย (10 M NaOH + Na₂SiO₃) ร้อยละ 40 โดยน้ำหนัก อัตราส่วนแสดงดังตารางที่ 3.1 ซึ่ง วิถีการเตรียมมีดังนี้

- 1) ผสมเถ้าและสารละลาย 10 M NaOH และ $\mathrm{Na_2SiO_3}$ ด้วยเครื่องผสมเป็นเวลา 1-2 นาที
- 2) เทลงจีโอโพลิเมอร์ที่ได้ลงในแบบหล่อพลาสติก นำเข้าเครื่องเขย่าเพื่อกำจัดฟองอากาศเป็น เวลาประมาณ 10 วินาที แล้วหุ้มด้วยฟิล์มหุ้มอาหาร นำไปอบที่อุณหภูมิ 65 ℃ เป็นเวลา 24 ชม. และ บ่มต่อในตู้ความคุมอุณหภูมิ 25±5 ℃ จนตัวอย่างมีอายุครบ 7 วัน และพร้อมที่จะนำไปทดสอบคุณสมบัติ ทางเคมีต่อไป

ตารางที่ 3.1 อัตราส่วนผสมของจีโอโพลิเมอร์เพสต์โดยน้ำหนัก (ในหน่วยกรัม)

ตัวอย่าง	เถ้าลอย PCC	เถ้าลอย FBC	เถ้าผสมบด FBC*	10 M NaOH	Na ₂ SiO ₃
Control	60	-	-	16	24
50-FA	30	30	-	16	24
60-FA	36	24	-	16	24
70-FA	42	18	-	16	24
80-FA	48	12	-	16	24
50-FA-blend	30	-	30	16	24
60-FA-blend	36	-	24	16	24
70-FA-blend	42	-	18	16	24
80-FA-blend	48	-	12	16	24

^{* (}เถ้าลอย FBC : เถ้ากันเตา FBC)_{บด} = 60:40 โดยน้ำหนัก

รูปที่ 3.1 ตัวอย่างจีโอโพลิเมอร์มอร์เพสต์

3.2.7 การเตรียมจีโอโพลิเมอร์มอร์ต้าร์สำหรับศึกษาค่ากำลังอัด

ผสมสารในส่วนผสมดังแสดงในตารางที่ 3.1 โดยเพิ่มทรายแม่น้ำคัดขนาดลงในส่วนผสมใน ปริมาณ 2 เท่าของปริมาณเถ้าทั้งหมด หรือเท่ากับ 120 กรัม โดยวิธีผสมเหมือนกับขั้นตอนในการเตรียม เพสต์ แล้วเติมทรายในขั้นตอนสุดท้าย แล้วกวนสารผสมต่อเป็นเวลา 1 นาทีด้วยความเร็วรอบเครื่อง ผสมระดับปานกลาง ก่อนที่จะเทลงแบบพลาติกขนาด $5\times5\times5$ ซม. เขย่าไล่ฟองอากาศ และบ่มที่อุณหภูมิ 60 °C เป็นเวลา 24 ซม. แกะแบบ แล้วเก็บตัวอย่างไว้ในตู้ควบคุมอุณหภูมิในช่วง 25 ± 5 °C เป็นเวลา 6 วัน เมื่อครบกำหนดนำไปทดสอบกำลังอัดตามมาตรฐาน ASTM C109 ด้วยเครื่อง Universal testing machine โดยผลการทดสอบค่ากำลังอัดจะเป็นค่าเฉลี่ยของมอร์ต้าร์ 3 ก้อน

รูปที่ 3.2 แบบหล่อมอร์ต้าร์พลาสติกขนาด 5×5×5 ซม.

รูปที่ 3.2 ตัวอย่างจีโอโพลิเมอร์มอร์ต้าร์

รูปที่ 3.3 เครื่องทดสอบกำลังอัด (Universal testing machine)

3.2.8 โครงสร้างทางจุลภาคของจีโอโพลิเมอร์เพสต์โดยเทคนิค SEM

นำชิ้นจีโอโพลิเมอร์เพสต์ขนาดเล็กเคลือบผิวหน้าด้วยทองคำก่อนด้วยเครื่อง Sputter Coater ทำการศึกษาโครงสร้างจุลภาคของวัสดุจีโอโพลิเมอร์เพสต์ด้วยเครื่อง SEM

3.2.9 การหาร้อยละการสูญเสียเนื่องจากการเผาไหม้ (Loss on ignition, LOI)

ทำการชั่งถ้วยคูซิเบิ้ลด้วยเครื่องชั่งทศนิยม 4 ตำแหน่ง นำเถ้าใส่ถ้วยคูซิเบิ้ล ชั่งด้วยเครื่องชั่ง ทศนิยม 4 ตำแหน่ง เผาที่อุณหภูมิ 950±50°C เป็นเวลา 30 นาที หลังจากเผาแล้วเก็บไว้ในเดซิเคเตอร์ รอจนอุณหภูมิเย็นลง นำถ้วยคูซิเบิ้ลที่มีสารที่เผาแล้วไปชั่งด้วยเครื่องชั่ง 4 ตำแหน่ง นำน้ำหนักที่ได้ลบกับ น้ำหนักถ้วยที่ชั่งไว้ก่อน ได้น้ำหนักสารหลังเผา โดยคำนวณตามมาตรฐาน ASTM D7348-08

ร้อยละการสูญเสียเนื่องจากการเผาไหม้ =
$$\frac{น้ำหนักสารก่อนเผา - น้ำหนักสารหลังเผา}{น้ำหนักสารก่อนเผา} x100$$

3.2.9 การศึกษาดัชนีการเกิดปฏิกิริยา (Degree of reaction)

การศึกษาดัชนีการเกิดปฏิกิริยาของจีโอโพลิเมอร์เพสต์เพื่อศึกษาปฏิกิริยาที่เกิดของจีโอโพลิเมอร์ ที่เตรียมขึ้นว่าเถ้าผสมที่เตรียมไว้นั้นทำปฏิกิริยาไปมากน้อยเพียงใด

หลักการที่เกิดค่าดัชนีการเกิดปฏิกิริยาคือ 2 M HCl ใช้ในการละลายสารประกอบของแคลเซียม และแคลเซียมไอออน จากผลิตภัณฑ์ที่ได้จากปฏิกิริยาจีโอพอลิเมอไรเซชั่นเหลือตะกอนที่ประกอบด้วย SiO_2 , Al_2O_3 , Fe_2O_3 และเถ้าที่ไม่เกิดปฏิกิริยา (Unreacted ash) ส่วนสารละลาย 5 % w/v Na_2CO_3 เติมลงไปเพื่อละลาย SiO_2 , Al_2O_3 และ Fe_2O_3 เหลือเป็นตะกอนของเถ้าที่เกิดปฏิกิริยา [19] โดยมีวิธี การศึกษาดังต่อไปนี้

ชั่งจีโอโพลิเมอร์เพสต์ที่บดให้เป็นผงละเอียด 3 กรัม (ทศนิยม 4 ตำแหน่ง) เติมสารละลาย 2 M HCl ปริมาตร 30 มล. นำไปให้ความร้อนด้วยอ่างควบคุมอุณหภูมิที่อุณหภูมิ 80° C เป็นเวลา 20 นาที กรองด้วยเครื่องกรองสุญญากาศทำการล้างตะกอน 3 ครั้ง ด้วยน้ำกลั่นและอะซิโตน นำตะกอนที่ได้ไปอบ ที่อุณหภูมิ 70° C เป็นเวลา 2 ซม. หลังจากทำการอบแล้วนำตะกอนที่ได้มาใส่บีกเกอร์ เติม 5% W/V Na_2CO_3 ปริมาตร 30 มล. นำมาให้ความร้อนด้วยอ่างควบคุมอุณหภูมิที่อุณหภูมิ 80° C เป็นเวลา 20 นาที กรองด้วยเครื่องกรองสุญญากาศ ทำการล้างตะกอน 3 ครั้ง ด้วยน้ำกลั่นและอะซิโตน นำตะกอนที่ได้ไป อบที่อุณหภูมิ 70° C เป็นเวลา 2 ซม. ทำการชั่งตะกอนที่เหลือแล้วทำการคำนวณดังสมการต่อไปนี้

Degree · of · reaction =
$$\frac{M_{\text{sample}} - \left[M_{\text{residue}} \times (1 + \text{LOI})\right]}{M_{\text{sample}}} \times 100$$

M_{sample} คือ มวลของจีโอโพลิเมอร์เริ่มต้น (g)

M_{residue} คือ มวลของจีโอโพลิเมอร์ที่เหลือ (g)

LOI คือ สัดส่วนการสูญเสียเนื่องจากการเผาไหม้

3.2.10 การทดสอบคุณสมบัติด้านอื่นๆ

นำชิ้นจีโอโพลิเมอร์เพสต์บดไปทดสอบคุณสมบัติทางสัณฐานวิทยาด้วยเทคนิค XRD และ คุณสมบัติทางความร้อนด้วยเทคนิค TGA

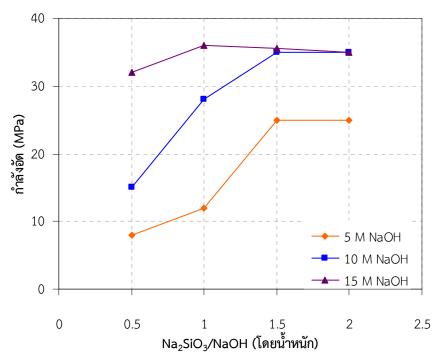
บทที่ 4

ผลการทดลอง

ในบทนี้จะแสดงผลการทดลอง โดยจะมีคำที่ใช้ประจำคือเถ้าถ่านหิน ซึ่งจะหมายถึงเถ้าลอย PCC เถ้าลอย FBC และเถ้ากันเตา FBC ส่วนเถ้าผสมบด FBC คือเถ้าที่ได้จากการเอาเถ้าลอย FBC และเถ้า ถ่านหิน FBC มาผสมแล้วบดให้มีขนาดเล็กลง ผลการทดลองมีดังต่อไปนี้

4.1 องค์ประกอบของเถ้าถ่านหิน

การวิเคราะห์องค์ประกอบทางเคมีด้วยเทคนิค X-ray fluorescence และค่า Loss on ignition (LOI) ของเถ้าถ่านหินได้แสดงในตารางที่ 4.1 โดยพบว่าเถ้าลอย PCC มีซิลิกา (SiO2) และอะลูมิน่า (Al2O3) เป็นองค์ประกอบหลัก และมีแคลเซียมออกไซด์ (CaO) ในปริมาณที่สูง ซึ่งปริมาณซิลิกาและ อะลูมิน่าทำให้เถ้าลอยมีความสามารถผลิตเป็นสารประกอบอะลูมิโนซิลิเกตได้ ซึ่งรวมถึงวัสดุจีโอโพลิเมอร์ อย่างไรก็ตาม ซิลิกาและอะลูมิน่าในเถ้าลอยไม่สามารถถูกละลายออกมาหมด ดังนั้นปฏิกิริยาการเกิด เป็นสารประกอบอะลูมิโนซิลิเกตจะเกิดที่บริเวณผิวของเถ้าถ่านหินเท่านั้น

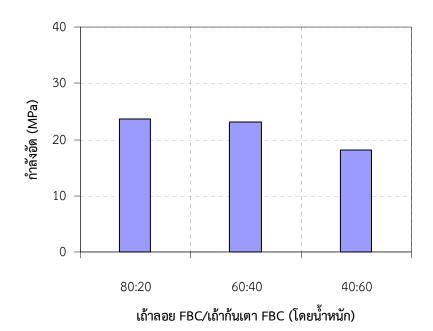

ตารางที่ 4.1 องค์ประกอบทางเคมีและขนาดอนุภาคเฉลี่ยของเถ้าถ่านหิน

	•		
องค์ประกอบทางเคมี (%)	เถ้าลอย PCC	เถ้าลอย FBC	เถ้าก้นเตา FBC
SiO ₂	39.5	21.0	19.8
Al_2O_3	21.2	8.0	7.8
Fe ₂ O ₃	15.6	6.9	2.4
CaO	19.7	42.2	47.1
Na ₂ O	1.3	2.9	2.8
TiO ₂	0.5	2.2	2.1
MgO	1.3	0.8	0.8
SO ₃	2.7	15.0	15.9
LOI	0.8	1.0	1.3
ขนาดอนุภาคเฉลี่ย (ไมครอน)	24	28	114

ส่วนในเถ้าถ่านหิน (เถ้าลอยและเถ้ากันเตา) FBC มีปริมาณ CaO และ CaSO₄ สูง เนื่องจากใน กระบวนเผาได้ใช้ปูนขาวในการจับก๊าซซัลเฟอร์ไดออกไซด์ เกิดเป็น CaSO₄ และมีปริมาณ CaO ที่ได้จาก ปูนขาวเหลืออยู่ในเถ้าปริมาณมาก ส่วนขนาดอนุภาคเฉลี่ยของเถ้าลอย PCC มีขนาดใกล้เคียงกับเถ้าลอย FBC คือ 24-28 ไมครอน ส่วนเถ้ากันเตา FBC มีขนาดใหญ่กว่าเท่าลอยมาก คือประมาณ 114 ไมครอน ดังนั้นจึงเป็นไปได้ยากที่จะนำเถ้ากันเตา FBC มาใช้ประโยชน์โดยตรง ต้องทำการบดลดขนาดเถ้ากันเตา โดยในงานวิจัยนี้จะบดร่วมกับเถ้าลอย FBC เพื่อลดขนาดและปรับปรุงความว่องไวในการเกิดปฏิกิริยากับ สารละลายเบส

4.2 การศึกษาผลของความเข้มข้นของสารละลายโซเดียมไฮดรอกไซด์

จากการเปรียบเทียบกำลังอัดของจีโอโพลิเมอร์จากเถ้าลอยล้วน PCC ที่เตรียมจากสารละลาย NaOH ที่ความเข้มข้นต่างๆ คือ 5, 10, และ 15 M ที่อัตราส่วน Na₂SiO₃/NaOH ต่างๆ พบว่าการใช้ความ เข้มข้นของสารละลาย 5 M NaOH ให้ค่ากำลังอัดที่ต่ำกว่าเมื่อใช้ 10 และ 15 M NaOH ในขณะที่การ เพิ่มความเข้มข้นที่มากขึ้นทำให้กำลังอัดของจีโอโพลิเมอร์เพิ่มขึ้น ดังแสดงในรูปที่ 4.1 โดยวิธีการผสมจะ ผสมเถ้าลอยกับสารละลาย Na₂SiO₃ และ NaOH พร้อมกัน การใช้สารละลาย 10 M NaOH ให้ผลกำลัง อัดที่ดี ได้จีโอโพลิเมอร์ที่ไม่หนืด เทลงแบบได้ง่าย และให้ค่ากำลังอัดในเกณฑ์ดี เมื่อเทียบกับมอร์ต้าร์ที่ ผสมจากปูนซีเมนต์ ซึ่งโดยทั่วไปมีค่ากำลังอัดประมาณ 30 MPa ที่อายุ 28 วัน ดังนั้นงานวิจัยนี้จึง เลือกใช้ 10 M NaOH และ อัตราส่วน Na₂SiO₃/NaOH เท่ากับ 1.5 ในการเตรียมจีโอโพลิเมอร์


ร**ูปที่ 4.1** กำลังอัดของจีโอโพลิเมอร์ที่ความเข้มข้นของสารละลาย NaOH ต่างๆ

4.3 ขนาดของเถ้าถ่านหินบด

เถ้าผสม FBC ก่อนนำไปผลิตเป็นจีโอโพลิเมอร์นั้นได้ทำการบดเพื่อเพิ่มความว่องไวในการทำ ปฏิกิริยา ทำการผสมเถ้าลอย FBC กับเถ้ากันเตา FBC ในอัตราส่วนเถ้าลอยต่อเถ้ากันเตาเท่ากับ 80:20, 60:40 และ 40:60 โดยน้ำหนักก่อนนำไปบดให้ได้ 3 ขนาดคือขนาดใหญ่ ขนาดกลาง และขนาดละเอียด โดยกำหนดโดยการร้อยละค้างตะแกรงขนาดรูเปิด 45 ไมครอน ซึ่งขนาดใหญ่จะมีร้อยละค้างตะแกรง ใกล้เคียงกับเถ้าลอย PCC ดังแสดงตารางที่ 4.2

ตารางที่ 4.2 ขนาดของเถ้าผสมบด FBC

เถ้าผสมบด FBC	ขนาดใหญ่ (C)	ขนาดกลาง (M)	ขนาดละเอียด (F)
ร้อยละค้างตะแกรงขนาดรูเปิด 45 ไมครอน	32	17	7
ขนาดอนุภาคเฉลี่ย (ไมครอน)	10	8	6

รู**ปที่ 4.2** กำลังอัดของจีโอโพลิเมอร์ที่ผลิตจากเถ้าผสม FBC ขนาดใหญ่

เถ้าผสม FBC ขนาดใหญ่ (C) ทั้ง 3 อัตราส่วนผสมคือ 80:20, 60:40 และ 40:60 ได้ถูกนำมา ผสมเถ้าลอย PCC ในอัตรส่วนเถ้าลอย PCC ต่อเถ้าผสมบด FBC เท่ากับ 1:1 ทำการผลิตเป็นวัสดุจีโอโพ ลิเมอร์โดยใช้สารละลายโซเดียมไฮดรอกไซด์ 10 โมล่าร์ และอัตราส่วนระหว่างสารละลายโซเดียมซิลิเกต และสารละลายโซเดียมไฮดรอกไซด์เท่ากับ 1.5 ใส่ทรายในชั้นตอนสุดท้ายในปริมาณ 2 เท่าของปริมาณ เถ้าทั้งหมด แล้วบ่มที่ 60 °C เป็นเวลา 24 ชม. บ่มต่อในตู้ควบคุมอุณหภูมิที่ 25°C เป็นเวลาอีก 6 วัน ก่อนที่นำมาทดสอบกำลังอัด จากผลกำลังอัดพบว่าการใช้อัตราส่วนเถ้าลอยต่อเถ้าก้นเตา FBC บดเท่ากับ

80:20, 60:40 และ 40:60 ให้ค่ากำลังอัดเท่ากับ 23.7, 23.2 และ 18.2 ตามลำดับ ดังแสดงในรูปที่ 4.2 ดังนั้นจึงเลือกใช้อัตราส่วนเถ้าลอยต่อเถ้ากันเตา FBC บดเท่ากับ 60:40 ซึ่งให้ค่ากำลังอัดที่สูง และใช้ ปริมาณเถ้ากันเตามาก ไปทำเป็นส่วนผสมในการทดสอบคุณสมบัติต่างๆ ของจีโอโพลิเมอร์ต่อไป

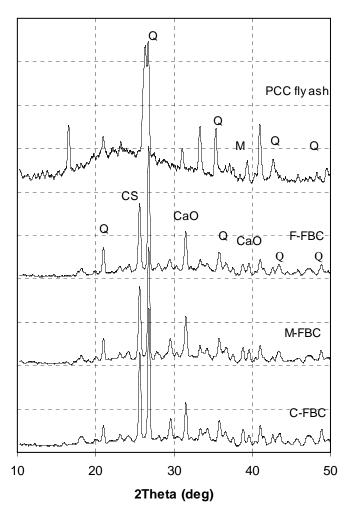
4.4 การศึกษาความเป็นอสัณฐานของเถ้าถ่านหิน

การศึกษาความเป็นอสัณฐานของเถ้าถ่านหิน PCC และ FBC ทำได้ผสมเถ้าตัวอย่างกับ สารละลาย 8 M NaOH ที่อุณหภูมิ 60 °C เป็นเวลา 1 ชม. โดยสารละลาย NaOH จะทำปฏิกิริยากับเถ้า ถ่านหิน และชะสารที่เป็นอสัณฐานออกมาจากผิวเถ้าถ่านหิน [18] จากการที่เถ้าลอยและเถ้ากันเตา FBC มีองค์ประกอบทางเคมีที่ปริมาณใกล้เคียงกัน จึงมีการหาร้อยละความเป็นอสัณฐานเพื่อให้ทราบว่าเถ้า ลอยหรือเถ้ากันเตา เถ้าชนิดใดมีความว่องไวมากกว่ากัน หากความเป็นอสัณฐานสูง จะทำให้ปฏิกิริยา เกิดขึ้นได้ง่าย ตารางที่ 4.3 แสดงค่าร้อยละความเป็นอสัณฐานของเถ้าถ่านหิน

งานวิจัยนี้เน้นศึกษาร้อยละความเป็นอสัณฐานของเถ้าผสมบด FBC ที่อัตราส่วน 60:40 (เถ้าลอย: เถ้าก้นเตา) ซึ่งต่อไปจะใช้คำว่าเถ้าผสมบด FBC

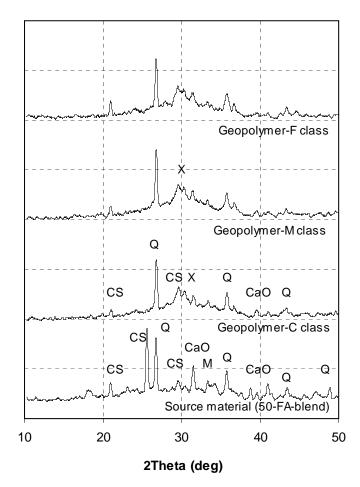
ตารางที่ 4.3 ร้อยละความเป็นอสัณฐานของเถ้าถ่านหิน

เถ้าผสมบด FBC	ก่อนบด
เถ้าลอย PCC	15.1
เถ้าลอย FBC	13.4
เถ้าก้นเตา FBC	9.8
เถ้าผสมบด FBC (ขนาดใหญ่)	22.5
เถ้าผสมบด FBC (ขนาดกลาง)	32.3
เถ้าผสมบด FBC (ขนาดละเอียด)	56.2


จากข้อมูลตามตารางที่ 4.3 แสดงให้เห็นว่าสารละลาย 8 M NaOH สามารถละลายสารพวกซิลิ กาอสัณฐานออกมาได้ [18] ซึ่งเป็นที่ทราบกันว่าในเถ้าถ่านหินมีสารจำพวกซิลิกาทั้งที่เป็นทั้งผลึกและ อสัณฐานเป็นองค์ประกอบ [5] และในส่วนที่เป็นอสัณฐานนี่เองที่จะมีประโยชน์สำหรับการทำปฏิกิริยาเกิด เป็นจีโอโพลิเมอร์

จากการวิเคราะห์ความเป็นอสัณฐาน เถ้าลอย PCC มีความเป็นอสัณฐานเท่ากับร้อยละ 15.1 สูง กว่าเถ้าถ่านหิน FBC โดยเถ้าลอย FBC มีความเป็นอสัณฐาน เท่ากับร้อยละ 13.4 ส่วนเถ้าก้นเตา FBC มี ความเป็นอสัณฐาน เท่ากับร้อยละ 9.8 ดังนั้นเถ้าก้นเตามักไม่นิยมนำมาใช้ประโยชน์ อีกทั้งมีขนาดใหญ่ ดังนั้นเพื่อเป็นการนำเถ้าก้นเตา FBC มาให้ประโยชน์ให้มากขึ้นจึงนำมาผสมกับเถ้าลอย FBC แล้วทำการ

บดเพื่อเพิ่มพื้นที่ผิวและความว่องไว พบว่าการบดทำให้ความเป็นอสัณฐานของเถ้าผสมสูงขึ้น ยิ่งบดให้มี ขนาดเล็ก พื้นที่ผิวจะเพิ่มขึ้นและมีความว่องไวในการเกิดปฏิกิริยาเพิ่มขึ้นตามไปด้วย


4.5 การวิเคราะห์ทางอสัณฐานวิทยา

วัตถุดิบที่ใช้ในการผสมจีโอโพลิเมอร์ได้ถูกนำไปวิเคราะห์ทางอสัณฐานวิทยาด้วยเทคนิค XRD ได้ผลดังรูปที่ 4.3 พบว่าได้ตรวจพบแคลเซียมออกไซด์ (CaO) แคลเซียมซัลเฟต (CaSO₄) ซึ่งเป็น องค์ประกอบหลักของเถ้าถ่านหิน FBC ในขณะที่เถ้าลอย PCC มีปริมาณควอร์ตซ (Quartz) และมูลไลต์ (Mullite) ซึ่งได้จากการเผาถ่านหินที่อุณหภูมิสูงกว่า $1000\,^{\circ}$ C เป็นองค์ประกอบหลัก นอกจากนี้ยังพบ พีกลักษณะฐานกว้างปริมาณ 20-30 (2 θ) องศา แสดงถึงความเป็นอสัณฐานของเถ้าลอย PCC ที่มีอยู่ มากกว่าเถ้าถ่านหิน FBC บดทั้ง 3 ขนาด ทำให้เถ้าลอย PCC มีความว่องไวกว่าเถ้าถ่านหิน FBC

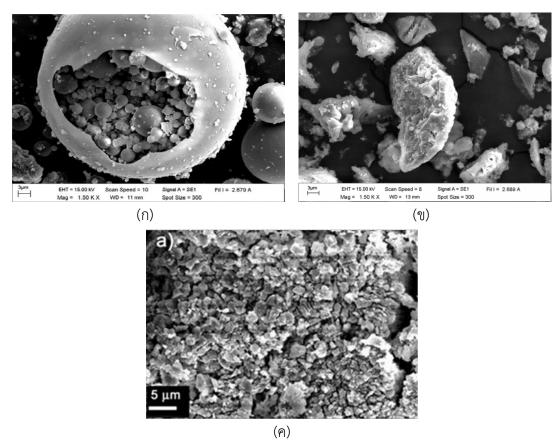
ร**ูปที่ 4.3** กราฟ XRD ของเถ้าลอย PCC (PCC fly ash) และเถ้าผสมบด FBC ที่ความละเอียดต่างๆ : Q = ควอร์ตซ, M = มูลไลต์, CS = แคลเซียมซัลเฟต, CaO = แคลเซียมออกไซด์

จากนั้นนำเถ้าผสมบด FBC ผสมกับเถ้าลอย PCC โดยใช้เถ้าถ่านหิน PCC แทนที่เถ้าผสมบด FBC ที่ปริมาณร้อยละ 50, 60, 70, 80 เพื่อผลิตจีโอโพลิเมอร์ ดังแสดงส่วนผสมในตารางที่ 3.1 ผสมเถ้ากับ สารละลาย แล้วบ่มที่ 60 $^{\circ}$ C เป็นเวลา 24 ชม. บ่มต่อในตู้ควบคุมอุณหภูมิที่ 25 $^{\circ}$ C เป็นเวลาอีก 6 วัน ได้ เพสต์แล้วนำไปวิเคราะห์ทางอสัณฐานวิทยาด้วยเทคนิค XRD อีกครั้ง ได้ผลดังรูปที่ 4.4

ร**ูปที่ 4.4** กราฟ XRD ของเถ้าผสมตั้งต้น (50-FA-blend) และจีโอโพลิเมอร์จากเถ้าทั้ง 3 ขนาด (ตัวอย่าง 50-FA-blend): Q = ควอร์ตซ, M = มูลไลต์, CS = แคลเซียมซัลเฟต, CaO = แคลเซียมออกไซด์, X = แคลเซียมซิลิเกต

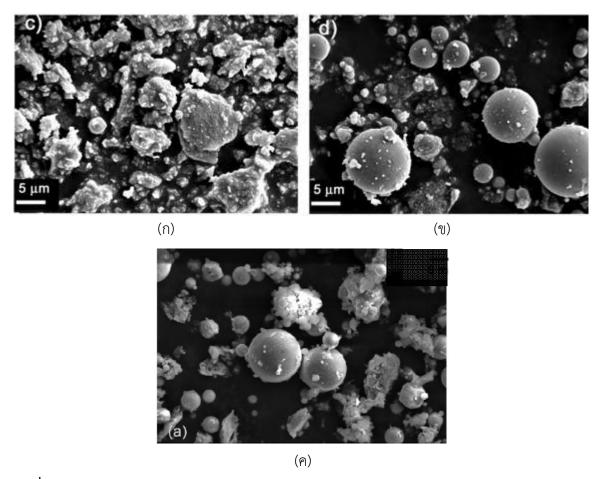
รูปที่ 4.4 แสดงกราฟ XRD ของเถ้าผสมตั้งต้นของตัวอย่าง 50-FA-blend ตามตารางที่ 3.1 และ จีโอโพลิเมอร์ของตัวอย่าง 50-FA-blend ที่เตรียมจากเถ้าผสมบด FBC ทั้ง 3 ขนาด จากกราฟพบว่าเถ้า ผสมตั้งต้นมีควอร์ตซ, แคลเซียมซัลเฟต และแคลเซียมออกไซด์เป็นองค์ประกอบหลัก ซึ่งได้มาจากการ ผสมเถ้าลอย PCC และเถ้าผสมบด FBC เข้าด้วยกัน หลังจากผสมเป็นจีโอโพลิเมอร์พบพีกของแคลเซียมซิ ลิเกตปรากฏที่ประมาณ 30 องศา และพบพีกฐานกว้างบริเวณดังกล่าว ซึ่งแสดงถึงการเปลี่ยนแปลงทาง โครงสร้างที่เกิดขึ้นในจีโอโพลิเมอร์หลังจากการทำปฏิกิริยาและบ่มความร้อน เถ้าผสมบด FBC ทั้ง 3

ขนาดให้ผลทาง XRD ไม่ต่างกันมากนัก ดังนั้นจึงทำการทดสอบด้วยวิธีอื่นต่อไปเพื่อเปรียบเทียบ คุณสมบัติของจีโอโพลิเมอร์ที่มีผลมาจากการบดและขนาดอนุภาคที่ต่างกัน

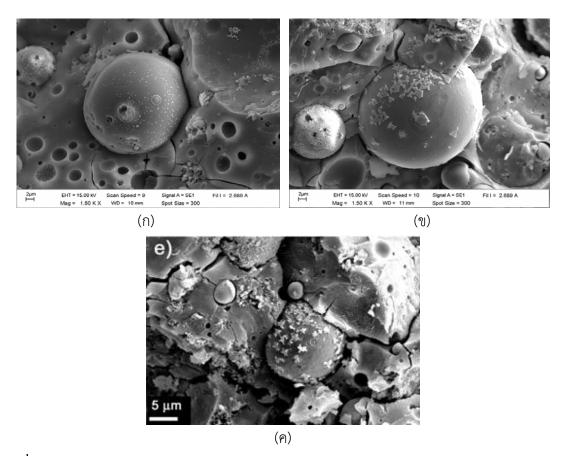

ส่วนการใช้เถ้าลอย PCC ผสมกับเถ้าลอย FBC เพื่อเป็นสารตั้งต้นในการผลิตเป็นจีโอโพลิเมอร์ ได้ผลเช่นเดียวกับการใช้เถ้าลอย PCC ผสมกับเถ้าผสมบด FBC ดังแสดงในรูปที่ 4.5 โดยพบการเลื่อน ตำแหน่งของฐานพีกบริเวณ 30 องศา เมื่อเปรียบเทียบกับจีโอโพลิเมอร์ควบคุม ซึ่งการเลื่อนตำแหน่งของ ฐานพีก และการเกิดสารประกอบแคลเซียมซิลเกตแสดงถึงปฏิกิริยาได้เกิดขึ้นในจีโอโพลิเมอร์

ร**ูปที่ 4.5** กราฟ XRD ของจีโอโพลิเมอร์เถ้าผสมจากเถ้าลอย PCC และเถ้าลอย FBC : Q = ควอร์ตซ, M = มูลไลต์, CS = แคลเซียมซัลเฟต, CaO = แคลเซียมออกไซด์, X = แคลเซียมซิลิเกต

4.6 โครงสร้างจุลภาคของจีโอโพลิเมอร์เพสต์


เถ้าถ่านหินและจีโอโพลิเมอร์เพสต์ได้ถูกนำมาศึกษาโครงสร้างทางจุลภาคด้วยเทคนิค Scanning Electron Microscopy (SEM) โดยชิ้นตัวอย่างต้องเคลือบด้วยทองคำเพื่อเพิ่มค่าการนำไฟฟ้า ดังแสดง ดังรูปที่ 4.5 ที่กำลังขยาย 1500 เท่า

ร**ูปที่ 4.5** โครงสร้างทางจุลภาคของเถ้าถ่านหิน (ก) เถ้าลอย PCC, (ข) เถ้าลอย FBC, (ค) เถ้าก้นเตา FBC


จากรูปที่ 4.5 พบว่าโครงสร้างเถ้าลอย PCC มีลักษณะเป็นทรงกลมผิวค่อนข้างเรียบ เนื่องจากใช้ อุณหภูมิสูงในการเผาถ่านหิน จึงทำให้เกิดการหลอมของเถ้าทำให้มีรูปร่างเป็นทรงกลม นอกจากนี้ยังมี โพรงและอนุภาคขนาดเล็กอยู่ภายในเรียกว่า ซีโนสเฟีย (Cenosphere) ซึ่งเกิดจากการที่ก๊าซจากการเผา ไหม้ของถ่านหินถูกกักไว้ภายในเถ้าลอยและยังมีเถ้าลอยกลวงที่มีอนุภาคเถ้าถ่านหินเล็กๆ อยู่ภายใน เรียกว่า พลีโรสเฟีย (Plerosphere) เถ้าลอยมีขนาดเล็กตั้งแต่ไม่กี่ไมครอนจนถึงหลายร้อยไมครอน [5] ส่วนโครงสร้างของเถ้าลอย FBC มีรูปร่างที่ไม่แน่นอนและผิวขรุขระ เนื่องจากการใช้อุณหภูมิที่ต่ำในการ เผา ถ่านหินจะเกิดการหลอมละลายเพียงบางส่วน โดยขนาดอนุภาคเฉลี่ยของเถ้าลอย PCC มีขนาด 24 ไมครอน และเถ้าลอย FBC มีขนาด 28 ไมครอน ส่วนเถ้าก้นเตา FBC มีอนุภาคขนาดใหญ่ รูปร่างไม่ แน่นอนรวมกันเป็นก้อน และมีความพรุนสูง

ส่วนรูปที่ 4.6 แสดงเถ้าผสมบด FBC ขนาดหยาบ (ก), เถ้าผสมของตัวอย่าง 50-FA-blend (ข), และเถ้าผสมของตัวอย่าง 50-FA (ค) โดยเถ้าทั้ง 3 เป็นเถ้าที่ก่อนนำไปผลิตเป็นจีโอโพลิเมอร์ ซึ่งพบว่า เถ้าลอยที่เป็นทรงกลมได้มากจากเถ้าลอย PCC ส่วนเถ้าที่มีรูปทรงไม่แน่นอนคือเถ้า FBC ทรงกลมของ เถ้าลอย PCC มีประโยชน์ต่อส่วนผสม เนื่องจากทำให้ส่วนผสมจีโอโพลิเมอร์ไหลได้ง่าย หรือมี ความสามารถในการทำงาน นอกจากนี้ ยังเพิ่มความสามารถในการทำปฏิกิริยาด้วย

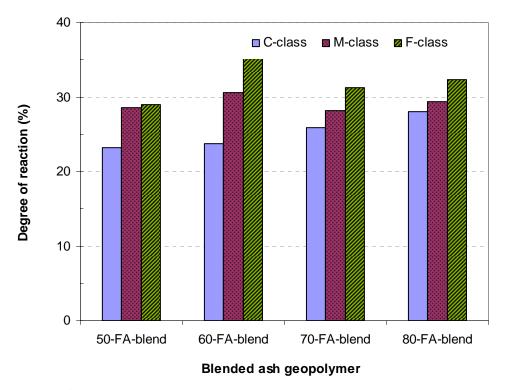
ร**ูปที่ 4.6** โครงสร้างทางจุลภาคของเถ้าผสม (ก) เถ้าผสมบด FBC, (ข) เถ้า 50-FA-blend, (ค) เถ้า 50-FA

เมื่อนำเถ้ามาผสมเป็นจีโอโพลิเมอร์แล้วนำมาศึกษาโครงสร้างจุลภาค แสดงได้ในรูปที่ 4.7 โดย รูป (ก) เป็นโครงสร้างทางจุลภาคของจีโอโพลิเมอร์ที่มีเถ้าลอย PCC ล้วน (Control) เป็นสารตั้งต้น พบว่า ยังคงเห็นลักษณะที่เป็นทรงกลมของเถ้าลอย PCC และเกิดเจลขึ้นบริเวณผิวของเถ้าลอย เนื่องจากการ เกิดปฏิกิริยาระหว่างเถ้าลอยกับสารละลายเบส (NaOH) แต่ปฏิกิริยาที่เกิดขึ้นไม่สมบูรณ์ เนื่องจากพบ พื้นผิวทีเรียบของเถ้าลอยเหลืออยู่ เนื้อจีโอพอลิเมอร์ที่อยู่รอบเถ้าลอยมีลักษณะแน่น ส่วนรูป (ข) เป็นจีโอโพลิเมอร์ 50-FA-blend จะพบเจลที่ก่อตัวรอบๆ เถ้าลอย PCC และเนื้อจีโอโพลิเมอร์ที่เชื่อมอนุภาค เถ้าลอย PCC ไว้ โดยปฏิริยาที่เกิดขึ้นจะเกิดที่ผิวของเถ้าเท่านั้น เช่นเดียวกับรูป (ค) เป็นโครงสร้างทาง จุลภาคของจีโอพอลิเมอร์ 50-FA พบว่ามีโครงสร้างของเถ้าลอย PCC ที่มีลักษณะกลม และโครงสร้างของ เถ้าลอย FBC ที่มีลักษณะเป็นเหลี่ยมและขรุขระผสมกันอยู่บริเวณผิวของเถ้าลอย PCC เป็นส่วนใหญ่ ส่วนเถ้าลอย FBC จะเป็นเนื้อเดียวกันกับเนื้อจีโอพอลิเมอร์ และพบรอยแตกและรูพรุนสูงกว่าจีโอโพลิ เมอร์ 50-FA-blend ที่มีการบดเถ้าผสม FBC ก่อน

ร**ูปที่ 4.7** โครงสร้างทางจุลภาคของจีโอโพลิเมอร์ (ก) ตัวอย่างควบคุม, (ข) ตัวอย่าง 50-FA-blend, (ค) ตัวอย่าง 50-FA

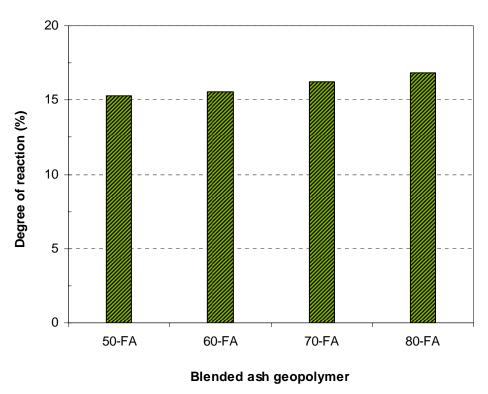
4.7 การศึกษาดัชนีการเกิดปฏิกิริยาของจีโอโพลิเมอร์

หลักการที่เกิดค่าดัชนีการเกิดปฏิกิริยา (Degree of reaction) คือใช้ 2 M HCl ในการละลาย สารประกอบของแคลเซียมและแคลเซียมไอออนจากผลิตภัณฑ์ที่ได้จากปฏิกิริยาจีโอโพลิเมอไรเซชั่น เหลือตะกอนที่ประกอบด้วย SiO_2 , Al_2O_3 , Fe_2O_3 และเถ้าที่ไม่เกิดปฏิกิริยา (Unreacted ash) จากนั้นใช้ สารละลาย 5 % w/v Na_2CO_3 ในการละลาย SiO_2 , Al_2O_3 และ Fe_2O_3 เหลือเป็นตะกอนของเถ้าที่ เกิดปฏิกิริยา ตามสมการ


Degree · of · reaction =
$$\frac{M_{\text{sample}} - \left[M_{\text{residue}} \times (1 + \text{LOI})\right]}{M_{\text{sample}}} \times 100$$

 M_{sample} คือ มวลของจีโอโพลิเมอร์เริ่มต้น (g)

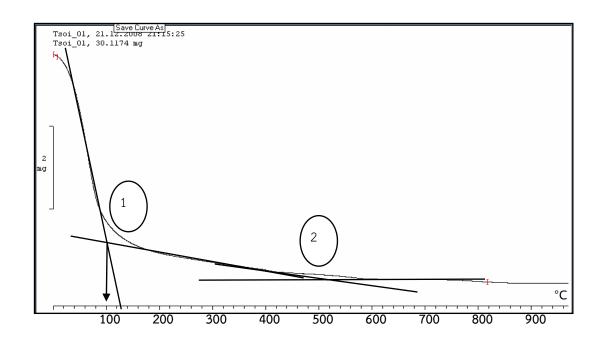
M_{residue} คือ มวลของจีโอโพลิเมอร์ที่เหลือ (g)


LOI คือ สัดส่วนการสูญเสียเนื่องจากการเผาไหม้

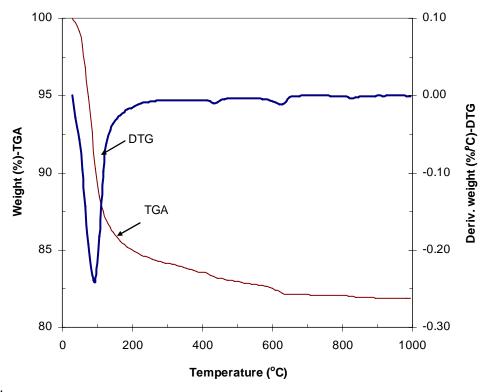
จีโอโพลิเมอร์เพสต์บด และเถ้าผสมก่อนทำปฏิริยาจะถูกวิเคราะห์หาค่าดัชนีการเกิดปฏิกิริยา ดัง วิธีการที่กล่าวมาแล้วในบทที่ 3 โดยก่อนหาค่าดัชนีการเกิดปฏิกิริยา สารทั้งหมดต้องนำไปวิเคราะห์หา LOI ก่อน ค่า LOI ที่ใช้ในการคำนวณค่าดัชนีการเกิดปฏิกิริยาเป็นสัดส่วน (Factor) ไม่ใช่ค่าร้อยละ ค่า ดัชนีการเกิดปฏิกิริยาของจีโอโพลิเมอร์แสดงในรูปที่ 4.8 และ 4.9

ร**ูปที่ 4.8** ดัชนีการเกิดปฏิกิริยาของจีโอโพลิเมอร์มอร์ต้าร์จากเถ้าผสมบด FBC

ในรูปที่ 4.8 แสดงดัชนีการเกิดปฏิกิริยาของวัสดุจีโอโพลิเมอร์ผสมโดยผสมเถ้าลอยบด FBC กับ เถ้าลอย PCC ในปริมาณต่างๆ โดยผลของดัชนีการเกิดปฏิกิริยาเพิ่มขึ้นตามความละเอียดของเถ้าผสมบด FBC และเพิ่มตามปริมาณของเถ้าลอย PCC ที่ปริมาณเถ้าลอย PCC ร้อยละ 60 ให้ค่าดัชนีการ เกิดปฏิกิริยาสูงสุด เมื่อเพิ่มปริมาณเถ้าลอย PCC สูงกว่าร้อยละ 60 พบว่าค่าดัชนีการเกิดปฏิกิริยาลดลง เล็กน้อย ซึ่งผลที่ได้จะมีความสัมพันธ์กับค่ากำลังอัดของจีโอโพลิเมอร์ (ซึ่งจะแสดงในหัวข้อต่อไป) เถ้าที่มี ความละเอียดมากทำให้ได้ค่าดัชนีการเกิดปฏิกิริยาสูง เนื่องจากการเพิ่มพื้นที่ผิวของเถ้าในการทำปฏิกิริยา กับสารละลาย NaOH ได้มากขึ้น การเพิ่มปริมาณเถ้าลอย PCC ในส่วนผสม เพิ่มความสามารถในการ เกิดปฏิกิริยาของจีโอโพลิเมอร์ อีกทั้งยังช่วยในเรื่องความสามารถในการทำงานได้ของส่วนผสมที่มีผลมา จากรูปทรงกลมของเถ้าลอย PCC

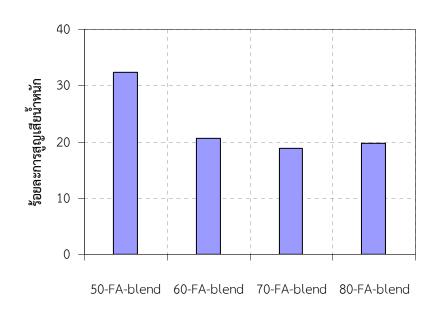


ร**ูปที่ 4.9** ดัชนีการเกิดปฏิกิริยาของจีโอโพลิเมอร์มอร์ต้าร์จากเถ้าลอย FBC


ในรูปที่ 4.9 แสดงดัชนีการเกิดปฏิกิริยาของจีโอโพลิเมอร์มอร์ต้าร์จากเถ้าลอย FBC ผสมกับเถ้า ลอย PCC พบว่าการเพิ่มปริมาณเถ้าลอย PCC ทำให้ค่าดัชนีการเกิดปฏิกิริยาสูงขึ้น เนื่องจากเถ้าลอย PCC มีความว่องไว หรือความเป็นอสัณฐานสูงกว่าเถ้าลอย FBC แต่เมื่อเปรียบเทียบระบบที่ใช้เถ้าผสมบด FBC พบว่าระบบที่ใช้เถ้าผสมบด FBC ให้ค่าดัชนีการเกิดปฏิกิริยาสูงกว่า เนื่องจากการบดเป็นการเพิ่ม พื้นที่ผิวในการเกิดปฏิกิริยา และเถ้าผสมบดมีความละเอียดสูงกว่าเถ้าลอย FBC และเถ้าลอย PCC

4.8 การศึกษาคุณสมบัติด้านความร้อนของจีโอโพลิเมอร์

การศึกษาคุณสมบัติด้านความร้อนจะใช้เทคนิค Thermogravimetric analysis (TGA) ทำให้ สามารถทราบถึงเสถียรภาพทางความร้อนของวัสดุจีโอโพลิเมอร์ โดยพิจารณาจากน้ำหนักที่หายไปของ ตัวอย่างเมื่อได้รับความร้อน และช่วงอุณหภูมิที่สารเกิดการสลายตัว รูปที่ 4.10 จะแสดงกราฟ TGA ตัวอย่างจีโอโพลิเมอร์ที่ได้ จากนั้นทำการแปลงกราฟให้ Differential Thermal Analysis (DTG) เพื่อให้ ทราบอุณหภูมิที่แน่นอนที่เกิดการเปลี่ยนแปลงหรือสลายตัวของสารประกอบในจีโอโพลิเมอร์ และทำการ พล็อตกราฟใหม่ได้ในรูปที่ 4.11



ร**ูปที่ 4.10** กราฟ TGA ของตัวอย่างจีโอโพลิเมอร์ 50-FA-blend (เถ้าผสมบดขนาดละเอียด)

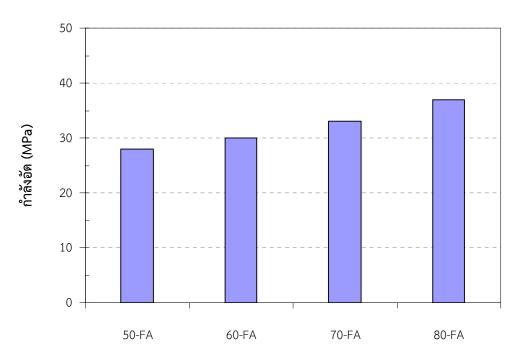
ร**ูปที่ 4.11** กราฟ TGA/DTG ของตัวอย่างจีโอโพลิเมอร์ 50-FA-blend (เถ้าผสมบดขนาดละเอียด)

รูปที่ 4.11 แสดงตัวอย่างสมบัติทางความร้อนของจีโอโพลิเมอร์ 50-FA-blend (เถ้าผสมบดขนาด ละเอียด) โดยพบว่าจีโอโพลิเมอร์เกิดการสูญเสียน้ำหนักประมาณร้อยละ 18 ซึ่งกราฟ DTG แสดงการ สูญเสียน้ำหนักส่วนใหญ่ที่อุณหภูมิประมาณ 100 $^{\circ}$ C ซึ่งอุณหภูมินี้แสดงถึงการสูญเสียน้ำในวัสดุจีโอโพลิ เมอร์ นอกจากนี้ยังพบการสูญเสียน้ำหนักเพียงเล็กน้อยที่อุณหภูมิประมาณ 410 $^{\circ}$ C และ 610 $^{\circ}$ C ที่แสดง ถึงการสลายตัวของ Na₂CO₃ และ Ca(OH)₂ ตามลำดับ โดยสารประกอบทั้ง 2 ชนิดปฏิกิริยาคาร์บอเนชั่น ระหว่าง NaOH ที่เป็นสารตั้งต้นกับก๊าซคาร์บอนได้ออกไซด์ในสิ่งแวดล้อม และกับแคลเซียมที่เป็น องค์ประกอบของเถ้าลอย FBC ปริมาณแคลเซียมในเถ้าลอย FBC ที่สูงอาจเป็นข้อจำกัดต่อการนำจีโอโพลิ เมอร์ชนิดนี้ไปใช้ในงานที่ต้องสัมผัสกับความร้อนได้



รูปที่ 4.12 ร้อยละการสูญเสียน้ำหนักในจีโอโพลิเมอร์จากเถ้าผสมบด FBC

จากรูปที่ 4.12 เมื่อพิจารณาที่ร้อยละการสูญเสียน้ำหนักของจีโอโพลิเมอร์เพสต์จากเถ้าผสมบด FBC จะเห็นว่าเมื่อเพิ่มร้อยละการใช้เถ้าลอย PCC ร้อยละการสูญเสียน้ำหนักก็มีค่าลดลง ทั้งนี้เพราะว่า เถ้าลอย PCC มีรูปร่างอนุภาคทรงกลม มีความสามารถในการทำงานที่ดี มีความเป็นอสัณฐานสูง สามารถ ทำปฏิกริยากับสารละลายเบสได้สารประกอบโซเดียมซิลิเกตที่มีความเสถียร ทนต่อความร้อน จึงเกิดการ สลายตัวได้น้อย และมีคุณสมบัติเป็นสารที่ผลิตเป็นจีโอโพลิเมอร์ที่ดี ซึ่งเถ้าลอย PCC นี้จะเข้าไปเพิ่ม ประสิทธิภาพให้แก่เถ้าผสมบด FBC ให้มีความสามารถในการทำงานได้


4.9 การศึกษากำลังอัดของจีโอโพลิเมอร์มอร์ต้าร์

การศึกษาผลของกำลังอัดเป็นการศึกษาค่าแรงอัดที่สูงสุดที่ทำให้เกิดการเสียรูปของก้อนตัวอย่าง ลูกบาศก์ขนาด 5x5x5 ซม. จำนวน 3 ตัวอย่าง กำลังอัดเป็นค่าที่ใช้ในการเปรียบเทียบสมบัติของวัสดุที่ใช้ ในงานก่อสร้าง โดยการเตรียมจีโอโพลิเมอร์มอร์ต้าร์จะเติมทรายต่อเถ้าถ่านหินในอัตราส่วน 2:1 โดย น้ำหนัก แล้ววัดกำลังอัดที่มาตรฐาน ASTM C109 ผลของแรงที่กดได้จะอยู่ในหน่วย kN รายงานเป็น หน่วย MPa โดยแปลงหน่วยด้วยการหารแรงด้วยพื้นที่หน้าตัดของมอร์ต้าร์ เป็นค่ากำลังอัดซึ่งเป็นค่าเฉลี่ย ของ 3 ตัวอย่าง ดังแสดงในรูปที่ 4.13 และ 4.14

รูปที่ 4.13 กำลังอัดของจีโอโพลิเมอร์มอร์ต้าร์จากเถ้าผสมบด FBC ที่อายุ 7 วัน

จากรูปที่ 4.13 จะเห็นว่าปริมาณของเถ้าลอย PCC และความละเอียดของเถ้าผสมบดมีผลต่อ กำลังอัดของจีโอโพลิเมอร์มอร์ต้าร์ เถ้าที่มีความละเอียดมากจะให้ค่ากำลังอัดแก่มอร์ต้าร์ที่สูง เนื่องจาก การบด ทำให้เถ้ามีขนาดเล็กลงและเป็นการเพิ่มพื้นที่ผิวของเถ้า ทำให้สารละลาย NaOH เข้าไปทำ ปฏิกิริยาที่ผิว เกิดการชะของซิลิกอนและอลูมิเนียมออกมาจากผิวเถ้า ได้เป็นไอออน Si⁴⁺ และ Al³⁺ เกิด การก่อตัวเป็นเจลของจีโอโพลิเมอร์และยึดติดอนุภาคเถ้าเอาไว้ในลักษณะการทำหน้าที่เป็นวัสดุประสาน นอกจากนี้อนุภาคขนาดเล็กที่ได้จากการบดสามารถเข้าไปอยู่ในช่วงว่างอนุภาคเถ้าลอย PCC ขนาดใหญ่ ทำให้เนื้อจีโอโพลิเมอร์แน่นขึ้น ส่งผลให้ค่ากำลังอัดของตัวอย่างสูงขึ้น ค่ากำลังอัดของจีโอโพลิเมอร์ที่ ผลิตจากเถ้าผสมบดขนาดละเอียด (F Class) จะให้ค่ากำลังอัดสูงในช่วง 39-44 เมกกะปาสคาล โดย พบว่าปริมาณเถ้าลอย PCC ที่เหมาะสมที่ใช้ในการผสมกับเถ้าผสมบด FBC คือที่อัตราส่วน 60:40

ร**ูปที่ 4.14** กำลังอัดของจีโอโพลิเมอร์มอร์ต้าร์จากเถ้าลอย FBC ที่อายุ 7 วัน

ส่วนรูปที่ 4.14 เป็นค่ากำลังอัดของจีโอโพลิเมอร์ที่มีเถ้าลอย PCC ผสมกับเถ้าลอย FBC จะพบว่า ค่ากำลังอัดของจีโอโพลิเมอร์ประเภทนี้ต่ำกว่าจีโอโพลิเมอร์ที่ผสมเถ้าผสมบด FBC เนื่องจากเถ้าลอย FBC มีความว่องไวต่ำ ขนาดใหญ่และมีพื้นที่ผิวน้อยกว่าเถ้าผสมบด FBC ซึ่งค่ากำลังอัดสอดคล้องกับผล SEM (รูปที่ 4.7) จีโอโพลิเมอร์ที่มีเถ้าผสมบด FBC จะมีรอยแตกน้อยกว่าจีโอโพลิเมอร์จากเถ้าลอย FBC ด้วย สาเหตุนี้รอยแตกที่พบในชิ้นตัวอย่างจึงทำให้ค่ากำลังอัดลดลงได้

บทที่ 5

สรุปผลการทดลอง

จากการศึกษาความเข้มข้นที่เหมาะสมสำหรับการผลิตจีโอโพลิเมอร์ พบว่าการเตรียมจีโอโพลิ เมอร์ที่ใช้อัตราส่วน $Na_2SiO_3/NaOH$ เท่ากับ 1.5 โดยน้ำหนัก เมื่อใช้สารละลาย 10 M NaOH ได้จีโอโพลิ เมอร์ที่ไม่หนืด เทลงแบบได้ง่าย และให้ค่ากำลังอัดในเกณฑ์ดี เมื่อเทียบกับมอร์ต้าร์ที่ผสมจากปูนซีเมนต์ ดังนั้นงานวิจัยนี้จึงเลือกใช้ 10 M NaOH และ อัตราส่วน $Na_2SiO_3/NaOH$ เท่ากับ 1.5 ในการเตรียมจีโอ โพลิเมอร์

ความเป็นอสัณฐานของเถ้าถ่านหิน FBC ก่อนบดและหลังบด โดยการทำปฏิกิริยากับสารละลาย 8 M NaOH ที่อุณหภูมิ 65 °C เป็นเวลา 1 ชั่วโมง สารละลาย NaOH จะชะสารที่เป็น อสัณฐานของเถ้าออกมา ได้ผลการทดลองคือเถ้าลอย PCC มีความเป็นอสัณฐานสูงกว่าเถ้าลอยและเถ้า ก้นเตา FBC เมื่อทำการบดเพื่อเพิ่มพื้นที่ผิวและลดขนาดอนุภาค การบดให้มีขนาดเล็กลงช่วยให้ปฏิกิริยา กับกับสารละลาย NaOH เกิดได้ดีขึ้น เมื่อทำการวิเคราะห์สัณฐานวิทยาด้วยเครื่อง XRD พบว่าเถ้าลอย PCC มีความเป็นอสัณฐานสูงกว่าเถ้าลอยและเถ้าก้นเตา FBC เช่นกัน โดยจะเห็นพีกฐานกว้างในตัวอย่าง เถ้าลอย PCC เมื่อนำเถ้าผสมเมื่อนำมาผลิตเป็นจีโอโพลิเมอร์จะเกิดการเลื่อนตำแหน่งของฐานพีก และ การเกิดสารประกอบแคลเซียมซิลเกตแสดงถึงปฏิกิริยาได้เกิดขึ้นในจีโอโพลิเมอร์

เมื่อนำตัวอย่างเถ้าผสมบด FBC และเถ้าลอย FBC ผสมกับเถ้าลอย PCC แล้วนำไปผลิตเป็นจีโอ โพลิเมอร์ พบว่าโครงสร้างทางจุลภาคของจีโอโพลิเมอร์ยังคงสังเกตอนุภาคทรงกลมของเถ้าลอย PCC และเกิดเจลขึ้นบริเวณผิวของเถ้าลอย เนื่องจากการเกิดปฏิกิริยาระหว่างเถ้าลอยกับสารละลายเบส (NaOH) แต่ปฏิกิริยาที่เกิดขึ้นไม่สมบูรณ์ เนื่องจากพบพื้นผิวที่เรียบของเถ้าลอยเหลืออยู่ เนื้อจีโอโพลิ เมอร์ที่อยู่รอบเถ้าลอยมีลักษณะแน่น ในส่วนผสมที่ใช้เถ้าลอย FBC จะพบรอยแตกและรูพรุนสูงกว่าจีโอ โพลิเมอร์ที่ใช้เถ้าผสมบด FBC เนื่องจากเถ้าผสมบด FBC มีขนาดเล็กสามารถแทรกเข้าไปในช่องว่างของ เถ้าลอย PCC ได้ทำให้เนื้อจีโอโพลิเมอร์แน่น มีรอยแตกน้อย ซึ่งรอยแตกที่เกิดขึ้นเป็นอีกสาเหตุหนึ่งทำให้ จีโอโพลิเมอร์มีค่ากำลังอัดลดลง

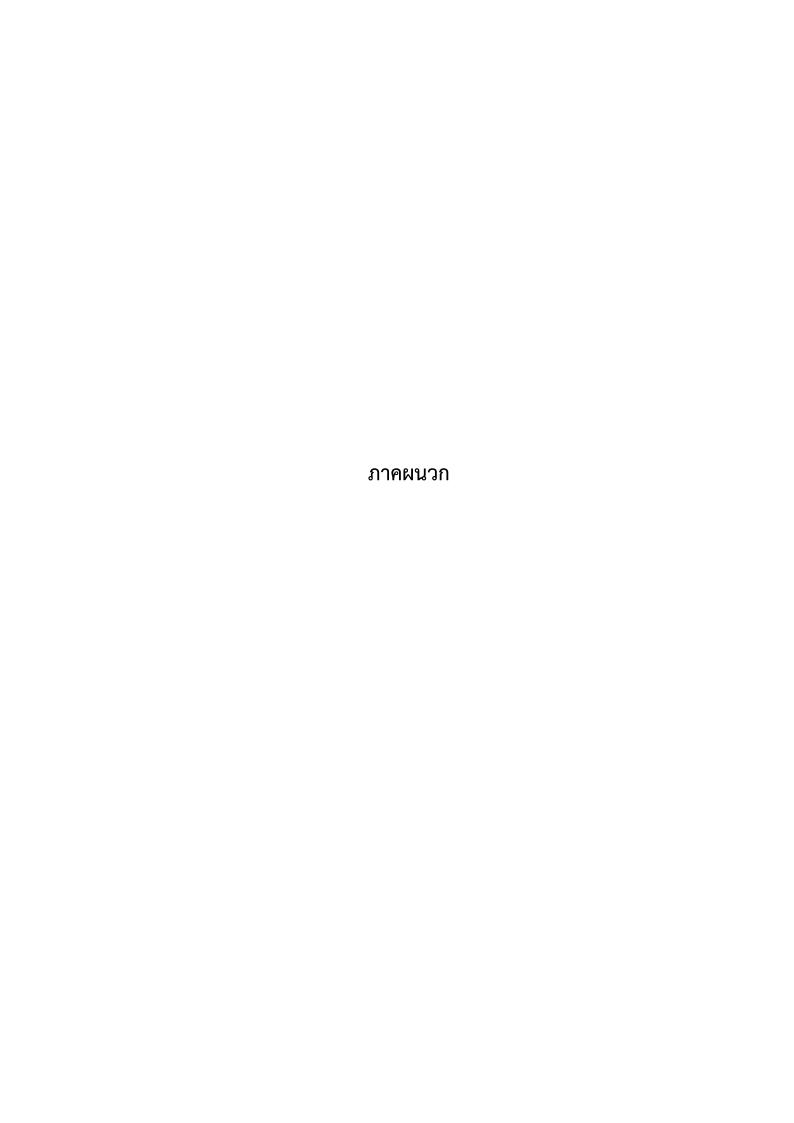
การศึกษาดัชนีการเกิดปฏิกิริยาของกับจีโอโพลิเมอร์ พบว่าค่าดัชนีการเกิดปฏิกิริยาเพิ่มขึ้นตาม ความละเอียดของเถ้าผสมบด FBC และเพิ่มตามปริมาณของเถ้าลอย PCC เถ้าที่มีความละเอียดมากทำให้ ได้ค่าดัชนีการเกิดปฏิกิริยาสูง เนื่องจากการเพิ่มพื้นที่ผิวของเถ้าในการทำปฏิกิริยากับสารละลาย NaOH ได้มากขึ้น การเพิ่มปริมาณเถ้าลอย PCC ในส่วนผสม เพิ่มความสามารถในการเกิดปฏิกิริยาของจีโอโพลิ เมอร์ อีกทั้งยังช่วยในเรื่องความสามารถในการทำงานได้ของส่วนผสมที่มีผลมาจากรูปทรงกลมของเถ้า ลอย PCC

จากการวิเคราะห์สมบัติทางความร้อนของจีโอพอลิเมอร์เพสต์โดยเทคนิค TGA แสดงการสูญเสีย น้ำหนักส่วนใหญ่ที่อุณหภูมิประมาณ 100 $^{\circ}$ C ซึ่งอุณหภูมินี้แสดงถึงการสูญเสียน้ำในวัสดุจีโอโพลิเมอร์ นอกจากนี้ยังพบการสูญเสียน้ำหนักเพียงเล็กน้อยที่อุณหภูมิประมาณ 410 $^{\circ}$ C และ 610 $^{\circ}$ C ที่แสดงถึงการ สลายตัวของ Na₂CO₃ และ Ca(OH)₂ ตามลำดับ โดยสารประกอบทั้ง 2 ชนิดปฏิกิริยาคาร์บอเนชั่น ระหว่าง NaOH ที่เป็นสารตั้งต้นกับก๊าซคาร์บอนได้ออกไซด์ในสิ่งแวดล้อม และกับแคลเซียมที่เป็น องค์ประกอบของเถ้าลอย FBC ปริมาณแคลเซียมในเถ้าลอย FBC ที่สูงอาจเป็นข้อจำกัดต่อการนำจีโอโพลิ เมอร์ชนิดนี้ไปใช้ในงานที่ต้องสัมผัสกับความร้อนได้

การศึกษากำลังอัดของจีโอพอลิเมอร์มอร์ต้าโดยใช้มาตรฐาน ASTM C109 พบว่าปริมาณของเถ้า ลอย PCC และความละเอียดของเถ้าผสมบดมีผลต่อกำลังอัดของจีโอโพลิเมอร์มอร์ต้าร์ เถ้าที่มีความ ละเอียดมากจะให้ค่ากำลังอัดแก่มอร์ต้าร์ที่สูง เนื่องจากการบดทำให้เถ้ามีขนาดเล็กลงและเป็นการเพิ่ม พื้นที่ผิวของเถ้า ทำให้สารละลาย NaOH เข้าไปทำปฏิกิริยาที่ผิว เกิดการชะของซิลิกอนและอลูมิเนียม ออกมาจากผิวเถ้า ได้เป็นไอออน ${\rm Si}^{4+}$ และ ${\rm Al}^{3+}$ เกิดการก่อตัวเป็นเจลของจีโอโพลิเมอร์และยึดติดอนุภาค เถ้าเอาไว้ในลักษณะการทำหน้าที่เป็นวัสดุประสาน นอกจากนี้อนุภาคขนาดเล็กที่ได้จากการบดสามารถ เข้าไปอยู่ในช่วงว่างอนุภาคเถ้าลอย PCC ขนาดใหญ่ทำให้เนื้อจีโอโพลิเมอร์แน่นขึ้น ส่งผลให้ค่ากำลังอัด ของตัวอย่างสูงขึ้น

ดังนั้น จากผลการทดลองทำให้สามารถเพิ่มศักยภาพการใช้งานทั้งเถ้าลอย FBC และเถ้ากันเตา FBC ในการเป็นสารตั้งต้นสำหรับการผลิตวัสดุจีโอโพลิเมอร์ได้ โดยต้องเถ้า FBC ต้องผ่านกระบวนการบด เพื่อเพิ่มพื้นที่ผิวในการเกิดปฏิกิริยาและลดขนาดอนุภาค ส่วนการผสมเถ้า FBC กับเถ้าลอย PCC จะ สามารถเพิ่มความสามารถในการทำปฏิกิริยาได้ดี เนื่องจากเถ้าลอย PCC มีอนุภาคกลมทำให้เพิ่ม ความสามารถในการทำงานแก่ส่วนผสมจีโอโพลิเมอร์ได้ อีกทั้งเพิ่มความเป็นอสัณฐานแก่เถ้า FBC ได้ด้วย จึงเป็นการใช้งานทั้งเถ้าถ่านหินจากกระบวนการเผาแบบใช้ถ่านหินบด (PCC) และแบบฟลูอิดไดซ์เบด (FBC) ให้เกิดประโยขน์และกำจัดของเสียจากสิ่งแวดล้อม ได้ผลิตภัณฑ์ที่มีคุณสมบัติทัดเทียมกับคอนกรีตที่ ผลิตจากปูนซีเมนต์ได้

Output ที่ได้จากโครงการ


จากงานวิจัยนี้สามารถผลิต 3 บทความวิจัย ที่สามารถสืบค้นได้ในฐานข้อมูล ISI Web of Knowledge ดังมีรายชื่อบทความดังต่อไปนี้

- 1) Ubolluk Rattanasak, Prinya Chindaprasirt, 2009, Influence of NaOH solution on the synthesis of fly ash geopolymer, Minerals Engineering 22(12), 1073–1078. (2010 Impact factor: 1.333)
- **2)** Prinya Chindaprasirt, **Ubolluk Rattanasak**, 2010, Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer, Waste Management 30, 667-672. (2010 Impact factor: 2.433)
- **3)** Prinya Chindaprasirt, **Ubolluk Rattanasak**, Chai Jaturapitakkul, 2011, Utilization of fly ash blends from pulverized coal and fluidized bed combustions in geopolymeric materials, Cement and Concrete Composites 33, 55-61. (2010 Impact factor: 1.839)

เอกสารอ้างอิง

- Chindaprasirt P, Chareerat T, Sirivivananon V, 2007, Workability and strength of coarse high calcium fly ash geopolymer, Cement and Concrete Composites 29, 224-229.
- 2. Swanepoel JC, Strydom, 2002, Utilisation of fly ash in a geopolymeric materials, Applied Geochemistry 17, 1143-1148.
- 3. Fletcher RA, Mackenzie KJD, Nicholson CL, Shimada S, 2006, The composition rang of aluminosilicate geopolymers, Journal of the European Ceramic Society 26, 1471-1477.
- 4. Phair JW, Smith JD, Van Deventer JSJ, 2003, Characteristics of aluminosilicate hydrogels related to commercial 'Geopolymer', Materials Letters 57, 4356-4367.
- 5. ปริญญา จินดาประเสริฐ. 2548. เถ้าลอยในงานคอนกรีต (ฉบับปรับปุง), พิมพ์ครั้งที่ 2, สมาคม คอนกรีตไทย. กรุงเทพฯ
- 6. Rattanasak U, Chindaprasirt P, 2009, Influence of NaOH solution on the synthesis of fly ash geopolymer, Minerals Engineering 22, 1073-1078.
- 7. Hua X, van Deventer JS, 1999, The geopolymerisation of natural alumino-silicates", Proceedings: 2nd International conference on geopolymere'99, 43-63.
- 8. Chindaprasirt P, Jaturapitakkul C, Sinsiri T, 2007, Efffect of fly ash fineness on microstructure of blended cement paste, Construction and Building Materials 21, 1534-1541.
- Chindaprasirt P, Chareerat T, Sirivivananon V, 2007, Workability and strength of coarse high calcium fly ash geopolymer, Cement and Concrete Composites 29, 224-229.
- 10. Fernandez-Jimenez A, García-Lodeiro I, Palomo A, 2007, Durability of alkali-activated fly ash cementitious materials, Journal of Materials Science 42, 3055-3065.
- 11. Alvarez-Ayuso E, Querol X, Plana F, Alastuey A, Moreno N, Izquierdo M, et al. 2008, Environmental, physical and structural characterisation of geopolymer matrixs synthesized from coal (co-)combustion fly ashes, Journal of Hazardous Materials 154, 175-183.

- 12. Bakharev T, 2005, Durability of geopolymer materials in sodium and magnesium sulfate solutions, Cement and Concrete Research 35, 1233-1246.
- 13. ศูนย์เชี่ยวชาญนิวเคลียร์เทคโนโลยีสำหรับวิเคราะห์และทดสอบวัสดุ. กล้องจุลทรรศน์ทดสอบวัสดุ. กล้องจุลทรรศน์อิเล็กตรอนแบบสแกน. กันยายน, 2545.
- 14. Scanning Electron Microscope (SEM), เข้าถึงได้จาก
 http://www.unl.edu/CMRAcfem/semoptic.htm
- 15. X-Ray Diffraction (XRD), เข้าถึงได้จาก http://www.tint.or.th/adv/AmPly/XRD.html
- 16. Thermogravimetric Analysis (TGA), เข้าถึงได้จาก
 http://www.nanotec.or.th/th/?page_id=569
- 17. Thermogravimetric Analysis (TGA), เข้าถึงได้จาก http://www.sec.psu.ac.th/tga.html
- 18. Philips DN, Carter J, 2003, Analysis of silica fume produceed by zircon desilication, Talanta 60, 961-968.
- 19. Termkhajornkit P, Nawa T, Nakai M, Saito T, 2005, Effect of fly ash on autogenous shrinkage, Cement and Concrete Research 35, 473-482

การเสนอผลงานโปสเตอร์

บทความวิจัย : Influence of NaOH solution on the synthesis of fly ash geopolymer

ผู้เขียน : **Ubolluk Rattanasak**, Prinya Chindaprasirt

วารสาร : Minerals Engineering

เล่ม / หน้า : 22, 1073-1078

ปี: 2009

ELSEVIER

Contents lists available at ScienceDirect

Minerals Engineering

journal homepage: www.elsevier.com/locate/mineng

Influence of NaOH solution on the synthesis of fly ash geopolymer

Ubolluk Rattanasak a,*, Prinya Chindaprasirt b

- ^a Department of Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
- ^b Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand

ARTICLE INFO

Article history: Received 8 January 2009 Accepted 30 March 2009 Available online 26 April 2009

Keywords: Industrial minerals Cementation Leaching Waste processing

ABSTRACT

A study was conducted on leaching of fly ash mixed with NaOH solution and on mixing procedure for preparing geopolymer. Leaching of SiO_2 and Al_2O_3 was investigated by mixing fly ash with NaOH solution for different time intervals and leachates were analyzed in terms of silica and alumina contents. To make geopolymer paste, separate mixing and normal mixing were used. For separate mixing, NaOH solution was mixed with fly ash for the first 10 min; subsequently sodium silicate solution was added into the mixture. For normal mixing, fly ash, sodium hydroxide and sodium silicate solution were incorporated and mixed at the same time. Geopolymers were cured at 65 °C for 48 h. Microstructure of paste and compressive strength of mortar were investigated. Results revealed that solubility of fly ash depended on concentration of NaOH and duration of mixing with NaOH. For mixing procedure, separate mixing gave slightly better strength mortar than normal mixing. High strength geopolymer mortar up to 70.0 MPa was obtained when the mixture was formulated with 10 M NaOH and sodium silicate to NaOH ratio of 1.0, and the separate mixing sequence was used.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Fly ash is an industrial waste normally used to replace Portland cement for making concrete. However, it can only partially replace Portland cement since SiO₂ and Al₂O₃ in fly ash still need Ca(OH)₂ from Portland cement hydration for its pozzolanic reaction to produce calcium silicate hydrate and calcium aluminate hydrate. Recently, another form of cementitious materials called geopolymer has been developed (Davidovits, 1991). This geopolymer is usually made of fly ash activated with alkaline solution at low temperature and it is sometimes called alkali-activated fly ash.

Geopolymer with good mechanical properties viz., high compressive strength and stability at temperature up to 1300–1400 °C can be synthesized at low temperature using similar technique to that of zeolites (Hussain et al., 2005). Geopolymerization is based on alumino-silica chain. Fly ash contains high percentage of amorphous silica and alumina, hence is suitable as a source material for making geopolymer. Fly ash is usually mixed with alkali solution to obtain alumina and silica precursors. When it comes into contact with alkali solution, dissolution of silicate species starts (Comrie and Kriven, 2003). The type and concentration of alkali solution affect the dissolution of fly ash. Leaching of Al³⁺ and Si⁴⁺ ions are generally high with sodium hydroxide solution compared to potassium hydroxide solution (Van Jaarsveld and Van Deventer, 1999; Xu and Van Deventer; 1999). Therefore, alkali concentration is a significant factor in controlling the leaching of

alumina and silica from fly ash particles, subsequent geopolymerization and mechanical properties of hardened geopolymer.

The present work investigates alumina and silica in the form of Al^{3+} and Si^{4+} ions leached out from fly ash particles after mixing with sodium hydroxide at different alkali concentrations and leaching times before forming geopolymer with silicate solution. The mixing procedures were also investigated. The knowledge would help to understand the reaction and strength development of geopolymer and to better utilize it in the future.

2. Materials and methods

2.1. Materials

Fly ash from Mae Moh power plant in the north of Thailand with a mean particle size of 19 µm, NaOH and sodium silicate solution (water glass) with SiO₂:Na₂O weight ratio of 3.2 were used. Sodium hydroxide pellet (AR grade) was dissolved in deionised water to obtain NaOH solution at concentrations of 5, 10, and 15 M. The viscosities of 5, 10, and 15 M NaOH solutions were 3.9, 9.3, and 14.3 cps (centipoises), respectively. The viscosity of sodium silicate solution was higher at 60.6 cps. Major chemical composition of the fly ash is shown in Table 1. Deionised water and polyethylene containers were used throughout the experiment to avoid silica contamination. River sand passed No. 16 sieve (1.18 mm opening) and retained on No. 100 sieve (150 µm opening) with fineness modulus of 2.8 and specific gravity of 2.65 was used for making mortar specimen.

^{*} Corresponding author. Tel.: +66 38 103066; fax: +66 38 393494. E-mail address: ubolluk@buu.ac.th (U. Rattanasak).

Table 1 Chemical composition (%) of high calcium lignite fly ash.

SiO ₂	Al_2O_3	CaO	Fe ₂ O ₃	Na ₂ O	TiO ₂	MgO	K ₂ O	P ₂ O ₅	SO ₃	LOI
39.5	19.5	17.3	14.1	1.3	0.5	1.3	2.9	0.2	2.6	0.8

2.2. Leaching test of fly ash

Three NaOH concentrations of 5, 10, and 15 M with fly ash/NaOH ratio of 3:1 by weight were used to dissolve silica and alumina from fly ash particles. Fly ash was mixed with NaOH solution in a mixer at 120 rpm for 5, 10, 20, and 30 min. Longer period of time (more than 30 min) was not performed since the mixture would become very sticky with formations of Si(OH)₄ and Al(OH)₃ gel. After mixing, the filtrates were collected through membrane filter and analyzed for Si and Al ions. Concentrations of these products were determined by forming complex compound with suitable chemicals followed by UV spectronic measurement. Color Si and Al complexes were measured at wavelengths of 810 nm and 550 nm (Bartram and Balance, 1996; Roelofs and Vogelsberger, 2006).

2.3. Geopolymer paste

For separate mixing (S), fly ash was mixed with NaOH for 10 min to allow leaching of ions. Sodium silicate solution was then added to the mixture and mixed for 1 min. Only short mixing time was required here since the mixes were relatively fluid. For normal mixing (N), fly ash, sodium silicate solution, and 10 M NaOH were mixed together for 1 min as this corresponds to the time of exposure to sodium silicate solution for separate mixing. The mix proportions are shown in Table 2. Oxide molar ratios of geopolymer matrix were varied in the following ranges: $Na_2O/SiO_2 = 0.2-0.48$, $SiO_2/Al_2O_3 = 3.3-4.5$, $H_2O/Na_2O = 10-25$ and $Na_2O/Al_2O_3 = 0.8-$ 1.2. After mixing, paste specimens were molded in 25 mm diameter × 25 mm height plastic containers. They were wrapped with clingfilm and cured at 65 °C for 48 h. XRD and IR analyses were performed on the hardened sample. In addition, samples were microscopically examined with optical microscope and scanning electron microscope (SEM).

2.4. Geopolymer mortar

To make mortar, sand was added to paste mixture at sand to fly ash ratio by weight of 2.75 and mixed for one more minute. The mixture was cast into 50 mm cubic mould and wrapped with cling-film to avoid moisture evaporation during heat curing. Samples were then cured in oven at 65 °C for 48 h to complete geopolymerization reaction. The temperature and curing time were selected because they gave high strength geopolymer mortars (Chindaprasirt et al., 2007, 2009). Specimens were cooled down to room temperature and tested for strength in accordance with ASTM C109. Results are reported as an average of three samples.

Table 2 Mix proportion of paste.

Mix	Method of mixing	Water glass/10 M NaOH (G/N)
S-0.5	S	0.5
S-1.0	S	1.0
S-1.5	S	1.5
S-2.0	S	2.0
N-0.5	N	0.5
N-1.0	N	1.0
N-1.5	N	1.5
N-2.0	N	2.0

Note: fly ash-to-liquid ratio = 1.5.

3. Results and discussion

3.1. Leaching test

Results of measuring of Si⁴⁺ and Al³⁺ ions are shown in Figs. 1 and 2. From Fig. 1, an average Si⁴⁺ ion concentration close to 600 ppm was obtained with 10 M NaOH. For 5 M and 15 M NaOH, the concentrations were much less at approximately 200 and 260 ppm. At 5 M NaOH, the dissolution was low due to relatively low base condition. For 10 M NaOH, the base condition was higher and the dissolution was, therefore, increased. For the 15 M NaOH, the dissolution was again reduced owing primarily to an increase in coagulation of silica (Bergna and Roberts, 2006).

From Fig. 2, the concentration of Al³⁺ ion was much lower than that of Si⁴⁺ ion. This was expected since alumina content in fly ash was approximately half of silica. Si⁴⁺ ion possessed higher intrinsic

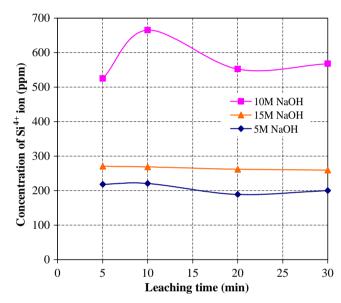


Fig. 1. Si^{4+} ion concentration with fly ash/NaOH = 3:1 in 5, 10, and 15 M NaOH.

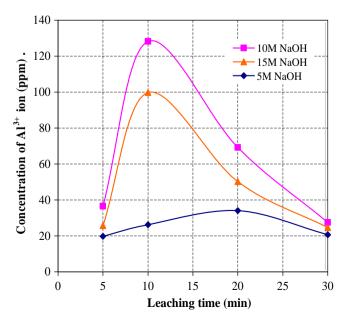


Fig. 2. Al^{3+} ion concentration with fly ash/NaOH = 3:1 in 5, 10, and 15 M NaOH.

extent of dissolution compared to Al3+ ion (Xu and Van Deventer, 2000). Furthermore, the formation of alumino-silicate gel at an early stage resulted in a low Si/Al ratio product. This led to a low consumption of Si ion at early stage. For high concentration NaOH, reasonable amount of Al ion was detected. At 10 min, the concentration of Al peaked to 130 and 100 ppm for 10 M and 15 M NaOH mixes, respectively. For 5 M NaOH, the concentration of Al was much smaller and peaked at 35 ppm at 20 min. For leaching at 30 min, the concentrations of Al³⁺ ion reduced to less than 30 ppm. After certain leaching time with sufficient amount of ions, gel formation started. Gel of Si(OH)₄, Al(OH)₃ and alumino-silicates was formed resulting in thickening of solution as well as depletion of ions in the solution. Formation of gel had two opposing effects. First was depletion of ions which prompted further leaching of ions from fly ash particles. Second was thickening of solution which resulted in lower mobility of solution and ions particularly at the surface of fly ash and retarded the leaching out of ions.

When alumino-silicate source material came into contact with alkali solution, leaching of both Si⁴⁺, Al³⁺ and other ions started (Van Jaarsveld and Van Deventer, 1999). Si⁴⁺ and Al³⁺ species diffused into solution leading to reduction of Si⁴⁺ and Al³⁺ concentration at fly ash particle surface and thickening of solution. Leaching was, therefore, dependent on alkali solution concentration and leaching time. The results also suggested that leaching time of 5–10 min was sufficient as an increase in leaching time to 20 and 30 min did not seem to significantly increase the concentration of Si⁴⁺ and Al³⁺ ions. Use of 10 M NaOH with 10 min leaching period was appropriate for synthesis of geopolymer when economy and practicality were considered.

3.2. Microstructure

3.2.1. Fly ash particle

Surfaces of fly ash, before and after leaching with NaOH with different concentrations and leaching periods were investigated using SEM. Results shown in Fig. 3 indicated that the surface of original fly ash was relatively smooth (Fig. 3a). After leaching in NaOH

solution for 10 min, the surface roughened as a result of leaching of ions. The surface of fly ash with 5 M NaOH showed less sign of attack compared to those with 10 M and 15 M NaOH as shown in Fig. 3b–d. Furthermore, it was observed that, in 5 M NaOH solution, spherical units of gel with diameter of 0.5–2.0 µm started to form at the surface of fly ash particle. For the higher concentration 15 M NaOH, small spherical units of gel merged and formed larger mass of gel.

3.2.2. Geopolymer paste

Results of optical microscope examination and SEM on geopolymer paste are shown in Figs. 4 and 5. Optical microscope result (Fig. 4) showed gel formation (white spots) around fly ash particles (dark color). Fly ash particles were easily noticed as some particles were still not fully covered with gel. Gel was in a form of colloid varying in size from less than 1 um to about 20 um. As more gel was formed, it overwhelmed fly ash particles and formed a continuous mass of gel resulting in a relatively dense alumino-silicate geopolymer paste. The results of SEM of paste (Fig. 5a-c) also showed unreacted and/or partially reacted grains of fly ash and a continuous mass of alumino-silicate. A large proportion of fly ash especially large particles still did not completely dissolve (Fig. 5a). Cracks and pores which could limit the strength of geopolymer were also found in the matrix. Results of EDX shown in Fig. 5d indicated that major components of fly ash geopolymer paste were Si and Al with a small amount of Na, and Ca. Ca was from source materials as fly ash contained a large amount of CaO. Average ratio of Si/Al for fly ash geopolymer was approximately 3.0.

3.3. XRD pattern

Results of XRD of fly ash and geopolymer pastes are shown in Fig. 6. The patterns of XRD for original fly ash; and S-1.5, N-1.0 and S-1.0 pastes were similar indicating that geopolymerization did not significantly alter the degree of amorphous and crystallization of fly ash. The geopolymer consisted mainly of amorphous alu-

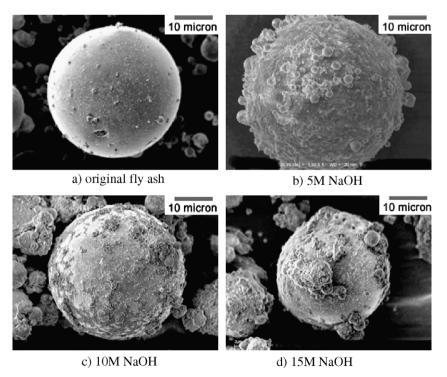
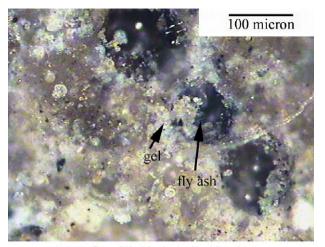



Fig. 3. SEM of fly ash surfaces leached with NaOH for 10 min.

Note: fly ash is black, and gel is white.

Fig. 4. Optical micrograph of geopolymer.

mino-silicate products with similar or very slightly increased in amount of crystal of predominantly quartz and mullite from fly ash. Increase in crystalline products increased compressive strength of geopolymer (Alvarez-Ayuso et al., 2008). The main difference between XRD patterns of fly ash and geopolymer was the shift of amorphous silica peak from around 23° for original fly ash to almost 30° for geopolymer. This indicated that the silicate glass phase in geopolymer was highly disordered. Another point of interest was at 5–8° where graphs of geopolymers curved slightly upwards compared to that of original fly ash. This could be the formation of mesomaterial of poorly crystalline nature with pore size in the range of 20–50 nm (Alvarez-Ayuso et al., 2008).

3.4. Compressive strength

Compressive strengths of fly ash geopolymer mortars are shown in Fig. 7. For separate mixing, the use of 10 M and 15 M NaOH gave relatively high strength geopolymer. As expected, 5 M NaOH gave low strength geopolymer as a result of low leaching of Si and Al ions in NaOH solution.

Water glass to NaOH ratio (*G*/N) clearly affected the strength of low concentration 5 M NaOH geopolymer mix. For high concentration 10 M and 15 M NaOH mixes, the effects were not substantial. The strengths of 5 M NaOH geopolymer with low *G*/N of 0.5 and 1.0 were only 12.0 and 21.0 MPa, whereas the strengths of 10 M and 15 M NaOH geopolymer were much higher at around 60 MPa. For high *G*/N of 1.5 and 2.0, the strengths of 5 M NaOH geopolymer were much better at slightly less than 50.0 MPa compared to 55.0–65.0 MPa of 10 M and 15 M NaOH geopolymer mortars.

The results also gave a comparison between two mixing sequences of geopolymer mortars with 10 M NaOH. The effect of mixing sequence was apparent at low G/N of 0.5 and 1.0. For G/N of 0.5, strength of separate mixing was significantly higher than that of normal mixing. Strength of S-10 M geopolymer was 56.0 MPa compared to 41.0 MPa of N-10 M geopolymer. For high G/N, strengths of geopolymers of the two mixing systems were almost identical. With an increase in water glass content, its effect became dominant compared to the effect of leaching time. For low NaOH concentration, high G/N ratio and leaching time of 10 min were considered desirable. For high NaOH concentration, normal mixing was advisable as it required shorter mixing time.

3.5. IR spectra

IR spectra of geopolymer are shown in Fig. 8. Significant broad bands were observed at approximately 3450 cm⁻¹ and 1650–1600 cm⁻¹ for O–H stretching and O–H bending, Si–O–Si stretching

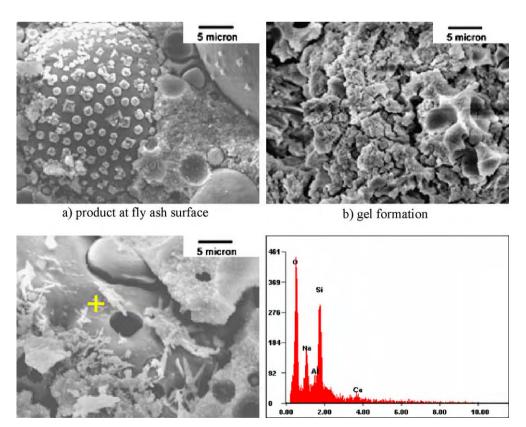


Fig. 5. SEM/EDX micrograph of geopolymer.

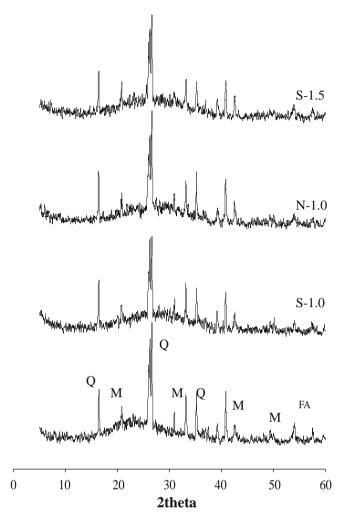
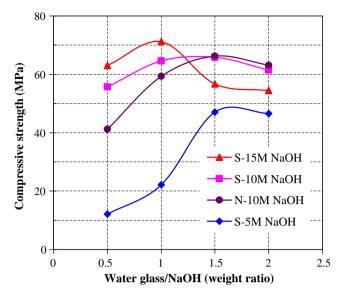



Fig. 6. XRD profiles of fly ash and geopolymer pastes: Q = quartz, M = mullite.

vibration was detected at wave number range of 1490–1050 cm⁻¹. The peak near 460 cm⁻¹ was ascribed to O–Si–O bending mode (Barbosa et al., 2000; Günzler and Gremlich, 2002). Si–O–Si stretching vibration was more prominent than O–Si–O bending mode. It was, therefore, logical to use Si–O–Si stretching vibration to indicate degree of geopolymerization.

Fig. 7. Relationship between water glass-to-NaOH ratio (G/N) and strength.

Peak area and peak height are frequently used in quantitative assessment of geopolymer reaction. Ratio of inverted peak height (H) and ratio of area of inverted peak (AS) of Si–O–Si stretching vibration are tabulated in Table 3. The value of AS usually gave a better reflection of the degree of geopolymerization compared to H value (Chindaprasirt et al., 2009). As expected, H and AS of fly ash were lowest indicating no degree of geopolymerization. For S series, AS of S-0.5 of 1.55 showed a reasonable amount of geopolymerization. Increase in G/N from 0.5 to 1.5 resulted in increases in AS of geopolymers indicating higher degree of geopolymerization within this range. However, further increase in G/N to 2.0 led to a slightly less AS of S-2.0 compared to that of S-1.5 implicating a slightly less geopolymerization (Fig. 8a). AS of S series corresponded very well with the strength result i.e. geopolymer with high AS gave high compressive strength.

For N series (Fig. 8b), AS of N-0.5 was 1.81, while those of N-1.0, N-1.5 and N-2.0 were slightly higher at 2.17, 2.37 and 2.57, respectively. Increase in G/N ratio from 0.5 to 2.0 increases the AS of spectra of pastes implying higher degree of geopolymerization. Overall, the result of the IR spectra also corresponded very well with the strength results.

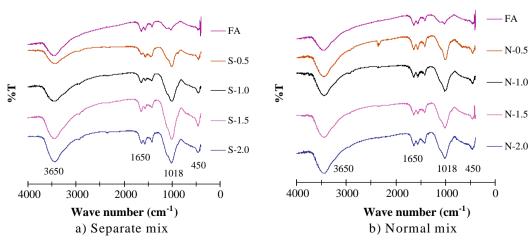


Fig. 8. IR spectra of fly ash and geopolymer pastes.

Table 3Ratio of inverted peak height (H) and ratio of area of inverted peak (AS) of Si-O-Si stretching vibration.

Sample	Ratio of inverted peak height (<i>H</i>)	Ratio of area of inverted peak (AS)
FA	1.00	1.00
S-0.5 S-1.0 S-1.5 S-2.0	2.00 2.69 3.90 3.00	1.55 2.96 4.53 3.17
N-0.5 N-1.0 N-1.5 N-2.0	2.42 2.36 2.48 2.59	1.81 2.17 2.37 2.57

It should, however, be pointed out here that results obtained are specific to the test conditions. It is possible to produce good geopolymer at ambient temperature instead of curing at temperature of 65 $^{\circ}$ C for 48 h. There is, therefore, a possibility that the outcome of the two-stage reagent addition will be different for curing at ambient temperature.

4. Conclusion

When fly ash came into contact with NaOH, leaching of Si, Al and other minor ions started. The amount of leaching was dependent on NaOH concentration and leaching time. The results indicated that leaching time of 5–10 min was sufficient as an increase in leaching time to 20 and 30 min did not significantly increase the concentration of Si⁴⁺ and Al³⁺ ions. The mixing of fly ash with 10 M NaOH for 10 min was, therefore, appropriate for synthesis of geopolymer when economy and practicality were taken into consideration.

Mixing sequence had some effects on geopolymerization of paste and compressive strength of mortar. Separate mixing procedure allowed time and condition for leaching of silica and alumina from fly ash particles into NaOH solution. IR study and compressive strength confirmed that geopolymerization was elevated with S series compared to N series. At high water glass content, its effect became dominant and the effect of leaching of fly ash was less. Geopolymers with relatively high strengths of 60–70 MPa were obtained when 10 M and 15 M NaOH; G/N of 1.0 and separate mixing procedure were used. For normal mixing procedure, a high strength geopolymer of 65 MPa was also obtained but this required high G/N of 1.5 and 2.0.

Optical microscope and SEM studies suggested that geopolymerization started with gel formation in colloidal form varying in sizes from less than 1 μm to about 20 μm . As more gel was formed, it overwhelmed remaining fly ash particles and formed a continuous mass of gel resulting in relatively dense geopolymer matrix.

Acknowledgements

The authors gratefully acknowledge the financial supports from Thailand Research Fund (TRF) and the Commission on Higher Education, Ministry of Education, Thailand, under TRF New Researcher Scholar Contract No. MRG5280001. Appreciation is also extended to PERCH-CIC Program.

References

Alvarez-Ayuso, E., Querol, X., Plana, F., Alastuey, A., Moreno, N., Izquierdo, M., et al., 2008. Environmental, physical and structural characterisation of geopolymer matrixs synthesized from coal (co-)combustion fly ashes. Journal of Hazardous Materials 154, 175–183.

Barbosa, V., MacKenzie, K., Thaumaturgo, C., 2000. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymer. International Journal of Inorganic Materials 2, 309–317.

Bartram, J., Balance, R., 1996. Water Quality Monitoring – A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programs. UNEP/WHO.

Bergna, H.E., Roberts, W.O., 2006. Colloidal Silica: Fundamentals and Applications. CRC Press. New York.

Chindaprasirt, P., Chareerat, T., Sirivivatnanon, V., 2007. Workability and strength of coarse high calcium fly ash geopolymer. Cement and Concrete Composites 29, 224–229.

Chindaprasirt, P., Jaturapitakkul, C., Rattanasak, U., Chalee, W., 2009. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Management 29, 539–543.

Comrie, D.C., Kriven, W.M., 2003. Composite cold ceramic geopolymer in a refractory application. Ceramic Transactions 153, 211–225.

Davidovits, J., 1991. Geopolymer: inorganic polymeric new materials. Journal of Thermal Analysis 37, 1633–1656.

Günzler, H., Gremlich, H., 2002. IR Spectroscopy: An Introduction. Wiley-VCH Verlag GmbH, Germany.

Hussain, M., Varley, R.J., Cheng, Y.B., Mathys, Z., Simon, G.P., 2005. Synthesis and thermal behavior of inorganic-organic hybrid geopolymer composites. Journal of Applied Polymer Science 96, 112–121.

Roelofs, F., Vogelsberger, W., 2006. Dissolution kinetics of nanodispersed (γ-alumina in aqueous solution at different pH: unusual kinetic size effect and formation of a new phase. Journal of Colloid and Interface Science 303, 450–459

Van Jaarsveld, J.G.S., Van Deventer, J.S.J., 1999. Effect of the alkali metal activator on the properties of fly ash-based geopolymer. Industrial and Engineering Chemistry Research 88, 3932–3941.

Xu, H., Van Deventer, J.S.J., 2000. The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing 59, 247–266.

Xu, H., Van Deventer, J.S.J., The geopolymerisation of natural alumino-silicates. In: Proceedings of the 2nd International Conference on Geopolymer, France, 1999, pp. 43–63. บทความวิจัย: Utilization of blended fluidized bed combustion (FBC) ash and

pulverized coal combustion (PCC) fly ash in geopolymer

ผู้เขียน : Prinya Chindaprasirt, **Ubolluk Rattanasak**

วารสาร : Waste Management

เล่ม / หน้า : 30, 667-672

ปี: 2010

ELSEVIER

Contents lists available at ScienceDirect

Waste Management

journal homepage: www.elsevier.com/locate/wasman

Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

Prinya Chindaprasirt a, Ubolluk Rattanasak b,*

- ^a Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
- ^b Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand

ARTICLE INFO

Article history: Accepted 25 September 2009 Available online 23 October 2009

ABSTRACT

In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na₂SiO₃) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na₂SiO₃/NaOH of 1.5 and curing temperature of 65 °C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0–44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Pulverized coal combustion (PCC) is the most common burning method used in coal-fire power plant. Combustion takes place at high temperature of 1300–1700 °C and results in NO_x and SO₂ released in flue gas. Due to high combustion temperature, fly ash from this process is mostly spherical in shape with high glassy phase content and also quite reactive. It is widely used as pozzolanic material for Portland cement partial replacement (Chindaprasirt et al., 2007a; Maholtra, 2002; Mehta, 1998). On the other hand, fluidized bed combustion (FBC) technology is one of the promising clean coal technologies, since lime is used to absorb sulfur. Low-grade fuels with high sulfur content can be burnt efficiently achieving low NO_x and SO₂ emission. FBC unit can also handle wide variations of fuel quality while still achieving strict air emission requirements. Combustion temperature of FBC unit is only 800-900 °C. This results in reduced NO_x and slightly increased N₂O as compared to PCC (Basu, 1999). The ash with high contents of silica (SiO₂), lime (CaO), gypsum (CaSO₄), and high amount of crystalline phase is obtained. In addition, the particle shape of this ash is quite irregular and thus its usage as pozzolanic material is limited. Improvement of reactivity of the FBC ash is

usually done by grinding into fine powder (Jaturapitakkul and Cheerarot, 2003).

PCC-fly ash is currently used as pozzolan to partially replace Portland cement. With the problems of energy usage and waste utilization, attempts have been made to use FBC-fly ash and bottom ash as pozzolans in cement. FBC ash could not be readily used as cement replacement in concrete due to its unacceptably high calcium oxide and sulfur contents. The problems of unsoundness and ettringite formation, after concrete has hardened, could promote concrete deterioration (Havlica et al., 1998).

Fly ash and bottom ash from PCC combustion can be used as source materials for making geopolymer (Chindaprasirt et al., 2007b; Chindaprasirt et al., 2009). The other name for fly ash geopolymer is alkali-activated fly ash. Fly ash can be used quite readily, but bottom ash with large and very irregular particles containing pores and cavities needs to be ground to proper fineness (Sathonsaowaphak et al., 2009). The geopolymer is prepared by incorporating high alkaline and sodium silicate solutions under controlled temperature curing. This alumino-silicate cementitious compound possesses good mechanical properties i.e. high compressive strength and stability at temperature up to 1300–1400 °C (Hussain et al., 2005). Attempt is made to utilize the ground FBC-bottom ash as starting material for making geopolymer (Slavik et al., 2008). The geopolymer gave acceptable compressive strength and freeze-thaw resistance.

^{*} Corresponding author. Tel.: +66 38 103066; fax: +66 38 393494. E-mail address: ubolluk@buu.ac.th (U. Rattanasak).

In this paper, the improvement of FBC ashes through grinding and its utilization were concerned. Various sizes of ground FBC ash were incorporated with as-received PCC-fly ash to increase the workability and reactivity. Mix proportion was varied in order to study their effects on strength and other properties of the materials.

2. Materials and methods

2.1. Materials

Source materials for making geopolymer were FBC-fly and bottom ashes from small power plant in Thailand and PCC-fly ash from Mae Moh power plant. The typical chemical compositions of ashes as determined by X-ray fluorescence (XRF) are shown in Table 1. FBC ashes had high CaO content due to the use of lime as an in situ sorbent for sulfur. The CaO contents of FBC-bottom ash and fly ash are 47.0% and 42.2%. FBC ashes are composed mainly of lime (CaO), quartz (SiO₂), alumina (Al₂O₃), gypsum (CaSO₄) in term of SO₃ and associated oxide of iron, magnesium and dehydroxylated clay originating from fuel ash components. River sand with specific gravity of 2.65 and fineness modulus of 2.8 was used.

The FBC-fly ash and bottom ash were inter-ground into three different finenesses viz., coarse size (C-class) medium size (M-class) and fine size (F-class) with 32%, 17% and 7% retained on sieve no. 325 (45 μ m-opening), respectively. The particle sizes (D_{50}) were 10, 8, 6 μ m for C, M, F-classes, respectively. The particle size (D_{50}) of as-received PCC ash was 24 μ m. About 10 M sodium hydroxide solution (NaOH) and sodium silicate solution (Na2SiO3) with 9% Na2O and 30% SiO2 by weight were used. The viscosities of 10 M NaOH and sodium silicate solutions were 0.0093 and 0.0606 Pascal second (Pa s).

2.2. Details of mixes

Two series of tests were designed to study the effect of proportioning of FBC-fly ash and FBC-bottom ash; and ground FBC-ash and PCC-fly ash. The mass ratios of Na₂SiO₃/NaOH of 1.5, and solid binder/solution of 1.5 were used.

2.2.1. FBC-fly ash to FBC-bottom ash ratios

The FBC-fly ash to FBC-bottom ash ratios of 80:20, 60:40 and 40:60 were used for the study of the effect of blending of the two ashes in order to achieve the optimum ratio and utilize both fly ash and bottom ash efficiently. The ashes were inter-ground to obtain C-class size. This ground ash was blended with PCC-fly ash at the ratio of 50:50 to prepare 50-FA geopolymer mortar specimens for compressive strength test. The optimum FBC-fly ash to FBC-bottom ash ratio of 60:40 was selected from this test series for further study.

Table 1 Chemical composition of ashes.

Composition (%)	PCC-fly ash	FBC-fly ash	FBC-bottom ash
SiO ₂	39.5	21.0	19.8
Al_2O_3	21.2	8.0	7.8
Fe_2O_3	15.6	6.9	2.4
CaO	19.7	42.2	47.1
Na ₂ O	1.3	2.9	2.8
TiO ₂	0.5	2.2	2.1
MgO	1.3	0.8	0.8
SO_3	2.7	15.0	15.9
LOI	0.8	1.0	1.3

2.2.2. PCC ash to FBC ash ratios

Due to irregular shape of ground FBC ashes, a large amount of liquid was needed to produce a workable mix. High liquid-to-solid ratio could result in low compressive strength. To reduce this effect, as-received PCC-fly ash with spherical particles was used to blend with FBC ashes. The as-received PCC-fly ash to ground FBC ash ratios of 80:20, 70:30, 60:40 and 50:50 were used for the study of the effect of blending of the two ashes. In addition, incorporation of PCC-fly ash reduced the amount of calcium oxide and gypsum contents in the geopolymer mix. Their presence in large quantity can adversely affect the setting time and strength of geopolymers. It has been shown that the CaO content up to 17% in the high calcium fly ash has no detrimental effect on strength of geopolymer mortar (Chindaprasirt et al., 2007b; Chindaprasirt et al., 2009).

2.3. Preparation of geopolymer

Oxide molar ratios of geopolymer matrix were varied in the following ranges: $Na_2O/SiO_2 = 0.25-0.27$, $SiO_2/Al_2O_3 = 4.06-4.56$ and $H_2O/Na_2O = 13.48$. The mix proportions are shown in Table 2. The ashes were thoroughly mixed until uniform mixture was obtained. NaOH and Na_2SiO_3 were mix together in a container before adding to the ash in a pan mixer. The mixing was done for 5 min. After mixing, paste specimens were molded in 25 mm diameter \times 25 mm height plastic cylinder molds. After 10 s vibration, they were covered with cling film to avoid moisture evaporation during heat curing. The specimens were subsequently cured at 65 °C for 48 h. After that, the specimens were cooled down and cured continuously at room temperature.

In preparation of mortar, sand was added to the paste at sand to solid binder ratio of 2:1 (by weight) and mixed for another minute. The mixture was then cast into 50 mm cubic mold in accordance with ASTM C109. The preparation and curing procedures were the same as the paste specimens.

2.4. Details of test

2.4.1. Determination of the amount of reactive phase of source materials

In order to compare the amount of reactive phase of source materials, dissolutions of ash in NaOH were performed. The 8 M NaOH was used rather than HF to completely dissolve the reactive phase under heating condition because HF could dissolve some of the crystalline phase even at low concentration (Phillips and Carter, 2003). About 1 g of ash sample was treated with 10 ml of 8 M NaOH at 60 °C for 1 h. The sample was then cooled down to room temperature and filtered through pre-weighed membrane filter. Residue was washed, dried and weighed. The amount of reactive phase was determined as the weight of ash minus the residue. In addition, X-ray diffraction (XRD) of source materials was performed.

2.4.2. Thermal analysis

Geopolymer paste was ground and subjected to thermogravimetric analysis (TGA) and differential thermal gravimetric (DTG) measurement using temperature up to $1000\,^{\circ}\text{C}$ with heating rate of $10\,^{\circ}\text{C/min}$.

2.4.3. Compressive strength test

The compressive strength tests were performed at the age of 7 days in accordance with ASTM C109. The reported compressive strengths are the averages of three samples.

2.4.4. Determination of degree of reaction

The degree of reaction of ash in geopolymer was determined by identification of unreacted ash. The unreacted ash was considered

Table 2Mix proportion (in gram) and oxide molar ratio of geopolymer.

Sample	Source material		10 M NaOH	Na ₂ SiO ₃	Mole ratio	Mole ratio		
	PCC-fly ash	FBC ash (FA:BA = 60:40)			Na ₂ O/SiO ₂	SiO ₂ /Al ₂ O ₃	H ₂ O/Na ₂ O	
50-FA	50	50	26.7	40	0.27	4.56	13.48	
60-FA	60	40	26.7	40	0.27	4.37	13.48	
70-FA	70	30	26.7	40	0.26	4.21	13.48	
80-FA	80	20	26.7	40	0.25	4.06	13.48	

as microaggregate in system. The method involved dissolution of powdered samples with 2 M HCl and 3% Na_2CO_3 (Termkhajornkit et al., 2005). Hardened geopolymer pastes were ground to obtain particles passed a 150 μm sieve. The 3 g of powdered samples was filled with 30 ml of 2 M HCl in the beaker and then placed in 60 °C water bath and stirred for 20 min to accelerate the dissolution. The solid phase was separated by vacuum filter. The remaining solid was then washed with warm water three times to completely remove HCl. Acetone was applied in the last filtration to remove water before drying at 70 °C for 2 h.

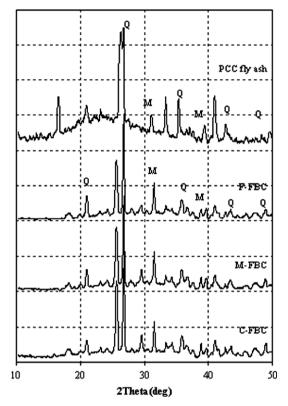
Residue was further dissolved with 30 ml of 3% Na₂CO₃ in beaker and placed in 80 °C water bath for another 20 min with occasionally stirring. Again, sample was filtered and repeatedly washed with water and acetone before drying at 70 °C for 2 h. The weight of unreacted ash was then determined. Degree of reaction on ignited basis was calculated using Eq. (1) (Poon et al., 1999):

Degree of reaction =
$$\frac{m_{\text{sample}} - [m_{\text{residue}} \times (1 + \text{LOI})]}{m_{\text{sample}}} \times 100$$
 (1)

where m_{sample} = weight of powdery sample (g), m_{residue} = weight of dried residue (g) and LOI = loss of ignition of ground geopolymer paste tested in accordance with ASTM C114.

The degree of reaction of source material was also determined and assigned as "blank". All results were subtracted with blank to obtain the corrected degree of reaction.

3. Results and discussion

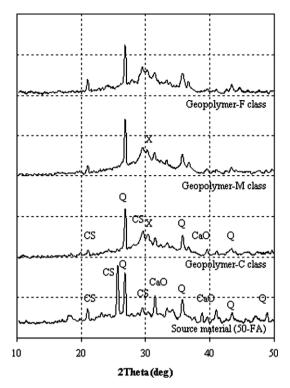

3.1. Characterization of source materials

3.1.1. Amount of reactive phase of source material

PCC-fly ash had relatively high amount of reactive phase of 15.1% as compared to that of as-received FBC-bottom ash of 9.8%. Grinding increased the amount of reactive phases of FBC-bottom ash to 22.5, 32.3 and 56.2 for C-, M- and F-class ashes, respectively. Increase in surface area was obtained leading to higher chemical reactivity.

3.1.2. Characterization of source materials

The results of X-ray diffraction (XRD) of source materials are shown in Fig. 1. The patterns of XRD of FBC ashes were clearly different from that of PCC-fly ash. The crystalline phases were abundant in the FBC ashes and represented predominantly quartz. Calcium oxide (CaO) was also found in both PCC and FBC ashes and confirmed the high content of CaO in the ashes especially FBC ash which lime was used as in situ sulfur sorbent. Presence of calcium sulfate (CaSO₄) was also detected in FBC ashes. PCC-fly ash showed a broader peak than FBC ashes indicating a higher amount of amorphous phase. The results of F-, M- and C-classes FBC ashes were similar suggesting that fineness of these three FBC ashes had little effect on the crystallinity.


Fig. 1. XRD patterns of PCC-fly ash and three fineness classes of ground FBC ash at FA:BA ratio of 60:40: Q = quartz, CS = calcium sulfate, CaO = calcium oxide.

3.2. Study of FBC-fly ash to FBC-bottom ash ratios

FBC-fly ash to FBC-bottom ash ratios of 80:20, 60:40, and 40:60 were studied in order to efficiently utilize both fly and bottom ashes. The results of compressive strength of 50-FA and C-class ash geopolymer mortars prepared from these ashes showed that the FBC-fly ash to FBC-bottom ash ratios of 80:20 and 60:40 gave similarly high compressive strength of 23.7 and 23.2 MPa as compared to the relatively low strength of 18.8 of the FBC-fly ash to FBC-bottom ash ratio of 40:60. Generally, fly ash is more reactive than bottom ash. Increase in fly ash content, therefore, resulted in higher compressive strength geopolymer. The FBC-fly ash-to-bottom ratio of 60:40 was selected considering strength and the amount of the FBC-bottom ash.

3.3. XRD pattern of geopolymer

Results of XRD of 50-FA source material and 50-FA geopolymer pastes are shown in Fig. 2. Peaks of quartz, CaO and CaSO₄ were dominant in source material. The main difference between XRD patterns of source material and geopolymer were the different in the amount of crystalline peak and the amount of hump of the amorphous peak at 30°. This indicated that the silicate glass phase

Fig. 2. XRD patterns of 50-FA source material and 50-FA geopolymers: Q = quartz, CS = calcium sulfate, CaO = calcium oxide, X = calcium silicate.

in geopolymer was highly disordered. After formation of geopolymer, peaks of CaO and CaSO₄ were reduced and those of calcium silicate were observed indicating occurrence of the phase transformation into a higher disorder material. The occurrence of calcium silicate resulted from the hydration of calcium and silicate materials similar to the hydration of Portland cement. In addition, the hump at 30° of geopolymer paste was clearly evident. This confirmed the increase in the degree of amorphous phase. Grinding decreased the particle sizes leading to high surface area for increased chemical reaction. With the presence of NaOH solution, reaction took place at the surfaces of the ash particles resulted the leaching out of Si⁴⁺ and Al³⁺ (Rattanasak and Chindaprasirt, 2009). The geopolymer paste, therefore, consisted mainly of amorphous alumino-silicate products with similar amount of crystal of predominantly quartz from source material and some calcium silicate hydrate. The existence of some crystalline could lead to the enhancement of the compressive strength of geopolymer paste (Rattanasak and Chindaprasirt, 2009).

3.4. Thermogravimetric analysis

Thermogravimetric analysis (TGA) and differential thermogravimetry (DTG) measure physical changes in materials. TGA/DTG determines a material's thermal stability and its fraction of volatile components by monitoring the weight change during heating of specimen.

Fig. 3 shows TGA/DTG curves of 50-FA geopolymer paste. As shown in TGA curve, geopolymer had 18% weight loss after heating. On DTG profile, a peak corresponding to maximum weight loss at around 100 °C was observed resulting from evaporation of water. Two small peaks were also found at 410 and 610 °C indicating the decomposition of Na₂CO₃ and Ca(OH)₂ formed as a result of incorporation of alkaline solution and high calcium content in source material. These materials may render the geopolymer paste unstable when exposed to high temperature. Dimensional stability

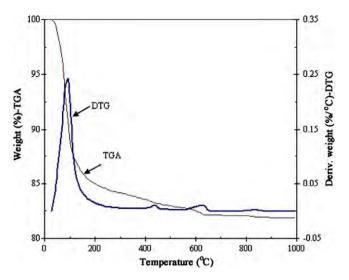


Fig. 3. TGA/DTG curves of 50-FA geopolymer at the age of 7 days.

at high temperature should be concerned especially when substantial amount of FBC-bottom ash was used.

3.5. Degree of reaction

The results of the degree of reactions of geopolymer pastes as shown in Fig. 4 indicated that the degree of reaction increased with the fineness of source material as higher degree of reaction was found in F-class geopolymer. As previously mentioned, grinding increased surface area leading to higher amount of reactive phase. Degrees of reaction were 23-28%, 28-31% and 29-36% for C-, M-, F-class geopolymer pastes, respectively. For coarse C-class ash, the degree of reaction increased with increase in PCC-fly ash content. Although PCC-fly ash possess slightly lower amount of reactive phase compared to C-class FBC ash, the small and spherical PCC ash particle helped with the workability and also increased the packing of the ash particles (Tangpagasit et al., 2005). For the finer M- and F-class ashes, the degrees of reaction were optimum with the incorporation of 60% of PCC-fly ash. Although, the incorporation of PCC ash helped with the workability and also increased the packing of the ash particles, its presence in large quantity reduced the amount of the high reactive phase M- and F-class ashes. This resulted in lower degree of reaction.

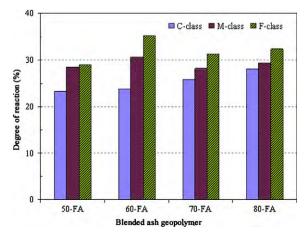


Fig. 4. Degrees of reaction of blended ash geopolymer at the age of 7 days.

3.6. Microstructural study

The results of SEM of as-received FBC-bottom ash. C-class ash (ground FBC ashes), 50-FA source material and its geopolymer paste are shown in Fig. 5(a-e). As-received FBC-bottom ash and fly ash were the agglomeration of a number of small and irregular ash particles (Fig. 5a and b). FBC-fly ash also differs from PCC-fly ash as it is not fused or spherical. Grinding helped to break the agglomeration and resulted in small irregular particles as shown in Fig. 5c. PCC-fly ash was used to improve the workability of the mixes. The spherical shape PCC-fly ash was blended with irregular shape ground FBC ashes as shown in Fig. 5d. For the 50-FA geopolymer paste, the result of SEM is shown in Fig. 5e. The paste showed easily identified spherical PCC unreacted fly ash particles, partially reacted grains of fly ash, reacted grains of irregular coal ash particles, and a continuous mass of alumino-silicate. Cracks and pores which could limit the strength of geopolymer were also found in the matrix (Chindaprasirt et al., 2009).

3.7. Compressive strength

Fig. 6 shows the compressive strength of geopolymer mortars with different amount of PCC-fly ash. The compressive strength of geopolymer mortars increased with increase in the fineness of FBC ash. Ground fine FBC particles possessed high amount of reactive phase and Si and Al could easily leach from the ash surfaces of the ash particle in the presence of NaOH solution. Si⁴⁺ and Al³⁺ species diffused into solution leading to reduction of Si⁴⁺ and Al³⁺ concentration at fly ash particle surface and thickening of solution. The fine particles underwent a higher degree of leaching and were overwhelmed with geopolymer gel (Rattanasak and Chindaprasirt, 2009). Furthermore, fine particles could also fill in the spaces between the larger ash particles leading to a dense geopolymer matrix. Geopolymer with F-FBC gave the highest compressive strength of 39.0-44.0 MPa. The PCC-fly ash to ground FBC ash ratio for optimum compressive strength was 60:40 which corresponded to the same optimum for the degree of reaction.

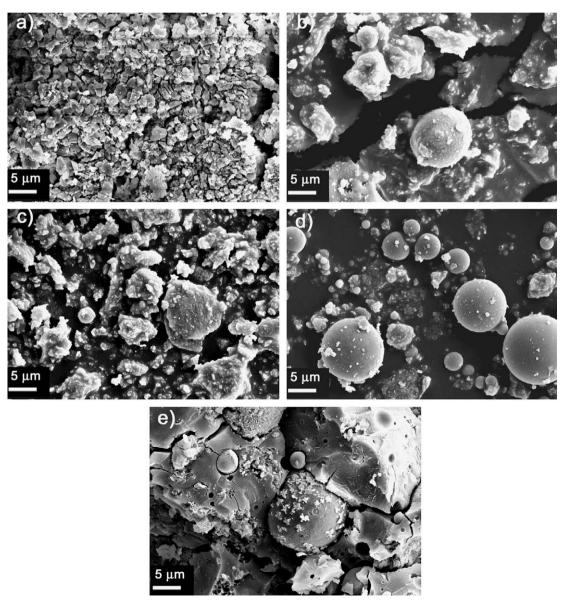


Fig. 5. Morphology of materials; (a) FBC-bottom ash; (b) FBC-fly ash; (c) C-FBC ash at FA:BA ratio of 60:40; (d) 50-FA (C-class) source material and (e) 50-FA (C-class) geopolymer paste.

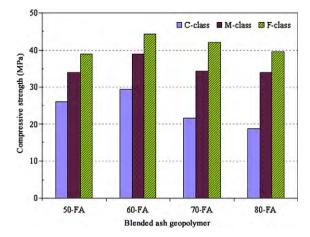


Fig. 6. Compressive strength of geopolymer mortars at the age of 7 days.

In Thailand, PCC-fly ash produced is approximately three million tons annually. About 60% of this is utilized as pozzolan and the rest is discarded. The annually amount of FBC ash (FA:BA = 80:20) is in the order of 0.36 million tons as it is produced from small power plant. The suggested ratios of FBC-fly ash-to-bottom ratio of 60:40 and PCC-fly ash to ground FBC ash ratio of 60:40 are reasonable considering the quantity of the ashes produced.

4. Conclusions

From the results of the investigation, it can be concluded that FBC-fly ash and bottom ash have the potential to be used as source material for making geopolymer. Inter-grinding of FBC-fly ash and bottom ash increased the amount of reactive phase of the ashes. The FBC-fly ash-to-bottom ash ratio of 60:40 was found to be suitable in terms of strength and bottom ash utilization. Grinding increased the surface area and the reactivity of the ashes. However, the ground ash required a higher amount of solution to produce workable mix. PCC-fly ash was used to increase the workability of the mix and it also contributed to the packing of the source material. The PCC-fly ash to FBC ash ratio of 60:40 was suitable as it gave high degree of reaction and compressive strength. Relatively high strength geopolymer mortars of 35.0–44.0 MPa were obtained with the use of M- and F-class FBC ashes blend with PCC-fly ash.

Acknowledgement

The authors gratefully acknowledge the financial supports from Thailand Research Fund (TRF) and the Commission on Higher Education, Ministry of Education, Thailand, under TRF New Researcher Scholar Contract No. MRG5280001. Appreciation is also extended to the Center for Innovation in Chemistry (PERCH-CIC) and Sustainable Infrastructure Research and Development Center (SIRDC), Khon Kaen University.

References

Basu, P., 1999. Combustion of coal in circulating fluidized-bed boilers: a review. Chemical Engineering Science 54, 5547–5557.

Chindaprasirt, P., Jaturapitakkul, C., Sinsiri, T., 2007a. Effect of fly ash fineness on microstructure of blended cement paste. Construction and Building Materials 21, 1534–1541.

Chindaprasirt, P., Chareerat, T., Sirivivananon, V., 2007b. Workability and strength of coarse high calcium fly ash geopolymer. Cement and Concrete Composites 29, 224–229.

Chindaprasirt, P., Jaturapitakkul, C., Rattanasak, U., 2009. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Management 29, 539–543

Havlica, J., Brandstetr, J., Odler, I., 1998. Possibilities of utilizing solid residues from pressured fluidized bed coal combustion (PSBC) for the production of blended cements. Cement and Concrete Research 28, 299–307.

Hussain, M., Varley, R.J., Cheng, Y.B., Mathys, Z., Simon, G.P., 2005. Synthesis and thermal behavior of inorganic-organic hybrid geopolymer composites. Journal of Applied Polymer Science 96, 112–121.

Jaturapitakkul, C., Cheerarot, R., 2003. Development of bottom ash as pozzolanic material. Journal of Materials in Civil Engineering 15, 48–53.

Maholtra, V.M., 2002. Introduction: sustainable development and concrete technology. ACI Concrete International 24, 22–23.

Mehta, P.K., 1998. Role of pozzolanic and cementitious by-products in sustainable development of the concrete industry. In: Sixth CANMET/ACI/JCI Conference: Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Bangkok, Thailand.

Phillips, D.N., Carter, J., 2003. Analysis of silica fume produced by zircon desilication. Talanta 60, 961–968.

Poon, C.S., Lam, L., Kou, S.C., 1999. A study on the hydration rate of natural zeolite blend cement pastes. Construction and Building Materials 13, 427–432.

Rattanasak, U., Chindaprasirt, P., 2009. Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering 22, 1073–1078.

Sathonsaowaphak, A., Chindaprasirt, P., Pimraksa, K., 2009. Workability and strength of lignite bottom ash geopolymer mortar. Journal of Hazardous Materials 168, 44–50.

Slavik, R., Bednarik, V., Vondruska, M., Nemec, A., 2008. Preparation of geopolymer from fluidized bed combustion bottom ash. Journal of Materials Processing Technology 200, 265–270.

Tangpagasit, J., Cheerarot, R., Jaturapitakkul, C., Kiattikomol, K., 2005. Packing effect and pozzolanic reaction of fly ash in mortar. Cement and Concrete Research 35, 1145–1151.

Termkhajornkit, P., Nawa, T., Nakai, M., Saito, T., 2005. Effect of fly ash on autogenous shrinkage. Cement and Concrete Research 35, 473–482.

บทความวิจัย: Utilization of fly ash blends from pulverized coal and fluidized bed

combustions in geopolymeric materials

ผู้เขียน : Prinya Chindaprasirt, **Ubolluk Rattanasak**, Chai Jaturapitakkul

วารสาร : Cement and Concrete Composites

เล่ม / หน้า : 33, 55-61

ปี: 2011

Contents lists available at ScienceDirect

Cement & Concrete Composites

journal homepage: www.elsevier.com/locate/cemconcomp

Utilization of fly ash blends from pulverized coal and fluidized bed combustions in geopolymeric materials

Prinya Chindaprasirt ^a, Ubolluk Rattanasak ^{b,*}, Chai Jaturapitakkul ^c

- ^a Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
- ^b Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
- ^c Department of Civil Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand

ARTICLE INFO

Article history:
Received 13 March 2010
Received in revised form 20 September 2010
Accepted 22 September 2010
Available online 26 September 2010

Keywords: Geopolymer Fluidized bed combustion Microstructure Coal fly ash

ABSTRACT

This paper presents the utilization of fly ash obtained from fluidized bed combustion (FBC) as a source material for geopolymer. FBC-fly ash has low reactivity, and high content of CaO and CaSO₄, which limits its use. To solve this problem, it was blended with reactive fly ash obtained from pulverized coal combustion (PCC). This blend powder was then used as a source material for geopolymer. Sodium hydroxide, sodium silicate and temperature curing were also used for synthesis of the geopolymer. XRD, SEM, degree of reaction, FTIR were performed on geopolymer pastes. In addition, compressive strengths of geopolymer mortars were determined. Results showed that FBC-fly ash could be used in conjunction with PCC-fly ash as source material for geopolymer. PCC-fly ash helped to increase the workability and strength of the geopolymer. Relatively high strength of 30.0 MPa was obtained with 40% content of FBC-fly ash in the blend material.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Fluidized bed combustion (FBC) is a promising clean coal technology for achieving air emission requirements. This FBC technology is growing particularly in the small enterprises and is competing with the traditional pulverized coal combustion (PCC) due to the reduction of SO_2 and NO_x gasses released in flue gas [1]. Combustion temperature of FBC unit takes place at 800–900 °C. In addition, a variety of fuels including low-grade ones can be efficiently burnt using the FBC process. Limestone is particularly added to the bed as an absorbent for sulfur by direct injection, resulting in economic SO_2 removal without the need of expensive flue gas desulphurization (FGD) equipment. Thermal decomposition of $CaSO_4$ in FBC does not occur due to low combustion temperature.

In general, FBC-fly ash significantly differs from PCC-fly ash in terms of particle shape, chemical composition and amorphous phase [2,3]. FBC-fly ash particles are approximately 1–300 µm with irregular shape, while PCC-fly ash particles are normally slightly finer at approximately 1–200 µm and the amorphous phase is usually higher than that of FBC-fly ash. PCC-fly ash is widely used as pozzolanic material for partial replacement of Portland cement [4–6] due to its spherical shape and high reactivity. Comparing with PCC-fly ash, FBC-fly ash has high contents of lime (CaO),

gypsum ($CaSO_4$), and high crystalline phase thus its usage as pozzolanic material is limited. It has also been suggested that typical FBC-fly ash could not be used as a cement replacement in concrete due to its unacceptably high sulfur content [2].

Attempts have been made to use FBC-fly ash as source materials for making geopolymer [3,7]. This alumino-silicate compound possesses good mechanical properties viz., high compressive strength and stability at high temperature of above 1000 °C [8]. FBC-fly ash may need to be properly ground to remove large and highly irregular particles containing pores and cavities [3]. However, grinding requires extra effort and time to obtain proper fineness which is cost prohibitive for the commercial utilization of this FBC-fly ash.

This paper attempts to use FBC-fly ash as cementitious material without grinding to conserve energy. FBC-fly ash was blended with PCC-fly ash and used as source material for making geopolymer. The knowledge would be crucial for commercial utilization of FBC-fly ash. The fly ash blends were mixed with alkaline solutions and temperature cured. XRD, SEM, degree of reaction, FTIR and compressive strength tests were performed on the geopolymer specimens.

2. Materials and methods

2.1. Materials

Source materials for making geopolymer were FBC-fly ash from a small power plant in central Thailand and PCC-fly ash from Mae Moh power plant in the north. Typical chemical compositions of fly

^{*} Corresponding author. Tel.: +66 38 103066; fax: +66 38 393494. E-mail address: ubolluk@buu.ac.th (Ubolluk Rattanasak).

ashes were determined by X-ray fluorescence (XRF) as shown in Table 1. FBC-fly ash had high CaO content of 47.0% due to the addition of lime to absorb sulfur. The main compositions of FBC-fly ash were lime (CaO), quartz (SiO₂), alumina (Al₂O₃) and gypsum (CaSO₄). PCC-fly ash was also used to increase the reactive phase of the starting material for geopolymer mixture. The particle sizes (D_{50}) of FBC and PCC-fly ashes were 28 μm and 24 μm , respectively. The particle size distribution of the original fly ashes is given in Fig. 1. The specific gravity of FBC-fly ash was 2.34 and that of PCC-fly ash was slightly lower at 2.21. Liquid phase consisted of 10 M sodium hydroxide solution (NaOH) and sodium silicate solution (Na₂SiO₃) with 9% Na₂O and 30% SiO₂ by weight. The viscosities of 10 M NaOH and sodium silicate solutions were 0.0093 and 0.0606 Pascal second (Pas), respectively. River sand with specific gravity of 2.65 and fineness modulus of 2.8 was used to prepare mortar for strength test in accordance with ASTM C109.

2.2. Mix compositions

FBC-fly ash and PCC-fly ash were mixed together at various proportions. The mass ratios of FBC-fly ash to PCC-fly ash were 0:100, 20:80, 40:60, 60:40, 80:20 and 100:0. Liquid was prepared by mixing 10 M NaOH with Na_2SiO_3 with the Na_2SiO_3 -to-NaOH ratio of 1.5 by weight. Due to irregular shape of FBC-fly ash, increase in liquid content was needed to produce a workable mix, particularly in the mixtures with high FBC-fly ash content. The mix proportion is tabulated in Table 2. Calcium oxide and gypsum in large quantity can adversely affect the setting time and strength of geopolymers [3,9]. The total calcium oxide and gypsum contents in the geopolymer mix could be reduced by addition of PCC-fly ash.

Table 1 Chemical composition of fly ashes.

Composition (%)	PCC-fly ash	FBC-fly ash	
SiO ₂	39.5	21.0	
Al_2O_3	21.2	8.0	
Fe_2O_3	15.6	6.9	
CaO	19.7	42.2	
Na ₂ O	1.3	2.9	
TiO ₂	0.5	2.2	
MgO	1.3	0.8	
SO_3	2.7	15.0	
LOI	0.8	1.0	

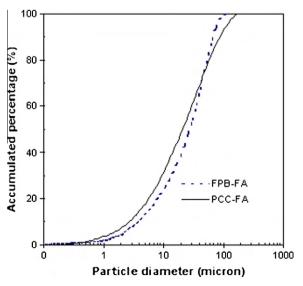
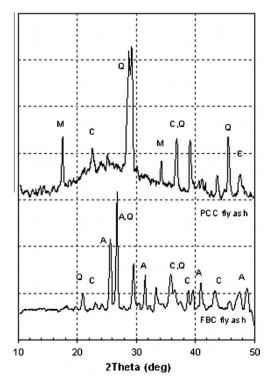


Fig. 1. Particle size distribution of the original fly ashes.

2.3. Preparation of geopolymer

The ashes were thoroughly mixed in a pan mixer. The liquid was prepared by mixing NaOH and Na₂SiO₃ together in a container, then added to the blend ash. The paste mixture was mixed for 5 min and was then cast into 25 mm diameter \times 25 mm height plastic cylinder molds. Specimens were vibrated for 10 s and covered with cling film to avoid moisture evaporation during heat curing. The specimens were subsequently cured in oven at 65 °C for 48 h. After that, the specimens were cooled down and cured continuously at controlled 25 °C.

In preparation of mortar for strength test, sand was added to the paste at final mixing step with the sand-to-solid binder ratio of 2 (by weight). Mixture was then mixed for another minute. The mortar mixture was cast into 50 mm cubic molds in accordance with ASTM C109. The curing condition was the same as for the paste preparation.


2.4. Details of test

2.4.1. Determination of degree of reaction

The degree of reaction of fly ash in geopolymer was based on the identification of unreacted ash [3]. The unreacted ash was con-

Table 2Mix proportion of geopolymer pastes.

Mix no. Sample ID		Source mater	Liquid	Solid	
		PCC-fly ash	FBC-fly ash	(g)	fraction
1	PCC-FA	100	0	67	0.60
2	80/20 blend	80	20	67	0.60
3	60/40 blend	60	40	67	0.60
4	40/60 blend	40	60	82	0.55
5	20/80 blend	20	80	100	0.50
6	FBC-FA	0	100	100	0.50

Fig. 2. XRD patterns of FBC and PCC-fly ashes: A = calcium sulfate, C = calcium oxide; M = mullite, Q = quartz.

sidered as microaggregate in system. The method involved the dissolution of powdery samples with 2 M HCl and 3% Na_2CO_3 [10]. Hardened geopolymer pastes were ground to obtain particles passed a 150- μ m sieve. Three grams of powdered samples were dissolved in 30 ml of 2 M HCl in beaker and then placed in 60 °C water bath and stirred for 20 min to accelerate the dissolution. The solid phase was then filtered and washed with warm water three times to completely remove HCl. Acetone was applied in the last filtration to remove water before drying at 70 °C for 2 h. Residue was further dissolved with 30 ml of 3% Na_2CO_3 solution in beaker and placed in 80 °C water bath for another 20 min with occasionally stirring. Again, residue was filtered and repeatedly washed with water and acetone before drying. The weight of unreacted fly ash was then determined. Degree of reaction on ignited basis was calculated using Eq. (1) [11]:

Degree of reaction =
$$\frac{m_{\text{sample}} - [m_{\text{residue}} \times (1 + \text{LOI})]}{m_{\text{sample}}} \times 100$$
 (1)

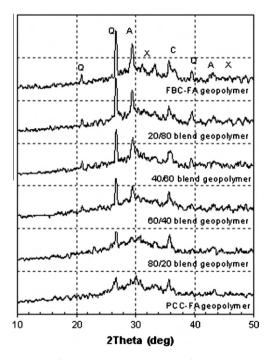
where $m_{\rm sample}$ is the weight of powdery sample (g), $m_{\rm residue}$ the weight of dried residue (g) and LOI is the loss on ignition fraction of ground geopolymer paste. LOI of ground geopolymer paste was tested in accordance with ASTM C114. The dissolution of the blended raw material of each mix was also determined, and assigned as "blank". All results were individually subtracted with blank to obtain the corrected degree of reaction [3].

2.4.2. Additional tests

Microstructure study and FTIR spectrometry were performed on the geopolymer pastes. FTIR absorption spectra of ground samples were recorded in the wavenumber range of 4000–400 cm⁻¹. The compressive strengths at age of 7 days were tested on geopolymer mortars in accordance with ASTM C109. The reported compressive strengths were the averages of three samples.

3. Results and discussion

3.1. Characterization of fly ashes


X-ray diffraction (XRD) patterns of fly ashes are shown in Fig. 2. Due to low combustion temperature of coal in FBC, less glassy phase of FBC-fly ash was obtained as compared to the PCC-fly ash. Numerous peaks of crystalline quartz, calcium sulfate (CaSO $_4$) and calcium oxide (CaO) of FBC-fly ash were easily identified. For PCC-fly ash, a broad hump at around 16–38° indicated the presence of a large amount of amorphous phase. The peaks of quartz, mullite and calcium oxide were also present.

Microstructures of both fly ashes are shown in Fig. 3. PCC-fly ash particles were spherical due to the sintering of ash at high combustion temperature. On the other hand, particles of FBC-fly ash were very irregular in shape since the combustion temperature

was only around 900 °C and the coal particles did not completely melt and thus the irregular shape remained.

3.2. XRD pattern of geopolymer paste

Fig. 4 shows the X-ray diffraction (XRD) pattern of geopolymer pastes at the age of 7 days. Geopolymer pastes with high amount of PCC-fly ash of 60%, 80% and 100% showed high amount of amorphous gel as indicated by the broad hump and a small amount of peaks of crystalline products. The broad hump of these pastes peaked at 30°, while it was 26° for the PCC-fly ash as shown in Fig. 2. This indicates the highly disorder of the silicate glass phase in geopolymer [3]. Peaks of CaO could also be noticed as the PCCfly ash contained a high percentage of CaO. Calcium silicate from reaction between calcium and silicate compounds similar to hydration of Portland cement was also detected. Increase in FBCfly ash in the mixture resulted in increase of peaks of crystalline phases. Quartz, CaO, CaSO₄ and calcium silicate were easily seen in samples with high FBC contents of 60%, 80% and 100%. As a result, the amount of amorphous gel, therefore, reduced with the increase in the FBC contents.

Fig. 4. XRD patterns of geopolymer pastes at the age of 7 days: A = calcium sulfate, C = calcium oxide; Q = quartz, X = calcium silicate.

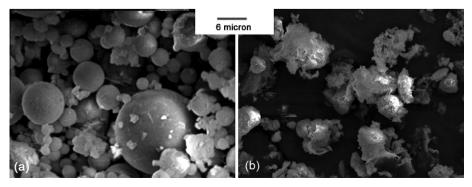


Fig. 3. SEM images of fly ash particles: (a) PCC-fly ash, (b) FBC-fly ash.

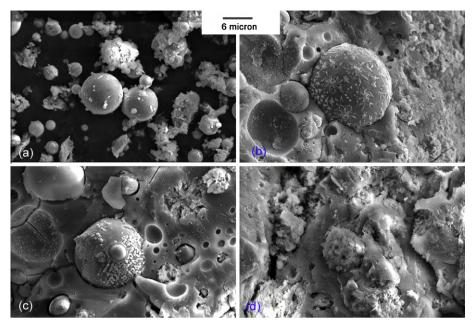


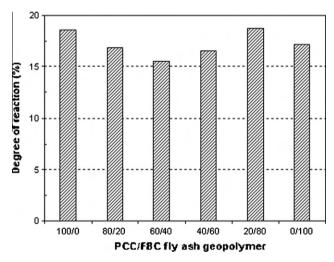
Fig. 5. Morphology of materials at the age of 7 days; (a) 60/40 blend fly ash; (b) 60/40 blend geopolymer; (c) PCC-FA geopolymer; (d) FBC-FA geopolymer paste.

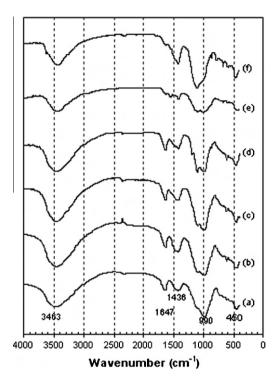
3.3. Morphology of geopolymer pastes

SEM images of 60/40 blend fly ash and its geopolymer paste are shown in Fig. 5. PCC-fly ash was used to improve the workability of the mixes and to increase the reactivity. The spherical shape PCCfly ash exerted the ball bearing effect and increased the workability of the mixture of the blend with irregular shape FBC-fly ash (Fig. 5a). Fig. 4c shows the morphology of PCC-fly ash geopolymer paste. Unreacted and partially reacted grains of fly ash and a continuous mass of alumino-silicate were the common feature. Large fly ash particles still did not completely dissolve [12]. For the 60/ 40 blend geopolymer paste, the morphology as shown in Fig. 5b looked similar to that of the PCC geopolymer paste indicating a relatively well developed geopolymer paste. For the FBC-fly ash geopolymer paste as shown in Fig. 5d, the paste also showed a continuous mass of alumino-silicate with unreacted and partially reacted grains of irregular FBC ash particles. However, the unreacted and partially reacted grains of FBC-fly ash were porous and could affect the denseness and exert negative effect on the strength of geopolymer. Similar finding was reported on the bottom ash geopolymer paste [9].

3.4. Degree of reaction

Fig. 6 presents the degree of reactions of geopolymer pastes. It should be noted that the solid fraction of pastes were not the same. The difference in amount of liquid to solid ratio would affect the degree of reaction. For the geopolymer with solid fraction of 0.6, the degree of reaction decreased with increase in the FBC content. The PCC-fly ash paste gave high degree of reaction of 18.6% while the 80/20 blend and 60/40 blend geopolymers gave lower degrees of reaction of 16.8% and 15.6%, respectively. The high degree of reaction was a result of the high amorphous phase of PCC-fly ash. Increase in the liquid fraction to 0.45 (solid fraction of 0.55) resulted in a slight increase in the degree of reaction of the 40/60 blend geopolymer paste. Higher amount of liquid encouraged the leaching out of the silica, alumina and other elements. Increase in the liquid portion to 0.5 (solid fraction of 0.5) resulted in an additional increase in the degree of reaction of the 20/80 blend geopolymer paste to 18.5%. At the same liquid fraction, the degree




Fig. 6. Degrees of reaction of blend fly ash geopolymers at the age of 7 days.

of reaction of FBC-fly ash paste was lower to 17.0% due to low amount of amorphous phase of FBC-fly ash.

3.5. FTIR spectroscopy

Fourier Transform Infrared Spectroscopy (FTIR) was performed on the geopolymer paste. Characteristic bands were identified in geopolymer as shown in Fig. 7 consisting of Si–O bending mode near 460 cm $^{-1}$, Si–O stretching vibration at the wave number range of 1200–950 cm $^{-1}$, O–H stretching and O–H bending at approximately 3450 cm $^{-1}$ and 1650–1600 cm $^{-1}$, CO $_3^{2-}$ band at $\sim\!1460~\text{cm}^{-1}$ [12–14].

The IR spectra of geopolymer as shown in Fig. 7a–d were slightly different from the original fly ash. The occurrence of CO_3^{2-} band was detected in all geopolymer as a result of the carbonation between alkaline solution and CO_2 gas in environment resulted in sodium carbonate. In addition, position of Si–O stretching band was altered from the broad peak at $\sim 1000-1200~\text{cm}^{-1}$ in original PCC-fly ash (Fig. 6e) to strong peak at

Fig. 7. IR spectrum of fly ashes and geopolymer pastes at the age of 7 days: (a) PCC-fly ash geopolymer, (b) 60/40 blend geopolymer, (c) 40/60 blend geopolymer, (d) FBC-fly ash geopolymer, (e) PCC-fly ash, (f) FBC-fly ash.

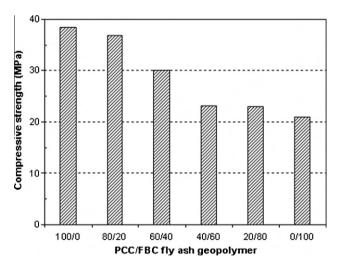


Fig. 8. Compressive strength of geopolymer mortars at the age of 7 days.

 ${\sim}990~\rm{cm}^{-1}$ in geopolymer (Fig. 6a) implying the chemical change in the matrix. Small peak at ${\sim}660~\rm{cm}^{-1}$ was observed in FBC-fly ash and geopolymer corresponded to the band identification of S–O originated from sulfate compound in the matrix. It should also be noted that Al–O bands could not be detected as the bands were weak and overlapped with the position of Si–O vibration. The Si–O stretching vibration was more prominent than other mode; it was therefore logically used to indicate the degree of geopolymerization [9].

3.6. Compressive strength of geopolymer mortar

Fig. 8 presents the compressive strength of geopolymer mortars. The compressive strength decreased with increase in the FBC-fly ash content in the mixture as the reactivity of FBC-fly ash was

low compared to that of PCC-fly ash. Amorphous phase in PCCfly ash was responsible for the high leaching out of Si and Al ions to system and resulted in continuous alumino-silicate matrix with embedded fly ash particles. The compressive strength of PCC-fly ash geopolymer was high at 38.3 MPa. The strengths of 80/20 blend and 60/40 blend pastes were also high at 36.8 and 30.0 MPa. This was consistence with the results of the XRD which indicated that the PCC-fly ash, 80/20 blend and 60/40 blend pastes showed the noticeable lower peaks of crystalline products than those containing high amount of FBC-fly ash. The SEM results also confirmed that the morphology of the PCC-fly ash and 60/40 blend paste was similar. Increase in the amount of FBC-fly ash beyond this adversely affected strength of pastes. The strength of 40/60 blend, 20/80 blend and FBC-fly ash geopolymer pastes was low at 23.1, 23.0 and 21.0 MPa, respectively. The low strength with increase in FBC-fly ash content was due to its low amorphous phase and the porous partially reacted fly ash particles.

The PCC-fly ash-to-ground FBC-fly ash ratio of 60:40 was recommended for use as the proportion for source material for geopolymer considering the quantity of the ashes and reasonable strength level. This geopolymer, therefore, could be used as construction material with early strength gain and could replace the use of cement. Additionally, it is the alternative way to effectively recycle the FBC-fly ash.

4. Conclusions

The FBC-fly ash particles are highly irregular and contain relatively high amount of crystalline phase compared to the PCC-fly ash. With its spherical shape and high reactivity, the incorporation of PCC-fly ash, therefore, enhanced the workability and reactivity of the FBC-fly ash and PCC-fly ash blend geopolymer. The geopolymer with high percentage of PCC-fly ash contained a large amount of amorphous gel and gave relatively high strength. Increase in FBCfly ash in mixture resulted in geopolymer with a larger amount of crystalline phase as detected by XRD. Although the matrix appeared dense, the porous structures of the partially reacted FBC-fly ash particles remained and adversely affected the strength of geopolymer. In addition, the test on degree of reaction also confirmed that the degree of reaction of PCC-fly ash in geopolymer paste was higher than that of FBC-fly ash. PCC-fly ash could be blended with up to 40% of FBC-fly ash and used as source material to make geopolymer with relatively high strengths of 30.0-38.0 MPa.

Acknowledgements

The authors gratefully acknowledge the financial supports from Thailand Research Fund (TRF) and the Commission on Higher Education, Ministry of Education, Thailand, under TRF New Researcher Scholar Contract No. MRG5280001 and TRF Senior Research Scholar Contract No. RTA5380002. Appreciation is also extended to the Center for Innovation in Chemistry (PERCH-CIC) and Sustainable Infrastructure Research and Development Center (SIRDC), Khon Kaen University.

References

- [1] Basu P. Combustion of coal in circulating fluidized-bed boilers: a review. Chem Eng Sci 1999;54:5547–57.
- [2] Glinicki MA, Zieliński M. The effluence of CFBC-fly ash addition on the phase composition of air-entrained concrete. B Pol Acad Sci 2008;56:45–52.
- [3] Chindaprasirt C, Rattanasak U. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer. Waste Manage 2010;30:667–72.
- [4] Mehta PK. Role of pozzolanic and cementitious by-products in sustainable development of the concrete industry. In: Sixth CANMET/ACI/JCI conference: fly ash, silica fume, slag and natural pozzolans in concrete, Bangkok, Thailand; 1998

- [5] Maholtra VM. Introduction: sustainable development and concrete technology. ACI Concr Int 2002;24:22–3.
- [6] Chindaprasirt P, Jaturapitakkul C, Sinsiri T. Effect of fly ash fineness on microstructure of blended cement paste. Constr Build Mater 2007;21:1534–41.
- [7] Xu H, Li H, Shen L, Zhang M, Zhai J. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis. Waste Manage 2010;30:57–62.
- [8] Hussain M, Varley RJ, Cheng YB, Mathys Z, Simon GP. Synthesis and thermal behavior of inorganic-organic hybrid geopolymer composites. J Appl Poly Sci 2005;96:112–21.
- [9] Chindaprasirt P, Jaturapitakkul C, Chalee W, Rattanasak U. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manage 2009;29:539–43.
- [10] Termkhajornkit P, Nawa T, Nakai M, Saito T. Effect of fly ash on autogenous shrinkage. Cem Concr Res 2005;35:473–82.
- [11] Poon CS, Lam L, Kou SC. A study on the hydration rate of natural zeolite blend cement pastes. Constr Build Mater 1999;13:427–32.
- [12] Rattanasak U, Chindaprasirt P. Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner Eng 2009;22:1073–8.
- [13] Barbosa V, MacKenzie K, Thaumaturgo C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymer. Int J Inorg Mater 2000;2:309–17.
- [14] Günzler H, Gremlich H. IR spectroscopy: an introduction. Germany: Wiley-VCH Verlag GmbH; 2002.