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Abstract: 

The aims of this study are to derive strain energy function for anisotropic 
hyperelastic materials under finite strain and to determine buckling equation which includes 
shear deformations for anisotropic columns. A generalized strain energy function is 
formulated within the framework of the invariant theory by representing the anisotropy using 
an isotropic tensor function through the so-called structural tensors and is based on 
polyconvexity and coercivity conditions so as to guarantee the existence of solutions. 
Furthermore, the strain energy density is decomposed into an isotropic and anisotropic 
component. The proposed strain energy density is then adopted to determine buckling 
equation which includes shear deformations for anisotropic columns. 
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Executive Summary 
 

Being of a fundamental and innovative nature the proposed research will have 
importance for any finite strain elasticity analysis for both incompressible and compressible 
anisotropic materials. The application of anisotropic hyperelastic constitutive modeling to 
several buckling and postbuckling problems which include shear deformations will result a 
better prediction of the buckling capacity of anisotropic columns and will benefit the industrial 
use of such materials. 

In this study, strain energy function for anisotropic hyperelastic materials under finite 
strain is formulated and buckling equation which includes shear deformations for anisotropic 
columns is determined.  
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Chapter 1  

          Introduction 

1.1 Problems Statement 
Many materials which are widely used in industries such as building, aircraft, 

aerospace, marine and biological technology can undergo large nonlinear elastic 
deformations and have inherent anisotropic characteristics. Examples of these materials are 
rubbers, rubber-like materials, foams, elastomers, fibre composites, sandwich panels and 
biological tissues. To be able to utilize these materials efficiently and economically, better 
analytical methods and designs are needed. Buckling analysis is fundamental to analysis, 
design and safety assessment of many structures. The inclusion of shear deformation in 
buckling analysis has proven problematic. Many traditional bucklikng formulations are 
incorrect when used to account for shear deformations. Shear deformations in buckling 
analyses are important considerations for the design of helical springs, sandwich plates with 
soft shear cores, built-up and laced columns and elastomeric bearings. Shear deformations 
during buckling are also important in the analysis of the compressive strength of the fiber 
composites. The constitutive material laws and a consistent large deflection formulation are 
crucial for a proper buckling analysis and challenge to the analyst, especially for anisotropic 
materials. Hyperelastic constitutive modeling has appeared as an effective tool in continuum 
mechanics for characterizing large deformation (finite strain) materials. The major aim of this 
research is to determine new fundamental expressions for the buckling formulas which 
include shear deformations for anisotropic columns based on a hyperelastic formulation. 

1.2 Objectives 
(1) To derive strain energy functions for anisotropic hyperelastic materials under 

finite strain. 
(2) To establish anisotropic constitutive relationships using the developed strain 

energy functions. 
(3) To determine buckling equations which include shear deformations for 

anisotropic columns. 
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1.3 Scope of Works 
This study is focused only on developing a computational basis using a hyperelastic 

formulation, no experiment carried out, for assessing buckling capacity of large nonlinear 
elastic columns made of anisotropic materials under static loading.  

1.4 Expected Outcomes 
Being of a fundamental and innovative nature the proposed research will have 

importance for any finite strain elasticity analysis for both incompressible and compressible 
anisotropic materials. The application of anisotropic hyperelastic constitutive modeling to 
several buckling and postbuckling problems which include shear deformations will result a 
better prediction of the buckling capacity of anisotropic columns and will benefit the industrial 
use of such materials.  
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Chapter 2  

      Literature Review 

2.1 Continuum Mechanics 

2.1.1 Kinematics 
Particles within a continuum of material at rest in an undeformed state can be 

thought of as forming natural lines or chains of particles called material lines [1]. If the 
material is deformed these chains of particles move in such a way that particles remain on 
the same material line, that is material lines always remain intact. Coordinates of a particle 
P  within this continuum with respect to a fixed three-dimensional Cartesian coordinate 
system are normally assumed to be a function of general coordinates =,  1,2,3is i  as 
 
 ( )1 2 3, ,      ,     1, 2,3.ix s s s i =  (1) 
 
The is  can be viewed as curvilinear or intrinsic coordinates along the material lines. The 
convention due to Einstein is adopted where a repeated index such as i

ip v  is used to imply 
summation. A bracketed index indicates suppression of the summation convention, e.g. ( )iix . 
The position vector s  of the particle P  in the undeformed state is given by 
 
 ( )1 2 3, , ,= i

i x s s ss i  (2) 
 
where ii  are unit Cartesian vectors (refer to Fig. 1). The bold style such as s  is used to 
distinguish a vector while vector components will be written in italics, e.g. ix . 
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Fig. 1 Undeformed position 

 
To examine deformations of the continuum a differential line element vector ds  at the 

particle P  in the undeformed state can be defined as 
 
 , ,∂ ∂

= = = =
∂ ∂

j
i i j i i

j i j ii i

xd ds ds x ds ds
s s
ss i i g  (3) 

 
where ig  are the covariant tangent base vectors and ids  are the contravariant vector 
components. The comma notation indicates differentiation with respect to is . The tangent 
base vectors are so-called because they are tangential to the natural material lines. These 
base vectors are not necessarily unit vectors and may not be dimensionless. The 
contravariant base vectors jg  are normal to the material lines and are sometimes referred to 
as reciprocal base vectors. The scalar product of covariant and contravariant base vectors is 
the kronecker delta δ j

i , 
 
 .j j j

i i iδ⋅ = ⋅ =g g g g  (4) 

2.1.2 The Metric Tensor 
The scalar length of the differential line element squared is called the metric and is 

calculated from 
 
 ,i j i j j

i j ij jd d ds ds g ds ds ds ds⋅ = ⋅ = =s s g g  (5) 
 

Q 

P 
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where ijg  is the covariant metric tensor in the undeformed coordinate system and  is 
symmetric. 

2.1.3 Stretch 
The position vector ŝ  of a new position P̂  (refer to Fig. 2) after moving of the 

particle P  can be given by 
 
 ˆ ,= +s s u  (6) 
 
in which u  are displacements assumed to be smooth and differentiable. The new position is 
also assumed to be a function of the coordinates is  and therefore said to be convected 
coordinates (see e.g. [2]) as all positions are referred to the same coordinate. 
 

 
Fig. 2 Deformed position 

 
A differential line element vector ˆds  at the particle P̂  in the deformed state can be 

given by 
 
 

( )

ˆˆ ˆ ,

ˆ ,

i i j i
i i ji

i j j i
i i ji

d ds ds d F ds
s

uδ

∂
= = = =
∂

= ⊗ = + ⊗ = +∇⊗

ss g F s g

F g g g g I u
 

(7) 

 

Q̂

P̂ 
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where ( )ˆ j j
i i ji

uδ= +g g  are the covariant tangent base vectors in the deformed state, j
iδ  is 

the kronecker delta, i
i= ⊗I g g  is the identity tensor, j i

ji
u∇⊗ = ⊗u g g  is the grad of the 

displacement vector,  and i
ig g  are the contravariant and covariant initial base vectors, 

respectively, in the undeformed state, j

i
u  represent the covariant derivatives of the ju  

vector component with respect to the coordinate corresponding to the index i  and F  is the 
deformation gradient tensor. 

For an initial Cartesian coordinate system x, y and z, covariant and contravariant 
components with respect to the initial base vectors are not different and therefore the 
components of the deformation tensor can be written in matrix form as 
 
 1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

1
1 ,

1

u u u
u u u
u u u

⎡ ⎤+
⎢ ⎥= +⎢ ⎥
⎢ ⎥+⎣ ⎦

F  
(8) 

 
where 1 2,u u  and 3u are displacement components in the x, y and z directions, respectively, 
and 1,xu  symbolizes differentialtion with respect to x. 

The stretch is the ratio of the change in lengths of the sides of the parallelepiped to 
their initial length as P  moves to P̂  and can be expressed as 
 
 1 1

1 11 1 1 1 11ˆ ˆ ,ds g ds gλ λ= = =g g  (9) 
   
 ( )

( )

ˆ
,ii

i
ii

g
g

λ =  (10) 

 
where ( )iig  and  ( )ˆ iig  are the ith covariant material arcs in undeformed and deformed state, 
respectively. The λi  is not a tensor and must be positive for all deformations λ >( 0)i . 

2.1.4 The right Cauchy-Green deformation tensor 
The square of the length of the differential line element in the deformed 

configuration at the particle P̂  can be expressed in terms of the square of the length of the 
differential line element in the undeformed state and is given by 
 
 ˆ ˆ

ˆ ˆ ˆ       ,i j i j
i j ij

d d d d d d
ds ds g ds ds

⋅ = ⋅ ⋅ = ⋅ ⋅

= ⋅ =

Ts s s F F s s C s
g g

 (11) 
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where = TC F F  is the right Cauchy-Green deformation tensor and is symmetric if invertible 
positive definite. A rigid motion at a point would correspond to ˆ   d d= ∴ =s s C I . For the 
three dimensional case, the components of C  can be written in terms of the stretches 
( 1 2 3, &λ λ λ ) and angles between the tangent base vectors in the deformed state 
( 12 13 23, &ϕ ϕ ϕ ) [3], that is  
 
 ( )

( )
( )

2
1 1 2 12 1 3 13

2
1 2 12 2 2 3 23

2
1 3 13 2 3 23 3

cos cos

cos cos ,

cos cos

λ λ λ ϕ λ λ ϕ

λ λ ϕ λ λ λ ϕ

λ λ ϕ λ λ ϕ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

C  
(12) 

2.1.5 The Green Strain Tensor  
The change in length of the square of the differential line element can be used to 

characterize any distortion or deformation and is used to define a Green or Lagrangian strain 
tensor ∑  by 
 
 

( )

2 2ˆ ˆ ˆ

                2 .

d d d d d d

d d d d

− = ⋅ − ⋅

= ⋅ − ⋅ = ⋅∑⋅

s s s s s s

s C I s s s
 

(13) 

 
The Green strain tensor is given by 
 
 ( )1 .

2
∑ = −C I  (14) 

2.1.6 Stress Tensors 
Within the continuum there are internal forces necessary to keep the body in 

equilibrium. An infinitesimal force vector dp  at the point P̂  can be written in the form 
 
 ˆˆˆˆ ,j j i i i

j j i i id dp dp d dA d dA d dA= = = = =p g g T T T  (15) 
 
where ˆ jdp  and jdp  are the contravariant force vector components with respect to base 
vectors in the deformed and undeformed configuration, respectively, ˆ ,  and i i id d dT T T  are 
the stress vector components acting on the faces of the infinitesimal parallelepiped at the 
point P̂ , and ˆ ,  and i i idA dA dA  are the area vector components defined by 
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( ) 1

ˆ ˆ ˆ ,    ,    

ˆ ˆ,    ,   ,

i i i
i i i

j j j
i i i i j i i

d dA dA d dA

dA JdA dA F dA F F
−

= = =

= = =

A g g A g
 

(16) 

 
where ˆ  and d dA A  are area vectors in the deformed and undeformed state, respectively, and 

detJ = F  is volumetric invariant or Jacobian. Some of the common stress tensors are 
defined by 
 
 ˆˆ ˆ ,ij ij ij ij

j i j i j i j id dA dA t dA dAτ π σ= = = =p g g g g  (17) 
 
where ijτ  is the component of the Eulerian stress tensor τ , ijπ  is the component of the 
second Piola-Kirchhoff stress tensor π , ijt  is the component of the first Piola-Kirchhoff 
stress tensor t , and ijσ  is the component of the Cauchy stress tensor σ . The Eulerian 
stress tensor, the second Piola-Kirchhoff stress tensor and the Cauchy stress tensor are all 
symmetric. The stress tensors are related by 
 
 ,     ,      

or   ,    ,    .

ij ij ij i j mn ij ir j
m n r

T T

J F F t F

J

τ π σ τ π= = =

= = =F F t Fτ π σ τ π
 (18) 

 
The stress tensors do not necessarily have units of force per unit area. 

2.2 Hyperelastic Strain Energy Function 
Hyperelastic material is an elastic material that its elastic behavior can be described 

by a strain energy density ( )W W= F  with respect to the initial volume. 
In order to purpose a strain energy density in which anisotropy is taken into 

account, the following postulates, as to conditions to which the anisotropic strain energy 
density must hold [4], must be taken into consideration for formulating the strain energy 
density: 

(1) The strain energy density must meet the objectivity condition (the principle of 
material frame indifference). 

(2) The strain energy density must take into account the principle of material 
symmetry. 

(3) In order to guarantee the existence of solutions, the strain energy density must 
be sequentially weakly lower semicontinuous (s.w.l.s.) and must meet a coercivity condition. 
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(4) The strain energy density must meet the ellipticity condition which is a possible 
criterion for material stability. 

(5) The strain energy density must satisfy the stress free reference configuration 
condition. 

2.2.1 Objectivity 
This condition implies that the strain energy density has to be independent of 

superposed rigid body motions and can automatically be met by representing the strain 
energy function in terms of the right Cauchy-Green deformation tensor C  so that (see e.g. 
[5]) 
 
 ( ) ( ).W W W= =F C  (19) 
 
Accordingly, a constitutive law for a hyperelastic material can be obtained from 
 
 2 .W∂

=
∂C

π  (20) 

 

2.2.2 Material symmetry 
This condition requires that the strain energy density be invariant under 

transformations with elements of the material symmetry group which describes the anisotropy 
class of the material. Following the Rychlewski’s theorem [6], the strain energy density has to 
be represented as an isotropic tensor function of arguments containing the so-called 
structural tensors which are symmetric and positive definite. This allows an invariant 
formulation. In this context see also [7, 8]. In order to meet both the objectivity condition and 
the principle of material symmetry, the strain energy density is thus written in terms of the 
right Cauchy-Green deformation tensor and the structural tensors, and also has to satisfy 
 
 ( , ) ( , ),T T

i iW W W= =C G QCQ QG Q  (21) 
 
which is an isotropic tensor function in the arguments ( , )iC G  where , 0,1,...,i i n=G  are the 
structural tensors and Q  is an element of the material symmetry group and is a proper 
orthogonal tensor. With this the invariance of ( , )iW W= C G  with respect to the symmetry 
transformations is ensured. Thus superimposed rigid body motions do not either affect the 
behavior of the anisotropic material. 
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2.2.3 Structual tensors 

A definition for the structural tensors iG  is required for this method. Following Zheng 
and Boehler [9], anisotropy can be characterized by certain directions, lines or planes 
associated with some unit vectors defined in the undeformed state. This leads to a definition 
for the structural tensors iG of the form 
 
 ,i i i= ⊗G m m  (22) 
 
where each ,  1, 2,...,i i n=m  is a unit vector. The structural tensors, which are symmetric 
and positive definite, have the property 
 
 [ ]tr 1,i =G  (23) 
 
where ( )tr .  denotes the trace function. 

2.2.4 Invariants 

For the invariant formulation of constitutive equations the invariants of the right 
Cauchy-Green deformation tensor and the structural tensors are needed. Based on the 
Hilbert’s theorem, a finite set of isotropic invariants of these tensors can be obtained [10]. In 
general the invariants contain the traces of products of powers of the argument tensors, the 
so-called principal invariants and the so-called mixed invariants. The invariants of a single 
tensor for two symmetric second order tensors C  and iG  may consist of 
 
 [ ] 2 3

1 2 3tr ,    tr ,    tr ,J J J⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦C C C  (24) 
 
 [ ] 2 2 2 2

4 5 6 7tr ,    tr ,    tr ,    tr ,i i i i i i i iJ J J J⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦CG C G CG C G  (25) 
 
 [ ] 2 3

8 9 10tr ,    tr ,    tr ,i i i i i iJ J J⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦G G G  (26) 
 
where the invariants in Eq. (24) are the so-called basic invariants defined by the traces of 
powers of C , the invariants in Eq. (25) are the mixed invariants for C  and iG , and  the 
invariants in Eq. (26) are the traces of powers of iG . The basic invariants can also be 
related to the principal invariants of C  by 
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 2 3

1 1 2 1 2 3 1 1 2 3,    2 ,    3 3 ,J I J I I J I I I I= = − = − +  (27) 
 
where 1 2 3,  and I I I  are the principal invariants of C  and have the explicit expressions as 
 
 [ ] ( ) ( ) ( )2 2 2

1 1 2 3tr ,p p pI λ λ λ= = ⋅ = + +C I C  (28) 
 
 [ ] [ ] [ ]( ){ }

( ) ( ) ( )

2 2
2

2 2 2

1 2 2 3 3 1

1tr Cof Cof tr tr
2

   ,p p p p p p

I

λ λ λ λ λ λ

⎡ ⎤⎡ ⎤= = ⋅ = −⎣ ⎦ ⎣ ⎦

= + +

C I C C C
 

(29) 

 
 [ ] [ ]( ) [ ]{ } ( )23 2 3

3 1 2 3
1det tr 3tr tr 2tr ,
6 p p pI λ λ λ⎡ ⎤ ⎡ ⎤= = − + =⎣ ⎦ ⎣ ⎦C C C C C  (30) 

 
where piλ  are the principal stretches, [ ]Cof C  is the cofactor of C  and is defined by 

[ ] [ ] [ ]1Cof det AdjC C C C−= =  for all invertible and isotropic C  and [ ]det C  denotes the 
determinant of C . 

2.2.5 Sequential weak lower semicontinuity and coercivity 

In order to guarantee the existence of solutions, the strain energy density must be 
sequentially weakly lower semicontinuous (s.w.l.s.) and must meet a coercivity condition. A 
discussion on this issue was made in [4] and the polyconvexity condition in the sense of Ball 
[11] has also been proved to be able to serve for both s.w.l.s. and coercivity conditions. 

A strain energy density is said to be polyconvex [11] if and only if there exists a 
convex function with the arguments of [ ] [ ],  Cof  and detF F F  in such a way that the strain 
energy density ( )W W= F  can satisfy 
 
 [ ] [ ]( )( ) ,Cof ,detW W W= =F F F F  (31) 
 
where [ ]Cof F  denotes the cofactor of F  and is defined by [ ]Cof =F  [ ]det T− =F F  

[ ]( )Adj
T

F  for all invertible F  and [ ]det F  denotes the determinant of F . The arguments 
[ ] [ ],  Cof  and detF F F  are the linear mappings of the infinitesimal line, area and volume 

elements according to the well-known Nanson’s formula, respectively. 
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2.2.6 Ellipticity 

Ellipticity condition is a possible criterion for material stability. It has been proved that 
polyconvexity implies ellipticity [12, 13]. Thus, ellipticity is automatically guaranteed for the 
strain energy function which has already fulfilled the polyconvexity condition.
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Chapter 3  

Hyperelastic Formulation of Strain Energy Functions 
 

In this chapter, a generalized hyperelastic model for anisotropic materials is 
formulated and proposed. The mentioned postulates in the Chapter 2, as to conditions to 
which the anisotropic strain energy density must hold, are taken into consideration for 
formulating the strain energy function. 

3.1 Hyperelastic Strain Energy Function 
As described in Chapter 2, the strain energy functions must meet the objectivity 

condition (the principle of material frame- indifference) and the principle of material 
symmetry. In ordet to meet both conditions, the proposed strain energy function is thus 
written in terms of the right Cauchy-Green deformation tensor, C , and the structural tensors, 

iG  as ( , ) ( , )= =C G QCQ QG QT T
i iW W W , see Eq. (21). 

For the formulation of the strain energy function, only a set of invariants is 
determined. Due to the property of the structural tensors in Eq. (23), the terms 6iJ  and 7iJ  
in Eq. (25) can be discarded since 6 4≡i iJ J  and 7 5≡i iJ J . Besides, the basic invariants of 

iG , Eq. (26), are constants and can be neglected [10]. As a result, the strain energy function 
can be expressed in terms of the invariants of the argument tensors ( ), iC G  as 
 
 1 2 3 4 5( , , , , ).i iW W I I I J J=  (32) 
 
This expression preserves the invariant of the strain energy function under all 
transformations. 

As the polyconvexity condition has been proved to be able to serve for both s.w.l.s. 
and coercivity conditions. Furthermore, ellipticity condition is also guaranteed. Hence, the 
proposed strain energy function is formulated on the basis of the polyconvexity. 

3.1.1 Polyconvex Strain Energy Functions 

According to Eq.(31), a subclass of the equation is the additive polyconvex functions 
[4] of the form 
 
 [ ] [ ]( ) ( ) [ ]( ) [ ]( )1 2 2,Cof ,det Cof detW W W W= + +F F F F F F  (33) 
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where , 1, 2,3=iW i  are convex functions of their argument, respectively. 
 

The definition of the polyconvexity requires the convexity properties of the arguments 
of the strain energy density. Consequently, we consider the convexity properties of the 
invariants in Eq. (32). The convexity of each invariant can be proved by the positivity of the 
second derivative. Indeed it can be shown that the invariants 1 2 3 4, ,  and iI I I J  are convex 
with respect to F , [ ]Cof F , [ ]det F  and F , respectively, but the invariant 5iJ  are not 
convex with respect to F  [4]. Therefore, the strain energy density written in terms of the 
invariant 5iJ  as single term, Eq. (32), does not fulfill the polyconvexity condition. In order to 
allow for quadratic expression of the invariant 5iJ  within the strain energy density, a 
polyconvex mixed invariant has to be used instead which can be derived by use of the 
Cayley-Hamilton theorem [4]. On the basis of the Cayley-Hamilton theorem, the characteristic 
equation of the second order tensors C  is 
 
 [ ] [ ] [ ]3 2tr tr Adj det .− + − =C C C C C C I 0  (34) 
 
Multiplication of the Eq. (34) with 1

i
−C G  yields with [ ] [ ]Cof Adj=C C  

 
 [ ]2

1 2 Cof .− + − =i i i iI IC G CG G C G 0  (35) 
 
Taking the trace of the Eq. (35) leads to the expression 
 
 [ ] [ ]5 5 1 4 2tr Cof tr ,⎡ ⎤= = − +⎣ ⎦i i i i iK J I J IC G G  (36) 
 
where 5iK  is a mixed invariant representing a quadratic expression and is particularly 
polyconvex with respect to [ ]Cof F . In order to automatically satisfy the polyconvexity 
condition, the expression for the strain energy density in Eq. (32) is, thus, replaced by 
 
 1 2 3 4 5( , , , , ).= i iW W I I I J K  (37) 
 

In the next step, we utilize the additive representation of the polyconvexity, Eq. (33), 
to additively decompose the strain energy function, Eq. (37), into the isotropic isoW  and 
anisotropic anisoW  parts. In addition, the two parts are associated with scalar weight factors 

iw  representing a dispersion of components as experimentally observed, see e.g. [14], i.e. 
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 ( ) ( )0 iso 1 2 3 aniso 3 4 5 0

1 1 1 1
, , , , ,      1 .

m n m n
r r r
i i i i

r i r i
W w W I I I w W I J K w w

= = = =

= ⋅ + ⋅ = −∑∑ ∑∑  (38) 

 
Note that taking of linear combinations of the polyconvex invariants does not change the 
polyconvexity properties [13]. This decomposition of the strain energy function allows a 
variety of combinations of the two parts. The anisotropic part is given in terms of a series 
with an arbitrary numbers of terms r . 

3.1.2 Natural State Conditions 

In this section, the isotropic and anisotropic stain energy functions which fulfill the 
polyconvexity condition are defined and analyzed with respect to the natural state conditions, 
i.e. the stress and energy have to be zero in the undeformed configuration. Some specific 
functions are also presented. 

3.1.2.1 Isotropic Strain Energy Function 

For the isotropic part isoW  of Eq. (38), a generic form is considered and assumed to 
be decomposed into two components as 
 
 ( ) ( ) ( )inc com

iso 1 2 3 iso 1 2 3 iso 3, , , , ,= +W I I I W I I I W I  (39) 
 
where inc

isoW  is an incompressible component associated with constrained volume change or 
volume constant distortion and com

isoW  is a compressible component associated with specific 
volume change. The isotropic part of the second Piola-Kirchhoff stress tensor are then given 
by 
 
 inc inc inc inc com

1 1iso iso iso iso iso iso
iso 1 3 3

1 2 2 3 3

2 2 ,− −⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= = + − + +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

W W W W W WI I I
I I I I I

π I C C C
C

 (40) 

 
with 1

1 2 1 3 3,   and C I C I C C C−∂ ∂ = ∂ ∂ = − ∂ ∂ =I I I I I . In order to consider the stress 

condition for the natural state, =C I  is set and iso C I
π 0

=
=  is required, i.e., 
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 inc inc inc com
iso iso iso iso

1 2 3 3

2 ,
⎛ ⎞∂ ∂ ∂ ∂

+ + + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

W W W W
I I I I

I 0  (41) 

 
with 1 2 33,  3,  and 1= = =I I I  at =C I . Thus, the stress-free conditions are 
 
 inc inc inc com

iso iso iso iso

1 2 3 3

2 .∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
W W W W

I I I I
 (42) 

 
For the energy condition at undeformed configuration, =C I  is set and iso C I

0
=
=W  is 

required, i.e., 
 
 ( )inc com

iso iso3,3,1 (1) 0.+ =W W  (43) 
 
Thus, the energy-free conditions are 
 
 ( )inc com

iso iso3,3,1 (1) 0.= − =W W  (44) 
 

For example, specific functions for the isotropic part isoW  of Eq. (39) and their 
derivatives satisfying Eqs. (42) and (44) are in the form 
 
 ( ) ( )inc 1 1 2

iso 1 2 3 1
3

, , 3 3 ,
2 2

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠

A B IW I I I I
I

 (45) 

 
 inc inc inc

iso iso iso1 1 1 2
2

1 2 3 3 3

,  ,  ,
2 2 2

∂ ∂ ∂
= = = −

∂ ∂ ∂
W W WA B B I

I I I I I
 (46) 

 
 ( ) ( ) ( )

2
com 1

iso 3 3 1 1 3ln ln ,
2

= − −
CW I I A B I  (47) 

 
 com

iso 1 3 1 1

3 3 3

ln ,
4 2

∂ −
= −

∂
W C I A B

I I I
 (48) 

 
where 1 1 1,  and A B C  are material constants. The incompressible component inc

isoW  and the 
compressible component com

isoW  are the same as the strain energy function proposed by 
Attard [15] with 1n = ( 1

1 1 2 3 and L I L I I= = ). The original generalized form in [15] is 
expressed as  
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( ) ( )inc
iso

1
3 3 ,

2 2=
= − + −∑

r
nn n

n
n

A BW L L
n n

 (49) 

 
 ( )2comp

3 3iso
1 1

ln ln .
2= =

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑
s rnn

n n
n n

CW I A B I
n

 
(50) 

 
 ( ) ( ) ( )2 2 2

1 2 3 ,λ λ λ= + +
n n n

n p p pL  (51) 
 
 ( ) ( ) ( )2 2 2

1 2 3 ,λ λ λ
− − −

= + +
n n nn

p p pL  (52) 
 
where , and n n nA B C  are material constants, and and n

nL L  are invariants defined in terms of 
the principal stretches , 1, 2,3pi iλ =  as the equations above. inc

isoW  is a incompressible 
component associated with constrained volume change or volume constant distortion and 

com
isoW  is a compressible component associated with specific volume change. The 

incompressible component inc
isoW  is the same as the generalized Mooney expression [16]. 

While the compressible component com
isoW  is a generalization of the Simo and Pister 

proposal [17]. 
An advantage of this energy function which was successfully used for the analysis of 

isotropic hyperelastic materials [18, 19] is that the hydrostatic pressure component of the 
stress vector which is associated with volumetric dilation will have no shear component on 
any surface in any configuration. 

3.1.2.2 Anisotropic strain energy function 
For the anisotropic part anisoW  of Eq. (38), a generic form is considered and 

expressed as 
 
 

( ) ( ) ( ) ( )aniso 3 4 5 aniso 3 aniso 4 aniso 5
1 1

, , ,
= =

⎡ ⎤= + +⎣ ⎦∑∑
m n

r Ir Jr Kr
i i i i

r i
W I J K D W I W J W K  (53) 

 
where rD  are material constants. The anisotropic part of the second Piola-Kirchhoff stress 
tensor are then given by 
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 aniso
aniso

1 1 1aniso aniso aniso aniso
3 5 3

1 1 3 5 4 5

2

       2 ,− − −

= =

∂
=

∂
⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂

= + + −⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
∑∑

Ir Kr Jr Krm n
r

i i i
r i i i i

W

W W W WD I K I
I K J K

π
C

C G C G C
 

(54) 

 
with 1 1 1 1

3 3 4 5 5 3,   and C C C G C C C G C− − − −∂ ∂ = ∂ ∂ = ∂ ∂ = −i i i i iI I J K K I . 
The stress condition for the natural state is considered by setting =C I  and 

aniso C I
π 0

=
= , i.e., 

 
 

aniso aniso aniso aniso

1 1 3 5 4 5

,
= =

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ + − =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

∑∑
Ir Kr Jr Krm n

r
i

r i i i i

W W W WD
I K J K

I G 0  (55) 

 
with [ ]1 2 3 4 53,  3,  1,  and tr G = I= = = = =i i iI I I J K  at =C I . Thus, the stress-free 
conditions are 
 
 ( ) ( ) ( )aniso aniso aniso

5 4 3

1 1 1
1,     1, 2,..., ,     1, 2,..., .

∂ ∂ ∂
= = − = = =

∂ ∂ ∂

Kr Jr Ir

i i

W W W
r m i n

K J I
 (56) 

 
For the energy-free reference configuration condition, =C I  is set and aniso C I

0
=
=W  is 

required, i.e., 
 
 ( ) ( ) ( )aniso aniso aniso

1 1
1 1 1 0.

= =

⎡ ⎤+ + =⎣ ⎦∑∑
m n

r Ir Jr Kr

r i
D W W W  (57) 

 
Thus, the energy-free conditions are 
 
 ( ) ( ) ( )aniso aniso aniso1 1 1 0.= = =Ir Jr KrW W W  (58) 
 

Some specific functions and their derivatives for the anisotropic part anisoW  of Eq. 
(53) which automatically satisfy Eqs. (56) and (58) are, e.g., the exponential functions of the 
form [20] 
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 ( ) ( )

( ) ( )

( ) ( )

4 4

5 5

1aniso
aniso 3 3 3

3

1 1aniso
aniso 4

4

1 1aniso
aniso 5

5

1( ) 1 ,     ,

1( ) 1 ,     ,

1( ) 1 ,     .

− −−

− −

− −

∂
= − = −

∂

∂⎡ ⎤= − =⎣ ⎦ ∂

∂⎡ ⎤= − =⎣ ⎦ ∂

rr

r i r i

r i r i

Ir
CCIr

r

Jr
A J A JJr

i
r i

Kr
B K B KKr

i
r i

WW I I I
C I

WW J e e
A J

WW K e e
B K

 

(59) 

 
Alternatively, the logarithmic functions of the form 
 
 ( ) ( )

( )

( )

1aniso
aniso 3 3 3

3

4 aniso
aniso 4

4 4

5 aniso
aniso 5

5 5

1( ) 1 ,     ,

1( ) ln 1 ,     ,
1

1( ) ln 1 ,     .
1

− −− ∂
= − = −

∂

⎛ ⎞− ∂
= − − =⎜ ⎟ ∂ − +⎝ ⎠

⎛ ⎞− ∂
= − − =⎜ ⎟ ∂ − +⎝ ⎠

rr

Ir
CCIr

r

Jr
Jr i r

i r
r i r i

Kr
Kr i r

i r
r i r i

WW I I I
C I

J W AW J A
A J A J

K W BW K B
B K B K

 

(60) 

 
3.1.2.2.1 Anisotropic strain energy function for an incompressible material 
 

With the incompressibility constraint 3 1I = , the strain energy function anisoW in Eq. 
(53) then becomes 
 
 ( ) ( ) ( )inc inc inc

aniso 4 5 aniso 4 aniso 5
1 1

, ,
= =

⎡ ⎤= +⎢ ⎥⎣ ⎦∑∑
m n

r Jr Kr
i i i i

r i
W J K D W J W K  (61) 

 
 inc 1

5 tr ,−⎡ ⎤= ⎣ ⎦i iK C G  (62) 

 
where inc

5iK  are the invariants 5iK  under the incompressibility constraint 3 1I = . 

3.2 Validation 
In this section, the proposed formulation Eq. (38) is validated and verified by 

comparing the results with available experimental and numerical results. 
Soft biological tissues are the materials that can exhibit different mechanical 

characteristics due to their complex structures. The main part of tissue that usually provides 
structural support for cells is the extracellular matrix which composes of the collagen, elastin 
and ground substance. The collagen forms fibers or networks providing reinforcing structures. 
The elastin gives stiffness to the tissue and stores most of the strain energy at small strains 
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while at large strains, collagen fibers play an important role. With increasing deformation 
these fibers produce a strong growth in tissue stiffness. This type of matemial can thus 
undergo large nonlinear elastic deformations and have high anisotropic characteristics [21]. 

The model is specified and applied to predicting the large nonlinear elastic behavior 
in soft biological tissues under uniaxial and biaxial states of stress. In order to describe the 
mechanical behavior of the tissue samples, an incompressible fiber-reinforced composite is 
often assumed for each layer with two mechanically equivalent families of collagen fibers that 
form symmetrical helices tilted by an angle ϕ±  against the circumferential direction [22, 23]. 
This assumption is also adopted in this study.  

3.2.1 Uniaxial tension tests on arterial tissue 
The proposed model is applied to a set of experimental data on human arterial 

tissue performed by Holzapfel et al. [24]. Arteries were split into the adventitial, medial and 
intimal layer and tested in cyclic uniaxial quasi-static tension. The load was applied such that 
the principal axes of deformation coincided with the circumferential, axial and radial direction 
of the vessel. The stress response for loading in circumferential and axial direction was 
recorded. 

In order to describe the mechanical behavior of the tissue samples, the mentioned 
assumption of considering each layer as an incompressible fiber-reinforced material with two 
equivalent families of fibers arranged by an angle ϕ±  is adopted. For the isotropic term, Eq. 
(45) is adopted while Eq. (61) is utilized for the anisotropic term with Eq. (59) as a clearly 
exponential shape of the test results is observed. The orientations of the two fiber families 
can be given by the vectors 
 
 1 2cos sin ,    cos sin ,z zθ θϕ ϕ ϕ ϕ= + = −m e e m e e  (63) 
 
where θe  and ze  are unit vectors in the circumferential and axial direction of the artery, 
respectively. Applying Eqs. (22), (25) and (62), the two generalized invariants can be 
expressed in terms of the principal stretches under the incompressibility constraint 

3 1z rI = =θλ λ λ  as 
 
 2 2 2 2

4
inc 2 2 2 2
5

cos sin ,

cos sin ,
i z

i z

J

K
θ

θ

λ ϕ λ ϕ

λ ϕ λ ϕ− −

= +

= +
 

(64) 

 



Hyperelastic Formulation of Strain Energy Functions 21 

where θλ , zλ  and rλ  are the principal stretches in circumferential, axial and radial direction, 
respectively. Considering one single term m  = 1 and n  = 2 with taking into account the 
mechanical equivalence of the fiber families, so that 1 1 inc inc

2 1 42 41 52 51,   and = = =w w J J K K , 
the strain energy function Eq. (38) for an incompressible material with the exponential 
functions is then given by 
 
 ( ) ( )

( )( ) ( )inc
1 511 41

1 1 1 2
1 1

3

111 1
1

1 1

1 2 3 3
2 2

1 1      2 1 1 .B KA J

A B IW w I
I

w D e e
A B

−−

⎡ ⎤⎛ ⎞
= − − + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞+ − + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

(65) 

 
For uniaxial tension test, the lateral directions are stress free and the Cauchy stresses in 
circumferential and axial direction can be calculated, respectively, by 
 
 ,      .z z

z

W W
θ θ

θ
σ λ σ λ

λ λ
∂ ∂

= =
∂ ∂

 (66) 

 
Fig. 3 shows the comparison results as Cauchy stress versus stretch diagrams. The 

proposed model was fitted and compared to the experimental results as well as the 
prediction results of Ehret and Itskov [23]. The five model parameters ( 1

1 1 1 1, , ,A B D w  and ϕ ) 
for each layer, i.e. intimal, medial and adventitial layer, were determined by using a least 
squares regression analysis of the experimental data implemented using the commercial 
package MATLAB. The values of the parameters as well as the sum squared error (SSE) 
and R-square (R2) obtained from the fittings are also presented in Fig. 3.  

For all three layers, i.e. intimal layer in Fig. 3(a), medial layer in Fig. 3(b) and 
adventitial layer Fig. 3(c), the comparisons are in good agreement with the experiemental 
results with R2 of 0.9978, 0.9995 and 0.9981, respectively.  
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(b) Media layer 
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(c) Adventitia layer 
 

Fig. 3 Comparisons of the model results with the experimental results under uniaxial tension 
tests and with the prediction results of Ehret and Itskov [23] 
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3.2.2 Biaxial tension tests on abdominal aorta 
In this validation, the proposed model is applied to prediction of the anisotropic 

behavior in human abdominal aorta under biaxial state of stress carried out by Geest et al. 
[25] to study the age dependency of the behavior. The square samples were biaxially loaded 
in circumferential and axial direction with different ratios between circumferential and axial 
tension, : zzp pθθ . It was reported that the stress responses of samples obtained from 
different age groups had different shapes. The stress-strain curves in terms of the second 
Piola-Kirchhoff stress and the Green-Lagrange strain changed from a sigmoidal shape in the 
youngest group (< 30 years) to an exponential nature in the older ones. 

To model the stress response of the young arteries, the whole artery is considered 
as an incompressible fiber-reinforced material with two symmetrically arranged fiber helices 
and thus assumed that the principal axis of deformation coincide with the circumferential, 
axial and radial direction [23]. The fiber orientation in Eq. (63) and the generalized invariants 
in Eq. (64) are used. For the strain energy function, Eq. (45) is still adopted for the isotropic 
part but the logarithmic form of Eq. (60) is utilized for the anisotropic part due to the s-
shaped stress-strain curves observed. By setting m = 1 and n = 2 as well as taking into 
account the mechanical equivalence of the fiber families, the strain energy function Eq. (38) 
for an incompressible material with the logarithmic functions is then given by 
 
 ( ) ( )1 1 1 2

1 1
3

inc
1 1 5141
1 1 1

1 1

1 2 3 3
2 2

11       2 ln 1 ln 1 .

A B IW w I
I

KJw D A B
A B

⎡ ⎤⎛ ⎞
= − − + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞ −−

+ − − − −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

(67) 

 
For biaxial tension test, the radial direction is stress free. The second Piola-Kirchhoff stresses 
in circumferential and axial direction can be calculated, respectively, by 
 
 1 1,      .z z

z

W W
θ θ

θ
π λ π λ

λ λ
− −∂ ∂

= =
∂ ∂

 (68) 

 
The proposed model was first fitted to the experimental results (specimen 3 in [25]) 

with : zzp pθθ ratios of 0.5:1, 1:1 and 1:0.5. The comparison results are presented in Fig. 4. 
The obtained model parameters were then used to predict the remaining test results with 

: zzp pθθ ratios of 0.75:1 and 1:0.75 as depicted in Fig. 5. A good agreement with the 
experimental results shows in Fig. 4 with R2 = 0.9830 and in Fig. 5 with R2 = 0.9888. 
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(a) In circumferential direction 
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(b) In axial direction 

 
Fig. 4 Comparisons of the model results with the prediction results of Ehret and Itskov [23] 
and with the experimental results under biaxial tension tests with : zzp pθθ  ratios of 0.5:1, 

1:1 and 1:0.5 
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(a) In circumferential direction 
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(b) In axial direction 

 
Fig. 5 Comparisons of the model results with the prediction results of Ehret and Itskov [23] 
and with the experimental results under biaxial tension tests with : zzp pθθ  ratios of 0.75:1 

and 1:0.75 
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Chapter 4  

Hyperelastic Formulation of Column Buckling Equation 
In Chapter 3, the strain energy functions for anisotropic hyperelastic materials under 

finite strain have been derived. In this chapter, anisotropic constitutive relationships using the 
developed strain energy functions are established for determining buckling equations which 
include shear deformations for anisotropic columns. 

4.1 Hyperelastic Constitutive Modeling 
According to the proposed strain energy function in Eq. (38), a simple form, for the 

isotropic part isoW  and for the anisotropic part anisoW , is considered for this purpose. The 
constitutive modeling for isotropic materials proposed by [3] is recapitulated and adopted 
herein. 

4.1.1  Constitutive Modeling for Isotropic Part 
A simple form, the neo-Hookean constitutive relationship, for the isotropic part of the 

strain energy function is adopted herein as (see [3]) 
 
 ( ){ } ( )21 1

iso 2 ln ln ,
2 2
A CW tr J J= − − +C I  (69) 

 
where, for isotropic materials, 1A = the shear modulus ( )2 1

EG
ν+

= , 1C  = the Lame constant 

( )
2
1 2

Gν
ν

Λ
−

= , E  is the elastic modulus and ν  is the Poisson’s ratio. Therefore, the second 

Piola Kirchhoff stress tensor for the isotropic part isoΠ  can be expressed as 
 
 1 1 1

1 1 12 ln ,iso
iso h

W A C J A p− − −∂ ⎡ ⎤= = − + = −⎣ ⎦∂
Π I C C I C

C
 (70) 

 
where 1 1 lnhp A C J= −  represents a hydrostatic stress. The Mandel stress tensor for the 
isotropic part isoM , which is another Langrangian stress tensor, is defined by 
 
 iso iso=M CΠ  (71) 
 
Using Eq. (70), the Mandel stress tensor is given by 
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 1 .T
iso iso hA p= = −M M C I  (72) 

 
The Mandel stress tensor, which is not generally symmetric, is found to be symmetric with 
the expression above. Substituting Eq. (12) into Eq. (72), the Mandel stress tensor 
components can be written as 
 
 ( )

( )
( )

2
1 1 1 1 2 12 1 1 3 13

2
1 1 2 12 1 2 1 2 3 23

2
1 1 3 13 1 2 3 23 1 3

cos cos

cos cos .

cos cos

h

iso h

h

A p A A

A A p A

A A A p

λ λ λ ϕ λ λ ϕ

λ λ ϕ λ λ λ ϕ

λ λ ϕ λ λ ϕ λ

⎡ ⎤−
⎢ ⎥
⎢ ⎥= −
⎢ ⎥

−⎢ ⎥⎣ ⎦

M  
(73) 

4.1.2 Constitutive Modeling for Anisotropic Part 
A simple form for the anisotropic part of the strain energy function is adopted herein 

as 
 ( )1 51 11

aniso
1

1 1 .B KW D e
B

−⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (74) 

 
Therefore, the second Piola Kirchhoff stress tensor for the anisotropic part anisoΠ  can be 
written as 
 
 ( ) ( )1 51 11 1 1 1

51 3 12 2 .B Kaniso
aniso

W D e K I G− − − −∂
= = −

∂
Π C C C

C
 (75) 

 
Using Eq. (75), the Mandel stress tensor for the anisotropic part anisoM  is given by  
 
 ( ) ( )

( ) ( ) ( ){ }
( ) ( ){ }
( ) ( ){ }

( ) ( )

1 51

1 51

1 51

1 51

1 51

11 1
51 3 1

1 2 211 1
51 1 2 3

1 212 21 1
1 1 2 3 12

1 213 31 1
1 1 2 3 13

1 222 1
51 1 1

2 ,

2 ,

2 cos ,

2 cos ,

2

B KT
aniso aniso aniso

B K
aniso

B K
aniso aniso

B K
aniso aniso

B K
aniso

D e K I G

D e K G

D e G

D e G

D e K G

λ λ

λ λ λ ϕ

λ λ λ ϕ

λ λ

− −

−

−

−

−

= = = −

= −

= =

= =

= −

M M CΠ I C

M

M M

M M

M ( ) ( ){ }
( ) ( ){ }

( ) ( ) ( ) ( ){ }

1 51

1 51

2 2
3 13

1 223 32 1
1 1 2 3 12 13

1 2 233 1 2
51 1 1 2 12

1 cos ,

2 cos cos ,

2 1 cos .

B K
aniso aniso

B K
aniso

D e G

D e K G

ϕ

λ λ λ ϕ ϕ

λ λ ϕ

−

−

−

= = −

= − −

M M

M

 

(76) 
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4.2 Equilibrium and Virtual Work 
Assuming all external loading is conservative, the system is static and all body forces 

are zero, the equilibrium equations at a point within a continuum can be expressed as (see 
[3]) 
 
 ( ) ( ),      0,T ir j j ij

r r ii
u Sδ⎡ ⎤∇ ⋅ = ∇ ⋅ = Π + = =⎣ ⎦ΠF S 0  (77) 

 
where S  is the first Piola Kirchhoff stress tensor. The moment equilibrium, which must also 
be satisfied, are 
 
 ,      .T T T= =Π Π FS S F  (78) 
 
The following must also be satisfied at the loaded boundary surfaces 
 
 ( ) ( ),     ,T ir j j ij j

r i ir
u n S n pδ⋅ = ⋅ = Π + = =n ΠF n S p  (79) 

 
where in  are the covariant components of the unit normal vector n  to the boundary 
surfaces and  jp  are the contravariant vector components of the applied surface tractions 
p  with respect to the undeformed state. 

Using the theorem of virtual work, the equilibrium equations can also be expressed in 
a weaker form. For kinematically admissible variation δ , the Lagrangain first variation of 
work Uδ  based on virtual displacements can be expressed as 
 
 ( )1 0,

2V S V S
U WdV dS tr dV dSδ δ δ δ δ= − ⋅ = − ⋅ =∫∫∫ ∫∫ ∫∫∫ ∫∫p u Π C p u  (80) 

 
where V  is the volume in the undeformed state, S  is the surface where the traction vector 
p  acts. Substituting Eq. (12) into Eq. (80), the first variation of work becomes 
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 { }
{ }
{ }

11 12 13
1 2 12 3 13 1

22 12 23
2 1 12 3 23 2

33 13 23
3 1 13 2 23 3

12 13 23
1 2 12 12 1 3 13 13 2 3 23 23

cos cos

cos cos

cos cos

sin sin sin

0.

V

S

dV
U

dS

λ λ ϕ λ ϕ δλ

λ λ ϕ λ ϕ δλ

δ λ λ ϕ λ ϕ δλ

λ λ ϕ δϕ λ λ ϕ δϕ λ λ ϕ δϕ

δ

⎡ ⎤Π +Π +Π
⎢ ⎥
⎢ ⎥+ Π +Π +Π
⎢ ⎥
⎢ ⎥= + Π +Π +Π
⎢ ⎥
⎢ ⎥−Π −Π −Π⎣ ⎦

− ⋅ =

∫∫∫

∫∫ p u

 

(81) 

 

4.3 Large Deformation Uniaxial Beam Plane Stress 
For the plane stress case and uniaxial deformation as in thick beam bending, the 

virtual work terms with respect to 2 3 23, &δλ δλ δϕ  would be zero (see [3]).  
From Eq. (81), the stress terms 

 
 22 12 23

2 1 12 3 23
33 13 23

3 1 13 2 23

cos cos

cos cos ,

λ λ ϕ λ ϕ

λ λ ϕ λ ϕ

Π +Π +Π

Π +Π +Π
 (82) 

 
are the physical Lagrangain stresses conjugate to the stretch variations 2 3&δλ δλ , 
respectively. 

4.3.1 For Isotropic Part 
Assuming 23 2

πϕ =  and using the constitutive relationship Eq. (73), it can be shown 
that the stresses in Eq. (82) are zero if 
 
 ( ) ( )2 3

1 1

,     .h h
iso iso

p p
A A

λ λ= =  (83) 

 
Therefore, substituting Eq. (83) and 23 2

πϕ =  into Eq. (81), the virtual work for plane stress is 
given by 
 
 ( ){ }

( )
1

1

11 12 13
1 12 13 1

12 13
1 12 12 13 13

cos cos
0.

sin sin

h

h

p
A

iso V Sp
A

U dV dS
λ ϕ ϕ δλ

δ δ
λ ϕ δϕ ϕ δϕ

⎡ ⎤Π + Π +Π⎢ ⎥= − ⋅ =⎢ ⎥
− Π −Π⎢ ⎥⎣ ⎦

∫∫∫ ∫∫ p u  
(84) 

 
And substituting Eq. (83) and 23 2

πϕ =  into Eq. (73), the state of stress for plane stress for 
large deformations is given by 
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 ( )
1 1

1

2
1 1 1 1 12 1 1 13

1 1 12

1 1 3 13

cos cos

cos 0 0 .

cos 0 0

h h

h

p p
h A A

p
iso A

A p A A

A

A

λ λ ϕ λ ϕ

λ ϕ

λ λ ϕ

⎡ ⎤−
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M  

(85) 

4.3.2 For Anisotropic Part 
Similarly, assuming 23 2

πϕ =  and using the constitutive relationship Eq. (76), it can be 
shown that the stresses in Eq. (82) are zero if 
 
 ( ) ( ) ( ) ( )

51 51
2 32 2

1 11 12 1 13

1 1,     .
1 cos 1 cosaniso aniso

K K
G G

λ λ
λ λϕ ϕ

= =
− −

 (86) 

 
Hence, substituting Eq. (86) and 23 2

πϕ =  into Eq. (81), the virtual work for plane stress 
becomes 
 
 ( ) ( ){ }

( ) ( )

( )

( )

11 12 13
1 2 12 3 13 1

12 13
1 2 12 12 1 3 13 13

11 12 51
1 122

1 1 12

13 51
132

1 1 13

cos cos

sin sin

1 cos
1 cos

1 cos
1 cos

     

aniso aniso

aniso aniso anisoV

S

dV
U

dS

K
G

K
G

λ λ ϕ λ ϕ δλ

λ λ ϕ δϕ λ λ ϕ δϕδ

δ

λ ϕ
λ ϕ

δ

ϕ
λ ϕ

⎡ ⎤Π +Π +Π
⎢ ⎥
⎢ ⎥−Π −Π= ⎣ ⎦

− ⋅

⎧ ⎫
Π +Π⎪ ⎪

−⎪ ⎪
⎨ ⎬
⎪ ⎪+Π⎪ ⎪−⎩ ⎭

=

∫∫∫
∫∫ p u

( )

( )

1

12 51
12 122

1 12

13 51
13 132

1 13

sin
1 cos

sin
1 cos

0.

V

S

K dV
G

K
G

dS

λ

ϕ δϕ
ϕ

ϕ δϕ
ϕ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−Π
⎢ ⎥−
⎢ ⎥
⎢ ⎥
−Π⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

− ⋅ =

∫∫∫

∫∫ p u

 

(87) 

 
And substituting Eq. (86) and 23 2

πϕ =  into Eq. (76), the state of stress for plane stress for 
large deformations becomes 
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 ( )
( ) ( )( )
( ) { }

( ) ( ) ( )
( ) { }

( ) ( ) ( )

1 51

1 51

1 51

2
111 1 51

514 2 2
1 1 13 12

11
51 12 5112 21

2 2 2
1 13 1 12

11
51 13 5113 31

2 2 2
1 12 1 13

2

2 ,
1 cos 1 cos

2 cos
,

1 cos 1 cos

2 cos
,

1 cos 1 cos

B K
aniso

B K

aniso aniso

B K

aniso aniso

aniso

KD e K
G

D e K K

G

D e K K

G

λ ϕ ϕ

ϕ

λ ϕ ϕ

ϕ

λ ϕ ϕ

−

−

−

⎧ ⎫⎪ ⎪= − −⎨ ⎬
− −⎪ ⎪⎩ ⎭

= =
− −

= =
− −

M

M M

M M

M
( ) { }

( )( )

1 51

2

11
51 12 1323 32

2 2
12 13

33

0,

2 cos cos
,

1 cos 1 cos

0.

B K

aniso aniso

aniso

D e K ϕ ϕ

ϕ ϕ

−

=

−
= =

− −

=

M M

M

 

(88) 

 

4.4 Beam Bending with Shear – Timoshenko Beam 
In this section, a straight prismatic beam is considered as a three-dimensional 

problem with bending, shear and axial deformation (see [3]). 
The longitudinal axis of centroids of the undeformed beam is taken as the x or 1 axis 

(see Fig. 6). The y or 2 axis and the z or 3 axis are taken as the principal axes in the plane 
of the cross-section.  

The deflection of the centroidal axis and the rotation of the cross-sectional plane are 
assumed to govern the deflected shape of the beam. The Timoshenko beam approximation 
is adopted as during deformation, it is assumed that the plane of the cross-section remains 
plane but not perpendicular to the centroidal axis. In the deformed state, the angle between 
the material base vector 1ĝ  and the undeformed longitudinal axis consists of a bending 
component θ  and shear components described by the angles &ϕ α . The tangent base 
vectors 2ĝ  and 3ĝ  are assumed to remain orthogonal or 2 3ˆ ˆ 0⋅ =g g . The unit vector n̂ , 
which is defined by 2 3ˆ ˆ×g g  and normal to the cross-sectional plane in the deformed state, 
lies in the plane of  1g  and 2g  and is given by 
 
 1 2 1 2 3

ˆˆˆ cos sin ,     sin cos ,     θ θ θ θ= + = − + =n i i t i i b i  (89) 
 
where 1 2,i i  and 3i  are unit base vectors in the x, y and z directions, respectively. The unit 
vectors ˆˆˆ , &n t b  form an orthonormal set. The angle φ  defines the rotation or torsion of the 

2ĝ  & 3ĝ  axes about the unit vector n̂ . 



Hyperelastic Formulation of Column Buckling Equation 36 

 

 
Fig. 6 Tangent base vectors in the deformed state [3] 

 
The bending angle is assumed to be a function of x only, θ θ= (x), while the shear 

angles &ϕ α  are taken as a function of the coordinates x, y and z. At the level of the 
centroid (y and z = 0), the shear angles are assumed as 
 
 ( ) ( )0,0,0 ,     ,0,0 0.x xϕ ϕ α= =  (90) 
 

The condition of 2 3ˆ ˆ 0⋅ =g g  and the conditions mentioned in Eq. (83) for isotropic part 
or in Eq. (86) for anisotropic part are utilised to allow for unrestrained dilation so that the 
stress state in bending is approximately uniaxial. The tangent base vectors in the deformed 
state can therefore be expressed as 
 

for isotropic part: 
 
 ( ) ( )

( ) ( ) ( ) ( )

1 1 1 2
1

3 1 2
1

ˆ ˆ ˆˆ ˆ ˆcos sin ,      cos sin ,

ˆ ˆˆ ˆsin cos ,     cos sin ,

h
iso

h
iso

p
A

p
A

λ α λ α φ φ

φ φ ϕ θ ϕ θ

= + = − +

= + = + + +

g m b g b t

g b t m i i
 

(91) 

 
for anisotropic part: 

x or 1 

z or 3 

y or 2 
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 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 1 1 2 2

3 3 1 2

ˆ ˆ ˆˆ ˆ ˆcos sin ,      cos sin ,

ˆ ˆˆ ˆsin cos ,         cos sin .

aniso aniso

aniso aniso

λ α λ α λ φ φ

λ φ φ ϕ θ ϕ θ

= + = − +

= + = + + +

g m b g b t

g b t m i i
 

(92) 

  
Using Eq. (91) for isotropic part or Eq. (92) for anisotropic part, the deformation gradient 
tensor for the uniaxial/plane stress Timoshenko beam problem can therefore be given by 
 

for isotropic part: 
 
 

( )

( )

1
1 1

1
1 1

1
1 1

cos cos sin sin sin cos

sin cos cos sin cos cos

sin cos sin

h h

h h
iso

h h

p p
A A

p p
A A

p p
A A

λ ϕ θ α θ φ θ φ

λ ϕ θ α θ φ θ φ

λ α φ φ

⎡ ⎤
+ − −⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥= +
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎣ ⎦

F  

(93) 

 
with volume invariant 

 
 

1
1

cos cos h
iso

pJ
A

λ ϕ α=  (94) 

 
for anisotropic part: 
 
 ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1 2 3

1 2 3

1 2 3

cos cos sin sin sin cos
sin cos cos sin cos cos

sin cos sin

aniso aniso

aniso aniso aniso

aniso aniso

λ ϕ θ α λ θ φ λ θ φ
λ ϕ θ α λ θ φ λ θ φ

λ α λ φ λ φ

⎡ ⎤+ − −
⎢ ⎥= +⎢ ⎥
⎢ ⎥−⎣ ⎦

F  
(95) 

 
with volume invariant 

 
 ( ) ( )

( )( )
51

1 2 3 2 2
1 1 12 13

cos coscos cos .
1 cos 1 cos

aniso aniso aniso

KJ
G

ϕ αλ λ λ ϕ α
λ ϕ ϕ

= =
− −

 (96) 

 
The deformation of the cross-section can also be defined by using displacements 

where the cross-section displaces as a plane of Timoshenko beam but is stretched within its 
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own plane (see Fig. 6 and Fig. 7). At the centroidal axis (y&z = 0), the displacements are 
defined by 
 
 ( ) ( ) ( )1 0 2 3,0,0 ( ),     ,0,0 ( ),     ,0,0 0u x u x u x v x u x= = =  (97) 
 
where 0 ( )u x  and ( )v x  are the longitudinal (in direction 1 or x) and transverse (in direction 2 
or y) displacements of the centroidal axis, respectively. The displacement functions in the x, 
y and z directions are herein assumed to be 
 
 ( )

( )
( )

1 0

2

3

( ) , , sin

( ) , , cos

, ,

y

y

z

u u x p x y z

u v x p x y z y

u p x y z z

θ

θ

= −

= + −

= −

 
(98) 

 
with the required conditions at the centroid 
 
 ( ) ( ),0,0 0,     ,0,0 0y zp x p x= =  (99) 
 

 
Fig. 7 Deformation of the cross-section in side view [3] 

 
Substituting Eq. (98) into Eq. (8), the deformation gradient tensor defined by using 

displacements is given by 
 
 ( )0, , , ,

, , ,

, , ,

1 , cos sin sin sin

, , sin cos cos cos
x y x y x y y y z

x y x y x y y y z

z x z y z z

u p p p p

v p p p p
p p p

θ θ θ θ θ

θ θ θ θ θ

⎡ ⎤+ − − − −
⎢ ⎥

= − +⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

F  
(100) 
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The relationship between the displacement gradients and the stretches and deformation 
angles can then be obtained from Eqs. (93) & (100) for isotropic part and from Eqs. (95) & 
(100) for anisotropic part as 
 

for isotropic part:  
 
 ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 0, ,

1 ,

1 , , ,
1

, ,
1

cos cos 1 , cos sin

sin cos , , sin cos

sin ,     sin ,     

cos

x y x y xiso iso

x y x y xiso iso

h
z x y y z ziso isoiso

h
y z z yiso iso

u p p

v p p

pp p p
A

p p p
A

λ ϕ θ α θ θ θ

λ ϕ θ α θ θ θ

λ α φ

φ

+ = + − −

+ = − +

= = =

= = −

 

(101) 

   
with the requirements: 

 
 ( ) ( ) ( ) ( ) ( )2 2 22

, , , , , , , ,
1 1

,     ,     0h h
y y z y z z y z y y y z z z z yisoiso iso iso iso

p pp p p p p p p p
A A

+ = + = + =  (102) 

 
for anisotropic part: 
 
 ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 0, ,

1 ,

1 , 2 , 3 ,

2 , 3

cos cos 1 , cos sin

sin cos , , sin cos

sin ,     sin ,     sin

cos ,     cos

x y x y xaniso aniso

x y x y xaniso aniso

z x y y z zaniso anisoaniso anisoaniso

z yaniso anisoaniso

u p p

v p p

p p p

p

λ ϕ θ α θ θ θ

λ ϕ θ α θ θ θ

λ α λ φ λ φ

λ φ λ φ

+ = + − −

+ = − +

= = =

− = = ( ),y z aniso
p

 

(103) 

 
with the requirements: 

 
 ( ) ( ) ( ) ( ) ( ) ( )

( )

2 2 222 2
, , 2 , , 3

, , , ,

,     ,     
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(104) 

 
Using Eqs. (89), (90), (91), (99) and (103) with an assumption that ( ), , 0,0 0y xp x = , the 
conponents of the normal and tangential stretches on the plane of the cross-section can be 
obtained as 
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with 
 ( )
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(106) 

 
and 
 ( ) ( )2 2

10 0,1 ,x xu vλ = + +  (107) 

 
where 10λ  is the longitudinal stretch at the centroid. Using Eq. (106), the shear angle at the 
centroid and the centroidal axis curvature are given by 
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(108) 

 
Using Eq. (105), the stretch 1λ  can be written in terms of the normal and shear stretch 
components as 
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(109) 

 
The shear angle ϕ , which varies through the cross-section, can also be written as 
 
 10 0 ,

10 0

sin
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cos ,
y x

y x
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λ ϕ
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λ ϕ θ
+
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−

 (110) 

 

4.4.1 Solutions for &y zp p  
 

for isotropic part: 
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For small deformations such that 1isoJ ≈  , 10 0cosλ ϕ  is close to unity and ,xθ  is 

very small, therefore with 1 1 lnhp A C J= −  and using Eqs. (94) and (105), the hydrostatic 
stress can be approximated as 
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 (111) 

 
According to Eq. (101), ( ) ( ), , , ,&z z y y z y y ziso iso

p p p p= = − , and using Eq. (111), the partial 
differential Eq. (102) can be reduced to one equation as 
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(112) 

 
A solution for &y zp p  can be obtained as 
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(113) 

 
As mentioned in [3], the displacements defined by Eq. (98) with the expressions in Eq. (113) 
depict horizontal lines in beam cross-section becoming curved while vertical lines remain 
straight with rotating (see Fig. 8). This implies that there is anticlastic tranverse curvature 
associated with the beam bending. The anticlastic curvature leads to an average vertical 
displacement different to the vertical displacement of the centroid, that is to first order 
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,

2
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x
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(114) 

 
where 2 2&zz yyA A

I y dA I z dA= =∫∫ ∫∫  are moment of inertia and ( )2 ,zz yyI I
xA

ν θ−  is the 
anticlastic term. 
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Fig. 8 Anticlastic transverse bending in thick beam cross-section [3] 

 
for anisotropic part: 
 

For small deformations, a Taylor’s series expansion of square of Eq. (86)a about 
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1 121 cos 1λ ϕ− ≈  and of square of Eq. (86)b about ( ) ( )2 2
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(115) 

 
According to Eq. (103), ( )3 2

2 3, , , ,&z z y y z y y z aniso
p p p pλ λ

λ λ= = − , the partial differential Eq. (104) 
can be reduced to one equation as 
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(116) 

 
Using Eq. (115), Eq. (116) can be approximated as 
 

y or 2 

z or 3 
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(117) 

 
A solution for &y zp p  can be approximated as 
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(118) 

 

4.4.2 Constitutive Relationships for the Internal Actions 
Using the Reissner orientation which assumes that the axial force is normal to the 

cross-section plane and the shear force parallel to this plane (see Fig. 9), rotating the first 
Piola Kirchhoff stresses through an angle θ  gives stresses which are normal and parallel to 
the cross-sectional plane [3]. Hence using T =ΠF S  and Eqs. (70) and (93) for isotropic part 
and using T =ΠF S  and Eqs. (75) and (95) for anisotropic part give 
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for anisotropic part: 
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Fig. 9 Beam internal actions 

 
The constitutive relationships for the internal actions can be determined by defining 

the internal actions as the stress resultants over the cross-section as 
 

for isotropic part: 
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(129) 

 
where N  is the axial force perpendicular to the cross-sectional plane in the direction n̂ , tQ  
is the shear force within the cross-sectional plane in the direction t̂ , bQ  is the shear force 
within the cross-sectional plane in the direction b̂  and M  is the bending moment resulting 
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from the stress perpendicular to the cross-sectional plane (see Fig. 9). Substituting Eq. (119) 
with Eq. (105), (111) and (113) into (129) and assuming that ( )1 cos cos

iso
λ ϕ α  is close to 

unity and ,xθ  is very small, gives (to first order)  
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For a stability analysis, the constitutive relationships for the internal actions to second order 
terms are normally used and can be obtained as 
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Using the Ziegler orientation which assumes that the normal force 0tN  is directed along the 
centroidal axis while the shear force 0tQ  is perpendicular to the centroidal axis of the beam, 
the constitutive relationships are given by 
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 From Eqs. (131) to (133), the simple expressions can be obtained as 
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for anisotropic part: 
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Substituting Eqs. (120) to (122) with Eq. (115) into (155) gives (to first order) 
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(136) 

 

4.4.3 Equilibrium and Virtual Work 
Using the Reissner stresses, the equilibrium Eq. (77) for the beam problem can be 

expressed as 
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(137) 

 
And the equilibrium Eq. (78) becomes 
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(138) 

 
In addition, the virtual work can be expressed in terms of the Reissner stresses as 
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Noting that, 1 1 1cos cos , sin cos , sinn st sbλ λ ϕ α λ λ ϕ α λ λ α= = =  as expressed in Eq. (105). 
Substituting Eq. (105) into Eq. (139) gives 
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Using Eq. (106) and 11 12 13 11,  , ,  R t R b R y RA A A A

N S dA Q S dA Q S dA M p S dA= = = = −∫∫ ∫∫ ∫∫ ∫∫ , an 
approximation of Eq. (140) is given by 
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xP  and yP  are the internal force resultants in the x and y directions (see Fig. 9), 

respectively, while 0bQ  is the shear resultants perpendicular to 0tQ  with Ziegler orientation. 
In addition, another simple form of the virtual work can be obtained by using Eq. (140) with 

11 12 13 11,  , ,  R t R b R y RA A A A
N S dA Q S dA Q S dA M p S dA= = = = −∫∫ ∫∫ ∫∫ ∫∫  as 
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4.4.4  Column Buckling 

 
Fig. 10 Simple column under uniaxial load 

 
Consider a straight prismatic simply supported column (see Fig. 10) under initial 

uniform axial stress 11 P
R AS = −  where P  is the axial force. Using Eq. (144) with Eq. (137), 

(138) and 0 0 0 0 0,  ,  t t t t b bN N Q Q Q N Q Qϕ ϕ≈ + ≈ − = , the second variation of work for the 
Timoshenko beam can be obtained as 
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In order to simplify the formulation, the following approximations are adopted. 
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Substituting Eqs. (131), (132), (146) and (147) into Eq. (145), the second variation of work 
for the Timoshenko beam becomes 
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4.4.5 Column Buckling Formula 
In this section, the buckling load formula for a simple column as shown in Fig. 10 is 

derived. Assuming 0,
P

x EAu −≈ , ignoring the axial rigidity terms and the anticlastic terms, the 
second variation Eq. (148) is simplified as 
 
 ( ) ( ){ } ( ) ( )

( ) ( )

( )

22 2
0 0 0 0 ,

2
22

0 0 0
0

2

0 0

2

11
2 2

1 1
2

1 1
2

          

M M zz x

L

Qt Qt

Qtb Qb

S

P P w w EI
EA

PU w w GA dx
EA

Pw GA
EA

dS

δθ δϕ δϕ β β δθ

δ β β δϕ

β β δϕ δφ

δ

⎡ ⎤⎛ ⎞− − + − + + −⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞= + + − −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥
⎢ ⎥

⎛ ⎞⎢ ⎥+ − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

−

∫

∫∫ p u

 

(149) 

 
The functional Eq. (149) is set to zero in order to determine its lower bound. The following 
expressions are obtained as the variation symbol has been dropped. 
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Assuming that φφ β θ= , Eqs. (150) and (151) can be rewritten in a simplified form as 
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(153) 

 
Applying the boundary conditions for the problem considered, , 0xθ =  at 0 &x L= , the 
solution to the differential Eq. (152) for compression loading is obtained as the classical 
cosine function for the buckling mode bending angle. 
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The critical buckling load is obtained by assuming that b  is real and non-zero, bL

r nπ=  
where n representing the buckling mode number is an integer, as 
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Chapter 5  

Conclusions and Recommendations 

5.1 Conclusions 
In order to obtain buckling equation for anisotropic columns, a generalized strain 

energy function for anisotropic hyperelastic materials has been derived and proposed in this 
study. The proposed strain energy function has been verified by comparison to experimental 
results. The strain energy function was decomposed into an isotropic and anisotropic 
component. The formulation was based on the framework of the invariant theory and 
polyconvexity and coercivity conditions. The anisotropy was represented by an isotropic 
tensor function through the so-called structural tensors. The specific functions for the 
anisotropic component were presented. The proposed strain energy function was shown to 
accurately predict the anisotropic stress response of human arterial tissues under uniaxial 
and biaxial tests. Finally, a simplified buckling equation which includes shear deformations for 
anisotropic columns has been determined using the proposed strain energy function. 

5.2 Recommendations 
Some further studies that can be suggested are the following. 
• More applications of the proposed model to other materials for further 

developments. 
• To formulate buckling equation by using a consistent hyperelastic formulation. 
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