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Abstract

Project Code : MRG5280018

Project Title : Buckling of anisotropic columns — A hyperelastic formulation

Investigator : Assistant Professor Krit Chaimoon, Ph.D.

E-mail Address : k.chaimoon@msu.ac.th

Project Period : 15/03/2009 — 15/01/2014

Abstract:

The aims of this study are to derive strain energy function for anisotropic
hyperelastic materials under finite strain and to determine buckling equation which includes
shear deformations for anisotropic columns. A generalized strain energy function is
formulated within the framework of the invariant theory by representing the anisotropy using
an isotropic tensor function through the so-called structural tensors and is based on
polyconvexity and coercivity conditions so as to guarantee the existence of solutions.
Furthermore, the strain energy density is decomposed into an isotropic and anisotropic
component. The proposed strain energy density is then adopted to determine buckling

equation which includes shear deformations for anisotropic columns.

Keywords : anisotropy, finite strain, hyperelasticity, strain energy, column buckling



Executive Summary

Being of a fundamental and innovative nature the proposed research will have
importance for any finite strain elasticity analysis for both incompressible and compressible
anisotropic materials. The application of anisotropic hyperelastic constitutive modeling to
several buckling and postbuckling problems which include shear deformations will result a
better prediction of the buckling capacity of anisotropic columns and will benefit the industrial
use of such materials.

In this study, strain energy function for anisotropic hyperelastic materials under finite
strain is formulated and buckling equation which includes shear deformations for anisotropic

columns is determined.
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Chapter 1

Introduction

1.1 Problems Statement

Many materials which are widely used in industries such as building, aircraft,
aerospace, marine and biological technology can undergo large nonlinear elastic
deformations and have inherent anisotropic characteristics. Examples of these materials are
rubbers, rubber-like materials, foams, elastomers, fibore composites, sandwich panels and
biological tissues. To be able to utilize these materials efficiently and economically, better
analytical methods and designs are needed. Buckling analysis is fundamental to analysis,
design and safety assessment of many structures. The inclusion of shear deformation in
buckling analysis has proven problematic. Many traditional bucklikng formulations are
incorrect when used to account for shear deformations. Shear deformations in buckling
analyses are important considerations for the design of helical springs, sandwich plates with
soft shear cores, built-up and laced columns and elastomeric bearings. Shear deformations
during buckling are also important in the analysis of the compressive strength of the fiber
composites. The constitutive material laws and a consistent large deflection formulation are
crucial for a proper buckling analysis and challenge to the analyst, especially for anisotropic
materials. Hyperelastic constitutive modeling has appeared as an effective tool in continuum
mechanics for characterizing large deformation (finite strain) materials. The major aim of this
research is to determine new fundamental expressions for the buckling formulas which

include shear deformations for anisotropic columns based on a hyperelastic formulation.

1.2 Objectives

(1) To derive strain energy functions for anisotropic hyperelastic materials under
finite strain.

(2) To establish anisotropic constitutive relationships using the developed strain
energy functions.

(3) To determine buckling equations which include shear deformations for

anisotropic columns.
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1.3 Scope of Works

This study is focused only on developing a computational basis using a hyperelastic
formulation, no experiment carried out, for assessing buckling capacity of large nonlinear

elastic columns made of anisotropic materials under static loading.

1.4 Expected Outcomes

Being of a fundamental and innovative nature the proposed research will have
importance for any finite strain elasticity analysis for both incompressible and compressible
anisotropic materials. The application of anisotropic hyperelastic constitutive modeling to
several buckling and postbuckling problems which include shear deformations will result a
better prediction of the buckling capacity of anisotropic columns and will benefit the industrial

use of such materials.



Literature Review 3

Chapter 2

Literature Review
2.1 Continuum Mechanics

2.1.1 Kinematics

Particles within a continuum of material at rest in an undeformed state can be
thought of as forming natural lines or chains of particles called material lines [1]. If the
material is deformed these chains of particles move in such a way that particles remain on
the same material line, that is material lines always remain intact. Coordinates of a particle
P within this continuum with respect to a fixed three-dimensional Cartesian coordinate

system are normally assumed to be a function of general coordinates si, i=12,3 as
x‘(sl,sz,s3) . i=12,3. (1)

The s’ can be viewed as curvilinear or intrinsic coordinates along the material lines. The
convention due to Einstein is adopted where a repeated index such as plvf is used to imply

summation. A bracketed index indicates suppression of the summation convention, e.g. X(ii)'

The position vector s of the particle P in the undeformed state is given by
s=iixi(sl,82,83), (2)

where i are unit Cartesian vectors (refer to Fig. 1). The bold style such as s is used to

distinguish a vector while vector components will be written in italics, e.g. x'.
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g,ds’ ds

k J

Fig. 1 Undeformed position

To examine deformations of the continuum a differential line element vector ds at the

particle P in the undeformed state can be defined as

ds =%dsi :g—);:ijds‘ =xJ,ids' = gds',
where g,  are the covariant tangent base vectors and ds' are the contravariant vector
components. The comma notation indicates differentiation with respect to s'. The tangent
base vectors are so-called because they are tangential to the natural material lines. These
base vectors are not necessarily unit vectors and may not be dimensionless. The
contravariant base vectors gj are normal to the material lines and are sometimes referred to

as reciprocal base vectors. The scalar product of covariant and contravariant base vectors is

the kronecker delta 5,/

g g =g g=5. (4)

2.1.2 The Metric Tensor

The scalar length of the differential line element squared is called the metric and is

calculated from

ds-ds =g, -g,ds'ds’ = g,ds'ds’ = ds,ds’, (5)



is

Literature Review
where g; is the covariant metric tensor in the undeformed coordinate system and

symmetric.
2.1.3 Stretch
The position vector § of a new position P (refer to Fig. 2) after moving of the

particle P can be given by
(6)

s=s+u,

in which u are displacements assumed to be smooth and differentiable. The new position is
also assumed to be a function of the coordinates si and therefore said to be convected

coordinates (see e.g. [2]) as all positions are referred to the same coordinate.

.\""I::;]._'.':.:"::I

“ds
s (X205 )

5 ‘Material Lines
in Deformed State

P,
.t:ll‘s'.s'.s’,l

Fig. 2 Deformed position

A differential line element vector ds at the particle P in the deformed state can be

given by
A OS ioA L
ds =—ds' =g,ds' =Fds = F g ds’,

0s
F=§®g =5/ +u'] )g, ®g =1+V®u,
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where g, = (é‘ij +uj‘ )gj are the covariant tangent base vectors in the deformed state, &, is
the kronecker delta, I=g, ®g' is the identity tensor, V®u =u’ g ®g' is the grad of the
displacement vector, g; and gi are the contravariant and covariant initial base vectors,
respectively, in the undeformed state, u"i represent the covariant derivatives of the u’
vector component with respect to the coordinate corresponding to the index i and F is the
deformation gradient tensor.

For an initial Cartesian coordinate system x, y and z, covariant and contravariant
components with respect to the initial base vectors are not different and therefore the

components of the deformation tensor can be written in matrix form as

1+ u1,1 ul,2 ul,S (8)
F=| u,, 1+u,, U3 |
u3,1 u3,2 1+ u3,3

where U;,U, and U,are displacement components in the X, y and z directions, respectively,
and u,, symbolizes differentialtion with respect to x.
The stretch is the ratio of the change in lengths of the sides of the parallelepiped to

their initial length as P moves to P and can be expressed as

‘gldsl‘ = \/gA711 =4 ‘gldsl‘ = /11\/51 9)

A= /%, (10)
iy

where 9 and é(i/) are the ith covariant material arcs in undeformed and deformed state,

respectively. The /1/ is not a tensor and must be positive for all deformations (ﬂ/ >0).

2.1.4 The right Cauchy-Green deformation tensor

The square of the length of the differential line element in the deformed

configuration at the particle P can be expressed in terms of the square of the length of the

differential line element in the undeformed state and is given by

ds-ds=ds-F'F-ds=ds-C-ds (11)
= éidsi .gjdsj = @ijdsidsj,
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where C=F"F is the right Cauchy-Green deformation tensor and is symmetric if invertible
positive definite. A rigid motion at a point would correspond to |d§| :|ds| .. C=1. For the
three dimensional case, the components of C can be written in terms of the stretches

(4,4, &A4;) and angles between the tangent base vectors in the deformed state

(P12, P13 & y3) [3], that is

(21 )2 44, €080,  A4A;C0S@, (12)
C=|hheosg, (&) AAcospy |,
A4, €08, A, A, COS Py (23 )2

2.1.5 The Green Strain Tensor

The change in length of the square of the differential line element can be used to
characterize any distortion or deformation and is used to define a Green or Lagrangian strain

tensor X, by

ds|° —|ds|° = ds-ds —ds-ds (13)
| |
=ds-(C—1I)-ds=2ds-Xds.

The Green strain tensor is given by

2.1.6 Stress Tensors

Within the continuum there are internal forces necessary to keep the body in

equilibrium. An infinitesimal force vector dp at the point P can be written in the form
dp=dplg; =dplg; =dT'dA =dT'dA =dT'dA, (15)

where df)j and dpj are the contravariant force vector components with respect to base
vectors in the deformed and undeformed configuration, respectively, d"i“i,dTi and dT' are
the stress vector components acting on the faces of the infinitesimal parallelepiped at the

point P, and d,&i,dﬂi and dA, are the area vector components defined by
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dA =JdA, dA = 'fijd'&j’ F’ :(Fij)_l,

where dz& and dA are area vectors in the deformed and undeformed state, respectively, and
J =detF is volumetric invariant or Jacobian. Some of the common stress tensors are

defined by
dp=71g;dA =g ;dA =tlg;dA = o'lg dA, (17)

where z‘ij is the component of the Eulerian stress tensor T, 7Z'ij is the component of the
second Piola-Kirchhoff stress tensor m, tij is the component of the first Piola-Kirchhoff

stress tensor t, and o is the component of the Cauchy stress tensor 6. The Eulerian
stress tensor, the second Piola-Kirchhoff stress tensor and the Cauchy stress tensor are all

symmetric. The stress tensors are related by

=7 o= F,T:Fn"rm”, t! :ﬂ"Frj (18)

or Jt=xn, o=F7F', t=nxnF'".

The stress tensors do not necessarily have units of force per unit area.

2.2 Hyperelastic Strain Energy Function

Hyperelastic material is an elastic material that its elastic behavior can be described
by a strain energy density W =W (F) with respect to the initial volume.

In order to purpose a strain energy density in which anisotropy is taken into
account, the following postulates, as to conditions to which the anisotropic strain energy
density must hold [4], must be taken into consideration for formulating the strain energy
density:

(1) The strain energy density must meet the objectivity condition (the principle of
material frame indifference).

(2) The strain energy density must take into account the principle of material
symmetry.

(3) In order to guarantee the existence of solutions, the strain energy density must

be sequentially weakly lower semicontinuous (s.w.l.s.) and must meet a coercivity condition.
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(4) The strain energy density must meet the ellipticity condition which is a possible
criterion for material stability.
(5) The strain energy density must satisfy the stress free reference configuration

condition.

2.2.1 Objectivity

This condition implies that the strain energy density has to be independent of
superposed rigid body motions and can automatically be met by representing the strain

energy function in terms of the right Cauchy-Green deformation tensor C so that (see e.g.

(51)
W =W (F) =W (C). (19)

Accordingly, a constitutive law for a hyperelastic material can be obtained from

2.2.2 Material symmetry

This condition requires that the strain energy density be invariant under
transformations with elements of the material symmetry group which describes the anisotropy
class of the material. Following the Rychlewski's theorem [6], the strain energy density has to
be represented as an isotropic tensor function of arguments containing the so-called
structural tensors which are symmetric and positive definite. This allows an invariant
formulation. In this context see also [7, 8]. In order to meet both the objectivity condition and
the principle of material symmetry, the strain energy density is thus written in terms of the

right Cauchy-Green deformation tensor and the structural tensors, and also has to satisfy
W =W(C,G,)=W(QCQ",QGQ"), (21)

which is an isotropic tensor function in the arguments (C,G,) where G;,i=0,1,...,n are the
structural tensors and Q is an element of the material symmetry group and is a proper
orthogonal tensor. With this the invariance of W =W (C,G;) with respect to the symmetry
transformations is ensured. Thus superimposed rigid body motions do not either affect the

behavior of the anisotropic material.
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2.2.3 Structual tensors

A definition for the structural tensors Gj is required for this method. Following Zheng
and Boehler [9], anisotropy can be characterized by certain directions, lines or planes
associated with some unit vectors defined in the undeformed state. This leads to a definition

for the structural tensors G; of the form

G =m Om,, (22)

where each m;, i=12,...,n is a unit vector. The structural tensors, which are symmetric

and positive definite, have the property
tr[G,]=1 (23)

where tr(.) denotes the trace function.
2.2.4 Invariants

For the invariant formulation of constitutive equations the invariants of the right
Cauchy-Green deformation tensor and the structural tensors are needed. Based on the
Hilbert's theorem, a finite set of isotropic invariants of these tensors can be obtained [10]. In
general the invariants contain the traces of products of powers of the argument tensors, the
so-called principal invariants and the so-called mixed invariants. The invariants of a single

tensor for two symmetric second order tensors C and G; may consist of

J,=tr[C], J,=t[C*], J=tr[C°], (24)
1, =tr[CG,], I, =tr[C°G,], J;=t[CG]], I, =tr[C’G]], (25)
Ju =tr[G,], Iy =tr[G]], I =tr[G]], (26)

where the invariants in Eq. (24) are the so-called basic invariants defined by the traces of
powers of C, the invariants in Eq. (25) are the mixed invariants for C and Gj, and the
invariants in Eq. (26) are the traces of powers of Gj. The basic invariants can also be

related to the principal invariants of C by
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Jo=1, J,=17=-21,, J,=12-311,+3l,, (27)
where 1,1, and I, are the principal invariants of C and have the explicit expressions as

1, =tr[C]=1-C=(2,,) +(4,2) +(4s) . (28)

1, = [ Cof [C]] =1-Cof [C] = {(ur[c])" -u[c” ]| (29)

= (A2 )+ (Zoaos) +(Aaten)
|, =det[C]= %{(tr [C]) -3tr[C]tr[C? ]+ 2tr [cﬂ} = (AArAna) (30)

where ﬂ,pi are the principal stretches, Cof [C] is the cofactor of C and is defined by
Cof [C]=det[C]C™ = Adj[C] for all invertible and isotropic C and det[C] denotes the

determinant of C.
2.2.5 Sequential weak lower semicontinuity and coercivity

In order to guarantee the existence of solutions, the strain energy density must be
sequentially weakly lower semicontinuous (s.w.l.s.) and must meet a coercivity condition. A
discussion on this issue was made in [4] and the polyconvexity condition in the sense of Ball

[11] has also been proved to be able to serve for both s.w.l.s. and coercivity conditions.

A strain energy density is said to be polyconvex [11] if and only if there exists a
convex function with the arguments of F, Cof [F| and det[F] in such a way that the strain

energy density W =W (F) can satisfy
W =W (F) =W (F,Cof [F], det[F]) (31)

where Cof [F] denotes the cofactor of F and is defined by Cof[F]= det[F|F" =

(Adj[F])T for all invertible F and det[F] denotes the determinant of F. The arguments
F, Cof [F] and det[F] are the linear mappings of the infinitesimal line, area and volume

elements according to the well-known Nanson’s formula, respectively.
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2.2.6 Ellipticity

Ellipticity condition is a possible criterion for material stability. It has been proved that
polyconvexity implies ellipticity [12, 13]. Thus, ellipticity is automatically guaranteed for the

strain energy function which has already fulfiled the polyconvexity condition.
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Chapter 3

Hyperelastic Formulation of Strain Energy Functions

In this chapter, a generalized hyperelastic model for anisotropic materials is
formulated and proposed. The mentioned postulates in the Chapter 2, as to conditions to
which the anisotropic strain energy density must hold, are taken into consideration for

formulating the strain energy function.

3.1 Hyperelastic Strain Energy Function

As described in Chapter 2, the strain energy functions must meet the objectivity
condition (the principle of material frame- indifference) and the principle of material
symmetry. In ordet to meet both conditions, the proposed strain energy function is thus
written in terms of the right Cauchy-Green deformation tensor, C, and the structural tensors,
Gj as W=W(C,G)) :W(QCQT,QGiQT) , see Eq. (21).

For the formulation of the strain energy function, only a set of invariants is
determined. Due to the property of the structural tensors in Eq. (23), the terms J,; and J.,
in Eq. (25) can be discarded since Ji =J, and J,, =J. Besides, the basic invariants of
Gj, Eq. (26), are constants and can be neglected [10]. As a result, the strain energy function

can be expressed in terms of the invariants of the argument tensors (C,Gi) as
W:W(Il,lz,l3,J4i,J5i). (32)

This expression preserves the invariant of the strain energy function under all
transformations.

As the polyconvexity condition has been proved to be able to serve for both s.w.l.s.
and coercivity conditions. Furthermore, ellipticity condition is also guaranteed. Hence, the

proposed strain energy function is formulated on the basis of the polyconvexity.
3.1.1 Polyconvex Strain Energy Functions

According to Eq.(31), a subclass of the equation is the additive polyconvex functions

[4] of the form

W (F,Cof [F],det[F]) =W, (F)+W, (Cof [F])+W, (det[F]) (33)
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where W,,i=1,2,3 are convex functions of their argument, respectively.

The definition of the polyconvexity requires the convexity properties of the arguments
of the strain energy density. Consequently, we consider the convexity properties of the
invariants in Eq. (32). The convexity of each invariant can be proved by the positivity of the
second derivative. Indeed it can be shown that the invariants 1,1,,1, and J,; are convex
with respect to F, Cof[F], det[F] and F, respectively, but the invariant J,; are not
convex with respect to F [4]. Therefore, the strain energy density written in terms of the
invariant J,, as single term, Eq. (32), does not fulfill the polyconvexity condition. In order to
allow for quadratic expression of the invariant J.; within the strain energy density, a
polyconvex mixed invariant has to be used instead which can be derived by use of the
Cayley-Hamilton theorem [4]. On the basis of the Cayley-Hamilton theorem, the characteristic

equation of the second order tensors C is
C’ —tr[C]C? + tr[AdjC]C —det[C]T=0. (34)
Multiplication of the Eq. (34) with C™'G, yields with Cof [C]=Adj[C]
C’G, - 1,CG, +1,G, - Cof [C]G, =0. (35)
Taking the trace of the Eq. (35) leads to the expression
Ky =tr[ Cof [C]G, |=J5 — 1,3, + L,tr[G ], (36)
where K., is a mixed invariant representing a quadratic expression and is particularly
polyconvex with respect to Cof [F] In order to automatically satisfy the polyconvexity
condition, the expression for the strain energy density in Eq. (32) is, thus, replaced by
W =W(,I,,1;,3,,K). (37)
In the next step, we utilize the additive representation of the polyconvexity, Eq. (33),
to additively decompose the strain energy function, Eq. (37), into the isotropic Wis, and

anisotropic Wyiso Parts. In addition, the two parts are associated with scalar weight factors

W; representing a dispersion of components as experimentally observed, see e.g. [14], i.e.
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W =W, 'Wiso( 1 2’ +ZZW aniso 3’J4i1K5i)’ zzwir :l_Wo- (38)

r=1 i=1 r=1 i=1

Note that taking of linear combinations of the polyconvex invariants does not change the
polyconvexity properties [13]. This decomposition of the strain energy function allows a
variety of combinations of the two parts. The anisotropic part is given in terms of a series

with an arbitrary numbers of terms r.
3.1.2 Natural State Conditions

In this section, the isotropic and anisotropic stain energy functions which fulfill the
polyconvexity condition are defined and analyzed with respect to the natural state conditions,
i.e. the stress and energy have to be zero in the undeformed configuration. Some specific

functions are also presented.
3.1.2.1 Isotropic Strain Energy Function

For the isotropic part Wjg, of Eq. (38), a generic form is considered and assumed to

be decomposed into two components as
Wiy (11 15 15) =Wigg” (1,15, 15) +Wig™ (1), (39)

where Wigcl,c is an incompressible component associated with constrained volume change or
volume constant distortion and Wiggm is a compressible component associated with specific
volume change. The isotropic part of the second Piola-Kirchhoff stress tensor are then given

by

i inc inc inc inc com 40
niso — 2 aWISO — 2 aWISO aV\/ISO Il aWISO C aV\/ISO I C -1 aV\/ISO I3C , ( )
oC o, ol al, ol, al,

with 0l,/oC=1, al,/0C=1]1-Canddl,/0C=1,C". In order to consider the stress

=0 is required, i.e.,

condition for the natural state, C=1 is set and n,50|
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a iso + 2 a iso + a iso + a iso I — 0’ (41)
ol o, o, al,

with I; =3, 1, =3, and I3 =1 at C=1. Thus, the stress-free conditions are

W oW AW awe 42)
ol, al, ol, ol,
For the energy condition at undeformed configuration, C=1 is set and Wiso|C=I =0 is
required, i.e.,
Wi (3,3 1)+W2" () = 0. (43)
Thus, the energy-free conditions are
W™ (3,31) =-Wz" (@) = 0. (44)

For example, specific functions for the isotropic part Wiy, of Eq. (39) and their

derivatives satisfying Eqgs. (42) and (44) are in the form

' 45

W (11 1) =21, -3)+ 22 123, (45)
2 21,

Wy A W B oW B, (46)

o, 2’ o, 2, a, 21

W (1) = (In 1, (A -B)n I, @)

iso

MWg" _C/Inl; A-B (48)
ol 41, 21,

where A, B, and C, are material constants. The incompressible component WISO and the
compressible component W,ggm are the same as the strain energy function proposed by
Attard [15] with n=1(L; =1; and L1:I2/I3). The original generalized form in [15] is

expressed as



Hyperelastic Formulation of Strain Energy Functions 17

Wiy = é%(Lm —3)+%(Ln _3)' (49)

TN T  W
n=1 nl

L= () "+ (A) "+ (24) (51)

U= (A)  +(A) "+ (A50) (52)

where A, B and C, are material constants, and L, and L" are invariants defined in terms of

the principal stretches A4,i=1,2,3 as the equations above. Wiicgc is a incompressible

pi®
component associated with constrained volume change or volume constant distortion and
Wiggm is a compressible component associated with specific volume change. The
incompressible component Wiisgc is the same as the generalized Mooney expression [16].
While the compressible component Wiggm is a generalization of the Simo and Pister
proposal [17].

An advantage of this energy function which was successfully used for the analysis of
isotropic hyperelastic materials [18, 19] is that the hydrostatic pressure component of the

stress vector which is associated with volumetric dilation will have no shear component on

any surface in any configuration.

3.1.2.2 Anisotropic strain energy function

For the anisotropic part W,,is, of Eq. (38), a generic form is considered and

expressed as

m n (53)
Waniso ( I3, J4i, Ks; ) = ZZ D' [Wz;r{iso ( IS) JrWafE]riso (J4i )+Wa|§irso (K5i )}
r=li=1

where D' are material constants. The anisotropic part of the second Piola-Kirchhoff stress

tensor are then given by
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T = aVvaniso (54)
aniso oC
Ir Kr Jr Kr
_ ZZZ D’ Wanlso | 6Wan|so K C—l a\Nanlso G 8\Nanlso I C 1GiC—1
Py ol, oK 0J,; oK,

with 8I3/8C: I3C’1, &]M/@C:Gi and 6K5i/6C: KSiC’l— I3C’1GiC’l.
The stress condition for the natural state is considered by setting C=1 and
=0, ie.,

m n Ir Kr Jr Kr 55
ZZ Dr a\Namso 8\Namso I + a\Nanlso _ a\Namso Gi — 01 ( )
3 6K5i 6“]4i 8Ksi

naniso |C:I

r=1 i=1

with 1y =3, 1, =3, I3=1, and J4; = Kj; =tr[Gi]=I at C=I. Thus, the stress-free

conditions are

Kr Jr Ir
MW _ WL MW, o g, O
oKy, 0J,; ol,
For the energy-free reference configuration condition, C=1 is set and Wamso|C =0 is
required, i.e.,
> 37D (W, (1) Wit (1) + WS ()] 0. e
r=l i=1
Thus, the energy-free conditions are
Walnrlso (l) Wafml;so (1) Wa::so (1) =0' (58)

Some specific functions and their derivatives for the anisotropic part Wi, of Eq.
(53) which automatically satisfy Egs. (56) and (58) are, e.g., the exponential functions of the

form [20]
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_ oW, oo (59)
| | C, ~1), aﬂISO:_I(Cr 1)’
anlso( 3) r ( ) 8I 3
WJr (J ) i[eAf(Jufl) _1:|, aWz-l‘r]:l’so — eA(JMfl)’
aniso 4i A. a\]‘“
1 . oW __
WK (K.)y=— Br (Ksi-1) -1, &~ MWaniso :eBr(K5| 1).
anlso( 5I) Br|: :| aKSi
Alternatively, the logarithmic functions of the form
W' c_
anlso(|3) (I - 1)’ ’ — :_|3(: “ l)’ (60)

r aIS

J _ _ ‘]4i -1 6Wa‘r]1:so — Ar
Hnalu)= A"”(l A J By (A-du+D)

Kr
anlso(K5|) = B In| 1 K -1 ’ 6Wanlso _ Br '
Bf Ks (Br - K +l)

3.1.2.2.1 Anisotropic strain energy function for an incompressible material

With the incompressibility constraint |, =1, the strain energy function W,isoin Eq.

(53) then becomes

m n (61)
Wa{rrl]lcso (‘]4| J ch) ZZ Dr [Wajnriso (‘]4| ) Walﬁlrso (K B )}

r=li=1

Kine _ r [C"lGi } (62)

where Ké?c are the invariants Kgj under the incompressibility constraint 1, =1.

3.2 Validation

In this section, the proposed formulation Eq. (38) is validated and verified by
comparing the results with available experimental and numerical results.

Soft biological tissues are the materials that can exhibit different mechanical
characteristics due to their complex structures. The main part of tissue that usually provides
structural support for cells is the extracellular matrix which composes of the collagen, elastin
and ground substance. The collagen forms fibers or networks providing reinforcing structures.

The elastin gives stiffness to the tissue and stores most of the strain energy at small strains
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while at large strains, collagen fibers play an important role. With increasing deformation
these fibers produce a strong growth in tissue stiffness. This type of matemial can thus
undergo large nonlinear elastic deformations and have high anisotropic characteristics [21].
The model is specified and applied to predicting the large nonlinear elastic behavior
in soft biological tissues under uniaxial and biaxial states of stress. In order to describe the
mechanical behavior of the tissue samples, an incompressible fiber-reinforced composite is
often assumed for each layer with two mechanically equivalent families of collagen fibers that
form symmetrical helices tilted by an angle ¢ against the circumferential direction [22, 23].

This assumption is also adopted in this study.

3.2.1 Uniaxial tension tests on arterial tissue

The proposed model is applied to a set of experimental data on human arterial
tissue performed by Holzapfel et al. [24]. Arteries were split into the adventitial, medial and
intimal layer and tested in cyclic uniaxial quasi-static tension. The load was applied such that
the principal axes of deformation coincided with the circumferential, axial and radial direction
of the vessel. The stress response for loading in circumferential and axial direction was
recorded.

In order to describe the mechanical behavior of the tissue samples, the mentioned
assumption of considering each layer as an incompressible fiber-reinforced material with two
equivalent families of fibers arranged by an angle ¢ is adopted. For the isotropic term, Eq.
(45) is adopted while Eq. (61) is utilized for the anisotropic term with Eq. (59) as a clearly
exponential shape of the test results is observed. The orientations of the two fiber families

can be given by the vectors
my = COS@e,y +Singe,, m, = COS@e, —Sin ge,, (63)

where ey and e, are unit vectors in the circumferential and axial direction of the artery,
respectively. Applying Egs. (22), (25) and (62), the two generalized invariants can be
expressed in terms of the principal stretches under the incompressibility constraint
I, =4,4,4 =1 as

J4i = A5 c0s? p+ A2sin? o, (64)

KiM® = 1.2 cos? g+ A, 2sin? g,
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where Ay, A, and A, are the principal stretches in circumferential, axial and radial direction,
respectively. Considering one single term m = 1 and n = 2 with taking into account the
mechanical equivalence of the fiber families, so that W% :W%, Jap =J4p and K},@C = Kglc,
the strain energy function Eq. (38) for an incompressible material with the exponential

functions is then given by

For uniaxial tension test, the lateral directions are stress free and the Cauchy stresses in

circumferential and axial direction can be calculated, respectively, by

oW oW
Oy =ﬂ,9%, ;= Zg' (66)
Z

Fig. 3 shows the comparison results as Cauchy stress versus stretch diagrams. The
proposed model was fitted and compared to the experimental results as well as the
prediction results of Ehret and ltskov [23]. The five model parameters ( A, By, Dl,W} and @)
for each layer, i.e. intimal, medial and adventitial layer, were determined by using a least
squares regression analysis of the experimental data implemented using the commercial
package MATLAB. The values of the parameters as well as the sum squared error (SSE)
and R-square (Rz) obtained from the fittings are also presented in Fig. 3.

For all three layers, i.e. intimal layer in Fig. 3(a), medial layer in Fig. 3(b) and
adventitial layer Fig. 3(c), the comparisons are in good agreement with the experiemental

results with R2 of 0.9978, 0.9995 and 0.9981, respectively.
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Fig. 3 Comparisons of the model results with the experimental results under uniaxial tension

tests and with the prediction results of Ehret and ltskov [23]
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3.2.2 Biaxial tension tests on abdominal aorta

In this validation, the proposed model is applied to prediction of the anisotropic
behavior in human abdominal aorta under biaxial state of stress carried out by Geest et al.
[25] to study the age dependency of the behavior. The square samples were biaxially loaded
in circumferential and axial direction with different ratios between circumferential and axial
tension, Pgy . Pz - It was reported that the stress responses of samples obtained from
different age groups had different shapes. The stress-strain curves in terms of the second
Piola-Kirchhoff stress and the Green-Lagrange strain changed from a sigmoidal shape in the
youngest group (< 30 years) to an exponential nature in the older ones.

To model the stress response of the young arteries, the whole artery is considered
as an incompressible fiber-reinforced material with two symmetrically arranged fiber helices
and thus assumed that the principal axis of deformation coincide with the circumferential,
axial and radial direction [23]. The fiber orientation in Eq. (63) and the generalized invariants
in Eq. (64) are used. For the strain energy function, Eq. (45) is still adopted for the isotropic
part but the logarithmic form of Eq. (60) is utilized for the anisotropic part due to the s-
shaped stress-strain curves observed. By setting m = 1 and n = 2 as well as taking into
account the mechanical equivalence of the fiber families, the strain energy function Eq. (38)

for an incompressible material with the logarithmic functions is then given by

a8 ta]

2 Dl_— | 1—M)— |(1—&].
+ vv% _ Aln( A By In B,

W =(1-2wf

SN—

For biaxial tension test, the radial direction is stress free. The second Piola-Kirchhoff stresses

in circumferential and axial direction can be calculated, respectively, by

7, :/19—1%’ 7[2 zgglﬂ_ (68)
o2y oz,

The proposed model was first fitted to the experimental results (specimen 3 in [25])
with Pgy : P, ratios of 0.5:1, 1:1 and 1:0.5. The comparison results are presented in Fig. 4.
The obtained model parameters were then used to predict the remaining test results with
Pgo - Pz ratios of 0.75:1 and 1:0.75 as depicted in Fig. 5. A good agreement with the
experimental results shows in Fig. 4 with R2 = 0.9830 and in Fig. 5 with R2 = 0.9888.
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Fig. 4 Comparisons of the model results with the prediction results of Ehret and Itskov [23]

and with the experimental results under biaxial tension tests with pgyy : p,, ratios of 0.5:1,

1:1 and 1:0.5
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Fig. 5 Comparisons of the model results with the prediction results of Ehret and Itskov [23]
and with the experimental results under biaxial tension tests with pgyy : p,; ratios of 0.75:1

and 1:0.75
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Chapter 4

Hyperelastic Formulation of Column Buckling Equation

In Chapter 3, the strain energy functions for anisotropic hyperelastic materials under
finite strain have been derived. In this chapter, anisotropic constitutive relationships using the
developed strain energy functions are established for determining buckling equations which

include shear deformations for anisotropic columns.

4.1 Hyperelastic Constitutive Modeling

According to the proposed strain energy function in Eq. (38), a simple form, for the
isotropic part Wis, and for the anisotropic part W5, is considered for this purpose. The
constitutive modeling for isotropic materials proposed by [3] is recapitulated and adopted

herein.

4.1.1 Constitutive Modeling for Isotropic Part

A simple form, the neo-Hookean constitutive relationship, for the isotropic part of the

strain energy function is adopted herein as (see [3])

C 2
W, =%{tr(C—I)—2InJ}+?1(InJ) , (69)

1S0

where, for isotropic materials, A= the shear modulus G = )’ C, = the Lame constant

E
2(1+v
A= 2Gv

i2v)’ E is the elastic modulus and v is the Poisson’s ratio. Therefore, the second

Piola Kirchhoff stress tensor for the isotropic part Il;y, can be expressed as

1. = 2 a\Niso

o =2l = A[I-C*]+CInJC™ = Al-p,C?, (70)

where p,=A —C,InJ represents a hydrostatic stress. The Mandel stress tensor for the

isotropic part M, , which is another Langrangian stress tensor, is defined by
Mjso = ClIjgg (71)

Using Eq. (70), the Mandel stress tensor is given by
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M, =M, =AC-p,L (72)

1S0

The Mandel stress tensor, which is not generally symmetric, is found to be symmetric with
the expression above. Substituting Eq. (12) into Eq. (72), the Mandel stress tensor

components can be written as

A(L) -p, AALCOSp, ALl CoSq, (73)
M, =| AhL,cosp, A(L) —p, Al Cospy |.
AAAyCosp, AL, COsp,  A(4) -,

4.1.2 Constitutive Modeling for Anisotropic Part

A simple form for the anisotropic part of the strain energy function is adopted herein

W _— Dl i(eBl(Ksll) _1j (74)
aniso Bl ’

Therefore, the second Piola Kirchhoff stress tensor for the anisotropic part Il,,is, can be

as

written as

a\Naniso By(Ks1 -1 = - - 75
=2 Mo _ ppres (k- 1,C7G,C 7). (75)

l_[aniso
oC

Using Eq. (75), the Mandel stress tensor for the anisotropic part M g5, is given by

M _ 2Dl (KaI-1,C7'G,), (76)

aniso

M =CII

aniso aniso

i, =20 K -6, (4,) (1)),

M2, =M, =20%e™ (6,42, (4,) cosg, |,

aniso aniso

M13 — M31 — 2DleBl(K51*1) {Gl/‘ii (/12 )2 23 oS ¢13} ,

aniso aniso

i, =20t i, -6, (1) (4 ) (1-cos* ),

M2 =M®2 =_2 DleBl(Ksrl) {Gl (/11)2 12, cos g, COS (pla}’

aniso aniso

M = 2pleblka {KSI ~G,(4) (4) (1-cos’ @, )} .

aniso
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4.2 Equilibrium and Virtual Work

Assuming all external loading is conservative, the system is static and all body forces

are zero, the equilibrium equations at a point within a continuum can be expressed as (see

(3]

v-(OF)=V-S =0, [H" (67 +u’

Josteo

where S is the first Piola Kirchhoff stress tensor. The moment equilibrium, which must also

be satisfied, are
m =1, FS=S'F. (78)
The following must also be satisfied at the loaded boundary surfaces
n-(IOF)=n-S=p, H"(5rj +u"‘r)ni =S'n = p/, (79)

where n; are the covariant components of the unit normal vector nm to the boundary
surfaces and pj are the contravariant vector components of the applied surface tractions
p with respect to the undeformed state.

Using the theorem of virtual work, the equilibrium equations can also be expressed in
a weaker form. For kinematically admissible variation ¢, the Lagrangain first variation of

work oU based on virtual displacements can be expressed as
0 = [ vy — ] p-su0s = ][ Sr(nocyav - ] p-sus <o, @

where V is the volume in the undeformed state, S is the surface where the traction vector

p acts. Substituting Eq. (12) into Eq. (80), the first variation of work becomes
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{1‘[“/11 +I1% 4, cos ¢, + 1, cos g013} A, | (81)
+{I1% 2, +T1% 2, €08 g, + [1%°4, COS 9,5 | 5,

SU = ”IV +{T1% 4, + 1% 4, C0s @y + 1172, COS 0,5} 54,

_—le/?i/lz sin @, 00, —T1° A4, sin @00, —T17° 2,4, sin ©5300,; |
—”Sp-ﬁuds =0.

dv

4.3 Large Deformation Uniaxial Beam Plane Stress

For the plane stress case and uniaxial deformation as in thick beam bending, the
virtual work terms with respect to 04,,04; & d¢p,, would be zero (see [3]).

From Eq. (81), the stress terms

[T 4, + T A, cos ¢y, + [T 4, cOS @, (82)
A, + 1182, cos ¢, + 172, c0S @,

are the physical Lagrangain stresses conjugate to the stretch variations 04, &o4;,

respectively.

4.3.1 For Isotropic Part

Assuming @,, =7 and using the constitutive relationship Eq. (73), it can be shown

that the stresses in Eq. (82) are zero if

=B (8- B -

Therefore, substituting Eq. (83) and ¢,, =7 into Eq. (81), the virtual work for plane stress is

given by

{H“ﬂ1 + \/% (IT* cos gy, +11* cos g, )} 54, (84)

dVv —[[ p-Suds =0.
P (112 o 13 o §
—AA (H Sin @,,6¢,, —IT7sin (/’135(/’13)

Uy =[],

And substituting Eq. (83) and ¢,, =% into Eq. (73), the state of stress for plane stress for

large deformations is given by
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A (/11 )2 P A4 % cosg, AA % COS @5 (85)
Miso = Alﬂ'l\/% Cos ¢12 O 0
Ah A, COS 0 0

4.3.2 For Anisotropic Part

Similarly, assuming ¢,, =% and using the constitutive relationship Eq. (76), it can be

shown that the stresses in Eq. (82) are zero if

1 K 1 K (86)
A), == 5 == B
( 2 )anlso ﬂ’l \/Gl (1_ C052 ¢12) (j’3 )anlso ﬂl \/Gl (1_ COSZ ¢13)

Hence, substituting Eq. (86) and ¢,, =7 into Eq. (81), the virtual work for plane stress
becomes

{H“ﬂ1 +I1%(4,) . cosgy, +I1°(4,), . cos (013} A 4 (87)
5U aniso -”‘J.V _leﬂ'l (2’2 )aniso Sin (0125(012 - Hlsﬂ’l (/13 )aniso Sin ¢135¢13
—J.j P oudS

1 K |
A, +11% — 51 cos
& 4\ G (1_ cos” ¢, ) &

64
31 Ke, . COS @,
41\ G, (1-cos® g

2 K ;
_ ”I I1 \/ G (1_ Cf)lsz (012) sin 00, v
\

1" 51 sin @, 0
\/G1 (1_ 05’ ¢13) D13003

;”SpﬁudS:O.

And substituting Eq. (86) and ¢,, =% into Eq. (76), the state of stress for plane stress for

large deformations becomes
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K2 (88)
4 > _K51 J
G,(4)" (1-cos’ g )(1-cos’ g, )
opiells) { K, cos gy, Ky, }

Mll — _2 DleBl(KEA_l)

aniso

Mﬁ]iso = Mirlﬂso - !
(21)2 (1_ cos” (%K ) \/Gl (1_ cos” (%P )
. Y 2pePl*s) { K, COS gom/K_51 }
Maniso = Maniso - !
(21)2 (1_ cos” g, ) \/Gl (1_ cos’ g, )
Miiiso = 0’
ME - M _opte®lts { K, COS ¢,, COS ¢13}
aniso aniso \/(1_ COSZ o )(1_ C052 ¢13) )
M2 =0.

aniso

4.4 Beam Bending with Shear — Timoshenko Beam

In this section, a straight prismatic beam is considered as a three-dimensional
problem with bending, shear and axial deformation (see [3]).

The longitudinal axis of centroids of the undeformed beam is taken as the x or 1 axis
(see Fig. 6). The y or 2 axis and the z or 3 axis are taken as the principal axes in the plane
of the cross-section.

The deflection of the centroidal axis and the rotation of the cross-sectional plane are
assumed to govern the deflected shape of the beam. The Timoshenko beam approximation
is adopted as during deformation, it is assumed that the plane of the cross-section remains
plane but not perpendicular to the centroidal axis. In the deformed state, the angle between
the material base vector gl and the undeformed longitudinal axis consists of a bending
component & and shear components described by the angles ¢ & . The tangent base
vectors g, and g, are assumed to remain orthogonal or g,-g,=0. The unit vector n,
which is defined by g,xg, and normal to the cross-sectional plane in the deformed state,
lies in the plane of g, and g, and is given by

A

i = cos6i, +sindi,, t=-sindi, +cosbi,, b=i, (89)

where i;,i, and i, are unit base vectors in the x, y and z directions, respectively. The unit
vectors ﬁ,f&f) form an orthonormal set. The angle ¢ defines the rotation or torsion of the

g, & g, axes about the unit vector n.
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yor2

* xorl

zor3

Fig. 6 Tangent base vectors in the deformed state [3]

The bending angle is assumed to be a function of x only, & =6 (x), while the shear
angles @ & a are taken as a function of the coordinates x, y and z. At the level of the

centroid (y and z = 0), the shear angles are assumed as
?(x,0,0)=p,, «(x,0,0)=0. (90)

The condition of @2 -§3 =0 and the conditions mentioned in Eq. (83) for isotropic part
or in Eq. (86) for anisotropic part are utilised to allow for unrestrained dilation so that the
stress state in bending is approximately uniaxial. The tangent base vectors in the deformed

state can therefore be expressed as

for isotropic part:

g, = A, cosaam + A, Sinab, (8), = %(—cos¢l§+sin¢2), ®1)
(8), = %(sin;ﬁfwcos«/ﬁ), m = cos (¢ +0)i, +sin(p+0)i,,

for anisotropic part:
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= A, cosam + A sinab, (g, )arics = (22) s (— cos gb +sin ¢f), (92)

(85),10 = () s (sin #b + Cos g/ﬁ), m = cos(¢p+6)i, +sin(p+0)i,

Using Eq. (91) for isotropic part or Eq. (92) for anisotropic part, the deformation gradient

tensor for the uniaxial/plane stress Timoshenko beam problem can therefore be given by

for isotropic part:

[ (93)
A cos(p+0)cosa —sinfsing |= —sindcosg, |-
F, =| A4sin(¢+0)cosa  cosdsing /ph oS 6 Cos ¢ /p“
Asina —C0S ¢ Py sing P
i VA \ A
with volume invariant
Py (94)

=, COSpCosa —

for anisotropic part:

A cos(p+0)cosa —(4,), . sindsing —(4),  sindcosgs (95)
F =| Asin(p+0)cosa  (4,), . cosfsing (4;) . cosOcose
(%

ﬂlSina )aniso COS¢ (%)aniso Sin¢

with volume invariant

K,, COSCOS (96)
Glﬂi\/(l— cos’ gy, ) (1-cos’ gy,

‘]aniso = ﬂl (]7 )aniso (%)aniso COS@pCOSx =

The deformation of the cross-section can also be defined by using displacements

where the cross-section displaces as a plane of Timoshenko beam but is stretched within its
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own plane (see Fig. 6 and Fig. 7). At the centroidal axis (y&z = 0), the displacements are

defined by
U (%,0,0)=uy(x), U,(x,0,0)=v(x), uy(x,0,0)=0 (97)

where U,(X) and V(X) are the longitudinal (in direction 1 or x) and transverse (in direction 2
or y) displacements of the centroidal axis, respectively. The displacement functions in the x,

y and z directions are herein assumed to be

U, =Uy(X)— p, (X, y,2)sin@ (98)
u, =v(x)+p,(x,y,z)cosd -y
U, =p,(xy,2)-2

with the required conditions at the centroid

u, =—p, sind

T U, =p cosf—y

Fig. 7 Deformation of the cross-section in side view [3]

Substituting Eq. (98) into Eq. (8), the deformation gradient tensor defined by using

displacements is given by

(1+U,,)-p,0,, cos6—p,,sind —p, sind —p,,sind (100)
F=| v, -p0,sind+p,  coso p,,cos¢ p,, cosé
pz,x pz,y pz,z
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The relationship between the displacement gradients and the stretches and deformation
angles can then be obtained from Eqgs. (93) & (100) for isotropic part and from Egs. (95) &

(100) for anisotropic part as

for isotropic part:

A.c08(¢p+0)cosa =(1+uy, )=(p,) _6,,c0s6—(p,,) sind (101)
A sin(p+0)cosa =v,, —( py)iso 0, sin 0+( py’x)iso cosé

ﬂlsma:(pz,x)iso’ Sin¢ %:(pyvy)iso :(pz’z)iw’

b _ __
COS ¢\/Z ( py,z )iso ( pz,y )iso

with the requirements:

(py,y>i230+(pzyy)i250 :%’ (pz,z)izso +(py,z )i250 :%a (py’y py,z + pz,z vaY)iSO =0 (102)

for anisotropic part.

Ay c08(p+0)cosa =(1+u,, ) —(p, )anisc 0,,cos0—(p,, ). _sing (103)
Asin(p+0)cosa=v, —(p,) 6, sin0+(p,,) cosé

Asina=(p,,). v (A)uesiNg=(P,). + (A)yoSiNd=(P.), 0

~(22) o €050 =Py )y (Fa)ans €050 =(P,.0)

aniso

.o .
aniso aniso

with the requirements:

( py'y )zniso +( pz,y ):miso - (/12 )2 ! ( pz,z ):miso +( py,z )iniso - (ja )2 ! (104)

aniso aniso

(PyyPy.+P..P,y), =0

aniso

Using Egs. (89), (90), (91), (99) and (103) with an assumption that p,,(x,0,0)=0, the
conponents of the normal and tangential stretches on the plane of the cross-section can be

obtained as
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Ay =N-g =1,C0SpCOSa = A, COSp, — P, b, (105)
Ay =t-g = sinpcosa = A, sing, + p,
Ay =b-§, = Asina = P,

with
g €08, = (1+U,, )cOSO+V,, Sin 6 (106)

o Singy =—(1+U,, )sin @ +v,, cosd

and

Ay = (14, ) (v, (107)

where A, is the longitudinal stretch at the centroid. Using Eq. (106), the shear angle at the

centroid and the centroidal axis curvature are given by

v, (108)
tan(9+%)_1+uo,x

%_’_ d(ﬂo _ |:V’xx (1+u0,x)_v’x uO,xx:I

dx  dx (1+ uO,x)2

Using Eq. (105), the stretch A, can be written in terms of the normal and shear stretch

components as

()

(A cospcosa)’ +(4sinpcosa)’ +(4sina)’ (109)

2 . 2 2
= (/110 COS @, — pye’x) +(/110 SN @, + py,x) +( pz,x)
The shear angle ¢, which varies through the cross-section, can also be written as

_ Ay SiN g, + Py x (110)

4.4.1 Solutions for p, & p,

for isotropic part:
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For small deformations such that J,, =1 , A4,C0S¢, is close to unity and 8,, is
very small, therefore with p, = A —C,InJ and using Egs. (94) and (105), the hydrostatic

stress can be approximated as

Py 1 ~ (111)
A 1+2v(Acospcosa —1) V(4 008 0o 1)+ V(py)- x

1

1SO

According to Eq. (101), (pzvZ = pyyy) &(pLy :—pyyz)iso, and using Eq. (111), the partial

iso

differential Eq. (102) can be reduced to one equation as

( py’y)z +( py,z); ;1—21/(/110 COs ¢, —l)+ ZV( p, )iso o,, (112)

iso

p,(x0,0)=0, p,,(x0,0)=0
A solution for p, & p, can be obtained as

(pv)iso:y—VV(%OCOS%—1)+(y2—zz)e,xg (113)

(p, )iso =7—1v (A, oS, —1)+ ZyvO,,

As mentioned in [3], the displacements defined by Eq. (98) with the expressions in Eq. (113)
depict horizontal lines in beam cross-section becoming curved while vertical lines remain
straight with rotating (see Fig. 8). This implies that there is anticlastic tranverse curvature
associated with the beam bending. The anticlastic curvature leads to an average vertical

displacement different to the vertical displacement of the centroid, that is to first order
u,dA | —1 (114)
.”AAZ =V(X)+K( z ng’x

where |ZZ=HAy2dA&|W=HAZZdA are moment of inertia and %('“%)G,X is the

anticlastic term.
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Fig. 8 Anticlastic transverse bending in thick beam cross-section [3]
for anisotropic part.

For small deformations, a Taylor's series expansion of square of Eq. (86)a about
(4) (1—Cos2 golz)zl and of square of Eq. (86)b about (4 )’ (1—Cos2 ¢13)zl gives for

((/12 )2 &( 4, )2 ) the following approximation, respectively

aniso

I

((%)Z)amso K_[Z_(ﬂl)z (1_C032 ¢12):| (115)
K

G,
(7). = Lot o]

According to Eq. (103), (pm =2p, &p,, =-2 pyyz) , the partial differential Eq. (104)

aniso

can be reduced to one equation as

(20 (0, G (p,.) = (5T, 16
Py (X’010) =0, p,. (X,0,0) =0

Using Eq. (115), Eq. (116) can be approximated as
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[2-(4) (L-c05g,) (B, )+ 2 (A (1008203, ) |(p,, ), (1)
= I;_T[Z ~(4) (1-cos* @y, )} [2 ~(4)’ (1-cos’ 4013)}

p,(x.0,0)=0, p,,(x,0,0)=0

A solution for p, & p, can be approximated as

KSl

(B = ¥02)_. =y 2-(0) (1050
~2(2)_ -2 [ o) (oo )

(118)

4.4.2 Constitutive Relationships for the Internal Actions

Using the Reissner orientation which assumes that the axial force is normal to the
cross-section plane and the shear force parallel to this plane (see Fig. 9), rotating the first
Piola Kirchhoff stresses through an angle € gives stresses which are normal and parallel to
the cross-sectional plane [3]. Hence using IIF =S and Egs. (70) and (93) for isotropic part
and using ITF" =S and Egs. (75) and (95) for anisotropic part give

for isotropic part:
A4 COSQCOSa o A sinpcosa Adsina (119)
(S ) =| VAP, (tan psin g — et 0 0
JADP, (tan @COS ¢ ——tancf,‘ss;"¢) 0 0
for anisotropic part:
(811) _ 2Dt COS@Cosa (120)
R Janiso

- 2 (cos® g, +cos” gy 1)

'{K51 -G, |:((/12 )2 (ﬂa)z) + (ﬂi)z (4 )iniso C0s” g, + (ﬂi)z (ﬂs)zniso cos’ (PHJ}

aniso
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) oDtk (121)
@0 7 (cos? gy, +cos’ gy, ~1)

(2
Ks, (sin@pcosa —cosgcos g, —singcose, ) -

((/12 ) (% )2) (singcosa — cosgcos g, —sin¢cos g, )

aniso
2

' G| +(4) (ﬂ,z):mso(cos2 ¢13{Sin¢COSa—Sin¢COS(p12}+COS¢COS(013{COSZ(p12—1})

() (&) (cos2 ¢, {sinpcosa —singcos oy, | +sin geos gy, {cos® oy, ~1})

(s5) - _opte®lta (122)
" a0 3, (cos® gy, +cos” gy, —1)
Ks, (sina —singcos g, +cosgcose, ) -

((/12)2 (/13)2) (sina —singcosg,, +cosgcosg,, )

aniso

g, +(A) (&) (cos2 s (SN +COSPCOS P, | +5iNPCos g, {cos2 P —1})

2

+(4) (4 )imso (cos2 o, {sina —singcos g, } — cosgeos g, {cos2 P —1})

( 21) _ 2D1eBl(K51*1) COS@COSC{ COosS (012 (1 »
R Janiso (A),. (c052 @y, +C0S’ @ —1) )

(K= () (), + () ()i 05" 0+ (A)' (2o (10803 |

aniso

B1(K51_1)
. o (124)
aniso (lz )aniso (COS2 @, + cos’ D13 _1)

K, {COS(/)lz (singcosa - cos pcos gy, ) +sing(cos’ g, —1)} -

(%) (%))

{cosg, (sinpcosa —cospcos gy, —singcose, )|

aniso

2 - -
, |cosg,cos (/713(Sln¢)COSa—Sln¢COS(012)}

o +(a) (&)

+C0S 2y, COS $COS oy (COS” o, —1)

oS, (SinpCcosa —Ccosgcos g, ) —sin g
+ () (A 1 +COS” 15 (25in ¢ —sin gcos’ gy, + COS P COS @y, COS 2y, )

+singcosa cos g, (1-cos’ g, )
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(s2) _opte?a) (125)
R /aniso (lz )aniso (COSZ Db + COSZ P _1)
K, {COSgo12 (singcos gy, —sina )+ cos¢(cos’ gy, —1)} -
((/12 )2 (23)2 )aniso {COS @, (sin $COS@,; —COSPCOS e, —Sin a)}
- CoS ¢, C0S” @y, (—COSPCOS @y, —siner)
Gl +(j'1)2 (ﬂ'2 )iniso - 2
—~C0s 2y, SiN $Cos ;5 (COS” g, —1)
cos ¢, (sinqﬁcow13 —sina)—cosg¢
() (A5 )ieo 1+€0S” 1 (2C03 6 — cOs g cOS° 0,5
+C0S” @y, (—SiNgCcos gy, COS @, +SiNa COS @, )
(126)

(s3) = 20%” " cospcosa cos ZE
R Janiso (23 )aniso (COS2 @, t+ cos D13 _1)

{K G, (&) (B)), +(A) () 005" 0 +(A) (1 )op (L-c0 0 )}}

aniso

oD% (127)

32 —
(SR )aniso B (%)aniso (COS2 @, + cos’ D3 _1)

Ks; {cos @15 (sinpcosa —singcos g, )+ cos¢(cos2 @, —1)} -

((AQ ) (4 )2) {cosgy, (sinpcosa —cos$cos gy, —singcose, )|

aniso
sin g cos gy, s g, (cos” gy, —1)

2

G, Jr(ﬂi)z(ﬂ,z)aniso —singocowcoswls(coszgolz—1)

+¢0s’ gy, (2¢0s ¢ — cos pcos’ gy, ) — cos ¢

, | cos® ¢, cosg,,(sinpcosa —cosgcose,;)

2
+ .
(/11) ( aniso | | i ¢COS @, COS @4 (COSZ D3 _1)
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. 2D’ (128)

(S5 )aniso - (7)o (COS” 21, + COS® 15 —1)

Ks; {COSgo13 (cosgcosg,, +sina)+sin ¢(0032 P —1)} -

((ﬂ7 )2 (/13)2) {cos g, (cosgcosgy, +sina —singcose,, )|

aniso

—C0S $C0S @y, COS ;4 (COS” 9, 1)
G| +(4) (ﬂz);m —sinacos g, (0052 P —1)
+c0s’ gy, (2sin ¢ —sin gcos’ g, ) —sing

(oo Becoma(ina—singooses)
aniso —COS¢COS @, COS @, (COS2 @3 —1)

Fig. 9 Beam internal actions

The constitutive relationships for the internal actions can be determined by defining

the internal actions as the stress resultants over the cross-section as

for isotropic part:

)-8, 08 (@0, (67, =
(@) = .”.A(Sés)iso dA=0, (M), = ”A_ Py (Sél)iso dA

where N is the axial force perpendicular to the cross-sectional plane in the direction n, Q
is the shear force within the cross-sectional plane in the direction t, Q, is the shear force

within the cross-sectional plane in the direction b and M is the bending moment resulting
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from the stress perpendicular to the cross-sectional plane (see Fig. 9). Substituting Eq. (119)
with Eq. (105), (111) and (113) into (129) and assuming that (4,) COs@COsa is close to

unity and QX is very small, gives (to first order)

(N)., ~EA(4ycosp,-1), (130)

(Q),, = GA4, cos ¢, +%\/G(IZZ - |yy)9,xx' (M) =EL0,

For a stability analysis, the constitutive relationships for the internal actions to second order

terms are normally used and can be obtained as

(N)._ =~ EA(UO,X +%v§ —%gojj, (131)

1
(Q),, *CGA(L+uy, ) e, +§vG(|ZZ —1,)0,. (M), ~El0,
Using the Ziegler orientation which assumes that the normal force N,, is directed along the

centroidal axis while the shear force Q,, is perpendicular to the centroidal axis of the beam,

the constitutive relationships are given by

(Ni),, = EA(UO]X +%v§ —%gp§j+GA(1+ o ) 0% +%VG (,-1,)00,, 1%
(Qu),, =GA(L+U,, )@, +%ve (1,-1,)0.—EAU, 0, (133)
From Egs. (131) to (133), the simple expressions can be obtained as
(Nio)go ®(N )i +(Q)io 200 (Quo)igo ® Q)i =(N) i, 25 (134)
for anisotropic part:
(N = J.J.A(Sél)aniso A (Q)e :.UA(S;Z ) A (135)

Qi = JI, (55 9R=0. - (M), = [[, P, (S2') 0A

aniso

Substituting Egs. (120) to (122) with Eq. (115) into (155) gives (to first order)
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(N} =~ _op'e®* YK Acospcosa (136)
" A4G, (cos gy, +cos’ gy, —1)

‘ Gl_4K51(1_(/11)2)
~2(cos? g, + cos? 4013)((/?1)2 + Kslﬂl)

Q). ~ _opte® ek A
A 2G, (cos” @y, + cos” g, —1)

(G, — 4K, ){sinpcosa —cospcosg,, —singcosp, |
142(4) G, {sinqﬁcos(p12 —sin (pcom(cos2 @y, + COS? (/)13)}

, |sinpcosa(2-cos’ gy, - cos’ gy, ) — cos peos gy, (2 cos” gy, —cos gy, )

+2K, (4)

—singcos gy, (2 - cos g, —cos’ ;)

2D1eBl(K“_l)K51Acos @Cosa
4G, (cos” gy, +cos’ oy, ~1)

K

(M )aniso ~ y\/?’;l{z_(ﬂl)z (1—0052 ¢12)}

| G, - 4Ky (1-(4)’)

—2(cos” gy, + cos’ 4013)((/?1)2 + Ksﬁl)

4.4.3 Equilibrium and Virtual Work

Using the Reissner stresses, the equilibrium Eq. (77) for the beam problem can be

expressed as

oSy N oSzt N Sq _ 0 (137)
OX oy 0z
oSy N oSZ N 0S¥ 0
OX oy oz
oSy N oSZ° N oS¥ 0
OX oy 0z

And the equilibrium Eq. (78) becomes
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—SA, sinpcosa +SF A cospcosa = S2A, sing+ S3'A, cos ¢ (138)
SEA,sina—SE A sinpcosa =SP4, cosg+S2A, sing—SP A, sing+ S, cos ¢
Si'4, (tangtana +sin @) -S54, (tan gsinp —tan ) = SF24, cos ¢

+S22 2, tangcosp—SA tangcosp + S A, cosg

In addition, the virtual work can be expressed in terms of the Reissner stresses as

SH5( A cospcosa )+ SRS (A, singpcosa (139)
éU:_[” R (21 .Co ) R.(Zl » ) 4
V| +S35 (A4 sina)+(SEA sinpcosa — S A sina ) 5

- ﬂspauds =0

Noting that, 4, =4 cosgcosa, A, =4 Ssinpcosa, A, =4 Sina as expressed in Eq. (105).
Substituting Eq. (105) into Eqg. (139) gives

Sz 6 (A COS@,)— Sy P, 6, —S'0,5p, + S (A, sing,) (140)
(I _ aV = [[ pouds
v +Sé25py,x +Sé35pz,x +{Sé3 (ﬂ‘lo S|n¢’o + py,x)_sé2 pzx}5¢ s

Using Eq. (106) and N =[] Si'dA, Q =[] SFdA, Q, = [[ S¥dA M =[] —p,Si'dA, an

approximation of Eq. (140) is given by

[P, + R0V, ~ 44Qu80+ M50, + 40Qu006 dx = [[ pSuds (141)

O e

In which
P =Ncosd-Qsingd, P, =Nsingd+Q, cosd, (142)
Qo =—Nsing, +Q,cosg,, Qy =Q,sing,
P, and Py are the internal force resultants in the x and y directions (see Fig. 9),
respectively, while Q,, is the shear resultants perpendicular to Q,, with Ziegler orientation.

In addition, another simple form of the virtual work can be obtained by using Eq. (140) with

N =[] sidA, Q =[] S¥dA, Q, =[] S¥dA M =[] —p,SidA as

[NS( 2 0050,)+Q (A Sing,) + M0, +Q, 4 sin,5p dx = [[ pouds %)

(=



Hyperelastic Formulation of Column Buckling Equation 50

T[N + Quind, + M8, + Q9 i = [] poucs (144)
0

4.4.4 Column Buckling

Fig. 10 Simple column under uniaxial load

Consider a straight prismatic simply supported column (see Fig. 10) under initial
uniform axial stress S;l =—% where P is the axial force. Using Eq. (144) with Eq. (137),
(138) and N, * N+Q¢,, Q,~Q,—Ng,, Q,, =Q,, the second variation of work for the

Timoshenko beam can be obtained as

P32 N+ T00Q0, (149)
s = j . . dx—“sp52ud8
0 +3 P A, 0%, + E5|\/| 30, +51105Qb5¢
in which
2
B _ 1(6v, 3 (146)
Ao =140y, Oy=0Uy,, Ao = §(1+U3X . 6oV, =(1+1,, )(Sp, +50)
In order to simplify the formulation, the following approximations are adopted.
NtO =W (N ) +(l WO)(N )aniso ’(NtO )aniso zﬁN (NIO)iso (147)

Q2 Wy (Q o+ (1= W0 )(Q) o (Q )i = Bt (Q)s
M ~wp (M) +(1-wp)(M), . (M), = Bu (M),
Qo & (1=Wo ) (R ) o +(Q )anico = Bon ()i
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Substituting Eqgs. (131), (132), (146) and (147) into Eq. (145), the second variation of work

for the Timoshenko beam becomes

P — 2 2y 1 2

(L 0., ){(50+ 60, )" - (50,) }+§(W° + By — BuW, )EA(SU,, ) (148)
1 2 1 N2 2

+§(Wo +ﬂM _ﬂM Wo)Elzz (50,x) +E(Wo +:BQ1 _ﬂQtWO)GA(1+uO,x) (5%)

s =] +%( Bt~ ProsWo )AL+ T, , )’ 50,659 dx

1 _

+Z(Wo + By _ﬂQtWO)VG(Izz - Iyy)(1+uo,x)5g,xx5%

+%(ﬂth ﬂQbWO)VG(Izz - Iyy)(1+UO,x)50,xx§¢

-| Lp&zuds

4.4.5 Column Buckling Formula
In this section, the buckling load formula for a simple column as shown in Fig. 10 is
derived. Assuming U,, = Ef;, ignoring the axial rigidity terms and the anticlastic terms, the

second variation Eq. (148) is simplified as

f el p i a1 2] (149)
—3(1—5J{<59+5%> ~(80 )"} +5 (W By = By, )ELL, (60,)
KR =‘c[ +%(Wo +ﬂQt _ﬂQtWO)GA(l_%J (5(/)0)2 i
+1(ﬁ — By W )GA(l—ij2 50,0
5 Faw ™ Porfo EA 0 i

—_”Spé'zuds

The functional Eq. (149) is set to zero in order to determine its lower bound. The following

expressions are obtained as the variation symbol has been dropped.

(Wy + By = Buw, ) ELL,O, :—P(l—%j(m%) (150)
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P

2
(151)
(Wo +ﬂQt _ﬂQtWO)GA(l_aJ Dy

+( Bow — ﬂQbW)GA(l——j¢ P( EPAje

Assuming that ¢ = 3,0, Egs. (150) and (151) can be rewritten in a simplified form as

120, +b0 =0, ri=-z (152)
: A
in which
i 1— ﬂ¢ (:Bth _:BQbWO) (153)
i 1 EAl™ (W + By — BaWs)
(Wo + Py _ﬂMWO) +(ijz E . By (ﬂth _[’)wao) 1
EA (Wo +ﬂQt _:BQtWo)G (Wo +ﬂQt _'BQIWO)

Applying the boundary conditions for the problem considered, ¢, =0 at x=0&L, the
solution to the differential Eq. (152) for compression loading is obtained as the classical

cosine function for the buckling mode bending angle.

G(X):clcos(@]jucz sin(@] (154)

r
L L
—C Lsm(\f J , C,=0
r r
The critical buckling load is obtained by assuming that b is real and non-zero, @ =Nrx

where n representing the buckling mode number is an integer, as

L 1 ! T AN P (W B — BuWo) (W + By~ )G (1Y)
EA 2(1-£ ] \l1 EA(AG-E)
7’El,,

LZ

__E
£G

B =Wy + By = PorWo — By (ﬂth — P Wo )’ Puater =
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

In order to obtain buckling equation for anisotropic columns, a generalized strain
energy function for anisotropic hyperelastic materials has been derived and proposed in this
study. The proposed strain energy function has been verified by comparison to experimental
results. The strain energy function was decomposed into an isotropic and anisotropic
component. The formulation was based on the framework of the invariant theory and
polyconvexity and coercivity conditions. The anisotropy was represented by an isotropic
tensor function through the so-called structural tensors. The specific functions for the
anisotropic component were presented. The proposed strain energy function was shown to
accurately predict the anisotropic stress response of human arterial tissues under uniaxial
and biaxial tests. Finally, a simplified buckling equation which includes shear deformations for

anisotropic columns has been determined using the proposed strain energy function.

5.2 Recommendations

Some further studies that can be suggested are the following.

® More applications of the proposed model to other materials for further

developments.

® To formulate buckling equation by using a consistent hyperelastic formulation.
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