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Abstract

In this research, we are interested in finding sufficient conditions for constructing A and

strong convergence theorems for the sequence {Xn} defined by X; € K,

Xny1 = P((1= )%, + @, TP[(1= B )% + BT ]), N2 Lo (™)

where K is a closed convex bounded subset of a complete CAT(0) space X and
P : X — K is the nearest point projection from X onto K and T : K — X is a nonexpansive
mapping with F(T):: {X eK:Tx= X};t %)
A

Moreover, we also obtain some sufficient conditions for constructing

{X } defined by ¥ € K,

and strong

convergence theorems for the sequence
Zy =0T Xy + (1= 70 )%y
Yo =BT "2+ (1= B1n)Xn
X1 =0T Yo +(1=a )Xy,  N2lo. 2)

where K is a closed convex bounded subset of a complete CAT(0) space X and

T :K — X is an asymptotically nonexpansive mapping

Keywords: Fixed point, nonexpansive mapping, CAT(0) space, A convergence, strong

convergence
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Vlt]ﬂf]'uﬂ 1 Let K be a nonempty closed convex subset of a complete CAT(0) space X and let T :
K — X be a nonexpansive mapping with X € F(T)={xe K :Tx=x}. Let {o,} and {8} be
sequences in [¢,1—¢] for some ¢ €(0,1). Starting from arbitrary x, € K, define the sequence{x,}

by the recursion (1). Then limd(x ,X’) exists.
n

Vlt]fls}f]'uvl 2 Let K be a nonempty closed convex subset of a complete CAT(0) space X and let T :
K — X be a nonexpansive mapping with F(T) = . Let {&,} and {f,} be sequences in [¢,1-¢]
for some ¢ €(0,1). Starting from arbitrary X, € K, define the sequence{x,} by the recursion (1).
Then Iirfn d(x,,Tx,)=0.

‘l’li]fl:l'ﬁﬂ‘l’l 3 Let K be a nonempty closed convex subset of a complete CAT(0) space X and let T :
K — X be a nonexpansive mapping with F(T) = . Let {&,} and {f,} be sequences in [¢,1-¢]
for some ¢ €(0,1). Starting from arbitrary X, € K, define the sequence{X,} by the recursion (1).
Then {X } A—converges to a fixed point of T.
‘nqaskfju*n 4 Let K be a nonempty closed convex subset of a complete CAT(0) space X and let T :
K — X be a nonexpansive mapping with F(T) = J. Let {«,} and {f,} be sequences in [&,1-¢]
for some ¢ €(0,1). Starting from arbitrary X, € K, define the sequence{x,} by the recursion (1). If
T satisfies condition I, then {X_}converges strongly to a fixed point of T.
Vlt]ﬂf]'uﬂ 5 Let K be a nonempty closed convex subset of a complete CAT(0) space X and let S,T
: K > K be two nonexpansive mappings with F(S)NF(T) = J. Let {«,} and {.} be
sequences in [g,1—¢] for some ¢ €(0,1). Starting from arbitrary x, € K, define the sequence{X, }
by the recursion

Xps1 = (1= 0t ) Xy + @S| (1= B ) Xn + BTy |.
Then {X,} A —converges to a common fixed point of S and T.
Ylt]ﬂf]'uﬂ 6 Let C be a nonempty closed, bounded and convex subset of a complete CAT(0) space
X and let T : K — K be an asymptotically nonexpansive mapping with {k.} satisfying {k .}>1 and
D (k, —1)<oo. Let {,}.{B.}. {r,}be sequences in [0,1] satisfying
(i) 0 <liminf o, < lim sup «,< 1 and
(i) 0<liminf B < limsup S <1.

For a given X, € C, define
Zy =T Xy +(1=71n) %y
Yn =BT "2n +(1=Bn) %

Xno1 =0T Y + (1= ap) X,

Then {X,} A—converges to a fixed point of T.



Vlt]ﬂf]'uﬂ 7 Let C be a nonempty closed, bounded and convex subset of a complete CAT(0) space
X and let T : K — K be a completely continuous asymptotically nonexpansive mapping with {K_}
satisfying {k,}>1 and Z:(kn —1)<oo. Let {o,} .{B.}. {r,}be sequences in [0,1] satisfying

(i) 0 <liminf o, < lim sup ,< 1 and

(i) 0<liminf B < limsup S ,<1.

For a given X, € C, define

Zy =T Xy +(1=71n) %y

Yo =BT "2y + (1= B1n)Xn

Xn1 =0T Y + (1= ap) X,

Then {X.} converges strongly to a fixed point of T.
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Suppose that K is a nonempty closed convex subset of a complete CAT(0) space X with the
nearest point projection P from X onto K. Let T : K — X be a nonexpansive nonself mapping
with F(T) := {x € K : Tx = x}#0. Suppose that {x,} is generated iteratively by x; € K,
X1 = P((1 = an)xn © ay,TP[(1 = Br)xn @ PuTx,]), n > 1, where {a,} and {f,} are real sequences
in [¢,1 - €] for some ¢ € (0,1). Then {x,}A-converges to some point x* in F(T). This is an analog
of a result in Banach spaces of Shahzad (2005) and extends a result of Dhompongsa and Panyanak
(2008) to the case of nonself mappings.

1. Introduction

A metric space X is a CAT(0) space if it is geodesically connected and if every geodesic
triangle in X is at least as “thin” as its comparison triangle in the Euclidean plane. It is
well known that any complete, simply connected Riemannian manifold having nonpositive
sectional curvature is a CAT(0) space. Other examples include Pre-Hilbert spaces, R-trees
(see [1]), Euclidean buildings (see [2]), the complex Hilbert ball with a hyperbolic metric (see
[3]), and many others. For a thorough discussion of these spaces and of the fundamental role
they play in geometry see Bridson and Haefliger [1]. The work by Burago et al. [4] contains
a somewhat more elementary treatment, and by Gromov [5] a deeper study.

Fixed point theory in a CAT(0) space was first studied by Kirk (see [6, 7]). He showed
that every nonexpansive (single-valued) mapping defined on a bounded closed convex
subset of a complete CAT(0) space always has a fixed point. Since then the fixed point theory
for single-valued and multivalued mappings in CAT(0) spaces has been rapidly developed
and much papers have appeared (see, e.g., [8-19]).

In 2008, Kirk and Panyanak [20] used the concept of A-convergence introduced by
Lim [21] to prove the CAT(0) space analogs of some Banach space results which involve
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weak convergence, and Dhompongsa and Panyanak [22] obtained A-convergence theorems
for the Picard, Mann and Ishikawa iterations in the CAT(0) space setting.

The purpose of this paper is to study the iterative scheme defined as follows. Let K
is a nonempty closed convex subset of a complete CAT(0) space X with the nearest point
projection P from X onto K. If T: K — X is a nonexpansive mapping with nonempty fixed
point set, and if {x,} is generated iteratively by

x1 €K, xp1=P((1-an)xy®a,TP[(1-f)xn & fuTx4]), (1.1)

where {a,} and {p,} are real sequences in [¢,1 — €] for some € € (0,1), we show that the
sequence {x,} defined by (1.1) A-converges to a fixed point of T. This is an analog of a result
in Banach spaces of Shahzad [23] and also extends a result of Dhompongsa and Panyanak
[22] to the case of nonself mappings. It is worth mentioning that our result immediately
applies to any CAT(x) space with x < 0 since any CAT(x) space is a CAT(x') space for every
k' >« (see [1, page 165]).

2. Preliminaries and Lemmas

Let (X, d) be a metric space. A geodesic path joining x € X to y € X (or, more briefly, a geodesic
from x to y) is a map c from a closed interval [0,I] C R to X such that ¢(0) = x, c(I) = y,
and d(c(t),c(t')) = |t — t| for all t,¢' € [0,]]. In particular, c is an isometry and d(x,y) = I.
The image a of ¢ is called a geodesic (or metric) segment joining x and y. When it is unique
this geodesic segment is denoted by [x,y]. The space (X, d) is said to be a geodesic space if
every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is
exactly one geodesic joining x and y for each x, y € X. A subset Y C X is said to be convex if
Y includes every geodesic segment joining any two of its points.

A geodesic triangle A(x1, X2, x3) in a geodesic metric space (X, d) consists of three points
x1,%2,x3 in X (the vertices of A) and a geodesic segment between each pair of vertices (the
edges of A). A comparison triangle for the geodesic triangle A(x1,x2,x3) in (X, d) is a triangle
A(x1,x2,%3) = A(X1,%2,%3) in the Euclidean plane E? such that dg: (xi,x;) = d(x;,x;) for
i,j€{1,2,3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles of appropriate
size satisfy the following comparison axiom.

CAT(0): Let A be a geodesic triangle in X and let A be a comparison triangle for A. Then A
is said to satisfy the CAT(0) inequality if for all x,y € A and all comparison points
X,yen,

d(x,y) < de(X,7). (2.1)

If x, y1, Y are points in a CAT(0) space and if 1 is the midpoint of the segment [y, ¥>],
then the CAT(0) inequality implies

1 1 1
d(x,y0)* < zd(xr}/l)z + Ed(WZ)Z - Zd(y1/y2)2~ (CN)
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This is the (CN) inequality of Bruhat and Tits [24]. In fact (cf. [1, page 163]), a geodesic space
is a CAT(0) space if and only if it satisfies the (CN) inequality.

We now collect some elementary facts about CAT(0) spaces which will be used
frequently in the proofs of our main results.

Lemma 2.1. Let (X, d) be a CAT(0) space.

(i) [1, Proposition 2.4] Let K be a convex subset of X which is complete in the induced metric.
Then, for every x € X, there exists a unique point P(x) € K such that d(x,P(x)) = inf{d(x,y) :
y € K}. Moreover, the map x — P(x) is a nonexpansive retract from X onto K.

(ii) [22, Lemma 2.1(iv)] For x,y € X and t € [0, 1], there exists a unique point z € [x,y]
such that

d(x,2) =td(x,y),  d(y,z)=1-bd(xy). (2.2)

one uses the notation (1 — t)x @ ty for the unique point z satisfying (2.2).
(iii) [22, Lemma 2.4] For x,y,z € X and t € [0, 1], one has

d(Q1-txety,z) <(1-t)d(x,z)+td(y, z). (2.3)
(iv) [22, Lemma 2.5] For x,y,z € X and t € [0,1], one has
d((1-tHxety,z)’ < (1-td(x,z)?+td(y,z)" - t(1-Hd(x,y)". (2.4)

Let K be a nonempty subset of a CAT(0) space X and let T: K — X be a mapping. T
is called nonexpansive if for each x,y € K,

d(Tx,Ty) <d(x,y). (2.5)

A point x € K is called a fixed point of T if x = Tx. We shall denote by F(T) the set of fixed
points of T. The existence of fixed points for nonexpansive nonself mappings in a CAT(0)
space was proved by Kirk [6] as follows.

Theorem 2.2. Let K be a bounded closed convex subset of a complete CAT(0) space X. Suppose that
T: K — X is a nonexpansive mapping for which

inf{d(x,T(x)): x € K} =0. (2.6)

Then T has a fixed point in K.

Let {x,} be a bounded sequence in a CAT(0) space X. For x € X, we set

r(x,{x,}) = limsup d(x, x,). (2.7)

The asymptotic radius r({x,}) of {x,} is given by

r({x,}) = inf{r(x, {x,}) : x € X}, (2.8)
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and the asymptotic center A({x,}) of {x,} is the set
A({xn}) = {xe X :r(x, {xa}) =r({xa}) }. (29)

It is known (see, e.g., [12, Proposition 7]) that in a CAT(0) space, A({x,}) consists of
exactly one point.
We now give the definition of A-convergence.

Definition 2.3 (see [20, 21]). A sequence {x,} in a CAT(0) space X is said to A-converge to
x € X if x is the unique asymptotic center of {u,} for every subsequence {u,} of {x,}. In this
case one writes A-lim,x, = x and call x the A-limit of {x,}.

The following lemma was proved by Dhompongsa and Panyanak (see [22, Lemma
2.10]).

Lemma 2.4. Let K be a closed convex subset of a complete CAT(0) space X, and let T: K — X be a
nonexpansive mapping. Suppose {x,} is a bounded sequence in K such that lim,d(x,, Tx,) = 0 and
{d(xp,v)} converges for all v € F(T), then wy,(x,) C F(T). Here wy, (x,) = \J A({u,}) where the
union is taken over all subsequences {u,} of {x,}. Moreover, wy,(x,) consists of exactly one point.

We now turn to a wider class of spaces, namely, the class of hyperbolic spaces, which
contains the class of CAT(0) spaces (see Lemma 2.8).

Definition 2.5 (see [16]). A hyperbolic space is a triple (X, d, W) where (X, d) is a metric space
and W : X x X x [0,1] — X is such that

W1) d(z, W(x,y,a)) < (1 -a)d(z,x) +ad(z,y);

(W2) dW (x,y,2), W(x,y,p)) = |a - pld(x,y);

(W3) W(x,y,a) =W(y,x,1-a);

(W4) dW(x,z,a), Wy, w,a)) < (1-a)d(x,y) +ad(z, w)

forallx,y,z,w e X,a,p € [0,1].

It follows from (W1) that for each x,y € X and a € [0, 1],
d(x,W(x,y,a)) <ad(x,y),  d(y,W(xya))<1-a)d(xy). (2.10)
In fact, we have
A W(xy,a) =ad(xy),  dyW(xya)=0-0dkxy), @11
since if

d(x, W(x,y,a)) <ad(x,y) or d(y,W(x,ya))<1-a)d(x,y), (2.12)
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we get

d(x,y) <d(x,W(x,y,a)) +d(W(x,y,a),y)
<ad(x,y)+ (1 -a)d(x,y) (2.13)

=d(x,y),

which is a contradiction. By comparing between (2.2) and (2.11), we can also use the notation
(1-a)x e ay for W(x,y, a) in a hyperbolic space (X,d, W).

Definition 2.6 (see [16]). The hyperbolic space (X, d, W) is called uniformly convex if for any
r >0, and € € (0,2] there exists a 6 € (0,1] such that forall a,x,y € X,

d(x,a)<r
d(y,a)<r = d<%x@ %y, a> <(1-06)r. (2.14)
d(x,y) >er

A mapping 77 : (0, 00) x (0,2] — (0,1] providing such a 6 := 5(r, €) for given r > 0 and
€ € (0,2] is called a modulus of uniform convexity.

Lemma 2.7 (see [16, Lemma 7]). Let (X, d, W) be a uniformly convex hyperbolic with modulus of
uniform convexity 1. Foranyr >0, € € (0,2], A € [0,1] and a,x,y € X,

d(x,a)<r
d(y,a) <r p=d((1-Vxely,a) < (1-201-)n(r,e))r. (2.15)
d(x,y) >er

Lemma 2.8 (see [16, Proposition 8]). Assume that X is a CAT(0) space. Then X is uniformly
convex, and

n(r,e) = % (2.16)

is a modulus of uniform convexity.

The following result is a characterization of uniformly convex hyperbolic spaces which
is an analog of Lemma 1.3 of Schu [25]. It can be applied to a CAT(0) space as well.

Lemma 2.9. Let (X,d, W) be a uniformly convex hyperbolic space with modulus of convexity 1,
and let x € X. Suppose that 1 increases with r (for a fixed €) and suppose that {t,} is a sequence
in [b,c] for some b,c € (0,1) and {x,}, {yn} are sequences in X such that limsup,d(x,, x) <
r, limsup,d(y,, x) < r, and lim,d((1 - t,)x, ® t,yn, x) = 1 for some r > 0. Then

lim d(xp, yu) = 0. (2.17)

n— oo
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Proof. The case r = 0 is trivial. Now suppose r > 0. If it is not the case that d(x,,y,) — 0as
n — oo, then there are subsequences, denoted by {x,} and {y,}, such that

irr}fd(xn, Yn) > 0. (2.18)
Choose ¢ € (0,1] such that
d(xn,yn) > e(r+1)>0 VneN. (2.19)

Since 0 < b(1 -¢) < 1/2and 0 < 5(r,e) <1, 0 < 2b(1 — c)n(r,e) < 1. This implies 0 <
1-2b(1-c)n(r,e) <1.Choose R € (r,r + 1) such that

(1-2b(1-c)n(r,e))R<r. (2.20)
Since
limsupd(x,, x) <r, limsupd(y, x)<r, r<R, (2.21)
there are further subsequences again denoted by {x,} and {y,}, such that
d(xy,x) <R, d(yn,x) <R, d(xn,y.)>eR VYneN. (2.22)

Then by Lemma 2.7 and (2.20),

A((1=tn)xn ® tyyn, x) < (1 -2t,(1 - t,)n(R, €))R

(2.23)
<(1-2b(1-0)n(r,e))R<r
for all n € N. Taking n — oo, we obtain
nlgrgod((l —tn) Xy ® by, X) <T, (2.24)
which contradicts to the hypothesis. O

3. Main Results
In this section, we prove our main theorems.

Theorem 3.1. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let
T: K — X be a nonexpansive mapping with x* € F(T) := {x € K : Tx = x}. Let {a,} and {f,} be
sequences in [e,1 — €] for some € € (0,1). Starting from arbitrary x, € K, define the sequence {x,}
by the recursion (1.1). Then lim,, _, »d(x,, x*) exists.
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Proof. By Lemma 2.1(i) the nearest point projection P : X — K is nonexpansive. Then

d(xne1, x*) = A(P((1 - @) xn ® a,TP[(1 = Bo) % & BuTx,] ), Px*)
<d((1 - an)xy ® a,TP[(1 = f) Xy @ fuTx,], x*)
< (1 - an)d(xy, x*) + and(TP[(1 = Bu) %y & BuTx], Tx")
< (1= an)d(x, x*) + and(P[(1 = Bp) Xn ® fuT ], x°) (3.1)
< (1= a)d(n, x°) + n [(1 = Pu)d (e, X°) + Pudd (T, Tx")]
< (1= ) d (X, x°) + n [(1 = P) (X, x°) + (1, %7)]

=d(x,, x¥).
Consequently, we have
d(x,, x*) <d(x1,x*) Vn>1. (3.2)
This implies that {d(x,, x*) };-; is bounded and decreasing. Hence lim, d(x,, x*) exists. O

Theorem 3.2. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let
T: K — X be a nonexpansive mapping with F(T) #0. Let {a, } and {B,} be sequences in [¢,1 — ]
for some € € (0,1). From arbitrary x, € K, define the sequence {x,} by the recursion (1.1). Then

lim d(x,, Tx,) = 0. (3.3)

Proof. Let x* € F(T). Then, by Theorem 3.1, lim,d(x,, x*) exists. Let

lim d(x,,x*) =r. (3.4)

n—oo

If » = 0, then by the nonexpansiveness of T the conclusion follows. If r > 0, we let y,, =
P[(1-Bu)x, @ p,Tx,]. By Lemma 2.1(iv) we have

d(yn, x*)* = d(P[(1 = Bu)Xn ® BuTx,], Px*)*

< (1= pr)xy @ fuT 5, )

< (1= Bu)d(xn, )2 + Pud (T, )2 = (1 = Bu)d(xn, Tx)? (35)
< (1= Bu)d(xn, x*) + Pudd (xn, X°)’
= d(xn,x*)2.

Therefore

A(Yn, x*) <d((1 = Bu)xn @ BrTxn, x*) < d(xy, x¥). (3.6)
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It follows from (3.6) and Lemma 2.1(iv) that

d(xpe1, x*)? = d(P[(1 - an)xn ® Ty, Px*)2
<d((1-ap)x, o anTyn,x*)2
< (1= an)d(xn, x)° + yd (Tyn, x°)* = an(1 = a)d (x, Tyn)? (37
< (1= an)d (X, )7 + (20, x*) = (1 = ) d (2, Tyn)

= d(x, x*)? = (1 — @) d (2, Ty)".
Therefore
A1, x*)7 < A, )7 = W (an)d(xa, Tyn)’, (3.8)

where W (a) = a(1 — a). Since a,, € [¢,1 - €], W(a,) > 2.
By (3.8), we have

‘ﬂ:ZZd(xn,Tyn)2 <d(x1,x*)? < 0. (3.9)

n=1

This implies lim,, , ., d (x,,, Ty,) = 0.
Since T is nonexpansive, we get that d(x,, x*) < d(x,, Ty,) + d(yn, x*), and hence

r <liminfd(y,, x*). (3.10)
On the other hand, we can get from (3.6) that

limsupd(y,, x*) <. (3.11)

Thus lim,d(y,, x*) = r. This fact and (3.6) imply

lim d((1 = Bn)Xn @ BuToxn, x*) = 1. (3.12)

n—oo
Since T is nonexpansive,

limsup d(Tx,, x*) <r. (3.13)

n—oo
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It follows from (3.4), (3.12), (3.13), and Lemma 2.9 that

lim d(x,, Tx,) =0. (3.14)

This completes the proof. O

The following theorem is an analog of [23, Theorem 3.5] and extends [22, Theorem
3.3] to nonself mappings.

Theorem 3.3. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let
T: K — X be a nonexpansive mapping with F(T) #0. Let {a, } and {B,} be sequences in [g,1 — ]
for some € € (0,1). From arbitrary x; € K, define the sequence {x,} by the recursion (1.1). Then
{xn} A-converges to a fixed point of T.

Proof. By Theorem 3.2, lim, d(x,, Tx,) = 0. It follows from (3.2) that {d(x,,v)} is bounded
and decreasing for each v € F(T), and so it is convergent. By Lemma 2.4, w,,(x,) consists of
exactly one point and is contained in F(T'). This shows that the sequence {x,} A-converges to
an element of F(T). O

We now state two strong convergence theorems. Recall that a mapping T: K — X is
said to satisfy Condition I ([26]) if there exists a nondecreasing function f : [0,00) — [0, c0)
with f(0) =0and f(r) > 0 for all r > 0 such that

d(x,Tx) > f(d(x,F(T))) VxeK. (3.15)

Theorem 3.4. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let
T: K — X be a nonexpansive mapping with F(T) #0. Let {a, } and {B,} be sequences in [g,1 — ]
for some € € (0,1). From arbitrary x1 € K, define the sequence {x,} by the recursion (1.1). Suppose
that T satisfies condition I. Then {x,} converges strongly to a fixed point of T.

Theorem 3.5. Let K be a nonempty compact convex subset of a complete CAT(0) space X and let
T: K — X be a nonexpansive mapping with F(T) #0. Let {a, } and {B,} be sequences in [g,1 — ]
for some € € (0,1). From arbitrary x1 € K, define the sequence {x,} by the recursion (1.1). Then
{xn} converges strongly to a fixed point of T.

Another result in [23] is that the author obtains a common fixed point theorem of two
nonexpansive self-mappings. The proof is metric in nature and carries over to the present
setting. Therefore, we can state the following result.

Theorem 3.6. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let
S,T: K — K be two nonexpansive mappings with F(S) N F(T) # 0. Let {a, } and { P} be sequences
in [e,1 - €] for some € € (0,1). From arbitrary x; € K, define the sequence {x,} by the recursion

X1 = (1= an)xn @ , S[(1 = Pr) X0 © BT xn]. (3.16)

Then {x,} A-converges to a common fixed point of S and T.
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In this paper, A and strong convergence theorems are established for
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1 Introduction

A metric space X is a CAT(0) space if it is geodesically connected, and if ev-
ery geodesic triangle in X is at least as ‘thin’ as its comparison triangle in the
Euclidean plane. It is well known that any complete, simply connected Rie-
mannian manifold having nonpositive sectional curvature is a CAT(0) space.
Other examples include Pre-Hilbert spaces, R—trees (see [1]), Euclidean build-
ings (see [2]), the complex Hilbert ball with a hyperbolic metric (see [13]), and
many others. For a thorough discussion of these spaces and of the fundamental
role they play in geometry see Bridson and Haefliger [1]. Burago, et al. [4]

!Corresponding author.
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contains a somewhat more elementary treatment, and Gromov [14] a deeper
study.

Fixed point theory in CAT(0) spaces was first studied by Kirk (see [17] and
[18]). He showed that every nonexpansive (single-valued) mapping defined on a
bounded closed convex subset of a complete CAT(0) space always has a fixed
point. Since then the fixed point theory for single-valued and multivalued
mappings in CAT(0) spaces has been rapidly developed and much papers have
appeared (seee. g., [19,7,5,9, 12, 16, 23, 8, 20, 10, 28, 6, 11, 15, 21, 22, 27, 26]).
It is worth mentioning that the results in CAT(0) spaces can be applied to any
CAT (k) space with x < 0 since any CAT (k) space is a CAT (k') space for every
k' > K (see [1], p. 165).

In 2008, Kirk and Panyanak [20] used the concept of A—convergence intro-
duced by Lim [24] to prove the CAT(0) space analogs of some Banach space re-
sults which involve weak convergence; for instant, the demiclosedness principle
for nonexpansive mappings, the Opial property and the Kadec-Klee property.
In the same year, Dhompongsa and Panyanak [10] obtained A—convergence
theorems for the Picard, Mann and Ishikawa iterations for nonexpansive map-
pings under some appropriate conditions.

Recently, Nanjaras and Panyanak [25] proved a A—convergence theorem of
the Krasnosel’skii-Mann iterations for asymptotically nonexpansive mappings
in CAT(0) spaces.

In this paper, motivated by the above results, we prove A and strong con-
vergence theorems of the Noor iterative schemes for asymptotically nonexpan-
sive mappings in the CAT(0) space setting. Our results extend and improve the
corresponding ones announced by Dhompongsa and Panyanak [10], Nanjaras
and Panyanak [25], Xu and Noor [29] and many others.

2 Preliminary Notes

Let (X, d) be a metric space. A geodesic path joining z € X toy € X (or,
more briefly, a geodesic from x to y) is a map ¢ from a closed interval [0,]] C R
to X such that ¢(0) = z,c(l) =y, and d(c(t), c(t')) = |t — /| for all t, ¢’ € [0,].
In particular, ¢ is an isometry and d(z,y) = [. The image « of ¢ is called a
geodesic (or metric) segment joining x and y. When it is unique this geodesic
segment is denoted by [z,y]. The space (X, d) is said to be a geodesic space if
every two points of X are joined by a geodesic, and X is said to be uniquely
geodesic if there is exactly one geodesic joining x and y for each z,y € X. A
subset Y C X is said to be convez if Y includes every geodesic segment joining
any two of its points.

A geodesic triangle /\(xq, x2, x3) in a geodesic metric space (X, d) consists of
three points x1, x9, 3 in X (the vertices of A) and a geodesic segment between
each pair of vertices (the edges of ). A comparison triangle for the geodesic



Noor iterations for asymptotically nonexpansive mappings 647

triangle A(x1, 29, 73) in (X, d) is a triangle A(xq, T, 23) := A(T1, To, T3) in
the Euclidean plane E? such that dg (Z;,7;) = d(x;, ;) for i,j € {1,2,3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy
the following comparison axiom.

CAT(0) : Let A be a geodesic triangle in X and let A be a comparison
triangle for A. Then A is said to satisfy the CAT(0) inequality if for all
x,y € A\ and all comparison points z,y € A,

d(l’, y) < d]E2 (f> g)
If 2,91,y are points in a CAT(0) space and if y, is the midpoint of the

segment [y1, y2|, then the CAT(0) inequality implies

1 1 1
d(z,y0)* < §d($7 y1)’+ Qd(% ya)*— Zd(yla y2)”. (CN)

This is the (CN) inequality of Bruhat and Tits [3]. In fact (cf. [1], p. 163), a
geodesic space is a CAT(0) space if and only if it satisfies the (CN) inequality.

Definition 2.1 Let C' be a nonempty subset of a CAT(0) space X and
T :C — X be amapping. T is said to be asymptotically nonexpansive if there
is a sequence {k,} of positive numbers with the property lim,, . k, = 1 and
such that

d(T™(x), T"(y)) < kpd(z,y), forall n>1 and z,y € C.

A point x € C'is called a fixed point of T" if x = T'xz. We shall denote with
F(T) the set of fixed points of T. The existence of fixed points for asymptoti-
cally nonexpansive mappings in CAT(0) spaces was proved by Kirk [18] as the
following statement.

Theorem 2.2 Let C' be a nonempty bounded closed and convexr subset of
a complete CAT(0) space X and T : C' — C be asymptotically nonexpansive.
Then T has a fized point.

Let {x,} be a bounded sequence in a metric space X. For z € X, we set

r(z,{z,}) = limsupd (z,z,).

n—oo

The asymptotic radius r ({x,}) of {x,} is given by

r({z,}) =inf{r(z,{z,}):x € X},
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and the asymptotic center A ({z,}) of {x,} is the set

A({an}) ={z e X vz {zn}) = r ({za})}-

It is known from Proposition 7 of [9] that in a CAT(0) space, A({z,})
consists of exactly one point.

We now give the definition of A—convergence.

Definition 2.3 ([20, 24]) A sequence {z,} in a metric space X is said to
A—converge to x € X if x is the unique asymptotic center of {u,} for every

subsequence {u,} of {x,}. In this case we write A — lim,, x,, = = and call x
the A—limit of {x,}.

Recall that a subset K in a metric space X is said to be A—compact ([24])
if every sequence in K has a A—convergent subsequence. A mapping T from
a metric space X to a metric space Y is said to be completely continuous if
T(K) is a compact subset of Y whenever K is a A—compact subset of X.

We now collect some elementary facts about CAT(0) spaces which will be
used in the proofs of our main results.

Lemma 2.4 ([20]) Every bounded sequence in a complete CAT(0) space
always has a A—convergent subsequence.

Lemma 2.5 ([8]) If C is a closed convex subset of a complete CAT(0) space

and if {z,} is a bounded sequence in C, then the asymptotic center of {x,} is
i C.

Lemma 2.6 ([25]) Let C be a closed and convez subset of a complete CAT(0)
space X and T : C' — X be an asymptotically nonexpansive mapping. Let {x,}

be a bounded sequence in C' such that lim,, d(x,, Tz,) = 0 and A —lim, z,, = .
Then x = Tx.

Lemma 2.7 ([10]) Let (X,d) be a CAT(0) space.
(i) For x,y € X and t € [0, 1], there exists a unique point z € [x,y] such that

A, 2) = td(z,y) and d(y,2) = (1 - d(z, ). 1)
We use the notation (1 —t)x @ ty for the unique point z satisfying (1).
(ii) For x,y,z € X and t € [0,1], we have

d(1 =tz ty,z) < (1 —t)d(z,z)+td(y, 2).

(iii) For xz,y,z € X and t € |0, 1], we have
d(1—t)z @ ty, 2)* < (1 —t)d(z,2)* + td(y, 2)* — t(1 — t)d(z, y)*.
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3 A-—convergence theorems

Lemma 3.1 ([30]) Let {a,} and {b,} be sequences of nonnegative real num-
bers satisfying the inequality
An1 S (]- + bn)any n Z 1.
If Y7 b, < oo, then lim a, exists.

n—oo

Lemma 3.2 Let C' be a nonempty closed, bounded and convex subset of a
complete CAT(0) space X and let T : C — C' be an asymptotically nonex-
pansive mapping with {k,} satisfying k, > 1 and Y > (k, — 1) < oo. Let
{an}, {Bn}, {7} be real sequences in [0,1]. For a given x; € C, consider the
sequence {x,}, {yn} and {z,} defined by

= 11" 20 @ (1 = )20
Yn = OnT"2n @ (L= Bp)on  n 21
Tot1 = Ty, @ (1 — o)y,
Then lim,, d(z,,, z*) exists for all x* € F(T).

Proof. We first note that F (7)) # () by Theorem 2.2. For each z* € F(T), we

have
d(zmx*) = d(’VnTnxn D (1 - 'Vn)xm *)
< Vnd(Tnxm ) + (1 - 'Vn)d(xmx*)
< Ypknd(zp, %) + (1 — v,)d(zp, )
= (1 + 'Vnkn - 'Vn)d(xm l‘*) (2)
Also

d(ym .T*) = d(ﬁnTnZn ¥ (1 - ﬂn)xn: 33'*)

< ﬁnknd(zm ) (1 _ﬁn) (xm ) (3)
By (2) and (3), we have
d(xpi1,2") = d(a, T "y ® (1 — )y, °)

<a knd(yn, ")+ (1 — ap)d(zy, z¥)

< ankn [Buknd(zn, %) + (1 = Bo)d(2y, 27)] + (1 — o) d(zn, 27)

< ki [Bukin(1+ Yk — ), 2°) + (1 = G, 2)]
+ (1 — ap)d(zp, ")
= (B Yk + anBukn + ) (kp — d(zy, %) + d(zp, 7%)
< (k2 + kn + 1) (kn — Dd(20, 2%) + d(, %)
[1+ (k2 + kn + 1) (ky — 1)] d(z, 2¥).
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Since {k,} is bounded, there exists M > 0 such that
d(Tpy1,77) < (1+ M(k, — 1))d(zp, 7).
By Lemma 3.1 and the fact that > | (k, — 1) < oo, we get lim,,_, d(z,,, z*)

exists. m

Lemma 3.3 Let C, X, T, {k,}, {an}, {Gn}, {7}, {zn}, {un}, {20} are as in
Lemma 3.2.
(1) If 0 < liminf, . o, < limsup,,_ . o, < 1, then

lim d(T"y,, x,) = 0.

n—oo

(i) If 0 < liminf, . G, < limsup,_, . G, < 1 and liminf, o, > 0, then

lim d(T"z,, z,) = 0.

Proof. By Lemma 2.7(iii) along with the proof of Lemma 2.2 in [29] with
p=2and w(A) = A(1 — ) for A € [0, 1], we can obtain the desired result. m

Lemma 3.4 Let C' be a nonempty closed, bounded and convex subset of a
complete CAT(0) space X and let T : C'— C be an asymptotically nonexpan-
sive mapping with {k,} satisfying {k,} > 1 and Y >~ (k, —1) < co. Let {av,},

{6}, {7} be real sequences in [0,1] satisfying
(1) 0 < liminf, . a,, <limsup,_ . o, <1 and

(7) 0 < liminf, . 5, < limsup,_ . G, < 1.
For a given z, € C, define
Zn = VT2, B (1 — )y
Yn = BTz, @ (1 — B)xy n>1
Tpt1 = Ty, & (1 — ay)xy,.
Then lim,, .o, d(Tx,, z,) = 0.
Proof. From Lemma 3.3, we have

lim d(T"yn,x,) =0 and lim d(T"z,,z,) = 0.

n—oo n—oo

Thus

d(T"xy, ) < d(T"xp, T yy) + d(T"Yn, 1)
< knd(n, Yn) + d(T"yn, z5)
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< knBnd(T" 2, ) + A(T" Y, xy) — 0 asn — oo, (4)
so that

d(anrl? Tnxn+1) < (anrl? xn) + d(Tnanrl: Tnxn) + d(T"xn, xn)
< d(Tpy1, ) + knd(xn—&-la xn) +d(T" vy, 7p)

= (14 kp)d(anT"yp & (1 — ) Tp, ) + d(T" 2y, )

d
d

< (14 kp)and(T"yp, ) + d(T"xp, x,) — 0 as n — oc.

()
By (4) and (5), we have

($n+17 Tn+1xn+1) + d(Tn+1xn+1a Tanrl)

($n+1, Tn+1$n+1) —+ kld(Tnl'n+17 $n+1) — O (as n — OO),

d(anrla Txn+1) S d
<d
which implies lim d(Tz,,z,) =0 as desired. ®

Now, we are ready to prove the A—convergence theorem.

Theorem 3.5 Let C be a nonempty closed, bounded and convex subset of
a complete CAT(0) space X and let T : C — C be an asymptotically nonex-
pansive mapping with {k,} satisfying {k,} > 1 and > (k, — 1) < co. Let
{an}, {Bn}, {n} be real sequences in [0,1] satisfying
(i) 0 < liminf,, . a, <limsup,,_, @, <1 and
(i1) 0 < liminf,, . 3, < limsup,,_, . G, < 1.

For a given z, € C, define
Zn = VT2 B (1 — )y
Yn = BTz, ® (1 — B)xy, n>1
Tor1 = Ty, @ (1 — o)y,
Then {x,} A—-converges to a fixed point of T.

Proof. It follows from Lemma 3.4 that lim d(x,,Tz,) = 0. Now we let

n—oo

wo(xn) == JA{u,}) where the union is taken over all subsequences {u,}
of {z,}. We claim that w,(x,) C F(T). Let u € wy(x,), then there exists
a subsequence {u,} of {z,} such that A({u,}) = {u}. By Lemmas 2.4 and
2.5 there exists a subsequence {v,} of {u,} such that A — lim, v, = v € C.
Since lim, d(v,,Tv,) = 0, then v € F(T) by Lemma 2.6. We claim that
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u = v. Suppose not, since v € F(T), by Lemma 3.2 lim,, d(z,,v) exists. By
the uniqueness of asymptotic centers,

lim sup d(vy, v) < limsup d(vy,, u)

< limsup d(uy,, u)

n

n

(
(
< lim sup d(uy,, v)
= limsup d(z,, v)
(0n, v)

= limsup d(v,, v
a contradiction, and hence u = v € F(T). To show that {z,} A—converges
to a fixed point of 7 it suffices to show that w,(x,) consists of exactly one
point. Let {u,} be a subsequence of {z,}. By Lemmas 2.4 and 2.5 there exists
a subsequence {v, } of {u,} such that A —lim, v, =v € C. Let A({u,}) = {u}
and A({z,}) = {x}. We have seen that u = v and v € F(T'). We can complete
the proof by showing that x = v. Suppose not, since lim,, d(x,,v) exists, then
by the uniqueness of asymptotic centers,
lim sup d(v,,v) < lim supd Un, T)

n

n

< limsupd(x,,v
n

(

< hm sup d(zp, x)
(
(

)
= limsup d(v,, v)

a contradiction, and hence the conclusion follows. m

For 7, = 0 in Theorem 3.5, we can obtain Ishikawa-type convergence result
as the following statement.

Theorem 3.6 Let C' be a nonempty closed, bounded and convex subset of
a complete CAT(0) space X and let T : C — C be an asymptotically nonex-
pansive mapping with {k,} satisfying {k,} > 1 and > (k, — 1) < co. Let
{an}, {Bn} be real sequences in [0,1] satisfying
(i) 0 < liminf, . o, <limsup,_ . o, <1 and

(i1) limsup,,_,. B, < 1.
For a given 1 € C, define

Tpr1 = Ty & (1 — )z, n>1.
Then {x,} A—-converges to a fixed point of T.
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Proof. By combining between the proofs of Theorem 3.5 and Theorem 2.2 of
[29] we can get the desired result. m

For 3, = 0, Theorem 3.6 reduces to the following result which is a refine-
ment of Theorem 5.7 in [25].

Theorem 3.7 Let C' be a nonempty closed, bounded and convexr subset of
a complete CAT(0) space X and let T : C — C' be an asymptotically nonex-
pansive mapping with {k,} satisfying {k,} > 1 and > .~ (k, — 1) < co. Let
{an}, {Bn} be real sequences in [0,1] satisfying
0 < liminf, . o, <limsup,,_,. a, < 1. For a given 1 € C, define

Tpr1 =, T"x, & (1 — ap)x,,, n>1

Then {x,} A—-converges to a fized point of T.

4 Strong convergence theorems

By using the same ideas and techniques as in Section 3, we can also obtain
strong convergence theorems for completely continuous asymptotically nonex-
pansive mappings. Therefore we can state the following results without proofs.

Theorem 4.1 Let C' be a nonempty closed, bounded and convexr subset of
a complete CAT(0) space X and let T : C — C be a completely continu-
ous asymptotically nonexpansive mapping with {k,} satisfying {k,} > 1 and

Yoo ((kn—1) < oo. Let {a}, {Bn}, {7} be real sequences in [0,1] satisfying
(1) 0 < liminf,, . a,, <limsup,_,. o, <1 and

(i1) 0 < liminf,, . 3, < limsup,,_, . G, < 1.
For a given 1 € C, define
Zn = YT T, @ (1 — )z
Yn = BTz, ® (1 — B)xy n>1
Tot1 = Ty, @ (1 — o)y,
Then {x,} converges strongly to a fized point of T.

Theorem 4.2 Let C' be a nonempty closed, bounded and convexr subset of
a complete CAT(0) space X and let T : C — C be a completely continu-
ous asymptotically nonexpansive mapping with {k,} satisfying {k,} > 1 and
Yoo ((kn — 1) < oco. Let {a,}, {80} be real sequences in [0,1] satisfying
(i) 0 < liminf, . a,, <limsup,_,. o, <1 and
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(i) limsup,,_, . B, < 1.
For a given 1 € C, define

Tpr1 = Ty, & (1 —ay)x,. n>1
Then {x,} converges strongly to a fized point of T.

Theorem 4.3 Let C' be a nonempty closed, bounded and convex subset
of a complete CAT(0) space X and let T : C — C be a completely con-
tinuous asymptotically nonexpansive mapping with {k,} satisfying {k,} > 1
and > 7 (kn — 1) < oo. Let {a,} be real sequence in [0,1] satisfying 0 <
liminf,, . a,, <limsup,,_, ., o, < 1. For a given x1 € C, define

Tpr1 =, T"x, & (1 — ap)x,,, n>1

Then {x,} converges strongly to a fixed point of T.
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