บทคัดย่อ

ในตริกออกไซด์ในปริมาณมากที่ถูกผลิตขึ้นจากเอนไซม์ inducible nitric oxide synthase (iNOS) มีส่วนเกี่ยวข้องกับการเกิดพยาธิสภาพของโรคจากการอักเสบต่างๆ สาร N-acetyl-Omethyldopamine (NAMDA) และอนุพันธุ์สามารถยับยั้งแอกติวิตีของเอนไซม์ iNOS ในการวิจัยนี้ ทำการศึกษากลไกระดับโมเลกุลในการยับยั้งการผลิตในตริกออกไซด์ของอนุพันธุ์ NAMDA ชนิด ใหม่ที่ถูกเลือกมาศึกษา คือ BMC3 BMC12 BMC34 และ BMC41 อนุพันธุ์ NAMDA เหล่านี้ ยับยั้งการผลิตในตริกออกไซด์ในเซลล์แมคโครฝาจ RAW 264.7 ที่ถูกกระตุ้นด้วย LPS ผลของ Western-blot และ RT-PCR แสดงให้เห็นว่าอนุพันธ์ NAMDA ลดการแสดงออกของโปรตีนและ mRNA ของ iNOS ซึ่งสอดคล้องกับการยับยั้งการผลิตในตริกออกไซด์ อนุพันธุ์ NAMDA เหล่านี้ยัง สามารถเหนี่ยวนำให้มีการแสดงออกของโปรตีนและ mRNA ของ heme oxygenase-1 (HO-1) ในลักษณะที่ขึ้นกับความเข้มข้นและเวลา สาร BMC41 เป็นสารที่มีประสิทธิภาพสูงสุดในการ ี้ยับยั้ง iNOS สามารถลดการแสดงออกของ iNOS ในลักษณะที่ขึ้นกับความเข้มข้น เป็นผลให้มีการ ลดในตริกออกไซด์ที่ถูกผลิตขึ้นจากเอนไซม์ iNOS สาร BMC41 ยังยับยั้งการเคลื่อนเข้าสู่ นิวเคลียสของ nuclear factor-KB (NF-KB) หน่วยย่อย p65 และลดแอกติวิตีของ iNOS promoter นอกจากนี้ยังพบว่า tin protoporphyrin IX (SnPP) ที่เป็นสารยับยั้ง HO-1 สามารถลด ความสามารถในการยับยั้งการผลิตในตริกออกไซด์ของ BMC41 ผลการทดลองที่ได้ทั้งหมดแสดง ให้เห็นว่าฤทธิ์ต้านการอักเสบของสาร BMC41 ในเซลล์แมคโครฝาจ RAW 264.7 ที่ถูกกระตุ้นด้วย LPS โดยยับยั้งการแสดงออกของ iNOS และการผลิตในตริกออกไซด์ เกิดโดยกลไกการยับยั้งการ เคลื่อนเข้าสู่นิวเคลียสของ NF-KB และการกระตุ้นเอนไซม์ HO-1 ดังนั้นสาร BMC41 จึงมี ศักยภาพในการเป็นสารต้านอักเสบชนิดใหม่ที่ใช้รักษาโรคจากการอักเสบที่ในตริกออกไซด์มีส่วน ร่วม

คำสำคัญ : แมคโครฝาจ, ในตริกออกไซด์, inducible nitric oxide synthase, heme oxygenase-1, NAMDA

Abstract

High amount of nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) appears to be involved in pathogenesis of various inflammatory diseases. N-acetyl-O-methyldopamine (NAMDA) and its derivatives have been shown to inhibit iNOS activity. In this study, we evaluated the molecular mechanism underlying the inhibition of NO production of BMC3, BMC12, BMC34 and BMC41, selected newly synthesized NAMDA derivatives. All of selected NAMDA derivatives suppressed strikingly NO production in LPS-stimulated RAW 264.7 macrophage cells. Western-blot and RT-PCR data showed that down-regulation of iNOS protein and mRNA expression was coincident with inhibition of NO production. Interestingly, all of selected NAMDA derivatives induced the expression of heme oxygenase-1 (HO-1) mRNA and protein in a concentration- and a time-dependent manner. One of selected NAMDA derivatives, BMC41, the most potent iNOS inhibitor, suppressed the expression of iNOS in a dosedependent manner resulting in the reduction of iNOS-derived NO formation. BMC41 also inhibited nuclear translocation of nuclear factor-KB p65 (NF-KB) and decreased LPSstimulated iNOS promoter activity. Furthermore, the inhibitory effect on NO production of BMC41 was significantly reversed by a HO-1 inhibitor, tin protoporphyrin IX (SnPP). Taken together, these results suggest that BMC41 compound has anti-inflammatory effect in LPS-treated macrophages by inhibition of iNOS expression and NO production via mechanisms involving suppression of the NF-KB nuclear translocation and the activation of HO-1. Thus, BMC41 compound has potential to be used as a novel agent for the treatment of NO-related inflammatory diseases.

Keywords: inducible nitric oxide synthase, heme oxygenase-1, macrophage, NAMDA, nitric oxide.