

Abstract

Title : Screening and characterization of components required for epigenetic regulation in *Chlamydomonas reinhardtii*

Investigator : Chotika Yokthongwattana

E-mail Address : fscicks@ku.ac.th

Project Period : 2 years

Epigenetics is the changes of gene expression without any alteration of the underlying DNA sequences. These changes of gene expression come about by the modifications of DNA and histone proteins by addition of various functional groups such as methyl or acetyl groups. Epigenetics allows rapid alterations of gene expression under various environmental stresses. However, the knowledge of mechanisms involved in epigenetic regulation is far from being complete. New components implicated in epigenetic regulation are yet to be discovered. The aim of this research project is to understand epigenetic regulation in *Chlamydomonas reinhardtii*. Transgenic *C. reinhardtii* actively expressing paromomycin resistant gene were generated (Par^A). The Par^A lines were used as a background for random insertional mutagenesis and screened for silenced version of the paromomycin resistant gene (Par^S). Thirty seven Par^S lines were isolated from the screen. These candidate mutants are currently being characterized for their insertion as well as the underlying mutated genes. In addition, differential protein expression under salinity stress has been studied by 2-dimensional electrophoresis followed by LC/MS-MS mass spectrometry. The differential protein profiles were observed in the cells treated with short-term and long-term response to salinity stress.

Keywords : epigenetic, salinity stress, epigenetic mutant, microRNA, *Chlamydomonas reinhardtii*

บทคัดย่อ

รหัสโครงการ : MRG5280035

ชื่อโครงการ : การ screen หา mutant และศึกษาโปรตีนที่เกี่ยวข้องกับการแสดงออกของยีนที่ระดับ epigenetic ในสาหร่ายเซลล์เดียว *Chlamydomonas reinhardtii*

ชื่อนักวิจัย : นางโซติกา หยกทองวัฒนา

E-mail Address : fscicks@ku.ac.th

ระยะเวลาโครงการ : 2 ปี

การควบคุมการแสดงออกของยีนที่ระดับ epigenetic หมายถึงการควบคุมที่ทำให้การแสดงออกของยีนเปลี่ยนแปลงไป โดยไม่เกิดความบกพร่องของยีน แต่มีการควบคุมบางประการที่ทำให้ยีนนั้นมีการแสดงออกที่ต่างไปจากเดิม ซึ่งมักเกิดจากการที่ดีเอ็นเอและโปรตีนอีสโตนถูกเติมด้วยหมู่พังก์ชันต่างๆ เช่น หมู่เมทิลหรืออะเซทิล นอกจากนี้การเปลี่ยนแปลงการแสดงออกของยีนอย่างรวดเร็วนั้นสามารถส่งผลให้สิ่งมีชีวิตสามารถปรับตัวให้กับต่อสภาวะเครียดจากสิ่งแวดล้อมภายนอกได้ อย่างไรก็ดีองค์ความรู้เกี่ยวกับกระบวนการ epigenetic นั้นยังไม่สมบูรณ์ ยังมีการค้นพบโปรตีนชนิดใหม่ๆ ซึ่งทำหน้าที่ในกระบวนการนี้อยู่เสมอ ดังนั้นวัตถุประสงค์ของโครงการวิจัยนี้ คือ การศึกษากระบวนการควบคุมการแสดงออกของยีนที่ระดับ epigenetic ในสาหร่ายเซลล์เดียว *Chlamydomonas reinhardtii* โดยทำการสร้างสาหร่ายที่มีการแสดงออกของยีนต้านทานต่อยา paromomycin (Par^A) จากนั้นใช้สายพันธุ์ Par^A ในการทำการกลยุทธ์แบบสุ่มและทำการคัดเลือกสาหร่ายที่ไม่มีการแสดงออกของยีนต้านทานต่อยา paromomycin (Par^R) จากการคัดเลือกพบว่ามีสาหร่าย Par^R ทั้งสิ้น 37 สายพันธุ์ ซึ่งในขณะนี้กำลังทำการศึกษาในที่ได้รับการกลยุทธ์รวมถึงลักษณะอื่นๆ ในสาหร่ายเหล่านี้ นอกจากนี้ได้ทำการศึกษาโปรตีนที่มีการแสดงออกแตกต่างกันภายใต้สภาวะเครียดจากความเค็มโดยเทคนิค 2-DE และ LC/MS-MS mass spectrometry ทั้งนี้ผู้วิจัยพบโปรตีนที่มีการแสดงออกแตกต่างกันในสาหร่ายที่เลี้ยงในสภาวะที่มีเกลือเป็นระยะเวลาสั้นและระยะเวลานาน

คำหลัก : epigenetic, salinity stress, epigenetic mutant, microRNA, *Chlamydomonas reinhardtii*