Abstract

Project Code: MRG5280067

Project Title: Rapid diagnosis of leptospirosis by loop-mediated isothermal amplification

Investigator: Dr. Piengchan Sonthayanon

Department of Clinical Tropical Medicine and Department of Molecular Tropical

Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University.

e-mail addresses: piengchan@tropmedres.ac; tmpsy@mahidol.ac.th

Project Period: March 2009- March 2011

Leptospirosis has the greatest impact on health in developing countries, but there is a paucity of diagnostic tests that are suitable for technology-restricted settings. We describe the development and clinical evaluation of loop-mediated isothermal amplification (LAMP) targeting the 16S ribosomal RNA gene (rrs) of Leptospira spp. belonging to the pathogenic and intermediate groups. The lower limit of detection was 20 genomic equivalents/reaction, and the analytical specificity was high with positive LAMP reactions for pathogenic and intermediate group Leptospira spp. but negative reactions for non-pathogenic Leptospira spp. and a range of other bacterial species that may cause acute febrile illness. A case-control study was conducted in northeast Thailand to evaluate assay performance in 133 patients with laboratory-proven leptospirosis based on culture and/or the microscopic agglutination test (MAT), and 133 patients with other causes of acute febrile illness. Using whole DNA extracted from EDTA blood taken at presentation, rrs LAMP was positive in 58/133 cases (sensitivity 43.6; 95%CI: 35.0-52.5), and 22/133 controls (specificity 83.5; 95%CI: 76.0-89.3). Diagnostic sensitivity was higher for a subset of 39 patients who were culture positive for Leptospira spp (84.6; 95%CI: 69.5-94.1). Our results indicate that rrs LAMP can provide a rapid result in around half of patients with leptospirosis at the time of presentation, but its diagnostic utility is reduced by an imperfect specificity.

Keywords: Leptospirosis; Loop-mediated isothermal amplification; diagnosis

บทคัดย่อ

รหัสโครงการ MRG5280067

ชื่อโครงการ การพัฒนาวิธีการตรวจวินิจฉัยโรคเลปโตสไปโรซีส (โรคฉี่หนู) โดยวิธี Loop-mediated

isothermal amplification

ชื่อนักวิจัย ดร.เพียงจันทร์ สนธยานนท์

ภาควิชาชีวโมเลกุลและพันธุศาสตร์โรคเขตร้อน คณะเวชศาสตร์เขตร้อน มหาวิทยาลัยมหิดล ระยะเวลาโครงการ มีนาคม 2552 ถึง มีนาคม 2554

โรคเลปโตสไปโรซีสหรือโรคไข้ฉี่หนูเป็นปัญหาสำคัญด้านการสาธารณสุขในหลายประเทศ เนื่องจาก วิธีการตรวจวินิจฉัยโรคยังคงมีข้อจำกัดในด้านอุปกรณ์และงบประมาณที่จะนำไปใช้ในทุกพื้นที่ที่มีการแพร่ ระบาด ผู้วิจัยได้ทำการพัฒนาวิธีการตรวจวินิจฉัยโรคเลปโตสไปโรซีส โดยวิธี Loop-mediated isothermal amplification (LAMP) จากยืน 16S rRNA ของเชื้อ Leptospira โดยสามารถตรวจสอบในห้องปฏิบัติการได้ ์ ต่ำสุดในระดับ 20 genomic equivalents/reaction และมีความจำเพาะต่อเชื้อ *Leptospira* สายพันธุ์ที่ก่อโรค (pathogenic and intermediate group) และไม่จำเพาะต่อเชื้อ *Leptospira* สายพันธุ์ที่ไม่ก่อโรค รวมทั้งเชื้อ แบคทีเรียชนิดอื่นๆ ที่อาจพบในผู้ป่วยโรคไข้ไม่ทราบสาเหตุ นอกจากนี้ ผู้วิจัยได้ทำการประเมินผลวิธีการ วินิจฉัยโรคเลปโตสไปโรซีสโดยวิธี LAMP ที่พัฒนาขึ้น แบบ case-control study โดยศึกษาในกลุ่มตัวอย่าง จำนวน 266 ตัวอย่าง ได้แก่ กลุ่มผู้ป่วยโรคเลปโตสไปโรซีส จากการให้ผลบวกด้วยวิธีการเพาะเชื้อและ/หรือ วิธีการทางอิมมูโนโลยี(Microscopic agglutination test) จำนวน 133 ราย และกลุ่มควบคุม 133 ราย โดยทำ การตรวจสอบในตัวอย่างดีเอ็นเอที่สกัดได้จากเลือดของผู้ป่วยและกลุ่มควบคุม พบว่า วิธี LAMP ให้ผลบวกใน กลุ่มผู้ป่วย 58 ใน 133 รายกล่าวคือมีความไวในการวินิจฉัย(sensitivity) เท่ากับร้อยละ 43.6 (95%CI: 35.0-52.5) และ มีความจำเพาะในการวินิจฉัย (specificity) ร้อยละ 83.5 (95%CI: 76.0-89.3). อย่างไรก็ตาม ความ ไวในการตรวจวินิจฉัย (Diagnostic sensitivity) เมื่อเปรียบเทียบกับวิธีการเพาะเลี้ยงเชื้อเพียงอย่างเดียวมีค่า ัสูงถึงร้อยละ 84.6 (95%CI: 69.5-94.1) กล่าวโดยสรุปคือวิธีการที่ได้พัฒนาขึ้นดังกล่าว แม้ว่าจะให้ผลตรวจที่ รวดเร็วและแม่นยำมากในห้องปฏิบัติการ เมื่อนำไปใช้ในการตรวจตัวอย่างผู้ป่วยจากแหล่งระบาด พบว่าให้ ผลบวกเพียงครึ่งหนึ่งของผู้ป่วยเท่านั้น โดยรายงานนี้จะได้นำเสนอในรายละเอียดต่อไป

คำหลัก: โรคเลปโตสไปโรซีส**;** Loop-mediated isothermal amplification; การตรวจวินิจฉัย