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Abstract

We consider a single air-cargo carrier, which wants to allocate cargo capacity
to multiple forwarders before a booking horizon starts. A contribution that the
carrier earns from each forwarder is based on the actual allotment usage at the end
of the horizon. The airline’s problem is to choose the allotments that maximize
the expected total contribution. We derive a probability distribution of the actual
usage by using a discrete Markov chain and solve the problem by using a dynamic
programming method. Two heuristics for a large-scale allocation problem are also

proposed, and their performance is tested via numerical experiments.
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Introduction

Air-cargo operations generate significant revenue for passenger airlines, most of which
carry cargo shipments in the belly of their planes. Air-cargo volumes are expected to
grow 6 percent annually over the next two decades (Airbus 2007). The growth of air-cargo
traffic partly results from global trade liberalization, and the emerging implementation
of supply chain management strategies, which emphasize on short lead times.

Many carriers (airlines), especially those in Asia-Pacific, reserve large portions of
cargo space on specific flights over a period of time for their key freight forwarders either
as part of a binding contract or as part of a goodwill and gentleman’s agreement (Billings
et al. 2003). The allotted space is referred as an allotment. The forwarders re-sell their
allotments to their own customers. They collect individual packages from shippers and
transport the consolidated shipments to the airline. In addition, they provide value-
adding services such as picking up from the shipper location and customs clearance for
international cargo. Consequently, shippers typically prefer to use the forwarders unless
a shipment is an emergency, or contains perishable or hazardous materials (Thuermer
2005).

An allotment contract is normally valid for the entire season, whose duration is spec-
ified by the International Air Transport Association (Slager and Kapteijus 2004). The
airline awards the medium-term contracts to the forwarders before the season starts. At
that time, the forwarders do not know the exact amount of their customer demand. After
the forwarder’s demand is materialized, the airline often allows the forwarder to return
the unused portion of its allotment and charges only the actual usage. The airline’s prob-
lem is to choose the allotments so that the expected total contribution is maximized. The
contribution of the shipment is the contract rate minus the associated operational costs,
e.g., the incremental fuel cost, and the handling costs.

In this article, we consider a single airline, which wants to allocate cargo capacity to

multiple freight forwarders. During the booking horizon, the request from the forwarder



arrives one by one. The forwarder’s request is accepted, if its space requirement does not
exceed the allotment the forwarder currently has. At the end of the booking horizon,
the airline receives the contribution, proportional to the forwarder’s actual allotment
usage. We show that the sequence of the cumulative usages of the accepted shipments
for each forwarder forms a discrete Markov chain. The expected actual allotment usage
is neither concave nor differentiable. The airline’s problem can be solved via dynamic
programming, in which the number of computational steps quadratically increases in the
capacity.

To develop some heuristic solutions, we assume that the shipment can be partially
accepted. Under this assumption, the objective function is concave but still not differ-
entiable. We present two heuristic approaches. In the first, the expected actual usage
is approximated by a continuously differentiable function, and the heuristic solution is
derived from the Karush-Kuhn-Tucker (KKT) conditions. The latter is based on La-
grangian relaxation, in which the capacity constraint is dualized. Through a series of
numerical experiments, we show that the latter outperforms the first.

Since air-cargo capacity can be sold at different prices to heterogeneous customers but
cannot be sold after the flight departure, it is a prime candidate for revenue management
(RM) strategies. Books on RM theory and practice are, e.g., Ingold et al. (2000), Talluri
and van Ryzin (2004), Yeoman and McMahon-Beattie (2004), and Phillips (2005). De-
scriptive papers on air-cargo RM can be found in e.g., Kasilingam (1996), Bazaraa et al.
(2001), Billings et al. (2003), Slager and Kapteijns (2004) and Becker and Dill (2007). In
general, there is a vast literature on capacity management and on supply chain contracts;
see Van Mieghem (2003), Cachon (2003), and Lariviere (1999) for reviews. Unfortunately,
“revenue managing the contractual terms under which inventory is sold, remains almost
untouched in the RM literature in spite of the vast majority of business that is transacted
under negotiated contracts (Boyd and Bilegan 2003).” Despite a large number of papers

on a nonlinear resource allocation problem (cf. Patriksson 2008), there are few papers



that present mathematical models of the air-cargo allocation problem. Below, we review
some of them.

Hellermann (2006) proposes a capacity-option pricing contract between a single for-
warder and a single airline. The capacity is sold in two stages. In the first stage, the
capacity is sold up front through the medium-term contract. In the second stage, the
airline sells on the spot market, in which price and demand are random. The interaction
between the two parties is specified by a Stackelberg game. Under the terms of the con-
tract, the forwarder pays a reservation fee to acquire the right (but not the obligation) to
use capacity, and later pays an execution fee if it eventually uses the capacity. The airline,
the Stackelberg leader, first announces the reservation and execution fees. Then, the for-
warder decides on the amount of capacity to reserve. After the demand and the spot price
materialize, it determines how many reservations to call on. Hellermann compares the
performance of the option contract to that of a fixed-commitment contract. Hellermann
consider the single-forwarder case, whereas we consider the multiple-forwarder case.

Gupta (2008) studies flexible contracts between a single forwarder and a single airline,
which receives two demand streams from the forwarder and the direct shippers. The paper
identifies two contract schemes, which allow the carrier to achieve an efficient capacity
allocation. In our article, the airline receives multiple demand streams from multiple
forwarders. The functional form of the allotment usage in both Hellermann and Gupta
resembles that in the newsvendor; specifically, the actual usage equals the minimum of
the forwarder’s demand and the allotment. We present a more detailed formulation; the
sequence of the cumulative usages from one request to the next is modeled as a discrete
Markov chain, and the expected actual usage is derived from the property of the Markov
chain.

Kasilingam (1996) presents an allocation model in a network setting. A total contri-
bution is maximized subject to a capacity constraint, which ensures that for each flight

the total allotment from all associated routings and for all forwarders does not exceed the



capacity, and a chance constraint, which states that for each forwarder the probability of
the allotment exceeding the demand is within a specified threshold. The model assumes
that the contribution for each route and for each forwarder is equal to the product of the
amount of the allotment and the per-unit contribution. Putting it differently, Kasilingam
(1996) assumes that the forwarder is charged for the whole allotment. Under this as-
sumption, the total contribution is deterministic, and the objective function is linear in
the allotment. However, we assume that the contribution is linear in the actual allotment
usage, not the whole amount that the forwarder originally receives. Our assumption is
consistent with the industry practice; see Bazaraa et al. (2001) and Hellermann (2006)
Section 2.2.4.

The rest of the paper is organized as follows. In Section 1, we formulate the carrier’s
problem. The probabilistic analysis and the optimal solution of the carrier’s problem
are given in Section 2. We develop heuristic procedures in Section 3 and test their

performance in Section 4. Finally, concluding remarks are provided in Section 5.

1 Problem Formulation

Throughout this article, we use N to denote the set of natural numbers, Z, the set of
nonnegative integers, and R, the set of nonnegative real numbers.

The carrier has x units of cargo capacity per flight, which would be allocated as
allotments for m forwarders before the season starts. Let x; > 0 denote the per-flight
allotment for forwarder i € {1,2,...,m} := M. We assume that cargo capacity is one
dimensional, because in practice most airlines manage their allotments only in terms of
weight. (Nonetheless, modern short-haul planes are constrained by volume not weight
due to recent advances in aircraft engine.) Alternatively, cargo capacity may be thought
of as a number of standard containers in a cargo hold.

The carrier charges forwarder ¢ based on its actual allotment usage U;(z;) and receives



a contribution of p; per unit usage. Assume that the carrier is risk neutral, since it
operates multiple repeat flights in one season. The carrier wants to maximize the expected

total contribution subject to a capacity constraint:

max{E[ipiUi(xi)] :ixigﬁ, x; > 0 for eachie./\/l} (1)
i=1 i=1

The first constraint states that the carrier does not allocate more than its cargo capacity.
In other words, it does not overbook their allotments. Theoretically, we could include
an overbooking policy in (1): the objective function would include an expected oversale
cost, and the right-hand-side of the capacity constraint would include an overbooking
pad. In practice, the penalty cost from delaying forwarders’ shipments is much higher
than that from bumping passengers. Unlike passenger airlines which typically overbook
their seats, air-cargo carriers rarely overbook their allotments.

In practice, the forwarders’ usages are usually dependent, because they are affected
by same factors, e.g., a gross domestic product (GDP), a weather condition, and a fuel
price, etc. Even if the forwarders’ usages Uy (z1), ..., Uy (z,;,) are dependent, (1) remains
valid. Recall that the expectation of a finite sum of random variables is the finite sum
of their expected values, and that the expectation of a constant times a random variable
is the constant times the expectation of the random variable. The objective function

becomes
m m

E[szUz(xZ)] = ZpZE[UZ(l‘Z)]
i=1 i=1
The expectation E[U;(x)] can be calculated with respect to the marginal distribution of
random variable U;(x).
Assume that the request to book a shipment arrives to the carrier one by one through-
out the booking horizon. When there is a medium-term contract between the forwarder

and the carrier, the booking request from the forwarder is accepted, if its space require-

ment is within the contracted space (Bazaraa et al. 2001). In practice, the requests from



the forwarder with the allotment are accepted on the first-come, first-served basis, but
those from the forwarder without the allotment need not be. The latter is sometimes
referred to as ad-hoc/free sale (Slager and Kapteijns 2004). The carrier might apply some
rudimentary RM techniques in controlling the free sale space; e.g., it might reject the
current request, if it anticipates the larger contribution from the future requests. We do
not model the free sale, because many Asia Pacific airlines reserve large portions of their
capacity as allotments (Hendricks and Elliott 2005). An omnibus model, which includes
both allotment and free sale, is an interesting future research direction.

Consider the booking requests from forwarder ¢, which receives allotment x. Let N;
be its total number of requests, and let W, ;, be the space requirement of its k-th request,
where k € {1,2,..., N;}. Let X, x(z) denote the cumulative usage after the carrier makes
the k-th accept/reject decision [just before the arrival of the (k + 1)-st booking request]
for each k € {1,2,...,N;}. At the end of the booking horizon, the actual usage of
forwarder 7 that receives allotment x is U;(x) = X, n,(x). The finite sequence of the
cumulative usages {X;x(z) : k =1,2,...,N;} is determined by the following recurrence

equation:

Xip—1(x) + Wiy Wi <o — X4 1(x)
Xig(z) = (2)

Xik—1(z) otherwise

for each £ = 1,2,...,N;, and Xy(z) = 0. Equation (2) can be explained as follows.
Prior to the arrival of the k-th request, the cumulative usage of the accepted shipments
is X;x-1(x), and the unused portion of the allotment is © — X, ;_1(z). If the unused
portion is at least the space requirement of the k-th booking request, then the request is
accepted, and the cumulative usage increases to X; y_1(x) + W;x. Otherwise, the request
is rejected, and the cumulative usage stays the same.

Given that its total number of booking requests is N; = n € N, we assume that the



space requirements of the requests, W;,, Wi, ..., W, ,, are independent and identically
distributed (i.i.d.) nonnegative integer-valued random variables. The i.i.d. assumption is
needed for mathematical tractability, and it is quite common among operations research
papers with stochastic model applications. (Moreover, we perform a statistical test on
some real data collected from a major airline in Thailand, to test the null hypothesis that
the space requirements are i.i.d. The p-value is 0.4661 for the shipments on 19 June 2008
and 0.7373 on 24 April 2008. We conclude that there is insufficient evidence to reject the
null hypothesis at 5% significant level. A similar conclusion can be made for many other
dates.) Our assumption that the space requirements are integer-valued is not restrictive,
because the units can be chosen arbitrarily. As mentioned earlier, most airlines manage
their capacity in terms on weight. In practice, the unit of space requirement may be that
of a weight measuring device. Furthermore, the freight charge is usually based on the

nearest whole pound or kilogram.

2 Optimal Solution

We will derive a closed-form expression for E[U;(x)], the expected actual allotment usage
of forwarder ¢ that receives allotment x € N. It follows from the assumptions in Sec-
tion 1 and the recursive equation (2) that the stochastic process {X;x(x) : k € Z.} is
a discrete Markov chain with the state space {0,1,...,z} := X(x). Its initial distribu-
tion is P(X;¢(x) = 0) = 1. Denote the (one-step) transition probability as p;(b, c¢|z) =
P(X,(z) = ¢| X, —1(z) = b) for each ¢,b € X(x).

Let h; (resp., H;) denote the probability mass (resp., cumulative distribution) function
of a generic random variable W; ;. We use a bar atop a distribution function to denote

its complement; e.g., H;(t) = 1 — H;(t).

Lemma 1. The transition probability of the Markov chain {X;(x) : k € Z4} is given



as follows:

hi(c —b) ifb<c<uw
pi(bclw) = Hy(x —b) + hi(0)  ifc=0b (3)
0 if0<ec<b
\
for each b < z, and
1 ifc=x
pilz, clz) = (4)
0 ifc#x

Proof. Suppose that the cumulative usage prior to the k-th arrival of the booking request
is b. Then, the unused portion of the allotment is (x — b). Let ¢ denote the total usage
prior to the (k+1)-st arrival of the booking request. Note that the sequence of total usages
are nondecreasing: X;;_1(x) < X;(z) with probability one. Therefore, p;(b,c|z) = 0
if ¢ < b, which is the third case in (3). For the first case, the total usage strictly increases
from b to ¢, if and only if the k-th booking request with the space requirement (¢ — b) is
accepted; i.e., c — b < x — b, or equivalently ¢ < z. The event that the arriving request
has space requirement (¢ — b) occurs with probability h;(c — b). For the second case, the
total usage remains the same, if and only if the k-th booking request is rejected, or its
space requirement is zero. The first occurs with probability H;(x — b), whereas the latter
occurs with probability h;(0). Finally, in equation (4), the cumulative usage prior to the
k-th arrival is equal to the allotment. The forwarder has no allotment left, and all of

future requests are rejected; thus, the cumulative usage must remain the same. O

Let P;(x) be a (one-step) transition matrix, whose element in the b-th row and c-th

column is p;(b, c|z) for each b, ¢ € X(z). From the Chapman-Kolmogorov equation, the

(%)

k-step transition matrix, denoted by P, (z), can be obtained by multiplying the one-step



transition matrix with itself £ times: PZ(-k) (z) = (P;(x))* for each k € N. The distribution
of the Markov chain {X, x(z) : k € Z,} is completely specified by the one-step transition

probability P;(z) and the initial distribution P(X;(z) =0) = 1.

Proposition 1. The expected actual usage, if forwarder i receives allotment a € Ry, is
given by

EUi(a)] =Y P(N;=n)>_ tp\" (0, t]x)
where x = |a|, and E[U;(0)] = 0.

Proof. Since N; and W, ; are nonnegative integer-valued random variables, the expected
actual usage E[U;(a)] = E[U;(x)], where x = [a]. Recall that U;(z) = X, n,(x). We

calculate the expected total usage by conditioning on the number of booking requests:

E[Xin, ()] = Y P(N; = n)E[X; x,(2)|N; = n]

=0P(N; =0) + ZP(Nz' =n)E[X;,(v)] (5)

hE

P(N; =n) Y tP(Xin(x) = t|X;0(x) = 0) (6)

n=1

K

P(N; =n)> "t (0, t]x) (7)

n=1

In equation (5), the total usage is zero, if the forwarder makes no booking request;
ie., E[X;n (x)|N; = 0] = 0. In equation (6), we calculate E[X;,(z)] by conditioning
on the initial state X;(x). [Note that the initial distribution is P(X;¢(z) = 0) = 1]
Equation (7) follows from the definition of the n-step transition probability pgn)((), -|x)
given that the initial state is 0. Recall that pz(")(b, c|z) is the element in the b-th row and
c-th column of the n-step transition matrix PE”’ (x) = (Py(x))™. The one-step transition

matrix P;(x) is given in Lemma 1. We can ignore the first term in the second summation

in (7), since it equals zero. This completes the proof. O
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Note that the expected actual allotment usage E[U;(x)] is nondecreasing but might not
be concave on Z,. Non-concavity partly results from the assumption that the shipment
of size W; j, is accepted on an all-or-none basis. For instance, suppose that the sequence of
space requirements is (1,3,9,5,2,4). Then, the actual allotment usages, if the allotment
are (x : x = 4,5,...,11) are (u(x) : = = 4,5,...,11) = (4,4,6,6,6,9,9,11). The
differences between two consecutive usages are (u(x) —u(x — 1) : ¢ = 5,6,...,11) =
(0,2,0,0,3,0,2); clearly, the actual usage is not concave on Z,. [Recall that a function
f:Z; — Ris concave on Z, if f(a) — f(a — 1) is nonincreasing in a € N/]

For short-hand notation, denote m;(a) = p;E[U;(a)] for each a € Ry. The carrier’s

problem can be expressed equivalently as

m m

C:maX{Zm(ai):Zaigm, a; > 0 for eachieM} (8)

=1 =1

Note that (8) is a special case of the nonlinear resource allocation problem. For each i €
M, m;(a) is neither concave nor differentiable on R, . Problem (8) can be solved via
dynamic programming. The number of stages equals m, the number of the forwarders.
Define the state at the beginning of stage ¢ as the amount of cargo capacity to be allocated
to forwarders 7,7+ 1,...,m. At the beginning of stage ¢, the carrier observes the state y
and determines the allotment for forwarder i, denoted by a;. Let u;(y) be the value
function at stage ¢; i.e., u;(y) is the maximum expected total contribution that can be
earned from forwarders ¢ through m, if the current state is y. The value function can be
computed recursively via the Bellman optimality equation

uily) = max {m(e) +uinly —a)}, €M (9)

and the boundary condition is u,41(y) = 0 for all y. Let af (y) = argmax,_o, ,{m(a)+
uit1(y —a)}.
Proposition 2. The optimal objective function in (8) is ¢ = ui(k). The optimal allot-

11



ment for forwarder i € M is given as follows: ot = a%(k) and } = af(k — Yb_" a}) for

each i € {2,3,...,m}.

Proof. Since the carrier has x units of cargo capacity to allocate to forwarders 1 through m,
the optimal objective function is u; (k). From the definition, a}(y) represents the optimal
allotment for forwarder i, if the carrier has y units to allocate to forwarders ¢ through m.
Thus, the optimal allotment for forwarder 1 is 27 = aj(k). The carrier reserves =} to
forwarder 1, leaving k — x7 to allocate to forwarders 2 through m. Then, z} = a}(k — 7).
The carrier reserves x3 to forwarder 2, leaving k — (27 + x3) to allocate to forwarders 3
through m. Then, 2§ = aj (m — (27 + :rz)) The carrier reserves zj for forwarder 3,

leaving k — (] + a3 + x3) to allocate to forwarders 4 through m, and so on. O

The number of iterations needed to solve (9) is of order ms?. This may create
some computational burden, if the carrier is endowed with large cargo capacity. In the
next section, we develop some heuristic solutions, implementable for an industry-sized

problem.

3 Heuristic Solutions

The fact that the expected actual usage E[U;(a)] of forwarder i that receives allotment a
is not concave in a € Z results from the all-or-none acceptance rule. To develop some
heuristics, we suppose that the shipment can be partially accepted. Upon receiving the
k-th booking request with space requirement W; from forwarder 7, the airline accepts
min{W; j, Z} where Z is the unused portion of the allotment. We will show that the
expected total usage is concave under the assumption that the request is partially ac-
cepted.

Suppose that forwarder ¢ receives allotment x. Let Y;,(x) denote its cumulative
usage after the carrier’s accept/reject decision of the k-th booking request. The actual

allotment usage under the partial acceptance assumption is V;(x) = Y; ,(z). The finite

12



sequence of the cumulative usages {Yix(x) : £ = 1,2,...,N;} is determined by the

following recurrence equation:
Yik(#) = Yo () + min { (2 — Yo (). Wi (10)

for each k =1,2,...,N;, and Y;o(z) = 0. In (10), the carrier books the shipment up to
the unused portion of the allotment (:L‘ - Yi,k,l(x)). We assume that the forwarder is
willing to break the consolidated shipment and deliver {(x — Y ,_1(2)), Wik}

From our construction, Y;x(z) > X, x(x) for all k, with probability 1. Consequently,
the expected actual allotment usage under the assumption that the request is partially

accepted is at least that under the all-or-none assumption; i.e.,
E[V(z)] > E[Ui()] (11)

Furthermore, if W, is a Bernoulli random variable, which takes on values {0, 1}, then
with probability 1, Y; x(z) = X, x(x) for all k, so U;(z) = Vi(x).
For each i € M, let D; denote the sum of all space requirements of N; booking requests

from forwarder ¢; i.e., D; = ch\;l Wi is the total space requirement of forwarder i.

Proposition 3. Suppose that forwarder i receives allotment a € Ry. Under the as-
sumption that the request is partially accepted, Y; ;(a) = min{Z?zl Wi ;,a} for each k =
1,2,...,N;.

Proof. The proof is done using mathematical induction. Clearly, Y;;(z) = min{W;,, z}.
Next, assume that Y, 1(x) = min{zz?;ll Wi ;,x}. Substituting this expression in (10),

we get

k-1 k—1
Yie(x) = min{z Wi, x} + min { (z — min{z Wij x}), Wlk}

j=1 j=1

IF Y S7) Wiy < @, then Yix(z) = Y2570 Wi jmin{a— Y070 Wi, Wik} = min{a, Y30, Wi s

13



otherwise, Y; y(x) = x. Hence, Y] x(x) = min{z, Z?:l Wi} O

For short-hand notation, denote p;(x) = p;E[Vi(z)]. It follows from (11) that the

optimal solution to the following mathematical program

m m

fzmaX{Zpi(ai):Zaign, a; > 0 for eachieM} (12)

=1 =1

yields an upper bound on the carrier’s problem (8); i.e., £ > (. Unlike 7;(z) in the carrier’s
problem, the function p;(x) is concave on Z,. Similar to m;(a), the function p;(a) is not
differentiable on Ry, since W;; and N; are assumed to be nonnegative integer-valued

random variables. To solve (12), we present two heuristic approaches.

1. Continuous approximation, in which the total space requirement is modeled as a
nonnegative real-valued random variable, denoted by D;. Since the cumulative
distribution function of D is continuous, the expected actual allotment usage of
forwarder 4 that receives allotment x, E[min(D;, x)], is differentiable on R, . This
allows us to apply a standard nonlinear programming technique (e.g., KKT condi-

tions).

2. Lagrangian relaxation, in which we dualize the capacity constraint, > " z; < k.
The objective function of the relaxed problem is concave, so the relaxed problem for
a fixed value of the Lagrange multiplier is easy to solve. We then use subgradient
optimization to update the Lagrange multiplier in such a way that the capacity

constraint is likely to be tighter on the subsequent iteration.

We use boldface type to denote an m-dimensional vector; e.g., x = (x1, %, ..., Tm).

3.1 Continuous Approximation

Recall that the total space requirement of forwarder ¢, D; = ZkNgl Wik, is a Z-valued

random variable. Using continuous approximation, we model it as an R, -valued random

14



variable D;, whose mean p; and variance o2 are chosen such that

pi = BID;] = EINJE[W:,], (13)

o? = var(D;) = var(W; ) E[N;] + (E[W; 1])? var(N;),

Problem (12) becomes

f: max { ZpiE[min(ﬁi,xi)] : le <k, x;>0foreachice ./\/l} (14)
=1 =1
Let F; denote the cumulative distribution function of lA)Z Index the forwarders such

that p; > p;y1 for all © € M, where p,,,.1 = 0. Since ﬁi is an R, -valued random variable,

F} is continuous and strictly increasing, and the quantile ;! is a well-defined function.

Proposition 4. The necessary and sufficient conditions for X* to be an optimal solution

to (14) are as follows: There exists (* € M and a positive \* € [pg« 41, pe+) such that

F7N 1= X/p;)  foreachi=1,2,..., ("

0 foreachi=0"+1,0*+2,...,m

A
and Y0 % = k.

Proof. Since F; is continuously differentiable for each ¢« € M, the objective function
S piE[min(D;, ;)] is continuously differentiable on R*. Moreover, it possesses con-
tinuous second partial derivatives, so the KKT conditions are necessary for a point to be
an optimal solution. The KKT conditions are also sufficient, since the objective function
is concave on R'. (All constraints are linear, so the constraint qualifications/regularity
conditions are satisfied.)

We associate a vector of multipliers g > 0 with the nonnegativity constraints and A >
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0 with the capacity constraint to form the Lagragian function:

L(x|p, A) = ZpiE[min(ﬁi, z;)] + Ak — Z z;) + Z i

i=1 =1

For a feasible solution x to be an optimal solution to (14), the KKT conditions

piFi(z;)) — A4+ p; =0 fori e M
MK — le) =0
i=1
/llil'i:O for1 e M

are both necessary and sufficient. Since g > 0, we can eliminate them; the above

conditions can be written as

piFi(z;) < A fori e M (15)
A=Y ) =0 (16)
lpiF(x;) — Nz; =0 fori e M (17)

Note that F;(0) = 1 and F;(z) is strictly decreasing on [0, x]. From (17), we conclude that
x; > 0 if and only if p; > A. From this result and the way the forwarders are indexed,
there exists ¢ € M such that x; > 0 for + < ¢ and x; = 0 for « > /. For each ¢ < /,
piF;(x;) = \; the multiplier must be A < p;. For i > ¢, z; = 0 and ppy; < A. Finally,
suppose that A = 0. Then, it follows from (15) that x; is the largest possible value of ﬁi,

and the capacity constraint Y .-, x; < k is violated. Hence, A > 0, and (16) becomes

Yo w = K. O

Proposition 4 asserts that the first £* forwarders receive positive allotments, whereas

the last (m — ¢*) forwarders receive zero allotments. For forwarders 1 through ¢*, its
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allotment is chosen such that the marginal revenue is equal to the Lagrange multiplier
i.e., p;F;(2¥) = X*], and that the sum of their allotments equals the capacity. That is,

l*
ZFz’il(l — A"/pi) = Kk where pg-1 < A* < py- (18)

1=1

The two-phase algorithm in Table 1 finds an optimal solution to (14). We search
for the optimal number of forwarders that would receive positive allotments (denoted as
¢*) in Phase I and for the optimal Lagrange multiplier (denoted as A*) in Phase II. The
values of ¢* and A\* must satisfy (18).

The idea behind Phase I is as follows. We want to find £* such that Y% F (1 —
A/p;) = k for some \ € [pp11, pe-). For a fixed value of ¢ € M, the function Zle FH1-

A/p;) is decreasing in A € [pgi1,pe). Then,

4 L L

ZFi_l(l = pe/pi) < ZFi_l(l —A/pi) < ZFfl(l — Pey1/Pi)

=1 =1 1=1

Let LB(¢) and UB(¥¢) denote the quantities on the left- and right-hand sides, respectively.
Note that 3¢ F; }(1—\/p;) is continuous in A. The intermediate value theorem asserts
that if LB(£) < & < UB({), then there exists A(£) € [pg1,pe) such that 30 F7H(1 —
A(0)/p;) = k. Phase I determines the smallest integer ¢* such that LB(¢*) < x < UB(¢*).

Phase II searches for A* € [py«41, pe<) that solves Zle F7H1 =)\ /p;) = K, where £* is
found in Phase I. This can be done using a one-dimensional search procedure. In Table 1
Phase II, we present a bisection method. In iteration ¢ > 1, we employ the midpoint
rule (traditionally called the Bolzano search plan) for selecting the trial solution A, =
(X, + AN /2. T8 F7H(1 = A\ /pi) > K, we need to increase the lower bound A1 = e
If Zf;l F7'(1 = A\/pi) < K, we need to decrease the upper bound \/,; = );. [Again,
note that Zf;l F7Y1 — \/p;) is decreasing in \.] By construction, the length of the
interval of uncertainty in iteration (¢ + 1) is halved that in iteration ¢. We stop when

Zle F7H1 — M\/pi) is close to k.
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e Phase I: Search for ¢* € M.

1. Initialization: Set ¢ = 1.
2. Iteration ¢ > 1:
(a) Set UB(() = Y25y F' (1 = pesa/pi).
(b) Set LB(() = >, F; (1 — pe/pi)-
3. Stopping:
(a) If £ =m, set * =m and go to Phase IL.
(b) If LB(¢) < k < UB(¥), set ¢* = ¢ and go to Phase II. Otherwise, set ¢ =

¢ + 1 and perform the next iteration.

e Phase II: Search for \* € [pp-y1, pe-).

1. Initialization: Select a small tolerance ¢ > 0.
(a) Set initial lower bound A} = pg=4 ;.
(b) Set initial upper bound A/ = py-.
2. Iteration t > 1:
a ompute new multiplier \; = + .
C Itiplier A AL+ AY)/2
(b) Computer allotment z;; = F; ' (1 — \;/p;) fori =1,2,..., ("
3. Stopping: If | Zle zip— k| < €, set A* = )\ and f = x4, and stop. Otherwise,
(a) If Zf;l T > K, set A\j . = A, and MY = AY.
(b) TE 3% @i < K, set XYy = Ay, and A, = A
(c) Set t =t + 1 and perform the next iteration.

Table 1: Continuous approximation heuristic procedure
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3.2 Lagrangian relaxation

In Problem (12), we relax the capacity constraint by multiplying it by Lagrange multi-

plier ¥ > 0 and bringing it into the objective function, which now becomes

m m

Zpi(ai) +v(k — Zai) = Z[pi(ai) —va;| + vk

=1 =1

For short-hand notation, denote ¢;(a|v) = p;(a) — va. We want to solve
min{&(v) : v > 0} where £(v) = max{z ci(a;|v) i a; € Z, for each i € M} (19)
i=1

Recall that in Problem (12), p;(a) = p;E[min(D;,a)], and D; is a Z-valued random
variable, so we can restrict our attention to a nonnegative integer allotment. For a
fixed value of the Lagrange multiplier, the maximization £(v) is easy to solve, since the
objective function is separable, and ¢;(a|v) is concave on Z, for each i € M.

Let G; denote the cumulative distribution function of D; for each ¢ € M.

Proposition 5. For a fized value of the Lagrange multiplier v, an optimal solution of £(v)

is as follows. If v > p;, then a}(v) = 0; otherwise,
a;(v) = argmax {a eEN:Gila—1) > l//pi} (20)

Proof. Since the objective function is separable, we can individually maximize each

term ¢;(a|v). Since D; is a Z-valued random variable, we have that for each a € Z

—_
—_

Emin(D;, a)] = ZP(min(Di,a) >t) = ; P(D;>t) =) Gt (21)

t=0 t t

a—

Il
<)
Il
<)

where the first equation follows from the result E[Z] =)  P(Z > t) for a Z-valued
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random variable Z. Using (21), we obtain the expression
a—1
¢;(alv) = p;E[min(D;, a)] — va = p; Z Gi(t) — va

t=0

and the first difference is

¢i(alv) —¢ila—1lv) = p;Gila—1) —v

If v > p;, then the first difference is negative for all @ > 0, so ¢;(a|v) is nonincreasing,

and a}(v) = 0. Otherwise, we obtain the expression (20). O

The solution a*(v) found in Proposition 5 can be used to obtain an upper bound:

The first inequality follows from the fact that {(v) > £ for all » > 0, and the second

inequality follows from (11). Also, it can be used to obtain a lower bound. Let

e (v) = &) where &(v) = [a(v) — — (Z a;(v) — k)" (22)

where m*(v) is the number of non-zero allotments, i.e., the size of the set {i € M :
af(v) > 0}. Note that x*(v) is a feasible solution and can be used to obtain a lower
bound > " | p;(zf(v)) to the approximated problem (12) or > " | m;(«}(r)) to the original
problem (8).

We want to solve (19). The Lagragian relaxation algorithm is presented in Table 2.
In iteration k, for a fixed value of the Lagrange multiplier v, we solve £(vy): Its solu-
tion a* () is given in Proposition 5, and it is used to construct a feasible solution x* (1)
as in (22). The first and latter are used to compute the upper and lower bounds of &

in (12), respectively. The best upper and lower bounds that we have found during itera-
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tions 1 through £ can be determined. With the bounds in hand, we obtain the updated
Lagrange multiplier v, using a subgradient optimization method. The process contin-
ues until the best lower and upper bounds are close enough. Steps in Table 2 are similar

to those in a generic Lagrangian relaxation algorithm; cf. Fisher (1985).

4 Numerical Examples

We illustrate the performance of our heuristic solutions via numerical examples. We
also compare them with a proportional allocation scheme, whose variants may be used

in practice because of their simplicity. In this scheme, the allotment for forwarder i is

a; = ?Zzl -+ for each i € M, where p; is defined as in (13). Note that the allotment
that forwarder 7 receives is proportional to its mean. The larger the mean demand, the
larger the allotment.

Below, we describe the setup in the numerical experiments. Suppose that the carrier
manages its air-cargo capacity in terms of weight. Assume that there are m = 3 for-
warders, whose per-kilogram contributions are 1.2, 1.0, and 0.8 respectively. We consider
two sets of experiments. In the first (resp., second) set, small (resp., large) problem in-
stances are considered; the capacity is discretized so that one unit equals 300 (resp., 50)
kilograms, and the per-unit contribution (pi, ps, p3) is (360,200, 240) [resp., (60, 50, 40)].
The small problem instances are solved to optimality. The number of shipment requests
from forwarder i is a Poisson random variable with mean E[N;| = n; = 12 — 0.03p;.
Note that the mean number of arrivals (demand) is linearly decreasing in the per-unit
contribution (margin). Assume that the random requirements of all forwarders are i.i.d.
negative binomial random variables with parameters r and p. Then, E[W;;] = rq/p
and var(W; ;) = rq/p® where ¢ =1 — p.

In the continuous approximation heuristic, we model D; using the gamma distribution

with shape and scale parameters a; and b;, respectively. Then, F [IA)z] = q;b; and var(lA)i) =
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1. Initialization:

(a) Determine initial multiplier 1, = = 3" ;.

(b) Select a small tolerance € > 0.

(c) Set the best upper bound Uy = oo, the best lower bound £, = —oc0, and a
constant oy = 2.

2. Iteration k£ > 1:

(a) Obtain a*(v) in Proposition 5, and x*(v) as in (22).

(b) Find an upper bound U; = > " ¢;(af(vx)|vk), and the best upper bound
Uy, = min{lUf}, U1 }.

(¢c) Find a lower bound L£; = > p;(zi(v)), and the best lower bound L) =
max{L;, Lx_1}.

(d) Compute a stepsize
(U — Ly)

(5= X0 ar ()

ty =

(e) Update the Lagrange multiplier

m

Vg1 = max {0, v — ty, (m — Za;‘(yk))}

=1

(f) Modify the constant ay. If the best upper bound U, fails to go down for some
consecutive number of iterations (e.g., 4 consecutive iterations in the numerical
example), then the value of i is halved; i.e., axy; = /2. Otherwise, it
remains unchanged; i.e., a1 = ay.

(g) Stop if Uy, — Ly, < €. Otherwise, perform the next iteration k = k + 1.

Table 2: Lagrangian relaxation heuristic procedure
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%A Proportional Continuous Lagrangian
Minimum 3.05 1.78 0.00
Maximum 13.19 14.07 12.71

Average 6.10 5.83 2.48

Table 3: Percent differences between the optimal expected contribution and the expected
contribution if the heuristic solution is used

a;b?. Tt follows from (13) that a; = n;rq/(1 + rq) and b; = (1 + rq)/p.

In the Lagragian relaxation algorithm, we compute the distribution of D; by condi-
tioning on N;. If N; = n € N, then the n-fold convolution 2221 W, follows the negative
binomial distribution with parameters nr and p, since W, ;, W;,,... are i.i.d. negative

binomial random variables with parameters r» and p.

Example 1 (Small Problem Instances). Let (r,p) = (12,0.79). Then, the mean of total
capacity requirements of booking requests from all three forwarders is E[Y .~ | D;] = 28.7,
or equivalently 8,610 kilograms. This is about two thirds of the cargo capacity of Airbus
A330-300 based on the normal operating conditions and full passenger loads. Table 3
shows the maximum, minimum, and average, of the percent differences between the opti-
mal expected contribution and the expected contribution if the heuristic solution is used,
when the capacity is varied from 18 to 38. From Table 3, the average, minimum, and
maximum from the Lagrangian relaxation algorithm are smaller than those from the other
heuristics. The average and minimum from the continuous approximation algorithm are
smaller than those from the proportional allocation scheme, whereas the maximum from
the proportional allocation scheme is smaller than that from the continuous approxima-
tion algorithm. If the proportional allocation is replaced with the Lagrangian relaxation

heuristic, then the expected incremental benefit is on average 3.62 percent.

Example 2 (Large Problem Instances). Let (r,p) = (36,0.79). Then, the mean of total
capacity requirements of booking requests from all three forwarders is E[Y ;" | D;] = 301,
or equivalently 15,050 kilograms. This is approximately the cargo capacity of Airbus

A330-300. Figure 1 shows the expected total contributions from different schemes and
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Figure 1: Expected total contributions from different schemes

the upper bound. The cargo capacity x ranges from 294 to 308. As before, the expected
contribution from the Lagrangian relaxation heuristic is at least that from the other
two heuristics in all problem instances considered. Also, the expected contribution from
the continuous approximation heuristic is at least that from the proportional allocation

scheme in every case.

5 Conclusion

The air-cargo business has recently become a significant source of revenue for passenger
airlines, some of which sell a large portion of their space to forwarders as allotments.
Despite its importance, the number of journal articles on air-cargo revenue management
is much less than that on passenger revenue management. Few papers study the allotment
decisions, and most of them restrict their attention to a case of single forwarder. The
major contribution of the paper to the literature is to extend the study of allotment

management to the case of multiple forwarders. The multiple-forwarder case is observed
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more frequently in practice compared to the single-forwarder case.

We contribute to the literature by developing a mathematical model to evaluate the
expected profit for a given allotment combination and formulating a dynamic program-
ming problem to find optimal allotments for multiple forwarders. Upon recognizing that
the computation requirement associated with dynamic programming may be intensive
especially when the cargo capacity is large, we develop two heuristic solutions applicable
to the industry-sized problem. Through a series of numerical experiments, we evaluate
the performance of our proposed heuristics and the proportional allocation scheme, of
which variant might be implemented in practice. In one set of the experiments, we find
that our heuristic based on the Lagrangian relaxation approach outperforms the other
two schemes. In the other set, if it replaces the proportional allocation scheme, the ex-
pected contribution gain is about 3.62 percent. This additional revenue becomes crucial
for the multi-billion dollar airline industry, which is often operating on slim margins.

The problem that the resource can be sold in advance to intermediaries can be found in
other settings, e.g., hotel, cruise, and tour operations. In tour operations, large portions
of vacation packages are reserved for travel agencies. Our study may apply to these
settings as well.

Lastly, we discuss some possible future research directions. After the forwarders
return unwanted space, the carrier sells it to a direct shipper on an ad-hoc/free sale basis.
What should be an optimal mix between the allotment and the free-sale? This requires
building an omnibus model that captures both the short- and medium-term booking
processes. Also, one could study an allocation problem in a network environment, in
which each shipment needs to be routed so that it reaches its destination on time. The
sequence of flights, upon which each shipment is sent, must be determined. What should
be an optimal allotment on each leg and flight? Finally, how should the carrier strike
a medium-term contract, when it does not know the forwarders’ demands? Since the

carrier does not directly deal with the forwarders’ customers, their demand distributions
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might not be known to the carrier and become the forwarders’ private information. The
carrier needs to design contracts, which create enough incentive for the forwarders to

share information. We hope to pursue these and other related questions in the future.
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