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Abstra
tWe 
onsider a single air-
argo 
arrier, whi
h wants to allo
ate 
argo 
apa
ityto multiple forwarders before a booking horizon starts. A 
ontribution that the
arrier earns from ea
h forwarder is based on the a
tual allotment usage at the endof the horizon. The airline's problem is to 
hoose the allotments that maximizethe expe
ted total 
ontribution. We derive a probability distribution of the a
tualusage by using a dis
rete Markov 
hain and solve the problem by using a dynami
programming method. Two heuristi
s for a large-s
ale allo
ation problem are alsoproposed, and their performan
e is tested via numeri
al experiments.Keywords: Air Cargo; Capa
ity Management; Sto
hasti
 Model Appli
ations
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Introdu
tionAir-
argo operations generate signi�
ant revenue for passenger airlines, most of whi
h
arry 
argo shipments in the belly of their planes. Air-
argo volumes are expe
ted togrow 6 per
ent annually over the next two de
ades (Airbus 2007). The growth of air-
argotraÆ
 partly results from global trade liberalization, and the emerging implementationof supply 
hain management strategies, whi
h emphasize on short lead times.Many 
arriers (airlines), espe
ially those in Asia-Pa
i�
, reserve large portions of
argo spa
e on spe
i�
 
ights over a period of time for their key freight forwarders eitheras part of a binding 
ontra
t or as part of a goodwill and gentleman's agreement (Billingset al. 2003). The allotted spa
e is referred as an allotment. The forwarders re-sell theirallotments to their own 
ustomers. They 
olle
t individual pa
kages from shippers andtransport the 
onsolidated shipments to the airline. In addition, they provide value-adding servi
es su
h as pi
king up from the shipper lo
ation and 
ustoms 
learan
e forinternational 
argo. Consequently, shippers typi
ally prefer to use the forwarders unlessa shipment is an emergen
y, or 
ontains perishable or hazardous materials (Thuermer2005).An allotment 
ontra
t is normally valid for the entire season, whose duration is spe
-i�ed by the International Air Transport Asso
iation (Slager and Kapteijns 2004). Theairline awards the medium-term 
ontra
ts to the forwarders before the season starts. Atthat time, the forwarders do not know the exa
t amount of their 
ustomer demand. Afterthe forwarder's demand is materialized, the airline often allows the forwarder to returnthe unused portion of its allotment and 
harges only the a
tual usage. The airline's prob-lem is to 
hoose the allotments so that the expe
ted total 
ontribution is maximized. The
ontribution of the shipment is the 
ontra
t rate minus the asso
iated operational 
osts,e.g., the in
remental fuel 
ost, and the handling 
osts.In this arti
le, we 
onsider a single airline, whi
h wants to allo
ate 
argo 
apa
ity tomultiple freight forwarders. During the booking horizon, the request from the forwarder2



arrives one by one. The forwarder's request is a

epted, if its spa
e requirement does notex
eed the allotment the forwarder 
urrently has. At the end of the booking horizon,the airline re
eives the 
ontribution, proportional to the forwarder's a
tual allotmentusage. We show that the sequen
e of the 
umulative usages of the a

epted shipmentsfor ea
h forwarder forms a dis
rete Markov 
hain. The expe
ted a
tual allotment usageis neither 
on
ave nor di�erentiable. The airline's problem 
an be solved via dynami
programming, in whi
h the number of 
omputational steps quadrati
ally in
reases in the
apa
ity.To develop some heuristi
 solutions, we assume that the shipment 
an be partiallya

epted. Under this assumption, the obje
tive fun
tion is 
on
ave but still not di�er-entiable. We present two heuristi
 approa
hes. In the �rst, the expe
ted a
tual usageis approximated by a 
ontinuously di�erentiable fun
tion, and the heuristi
 solution isderived from the Karush-Kuhn-Tu
ker (KKT) 
onditions. The latter is based on La-grangian relaxation, in whi
h the 
apa
ity 
onstraint is dualized. Through a series ofnumeri
al experiments, we show that the latter outperforms the �rst.Sin
e air-
argo 
apa
ity 
an be sold at di�erent pri
es to heterogeneous 
ustomers but
annot be sold after the 
ight departure, it is a prime 
andidate for revenue management(RM) strategies. Books on RM theory and pra
ti
e are, e.g., Ingold et al. (2000), Talluriand van Ryzin (2004), Yeoman and M
Mahon-Beattie (2004), and Phillips (2005). De-s
riptive papers on air-
argo RM 
an be found in e.g., Kasilingam (1996), Bazaraa et al.(2001), Billings et al. (2003), Slager and Kapteijns (2004) and Be
ker and Dill (2007). Ingeneral, there is a vast literature on 
apa
ity management and on supply 
hain 
ontra
ts;see Van Mieghem (2003), Ca
hon (2003), and Lariviere (1999) for reviews. Unfortunately,\revenue managing the 
ontra
tual terms under whi
h inventory is sold, remains almostuntou
hed in the RM literature in spite of the vast majority of business that is transa
tedunder negotiated 
ontra
ts (Boyd and Bilegan 2003)." Despite a large number of paperson a nonlinear resour
e allo
ation problem (
f. Patriksson 2008), there are few papers3



that present mathemati
al models of the air-
argo allo
ation problem. Below, we reviewsome of them.Hellermann (2006) proposes a 
apa
ity-option pri
ing 
ontra
t between a single for-warder and a single airline. The 
apa
ity is sold in two stages. In the �rst stage, the
apa
ity is sold up front through the medium-term 
ontra
t. In the se
ond stage, theairline sells on the spot market, in whi
h pri
e and demand are random. The intera
tionbetween the two parties is spe
i�ed by a Sta
kelberg game. Under the terms of the 
on-tra
t, the forwarder pays a reservation fee to a
quire the right (but not the obligation) touse 
apa
ity, and later pays an exe
ution fee if it eventually uses the 
apa
ity. The airline,the Sta
kelberg leader, �rst announ
es the reservation and exe
ution fees. Then, the for-warder de
ides on the amount of 
apa
ity to reserve. After the demand and the spot pri
ematerialize, it determines how many reservations to 
all on. Hellermann 
ompares theperforman
e of the option 
ontra
t to that of a �xed-
ommitment 
ontra
t. Hellermann
onsider the single-forwarder 
ase, whereas we 
onsider the multiple-forwarder 
ase.Gupta (2008) studies 
exible 
ontra
ts between a single forwarder and a single airline,whi
h re
eives two demand streams from the forwarder and the dire
t shippers. The paperidenti�es two 
ontra
t s
hemes, whi
h allow the 
arrier to a
hieve an eÆ
ient 
apa
ityallo
ation. In our arti
le, the airline re
eives multiple demand streams from multipleforwarders. The fun
tional form of the allotment usage in both Hellermann and Guptaresembles that in the newsvendor; spe
i�
ally, the a
tual usage equals the minimum ofthe forwarder's demand and the allotment. We present a more detailed formulation; thesequen
e of the 
umulative usages from one request to the next is modeled as a dis
reteMarkov 
hain, and the expe
ted a
tual usage is derived from the property of the Markov
hain.Kasilingam (1996) presents an allo
ation model in a network setting. A total 
ontri-bution is maximized subje
t to a 
apa
ity 
onstraint, whi
h ensures that for ea
h 
ightthe total allotment from all asso
iated routings and for all forwarders does not ex
eed the4




apa
ity, and a 
han
e 
onstraint, whi
h states that for ea
h forwarder the probability ofthe allotment ex
eeding the demand is within a spe
i�ed threshold. The model assumesthat the 
ontribution for ea
h route and for ea
h forwarder is equal to the produ
t of theamount of the allotment and the per-unit 
ontribution. Putting it di�erently, Kasilingam(1996) assumes that the forwarder is 
harged for the whole allotment. Under this as-sumption, the total 
ontribution is deterministi
, and the obje
tive fun
tion is linear inthe allotment. However, we assume that the 
ontribution is linear in the a
tual allotmentusage, not the whole amount that the forwarder originally re
eives. Our assumption is
onsistent with the industry pra
ti
e; see Bazaraa et al. (2001) and Hellermann (2006)Se
tion 2.2.4.The rest of the paper is organized as follows. In Se
tion 1, we formulate the 
arrier'sproblem. The probabilisti
 analysis and the optimal solution of the 
arrier's problemare given in Se
tion 2. We develop heuristi
 pro
edures in Se
tion 3 and test theirperforman
e in Se
tion 4. Finally, 
on
luding remarks are provided in Se
tion 5.1 Problem FormulationThroughout this arti
le, we use N to denote the set of natural numbers, Z+ the set ofnonnegative integers, and R+ the set of nonnegative real numbers.The 
arrier has � units of 
argo 
apa
ity per 
ight, whi
h would be allo
ated asallotments for m forwarders before the season starts. Let xi � 0 denote the per-
ightallotment for forwarder i 2 f1; 2; : : : ; mg := M. We assume that 
argo 
apa
ity is onedimensional, be
ause in pra
ti
e most airlines manage their allotments only in terms ofweight. (Nonetheless, modern short-haul planes are 
onstrained by volume not weightdue to re
ent advan
es in air
raft engine.) Alternatively, 
argo 
apa
ity may be thoughtof as a number of standard 
ontainers in a 
argo hold.The 
arrier 
harges forwarder i based on its a
tual allotment usage Ui(xi) and re
eives5



a 
ontribution of pi per unit usage. Assume that the 
arrier is risk neutral, sin
e itoperates multiple repeat 
ights in one season. The 
arrier wants to maximize the expe
tedtotal 
ontribution subje
t to a 
apa
ity 
onstraint:max(Eh mXi=1 piUi(xi)i : mXi=1 xi � �; xi � 0 for ea
h i 2 M) (1)The �rst 
onstraint states that the 
arrier does not allo
ate more than its 
argo 
apa
ity.In other words, it does not overbook their allotments. Theoreti
ally, we 
ould in
ludean overbooking poli
y in (1): the obje
tive fun
tion would in
lude an expe
ted oversale
ost, and the right-hand-side of the 
apa
ity 
onstraint would in
lude an overbookingpad. In pra
ti
e, the penalty 
ost from delaying forwarders' shipments is mu
h higherthan that from bumping passengers. Unlike passenger airlines whi
h typi
ally overbooktheir seats, air-
argo 
arriers rarely overbook their allotments.In pra
ti
e, the forwarders' usages are usually dependent, be
ause they are a�e
tedby same fa
tors, e.g., a gross domesti
 produ
t (GDP), a weather 
ondition, and a fuelpri
e, et
. Even if the forwarders' usages U1(x1); : : : ; Um(xm) are dependent, (1) remainsvalid. Re
all that the expe
tation of a �nite sum of random variables is the �nite sumof their expe
ted values, and that the expe
tation of a 
onstant times a random variableis the 
onstant times the expe
tation of the random variable. The obje
tive fun
tionbe
omes Eh mXi=1 piUi(xi)i = mXi=1 piE�Ui(xi)�The expe
tation E[Ui(x)℄ 
an be 
al
ulated with respe
t to the marginal distribution ofrandom variable Ui(x).Assume that the request to book a shipment arrives to the 
arrier one by one through-out the booking horizon. When there is a medium-term 
ontra
t between the forwarderand the 
arrier, the booking request from the forwarder is a

epted, if its spa
e require-ment is within the 
ontra
ted spa
e (Bazaraa et al. 2001). In pra
ti
e, the requests from6



the forwarder with the allotment are a

epted on the �rst-
ome, �rst-served basis, butthose from the forwarder without the allotment need not be. The latter is sometimesreferred to as ad-ho
/free sale (Slager and Kapteijns 2004). The 
arrier might apply somerudimentary RM te
hniques in 
ontrolling the free sale spa
e; e.g., it might reje
t the
urrent request, if it anti
ipates the larger 
ontribution from the future requests. We donot model the free sale, be
ause many Asia Pa
i�
 airlines reserve large portions of their
apa
ity as allotments (Hendri
ks and Elliott 2005). An omnibus model, whi
h in
ludesboth allotment and free sale, is an interesting future resear
h dire
tion.Consider the booking requests from forwarder i, whi
h re
eives allotment x. Let Nibe its total number of requests, and let Wi;k be the spa
e requirement of its k-th request,where k 2 f1; 2; : : : ; Nig. Let Xi;k(x) denote the 
umulative usage after the 
arrier makesthe k-th a

ept/reje
t de
ision [just before the arrival of the (k + 1)-st booking request℄for ea
h k 2 f1; 2; : : : ; Nig. At the end of the booking horizon, the a
tual usage offorwarder i that re
eives allotment x is Ui(x) = Xi;Ni(x). The �nite sequen
e of the
umulative usages fXi;k(x) : k = 1; 2; : : : ; Nig is determined by the following re
urren
eequation: Xi;k(x) = 8>><>>:Xi;k�1(x) +Wi;k if Wi;k � x�Xi;k�1(x)Xi;k�1(x) otherwise (2)for ea
h k = 1; 2; : : : ; Ni, and Xi0(x) = 0. Equation (2) 
an be explained as follows.Prior to the arrival of the k-th request, the 
umulative usage of the a

epted shipmentsis Xi;k�1(x), and the unused portion of the allotment is x � Xi;k�1(x). If the unusedportion is at least the spa
e requirement of the k-th booking request, then the request isa

epted, and the 
umulative usage in
reases to Xi;k�1(x)+Wi;k. Otherwise, the requestis reje
ted, and the 
umulative usage stays the same.Given that its total number of booking requests is Ni = n 2 N , we assume that the7



spa
e requirements of the requests, Wi;1;Wi;2; : : : ;Wi;n, are independent and identi
allydistributed (i.i.d.) nonnegative integer-valued random variables. The i.i.d. assumption isneeded for mathemati
al tra
tability, and it is quite 
ommon among operations resear
hpapers with sto
hasti
 model appli
ations. (Moreover, we perform a statisti
al test onsome real data 
olle
ted from a major airline in Thailand, to test the null hypothesis thatthe spa
e requirements are i.i.d. The p-value is 0.4661 for the shipments on 19 June 2008and 0.7373 on 24 April 2008. We 
on
lude that there is insuÆ
ient eviden
e to reje
t thenull hypothesis at 5% signi�
ant level. A similar 
on
lusion 
an be made for many otherdates.) Our assumption that the spa
e requirements are integer-valued is not restri
tive,be
ause the units 
an be 
hosen arbitrarily. As mentioned earlier, most airlines managetheir 
apa
ity in terms on weight. In pra
ti
e, the unit of spa
e requirement may be thatof a weight measuring devi
e. Furthermore, the freight 
harge is usually based on thenearest whole pound or kilogram.2 Optimal SolutionWe will derive a 
losed-form expression for E[Ui(x)℄, the expe
ted a
tual allotment usageof forwarder i that re
eives allotment x 2 N . It follows from the assumptions in Se
-tion 1 and the re
ursive equation (2) that the sto
hasti
 pro
ess fXi;k(x) : k 2 Z+g isa dis
rete Markov 
hain with the state spa
e f0; 1; : : : ; xg := X (x). Its initial distribu-tion is P (Xi;0(x) = 0) = 1. Denote the (one-step) transition probability as pi(b; 
jx) =P (Xi;k(x) = 
jXi;k�1(x) = b) for ea
h 
; b 2 X (x).Let hi (resp., Hi) denote the probability mass (resp., 
umulative distribution) fun
tionof a generi
 random variable Wi;1. We use a bar atop a distribution fun
tion to denoteits 
omplement; e.g., �Hi(t) = 1�Hi(t).Lemma 1. The transition probability of the Markov 
hain fXi;k(x) : k 2 Z+g is given
8



as follows:
pi(b; 
jx) = 8>>>>>><>>>>>>:hi(
� b) if b < 
 � x�Hi(x� b) + hi(0) if 
 = b0 if 0 � 
 < b (3)

for ea
h b < x, and pi(x; 
jx) = 8>><>>:1 if 
 = x0 if 
 6= x (4)Proof. Suppose that the 
umulative usage prior to the k-th arrival of the booking requestis b. Then, the unused portion of the allotment is (x � b). Let 
 denote the total usageprior to the (k+1)-st arrival of the booking request. Note that the sequen
e of total usagesare nonde
reasing: Xi;k�1(x) � Xi;k(x) with probability one. Therefore, pi(b; 
jx) = 0if 
 < b, whi
h is the third 
ase in (3). For the �rst 
ase, the total usage stri
tly in
reasesfrom b to 
, if and only if the k-th booking request with the spa
e requirement (
� b) isa

epted; i.e., 
 � b � x � b, or equivalently 
 � x. The event that the arriving requesthas spa
e requirement (
� b) o

urs with probability hi(
� b). For the se
ond 
ase, thetotal usage remains the same, if and only if the k-th booking request is reje
ted, or itsspa
e requirement is zero. The �rst o

urs with probability �Hi(x� b), whereas the lattero

urs with probability hi(0). Finally, in equation (4), the 
umulative usage prior to thek-th arrival is equal to the allotment. The forwarder has no allotment left, and all offuture requests are reje
ted; thus, the 
umulative usage must remain the same.Let Pi(x) be a (one-step) transition matrix, whose element in the b-th row and 
-th
olumn is pi(b; 
jx) for ea
h b; 
 2 X (x). From the Chapman-Kolmogorov equation, thek-step transition matrix, denoted by P(k)i (x), 
an be obtained by multiplying the one-step9



transition matrix with itself k times: P(k)i (x) = (Pi(x))k for ea
h k 2 N . The distributionof the Markov 
hain fXi;k(x) : k 2 Z+g is 
ompletely spe
i�ed by the one-step transitionprobability Pi(x) and the initial distribution P (Xi;0(x) = 0) = 1.Proposition 1. The expe
ted a
tual usage, if forwarder i re
eives allotment a 2 R+ , isgiven by E[Ui(a)℄ = 1Xn=1 P (Ni = n) xXt=1 tp(n)i (0; tjx)where x = ba
, and E[Ui(0)℄ = 0.Proof. Sin
e Ni and Wi;k are nonnegative integer-valued random variables, the expe
teda
tual usage E[Ui(a)℄ = E[Ui(x)℄, where x = ba
. Re
all that Ui(x) = Xi;Ni(x). We
al
ulate the expe
ted total usage by 
onditioning on the number of booking requests:E[Xi;Ni(x)℄ = 1Xn=0 P (Ni = n)E[Xi;Ni(x)jNi = n℄= 0P (Ni = 0) + 1Xn=1 P (Ni = n)E[Xi;n(x)℄ (5)= 1Xn=1 P (Ni = n) xXt=0 tP �Xi;n(x) = tjXi;0(x) = 0� (6)= 1Xn=1 P (Ni = n) xXt=0 tp(n)i (0; tjx) (7)In equation (5), the total usage is zero, if the forwarder makes no booking request;i.e., E[Xi;Ni(x)jNi = 0℄ = 0. In equation (6), we 
al
ulate E[Xi;n(x)℄ by 
onditioningon the initial state Xi;0(x). [Note that the initial distribution is P (Xi;0(x) = 0) = 1.℄Equation (7) follows from the de�nition of the n-step transition probability p(n)i (0; �jx)given that the initial state is 0. Re
all that p(n)i (b; 
jx) is the element in the b-th row and
-th 
olumn of the n-step transition matrix P(n)i (x) = (Pi(x))n. The one-step transitionmatrix Pi(x) is given in Lemma 1. We 
an ignore the �rst term in the se
ond summationin (7), sin
e it equals zero. This 
ompletes the proof.10



Note that the expe
ted a
tual allotment usage E[Ui(x)℄ is nonde
reasing but might notbe 
on
ave on Z+. Non-
on
avity partly results from the assumption that the shipmentof sizeWi;k is a

epted on an all-or-none basis. For instan
e, suppose that the sequen
e ofspa
e requirements is (1; 3; 9; 5; 2; 4). Then, the a
tual allotment usages, if the allotmentare (x : x = 4; 5; : : : ; 11) are (u(x) : x = 4; 5; : : : ; 11) = (4; 4; 6; 6; 6; 9; 9; 11). Thedi�eren
es between two 
onse
utive usages are (u(x) � u(x � 1) : x = 5; 6; : : : ; 11) =(0; 2; 0; 0; 3; 0; 2); 
learly, the a
tual usage is not 
on
ave on Z+. [Re
all that a fun
tionf : Z+ ! R is 
on
ave on Z+, if f(a)� f(a� 1) is nonin
reasing in a 2 N .℄For short-hand notation, denote �i(a) = piE[Ui(a)℄ for ea
h a 2 R+ . The 
arrier'sproblem 
an be expressed equivalently as� = maxn mXi=1 �i(ai) : mXi=1 ai � �; ai � 0 for ea
h i 2 Mo (8)Note that (8) is a spe
ial 
ase of the nonlinear resour
e allo
ation problem. For ea
h i 2M, �i(a) is neither 
on
ave nor di�erentiable on R+ . Problem (8) 
an be solved viadynami
 programming. The number of stages equals m, the number of the forwarders.De�ne the state at the beginning of stage i as the amount of 
argo 
apa
ity to be allo
atedto forwarders i; i+1; : : : ; m. At the beginning of stage i, the 
arrier observes the state yand determines the allotment for forwarder i, denoted by ai. Let ui(y) be the valuefun
tion at stage i; i.e., ui(y) is the maximum expe
ted total 
ontribution that 
an beearned from forwarders i through m, if the 
urrent state is y. The value fun
tion 
an be
omputed re
ursively via the Bellman optimality equationui(y) = maxai=0;1;:::;yf�i(ai) + ui+1(y � ai)g; i 2 M (9)and the boundary 
ondition is um+1(y) = 0 for all y. Let a�i (y) = argmaxa=0;1;:::;yf�i(a)+ui+1(y � a)g.Proposition 2. The optimal obje
tive fun
tion in (8) is � = u1(�). The optimal allot-11



ment for forwarder i 2 M is given as follows: x�1 = a�1(�) and x�i = a�i (��Pi�1k=1 x�k) forea
h i 2 f2; 3; : : : ; mg.Proof. Sin
e the 
arrier has � units of 
argo 
apa
ity to allo
ate to forwarders 1 throughm,the optimal obje
tive fun
tion is u1(�). From the de�nition, a�i (y) represents the optimalallotment for forwarder i, if the 
arrier has y units to allo
ate to forwarders i through m.Thus, the optimal allotment for forwarder 1 is x�1 = a�1(�). The 
arrier reserves x�1 toforwarder 1, leaving ��x�1 to allo
ate to forwarders 2 through m. Then, x�2 = a�2(��x�1).The 
arrier reserves x�2 to forwarder 2, leaving � � (x�1 + x�2) to allo
ate to forwarders 3through m. Then, x�3 = a�3�� � (x�1 + x�2)�. The 
arrier reserves x�3 for forwarder 3,leaving �� (x�1 + x�2 + x�3) to allo
ate to forwarders 4 through m, and so on.The number of iterations needed to solve (9) is of order m�2. This may 
reatesome 
omputational burden, if the 
arrier is endowed with large 
argo 
apa
ity. In thenext se
tion, we develop some heuristi
 solutions, implementable for an industry-sizedproblem.3 Heuristi
 SolutionsThe fa
t that the expe
ted a
tual usage E[Ui(a)℄ of forwarder i that re
eives allotment ais not 
on
ave in a 2 Z+ results from the all-or-none a

eptan
e rule. To develop someheuristi
s, we suppose that the shipment 
an be partially a

epted. Upon re
eiving thek-th booking request with spa
e requirement Wi;k from forwarder i, the airline a

eptsminfWi;k; Zg where Z is the unused portion of the allotment. We will show that theexpe
ted total usage is 
on
ave under the assumption that the request is partially a
-
epted.Suppose that forwarder i re
eives allotment x. Let Yi;k(x) denote its 
umulativeusage after the 
arrier's a

ept/reje
t de
ision of the k-th booking request. The a
tualallotment usage under the partial a

eptan
e assumption is Vi(x) = Yi;Ni(x). The �nite12



sequen
e of the 
umulative usages fYi;k(x) : k = 1; 2; : : : ; Nig is determined by thefollowing re
urren
e equation:Yi;k(x) = Yi;k�1(x) + minn�x� Yi;k�1(x)�;Wi;ko (10)for ea
h k = 1; 2; : : : ; Ni, and Yi;0(x) = 0. In (10), the 
arrier books the shipment up tothe unused portion of the allotment �x � Yi;k�1(x)�. We assume that the forwarder iswilling to break the 
onsolidated shipment and deliver f(x� Yi;k�1(x));Wi;kg.From our 
onstru
tion, Yi;k(x) � Xi;k(x) for all k, with probability 1. Consequently,the expe
ted a
tual allotment usage under the assumption that the request is partiallya

epted is at least that under the all-or-none assumption; i.e.,E[Vi(x)℄ � E[Ui(x)℄ (11)Furthermore, if Wi;k is a Bernoulli random variable, whi
h takes on values f0; 1g, thenwith probability 1, Yi;k(x) = Xi;k(x) for all k, so Ui(x) = Vi(x).For ea
h i 2 M, letDi denote the sum of all spa
e requirements ofNi booking requestsfrom forwarder i; i.e., Di =PNik=1Wi;k is the total spa
e requirement of forwarder i.Proposition 3. Suppose that forwarder i re
eives allotment a 2 R+ . Under the as-sumption that the request is partially a

epted, Yi;k(a) = minfPkj=1Wi;j; ag for ea
h k =1; 2; : : : ; Ni.Proof. The proof is done using mathemati
al indu
tion. Clearly, Yi;1(x) = minfWi;1; xg.Next, assume that Yi;k�1(x) = minfPk�1j=1 Wi;j; xg. Substituting this expression in (10),we get Yi;k(x) = minfk�1Xj=1 Wi;j; xg+minn�x�minfk�1Xj=1 Wi;j; xg�;Wi;koIfPk�1j=1 Wi;j < x, then Yi;k(x) =Pk�1j=1 Wi;j+minfx�Pk�1j=1 Wi;j;Wi;kg = minfx;Pkj=1Wi;jg;13



otherwise, Yi;k(x) = x. Hen
e, Yi;k(x) = minfx;Pkj=1Wi;jg.For short-hand notation, denote �i(x) = piE[Vi(x)℄. It follows from (11) that theoptimal solution to the following mathemati
al program� = maxn mXi=1 �i(ai) : mXi=1 ai � �; ai � 0 for ea
h i 2 Mo (12)yields an upper bound on the 
arrier's problem (8); i.e., � � �. Unlike �i(x) in the 
arrier'sproblem, the fun
tion �i(x) is 
on
ave on Z+. Similar to �i(a), the fun
tion �i(a) is notdi�erentiable on R+ , sin
e Wi;k and Ni are assumed to be nonnegative integer-valuedrandom variables. To solve (12), we present two heuristi
 approa
hes.1. Continuous approximation, in whi
h the total spa
e requirement is modeled as anonnegative real-valued random variable, denoted by D̂i. Sin
e the 
umulativedistribution fun
tion of D̂i is 
ontinuous, the expe
ted a
tual allotment usage offorwarder i that re
eives allotment x, E[min(D̂i; x)℄, is di�erentiable on R+ . Thisallows us to apply a standard nonlinear programming te
hnique (e.g., KKT 
ondi-tions).2. Lagrangian relaxation, in whi
h we dualize the 
apa
ity 
onstraint, Pmi=1 xi � �.The obje
tive fun
tion of the relaxed problem is 
on
ave, so the relaxed problem fora �xed value of the Lagrange multiplier is easy to solve. We then use subgradientoptimization to update the Lagrange multiplier in su
h a way that the 
apa
ity
onstraint is likely to be tighter on the subsequent iteration.We use boldfa
e type to denote an m-dimensional ve
tor; e.g., x = (x1; x2; : : : ; xm).3.1 Continuous ApproximationRe
all that the total spa
e requirement of forwarder i, Di = PNik=1Wi;k, is a Z+-valuedrandom variable. Using 
ontinuous approximation, we model it as an R+ -valued random14



variable D̂i, whose mean �i and varian
e �2i are 
hosen su
h that�i = E[Di℄ = E[Ni℄E[Wi;1℄; (13)�2i = var(Di) = var(Wi;1)E[Ni℄ + (E[Wi;1℄)2 var(Ni);Problem (12) be
omes�̂ = maxn mXi=1 piE[min(D̂i; xi)℄ : mXi=1 xi � �; xi � 0 for ea
h i 2 Mo (14)Let Fi denote the 
umulative distribution fun
tion of D̂i. Index the forwarders su
hthat pi � pi+1 for all i 2 M, where pm+1 = 0. Sin
e D̂i is an R+ -valued random variable,Fi is 
ontinuous and stri
tly in
reasing, and the quantile F�1i is a well-de�ned fun
tion.Proposition 4. The ne
essary and suÆ
ient 
onditions for x̂� to be an optimal solutionto (14) are as follows: There exists `� 2 M and a positive �� 2 [p`�+1; p`�) su
h thatx̂�i = 8>><>>:F�1i (1� ��=pi) for ea
h i = 1; 2; : : : ; `�0 for ea
h i = `� + 1; `� + 2; : : : ; mand P`�i=1 x̂�i = �.Proof. Sin
e Fi is 
ontinuously di�erentiable for ea
h i 2 M, the obje
tive fun
tionPmi=1 piE[min(D̂i; xi)℄ is 
ontinuously di�erentiable on Rm+ . Moreover, it possesses 
on-tinuous se
ond partial derivatives, so the KKT 
onditions are ne
essary for a point to bean optimal solution. The KKT 
onditions are also suÆ
ient, sin
e the obje
tive fun
tionis 
on
ave on Rm+ . (All 
onstraints are linear, so the 
onstraint quali�
ations/regularity
onditions are satis�ed.)We asso
iate a ve
tor of multipliers � � 0 with the nonnegativity 
onstraints and � �
15



0 with the 
apa
ity 
onstraint to form the Lagragian fun
tion:L(xj�; �) = mXi=1 piE[min(D̂i; xi)℄ + �(�� mXi=1 xi) + mXi=1 �ixiFor a feasible solution x to be an optimal solution to (14), the KKT 
onditionspi �Fi(xi)� �+ �i = 0 for i 2 M�(�� mXi=1 xi) = 0�ixi = 0 for i 2 Mare both ne
essary and suÆ
ient. Sin
e � � 0, we 
an eliminate them; the above
onditions 
an be written aspi �Fi(xi) � � for i 2 M (15)�(�� mXi=1 xi) = 0 (16)[pi �Fi(xi)� �℄xi = 0 for i 2 M (17)Note that �Fi(0) = 1 and �Fi(x) is stri
tly de
reasing on [0; �℄. From (17), we 
on
lude thatxi > 0 if and only if pi > �. From this result and the way the forwarders are indexed,there exists ` 2 M su
h that xi > 0 for i � ` and xi = 0 for i > `. For ea
h i � `,pi �Fi(xi) = �; the multiplier must be � < p`. For i > `, xi = 0 and p`+1 � �. Finally,suppose that � = 0. Then, it follows from (15) that xi is the largest possible value of D̂i,and the 
apa
ity 
onstraint Pmi=1 xi � � is violated. Hen
e, � > 0, and (16) be
omesPmi=1 xi = �.Proposition 4 asserts that the �rst `� forwarders re
eive positive allotments, whereasthe last (m � `�) forwarders re
eive zero allotments. For forwarders 1 through `�, its16



allotment is 
hosen su
h that the marginal revenue is equal to the Lagrange multiplier[i.e., pi �Fi(x̂�i ) = ��℄, and that the sum of their allotments equals the 
apa
ity. That is,`�Xi=1 F�1i (1� ��=pi) = � where p`�+1 � �� < p`� (18)The two-phase algorithm in Table 1 �nds an optimal solution to (14). We sear
hfor the optimal number of forwarders that would re
eive positive allotments (denoted as`�) in Phase I and for the optimal Lagrange multiplier (denoted as ��) in Phase II. Thevalues of `� and �� must satisfy (18).The idea behind Phase I is as follows. We want to �nd `� su
h that P`�i=1 F�1i (1 ��=pi) = � for some � 2 [p`�+1; p`�). For a �xed value of ` 2 M, the fun
tionPì=1 F�1i (1��=pi) is de
reasing in � 2 [p`+1; p`). Then,X̀i=1 F�1i (1� p`=pi) < X̀i=1 F�1i (1� �=pi) � X̀i=1 F�1i (1� p`+1=pi)Let LB(`) and UB(`) denote the quantities on the left- and right-hand sides, respe
tively.Note thatPì=1 F�1i (1��=pi) is 
ontinuous in �. The intermediate value theorem assertsthat if LB(`) � � � UB(`), then there exists �(`) 2 [p`+1; p`) su
h that Pì=1 F�1i (1 ��(`)=pi) = �. Phase I determines the smallest integer `� su
h that LB(`�) � � � UB(`�).Phase II sear
hes for �� 2 [p`�+1; p`�) that solvesP`�i=1 F�1i (1���=pi) = �, where `� isfound in Phase I. This 
an be done using a one-dimensional sear
h pro
edure. In Table 1Phase II, we present a bise
tion method. In iteration t � 1, we employ the midpointrule (traditionally 
alled the Bolzano sear
h plan) for sele
ting the trial solution �t =(�0t + �00t )=2. IfP`�i=1 F�1i (1� �t=pi) > �, we need to in
rease the lower bound �0t+1 = �t.If P`�i=1 F�1i (1 � �t=pi) < �, we need to de
rease the upper bound �00t+1 = �t. [Again,note that P`�i=1 F�1i (1 � �=pi) is de
reasing in �.℄ By 
onstru
tion, the length of theinterval of un
ertainty in iteration (t + 1) is halved that in iteration t. We stop whenP`�i=1 F�1i (1� �t=pi) is 
lose to �. 17



� Phase I: Sear
h for `� 2 M.1. Initialization: Set ` = 1.2. Iteration ` � 1:(a) Set UB(`) =Pì=1 F�1i (1� p`+1=pi).(b) Set LB(`) =Pì=1 F�1i (1� p`=pi).3. Stopping:(a) If ` = m, set `� = m and go to Phase II.(b) If LB(`) � � � UB(`), set `� = ` and go to Phase II. Otherwise, set ` =`+ 1 and perform the next iteration.� Phase II: Sear
h for �� 2 [p`�+1; p`�).1. Initialization: Sele
t a small toleran
e � > 0.(a) Set initial lower bound �01 = p`�+1.(b) Set initial upper bound �001 = p`�.2. Iteration t � 1:(a) Compute new multiplier �t = (�0t + �00t )=2.(b) Computer allotment xit = F�1i (1� �t=pi) for i = 1; 2; : : : ; `�.3. Stopping: If jP`�i=1 xit��j < �, set �� = �t and x̂�i = xit, and stop. Otherwise,(a) If P`�i=1 xit > �, set �0t+1 = �t, and �00t+1 = �00t .(b) If P`�i=1 xit < �, set �00t+1 = �t, and �0t+1 = �0t.(
) Set t = t + 1 and perform the next iteration.Table 1: Continuous approximation heuristi
 pro
edure
18



3.2 Lagrangian relaxationIn Problem (12), we relax the 
apa
ity 
onstraint by multiplying it by Lagrange multi-plier � � 0 and bringing it into the obje
tive fun
tion, whi
h now be
omesmXi=1 �i(ai) + �(�� mXi=1 ai) = mXi=1 [�i(ai)� �ai℄ + ��For short-hand notation, denote 
i(aj�) = �i(a)� �a. We want to solveminf�(�) : � � 0g where �(�) = maxf mXi=1 
i(aij�) : ai 2 Z+ for ea
h i 2 Mg (19)Re
all that in Problem (12), �i(a) = piE[min(Di; a)℄, and Di is a Z+-valued randomvariable, so we 
an restri
t our attention to a nonnegative integer allotment. For a�xed value of the Lagrange multiplier, the maximization �(�) is easy to solve, sin
e theobje
tive fun
tion is separable, and 
i(aj�) is 
on
ave on Z+ for ea
h i 2 M.Let Gi denote the 
umulative distribution fun
tion of Di for ea
h i 2 M.Proposition 5. For a �xed value of the Lagrange multiplier �, an optimal solution of �(�)is as follows. If � > pi, then a�i (�) = 0; otherwise,a�i (�) = argmaxna 2 N : �Gi(a� 1) � �=pio (20)Proof. Sin
e the obje
tive fun
tion is separable, we 
an individually maximize ea
hterm 
i(aj�). Sin
e Di is a Z+-valued random variable, we have that for ea
h a 2 Z+E[min(Di; a)℄ = 1Xt=0 P (min(Di; a) > t) = a�1Xt=0 P (Di > t) = a�1Xt=0 �Gi(t) (21)where the �rst equation follows from the result E[Z℄ = P1t=0 P (Z > t) for a Z+-valued
19



random variable Z. Using (21), we obtain the expression
i(aj�) = piE[min(Di; a)℄� �a = pi a�1Xt=0 �Gi(t)� �aand the �rst di�eren
e is
i(aj�)� 
i(a� 1j�) = pi �Gi(a� 1)� �If � > pi, then the �rst di�eren
e is negative for all a � 0, so 
i(aj�) is nonin
reasing,and a�i (�) = 0. Otherwise, we obtain the expression (20).The solution a�(�) found in Proposition 5 
an be used to obtain an upper bound:mXi=1 
i(a�i (�)j�) � � � �The �rst inequality follows from the fa
t that �(�) � � for all � � 0, and the se
ondinequality follows from (11). Also, it 
an be used to obtain a lower bound. Letx�i (�) = b~x�i (�)
 where ~x�i (�) = "a�i (�)� 1m�(�)( mXi=1 a�i (�)� �)+#+ (22)where m�(�) is the number of non-zero allotments, i.e., the size of the set fi 2 M :a�i (�) > 0g. Note that x�(�) is a feasible solution and 
an be used to obtain a lowerboundPmi=1 �i(x�i (�)) to the approximated problem (12) orPmi=1 �i(x�i (�)) to the originalproblem (8).We want to solve (19). The Lagragian relaxation algorithm is presented in Table 2.In iteration k, for a �xed value of the Lagrange multiplier �k, we solve �(�k): Its solu-tion a�(�k) is given in Proposition 5, and it is used to 
onstru
t a feasible solution x�(�k)as in (22). The �rst and latter are used to 
ompute the upper and lower bounds of �in (12), respe
tively. The best upper and lower bounds that we have found during itera-20



tions 1 through k 
an be determined. With the bounds in hand, we obtain the updatedLagrange multiplier �k+1 using a subgradient optimization method. The pro
ess 
ontin-ues until the best lower and upper bounds are 
lose enough. Steps in Table 2 are similarto those in a generi
 Lagrangian relaxation algorithm; 
f. Fisher (1985).4 Numeri
al ExamplesWe illustrate the performan
e of our heuristi
 solutions via numeri
al examples. Wealso 
ompare them with a proportional allo
ation s
heme, whose variants may be usedin pra
ti
e be
ause of their simpli
ity. In this s
heme, the allotment for forwarder i isai = �iPmi=1 �i� for ea
h i 2 M, where �i is de�ned as in (13). Note that the allotmentthat forwarder i re
eives is proportional to its mean. The larger the mean demand, thelarger the allotment.Below, we des
ribe the setup in the numeri
al experiments. Suppose that the 
arriermanages its air-
argo 
apa
ity in terms of weight. Assume that there are m = 3 for-warders, whose per-kilogram 
ontributions are 1.2, 1.0, and 0.8 respe
tively. We 
onsidertwo sets of experiments. In the �rst (resp., se
ond) set, small (resp., large) problem in-stan
es are 
onsidered; the 
apa
ity is dis
retized so that one unit equals 300 (resp., 50)kilograms, and the per-unit 
ontribution (p1; p2; p3) is (360; 200; 240) [resp., (60; 50; 40)℄.The small problem instan
es are solved to optimality. The number of shipment requestsfrom forwarder i is a Poisson random variable with mean E[Ni℄ = �i = 12 � 0:03pi.Note that the mean number of arrivals (demand) is linearly de
reasing in the per-unit
ontribution (margin). Assume that the random requirements of all forwarders are i.i.d.negative binomial random variables with parameters r and p. Then, E[Wi;k℄ = rq=pand var(Wi;k) = rq=p2 where q = 1� p.In the 
ontinuous approximation heuristi
, we model D̂i using the gamma distributionwith shape and s
ale parameters ai and bi, respe
tively. Then, E[D̂i℄ = aibi and var(D̂i) =21



1. Initialization:(a) Determine initial multiplier �1 = 1m Pmi=1 pi.(b) Sele
t a small toleran
e � > 0.(
) Set the best upper bound U0 = 1, the best lower bound L0 = �1, and a
onstant �1 = 2.2. Iteration k � 1:(a) Obtain a�(�k) in Proposition 5, and x�(�) as in (22).(b) Find an upper bound U�k = Pmi=1 
i(a�i (�k)j�k), and the best upper boundUk = minfU�k ;Uk�1g.(
) Find a lower bound L�k = Pmi=1 �i(x�i (�k)), and the best lower bound Lk =maxfL�k;Lk�1g.(d) Compute a stepsize tk = �k(Uk � Lk)���Pmi=1 a�i (�k)�2(e) Update the Lagrange multiplier�k+1 = maxn0; �k � tk��� mXi=1 a�i (�k)�o(f) Modify the 
onstant �k. If the best upper bound Uk fails to go down for some
onse
utive number of iterations (e.g., 4 
onse
utive iterations in the numeri
alexample), then the value of �k is halved; i.e., �k+1 = �k=2. Otherwise, itremains un
hanged; i.e., �k+1 = �k.(g) Stop if Uk � Lk < �. Otherwise, perform the next iteration k = k + 1.Table 2: Lagrangian relaxation heuristi
 pro
edure
22



%� Proportional Continuous LagrangianMinimum 3.05 1.78 0.00Maximum 13.19 14.07 12.71Average 6.10 5.83 2.48Table 3: Per
ent di�eren
es between the optimal expe
ted 
ontribution and the expe
ted
ontribution if the heuristi
 solution is usedaib2i . It follows from (13) that ai = �irq=(1 + rq) and bi = (1 + rq)=p.In the Lagragian relaxation algorithm, we 
ompute the distribution of Di by 
ondi-tioning on Ni. If Ni = n 2 N , then the n-fold 
onvolutionPnk=1Wi;k follows the negativebinomial distribution with parameters nr and p, sin
e Wi;1;Wi;2; : : : are i.i.d. negativebinomial random variables with parameters r and p.Example 1 (Small Problem Instan
es). Let (r; p) = (12; 0:79). Then, the mean of total
apa
ity requirements of booking requests from all three forwarders is E[Pmi=1Di℄ = 28:7,or equivalently 8,610 kilograms. This is about two thirds of the 
argo 
apa
ity of AirbusA330-300 based on the normal operating 
onditions and full passenger loads. Table 3shows the maximum, minimum, and average, of the per
ent di�eren
es between the opti-mal expe
ted 
ontribution and the expe
ted 
ontribution if the heuristi
 solution is used,when the 
apa
ity is varied from 18 to 38. From Table 3, the average, minimum, andmaximum from the Lagrangian relaxation algorithm are smaller than those from the otherheuristi
s. The average and minimum from the 
ontinuous approximation algorithm aresmaller than those from the proportional allo
ation s
heme, whereas the maximum fromthe proportional allo
ation s
heme is smaller than that from the 
ontinuous approxima-tion algorithm. If the proportional allo
ation is repla
ed with the Lagrangian relaxationheuristi
, then the expe
ted in
remental bene�t is on average 3.62 per
ent.Example 2 (Large Problem Instan
es). Let (r; p) = (36; 0:79). Then, the mean of total
apa
ity requirements of booking requests from all three forwarders is E[Pmi=1Di℄ = 301,or equivalently 15,050 kilograms. This is approximately the 
argo 
apa
ity of AirbusA330-300. Figure 1 shows the expe
ted total 
ontributions from di�erent s
hemes and23
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ity (�50 kilograms)Figure 1: Expe
ted total 
ontributions from di�erent s
hemesthe upper bound. The 
argo 
apa
ity � ranges from 294 to 308. As before, the expe
ted
ontribution from the Lagrangian relaxation heuristi
 is at least that from the othertwo heuristi
s in all problem instan
es 
onsidered. Also, the expe
ted 
ontribution fromthe 
ontinuous approximation heuristi
 is at least that from the proportional allo
ations
heme in every 
ase.5 Con
lusionThe air-
argo business has re
ently be
ome a signi�
ant sour
e of revenue for passengerairlines, some of whi
h sell a large portion of their spa
e to forwarders as allotments.Despite its importan
e, the number of journal arti
les on air-
argo revenue managementis mu
h less than that on passenger revenue management. Few papers study the allotmentde
isions, and most of them restri
t their attention to a 
ase of single forwarder. Themajor 
ontribution of the paper to the literature is to extend the study of allotmentmanagement to the 
ase of multiple forwarders. The multiple-forwarder 
ase is observed24



more frequently in pra
ti
e 
ompared to the single-forwarder 
ase.We 
ontribute to the literature by developing a mathemati
al model to evaluate theexpe
ted pro�t for a given allotment 
ombination and formulating a dynami
 program-ming problem to �nd optimal allotments for multiple forwarders. Upon re
ognizing thatthe 
omputation requirement asso
iated with dynami
 programming may be intensiveespe
ially when the 
argo 
apa
ity is large, we develop two heuristi
 solutions appli
ableto the industry-sized problem. Through a series of numeri
al experiments, we evaluatethe performan
e of our proposed heuristi
s and the proportional allo
ation s
heme, ofwhi
h variant might be implemented in pra
ti
e. In one set of the experiments, we �ndthat our heuristi
 based on the Lagrangian relaxation approa
h outperforms the othertwo s
hemes. In the other set, if it repla
es the proportional allo
ation s
heme, the ex-pe
ted 
ontribution gain is about 3.62 per
ent. This additional revenue be
omes 
ru
ialfor the multi-billion dollar airline industry, whi
h is often operating on slim margins.The problem that the resour
e 
an be sold in advan
e to intermediaries 
an be found inother settings, e.g., hotel, 
ruise, and tour operations. In tour operations, large portionsof va
ation pa
kages are reserved for travel agen
ies. Our study may apply to thesesettings as well.Lastly, we dis
uss some possible future resear
h dire
tions. After the forwardersreturn unwanted spa
e, the 
arrier sells it to a dire
t shipper on an ad-ho
/free sale basis.What should be an optimal mix between the allotment and the free-sale? This requiresbuilding an omnibus model that 
aptures both the short- and medium-term bookingpro
esses. Also, one 
ould study an allo
ation problem in a network environment, inwhi
h ea
h shipment needs to be routed so that it rea
hes its destination on time. Thesequen
e of 
ights, upon whi
h ea
h shipment is sent, must be determined. What shouldbe an optimal allotment on ea
h leg and 
ight? Finally, how should the 
arrier strikea medium-term 
ontra
t, when it does not know the forwarders' demands? Sin
e the
arrier does not dire
tly deal with the forwarders' 
ustomers, their demand distributions25



might not be known to the 
arrier and be
ome the forwarders' private information. The
arrier needs to design 
ontra
ts, whi
h 
reate enough in
entive for the forwarders toshare information. We hope to pursue these and other related questions in the future.A
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