บทคัดย่อ

เซลล์เม็ดเลือดขาวเป็นเซลล์ที่มีความสำคัญในการทำงานของระบบภูมิคุ้มกัน การทำหน้าที่ของเซลล์ ให้สมบูรณ์นั้น ในธรรมชาติได้สร้างให้เซลล์เหล่านี้มีการแสดงออกของโปรตีนหลายชนิดบนผิวของเซลล์เหล่านี้ เรียกว่าโมเลกุลบนผิวเซลล์เม็ดเลือดขาว เพื่อให้เซลล์สามารถใช้ในการสื่อสารระหว่างเซลล์และเอื้อให้เซลล์ เหล่านี้สามารถจัดการสิ่งแปลกปลอมที่ผ่านเข้ามาในร่างกายได้อย่างเป็นระบบ บนผิวเซลล์เม็ดเลือดขาวมีการ แสดงออกของโมเลกุลชนิดต่างๆ มากมาย โมเลกุลบางชนิดถูกค้นพบและทราบหน้าที่ที่แน่ชัด แต่มีอีกหลาย โมเลกุลที่ถูกค้นพบแต่ยังไม่ทราบคุณสมบัติและหน้าที่ที่แท้จริง โดยยังคงมีการศึกษากันอยู่อย่างต่อเนื่อง จาก การใช้เทคนิคไฮบริโดรมาเราสามารถผลิตโมโนโคลนอลแอนติบอดีต่อโมลกุลบนผิวเซลล์เม็ดเลือดขาวได้ หลายโคลน โดยโคลนที่เราสนใจคือ COS3A จากการย้อมโปรตีนบนผิวเซลล์ และวิเคราะห์ด้วยเครื่องโฟไซโต พบว่าโมเลกุลที่จำเพาะต่อแอนติบอดีชนิดนี้มีการแสดงออกบนผิวเซลล์เม็ดเลือดขาวทุกชนิดรวมทั้ง leukemia cell lines ที่นำมาทดสอบ แต่ไม่แสดงออกบนผิวของเม็ดเลือดแดง โดยบนผิวของที่ลิมโฟไซต์จะพบ บนผิวของ naïve ลิมโฟไซต์มากกว่าบน memory เซลล์ และมีการแสดงออกเพิ่มขึ้นเมื่อเซลล์ถูกกระตุ้นจึง จัดเป็น activated associated molecule นอกจากนี้โมโนโคลนอลแอนติบอดี COS3A ยังมีผลยับยั้งการแบ่งตัว ของลิมโฟไซต์หลังการกระตุ้น peripheral blood cells (PBMCs) ผ่าน CD3/TCR โดยไปมีผลในการลดการหลั่ง สาร interleukin-2 (IL-2) และ IL-4 ซึ่งการยับยั้งจะลดลงไปเมื่อแยกเอาโมโนไซต์และ natural killer cell (NK cells) ออกไป โดยแอนติบอดี COS3A ไม่มีผลในการเหนื่วนำให้ U937 และ K562 เกิดการตายแบบ apoptosis จากการศึกษาคุณสมบัติทางชีวเคมีพบว่าโมเลกุลชนิดนี้เป็นไกลโคโปรตีนที่มีน้ำหนักอยู่ในช่วง 35-70 kDa โดยน้ำหนักส่วนใหญ่เป็นโมเลกุลของน้ำตาลที่จับอยู่กับสายเปปไทด์แบบ N-link เมื่อตัดน้ำตาลนี้ออกจะได้ น้ำหนักโปรตีนอยู่ที่ประมาณ 20 kDa ผลการวิจัยที่ได้จึงเป็นข้อมูลสำคัญที่บ่งบอกถึงคุณสมบัติและหน้าที่ของ โมเลกุลที่จำเพาะต่อ แอนติบอดี COS3A ต่อการตอบสนองของเซลล์ในระบบภูมิคุ้มกันแบบอย่างไรก็ตามการ ยืนยันว่าโมเลกุลนี้คืออะไรโดยวิธีการโคลนยืนและการหาลำดับกรดอะมิโนยังต้องทำการพิสูจน์

คำสำคัญ: เซลล์เม็ดเลือดขาว, โมเลกุลบนผิวเซลล์เม็ดเลือดขาว, โมโนโคลนอลแอนติบอดี COS3A, การ แบ่งตัวของทีเซลล์, การตอบสนองทางภูมิคุ้มกัน, คุณสมบัติทางชีวเคมี

Abstract

Leukocytes are known as the cells which play a major role in the immune system. To execute their functions, nature design there surface to express abundant of proteins that the cells can use for cell-cell communication. Some of these molecules have been identified and characterized. Nevertheless, many of them still wait for discovering. Using hybridoma technique, several monoclonal antibodies (mAbs) to leukocytes surface molecules were generated. One among those mAbs named COS3A was of interest. Single and two colors cell surface staining and flow cytometry analysis showed that COSA recognizing molecule express on surface of all hematopoietic cell lines tested and all leukocytes surface. However, this molecule can not find on surface of red blood cells (RBCs). On T cell surface, expression of this molecule of surface of naïve T cells is higher than on memory T cells. Remarkably, high expression of this molecule was induced upon T cell activation. Thus this molecule is an activated associated molecule. Functional studies of this mAb on T cells proliferation reveal that the mAb COS3A can suppress CD3mediated T cell proliferation while using peripheral blood mononuclear cells (PBMCs) as target cells. Interestingly, this phenomenon was diminished while monocytes and NK cells were depleted. We found that reduction of IL-2 and IL-4 secretion may cause suppression of T cell proliferation. Biochemical characterization using Immunoprecipitation technique found a protein with molecular weight of about 70 kDa was precipitated with mAb CARA. These preliminary results reveal that the generated mAb CARA may recognize a new leukocyte surface molecule and this molecule can be used as marker to identify a novel T cell subpopulation. Induction of cell apoptotic was also observed using U937 and K562 as models. The results showed that mAb COS3A had no effect on induction of program cell death via apoptosis. Biochemical characterization COS3A recognizing molecule is a glycoprotein with molecular weight of about 35-70 kDa. N-glycosylation sugars were found as the highest moiety of this molecule. Removing of thiese sugar can reduce the molecular weight of this molecule to 20 kDa. These results are important information that explains the biochemical properties of this molecule and its biological function, especially role on cell-mediated immune response. Nonetheless, identification of the molecule using molecular cloning and amino acid sequencing are futher needed.

Keywords: leukocytes, leukocyte surface molecules, monoclonal antibody COS3A, T cell proliferation, immune response, biochemical properties.