บทคัดย่อ

ซิลิคอนในไตรด์เซรามิก เป็นวัสดุที่มีความแข็ง ความแข็งแรง ความเหนียว และความ เฉื่อยทางชีวภาพสูง จึงเป็นที่สนใจนำมาเตรียมเป็นวัสดุทันตกรรมครอบฟันเทียม ในงานวิจัยนี้ ได้เตรียมวัสดุซิลิคอนในไตรด์เซรามิกที่มีสีขาวจากส่วนผสมของแอลฟาซิลิคอนในไตรด์ร้อยละ โดยน้ำหนัก ร่วมกับตัวช่วยในการเผาผนึก ในอัตราส่วนร้อยละโดยน้ำหนักของ ซิลิกา : แมกนีเซีย : อิตเทรีย เท่ากับ 3:3:5 บดผสมด้วยบอลล์มิลล์เป็นเวลา 24 ชั่วโมง โดยใช้เอธิล แอลกอฮอล์ และพอลิไวนีลบิวทีรอล ร้อยละ 1 โดยน้ำหนัก ทำการขึ้นรูปด้วยการอัดไฮดรอลิก เผาไล่ตัวเชื่อมประสานที่ 600 องศาเซลเซียสในอากาศ และเผาผนึกเบื้องตันที่อุณหภูมิ 1450 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง ภายใต้บรรยากาศในโตรเจน เพื่อให้สามารถเกลาขึ้นรูปเป็น ครอบฟันเทียม แล้วจึงทำการเผาผนึกอีกครั้งที่ 1650 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง ภายใต้ บรรยากาศในโตรเจน ซึ่งมีค่าการหดตัวหลังเผาร้อยละ 19.9 ซึ่งใกล้เคียงกับแท่งเซอร์โคเนีย บล็อกทางการค้าที่นิยมใช้กันในทาง ทันตกรรม จนได้ชิ้นงานครอบฟันเทียมก่อนจะนำไป เคลือบผิวด้วยเคลือบฟันเทียม โดยใช้ผงแก้วบอโรซิลิเกต (Pyrex) ที่มีขนาดต่ำกว่า 150 ไมครอน ผสมเซอร์โคเนีย (ที่ทำให้เสถียรบางส่วนด้วยอิตเทรีย ร้อยละ 3) ปริมาณร้อยละ 5 โดย น้ำหนัก ผสมกับสารละลายพอลิไวนีลแอลกอฮอล์ (ความเข้มข้นร้อยละ 5 โดยน้ำหนัก) จำนวน ร้อยละ 30 โดยน้ำหนักของส่วนผสมเคลือบฟันเทียม หลังจากทาส่วนผสมเคลือบฟันเทียมลง บนชิ้นงานครอบฟันเทียมเซรามิกซิลิคอนในไตรด์ด้วยพู่กันแล้วทำการเผาในเตาไฟฟ้าแบบ ท่อ ที่อุณหภูมิ 1000-1200 องศาเซลเซียส พบว่าอุณหภูมิที่เหมาะสมในการเผาเคลือบผิวฟัน เทียมคือ 1100 องศาเซลเซียส เป็นเวลา 15 นาที โดยได้ผิวเคลือบที่มีผลึกของคริสโตบาไลต์ เพียงเล็กน้อยซึ่งเป็นผลจากการเติมเซอร์โคเนีย มีการยึดเกาะผิวที่ดี มีความเรียบและมันเงา ไม่ มีตำหนิ ไม่พบการรานตัว โดยมีค่าสัมประสิทธิ์การขยายตัวทางความร้อนที่ 3.98x10 ⁻⁶ ต่อองศา เซลเซียส มีสีค่อนข้างขาวและมีความทึบแสงพอสมควร และมีความแข็งที่ 4.0 จิกะพาสคัล ซึ่ง ใกล้เคียงกับเคลือบฟันมนุษย์

คำสำคัญ : ซิลิคอนในไตรด์, ครอบฟัน, ฟันเทียม, วัสดุทันตกรรม, เคลือบฟัน

Abstract

Silicon nitride ceramic is an excellent material that has high strength, hardness, toughness, and bio-inertness. These properties are interested to apply for dental core material preparation. In this research, white silicon nitride ceramic was prepared from a mixture of alpha silicon nitride 89 % wt with sintering aid at a weight ratio of silica: magnesia: yttria as 3:3:5, respectively. The mixture was ball milled for 24 h using ethanol as a medium and added 1 %wt of polyvinyl butyral as a binder. After drying, the mixed powder was formed by hydraulic pressing and binder burnout at 600 °C in air. Specimens were pre-sintered at 1450 °C for 2 h in nitrogen atmosphere for the suitable hardness before machining to be an artificial dental core shape. The specimens were then sintered again at 1650 °C for 2 h in nitrogen atmosphere. Firing shrinkage was 19.9% which closed to a popular commercial zirconia block for dental materials. The sintered silicon nitride specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder (<150 micrometer, Pyrex) with 5 %wt of zirconia powder (3 %wt Y2O3 - partial stabilized zirconia) and 30 %wt of polyvinyl alcohol (5 %wt solution). After coating the veneer on the silicon nitride specimens, the firing was performed in electric tube furnace between 1000-1200 °C. The specimens fired at 1100 °C for 15 min consisting small amount of cristobalite which is the effect of zirconia addition. The veneered specimens show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98x10⁻⁶ °C⁻¹, rather white and semi opaque, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

Keywords: Silicon nitride ceramic, crown, veneer, dental materials