

รายงานวิจัยฉบับสมบูรณ์

โครงการ ผลของการใช้มันเส้นหมักยีสต์เป็นแหล่งโปรตีนในอาหารขัน ต่อ
ปริมาณการกินได้ในช่วงก่อนและหลังคลอด และปริมาณน้ำนมในโคนม
พันธุ์สมโภสไตรฟรีเซี่ยน

โดย
ชำนาญวิทย์ พรมโโคตรและคณะ

มีนาคม 2555

รายงานวิจัยฉบับสมบูรณ์

โครงการผลของการใช้มันเส้นหมักยีสต์เป็นแหล่งโปรตีนในอาหารข้น ต่อปริมาณการกินได้ในช่วงก่อนและหลังคลอด และปริมาณน้ำนมในโคนม

พันธุ์ผสานโอลิฟรีเชียน

คณะผู้วิจัย

สังกัด

1. ชำนาญวิทย์ พรมโภคトラ	มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน วิทยาเขตภาคตะวันออก
2. เมษา วรรณาพัฒน์	ศูนย์วิจัยและพัฒนาอาหารสัตว์เขตอุบล มหาวิทยาลัยขอนแก่น
3. จุฬาลินี แมนสติต	มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน วิทยาเขตสกลนคร

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา

และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกอ. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

ผลของการใช้มันเส้นหมักยีสต์เป็นแหล่งโปรตีนในอาหารขัน ต่อปริมาณการกิน ได้ในช่วงก่อนและหลังคลอด และปริมาณน้ำนม ในโคนมพันธุ์ผสมไฮส์ไทรีเซียน

ชำนาญวิทย์ พรมโครต¹ เมชา วรรณพัฒน์² และ จุพาสินี แวนสกิต³

¹ คณะเทคโนโลยีอุตสาหกรรมเกษตร มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา วิทยาเขตภาคสินธุ์

² ศูนย์วิจัยและพัฒนาทรัพยากรสัตว์ฯ เชียงใหม่ มหาวิทยาลัยขอนแก่น

³ คณะทรัพยากรธรรมชาติ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา วิทยาเขตสกลนคร

บทคัดย่อ

งานทดลองนี้มีวัตถุประสงค์เพื่อวัดผลของการใช้มันเส้นหมักยีสต์ (Yeast fermented cassava chip, YEFECAP) เป็นแหล่งอาหารโปรตีนในอาหารขันสำหรับโคนม ในช่วงก่อนและหลังคลอดใหม่ต่อปริมาณการกินได้และผลผลิตน้ำนมโดยในการทดลอง ใช้แม่โคนมและโโคดาว จำนวน 32 ตัว (แม่โโค 16 ตัว โโคดาวท้องแรก 16 ตัว) ซึ่งเป็นโโคท้องก่อนคลอด กำหนดทดลอง 14 วัน แบ่งเป็น 2 กลุ่มเท่าๆกันเพื่อให้ได้รับสิ่งทดลองคืออาหารขัน 2 ชนิด ที่ มีและไม่มีมันเส้นหมักยีสต์เป็นแหล่งโปรตีน วางแผนการทดลองแบบสุ่มในกลุ่มสมบูรณ์ (RCBD) การให้อาหารในโโคก่อนคลอดแบบแยกอาหารขัน (1.3 เปรอร์เซ็นต์น้ำหนักตัว) และอาหารหยาบ (กินเต็มที่) ซึ่งเป็นฟางขาว และในโโคหลังคลอดจนถึง 60 วัน ให้อาหารแบบผสมสำเร็จรูป Total mixed Ration (TMR) ในสัดส่วนอาหารหยาบ (ฟางหมักญี่รี 3%) ต่ออาหารขันเป็น 70 ต่อ 30 ผลการทดลองพบว่า ปริมาณการกินได้ในช่วงก่อนคลอดไม่แตกต่างกันระหว่างกลุ่มทดลอง ในขณะที่ปริมาณการย่อยได้ของโภชนาะโปรตีน สูงกว่า ($P<0.05$) และปริมาณการย่อยได้ของวัตถุแห้งและเยื่อใย NDF มีแนวโน้มสูงกว่าในโโคกลุ่มที่ได้รับมันเส้นหมักยีสต์เมื่อเปรียบเทียบกับกลุ่มไม่ได้รับในช่วงก่อนคลอด ผลในช่วงหลังคลอดพบว่า มันเส้นหมักยีสต์มีผลทำให้ปริมาณการกินได้ การย่อยได้ของวัตถุแห้งและเยื่อใย NDF สูงขึ้น ($P<0.05$) และ ยิ่งไปกว่านั้นคือ การให้มันเส้นหมักยีสต์ทำให้ปริมาณน้ำนมสูงสุดหลังคลอด (peak milk yield) สูงขึ้น ($P<0.05$) และมีแนวโน้มทำให้ผลผลิตน้ำนมเพิ่มขึ้นด้วย นอกจากนี้ การให้มันเส้นหมักยีสต์มีผลทำให้ระดับของ NEFA และ BHBA มีแนวโน้มลดลง ในช่วงก่อนและหลังคลอด

จากผลการทดลองนี้สรุปได้ว่า การใช้มันเส้นหมักยีสต์เลี้ยงโคนมก่อนและหลังคลอดมีผลทำให้ปริมาณการกินได้ การย่อยได้ของโภชนาะโดยเฉพาะเยื่อใย NDF หลังคลอด สูงขึ้น และมีแนวโน้มทำให้ปริมาณน้ำนมสูงขึ้นด้วย ตลอดจนมีแนวโน้มลดระดับสาร เมตาโบโลตีน้ำนมเลือดที่บ่งบอกถึง ความผิดปกติทางเมตาโบลิซึมหลังคลอดได้

คำสำคัญ โคนมสาว โคนม ก่อนคลอด หลังคลอด มันเส้น ยีสต์ มันเส้นหมักยีสต์

Effects of Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip protein (YEFECAP) on Prepartum Intake and Postpartum Intake and Milk Production of Holstein Fresian crossbred dairy cows

C. Promkot¹ M. Wanapat² and J. Mansathit³

¹Animal health science, Faculty of Agro-industrial Technology, Rajamangala University of Technology Isan, Kalasin Campus, 4600, Kalasin, Thailand

² Tropical Feed Resources Research and Development Center, Department of Animal Science, Faculty of Agriculture, Khon Kaen University, 40002, Khon Kaen, Thailand

³Animal Science, Faculty of Natural resources Rajamangala University of Technology Isan, Skon Nakhon Campus, 47160, Skon Nakhon Thailand

ABSTRACT

The objective of this study was to evaluate effects of Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip (YEFECAP) on pre- and postpartum intake and milk production of dairy cattle. Thirty two Holstein Frisian crossbred dairy heifers and cows (16 heifers and 16 cows) were assigned to two treatments at 14 d before calving thought 60 d postpartum. The experimental treatment was concentrate feed with or without YEFECAP. Cattle were fed rice straw (prepartum) and urea treated rice straw (postpartum) as main roughage. Pre-partum cattle were fed concentrate (1.3 %BW) and roughage (*ad lib*) separately while postpartum cattle were fed total mixed ration (TMR) (*ad lib*) with concentrate to roughage ratio at 70:30. During prepartum period, dry matter intake was not significantly different among treatments. However, crude protein digestibility of the YEFECAP diet was higher ($P<0.05$) than that in diet without YEFECAP. Dry matter and NDF digestibility in prepartum cattle tended to be higher in diet with YEFECAP than without YEFECAP. Body condition score at calving date in cattle fed YEFECAP diet tend to reduce smaller than fed without YEFECAP. Digestibilities of protein and NDF were improved in cows fed YEFECAP, contributing to a greater DMI during the first 8 wk of lactation and trend to higher average milk yield through wk 8 of lactation compared with control cow. Moreover diet with YEFECAP was significantly increase peak milk yield ($P<0.05$) as compares to diet without YEFECAP. Plasma NEFA and BHBA tended to be lower in cattle fed with YEFECAP pre- and postpartum. Based on this experiment, it could be concluded that dairy cattle fed with YEFECAP during pre- and postpartum period could enhance dry matter intake, nutrient digestibility and tended to improve milk yield.

Keywords: Dairy Heifer, Cow, Pre-partum, Postpartum, Cassava, Yeast , Yeast fermented-cassava chip.

Executive Summary

The transition period of dairy cows has been defined as 3 weeks pre-partum and 3 weeks post-partum. This period is transition from a pregnant non-lactating cow with relatively low nutritional requirements to a non-pregnant high producing lactating cow with elevated nutritional requirements, metabolic transitions to support the ensuing lactation and ruminal adaptations to a change in diet. This physiological change leads to parturition stress, high susceptibility and to prevalence of metabolic health disorders. Nutritional inadequacy pre- and post-partum, has been thought to be one of the main factors in the high incidence of metabolic disorders during this period. Improving the nutrition of the cow during this period may enhance health, dry matter intake (DMI), and milk production.

Incorporation of microbial additives such as a culture of *Saccharomyces cerevisiae* to the diet has become a common practice in ruminant nutrition. The effects of *S. cerevisiae* supplementation during the prepartum period and through peak lactation on DMI and milk yield remain controversial.

Fermentation of cassava chip (dried root) by pure culture of *S. cerevisiae*, called “Yeast fermented-cassava chip Protein” (YEFECAP), could increase its protein content. It could be used for animal feeding. Previous report showed that YEFECAP can fully replace SBM in concentrate mixtures for early lactation milking dairy cows which effected on enhancing rumen fermentation, dry matter intake, nutrient digestibility, milk yield and milk compositions.

Supplemental YEFECAP may be most beneficial to dairy cows if it is fed before parturition, a period that is characterized by decreased DMI as parturition approaches, and through peak lactation. No data are available for effects of YEFECAP in dairy cows during pre-and postpartum in tropical country. The objective of this study was to evaluate effects of YEFECAP on pre- and postpartum intake and milk production of dairy cattle.

Thirty two Holstein Frisian crossbred dairy heifers and cows (16 heifers and 16 cows) were assigned to two treatments at 14 d before calving thought 60 d postpartum. The experimental treatment was concentrate feed with or without YEFECAP. Cattle were fed rice straw (prepartum) and urea treated rice straw (postpartum) as main roughage. Pre-partum cattle were fed concentrate (1.5 %BW) and roughage (*ad lib*) separately while postpartum cattle were fed total mixed ration (TMR) (*ad lib*) with concentrate to roughage ratio at 70:30. During prepartum period, dry matter intake was not significantly different among treatments. However, crude protein digestibility of the YEFECAP diet was higher ($P<0.05$) than that in diet without YEFECAP. Dry matter and NDF digestibility in prepartum cattle tended to be higher in diet with YEFECAP than without YEFECAP. Body condition score at calving date in cattle fed YEFECAP diet trend to reduce smaller than fed without YEFECAP. During postpartum period, dry matter intake, crude protein and NDF digestibility were higher ($P<0.05$) in diet with YEFECAP than that in diet without YEFECAP. Moreover diet with YEFECAP was significantly increase peak milk yield ($P<0.05$) and trended to increase milk yield as compares to diet without YEFECAP. Plasma NEFA and BHBA tended to be lower in cattle fed with YEFECAP pre- and postpartum. Based on this experiment, it could be concluded that dairy cattle fed with YEFECAP during pre- and postpartum period could enhance dry matter intake, nutrient digestibility and tended to increase milk yield.

INTRODUCTION

The transition period of dairy cows has been defined as 3 weeks pre-partum and 3 weeks post-partum (Grummer, 1995). This period is transition from a pregnant non-lactating cow with relatively low nutritional requirements to a non-pregnant high producing lactating cow with elevated nutritional requirements, metabolic transitions to support the ensuing lactation (Bauman and Currie, 1980, Remppis et al., 2011) and ruminal adaptations to a change in diet. This physiological change leads to parturition stress, high susceptibility and to prevalence of metabolic health disorders. Nutritional inadequacy pre- and post-partum, has been thought to be one of the main factors in the high incidence of metabolic disorders during this period. Improving the nutrition of the cow during this period may enhance health, dry matter intake (DMI), and milk production.

Incorporation of microbial additives such as a culture of *Saccharomyces cerevisiae* to the diet has become a common practice in ruminant nutrition. The effects of *S. cerevisiae* supplementation during the prepartum period and through peak lactation on DMI and milk yield remain controversial (Robinson, 1997; Wohlt et al, 1991; Dann et al., 2000; Sakine Yalçın et al., 2011). Recently research, fermentation of cassava chip (dried root) by pure culture of *S. cerevisiae*, called “Yeast fermented-cassava chip Protein” (YEFECAP), could increase its protein content from 3.4 to 32.5% CP (Boonnop et al. 2009; Boonnop et al. 2010, Polyorach et al., 2010; Wanapat et al. 2011). It could be used for animal feeding. Boonnop et al. (2010) further studied the effects of YEFECAP as a protein source replacement of soybean meal in concentrate and found that YEFECAP could fully replace soybean meal in terms of rumen fermentation efficiency and nutrient digestibilities in beef cattle. Recently report by Wanapat et al. (2011) that YEFECAP can fully replace SBM in concentrate mixtures for early lactation milking dairy cows which effected on enhancing rumen fermentation, dry matter intake, nutrient digestibility, milk yield and milk compositions.

Supplemental YEFECAP may be most beneficial to dairy cows if it is fed before parturition, a period that is characterized by decreased DMI as parturition approaches, and through peak lactation. No data are available for effects of YEFECAP in dairy cows during pre-and postpartum in tropical country. The objective of this study was to evaluate effects of YEFECAP on pre- and postpartum intake and milk production of dairy cattle.

MATERIALS AND METHODS

Animals, experimental design and dietary treatments:

Thirty two Holstein Frisian crossbred dairy heifers and cows (16 heifers and 16 cows) from the dairy farm of the Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus were assigned to two treatments at 14 d before calving thought 60 d postpartum to determine the effects of Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip (YEFECAP). Randomized complete block design (RCBD) were used (No. of lactation is block). Treatments were concentrate feed with YEFECAP and without (Control) YEFECAP. Dietary concentrate treatments feed were showed in Table 1.

Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip (YEFECAP) was prepared according to method of Boonnop et al. (2009). Yeast inoculants preparation: baker yeast was cultured in the cylinder vessels which contained solution of 20% molasses (w/v) and 4% urea (w/v). The products were incubated at room temperature and oxygen was supplied by an air pump for 4 days (cell yeast = 8.8×10^8 cells/ml). Yeast inoculum was mixed and inoculated into 0.5 kg of the mash cassava chip as the starter and 250 ml nutrient solution [urea (48 g)

and molasses (24 g)] were added. Fermentation was conducted during 72 hours at 25-30°C under shed.

Animal management and feeding

Animals were housed individually for each treatment and had *ad libitum* access to feed, fresh water and a mineral block. Prepartum animals were fed concentrate (1.3 % BW, twice dairy) and rice straw (*ad libitum*) separately while postpartum animal were fed total mixed ration (TMR) with concentrate to roughage (3% urea treated rice straw) at 70:30. The composition of the TMR diets is shown in Table 2. Animal were milked twice daily (05.00 AM and 16.00 PM) by milking machine.

Table 1. Ingredients and compositions of experimental concentrates feed

Ingredient	Prepartum		Postpartum	
	Control	YEFECAP	Control	YEFECAP
% Dry Matter				
Cassava chip	57.3	52.4	40.0	33.9
YEFECAP ^a	-	11.9	-	26.0
Whole Cottonseed	8.1	7.6	11.6	10
Rice bran	21.5	20.3	22.3	19
Soybean meal	5.2	-	14.3	-
Molasses	3.4	3.1	5.2	4.4
Urea	1.7	1.9	3.1	3.2
Oyster shell	0.5	0.4	-	0
Salt	1.0	1.0	0.7	0.7
Dicalcium ^b	0.5	0.4	0.5	0.5
Mineral mix ^c	0.7	0.7	1.0	1.0
Sulphur	0.1	0.1	0.4	0.4
Tallow	0.0	0.0	0.9	0.9
Dry matter (%)	88.7	88.0	88.7	88.6
Crude protein (%)	12.0	11.8	19.5	19.1
Neutral detergent fiber (%)	12.6	12.0	13.5	12.1
Acid detergent fiber (%)	7.7	7.4	8.6	8.0
Ash (%)	6.3	6.5	8.1	8.1
Total digestible nutrient ^d	69.0	69.8	68.8	69.8

^aYEFECAP = Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip

^bDicalcium (each kg contains): Calcium 300 g; Phosphorus 140 g.

^cMineral mix (Dailymin®) (each kg contains): Iron 2.14 g; Iodin 0.15 g; Sulphur 11.82 g; Copper 0.23 g; Magnesium 0.96 g; Sodium 2.68 g; Manganese 7.21 g; Cobalt 0.03 g; Phosphorus 19.60 g; Selenium 0.003 g; Zing 0.16; Calcium 204.03 g.

^dBy calculation.

Table 2. Chemical composition (% of dry matter) of total mixed rations (TMR) with and without (Control) Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip (YEFECAP)

Ingredient	Total mixed rations	
	Control	TMR with YEFECAP
Dry matter (DM)	78.3	77.3
Organic matter (OM)	89.9	89.9
Crude protein (CP)	14.9	14.6
Neutral detergent fiber (NDF)	32.8	31.9
Acid detergent fiber (ADF)	22.7	22.3

Sampling and analysis

Dry matter intake (DMI), Feed, milk yield and milk composition

The DMI of each animal was measured daily from 14 (± 3) d before expected calving date until 60 DIM. Samples of the prepartum and postpartum diets were collected weekly, composited monthly, and analyzed for DM, ash, CP (AOAC, 1990) NDF, ADF.

Milk yields of each cow were recorded daily until 60 DIM. Milk samples (in ratio of morning milk samples to afternoon milk samples at 60:40.) were collected twice daily during milking on the last day of each week of lactation and were analyzed for fat, protein, lactose and solids-not-fat using infrared apparatus (Milko-scan 104, Foss Electric, Denmark).

Body weight (BW), body condition score (BCS), feces and blood samples

Data of BW and BCS were recorded and samples of feces and blood were taken on DIM of -14, -7, 0, 7, 14, 21, 35 and 60 of each cow. Each animal was weighed and scored (5 scores) after morning milking by the same person. Fecal samples were collected (250 g) from rectum of individual cow once day in the morning before new fresh feed was offered and samples were kept in a refrigerator until analysis. Fecal samples were analyzed for DM, ash, CP (AOAC, 1997), NDF and ADF (Goering and Van Soest, 1970).

Blood samples were taken from a coccygeal vessel into heparinized Vacutainer tubes and centrifuged immediately to separate plasma that was stored at -20°C before analysis. Plasma samples were analyzed for urea-nitrogen composition (BUN), Non esterified fatty acid (NEFA), Beta-hydroxyl butyric acids (BHBA) and glucose using automated clinical chemistry analyzers (Vitallab Flexor E).

Energy balance during 60 postpartum was estimated by using equation of Smith et al. (1997) as follow:

$$EB \text{ (energy balance)} = NE_L \text{ intake} - \text{Lactating Energy (LE)} - NE_M$$

Where

$$LE = \text{milk yield (kg)} + \text{milk energy content}$$

$$\text{Milk energy content} = (226.09 + 89.5 \times \% \text{ fat} + 49.83 \times \% \text{ protein})/1000$$

$$NE_M = 0.08 \times BW^{0.75}$$

NE_L in feed was calculated according to equation of NRC (1989) which

$$NEL \text{ (Mcal/lb.)} = (0.0245 * \text{TDN\%} - 0.12) * 0.4536$$

where TDN stand for total digestible nutrient in feed

Statistical analyses

Data were analyzed using the GLM Procedure (SAS, 1996). Treatment mean differences used Duncan's New Multiple Range Test.

RESULTS AND DISCUSSION

Feed and Dry matter intake (DMI)

The chemical composition of the concentrate (Table 1) and Total mixed Ration (TMR) (Table 2) met NRC (1989) recommendations for CP nutrients and Energy. The DMI during the last 14 d of gestation tended to be higher in animals fed with YEFECAP diet (Table 3). After calving, diets were offered for *ad libitum* intake, and DMI was greater ($P < 0.05$) in cows fed YEFECAP compared with those fed control diet, averaging 14.1 vs. 11.0 kg/d (Table 4). The improvement of DMI during early lactation in animal fed YEFECAP diet in this study agree with previous works (Boonnop et al., 2010; Wanapat et al., 2011ab) that when using YEFECAP as protein sources in concentrate diet for dairy steer (Boonnop et al., 2010) or early lactating cow (Wanapat et al., 2011ab), it could improve CP and nutrients digestibility which could increase rate of passage and therefore improve DMI.

Moreover DMI were significantly improved by higher level of YEFECAP (16.9 – 28 % in concentrate) in diet (Boonnop et al., 2010; Wanapat et al., 2011ab). It also has been considered for YEFECAP in ruminant that have been palatability (Boonnop et al., 2010). Pinos-Rodriguez et al., (2008) found that live yeast can increase DMI, in response was greater with high levels of rumen fermentation carbohydrates patterns.

Table 3. Effect of Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip (YEFECAP) in rations on daily intakes, total-tract digestibility, live weight and body condition scores (BCS) of prepartum dairy cattle

Item	Prepartum		SEM	P value
	Control	YEFECAP		
DMI, Kg	11.6	12.9	0.4	0.103
DMI, % of BW	2.7	2.6	0.2	ns
Apparent total-tract digestibility				
DM	62.1	64.2	1.2	0.062
OM	63.4	64.5	1.0	ns
CP	64.0 ^a	68.2 ^b	1.1	*
NDF	54.1	56.5	1.3	0.058
ADF	53.3	54.0	1.0	ns
BW (kg)				
14 d before calving	473.2	492.8	19.3	ns
7 d before calving	478.9	494.4	20.6	ns
Calving date	410.2	447.4	17.2	ns
Body weight change	-63.0	-45.4	1.3	0.101
BCS (5 scores)				
14 d before calving	2.9	2.5	0.2	ns
7 d before calving	2.7	2.6	0.2	ns
Calving date	2.4	2.2	0.2	ns
BCS change (14 d before calving)	-0.5	-0.2	0.1	0.132

Nutrients digestibilities

Animal fed YEFECAP diet for the last 14 d of gestation tended ($P < 0.10$) to have more DM and NDF digestibilities than those fed control diet. Digestibility of CP and NDF was improved ($P < 0.05$) by feeding of YEFECAP during first 8 wk of lactation. Moreover DM, OM and ADF digestibility tended ($P < 0.1$) to be improved also in early lactating cow fed YEFECAP diet (Table 4). Similarly, when using YEFECAP as protein sources in concentrate diet for dairy steer (Boonnop et al., 2010) or early lactating cow (Wanapat et al., 2011ab), it

could improve CP and nutrients (DM, OM and NDF) digestibility. The improvement of CP and nutrients digestibilities have contributed to greater DMI by cow fed YEFECAP diet during early lactation.

Yeast-fermented cassava chip protein (YEFECAP) containing of yeast which may provide factors stimulatory to rumen cellulolytic and proteolytic bacteria, especially when high concentrate (> 50 %) diet are fed (Williams, 1989). Feeding YEFACAP has increased numbers of cellulolytic, amylolytic and proteolytic rumen bacteria (Boonnop et al., 2010; Wanapat et al., 2011ab) and resulted in improved fiber digestibility (Boonnop et al., 2010; Wanapat et al., 2011ab). Guedes et al., (2008) reported that yeast could stimulate the activity of cellulolytic bacteria and increase lactate utilization in the rumen, hence increased fiber digestion in feedlot cattle.

Table 4. Postpartum period (d 1 to 60) responses to Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip (YEFECAP) in rations

Item	Postpartum		SEM	P value
	Control	YEFECAP		
DMI, Kg/d	11.0	14.1	0.4	*
DMI, %of BW	2.7	3.1	0.1	*
Apparent total-tract digestibility				
DM	64.4	67.2	1.5	0.066
OM	67.5	70.4	1.0	0.068
CP	68.0 ^a	75.3 ^b	1.1	*
NDF	58.4 ^a	63.5 ^b	1.0	*
ADF	56.3	58.4	1.2	0.087
Average BW, kg	404.2	441.3	16.1	0.082
BW change, kg/60 d	-5.7	-6.1	4.8	ns
Average BCS ¹	2.2	2.3	0.2	ns
BCS change per 60 d	-0.2	0.1	0.2	ns
Energy balance, Mcal/d ²	-5.0	-4.6	0.7	ns

¹BCS scale = 1 to 5 point system (Wildman et al., 1982)

²Energy balance equals NEL intake minus lactational energy(LE) minus NEM, NEM calculated as 0.08*BW0.75), LE calculated as milk yield (kg) + milk energy content (Smith et al., 1997), Milk energy content was defined as (226.09 + 89.5 x %fat + 49.83 x % protein)/1000 (Tyrrell and Reed, 1965)

Body weight and body condition scores

Initial (14 d before calving) BW and BCS did not differ ($P>0.10$) between treatments. Feeding YEFECAP diet did not effect ($P>0.10$) prepartum and postpartum BW and BCS (Table 3). However, during prepartum period, cows that consumed the control diet tend to lost 63.0 kg more BW ($P=0.101$) or BCS ($P=0.132$) during the last 14 day of gestation than did cows that consumed the YEFECAP diet (Table 3).

The different trend in BW loss between treatments in prepartum period may be attributable to the different trend in DMI during prepartum period. Another possibility is cows supplemented with yeast culture appeared to be in better energy balance, as was evidenced by tended to be lower loss of body condition and tended to be lower level of plasma NEFA (Table 6). Similarly Robinson (1997) reported that cows supplemented with yeast culture lost less body condition prepartum, which was consistent with numerically higher body weight gain.

Milk yield and milk composition

Milk composition was not effected ($P>0.05$) by treatment (Table 5). Mean daily milk yields was increasing trend ($P=0.128$) in animal fed YEFECAP compared with those animal fed control diet (Table 5). The tended to be higher milk production in YEFECAP diet in our study could be related to improved nutrient digestibility and DMI in animal fed YEFECAP diet. This result supports data of Wanapat et al. (2011b) that milk yield was remarkably enhanced when YEFECAP was included at 16-28% DM in concentrate and fed to early lactating dairy cow. The higher milk yield in animal fed YEFECAP could be attributed by higher DMI (Wanapat et al., 2011b).

Peak milk yield occurred earlier (but not significantly) and tended to be greater when animal fed YEFECAP (Table 5). The improved DMI in animal fed YEFECAP in this study was an important factor contributing to earlier and higher peak milk yield in YEFECAP diet.

This finding similar to previous works that cow supplemented with yeast culture reach peak milk production more quickly (Wohlt et al., 1991; Dann et al., 2000) and had a higher milk yield (Wohlt et al., 1991) compared cow fed control diet.

Table 5. Milk yield and milk composition response to Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip (YEFECAP) in rations

Item	Postpartum		SEM	P value
	Control	YEFECAP		
Day 0 to 60				
Milk yield, kg/d	12.6	14.1	0.7	0.128
Milk fat, %	3.2	3.1	0.1	ns
Milk protein, %	3.2	3.4	0.1	ns
SNF, %	8.6	8.6	0.1	ns
Peak milk yield , kg/d	14.4	16.7	0.7	*
Peak milk yield, d	42.4	40.8	3.5	ns

Blood metabolic and Energy balance

Blood glucose and blood urea nitrogen (BUN) were not affected by dietary treatment both prepartum and postpartum (Table 6).

Plasma nonesterified fatty acids (NEFA) tended to be lower in animal fed YEFECAP diet both prepartum and postpartum. Increased adipose tissue mobilization postpartum is correlated with higher levels of plasma NEFA mobilized from adipose tissue (Ferguson, 1996; Drackley, 1999). This could be interpreted that animal consumed YEFECAP diet mobilized body fat reserve lower than that in animal consumed control diet, as was evidenced by tended to be lower loss of body condition during prepartum period or gain BCS during postpartum in animal fed YEFECAP diet (Table 4, 3).

β -hydroxybutyrate (BHBA) concentration in blood tended to be lower ($P<0.2$) in animal fed YEFECAP diet both prepartum and postpartum. This could be as a result of lower level NEFA in animal fed YEFECAP diet. Carlson et al.,(2006) described BHBA as a key indicator of hepatic ketogenesis as a result of influx of NEFA into the liver.

Table 6. Effect of Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip (YEFECAP) in rations on blood metabolic of pre- and postpartum dairy cattle

Item	Control	YEFECAP	SEM	P value
NEFA (mmol/l)				
Average (14 d prepartum)	0.59	0.41	0.1	0.167
Average (60 d postpartum)	0.59	0.44	0.1	0.188
BHBA (mg/dl)				
Average (14 d prepartum)	4.8	3.7	0.4	0.104
Average (60 d postpartum)	4.1	2.7	0.6	0.103
Glucose				
Average (14 d prepartum)	43.5	51.4	6.5	ns
Average (60 d postpartum)	39.6	40.8	4.1	ns
BUN (mg/dl)				
Average (14 d prepartum)	11.5	12.2	0.7	ns
Average (60 d postpartum)	13.7	11.2	1.3	ns

Conclusions

Feeding strategies that help prevent the decline in DMI during the transition period may be beneficial to dairy cattle. Feeding with YEFACAP tended to improved DMI during the last 14 day of gestation and improved DMI during the first 2 months of lactation which result of improved nutrients digestibilities. Feeding YEFECAP also tended to resulted in cattle losing less BW and BCS. There was also tended to be improvement in overall milk production and peak in milk earlier with YEFECAP feeding.

ACKNOWLEDGMENTS

The senior author would like to express his most sincere gratitude and appreciation to the Thailand Research Fund (TRF) and Commission on Higher Education (CHE) for research grant support (Research Grant for New Scholar, Grant No. MRG5280081). Thanks to the Faculty of Natural Resources, Rajamangala University of Technology Isan, Skon Nakhon Campus, Thailand for providing experimental animals and research facilities.

REFERENCE

AOAC, 1997. Official Methods of Analysis, 16th ed. Association of Official Analytical Chemists, Gaithersburg, MD.

Bauman, D.E. and Currie, W. B. 1980. Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. *J. Dairy Sci.* 63: 1514-1529.

Boonnop, K., M. Wanapat and C. Navanukraw. 2010. Replacement of soybean meal by yeast fermented-cassava chip protein (YEFECAP) in concentrate diets fed on rumen fermentation, microbial population and nutrient digestibilities in ruminants. *J. Anim. Vet. Adv.* 9: 1727-1734.

Boonnop, K., M. Wanapat, N. Nontaso and S. Wanapat. 2009. Enriching nutritivevalue of cassava root by yeast fermentation. *Sci. Agric.* 66: 616-620.

Carlson, D. B., M. S. Laubach, W. L. Keller and C. S. Park. 2006. Effect of prepartum compensatory nutrition regimen on metabolism and performance of dairy cows. *Livest. Sci.* 101:251-261.

Dann, H. M., J. K. Drackley, G. C. McCoy, M. F. Hutjens and J. E. Garrett. 2000. Effects of yeast culture (*Saccharomyces cerevisiae*) on prepartum intake and postpartum intake and milk production of Jersey cows. *J. Dairy Sci.* 83:123-127.

Drackley, J. K. 1999. Biology of dairy cows during the transition period: the final frontier? *J. Dairy Sci.* 82:2259-2273.

Ferguson, J. D. 1996. Diet, production and reproduction in dairy cows. *Anim. Feed Sci. Technol.* 59:173-184.

Goering, H. K. and P. J. Van Soest. 1970. Forage Fiber Analysis. Agriculture Handbook No.379. United State Department of Agriculture, Washington, DC.

Grummer, R. R. 1995. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. *J Anim. Sci.* 73:2820-2833.

Guedes, C. M., D. Goncalves, M. A. M. Rodrigues and A. Dias-da-Silva. 2008. Effects of a *Saccharomyces cerevisiae* yeast on ruminal fermentation and fibre degradation of maize silages in cows. *Anim. Feed Sci. Technol.* 145: 27- 40.

National Research Council. 1989. Nutrient Requirements of Dairy Cattle. 6th ed. Natl. Acad. Sci., Washington, DC.

Pinos-Rodriguez, J. M., P. H. Robinson, M. E. Ortega, S. L. Berry, G. Mendazad and R. Barcena. 2008. Performance and rumen fermentation of dairy calves supplemented with *Saccharomyces cerevisiae* 1077 or *Saccharomyces boulardii* 1079. *Anim. Feed Sci. Technol.* 140: 223-232.

Polyorach, S., M. Wanapat and N. Sornsongnern. 2010. Effect of yeastfermented cassava chip protein (YEFECAP) in concentrate of lactating dairy cows. In: Proceedings of the 14th Animal Science Congress of the Asian-Australasian Association of Animal Production Societies (AAAP), vol. 3, August 23-26, 2010. National Pingtung University of Science and Technology, Pingtung, Taiwan, Republic of China, pp. 304-307.

Remppis, S. H. Steingass, L. Gruber and H. Schenkel. 2011. Effects of energy intake on performance, mobilization and retention of body tissue, and metabolic parameters in dairy cows with special regards to effects of pro-partum nutrition on lactation: a review. *Asian-Aust. J. Anim. Sci.* 24: 540-572.

Robinson, P. H. 1997. Effect of yeast culture (*Saccharomyces cerevisiae*) on adaptation of cows to diets postpartum. *J. Dairy Sci.* 80:1119-1125.

Sakine Yalçın, Suzan Yalçın , Pınar Can, Arif O. Gürdal , Cemalettin Bağcı and Önder Eltan. 2011. The Nutritive Value of Live Yeast Culture (*Saccharomyces cerevisiae*) and Its Effect on Milk Yield, Milk Composition and Some Blood Parameters of Dairy Cows. *Asian-Aust. J. Anim. Sci.* 24: 1377 – 1385.

SAS Institute. Inc. 1996. SAS/STAT User's Guide: Version 6. 12. 4th edn. SAS Institute Inc., Cary, North Carolina.binson

Smith, T. R., A. R. Hippen, D. C. Beitz and J. W. Young. 1997. Metabolic characteristics of induced ketosis in normal and obese dairy cows. *J. Dairy Sci.* 80:1569-1581.

Tyrrell, H. F., and J. T. Reid. 1965. Prediction of the energy value of cow's milk. *J. Dairy Sci.* 48:1215-1223.

Wanapat , M., K. Boonnop, C. Promkot and A. Cherdthong. 2011a. Effects of alternative protein sources on rumen microbes and productivity of dairy cows. *Maejo Int. J. Sci. Technol.* 25:13-23.

Wanapat , M., S. Polyorach, V. Chanthakhoun and N. Sornsongnern. 2011b. Yeast-fermented cassava chip protein (YEFECAP) concentrate for lactating dairy cows fed on urea-lime treated rice straw. *Livestock Sci.* 139: 258–263

Williams. P.E.V. 1989. 'The mode of action of yeast culture in ruminal diets: a review of the effect on rumen fermentation patterns. Page 65 *in* Biotechnology in the feed industry. Alltech Tech. Publ., Nicholasville, KY.

Wohlt, J. E., A. D. Finkelstein and C. H. Chung. 1991. Yeast culture to improve intake, nutrient digestibility, and performance by dairy cattle during early lactation. *J. Dairy Sci.* 74:1395-1400.

Out put ที่ได้จากการวิจัย

ผลงานวิจัยอยู่ในช่วงการรอผลพิจารณาการตีพิมพ์

ในวารสาร Asian-Australasian journal of animal science (ฐานข้อมูล ISI, Impact Factor =0.4 (2010)

Manuscript No :12118

Title :Effects of Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip protein (YEFECAP) on Prepartum Intake and Postpartum Intake and Milk Production of Holstein Fresian crossbred dairy cows

Author :Chamnanwit, Promkot, Metha Wanapat, Julasinee Mansatit

ภาคผนวก

Manuscript

1 **Running Head:** Enhancing of pre and postpartum intake, milk yield and metabolic parameter
2 by feeding of Yeast fermented cassava chip (YEFECAP) in dairy cattle
3

4 **Keywords:** Dairy Heifer, Cow, Pre-partum, Postpartum, Cassava, Yeast, Yeast fermented-
5 cassava chip (YEFECAP).
6
7

8 *Effects of Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip protein (YEFECAP) on
9 Prepartum Intake and Postpartum Intake and Milk Production of
10 Holstein Fresian crossbred dairy cows*

11

12 **C. Promkot¹* M. Wanapat² and J. Mansathit³**

13

14 ¹Animal health science, Faculty of Agro-industrial Technology, Rajamangala University of
15 Technology Isan, Kalasin Campus, 4600, Kalasin, Thailand

16 ² Tropical Feed Resources Research and Development Center, Department of Animal
17 Science, Faculty of Agriculture, Khon Kaen University, 40002, Khon Kaen, Thailand

18 ³Animal Science, Faculty of Natural resources Rajamangala University of Technology Isan,
19 Skon Nakhon Campus, 47160, Skon Nakhon Thailand

20

21 ***Corresponding Authors:**

22 Asist. Prof. Dr. Chamnanwit Promkot

23 Faculty of Agro-industrial Technology,

24 Rajamangala University of Technology Isan, Kalasin Campus, 4600, Kalasin, Thailand

25 Email: promkot@yahoo.com

26 **Effects of Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip protein**
27 **(YEFECAP) on Prepartum Intake and Postpartum Intake and Milk**
28 **Production of Holstein Fresian crossbred dairy cows**

29

30 **C. Promkot¹* M. Wanapat² and J. Mansathit³**

31 ¹Animal health science, Faculty of Agro-industrial Technology, Rajamangala University of
32 Technology Isan, Kalasin Campus, 4600, Kalasin, Thailand

33 ² Tropical Feed Resources Research and Development Center, Department of Animal Science,
34 Faculty of Agriculture, Khon Kaen University, 40002, Khon Kaen, Thailand

35 ³Animal Science, Faculty of Natural resources Rajamangala University of Technology Isan,
36 Skon Nakhon Campus, 47160, Skon Nakhon Thailand

37

38 **ABSTRACT**

39

40 The objective of this study was to evaluate effects of Yeast (*Saccharomyces cerevisiae*)
41 fermented-cassava chip (YEFECAP) on pre- and postpartum intake and milk production of
42 dairy cattle. Thirty two Holstein Frisian crossbred dairy heifers and cows (16 heifers and 16
43 cows) were assigned to two treatments at 14 d before calving thought 60 d postpartum. The
44 experimental treatment was concentrate feed with or without YEFECAP. Cattle were fed rice
45 straw (prepartum) and urea treated rice straw (postpartum) as main roughage. Pre-partum
46 cattle were fed concentrate (1.3 %BW) and roughage (*ad lib*) separately while postpartum
47 cattle were fed total mixed ration (TMR) (*ad lib*) with concentrate to roughage ratio at 70:30.
48 During prepartum period, dry matter intake was not significantly different among treatments.
49 However,crude protein digestibility of the YEFECAP diet was higher ($P<0.05$) than that in

50 diet without YEFECAP. Dry matter and NDF digestibility in prepartum cattle tended to be
51 higher in diet with YEFECAP than without YEFECAP. Body condition score at calving date
52 in cattle fed YEFECAP diet tend to reduce smaller than fed without YEFECAP.
53 Digestibilities of protein and NDF were improved in cows fed YEFECAP, contributing to a
54 greater DMI during the first 8 wk of lactation and trend to higher average milk yield
55 through wk 8 of lactation compared with control cow. Moreover diet with YEFECAP was
56 significantly increase peak milk yield ($P<0.05$)as compares to diet without YEFECAP.
57 Plasma NEFA and BHBA tended to be lower in cattle fed with YEFECAP pre- and
58 postpartum. Based on this experiment, it could be concluded that dairy cattle fed with
59 YEFECAP during pre- and postpartum period could enhance dry matter intake, nutrient
60 digestibility and tended to improve milk yield. Moreover animal fed YEFECAP diet resulted
61 in lower level of fat metabolism parameter (NEFA and BHBA) which indicator of good
62 health.

63

64

65

66

67

68

69

70 **Keywords:** Dairy Heifer, Cow, Pre-partum, Postpartum, Cassava, Yeast, Yeast fermented-
71 cassava chip (YEFECAP).

72

73 *Corresponding Author : Chamnanwit Promkot , Tel: +66 43 811128, Fax: +66 43 812972

74 E mail: promkot@yahoo.com

75

INTRODUCTION

76

77 The transition period of dairy cows has been defined as 3 weeks pre-partum and 3 weeks post-
78 partum (Grummer, 1995). This period is transition from a pregnant non-lactating cow with
79 relatively low nutritional requirements to a non-pregnant high producing lactating cow with
80 elevated nutritional requirements, metabolic transitions to support the ensuing lactation
81 (Bauman and Currie, 1980; Remppis et al., 2011) and ruminal adaptations to a change in diet.
82 This physiological change leads to parturition stress, high susceptibility and to prevalence of
83 metabolic health disorders. Nutritional inadequacy pre- and post-partum, has been thought to
84 be one of the main factors in the high incidence of metabolic disorders during this period.
85 Improving the nutrition of the cow during this period may enhance health, dry matter intake
86 (DMI), and milk production.

87

87 Incorporation of microbial additives such as a culture of *Saccharomyces cerevisiae* to
88 the diet has become a common practice in ruminant nutrition. The effects of *S. cerevisiae*
89 supplementation during the prepartum period and through peak lactation on DMI and milk
90 yield remain controversial (Robinson, 1997; Wohlt et al, 1991; Dann et al., 2000; Sakine
91 Yalçın et al., 2011). Recently research, fermentation of cassava chip (dried root) by pure
92 culture of *S. cerevisiae*, called “Yeast fermented-cassava chip Protein” (YEFECP), could
93 increase its protein content from 3.4 to 32.5% CP (Boonnop et al. 2009; Boonnop et al. 2010,
94 Polyorach et al., 2010; Wanapat et al. 2011). It could be used for animal feeding. Boonnop et
95 al. (2010) further studied the effects of YEFECP as a protein source replacement of soybean
96 meal in concentrate and found that YEFECP could fully replace soybean meal in terms of
97 rumen fermentation efficiency and nutrient digestibilities in beef cattle. Recently report by
98 Wanapat et al. (2011) that YEFECP can fully replace SBM in concentrate mixtures for early

99 lactation milking dairy cows which effected on enhancing rumen fermentation, dry matter
100 intake, nutrient digestibility, milk yield and milk compositions.

101 Supplemental YEFECAP may be most beneficial to dairy cows if it is fed before
102 parturition, a period that is characterized by decreased DMI as parturition approaches, and
103 through peak lactation. No data are available for effects of YEFECAP in dairy cows during
104 pre-and postpartum in tropical country. The objective of this study was to evaluate effects of
105 YEFECAP on pre- and postpartum intake and milk production of dairy cattle.

106

107 MATERIALS AND METHODS

108

109 **Animals, experimental design and dietary treatments:**

110 Thirty two Holstein Frisian crossbred dairy heifers and cows (16 heifers and 16 cows)
111 from the dairy farm of the Faculty of Natural Resources, Rajamangala University of
112 Technology Isan, Sakon Nakhon Campus were assigned to two treatments at 14 d before
113 calving thought 60 d postpartum to determine the effects of Yeast (*Saccharomyces cerevisiae*)
114 fermented-cassava chip (YEFECAP). Randomized complete block design (RCBD) were used
115 (No. of lactation is block). Treatments were concentrate feed with YEFECAP and without
116 (Control) YEFECAP. Dietary concentrate treatments feed were showed in Table 1.

117 Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip (YEFECAP) was prepared
118 according to method of Boonnop et al. (2009). Yeast inoculants preparation: baker yeast was
119 cultured in the cylinder vessels which contained solution of 20% molasses (w/v) and 4% urea
120 (w/v). The products were incubated at room temperature and oxygen was supplied by an air
121 pump for 4 days (cell yeast = 8.8×10^8 cells/ml). Yeast inoculum was mixed and inoculated
122 into 0.5 kg of the mash cassava chip as the starter and 250 ml nutrient solution [urea (48 g)

123 and molasses (24 g)] were added. Fermentation was conducted during 72 hours at 25-30°C
124 under shed.

125

126 **Animal management and feeding**

127 Animals were housed individually for each treatment and had *ad libitum* access to
128 feed, fresh water and a mineral block. Prepartum animals were fed concentrate (1.3 % BW,
129 twice dairy) and rice straw (*ad libitum*) separately while postpartum animal were fed total
130 mixed ration (TMR) with concentrate to roughage (3% urea treated rice straw) at 70:30. The
131 composition of the TMR diets is shown in Table 2. Animal were milked twice daily (05.00
132 AM and 16.00 PM) by milking machine.

133

134 **Sampling and analysis**

135

136 **Dry matter intake (DMI), Feed, milk yield and milk composition**

137 The DMI of each animal was measured daily from 14 (± 3) d before expected calving
138 date until 60 DIM. Samples of the prepartum and postpartum diets were collected weekly,
139 composited monthly, and analyzed for DM, ash, CP (AOAC, 1990) NDF, ADF.

140 Milk yields of each cow were recorded daily until 60 DIM. Milk samples (in ratio of
141 morning milk samples to afternoon milk samples at 60:40.) were collected twice daily during
142 milking on the last day of each week of lactation and were analyzed for fat, protein, lactose
143 and solids-not-fat using infared apparatus (Milko-scan 104, Foss Electric, Denmark).

144

145 **Body weight (BW), body condition score (BCS), feces and blood samples**

146 Data of BW and BCS were recoded and samples of face and blood were taken on DIM
147 of -14, -7, 0, 7, 14, 21, 35 and 60 of each cow. Each animal was weight and scored (5 scores)

148 after morning milking by the same person. Fecal samples were collected (250 g) from rectum
149 of individual cow once day in the morning before new fresh feed was offered and samples
150 were kept in a refrigerator until analysis. Fecal samples were analyzed for DM, ash, CP
151 (AOAC,1997), NDF and ADF (Goering and Van Soest, 1970).

152 Blood samples were taken from a coccygeal vessel into heparinized Vacutainer tubes
153 and centrifuged immediately to separate plasma that was stored at -20°C before analysis.
154 Plasma samples were analyzed for urea-nitrogen composition (BUN), None esterifies fatty
155 acid (NEFA), Bata-hydroxyl butyric acids (BHBA) and glucose using automated clinical
156 chemistry analyzers (Vitallab Flexor E).

157 Energy balance during 60 postpartum was estimate by using equation of Smith et al.
158 (1997) as follow:

$$159 \text{EB (energy balance)} = \text{NE}_L \text{ intake} - \text{Lactating Energy (LE)} - \text{NE}_M$$

160 Where

$$161 \text{LE} = \text{milk yield (kg)} + \text{milk energy content}$$

$$162 \text{Milk energy content} = (226.09 + 89.5 \times \% \text{ fat} + 49.83 \times \% \text{ protein})/1000$$

$$163 \text{NE}_M = 0.08 \times \text{BW}^{0.75}$$

164 NE_L in feed was calculated according to equation of NRC (1989) which

$$165 \text{NEL (Mcal/lb.)} = (0.0245 * \text{TDN\%} - 0.12) * 0.4536$$

166 where TDN stand for total digestible nutrient in feed

167

168 **Statistical analyses**

169 Data were analyzed using the GLM Procedure (SAS, 1996). Treatment mean
170 differences used Duncan's New MultipleRange Test.

171

172

173

RESULTS AND DISCUSSION

174

175 **Feed and Dry matter intake (DMI)**

176 The chemical composition of the concentrate (Table1) and Total mixed Ration (TMR)
177 (Table 2) met NRC (1989) recommendations for CP nutrients and Energy. The DMI during
178 the last 14 d of gestation tended to be higher in animals fed with YEFECA diet (Table 3).
179 After calving, diets were offered for *ad libitum* intake, and DMI was greater ($P<0.05$) in cows
180 fed YEFECAP compared with those fed control diet, averaging 14.1 vs. 11.0 kg/d (Table 4).
181 The improvement of DMI during early lactation in animal fed YEFECAP diet in this study
182 agree with previous works (Boonnop et al., 2010; Wanapat et al., 2011ab) that when using
183 YEFECAP as protein sources in concentrate diet for dairy steer (Boonnop et al., 2010) or
184 early lactating cow (Wanapat et al., 2011ab), it could improve CP and nutrients digestibility
185 which could increase rate of passage and therefore improve DMI.

186 Moreover DMI were significantly improved by higher level of YEFECAP (16.9 – 28
187 % in concentrate) in diet (Boonnop et al., 2010; Wanapat et al., 2011ab). It also has been
188 considered for YEFECAP in ruminant that have been palatability (Boonnop et al., 2010).
189 Pinos-Rodriguez et al., (2008) found that live yeast can increase DMI, in response was greater
190 with high levels of rumen fermentation carbohydrates patterns.

191

192 **Nutrients digestibilities**

193 Animal fed YEFECAP diet for the last 14 d of gestation tended ($P < 0.10$) to have
194 more DM and NDF digestibilities than those fed control diet. Digestibility of CP and NDF
195 was improved ($P<0.05$) by feeding of YEFACAP during first 8 wk of lactation. Moreover
196 DM, OM and ADF digestibility tended ($P<0.1$) to be improved also in early lactating cow fed
197 YEFACAP diet (Table 4). Similarly, when using YEFECAP as protein sources in concentrate

198 diet for dairy steer (Boonnop et al., 2010) or early lactating cow (Wanapat et al., 2011ab), it
199 could improve CP and nutrients (DM, OM and NDF) digestibility. The improvement of CP
200 and nutrients digestibilities have contributed to greater DMI by cow fed YEFECAP diet
201 during early lactation.

202 Yeast-fermented cassava chip protein (YEFECAP) containing of yeast which may
203 provide factors stimulatory to rumen cellulolytic and proteolytic bacteria, especially when
204 high concentrate (> 50 %) diet are fed (Williams, 1989). Feeding YEFACAP has increased
205 numbers of cellulolytic, amylolytic and proteolytic rumen bacteria (Boonnop et al., 2010;
206 Wanapat et al., 2011ab) and resulted in improved fiber digestibility (Boonnop et al., 2010;
207 Wanapat et al., 2011ab). Guedes et al., (2008) reported that yeast could stimulate the activity
208 of cellulolytic bacteria and increase lactate utilization in the rumen, hence increased fiber
209 digestion in feedlot cattle.

210

211 **Body weight and body condition scores**

212 Initial (14 d before calving) BW and BCS did not differ ($P>0.10$) between treatments.
213 Feeding YEFECAP diet did not effect ($P>0.10$) prepartum and postpartum BW and BCS
214 (Table 3). However, during prepartum period, cows that consumed the control diet tend to lost
215 63.0 kg more BW ($P=0.101$) or BCS ($P=0.132$) during the last 14 day of gestation than did
216 cows that consumed the YEFECAP diet (Table 3).

217 The different trend in BW loss between treatments in prepartum period may be
218 attributable to the different trend in DMI during prepartum period. Another possibility is cows
219 supplemented with yeast culture appeared to be in better energy balance, as was evidenced by
220 tended to be lower loss of body condition and tended to be lower level of plasma NEFA
221 (Table 6). Similarly Robinson (1997) reported that cows supplemented with yeast culture lost

222 less body condition prepartum, which was consistent with numerically higher body weight
223 gain.

224

225 **Milk yield and milk composition**

226 Milk composition was not effected ($P>0.05$) by treatment (Table 5). Mean daily milk
227 yields was increasing trend ($P=0.128$) in animal fed YEFECAP compared with those animal
228 fed control diet (Table 5). The tended to be higher milk production in YEFECAP diet in our
229 study could be related to improved nutrient digestibility and DMI in animal fed YEFECAP
230 diet. This result supports data of Wanapat et al. (2011b) that milk yield was remarkably
231 enhanced when YEFECAP was included at 16-28% DM in concentrate and fed to early
232 lactating dairy cow. The higher milk yield in animal fed YEFECAP could be attributed by
233 higher DMI (Wanapat et al., 2011b).

234 Peak milk yield occurred earlier (but not significantly) and tended to be greater when
235 animal fed YEFECAP (Table 5). The improved DMI in animal fed YEFECAP in this study
236 was an important factor contributing to earlier and higher peak milk yield in YEFECAP diet.

237 This finding similar to previous works that cow supplemented with yeast culture reach
238 peak milk production more quickly (Wohlt et al., 1991; Dann et al., 2000) and had a higher
239 milk yield (Wohlt et al., 1991) compared cow fed control diet.

240

241 **Blood metabolic and Energy balance**

242 Blood glucose and blood urea nitrogen (BUN) were not affected by dietary treatment
243 both prepartum and postpartum (Table 6).

244 Plasma nonesterified fatty acids (NEFA) tended to be lower in animal fed YEFECAP
245 diet both prepartum and postpartum. Increased adipose tissue mobilization postpartum is
246 correlated with higher levels of plasma NEFA mobilized from adipose tissue (Ferguson, 1996;

247 Drackley, 1999). This could be interpreted that animal consumed YEFECAP diet mobilized
248 body fat reserve lower than that in animal consumed control diet, as was evidenced by tended
249 to be lower loss of body condition during prepartum period or gain BCS during postpartum in
250 animal fed YEFECAP diet (Table 4, 3).

251 β -hydroxybutyrate (BHBA) concentration in blood tended to be lower ($P<0.2$) in
252 animal fed YEFECAP diet both prepartum and postpartum. This could be as a result of lower
253 level NEFA in animal fed YEFECAP diet. Carlson et al.,(2006) described BHBA as a key
254 indicator of hepatic ketogenesis as a result of influx of NEFA into the liver.

255

256 **Conclusions**

257 Feeding strategies that help prevent the decline in DMI during the transition period may be
258 beneficial to dairy cattle. Feeding with YEFACAP tended to improved DMI during the last 14
259 day of gestation and improved DMI during the first 2 months of lactation which result of
260 improved nutrients digestibilities. Feeding YEFECAP also tended to resulted in cattle losing
261 less BW and BCS. There was also tended to be improvement in overall milk production and
262 peak in milk earlier with YEFECAP feeding.

263

264 **ACKNOWLEDGMENTS**

265 The senior author would like to express his most sincere gratitude and appreciation to the
266 Thailand Research Fund (TRF) and Commission on Higher Education (CHE) for research
267 grant support (Research Grant for New Scholar, Grant No. MRG5280081). Thanks to the
268 Faculty of Natural Resources, Rajamangala University of Technology Isan, Skon Nakhon
269 Campus, Thailand for providing experimental animals and research facilities.

270

271

272

273

REFERENCES

274

275 AOAC, 1997. Official Methods of Analysis, 16th ed. Association of Official Analytical
276 Chemists, Gaithersburg, MD.

277 Bauman, D.E. and Currie, W. B. 1980. Partitioning of nutrients during pregnancy and
278 lactation: a review of mechanisms involving homeostasis and homeorhesis. *J. Dairy
279 Sci.* 63: 1514-1529.

280 Boonnop, K., M. Wanapat and C. Navanukraw. 2010. Replacement of soybean meal by yeast
281 fermented-cassava chip protein (YEFECAP) in concentrate diets fed on rumen
282 fermentation, microbial population and nutrient digestibilities in ruminants. *J. Anim.
283 Vet. Adv.* 9: 1727–1734.

284 Boonnop, K., M. Wanapat, N. Nontaso and S. Wanapat. 2009. Enriching nutritivevalue of
285 cassava root by yeast fermentation. *Sci. Agric.* 66: 616–620.

286 Carlson, D. B., M. S. Laubach, W. L. Keller and C. S. Park. 2006. Effect of prepartum
287 compensatory nutrition regimen on metabolism and performance of dairy cows.
288 *Livest. Sci.* 101:251-261.

289 Dann, H. M., J. K. Drackley, G. C. McCoy, M. F. Hutjens and J. E. Garrett. 2000. Effects of
290 yeast culture (*Saccharomyces cerevisiae*) on prepartum intake and postpartum intake
291 and milk production of Jersey cows. *J. Dairy Sci.* 83:123-127.

292 Drackley, J. K. 1999. Biology of dairy cows during the transition period: the final frontier? *J.
293 Dairy Sci.* 82:2259-2273.

294 Ferguson, J. D. 1996. Diet, production and reproduction in dairy cows. *Anim. Feed Sci.
295 Technol.* 59:173-184.

296 Goering, H. K. and P. J. Van Soest. 1970. Forage Fiber Analysis. Agriculture Handbook
297 No.379. United State Department of Agriculture, Washington, DC.

298 Grummer, R. R. 1995. Impact of changes in organic nutrient metabolism on feeding the
299 transition dairy cow. *J Anim. Sci.* 73:2820-2833.

300 Guedes, C. M., D. Goncalves, M. A. M. Rodrigues and A. Dias-da-Silva. 2008. Effects of a
301 *Saccharomyces cerevisiae* yeast on ruminal fermentation and fibre degradation of
302 maize silages in cows. *Anim. Feed Sci. Technol.* 145: 27- 40.

303 National Research Council. 1989. Nutrient Requirements of Dairy Cattle. 6th ed. Natl. Acad.
304 Sci., Washington, DC.

305 Pinos-Rodriguez, J. M., P. H. Robinson, M. E. Ortega, S. L. Berry, G. Mendazad and R.
306 Barcena. 2008. Performance and rumen fermentation of dairy calves supplemented
307 with *Saccharomyces cerevisiae* 1077 or *Saccharomyces boulardii* 1079. *Anim. Feed
308 Sci. Technol.* 140: 223-232.

309 Polyorach, S., M. Wanapat and N. Sornsongnern. 2010. Effect of yeastfermented cassava chip
310 protein (YEFECAP) in concentrate of lactating dairy cows. In: Proceedings of the
311 14th Animal Science Congress of the Asian-Australasian Association of Animal
312 Production Societies (AAAP), vol. 3, August 23–26, 2010. National Pingtung
313 University of Science and Technology, Pingtung, Taiwan, Republic of China, pp.
314 304–307.

315 Robinson, P. H. 1997. Effect of yeast culture (*Saccharomyces cerevisiae*) on adaptation of
316 cows to diets postpartum. *J. Dairy Sci.* 80:1119-1125.

317 Remppis, S. H. Steingass, L. Gruber and H. Schenkel. 2011. Effects of energy intake on
318 performance, mobilization and retention of body tissue, and metabolic parameters in
319 dairy cows with special regards to effects of pro-partum nutrition on lactation: a
320 review. *Asian-Aust. J. Anim. Sci.* 24: 540-572.

321 Sakine Yalçın, Suzan Yalçın , Pınar Can, Arif O. Gürdal , Cemalettin Bağcı and Önder Eltan.
322 2011. The Nutritive Value of Live Yeast Culture (*Saccharomyces cerevisiae*) and Its

323 Effect on Milk Yield, Milk Composition and Some Blood Parameters of Dairy
324 Cows. Asian-Aust. J. Anim. Sci. 24: 1377 – 1385.

325 SAS Institute. Inc. 1996. SAS/STAT User's Guide: Version 6. 12. 4th edn. SAS Institute Inc.,
326 Cary, North Carolina.binson

327 Smith, T. R., A. R. Hippen, D. C. Beitz and J. W. Young. 1997. Metabolic characteristics of
328 induced ketosis in normal and obese dairy cows.J. Dairy Sci. 80:1569–1581.

329 Tyrrell, H. F., and J. T. Reid. 1965. Prediction of the energy value of cow's milk. J. Dairy Sci.
330 48:1215–1223.

331 Wanapat , M., K. Boonnop, C. Promkot and A. Cherdthong. 2011a. Effects of alternative
332 protein sources on rumen microbes and productivity of dairy cows. Maejo Int. J. Sci.
333 Technol. 25:13-23.

334 Wanapat , M., S. Polyorach, V. Chanthakhoun and N. Sornsongnern. 2011b. Yeast-fermented cassava
335 chip protein (YEFECAp) concentrate for lactating dairy cows fed on urea-lime
336 treated rice straw. Livestock Sci. 139: 258–263

337 Williams. P.E.V. 1989. 'The mode of action of yeast culture in ruminal diets: a review of the
338 effect on rumen fermentation patterns. Page 65 in Biotechnology in the feed
339 industry. Alltech Tech. Publ., Nicholasville, KY.

340 Wohlt, J. E., A. D. Finkelstein and C. H. Chung. 1991. Yeast culture to improve intake,
341 nutrient digestibility, and performance by dairy cattle during early lactation. J. Dairy
342 Sci. 74:1395-1400.

343

344

345

346

347

348

349 Table 1. Ingredients and compositions of experimental concentrates feed

Ingredient	Prepartum		Postpartum	
	Control	YEFECAP	Control	YEFECAP
% Dry Matter				
Cassava chip	57.3	52.4	40.0	33.9
YEFECAP ^a	-	11.9	-	26.0
Whole Cottonseed	8.1	7.6	11.6	10
Rice bran	21.5	20.3	22.3	19
Soybean meal	5.2	-	14.3	-
Molasses	3.4	3.1	5.2	4.4
Urea	1.7	1.9	3.1	3.2
Oyster shell	0.5	0.4	-	0
Salt	1.0	1.0	0.7	0.7
Dicalcium ^b	0.5	0.4	0.5	0.5
Mineral mix ^c	0.7	0.7	1.0	1.0
Sulphur	0.1	0.1	0.4	0.4
Tallow	0.0	0.0	0.9	0.9
Dry matter (%)	88.7	88.0	88.7	88.6
Crude protein (%)	12.0	11.8	19.5	19.1
Neutral detergent fiber (%)	12.6	12.0	13.5	12.1
Acid detergent fiber (%)	7.7	7.4	8.6	8.0
Ash (%)	6.3	6.5	8.1	8.1
Total digestible nutrient ^d	69.0	69.8	68.8	69.8

^aYEFECAP = Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip

^bDicalcium (each kg contains): Calcium 300 g; Phosphorus 140 g.

^cMineral mix (Dailymin®) (each kg contains): Iron 2.14 g; Iodin 0.15 g; Sulphur 11.82 g; Copper 0.23 g; Magnesium 0.96 g; Sodium 2.68 g; Manganese 7.21 g; Cobalt 0.03 g; Phosphorus 19.60 g; Selenium 0.003 g; Zing 0.16; Calcium 204.03 g.

^dBy calculation.

350

351

352

353

354

355 Table 2. Chemical composition (% of dry matter) of total mixed rations (TMR) with and without (Control)
 356 Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip (YEFECAP)

Ingredient	Total mixed rations	
	Control	TMR with YEFECAP
Dry matter (DM)	78.3	77.3
Organic matter (OM)	89.9	89.9
Crude protein (CP)	14.9	14.6
Neutral detergent fiber (NDF)	32.8	31.9
Acid detergent fiber (ADF)	22.7	22.3

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373 Table 3. Effect of Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip (YEFECAP) in
 374 rations on daily intakes, total-tract digestibility, live weight and body condition scores (BCS)
 375 of prepartum dairy cattle

Item	Prepartum		SEM	P value
	Control	YEFECAP		
DMI, Kg	11.6	12.9	0.4	0.103
DMI, % of BW	2.7	2.6	0.2	ns
Apparent total-tract digestibility				
DM	62.1	64.2	1.2	0.062
OM	63.4	64.5	1.0	ns
CP	64.0 ^a	68.2 ^b	1.1	*
NDF	54.1	56.5	1.3	0.058
ADF	53.3	54.0	1.0	ns
BW (kg)				
14 d before calving	473.2	492.8	19.3	ns
7 d before calving	478.9	494.4	20.6	ns
Calving date	410.2	447.4	17.2	ns
Body weight change	-63.0	-45.4	1.3	0.101
BCS (5 scores)				
14 d before calving	2.9	2.5	0.2	ns
7 d before calving	2.7	2.6	0.2	ns
Calving date	2.4	2.2	0.2	ns
BCS change (14 d before calving)	-0.5	-0.2	0.1	0.132

376

377

378 Table 4. Postpartum period (d 1 to 60) responses to Yeast (*Saccharomyces cerevisiae*)
 379 fermented-cassava chip (YEFECAP) in rations

Item	Postpartum		SEM	P value
	Control	YEFECAP		
DMI, Kg/d	11.0	14.1	0.4	*
DMI, %of BW	2.7	3.1	0.1	*
Apparent total-tract digestibility				
DM	64.4	67.2	1.5	0.066
OM	67.5	70.4	1.0	0.068
CP	68.0 ^a	75.3 ^b	1.1	*
NDF	58.4 ^a	63.5 ^b	1.0	*
ADF	56.3	58.4	1.2	0.087
Average BW, kg	404.2	441.3	16.1	0.082
BW change, kg/60 d	-5.7	-6.1	4.8	ns
Average BCS ¹	2.2	2.3	0.2	ns
BCS change per 60 d	-0.2	0.1	0.2	ns
Energy balance, Mcal/d ²	-5.0	-4.6	0.7	ns

¹BCS scale = 1 to 5 point system (Wildman et al., 1982)

²Energy balance equals NEL intake minus lactational energy(LE) minus NEM, NEM calculated as 0.08*BW0.75), LE calculated as milk yield (kg) + milk energy content (Smith et al., 1997), Milk energy content was defined as (226.09 + 89.5 x %fat + 49.83 x % protein)/1000 (Tyrrell and Reed, 1965)

380

381

382

383 Table 5. Milk yield and milk composition response to Yeast (*Saccharomyces cerevisiae*)
 384 fermented-cassava chip (YEFECAP) in rations

Item	Postpartum		SEM	P value
	Control	YEFECAP		
Day 0 to 60				
Milk yield, kg/d	12.6	14.1	0.7	0.128
Milk fat, %	3.2	3.1	0.1	ns
Milk protein, %	3.2	3.4	0.1	ns
SNF, %	8.6	8.6	0.1	ns
Peak milk yield , kg/d	14.4	16.7	0.7	*
Peak milk yield, d	42.4	40.8	3.5	ns

385

386

387

388

389

390

391

392

393

394

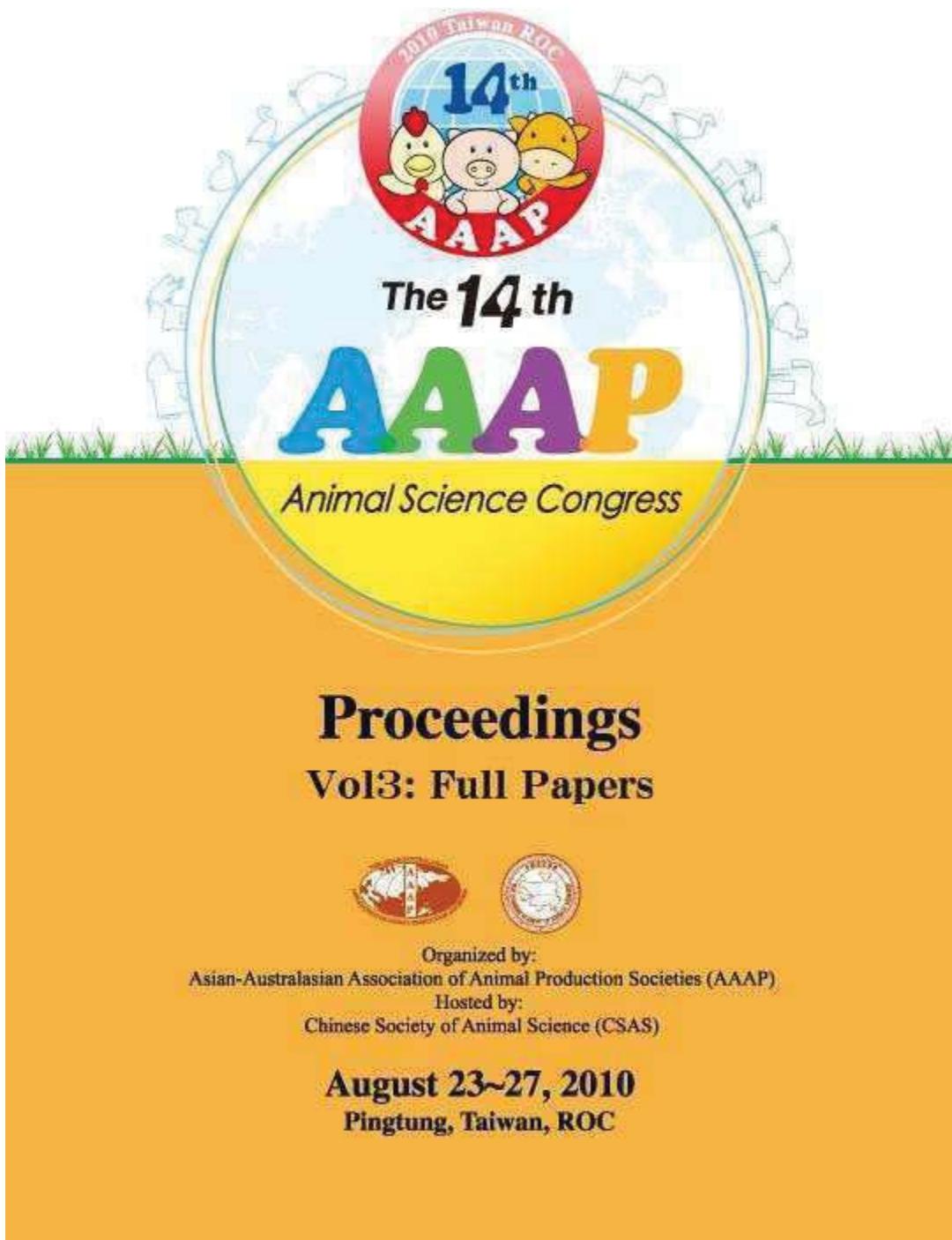
395

396

397

398

399 Table 6. Effect of Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip (YEFECAP) in
 400 rations on blood metabolic of pre- and postpartum dairy cattle


Item	Control	YEFECAP	SEM	P value
NEFA (mmol/l)				
Average (14 d prepartum)	0.59	0.41	0.1	0.167
Average (60 d postpartum)	0.59	0.44	0.1	0.188
BHBA (mg/dl)				
Average (14 d prepartum)	4.8	3.7	0.4	0.104
Average (60 d postpartum)	4.1	2.7	0.6	0.103
Glucose				
Average (14 d prepartum)	43.5	51.4	6.5	ns
Average (60 d postpartum)	39.6	40.8	4.1	ns
BUN (mg/dl)				
Average (14 d prepartum)	11.5	12.2	0.7	ns
Average (60 d postpartum)	13.7	11.2	1.3	ns

401

402

403

กิจกรรมเผยแพร่

Proceedings

Vol3: Full Papers

Organized by:
Asian-Australasian Association of Animal Production Societies (AAAP)
Hosted by:
Chinese Society of Animal Science (CSAS)

August 23~27, 2010
Pingtung, Taiwan, ROC

C04-PP-05*	Effect of Substituting Barley with Corn and Sorghum on Digestion Characteristics in Beef Steers <u>M. Yahaghi</u> , J. B. Liang, J. Balcells, R. Valizadeh, Y. W. Ho, A. R. Alimon, and H. Janati (Malaysia)	1079
C04-PP-06	Study on Feed Value and Ruminal Fermentative Characteristic of Soybean Curd Meal and Peppermint S. H. Moon, B. T. Jeon, S. H. Cheong, J. H. Park, K. K. Park, S. S. Jang, and Y. K. Kim (Korea)	1082
C04-PP-07*	Feeding Effects of Whole-Barley Crop and Italian Ryegrass Silage on the Reproductive and Growth Performances of Hanwoo Heifers and Cows H. J. Jang, J. S. Park, M. J. Alam, D. H. Kim, J. U. Park, and <u>S. S. Lee</u> (Korea)	1087
C04-PP-08	The Effects of Selected Plant Extracts on Proliferation, Differentiation and Adipogenic Gene Expression in 3T3-L1 Cells M. R. Heo, O. D. Abanto, C. Ghosh, J. S. Kim, K. T. Yi, and S. G. Hwang (Korea)	1092
Dairy		
C04-PP-09*	Effect of <i>Phaseolus Calcaratus</i> as Roughage Mixed with Ruzi Grass on Rumen Fermentation and Milk Production in Lactating Dairy Cows at Small-Holder Dairy Farms M. Wanapat, N. Wongnean, W. Sangkloy, P. Tamkornburi, S. Kingkratoke, A. Sukarin, S. Yotikoun, M. Narksuwan, W. Sirinawakoun, and <u>S. Kanpukdee</u> (Thailand)	1096
C04-PP-10*	Effect of Pistachio-By Products Silage Treated with Urea and Polyethylene Glycol on Holstein Dairy Cow's Performance <u>A. Mokhtarpour</u> , A. A. Naserian, R. Valizadeh, and A. M. Tahmasbi (Iran)	1100
C04-PP-11*	Effect of Season, Urea Supplementation and Concentrate Source on Serum Urea Status in Gonbad-Kavoos Region Cows <u>F. Farivar</u> and Y. Mostafalu (Iran)	1104
C04-PP-12	Effects of Amla Leaves and Branches Addition to Concentrate on Performance of Lactating Dairy Cows P. Klangnork, P. Lounglawan, M. Khungaew, P. Paengsai, and W. Suksombat (Thailand)	1108
C04-PP-13	Effects of Amla Leaves and Branches Supplementation on Fermentation and Microbial Population of Lactating Dairy Cows J. Homkhao, P. Lounglawan, M. Khungaew, P. Paengsai, and W. Suksombat (Thailand)	1112
C04-PP-14	Effects of Biotin Supplementation on Performance of Lactating Dairy Cows W. Suksombat, P. Lounglawan, and P. Paengsai (Thailand)	1117
C04-PP-15*	Effects of Feeding Sequence of Concentrate on Ruminal Mat Characteristics and Location of Concentrate Particles in the Rumen of Non-Lactating Holstein Cows Fed Hay and Sake Cake <u>K. Izumi</u> and H. Yamaguchi (Japan)	1124
C04-PP-16*	Effects of Weaning Age on the Growth and Starter Intake in Holstein Calves M. Bojarpour, A. Nargeskhani, and <u>M. R. Ghprbani</u> (Iran)	1127
C04-PP-17*	Effects of Yeast (<i>Saccharomyces Cerevisiae</i>) Fermented-Cassava Chip Protein (YEFECAP) on Prepartum and Postpartum Intake and Milk Production of Holstein Fresian Crossbred Dairy Cows C. Promkot, M. Wanapat, and J. Mansathit (Thailand)	1131

Effects of Yeast (*Saccharomyces Cerevisiae*) Fermented-Cassava Chip Protein (YEFECAP) on Prepartum and Postpartum Intake and Milk Production of Holstein Fresian Crossbred Dairy Cows

C. Promkot¹, M. Wanapat², and J. Mansathit³

¹Animal health science, Faculty of Agricultural Industry Technology, Rajamangala University of Technology Isan, Kalasin Campus, 4600, Kalasin, ²Tropical Feed Resources Research and Development Center, Department of Animal Science, Faculty of Agriculture, Khon Kaen University, 40002, Khon Kaen, ³Animal Science, Faculty of Natural resources, Rajamangala University of Technology Isan, Skon-nakon Campus, 47160, Sakon Nakhon, Thailand

ABSTRACT

The objective of this study was to evaluate effects of Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip (YEFECAP) on pre- and postpartum intake and milk protein production of dairy cattle. Twelve Holstein Frisian crossbred dairy heifers and cows (6 heifers and 6 cows) were assigned to two treatments at 14 d before calving thought 60 d postpartum. The experimental treatment was concentrate feed with or without YEFECAP. Cattle was fed rice straw as main roughage and postpartum cattle was fed total mixed ration (TMR) with concentrate to roughage ratio at 70: 30. The DMI was increased by YEFECAP during the first 42 d of lactation (12.3 vs. 11.6 kg). Total milk produced during the first 60 d of lactation was significantly higher in cow supplemented with YEFECAP than without (12.3 vs. 11.9). Based on these results, it is concluded that YEFECAP could be used as a portion of concentrate for dairy cows during the transition period and increased DMI postpartum and milk production

Key Words: Dairy Hheifer, Cow, Pre-partum, Postpartum, Cassava, Yeast

INTRODUCTION

Cassava (*Manihot esculenta*, Crantz) is extensively cultivated throughout the tropics and subtropics regions due to its ability to grow in diverse soil conditions and minimal management (Wanapat, 2003). The root is composed almost entirely of carbohydrate which can be used as important food source. However, the critical scarcity of protein resources in tropical countries indicates a need for feed technology research to enhance the use of local feed resources. Fermentation of cassava peels by pure culture of *S. cerevisiae* could increase its protein content from 2.4% in nonfermented cassava to 14.1% in fermented products (Antai and Mbongo, 1994). The fermented cassava flour with *S. cerevisiae* enhanced the protein level (from 4.4% to 10.9%) and decreased the amount of cyanide content (Oboh and Kindahunsi, 2005). In recently reported by Boonnop et al. (2009) that cassava chip can be nutritionally improved with *S. cerevisiae* call “Yeast fermented-cassava chip” (YEFECAP) and could be used for animal feeding. Supplemental YEFECAP may be most beneficial to dairy cows if it is fed before parturition, a period that is characterized by decreased DMI as parturition approaches, and through peak lactation. No data are available for effects of YEFECAP in dairy cows during pre-and postpartum in tropical country. The objective of this study was to evaluate effects of YEFECAP on pre- and postpartum intake and milk production of dairy cattle.

MATERIALS AND METHODS

Animals, experimental design and dietary treatments

Twelve Holstein Frisian crossbred dairy heifers and cows (6 heifers and 6 cows) from the dairy farm of the Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus were assigned to two treatments at 14 d before calving thought 60 d postpartum to determine the effects of Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip (YEFECAP). Randomized complete block design (RCBD) were used. Treatments were concentrate feed with (YEFECAP) and without (Control) YEFECAP. Dietary treatments were showed in Table 1. Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip (YEFECAP) was prepared according to method of Boonnop et al. (2009). Yeast inoculants preparation: baker yeast was cultured in the cylinder vessels which contained solution of 20% molasses (w/v) and 4% urea (w/v). The products were incubated at room temperature and oxygen was supplied by an air pump for 4 days. Yeast inoculum was mixed and inoculated into 0.5 kg of the mash cassava chip as the starter and 250 mL nutrient solution [urea (48 g) and molasses (24 g)] were added. Fermentation was conducted during 132 hours at 25°C under an air relative humidity between 40% and 50%.

Table 1 Ingredients and compositions of experimental concentrates feed

Ingredient	Prepartum		Postpartum	
	Control	YEFECAP	Control	YEFECAP
% Dry Matter				
Cassava chip	57.3	52.4	42.7	34.5
YEFECAP ^a	-	11.9	-	25.4
Whole Cottonseed	8.1	7.6	11.6	10
Rice bran	21.5	20.3	22.3	19
Soybean meal	5.2	-	11.6	-
Molasses	3.4	3.1	5.2	4.4
Urea	1.7	1.9	3.1	3.2
Oyster shell	0.5	0.4	-	0
Salt	1.0	1.0	0.7	0.7
Dicalcium ^b	0.5	0.4	0.5	0.5
Mineral mix ^c	0.7	0.7	1.0	1.0
Sulphur	0.1	0.1	0.4	0.4
Tallow	0.0	0.0	0.9	0.9
Dry matter (%)	88.7	88.0	88.7	88.6
Crude protein (%)	12.0	11.8	17.4	17.0
Total digestible nutrient ^d	69.0	69.8	69.0	70.0

^aYEFECAP = Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip

^bDicalcium (each kg contains): Calcium 300 g; Phosphorus 140 g

^cMineral mix (Dailymix®) (each kg contains): Iron 2.14 g; Iodine 0.15 g; Sulphur 11.82 g; Copper 0.23 g; Magnesium 0.96 g; Sodium 2.68 g; Manganese 7.21 g; Cobalt 0.03 g; Phosphorus 19.60 g; Selenium 0.003 g; Zinc 0.16; Calcium 204.03 g

^dBy calculation

Animal management and feeding

Animals were housed individually for each treatment and had *ad libitum* access to feed, fresh water and a mineral block. Prepartum animals were fed concentrate (1.3% BW) and roughage (*ad libitum*) feeds separately while postpartum animal were fed total mixed ration (TMR) with concentrate to roughage (3% urea treated rice straw) at 70: 30. Concentrate, roughage

(for prepartum) and TMR (for postpartum) were provided every day. Cow were milked twice daily (05.00 AM and 16.00 PM) by milking machine.

Sampling and analysis

The DMI of each animal was measured daily from 14 d before expected calving date until 60 DIM. Samples of the prepartum and postpartum diets were collected weekly, composited monthly, and analyzed for DM, ash, CP (AOAC, 1990). Milk production was recorded daily for each cow until 60 DIM.

Statistical analysis

Dry matter intake and milk yield were analyzed with the following model: treatment, parity, time (day), treatment \times time. Data were analyzed separately for four periods, with the above model, that were deemed a priori to be physiologically important: the last 7 d prepartum, during which time DMI normally declines rapidly; the first 21 d postpartum, when cows rapidly increase DMI; the first 42 DIM, when cows are nearing peak milk yield; and the entire 60-d postpartum experimental period. Calculations were conducted by using the general linear models procedure of SAS (SAS, 1996).

RESULTS AND DISCUSSION

Animal fed with or without YAFECAP was not significant ($p>0.10$) for 7 d prepartum DMI. During the first 21, 42 or 60 d of lactation, animal fed with YAFECAP were significant ($p<0.05$) higher DMI than animal fed Control (Table 2). During the first 21 or 42 DIM, animal fed YAFECAP consumed 0.7 kg/d more DM ($p<0.05$) than cows fed Control. Improved DMI during the first 60 DIM, suggests that YAFECAP supplementation may be most efficacious during the transition period and in early lactation. Arambel and Kent (1990) suggested that Yeast culture might be best utilized by animals under stress. A possible explanation for this effect is that low DMI does not provide the microbial population with enough soluble growth factors, such as organic acids, B vitamins, and AA. Callaway and Martin (1997) suggested that Yeast culture provides soluble growth factors that stimulate growth of cellulolytic bacteria and cellulose digestion. Boonnop et al. (2009) reported that there was a remarkable increase in lysine content in the YAFECAP. On the basis of these previous results, we propose that YAFECAP may provide enough soluble growth factors for rumen microbe which leading to increase fiber digestion, which could increase rate of passage and therefore improve DMI.

Table 2 Least squares means for postpartum DMI by Holstein Frisian crossbred cattle fed control (Control) diet or yeast fermented-cassava chip (YEFECAP)

DMI	Treatment		Pooled SE	p		
	Control	YEFECAP		Treatment	Treatment \times day	
	(kg/d)					
Postpartum						
d 1 to 21	11.1	11.8	0.16	0.001	0.99	
d 1 to d 42	11.6	12.3	0.10	0.001	0.42	
d 1 to d 60	11.9	12.1	0.11	0.010	0.97	

Mean daily milk yields during the first 60 DIM were significant ($p<0.05$) higher in YAFECAP than Control (Table 3). During the first 21 d of lactation, animal fed with YC tended ($p<0.1$) to have higher milk yield. Increasing of milk yield for animal fed YEFECAP

may be a result of the increased DMI during the first 60 DIM. Based on these results, it is concluded that YEFECAP could be used as a portion of concentrate for dairy cows during the transition period and increased DMI postpartum and milk production.

Table 3 Least squares means for milk yield of Holstein Frisian crossbred cattle fed control (Control) diet or yeast fermented-cassava chip (YEFECAP)

Milk yield	Treatment		Pooled SE	p	
	Control	YEFECAP		Treatment	Treatment \times day
(kg/d)					
Postpartum					
d 1 to 21	12.6	13.2	0.28	0.090	0.44
d 1 to d 42	13.3	14.4	0.16	0.001	0.42
d 1 to d 60	11.9	12.3	0.11	0.001	0.98

ACKNOWLEDGMENTS

The senior author would like to express his most sincere gratitude and appreciation to the Thailand Research Fund (TRF) and Commission on Higher Education (CHE) for research grant support (Research Grant for New Scholar, Grant No. MRG5280081). Thanks to the Faculty of Natural Resources, Rajamangala University of Technology Isan, Skon Nakhon Campus, Thailand for providing experimental animals and research facilities.

REFERENCES

Antai, S. P. and P. N. Mbongo. 1994. Utilization of cassava peels as substrate for crude protein formation. *Plant Foods Hum. Nutr.* 46: 345-351.

AOAC. 1990. Official methods of analysis. 15th edn. Association of Official Analytical Chemists, Arlington, Virginia.

Arambel, M. J. and B. A. Kent. 1990. Effect of yeast culture on nutrient digestibility and milk yield response in early- to midlactation dairy cows. *J. Dairy Sci.* 73: 1560-1563.

Boonnop, K., M. Wanapat, N. Nontaso and S. Wanapat. 2009. Enriching nutritive value of cassava root by yeast fermentation. *Sci. Agric. (Piracicaba, Braz.)* 66: 629-633

Callaway, E. S. and S. A. Martin. 1997. Effects of a *Saccharomyces cerevisiae* culture on ruminal bacteria that utilize lactate and digest cellulose. *J. Dairy Sci.* 80: 2035-2044.

Oboh, G. and A. A. Akindahunsi. 2005. Nutritional and toxicological evaluation of *Saccharomyces cerevisiae* fermented cassava flour. *J. Food Compos. Anal.* 18: 731-738.

SAS Institute. Inc. 1996. SAS/STAT User's Guide: Version 6. 12. 4th ed. Cary, North Carolina. (SAS, 1996).

Wanapat, M. 2003. Manipulation of cassava cultivation and utilization to improve protein to energy biomass for livestock feeding in the tropics. *Asian-Aust. J. Anim. Sci.* 16: 463-472.

บทคัดย่อการเสนอผลงานแบบบรรยาย

"นักวิจัยรุ่นใหม่ พบ เมธวิจัยอาวุโส สกอ." ครั้งที่ 10

Physical Sciences / Biological Sciences / Engineering Sciences

วันที่ 14-16 ตุลาคม 2553
ณ โรงแรมซอโลเดย์อันน์ รีสอร์ท รีเจนท์ บีช ชะอ์ม

สำนักงานกองทุนสนับสนุนการวิจัย
The Thailand Research Fund

สำนักงานคณะกรรมการการอุดมศึกษา
Commission on Higher Education

BIO: Biological Sciences

O-BIO-A: Agricultural and Animal Science

October 14, 2010

13:00 – 16:00

Room: **Petchburi 1**

	Chairperson	Prof. Dr. Peerasak Srinives		
13:00 – 13:30	Invited lecture	Prof. Dr. Soottawat Benjakul		
13:30 – 13:45	O-BIO-A01	Iron and Zinc Fortification in Rice Grain through Parboiling Process	Chanakan Prom-u-thai	33
13:45 – 14:00	O-BIO-A02	Isolation of Antioxidative Peptides Prepared from Enzymatic Hydrolysates of Skipjack Tuna Visceral Waste	Akkasit Jongjareonrak	34
14:00 – 14:15	O-BIO-A03	Bioactive Compounds Produced by Endophytic Fungus <i>Pestalotiopsis</i> sp. PDB151	Boonsom Bussaban	35
14:15 – 14:30	O-BIO-A04	Cloning and Characterization of PmToll Receptor in <i>Penaeus monodon</i>	Wanchai Assavalapsakul	36
14:30 – 14:45		<i>Intermission</i>		
	Chairperson:	Prof. Dr. Mongkol Techakumphu		
14:45 – 15:00	O-BIO-A05	Replacing of Beef Tallow by Krabok Fat and Soybean Oil on Growth Performance and Energy Balance in Broiler Diets	Sasiphan Wongsuthavas	37
15:00 – 15:15	O-BIO-A06	Molecular Characterization of Antimicrobial Susceptibilities and Virulence Genes of <i>Salmonella Enterica</i> Isolates from Pork Meat and Humans	Rungtip Chuanchuen	38
15:15 – 15:30	O-BIO-A07	Economic Impact on Culling Rate of Sows	Annop Suriyasomboon	39
15:30 – 15:45	O-BIO-A08	Effects of Yeast (<i>Saccharomyces cerevisiae</i>) Fermented- cassava Chip Protein (YEFECAP) on Prepartum and Postpartum Intake and Milk Production of Holstein Fresian Crossbred Dairy Cows	Chamnanwit Promkot	40
15:45 – 16:00	O-BIO-A09	Relationship between Seminal and Serum Calcium Concentration with Semen Quality in the AsianElephant (<i>Elephas maximus</i>)	Sitthawee Thongtipsiridech	41

O-BIO-B: Biomedical Science

October 14, 2010

13:00 – 15:45

Room: **Petchburi 2**

	Chairperson	Prof. Dr. Chitr Sitthi-amorn, M.D.		
13:00 – 13:30	Invited lecture	Visith Thongboonkerd, M.D.		
13:30 – 13:45	O-BIO-B01	Proteomic Analysis of Stones and Urines Obtained from Kidney Stone Patients	Chanchai Boonla	42
13:45 – 14:00	O-BIO-B02	Isolation of the Intact Membrane-Integral Dengue Viral Protease Complex NS2B-NS3 for Chemical and Structural Characterizations	Sarin Chimnaronk	43
14:00 – 14:15	O-BIO-B03	Improving the Binding Specificity of Designed Zinc Finger Protein on 2-LTR-Circle Junctions of HIV-1 Integrase Substrate by Molecular Dynamics Simulations	Supat Jiranusornkul	44
14:15 – 14:30	O-BIO-B04	The Change in Natural Anticoagulants and Coagulation Markers in Thalassemia Patients Following Stem Cell Transplantation	Nongnuch Sirachainan	45
14:30 – 14:45		<i>Intermission</i>		
	Chairperson	Prof. Pisake Lumbiganon, M.D.		
14:45 – 15:00	O-BIO-B05	Prevalence, Viremia and Specific Antibody Detection in Human Bocavirus Infection of Pediatric Patients with Lower Respiratory Tract Infection	Maitree Pakarasang	46

Effects of Yeast (*Saccharomyces cerevisiae*) Fermented- cassava Chip Protein (YEFECAP) on Prepartum and Postpartum Intake and Milk Production of Holstein Fresian Crossbred Dairy Cows

Promkot, C.^{1*}, Wanapat, M.²

¹Animal health science, Faculty of Agricultural Industry Technology,

Rajamangala University of Technology Isan, Kalasin Campus, Kalasin, Thailand

²Tropical Feed Resources Research and Development Center, Department of Animal Science,
Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand

Abstract

The objective of this study was to evaluate effects of Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip (YEFECAP) on pre- and postpartum intake and milk protein production of dairy cattle. Twelve Holstein Frisian crossbred dairy cows were assigned to two treatments at 14 d before calving thought 60 d postpartum. The experimental treatment was concentrate feed with or without YEFECAP. Cattle was fed rice straw as main roughage and postpartum cattle was fed total mixed ration (TMR) with concentrate to roughage ratio at 70:30. The DMI was increased by YEFECAP during the first 42 d of lactation (12.3 vs. 11.6 kg). Total milk produced during the first 60 d of lactation tended to be higher in cow supplemented with YEFECAP than without (12.3 vs. 11.9). Based on these results, it is concluded that YEFECAP could be used as a portion of concentrate for dairy cows during the transition period and increased DMI postpartum and tended to increase milk production.

Keywords: dairy cow, pre-partum, postpartum, cassava, yeast

*Corresponding author.

Tel.: 08-9712-9043, 0-4277-1460; Fax: 0-4277-1460

E-mail: promkot@yahoo.com

บทคัดย่อการเสนอผลงานแบบโพลีเตอร์

“นักวิจัยรุ่นใหม่ พบ เมธีวิจัยภาฯ โส สกอ.” ครั้งที่ 11

Physical Sciences / Biological Sciences / Engineering Sciences / Social Sciences

วันที่ 19–21 ตุลาคม 2554

ณ โรงแรมชอร์ลิเดย์อินน์ รีสอร์ท รีเจ้นท์ บีช ชะอำ จังหวัดเพชรบุรี

สำนักงานกองทุนสนับสนุนการวิจัย
The Thailand Research Fund

สำนักงานคณะกรรมการการอุดมศึกษา
Commission on Higher Education

Poster Presentations

Technical Programs

Junior Researchers

PJ-PHY-H01	Quasinormal Modes of the 3+1 Dimensional AdS Reissner-Nordstrom Black Holes with Zero Sectional Curvature in the Maxwell Field Background and Holographic Conductivity	Suphot Musiri	85
PJ-PHY-H02	Effect of Reduced Dimensionality of the Magnetic Field Fluctuations on the Cross-Field Motion of Charged Particles	Piyanate Chuychai	86
PJ-PHY-H03	Constraints on f(R) Gravity from Cluster Number Counts	Khampee Karwan	87
PJ-PHY-H04	Alpha Production in 175 MeV Neutron-Induced Reactions on Oxygen	Udomrat Tippawan	88
PJ-PHY-I01	Electrocatalysis of Ultrathin Gold Nanowires Supported on a Glassy Carbon Electrode	Chompunuch Warakulwit	89
PJ-PHY-I02	Synthesis of One-Dimensional ZnO Nanostructure via Precipitation Method and Its Optical Properties	Sumetha Suwanboon	90
PJ-PHY-I03	Investigation of Low-Cost Rear Surface Passivation for c-Si Solar Cells	Thipwan Fangsuwannarak	91
PJ-PHY-I04	Growth and Characterization of Dilute (In)GaAsN Quantum Wires Structures	Sakuntam Sanorpim	92

BIO: Biological Sciences

PJ-BIO

October 20, 2011

14:30 – 17:30

Room: **Grand Sema Hall / Park View Hall**

PJ-BIO-A01	A Novel Multienzyme Complex from a Newly Isolated Facultative Anaerobic Bacterium, <i>Paenibacillus</i> sp. TW1	Chakrit Tachaapaikoon	93
PJ-BIO-A02	Strain Improvement of <i>Candida tropicalis</i> for Ethanol Production by UV-Mutagenesis	Sutticha Thammasittirong	94
PJ-BIO-A03	Purification and Molecular Characterization of the <i>azoR1</i> Gene Encoding Azoreductase from <i>Bacillus subtilis</i>	Montira Leelakriangsak	95
PJ-BIO-A04	Investigation of Nuclear Polyhedrosis Virus Infection in Thai Silkworm, <i>Bombyx mori</i> under Aseptic Rearing by PCR Method	Siripuk Suraporn	96
PJ-BIO-B01	Proteomic Analysis of Differentially Expressed Proteins in the Lymphoid Organ of <i>Vibrio harveyi</i> Infected <i>Penaeus monodon</i>	Kunlaya Somboonwiwat	97
PJ-BIO-B02	The Possible Role of Penaeidin5 from the Black Tiger Shrimp, <i>Penaeus monodon</i> , in Protection Against Viral Infection	Premruethai Supungul	98
PJ-BIO-B03	Characterization of a Novel C-Type Lectin Gene in the Black Tiger Shrimp, <i>Penaeus monodon</i>	Ratree Wongpanya	99
PJ-BIO-B04	A Comparative Study of CrustinPm1 and CrustinPm7 from the Black Tiger Shrimp <i>Penaeus monodon</i>	Kuakarun Krusong	100
PJ-BIO-B05	Study of Modifications that are Related to Maturation and Capacitation Processes of Sperm in <i>Macrabrachium rosenbergii</i> and <i>Penaeus monodon</i>	Rapeepun Vanichviriyakit	101
PJ-BIO-B06	Study of the Olfactory Neuronal Pathway and Its Function in Perception of the Reproductive Pheromones and Mating Response of <i>M. rosenbergii</i>	Charoonroj Chotwiwatthanakun	102
PJ-BIO-B07	Determination of Allergens from <i>Fenneropenaeus merguiensis</i> (Banana prawn)	Pharima Phiriyangkul	103
PJ-BIO-B08	Distribution and Changes of Serotonin and Dopamine Levels in the Central Nervous System and Ovary During Ovarian Maturation Cycle of the Pacific White Shrimp, <i>Litopenaeus vannamei</i>	Yotsawan Tinikul	104
PJ-BIO-C01	Effect of Yeast (<i>Saccharomyces cerevisiae</i>) Fermented-Cassava Chip Protein (YEFECAp) on Energy Balance in Postpartum Dairy Cows	Chamnanwit Promkot	105
PJ-BIO-C02	Dietary Beef Tallow, Soybean Oil and Krabok Oil on Growth Performance, Energy Balance, Digestion and Deposition of Fatty Acids in Broiler Chickens	Sasiphan Wongsuthavas	106

Effect of Yeast (*Saccharomyces cerevisiae*) Fermented-Cassava Chip Protein (YEFECAP) on Energy Balance in Postpartum Dairy Cows

Promkot, C.^{1*}, Wanapat, M.²

¹Animal health science, Faculty of Agricultural Industry Technology,

Rajamangala University of Technology Isan, Kalasin Campus, Kalasin, Thailand

²Tropical Feed Resources Research and Development Center, Department of Animal Science,
Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand

Abstract

The objective of this study was to evaluate effects of Yeast (*Saccharomyces cerevisiae*) fermented-cassava chip (YEFECAP) on energy balance of postpartum dairy cattle. Thirty two Holstein Frisian crossbred dairy cows were assigned to two treatments at 14 d before calving thought 60 d postpartum. The experimental treatment was concentrate feed with or without YEFECAP. Cattle was fed rice straw as main roughage and postpartum cattle was fed total mixed ration (TMR) with concentrate to roughage ratio at 70:30. The dry matter intake (DMI), milk yield and energy balance tended to be higher in cow supplemented with YEFECAP than without. On the basis of these results, we propose that YAFECAP may provide enough soluble growth factors for rumen microbe which leading to increase fiber digestion, which could increase rate of passage and therefore improve DMI and more energy balance. Based on these results, it is concluded that YEFECAP could be used as a portion source in concentrate feed for dairy cows during the transition period and tend to increase DMI, milk yield and more energy balance.

Keywords: energy balance, dairy cow, pre-partum, postpartum, cassava, yeast

*Corresponding author.

Tel.: 0-4277-1460, 08-9712-9043; Fax: 0-4277-1460

E-mail: promkot@yahoo.com

Pratuangdejkul, J.	140
Prawat, U.	1
Prayoonwiwat, N.	179
Preechapornprasert, D.	149
Preechaworapun, A.	42, 61
Premrudeepreechachan, S.	198
Pridasawas, W.	190
Prokofiev, A.	88
Promkot, C.	105
Promsonthi, P.	149
Promyou, S.	127
Proungvitaya, T.	167
Pruenglampoo, S.	178
Pudyenchuen, R.	69
Puntheeranurak, S.	67
Punyarat, P.	103
Pupacdi, B.	151
Putalun, W.	22
Putchakarn, S.	115
Puttipatkhachorn, S.	21
Puttipatkhachorn, S.	23

R

Rakariyatham, N.	220
Ratanashu-ek, T.	30
Ratanasthien, B.	117
Ratanatriwong, P. A.	219
Rattanachaikunsonpon, P.	223
Rattanakhanokchai, K.	93
Rekchai, H.	43
Rerkasem, A.	178
Rerkasem, K.	178
Reutrakul, V.	143
Rholl, D. A.	155
Ritchie, R.	125
Ritthiwigrom, T.	1
Roboon, J.	118
Rode, B. M.	53
Rojanarata, T.	20
Rongsayamanont, C.	211
Rotchanapreeda, T.	126
Roytrakul, S.	167
Ruangsittichai, J.	157
Ruchirawat, S.	37, 38
Rueanghiran, C.	157
Ruffolo, D.	86
Rugsamanee, S.	111
Rukachaisirikul, V.	130
Runglertkengkrai, S.	233
Rungrojusuwan, S.	242
Rungrotmongkol, T.	51
Rungsayatorn, S.	257
Rungsirhirunrat, K.	160
Rungsipipat, A.	107
Runnarong, N.	179

S

Saebea, D.	63
Saekho, S.	174
Saengruchi, T.	169
Saensakdi, J.	230
Saetun, P.	73
Saikhun, K.	108
Saiprom, N.	155
Saisawang, C.	28
Saisopa, J.	241
Sakamoto, S.	22
Sakdapipanich, J. T.	5
Samphao, A.	43
Samung, Y.	157
Sangcakul, A.	47
Sangkhathat, S.	165
Sa-nguanrut, P.	18
Sanit, S.	118
Sanorpim, S.	92
Sasanakul, W.	171
Sathornsumetee, S.	169
Savisit, R.	25
Schweizer, H. P.	155
Sdoodee, S.	224
Seawan, N.	1
Seelanan, T.	126
Seenprachawong, U.	239
Senawong, T.	168
Seritanondh, S.	256
Sethadavit, M.	153
Shotipruk, A.	9
Sila-on, W.	142
Simutkin, V.	88
Singh, D. J.	54
Singhasivanon, P.	26
Siopsis, G.	85
Sirachainan, N.	171
Sirijaraensre, J.	55
Siriphanich, J.	124
Siripunkaw, C.	120
Sirireung, S.	171
Sirisakulveroj, B.	180
Sirisanthana, T.	163
Sirisinha, K.	6
Sitthipongpanich, T.	236
Sitthisak, S.	154
Sjöstrand, H.	88
Skolpap, W.	222
Smith, C. B.	81
Smith, N. W.	47
Smith, S. M.	81
Smythe, L. D.	161
Soares, J. B. P.	192
Sobhon, P.	101, 102, 104, 153
Soest, R. W. M. van	115
Somana, J.	126