

บทคัดย่อ

รหัสโครงการ : MRG5280082

ชื่อโครงการ : สมบัติทางไฟฟ้าและพฤติกรรมการเสื่อมอายุของเซรามิกแบบเรียนไทยแทนetc ที่เจือด้วยเหล็กและในโอดีเยี่ยม

ชื่อผู้วิจัย : ดร. ธนาวดี เดชะคุปต์
ภาควิชาพิสิกส์และวัสดุศาสตร์ คณะวิทยาศาสตร์
มหาวิทยาลัยเชียงใหม่

E-mail Address : twadee@chiangmai.ac.th

ระยะเวลาโครงการ : 16 มีนาคม 2552 – 15 มีนาคม 2554

ในงานวิจัยนี้ได้ศึกษาอิทธิพลของการเจือแบบเดี่ยวและแบบผสมของเหล็กและในโอดีเยี่ยมที่มีต่อสมบัติทางไฟฟ้าและพฤติกรรมการเสื่อมอายุของในเซรามิกแบบเรียนไทยแทนetc เซรามิกแบบเรียนไทยแทนได้ถูกเตรียมโดยวิธีผสมออกไซด์และเพาเซนเตอร์ที่ 1450°C เป็นเวลา 2 ชั่วโมง พบร่วมโครงสร้างผลึกของเซรามิกแบบเรียนไทยแทนมีการเปลี่ยนแปลงเป็นเอกซ์กอนอลเมื่อปริมาณเหล็กเพิ่มขึ้นทำให้มีสมบัติพาราอิเล็กทริกซ์ไม่มีพฤติกรรมการเสื่อมอายุเกิดขึ้น เมื่อเจือในโอดีเยี่ยมปริมาณน้อย (0.5 มอลเปอร์เซนต์) ทำให้เซรามิกมีความหนาแน่นต่ำ เกรนโตผิดปกติและมีสมบัติที่ตัวนำ แต่เมื่อเพิ่มปริมาณในโอดีเยี่ยมมากขึ้น ทำให้ความหนาแน่นเพิ่มขึ้น เกรนมีขนาดสม่ำเสมอและเซรามิกมีสมบัติเป็นชนวนไฟฟ้า มีการตรวจพบพฤติกรรมการเสื่อมอายุอย่างชัดเจนในสมบัติไดอิเล็กทริกของเซรามิกเฟอร์โรอิเล็กทริกที่เจือด้วยเหล็กและเจือแบบผสม แต่พบการเสื่อมอายุน้อยในเซรามิกที่เจือด้วยในโอดีเยี่ยม ผลการทดลองดังกล่าวเป็นการยืนยันว่าการเสื่อมอายุมีความสัมพันธ์กับช่องว่างของซิเจนที่เกิดขึ้นจากการเจือสารที่เป็นตัวรับ โดยการเสื่อมอายุของสมบัติไดอิเล็กทริกสามารถแบ่งได้เป็นสองช่วงซึ่งแสดงให้เห็นว่าอาจมีกลไกมากกว่าหนึ่งที่เกี่ยวข้องกับกระบวนการเสื่อมอายุ นอกจากนี้พบว่าวนอีสเทอร์ซิสมีลักษณะคดในเซรามิกแบบเรียนไทยแทนetc ที่เจือด้วยเหล็กและที่เจือแบบผสมที่มีเหล็กปริมาณเป็นหลัก

คำหลัก : แบบเรียนไทยแทนetc, การเสื่อมอายุ, เฟอร์โรอิเล็กทริก

Abstract

Project Code : MRG5280082

Project Title : Electrical Properties and Ageing Behavior of Fe and Nb doped Barium Titanate Ceramics

Investigator : Dr. Tanawadee Dechakupt
Department of Physics and Materials Science, Faculty of Science
Chiang Mai University

E-mail Address : twadee@chiangmai.ac.th

Project Period : 2 years (16 March 2008 – 15 March 2011)

The effects of single (Fe or Nb) and hybrid doping (both Fe and Nb) on electrical properties and ageing behavior of barium titanate ceramics were investigated. The ceramics were prepared by mixed-oxide method and sintered at 1450°C for 2 hours. First, single dopings were studied. It was found that the structure of barium titanate ceramics transforms to hexagonal as Fe content increases, resulting in paraelectric properties in which ageing behavior cannot be observed. Low concentration of Nb (0.5 percent by mole) leads to low density, abnormal grain growth and semiconducting behavior in barium titanate ceramics. The density and uniformity of grain size were improved and the insulating properties were recovered as Nb concentration increases. Ageing behavior was clearly observed via dielectric properties and P-E hysteresis loop in ferroelectric Fe- and hybrid doped barium titanate ceramics while not significant in Nb doped composition. The results confirm that ageing is related to oxygen vacancies created in acceptor dopants. Two ageing stages were observed in dielectric properties, suggesting more than one mechanism involve in the ageing process. In addition, the constricted hysteresis loops were observed in Fe-doped and Fe-dominant hybrid doped barium titanate ceramics.

Keywords : barium titanate, ageing, ferroelectrics