บทคัดย่อ

จากการศึกษา วิจัยและพัฒนาวิธีการแบบใหม่ที่ง่ายและมีประสิทธิภาพสูงสำหรับการ สังเคราะห์อนุภาคของทองที่มีโครงสร้างอยู่ในระดับนาโนเมตร (gold nanoparticles) บนพื้นผิว ของคาร์บอนนาโนทิวบ์ (carbon nanotubes) พบว่าเทคนิค dismuation ของ gold(I) ซึ่งเป็น องค์ประกอบใน gold sulfite plating bath ในสารละลายของ carbon nanotubes ใน polyoxometalate เป็นวิธีแบบ one pot (กล่าวคือ ใช้สารละลาย polyoxometalate ในการ 1. ทำ ความสะอาดพื้นผิวของ carbon nanotubes ที่ได้จากการสังเคราะห์ 2. ปรับปรุงเคมีพื้นผิวของ carbon nanotubes ทำให้กระจายตัว ละลายอยู่ในสารละลาย 3. เป็น stabilizer ในการ สังเคราะห์อนุภาคของทอง) ที่ทำได้ง่าย สะดวก ไม่จำเป็นต้องใช้ความร้อน ตัวทำละลายอินทรีย์ เครื่องมือและอุปกรณ์ที่มีราคาแพง และสามารถสังเคราะห์ gold nanoparticles บนพื้นผิวของ carbon nanotubes ได้อย่างจำเพาะเจาะจง อย่างไรก็ดีเนื่องจากความว่องไวของปฏิกิริยาที่สูง จะทำให้ได้ gold nanoparticles ที่มีขนาดใหญ่กว่า 10 นาโนเมตรซึ่งไม่เหมาะสมนำไปใช้เป็น ตัวเร่งปฏิกิริยาเคมีต่อไปดังนั้น ผู้วิจัยจึงจำต้องปรับเปลี่ยนแผนการทดลอง โดยทำการศึกษา gold nanostructures อื่นซึ่งยังมีผู้ทำการศึกษาไม่กว้างขวางเกี่ยวกับคุณสมบัติทางกายภาพ และทางเคมีและเคมีไฟฟ้า คือ เส้นลวดของทองที่มีระดับนาโนเมตรที่มีขนาดบางมาก (ultrathin gold nanowires) กล่าวคือ มีขนาดเส้นผ่านศูนย์กลางต่ำกว่า 2 นาโนเมตร ซึ่งมีคุณสมบัติคาด ว่าจะสามารถนำไปใช้ประยุกต์ในหลาย ๆด้านได้ เช่น ตัวเชื่อมต่อนำไฟฟ้าของเครื่องมือที่มี ขนาดระดับนาโนเมตร (interconnecting nano-scale devices) เป็นตัวเร่งปฏิกิริยา (catalysts) เป็นตัวตรวจจับสาร (sensors) เป็นตัน โดย ultrathin gold nanowires นี้สามารถสังเคราะห์ขึ้น ได้จากปฏิกิริยาทางเคมีซึ่งเกิดขึ้นได้โดยง่ายเช่นเดียวกับวิธี dismutation ที่ใช้ในการสังเคราะห์ จากการศึกษาพบว่า gold nanowires ที่เกิดขึ้นนี้มีความเสถียรทางโครงสร้างต่อความร้อนและ ปฏิกิริยาเคมีไฟฟ้าต่ำ เนื่องจากโครงสร้างของ gold nanowires ประกอบด้วยอะตอมพื้นผิว (surface atom) ซึ่งเป็นอะตอมที่มีพลังงานสูงจำนวนมากเทื่อเทียบกับจำนวนอะตอมทั้งหมดใน โครงสร้าง จะทำให้ gold nanowires ไม่สามารถรักษาเสถียรภาพทางโครงสร้างเอาไว้ได้นาน โดยปราศจากสาร stabilizer โดยเมื่อนำเอา gold nanowires ที่ล้างเอา stabilizer ออกไปให้ ความร้อนที่อุณหภูมิ (60°C) พบการเปลี่ยนแปลงโครงสร้างไปเป็น nanoparticles ภายในเวลาน้อยกว่า 24 ชั่วโมง เมื่อทำการศึกษาความสามารถในการเร่ง ปฏิกิริยาทางเคมีไฟฟ้าของ gold nanowires สำหรับปฏิกิริยากิริยาเคมีไฟฟ้าที่สำคัญ ได้แก่ ปฏิกิริยาออกซิเดชันของเมธานอล เอทาทอล กรดฟอร์มิก ปฏิกิริยาออกซิเดชัน-รีดักชันของ ไฮโดรเจนเปอร์ออกไซด์และปฏิกิริยารีดักชั้นของออกซิเจน พบว่า gold nanowires จะสามารถ เร่งได้เฉพาะปฏิกิริยาออกซิเดชัน-รีดักชันของไฮโดรเจนเปอร์ออกไซด์และปฏิกิริยารีดักชันของ ออกซิเจน ซึ่งเมื่อพิจารณาของช่วงศักย์ไฟฟ้าที่เกิดปฏิกิริยาออกซิเดชัน-รีดักชันของไฮโดรเจน เปอร์ออกไซด์ พบว่าช่วงศักย์ไฟฟ้าดังกล่าวอยู่นอกช่วงการใช้งาน (potential window) ของขั้ว ดังนั้นจากปฏิกิริยาที่ทำการศึกษาทั้งหมดพบว่า gold nanowires เหมาะจะนำไปใช้เป็นตัวเร่ง

ปฏิกิริยารีดักชันของออกซิเจนเท่านั้น จากการทดสอบปฏิกิริยารีดักชันของออกซิเจน พบว่า gold nanowires สามารถเร่งปฏิกิริยาได้โดยมิจำเป็นต้องพึ่ง binder เช่น Nafion มาช่วยใน เกาะยึดและสร้าง ohmic contact กับ electrode อันเนื่องมาจาก affinity ที่ดีกับ carbon electrode ของ gold nanowires แต่เนื่องด้วยความเสถียรทางโครงสร้างที่ต่ำของ gold nanowires ดังที่ได้ศึกษามาข้างต้นแล้ว ทำให้ electrocatalytic stability ของ gold nanowires สูญเสียไปอย่างรวดเร็วหลังจากใช้เร่งปฏิกิริยาเพียง 30 รอบ ทั้งนี้เนื่องจาก gold nanowires ได้ เปลี่ยนโครงสร้างเป็น bulk gold อันจะสังเกตได้จากผิวหน้าที่แวววาวของขั้วหลังจากใช้ ดังนั้น จึงจำต้องทำการศึกษาและพัฒนาตัวเร่งปฏิกิริยา gold nanowires โดยทำการเกาะยึดตัว stabilizer ที่มีประสิทธิภาพไปที่พื้นผิวของ gold nanowires หรือทำการปรับปรุงเคมีของพื้นผิวของ gold nanowires ให้มีหมู่ ligand ที่มีประสิทธิภาพช่วยในการเกาะยึด surface atom ของ gold nanowires ไว้ หรือทำการ support gold nanowires ไว้ด้วยตัว support ที่มีประสิทธิภาพ อย่างใดอย่างหนึ่ง เพื่อที่จะรักษาเสถียรภาพทางโครงสร้างของ gold nanowires ระหว่างการ ประยุกต์ใช้งานต่อไป

Abstract

In this work, we intially aim to find out a novel and simple route to decorate carbon nanotubes with gold nanoparticles for catalysis/electrocatalysis application. We first prepared a carbon nanotubes/polyoxometalate suspension by sonicating mutiwalled-carbon nanotubes, which were synthesized by a template enhanced CVD method using AAO as a template, in a phosphomolydic acid solution (prepared in a diluted sulfuric acid solution) for one hour. The resultant was used as a starting material for gold deposition without any further purification. After adding a commercial gold sulphite plating solution, ECF-77A, and sulfuric acid, we can obtain a hybrid material of gold nanoparticles-carbon nanotubes. Thus, this preparative method can be considered as one-pot simple route for decorating carbon nanotubes with gold nanoparticles without using any organic solvent, high-cost equipment or heat. Transmission electron microscopy (TEM) characterization of the obtained samples further indicated that this synthetic method can generate gold nanoparticles specifically on the surface of the tubes without any by-product formation when the synthetic condition is well optimized. However, due to fast dismutation reaction occurring (reaction time can be less than one minute), this method leads gold nanoparticles with size larger than 10 nm, thus, it finds difficulty for reaching the catalysis application. Afterward, we investigated experimentally for first time the thermal stability and electrocatalysis of the ultrathin AuNWs (diameter less than 2 nm). These nanowires can be synthesized by a chemical reaction which is simple as much as dismutation reaction studied in the former case. The study of the structural stability of the synthesized gold nanowires revealed that the wires exhibited very low structural stability at the temperature closed to room temperature of 60 °C when the surface stabilizer was removed. The structure of the wires completely changes to spherical particle within 24 hours of the heat treatment. This result shows that, in order to reach practical applications, it is required to prior stabilize the wires surface by a stabilizer that has potential high enough to retain the wires surface or do chemical modification of the wires surface or find a suitable supporting material for the wires. Later, the survey on the electrochemical catalysis of gold nanowires revealed that gold nanowires (here they can supported on a glassy carbon electrode without using of any binder e.g. Nafion®) can not catalyze most of important electrochemical reactions, the methanol oxidation, the ethanol oxidation and the formic acid oxidation, investigated here while they are electrochemically active for the H2O2 oxidation-reduction and the oxygen reduction (ORR). However, for the H2O2 oxidation-reduction, we found that the

potential range corresponding to the reaction is out of range of the electrode potential window, thus, it can not use suitably for the reaction. In conclusion, the electrode fabricated by using gold nanowires showed good characteristics only for the ORR reaction. The ORR reaction detections indicated that gold nanowires can catalyze the ORR reaction and the reaction occurs so quickly that the reaction rate is the rate of transport of the reactants through the reaction medium (diffusion-controlled reaction). The investigation of the electrochemical stability of the electrode showed that the wires exhibited good stability for the ORR reaction only for 30 first run of the reaction (more than 95% in current density was retained). After the stability of the wires toward the reaction was dramatically decreased, only 60% in current desity was reserved after 100 run. Thus, it is expected that the ultrathin AuNWs could be a new candidate electrode material for other electrochemical reactions and/or detection if they could be stabilized by an effective stabilizer or a suitable supporting materials.