

บทคัดย่อ

โครงการวิจัยนี้จะมุ่งเน้นศึกษาอิทธิพลของธาตุเจือต่าง ได้แก่ แพลเลเดียม สังกะสีและชิลิกอน ต่อสมบัติด้านความแข็ง การต้านทานการ蝕กร และโครงสร้างจุลภาคของโลหะผสมเงินระบบ $Ag-Cu-Pd$ และ $Ag-Cu-Zn-Si$ ปริมาณเงิน 93.5 และ 65.0 %โดยน้ำหนัก โดยหลอมโลหะผสมเงินด้วยวิธีการหล่อในระบบสูญญากาศแบบเบ้าปูน (Investment casting) ที่อุณหภูมิ 1,025°C และอุณหภูมิเบ้าหล่อ 600°C และหลอมแบบเบ้าโลหะด้วยเปลวไฟ LPG/O_2 ส่วนผสมทางเคมีของชิ้นทดสอบหลังหล่อตรวจสอบด้วย Inductively Couple Plasma (ICP) การวัดความแข็งด้วยหัวกดแบบวิคเกอร์ (Vicker hardness) พบว่าค่าความแข็งของชิ้นทดสอบที่หล่อด้วยเปลวไฟมีความแข็งมากกว่าชิ้นทดสอบหล่อด้วยเครื่องหล่อสูญญากาศในทุกสภาวะ โดยค่าความแข็งของโลหะผสม $935Ag$ ในระบบสูญญากาศมีค่าประมาณ 56 HV และชิ้นทดสอบหล่อด้วยเปลวไฟมีค่า 66 HV การศึกษาความสามารถในการต้านทานการ蝕กร ทดสอบในสภาวะสารละลาย $0.1\% Na_2S$ เวลา 15-180 นาที และตรวจวัดการเปลี่ยนแปลงของสีตามมาตรฐาน Commission International d' Eclairage (CIELAB) พบว่าโลหะมีการต้านทานการ蝕กรดีขึ้นเมื่อปริมาณของธาตุเจือเพิ่มขึ้น โดยเฉพาะการเจือด้วยชิลิกอนมีผลต่อการเปลี่ยนเฟสของลาเมลายูเทกติกเป็นเฟสของ $Cu-Si$ ที่มีความต่อเนื่อง ($Cu-Si$ continuous structure) โดยการศึกษาลักษณะเฟสและโครงสร้างจุลภาคเบื้องต้นศึกษาโดยใช้เทคนิคการเลี้ยวเบนของรังสีเอกซ์ (X-ray Diffraction, XRD) กล้องจุลทรรศน์แสง (Optical Microscope, OM) และกล้องจุลทรรศน์อิเล็กตรอนแบบส่อง粒 (Scanning Electron Microscope, SEM) และศึกษาโครงสร้างจุลภาคด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (Transmission Electron Microscope, TEM) โดยการเตรียมตัวอย่างด้วย Twin-jet electropolishing และ Focused Ion Beam (FIB) การวิเคราะห์ด้วยเทคนิค Energy Dispersive X-ray Spectrometer (EDS) และการวิเคราะห์บางบริเวณด้วยเทคนิค Selected-Area Diffraction (SAD)

โครงสร้างจุลภาคของโลหะผสมเงินหลังหล่อสามารถแบ่งเป็น 4 บริเวณ คือ 1) โครงสร้างเดนไดร์ตเป็นเฟสหลักเป็นเฟสที่มีปริมาณเงินสูงหรือเฟสอัลฟ่า 2) บริเวณขอบเดนไดร์ตซึ่งมีปริมาณทองแดงสูง (เฟสเบต้า) และพบการแยกตัวของทองแดงตกตะกอนขนาดเล็กๆ (Copper segregation) กระจายตัวทั่วบริเวณ 3) โครงสร้างลาเมลายูเทกติก ซึ่งมีเฟสอัลฟ่าและเบต้าเรียงตัวสลับกันเป็นชั้นๆ และ 4) โครงสร้างดีเจนเนอเรตัญเทกติกซึ่งมีปริมาณของทองแดงสูง โดยแพลเลเดียมสามารถละลายได้ในทุกเฟสขณะที่ สังกะสีและชิลิกอนมีแนวโน้มการละลายเฉพาะเฟสที่มีปริมาณทองแดงสูงเท่านั้น โดยตกตะกอนของทองแดงนี้เป็นตกตะกอนของคอปเปอร์ออกไซด์ (Cu_2O) การเจือด้วยสังกะสีมีผลต่อการเปลี่ยนแปลงของโครงสร้างลาเมลายูเทกติกหลังหล่อ คือ สังกะสีสามารถตกตะกอนบริเวณขอบเกรนในลักษณะเฟสของ ZnO ในขณะที่ผลของชิลิกอนต่อโครงสร้างจุลภาคของโลหะผสมเงินสามารถแบ่งได้เป็น 2 ลักษณะคือ 1) ตกตะกอนในรูปของ $Cu-Si$ phase และ 2) ละลายในเฟสของ ZnO และ Cu_2O

ABSTRACT

The effects of Zinc, Silicon and Palladium on the hardness, tarnish resistance and microstructures of experimental Ag-Cu-Pd Ag-Cu-Zn-Si and alloys were investigated by means of Vickers hardness tests, tarnish testing, X-ray Diffraction (XRD), optical and scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The various compositions of 935 and 950 sterling silver alloys produced by two different casting techniques, namely investment (lost wax) process and conventional torch melting and casting, were compared. An induction casting machine with a vacuum system was used for investment casting at 1,025°C with the mould temperature at 600°C whereas a LPG/oxygen single flame tip torch was used for the conventional process. Chemical compositions of the as-cast alloys were analyzed by the Inductively Couple Plasma (ICP) technique. Samples produced using conventional torch casting have higher Vickers hardness levels than the equivalent alloys melted under vacuum and investment cast. The torch melted standard 935Ag sterling has a hardness of 66 HV compared to 56 HV for the investment cast sample. The tarnish testing was performed by immersing the sample in 0.1% Na₂S solutions for 15-180 min. To quantify variations in tarnishing resistance measurements were taken of surface color difference (DE*) according to the Commission International d' Eclairage (CIELAB) standard. It was found that the tarnish resistance was improved with higher levels of additional element, especially Silicon. Silicon plays an important role in completely modifying the lamellar eutectic structure to a predominantly Cu-Si continuous structure resulting in increased tarnish resistance. Transmission Electron Microscope (TEM), Selected-Area Diffraction (SAD) and energy dispersive spectroscopy (EDS) were used for phase identification. Twin-jet electropolishing and Focused Ion Beam (FIB) were used for TEM sample preparation.

As-cast microstructures consisted of dendrites of Ag-rich solid solution (α -phase) with interdendritic Ag-Cu solid solution and eutectic. Cu-rich β -phase was found in the lamellar eutectic and also in the degenerated eutectic structure. Excess copper was formed as a precipitated phase distributed within the primary dendrite arms. EDS point analysis indicated the presence of Zn and Si in the Cu-rich regions and also in the degenerated copper phase due to the higher solubility of these elements in copper than in silver. Cu₂O was formed as precipitates at grain boundaries and in the matrix. Isolated ZnO was present at grain boundaries and Si could be found in 2 areas: 1) as Cu-Si phase and 2) Si contained in ZnO and Cu₂O phases.