บทคัดย่อ

รหัสโครงการ: MRG5280114

ชื่อโครงการ: การสังเคราะห์สารผลิตภัณฑ์ธรรมชาติกลุ่มสเตโมเอไมด์และควิโนลิซิดีน

ชื่อนักวิจัยและสถาบัน : อาจารย์ ดร. พัลลภ คันธิยงค์ ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร

E-mail Address: punlop@su.ac.th

ระยะเวลาโครงการ: 16 มีนาคม 2552 ถึง 30 กันยายน 2555

ปฏิกิริยา diastereoselective cyclization ของ N-acyliminium ion ที่สังเคราะห์ขึ้นจาก L-glutamic acid และ 3-butenylamine ทำให้ได้ระบบ quinolizidinone เป็นผลิตภัณฑ์ การใช้ L-glutamic acid ซึ่งเป็นโมเลกุลที่เป็นไครัล เป็นสารตั้งต้นทำให้การสังเคราะห์เป็นแบบอสมมาตร และ stereogenic center ของ L-glutamic acid จะควบคุม ของปฏิกิริยาต่างๆที่ใช้ในการสังเคราะห์ ผู้วิจัยใช้ปฏิกิริยานี้เป็นปฏิกิริยาหลักในการศึกษาการ สังเคราะห์อัลคาลอยด์กลุ่ม quinolizidine ได้แก่ epiquinamide และ bicyclic [4.4.0] dipeptide ผู้วิจัยได้สังเคราะห์สารประกอบ quinolizidinone 10 ซึ่งคาดว่าจะสามารถเปลี่ยนให้ไปเป็น epiquinamide ในอีก 2 ขั้นตอน bicyclic [4.4.0] dipeptide เป็นโมเลกุลที่ถูกออกแบบขึ้นเพื่อใช้ในการสังเคราะห์ peptide และโปรตีน และ จะทำหน้าที่เป็น dipeptide unit ที่ตำแหน่ง β-turn ของโครงสร้างทุติยภูมิของโปรตีน เพื่อศึกษาความสัมพันธ์ระหว่าง โครงสร้างของโปรตีนและการทำงานในระบบชีวภาพ ในงานวิจัยนี้ ผู้วิจัยได้สังเคราะห์ bicyclic dipeptide **16** ด้วย ปฏิกิริยา N-acyliminium ion cyclization และ allylic carboxylation ในขณะเดียวกัน ผู้วิจัยได้ใช้ L-aspartic acid เป็นสารตั้งต้นในการสังเคราะห์ด้วยวิธีการคล้ายคลึงกันโดยต้องการศึกษาการสังเคราะห์ระบบวง fused tricyclic 5/7/5 ซึ่งเป็นระบบ furan-azepine-pyrrolidine ในสารผลิตภัณฑ์ธรรมชาติ stemoamide ซึ่งเป็นอัลคาลอยด์ที่พบในพืชที่ ในรายงานนี้จะอภิปรายถึงความพยายามในการ ชาวจีนใช้เป็นยาสมนไพรแก้อาการผิดปกติของระบบทางเดินหายใจ สังเคราะห์โมเลกลที่จะนำมาเป็นส่วนประกอบในการสังเคราะห์ stemoamide และอปสรรคที่ทำให้ยังไม่สามารถ สังเคราะห์ stemoamide ได้ และในระหว่างการศึกษาการสังเคราะห์ stemoamide ผู้วิจัยได้ใช้ L-aspartic acid ใน การศึกษาการสังเคราะห์สารผลิตภัณฑ์ธรรมชาติอัลคาลอยด์ crispine A ซึ่งเป็นสารที่มีฤทธิ์ยับยั้งการเติบโตของ เซลล์มะเร็ง และมีวง pyrrolidine เช่นเดียวกันกับ stemoamide (crispine A เป็น fused tricyclic 6/6/5 benzene-pyridine-pyrrolidine) และพบว่าสามารถสังเคราะห์โครงสร้าง tricyclic core ของ crispine A และ จะต้องทำการสังเคราะห์อีก 2 ขั้นตอนก็จะสามารถสังเคราะห์ crispine A ได้ หมู่ dibenzylamino ที่ได้มาจาก Laspartic acid จะทำให้ได้ผลิตภัณฑ์ที่เป็น diastereomer ซึ่งเมื่อกำจัดออกจะทำให้สามารถสังเคราะห์ได้ทั้ง (R)-และ (S)-crispine A

คำสำคัญ: สเตโมนาและควิโนลิซิดีน อัลคาลอยด์, เอพิควินาไมด์, ไดเปปไทด์แบบสองวง, สเตโมเอไมด์, การสังเคราะห์ แบบสมบูรณ์

ABSTRACT

Project Code: MRG5280114

Project Title: Asymmetric Syntheses of Biological Active Stemoamide and Quinolizidine Alkaloids

Investigator: Punlop Kuntiyong, Ph.D.

E-mail Address: punlop@su.ac.th

Project Period: 16 March 2009 to 30 September 2012

We investigate the application of diastereoselective N-acyliminium ion cyclization, a variation of Pictet-Spengler reaction for syntheses of quinolizidine alkaloid natural product and designed molecules. N-acyliminium ion prepared in situ starting from L-glutamic acid and 3-butenylamine through a short sequence underwent diastereoselective cyclization to give quinolizidinone precursors in enantiopure form for syntheses of epiquinamide and a bicyclic [4.4.0] dipeptide. Epiguinamide was isolated from skin of Equadorian frog Epipedobates tricolor and was initially reported to be nicotinic receptor agonist thus possible to be developed into medicine for nicotine withdrawal treatment. It was later found that the activity was due to cross contamination with another alkaloid and epiquinamide itself was inactive. However, epiquinamide had attracted a lot of attention from synthetic community and synthetic strategy developed for epiquinamide could be employed for other quinolizidine alkaloids of biologically or medicinally significance. Herein we report a synthesis of advanced quinolizidinone precursor which can potentially be converted to epiquinamide in two further steps. Bicyclic [4.4.0] dipeptide is a designed molecule for studies of conformational effect on protein activity. The synthetic precursor of this target, a bicyclic lactam which is a regioisomer of quinolizidinone precursor of epiquinamide, was synthesized using Nacyliminium ion cyclization. Conversion of the bicyclic lactam to bicyclic dipeptide was accomplished by direct allylic carboxylation. We are also studying the possibility of application of diasteroselective N-acyliminium ion cyclization to synthesis of a 5/7/5 tricyclic system of stemoamide, an alkaloid extracted from Chinese medicinal plant used for respiratory disorders. The tricyclic structure of stemoamide contains furan-azepine-pyrrolidine fused system. Utilizing L-aspartic acid instead of Lglutamic acid should allow us to form pyrrolidine ring (5 membered ring) instead of piperidine ring (6 membered ring). In this report we describe synthesis of molecular fragments for stemoamide synthesis and obstacles that led to unachieved target. In the meantime, a synthetic study of another molecule containing pyrrolidine ring was carried out for proof of our strategy. Crispine A, a cytotoxic molecule extracted from Mongolian plant, contains 6/6/5 tricyclic core of benzene-piperidinepyrrolidine system. An advanced precursor for crispine A synthesis was obtained from homoveratrylamine and L-aspartic acid with N-acyliminium ion as the key reaction. The extra dibenzylamino group from L-aspartic acid rendered the product as mixture of diastereomers and its subsequent removal would allow synthesis of both (R)- and (S)-crispine A in enantiopure form.

KEYWORDS: Stemona and Quinolizidine Alkaloids, Epiquinamide, Bicyclic Dipeptide, Stemoamide, Total Synthesis