บทคัดย่อ

รหัสโครงการ MRG5280119

ชื่อโครงการ การค้นหาและศึกษาหน้าที่ของโปรตีนในกุ้งกุลาดำที่เกี่ยวข้องกับการติดเชื้อ Vibrio harveyi

ชื่อนักวิจัย ดร.กุลยา สมบูรณ์วิวัฒน์ จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address: kunlaya.s@chula.ac.th

ระยะเวลาโครงการ 16 มีนาคม 2552 – 15 มีนาคม 2554

งานวิจัยนี้ นำเทคนิคทางด้านโปรตีโอมิกส์มาใช้ค้นหาและศึกษาหน้าที่ของโปรตีนในเซลล์เม็ดเลือด และอวัยวะน้ำเหลืองของกุ้งกุลาดำที่เกี่ยวข้องกับการติดเชื้อ Vibrio harveyi โดยใช้ เทคนิค 2-dimensional gel electrophoresis (2DGE) และ mass spectrometry จากผลการทดลองพบโปรตีนหลายชนิดที่มีการ แสดงออกตอบสนองต่อเชื้อ V. harveyi เช่น โปรตีนที่เกี่ยวข้องกับระบบภูมิคุ้มกัน ได้แก่ hemocyanin prophenoloxidase prophenoloxidase 2 serine proteinase-like protein heat shock protein 90 และ alpha-2-macroglobulin (A2M) โปรตีนที่เกี่ยวข้องกับการส่งสัญญาณภายในเซลล์ ได้แก่ calmodulin calreticulin และ 14-3-3 protein โปรตีนในกระบวนการสังเคราะห์พลังงานในเซลล์ ได้แก่ arginine kinase และ ATP synthase beta subunit จากข้อมูลที่ได้จึงคัดเลือกโปรตีน ATP synthase beta subunit ซึ่งมีการ แสดงออกเพิ่มมากขึ้นในอวัยวะน้ำเหลืองของกุ้งที่ติดเชื้อ *V. harveyi* ที่เวลา 6 ชั่วโมง และ โปรตีน A2M ซึ่ง มีการแสดงออกลดลงในเซลล์เม็ดเลือดของกุ้งกุลาดำที่ติดเชื้อ V. harveyi ที่เวลา 24 และ 48 ชั่วโมง มา ศึกษาความเกี่ยวข้องกับระบบภูมิคุ้มกันเพิ่มเติม โดยพบว่าการยับยั้งการแสดงออกของยืน ATP synthase beta subunit ในกุ้งมีผลทำให้อัตราการตายของกุ้งสูงถึง 73.33% และกุ้งดังกล่าวมีปริมาณเซลล์เม็ดเลือด ลดลงอย่างมีนัยสำคัญด้วย แสดงว่าโปรตีน ATP synthase beta subunit มีความสำคัญต่อกุ้งทั้งในสภาวะ ปกติและในสภาวะที่กุ้งติดเชื้อ สำหรับโปรตีน A2M ได้ค้นหาโปรตีนของกุ้งกุลาดำที่เกิดอันตรปฏิกิริยากับ receptor binding domain ของโปรตีน A2M โดยใช้เทคนิค yeast two-hybrid assay พบว่า receptor binding domain ของโปรตีน A2M เกิดอันตรปฏิกิริยากับปลาย C –ของ transglutaminase type II และ เนื่องจากโปรตีน transglutaminase type II เป็นเอนไซม์ที่สำคัญในกระบวนการแข็งตัวของเลือดจึงคาดว่า โปรตีน A2M น่าจะทำงานร่วมกับโปรตีน transglutaminase type II ในกระบวนการแข็งตัวของเลือดเพื่อ ช่วยกำจัดเชื้อจุลชีพที่อยู่ในระบบไหลเวียนเลือดของกุ้ง

คำหลัก : โปรติโอมิกส์; กุ้งกุลาดำ; *Vibrio harveyi*; ATP synthase beta subunit; alpha-2-macroglobulin

Abstract

Project Code: MRG5280119

Project Title: Identification and functional characterization of the Penaeus monodon protein

involving in Vibrio harveyi infection

Investigator: Dr. Kunlaya Somboonwiwat Chulalongkorn University

E-mail Address : kunlaya.s@chula.ac.th

Project Period: 16 March 2009 – 15 March 2011

Proteomic approaches such as 2-dimensional electrophoresis (2DGE) and mass spectrometry were used to identify the Vibrio haveyi-responsive proteins in the hemocytes and lymphoid organs of Penaeus monodon. The differentially expressed proteins identified were that involved in the host defense responses, such as hemocyanin, prophenoloxidase, prophenoloxidase 2, serine proteinase-like protein, heat shock protein 90 and alpha-2-macroglobulin (A2M); those involved in signal transduction, such as the calmodulin, calreticulin and 14-3-3 protein; and those involved in energy metabolism, such as arginine kinase and ATP synthase beta subunit. To study the involvement of the interested proteins in bacterial responses, ATP synthase beta subunit, the highly expressed protein in lymphoid organ of 6 h V. harveyi infected shrimp, and A2M whose expression in hemocyte was down-regulated at 24 and 48 h post *V. harveyi* infection, were chosen. Partial silencing of ATP synthase beta subunit gene revealed a high cumulative mortality of shrimps (73.3%) and the total hemocyte numbers in the surviving ATP synthase beta subunit knockdown shrimps was dramatically reduced. These revealed its prime importance in shrimp. Moreover, receptor binding domain of A2M was screened for its interacting proteins using yeasttwo-hybrid assay. The C-terminus part of transglutaminase typell, a protein mainly involved in the coagulation system, was identified as an A2M receptor binding domain-interacting protein implying that A2M might involve in the coagulation system by eradicating the invading bacteria.

Keywords: Proteomics; *Penaeus monodon*; *Vibrio haveyi*; ATP synthase beta subunit; Alpha-2-macroglobulin