

รายงานวิจัยฉับบสมบูรณ์

โครงการ MRG5280132

โดย อาจารย์ ดร. สมหญิง โลหะรังสิกุล
ภาควิชาจุลชีววิทยาคลินิก
คณะเทคนิคการแพทย์ ม.มหิดล

เสร็จโครงการเดือน พฤศจิกายน ปี 2554

รายงานวิจัยฉับบสมบูรณ์

โครงการ MRG5280132

อาจารย์ ดร. สมหญิง โลหะรังสิกุล
ภาควิชาจุลชีววิทยาคลินิก
คณะเทคนิคการแพทย์ ม.มหิดล

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

โครงการวิจัยนี้สำเร็จลุล่วงไปได้ด้วยดีด้วยความกรุณาจากศาสตรจารย์ ดร . ศรีสิน คูสมิทธ์ อาจารย์ที่ปรึกษา โครงการ ซึ่งให้คำปรึกษา ข้อชี้แนะ แนวคิด และสนับสนุนอุปกรณ์ที่ใช้ดำเนินงานจนโครงการนี้ สำเร็จลุล่วงไปได้ ด้วยดี หัวหน้าโครงการจึงขอกราบขอบพระคุณเป็นอย่าสูง ขอขอบคุ ณคณะเวชศาสตร์เขตร้อนที่ช่วยอนุเคราะห์ การเก็บตัวอย่างเลือดจากผู้ป่วยมาลาเรียสำหรับการศึกษาครั้งนี้ ข อขอบคุณสำนักงานคณะกรรมการการ อุดมศึกษา และ สำนักงานกองทุนสนับสนุนการวิจัย ที่ให้ทุนพัฒนาศักยภาพในการทำงานวิจัยของอาจารย์รุ่นใหม่ ประจำปังบประมาณ 2552 เพื่อสนับสนนุนการศึกษาวิจัยครั้งนี้ ขอบคุณ ดร . นฎา ปิตะบุตรที่สละเวลาช่วยทำ กราฟผลงานวิจัยสำหรับโครงการนี้ และขอบกราบขอบพระคุณคุณพ่อ คุณแม่ และคุณสามีที่ให้กำลังใจจนในการ ทำโครงการวิจัยจนเสร็จสมบูรณ์

อาจารย์ ดร. สมหญิง โลหะรังสึกุล

หัวหน้าโครงการ

Abstract

Project Code: MRG5280132

Project Title: Role of Toll-like receptor 2 (TLR2) expressing on human dendritic cells activated by P.

falciparum antigen

Investigator: Dr. Somying Loharungsikul Department of Microbiology, Faculty of Medical Technology,

Mahidol University

E-mail Address: mtslh@mahidol.ac.th

Project Period: 2 years

Human immature dendritic cells (immature DCs) express several pattern-recognition receptors (PRRs) including Toll-like receptors whose functions are recognized pathogen-associated molecular patterns The activation of TLRs signaling pathways induces the regulation of genes encoding (PAMPs). cytokines, costimulatory molecules and major histocompatibility complex (MHC) molecules which highly co-upregulate on mature DCs for mediating T cell response. In P. falciparum infection, we have previously demonstrated the increasing of TLR2 on monocytes and myeloid DCs in patients with mild and severe forms of malaria which was significantly correlated with IL-12p70 and IFN-Y, compared to those of healthy controls. However, information so far regarding the activation of blood myeloid dendritic cells (MDCs) by P. falciparum antigen through TLR2 signaling pathway is limited in human malaria Therefore, the activation of TLR2 signaling pathway on human peripheral blood MDCs infection. stimulated by P. falciparum antigen was investigated in this study. We found that blood stimulated with lysate of P. falciparum-infected erythrocytes (pRBCs) either from severe or mild malaria could induce MDCs maturation in vitro by increasing the expression of maturation marker (CD83) on their surfaces as a dose dependent manner, compared to those of unstimulated blood. After blocking the TLR2 expression on MDCs, their maturation was decreased only in blood stimulated with pRBCs lysate from severe malaria. A trend in decreasing of costimulatory molecules (CD80) on mature MDCs was found in stimulated blood with pRBCs lysate from both severe and mild malaria, compared to those of unstimulated blood. However, no significant expression of CD80 molecule on mature MDCs after TLR2 blocking was noted. There were no significant differences in MHC molecule expression on mature MDCs in stimulated blood with pRBCs lysate from both severe and mild form. These preliminary results will lead to better understanding the mechanism of immunoregulation in human falciparum malaria.

Keywords: Malaria, *P. falciparum*, Dendritic cells (DC), DC maturation, Toll-like receptor 2 (TLR2)

บทคัดย่อ

รหัสโครงการ: MRG5280132

ชื่อโครงการ: บทบาทการแสดงออกของตัวรับชนิด Toll-like receptor 2 บนเซลล์เดนไดร์ติกของคนที่ถูกกระตุ้น โดยแอนติเจนของเชื้อมาลาเรียชนิดฟาซิพาลัม

ชื่อนักวิจัย: ดร. สมหญิง โลหะรังสิกุล ภาควิชาจุลชีววิทยาคลินิก คณะเทคนิคการแพทย์ มหาวิทยาลัยมหิดล

E-mail Address: mtslh@mahidol.ac.th

ระยะเวลาโครงการ: 2 ปี

Immature dendritic cells (DCs) ของคน มีการแสดงออกของตัวรับรู้สิ่งแปลกปลอมหลายชนิดบนผิวเซลล์ เช่น Toll-like receptor (TLR) ซึ่งทำหน้าที่รับรู้โครงสร้างแปลกปลอมของเชื้อจุลชีพ การกระตุ้นสัญญาณของ TLR จะ เหนี่ยวนำให้เกิดการปรับการควบคุมของยืนที่เกี่ยวข้องกับการสร้างไซโตไคน์ (cytokines), molecule และ MHC molecule ซึ่งโมเลกุลเหล่านี้มีการแสดงออกที่มากขึ้นบนผิว mature DCs เพื่อช่วยกระตุ้น การตอบสนองของ T cells ต่อการติดเชื้อมาลาเรียชนิดฟาซิพาลัม ผู้วิจัยได้แสดงให้เห็นในการศึกษาก่อนหน้านี้ว่า พบการแสดงออกที่เพิ่มขึ้นของ TLR2 บนผิวของ monocytes และ myeloid DCs (MDCs) ในผู้ป่วยมาลาเรียชนิด ไม่รุนแรงและรุนแรง ซึ่งมีความสัมพันธ์อย่างมีนัยสำคัญกับระดับของ ไซโตไคน์ IL-12p70 และ IFN-γ ในซีรั่มของ ผู้ป่วยมาลาเรียเทียบกับซีรั่มควบคุมจากคนสุขภาพแข็งแรง อย่างไรก็ตาม ข้อมูล เกี่ยวกับการกระตุ้น MDCs ใน เลือดด้วยแอนติเจนของเชื้อมาลาเรียชนิดพลาสโมเดียมฟาซิพาลัม ผ่านสัญญาณของตัวรับรู้ TLR2 ของการติด เชื้อมาลาเรียในคนนั้นมีอยู่อย่างจำกัด ดังนั้น การศึ กษานี้ ต้องการตรวจสอบการกระตุ้นสัญญาณ ของตัวรับรู้ TLR2 ที่แสดงออกบนผิวของ MDCs ในเลือดคนเมื่อถูกกระตุ้นด้วยแอนติเจนของเชื้อมาลาเรียชนิดพลาสโมเดียม ฟาซิพาลัม โดยพบว่า เลือดที่ถูกกระตุ้นด้วย lysate ของ *P. falciparum*-infected erythrocytes (pRBCs lysate) ที่แยกได้จากเลือดของผู้ป่วยมาลาเรียชนิดรุนแรงและไม่รุนแรง สามารถเหนี่ยวนำให้เกิด maturation ของ MDCs ในหลอดทดลอง โดย สามารถตรวจตัวชี้วัดของการเกิด maturation (CD83) ที่เพิ่มขึ้นบนผิวเซลล์ชนิดนี้ได้แบบ dose dependent เทียบกับเลือดที่ไม่ถูกกระตุ้น เมื่อยับยั้งการแสดงออกของตัวรับรู้ TLR2 บนผิว MDCs พบว่า การเกิด maturation ของเซลล์จะลดลงเฉพาะในเลือดที่ถูกกระตุ้นด้วย pRBCs lysate ที่แยกได้จากเลือดของ ผู้ป่วยมาลาเรียชนิดรุนแรงเท่านั้น และพบแนวโน้มลดลงของการแสดงออก costimulatory molecules (CD80) บนผิว mature MDCs ในเลือดที่ที่ถูกกระตุ้นด้วย pRBCs lysate ที่แยกได้จากเลือดของผู้ป่วยมาลาเรียชนิด รุนแรงและไม่รุนแรงเมื่อเทียบกับเลือดที่ไม่ถูกกระตุ้น อย่างไรก็ตาม ไม่ พบการแสดงออกอย่างมีนัยสำคัญของ CD80 บนผิว mature MDCs หลังจากตัวรับรู้ TLR2 ถูกยับยั้ง และไม่พบความแตกต่างอย่างมีนัยสำคัญของการ แสดงออกของ MHC molecules บนผิว mature MDCs ในเลือดที่ถูกกระตุ้นด้วย pRBCs lysate ที่แยกได้จาก เลือดของผู้ป่วยมาลาเรียชนิดรุนแรงและไม่รุนแรง ผลการศึกษาเบื้ องต้นนี้ ทำให้เข้าใจกลไกของ immunoregulation การติดเชื้อมาลาเรียในคนมากยิ่งขึ้น

คำหลัก: มาลาเรีย, พลาสโมเดียมฟาซิพาลัม, เซลล์เดนไดร์ติก, DC maturation, ตัวรับชนิด Toll-like receptor 2

Objectives

- 1 To determine whether *P. falciparum* antigen could induce the differential expression of TLR2 on human peripheral blood myeloid dendritic cells (MDCs) *in vitro*.
- 2 To determine whether there is the activation of TLR2 signaling pathway via the maturation marker on blood myeloid dendritic cells (CD83), costimulatory molecule (CD80) and MHC class II molecule after *in vitro* stimulation with *P. falciparum* antigen by flow cytometry.

Materials & Methods

Heparinized bloods were collected from patients with mild and severe forms of falciparum malaria at Hospital for Tropical Diseases, Faculty of Tropical Medicine on admission (day 0). The malaria antigens were prepared by in vitro culture and concentrated using Percoll gradients centrifugation. P. falciparum antigens lysates (pRBCs lysates) were prepared by sonication. For initial determination of the kinetic expression of TLR2 on MDCs, 300 µl of heparinized blood obtaining from healthy subject was stimulated with 10 µg/ml peptidoglycan (PGN) from Staphylococcus aureus (a specific ligand for TLR2) for 1, 3, 5, 10. 16 and 24 hours at 37°C, 5%CO₂ and then stained with specific monoclonal antibodies to determine the TLR2 expressing on MDCs by flow cytometry. To investigate the activation of TLR2 signaling pathway, Three hundred microliters of heparinized blood from 6 healthy subjects were stimulated with pRBCs lysate obtaining from 2×10⁵, 2×10⁶, 2×10⁷ pRBCs at 37°C, 5%CO₂ for 5 hours and stained with specific monoclonal antibodies to determine the activation of TLR2 signaling pathway via the maturation marker on MDCs (CD83), costimulatory molecule (CD80) and MHC class II molecule by flow cytometry. PGN from S. aureus and unstimulated blood were used as positive and isotypic controls, respectively. For TLR2 blocking assay, TLR2 receptor expressed on peripheral blood MDCs was neutralized by purified anti-human TLR2 mAb at a concentration of 1, 5, 10 µg before stimulation with either 2×10 cells of pRBCs lysate or 10 µg/ml of PGN from S. aureus at 37°C, 5%CO2 for 5 hours. The activation marker of TLR2 signaling pathway in neutralized bloods was determined by flow cytometry. Data was acquired for 30,000 cells per individual blood.

Results

In *in vitro* stimulation, the initial study using specific ligand for TLR2 activation (peptidoglycan; PGN) did not show any significant difference in TLR2 expression on MDC (Data not shown). However, both PGN and the lysate of *P. falciparum*-infected erythrocytes (pRBC) at concentration of 2 × 10⁶ and 1 × 10⁷ could induce the activation of TLR2 signaling pathway by inducing DC maturation *in vitro* (Fig 1). The gating strategy of MDCs to investigate the activation of TLR2 signaling pathway was performed by a 4-color flow cytometry (Fig 2). Blood stimulated with pRBCs lysate either from severe or mild malaria could induce MDCs maturation *in vitro* by increasing the expression of maturation marker (CD83) on their surface as a dose dependent manner, compared to those of unstimulated blood (Fig 3A). But a trend in decreasing of costimulatory molecules (CD80) on mature MDCs was found in stimulated blood with pRBCs lysate from both severe and mild malaria, compared to those of unstimulated blood (Fig 3B). After blocking the TLR2 expression on MDCs, their maturation was decreased only in blood stimulated with pRBCs lysate from severe malaria (Fig 4A). However, no significant expression of CD80 molecule on mature MDCs after TLR2 blocking was noted (Fig 4B). There were no significant differences in MHC molecule expression on mature MDCs in stimulated blood with pRBCs lysate from both severe and mild forms (data not shown).

Conclusion and Discussion

 $P.\ falciparum$ parasite could activate TLR2 signaling pathway by induce human MDCs maturation while the regulation of antigen presenting complex HLA-DR and the costimulatory molecule (CD80) by malaria parasite might be able to suppress the antigen-presenting function on these human MDCs. The induction of MDC maturation *in vitro* required lysate containing the concentration of at least $2 \times 10^6 P.$ falciparum-infected erythrocytes. Taken together, these preliminary results will lead to better understanding the mechanism of immunoregulation in human falciparum malaria.

Significant of research

The information obtained from this study regarding the activation of TLR2 expression on human MDCs with falciparum malaria antigen and their signaling pathway will lead to understand the possible role of TLR2 in human falciparum malaria infection. If the falciparum malaria antigens could stimulate the TLR2 signaling pathways on MDCs, these may be a key determinant for immunoregulation of human malaria.

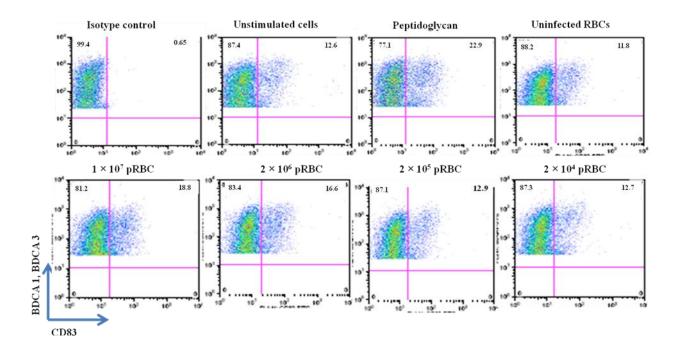


Figure 1. Activation of human blood myeloid dendritic cells by lysate of *P. falciparum*. The mature MDCs are identified as BDCA1⁺ BDCA3⁺ CD83⁺. Numbers indicate percentage of gated population in each quadrant.

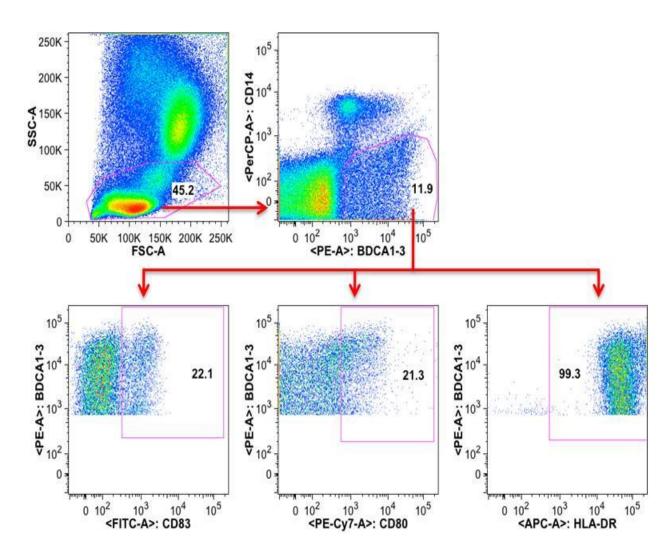


Figure 2. Peripheral blood myeloid dendritic cells (MDCs) gating strategy to determine the activation of TLR2 signaling pathway via maturation marker (CD83), costimulatory molecule (CD80) and major histocompatibility complex (MHC) class II.

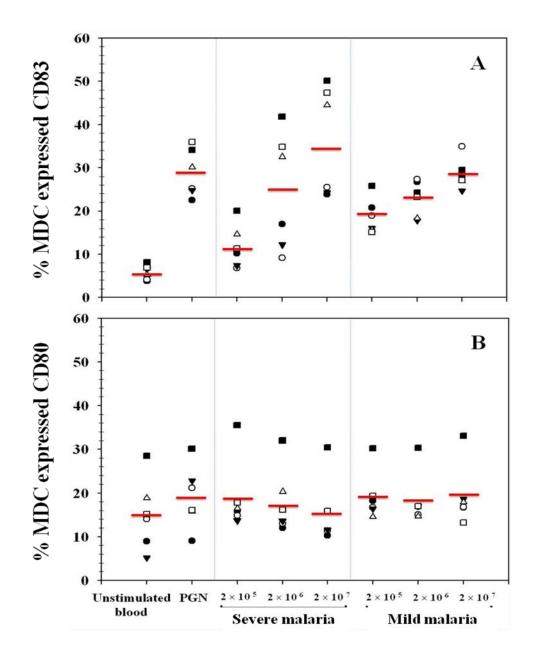


Figure 3. Activation of blood MDCs by lysate of *P. falciparum*-infected erythrocytes (pRBCs) either from severe or mild malaria induce (A) maturation marker (CD83) and (B) costimulatory molecule (CD80).

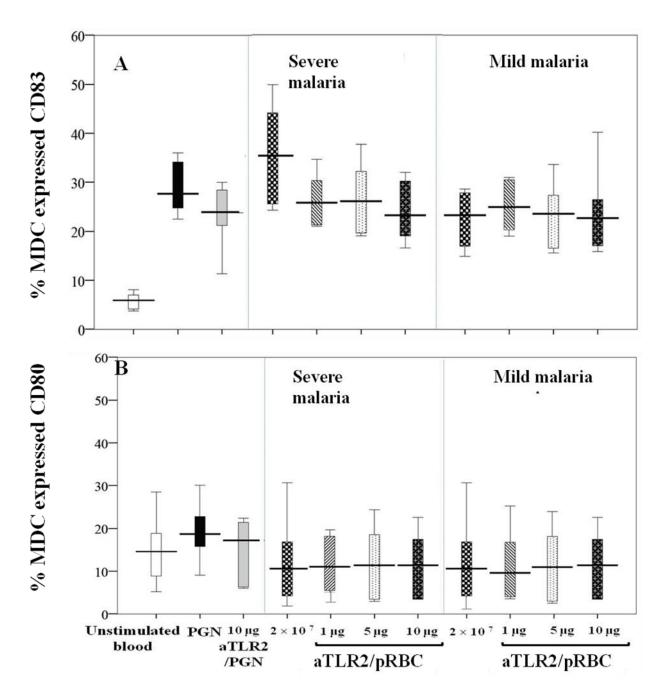


Figure 4. Blocking TLR2 expression on blood MDCs before activation by lysate of *P. falciparum*-infected erythrocytes (pRBCs) either from severe or mild malaria.

Output จากโครงการวิจัยที่ได้รับทุนจาก สกอ. และ สกว.

- 1. The information obtaining from this study was a new knowledge in human malaria infection that might be contribute the immunoregulation in human malaria infection.
- 2. This study will be published in International Peer reviewed Journal as

Somying Loharungsikul, Nattawat Onlamoon, Kovit Pattanapanyasat, Marita Troye-Blomberg, Srisin Khusmith. Activation of Human Blood Myeloid Dendritic Cells (MDCs) by *Plasmodium falciparum* Antigen. *Expected to be submitted to Parasite Immunology*.

- 3. This study was presented as 2 posters presentation as following:
 - a. Somying Loharungsikul, Nattawa Onlamoon, Kovit Pattanapanyasat, Marita Troye-Blomberg, Srisin Khusmith. Activation of blood myeloid dendritic cells by *P. falciparum* antigen. 10th Meeting on Thailand Research Fund, Petchburi Province, Thailand, 14th-16th October 2010.
 - b. Somying Loharungsikul, Nattawa Onlamoon, Kovit Pattanapanyasat, Marita Troye-Blomberg, Srisin Khusmith. Activation of human blood myeloid dendritic cells by *P. falciparum* antigen. 11th Meeting on Thailand Research Fund, Petchburi Province, Thailand, 19th-21th October 2011.