

รายงานวิจัยฉบับสมบูรณ์

โครงการ ไบโอเซนเซอร์เชิงแสงแบบติดฉลากที่เปลี่ยนชนิดได้อาศัยหลักการทำงานของ แอพทาเมอร์ และ DNA molecular beacon

โดย ดร. ชิตนนท์ บูรณชัย และ คณะ

มีนาคม 2555 เสร็จโครงการ

รายงานวิจัยฉบับสมบูรณ์

โครงการ ไบโอเซนเซอร์เชิงแสงแบบติดฉลากที่เปลี่ยนชนิดได้อาศัยหลักการทำงานของ แอพทาเมอร์ และ DNA molecular beacon

1. ดร. ชิตนนท์ บูรณชัย	ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์
	มหาวิทยาลัยสงขลานครินทร์
2. รศ. ดร. ปณต ถาวรังกูร	ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์
	มหาวิทยาลัยสงขลานครินทร์
3. รศ. ดร. เพริศพิชญ์ คณาธารณา	ภาควิชาเคมี คณะวิทยาศาสตร์
	มหาวิทยาลัยสงขลานครินทร์

สนับสนุนโดยคณะกรรมการการอุดมศึกษา และ สำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

โครงการวิจัยเรื่อง "ไบโอเซนเซอร์เชิงแสงแบบติดฉลากที่เปลี่ยนชนิดได้อาศัยหลักการทำงานของ แอพทาเมอร์ และ DNA molecular beacon" สามารถดำเนินไปได้ด้วยความสำเร็จลุล่วง ผู้วิจัยต้อง ขอขอบคุณสำนักงานคณะกรรมการการอุดมศึกษา (สกอ.) และ สำนักงานกองทุนสนับสนุนการวิจัย (สกว.) ที่ ได้สนับสนุนเงินทุนพัฒนาศักยภาพในการทำงานวิจัยของอาจารย์รุ่นใหม่ต่อโครงการนี้

ขอขอบคุณ รองศาสตราจารย์ ดร. ปณต ถาวรังกูร ภาควิชาฟิสิกส์ และ รองศาสตราจารย์ ดร. เพริศพิชญ์ คณาธารณา ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ นักวิจัยที่ปรึกษา ที่ ได้ให้ความช่วยเหลือ และคำปรึกษาที่ดีเสมอมา ตั้งแต่เริ่มต้นทำงานวิจัยจนกระทั่งเขียนรายงานฉบับสมบูรณ์

ขอขอบคุณ สถานวิจัยการวิเคราะห์สารปริมาณน้อยและไบโอเซนเซอร์ และ ภาควิชาฟิสิกส์ คณะ วิทยาศาสตร์ ที่ได้กรุณาสนับสนุนวัสดุ อุปกรณ์ เครื่องมือ และสถานที่ในการทำวิจัย

ขอขอบคุณ ภาควิชาเคมี คณะวิทยาศาสตร์ สำหรับความอนุเคราะห์ให้ใช้งานเครื่องฟลูออเรสเซนส์ สเปคโตรโฟโตมิเตอร์ และ ขอขอบคุณ ดร. นราลักษณ์ หลีสกุล สำหรับความอนุเคราะห์ประสานงานการใช้ เครื่องมือดังกล่าว

ขอขอบคุณเจ้าหน้าที่ ภาควิชาฟิสิกส์ เจ้าหน้าที่ ภาควิชาเคมี และ สมาชิกสถานวิจัยการวิเคราะห์สาร ปริมาณน้อยและไบโอเซนเซอร์ รวมถึงทุกท่านที่ไม่ได้เอ่ยนามที่อำนวยความสะดวกและให้การสนับสนุน โครงการวิจัยนี้

ชิตนนท์ บูรณชัย

1. บทคัดย่อภาษาไทยและภาษาอังกฤษ

รหัสโครงการ: MRG5280160

ชื่อโครงการ: ไบโอเซนเซอร์เชิงแสงแบบติดฉลากที่เปลี่ยนชนิดได้อาศัยหลักการทำงานของ

แอพทาเมอร์ และ DNA molecular beacon

ชื่อนักวิจัย: ดร. ชิตนนท์ บูรณชัย มหาวิทยาลัยสงขลานครินทร์

E-mail address: <u>chittanon.bapsu.ac.th</u>

ระยะเวลาโครงการ: 15 มีนาคม 2552 ถึง 14 มีนาคม 2554

สำหรับ molecular aptamer beacon ซึ่งเป็นเซนเซอร์เชิงแสงที่สร้างขึ้นจาก molecular beacon และแอพทาเมอร์ โดยทั่วไปการเปลี่ยนชนิดสารที่ต้องการตรวจวัด (analyte) จำเป็นต้องเปลี่ยนเซนเซอร์ทั้ง งานวิจัยนี้ได้ศึกษา หน่วยรวมถึงสารเรื่องแสงสำหรับใช้ติดฉลากซึ่งมีราคาแพง molecular beacon ที่สร้างจาก DNA แบบเปลี่ยนชนิดได้ เซนเซอร์ชนิดนี้ประกอบด้วย 2 ส่วน คือ ส่วนที่เป็นส่วนแปรผัน (variable domain) และส่วนคงที่ (constant domain) ส่วนแปรผันประกอบด้วยสายแอพทาเมอร์ (aptamer strand) และสายคู่สม (aptamer complementary strand) ในขณะที่ส่วนคงที่เป็นดีเอ็นเอสาย สั้นที่ติดฉลากด้วยคู่สารเรื่องแสงที่สามารถเกิดอันตรกิริยาการถ่ายโอนพลังงานแบบ Förster Resonance Energy Transfer (FRET) ทั้งสองส่วนเชื่อมต่อกันด้วยการเข้าคู่เบส เซนเซอร์นี้มีสองโครงสร้างคือแบบปิด (folded) ซึ่งอยู่ในสถานะที่มีการถ่ายโอนพลังงานได้ดี (high FRET) และแบบเปิด (unfolded) ซึ่งอยู่ใน สถานะที่มีการถ่ายโอนพลังงานได้ไม่ดี (low FRET) ในสภาวะที่ไม่มีและมีการจับกันระหว่างแอพทาเมอร์และ สารที่ต้องการตรวจวัด เซนเซอร์สามารถเปลี่ยนชนิดได้โดยการชะสายแอพทาเมอร์และสายคู่สม ด้วยสายชะ (washer) ที่เหมาะสม เพื่อเป็นการทดสอบหลักการเบื้องต้น เซนเซอร์สำหรับตรวจวัดทรอมบินซึ่งเป็นเอนไซม์ ย่อยโปรตีนชนิดหนึ่งพบในกระบวนการการแข็งตัวของเลือด และมีความสามารถในการยึดจับอย่างแข็งแรง ได้ ถูกสร้างขึ้น จากนั้นเปลี่ยนชนิดเซนเซอร์ให้เป็นแบบตรวจวัดอะดิโนซีน ซึ่งมีสมบัติในการยึดจับที่แข็งแรงน้อย ว่า คณะผู้วิจัยเชื่อว่าโครงสร้างลักษณะนี้สามารถใช้ได้กับเซนเซอร์หลากหลายชนิดและมีประโยชน์กับการคัด กรองเบื้องต้นที่มีชนิดและปริมาณของสารที่ต้องการตรวจวัดมาก ให้มีราคาถูกลง

คำหลัก: แอพทาเมอร์ เครื่องมือระดับนาโนที่สร้างจากดีเอ็นเอ การถ่ายโอนพลังงานด้วยกระบวนการเฟรท โบโอเซนเซอร์เชิงแสง

Project code: MRG5280160

Project title: Reconfigurable optical biosensor based on DNA aptamer and DNA

molecular beacon

Investigator: Dr. Chittanon Buranachai

E-mail address: chittanon.buranachai@gmail.com

Project period: 15 March 2009 – 14 March 2011

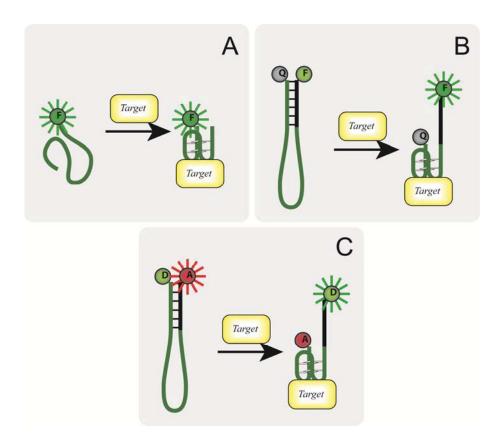
.....

For a typical molecular aptamer beacon (MAB), which is a hybrid labeled optical sensor based on molecular beacon – aptamer, sensing different types of analytes requires changing the whole sensor unit including the expensive labeling fluorophores. In this work a DNA-based reconfigurable molecular aptamer beacon (MAB) is investigated. It is composed of two parts: a variable part and a constant part. The variable part comprises an aptamer strand and its complementary strand while the constant part is an oligonucleotide doubly labeled with a Förster Resonance Energy Transfer (FRET) pair and the two parts are joined via DNA hybridization. The sensor exists in two conformations: the folded (high FRET) and the unfolded (low FRET) in the absence and presence of aptamer-target binding. The sensor can be reconfigured by washing the aptamer and the complementary strand away using proper complementary strands, called washers. As a proof of principle, the sensor is first constructed to bind thrombin, a protease involved in blood coagulation, selected as an analyte with a strong binding and then reconfigured to bind adenosine, selected as an analyte with a weak binding. It is believed that the design is of universal use and could be beneficial to low cost - large scale screening applications.

Keywords: aptamer · DNA nano-device · FRET · optical biosensor

2. ที่มาและความสำคัญ

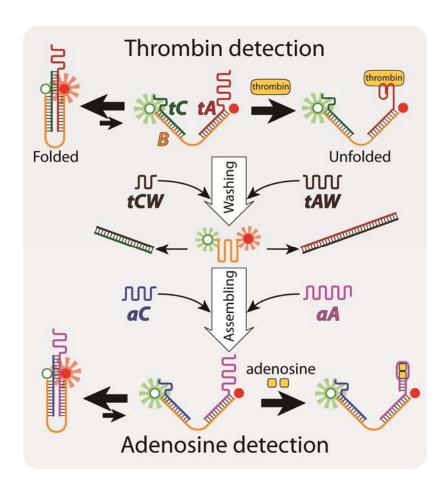
แอพทาเมอร์ เป็นโครงสร้างตติยภูมิ (tertiary structure) ของออลิโกนิวคลิโอไทด์ (oligonucleotide) สามารถจับอย่างจำเพาะเจาะจงกับสารที่ต้องการวิเคราะห์ (analyte) ต่างๆ เช่นโปรตีน ทรอมบิน^[1] โปรตีนเปลือกนอกของไวรัส HIV^[2] หรือแม้แต่โมเลกุลขนาดเล็กเช่นไอออนของโลหะ^[3] โมเลกุลยา เช่น ยาปฏิชีวนะ^[4] เป็นต้น แอพทาเมอร์ มีความสามารถจับอย่างจำเพาะเจาะจงสูง เห็นได้จากตัวอย่างที่ แอพ ทาเมอร์ สามารถจำแนกความแตกต่างของโครงสร้างโมเลกุลของสารที่ต้องการที่ระดับหมู่เมทิล^[5] หรือที่ระดับ หมู่ไฮดรอกซิล^[6] ซึ่งความ-จำเพาะเจาะจงของแอพทาเมอร์ เปรียบได้กับการจับกันระหว่างแอนทิบอดีและ แอนทิเจน^[5] ในขณะนี้ แอพทาเมอร์ ได้ถูกนำไปใช้ในการทำสารให้บริสุทธิ์^[7, 8] ใช้ในทางการแพทย์ ^[9-11] หรือ ตรวจวัดสารที่ต้องการวิเคราะห์โดยเทคนิคไบโอเซนเซอร์^[12]


ไปโอเซนเซอร์ประกอบด้วยสารชีวภาพ (biological sensing element) ที่ตอบสนองอย่างจำเพาะ เจาะจงกับสารที่ต้องการวิเคราะห์เกิดความเปลี่ยนแปลงทางกายภาพ และทรานสดิวเซอร์ (transducer) ที่ สามารถวัดการเปลี่ยนแปลงทางกายภาพที่เกิดขึ้น [13] ข้อดีของการใช้เทคนิคไปโอเซนเซอร์คือมีความจำเพาะ เจาะจง มีความไววิเคราะห์สูง และใช้ระยะเวลาตรวจวัดไม่นาน [14] ตัวอย่างสารชีวภาพที่ใช้ได้แก่ แอนทิบอดี ซึ่งจับอย่างจำเพาะเจาะจงกับแอนทิเจนที่ต้องการตรวจวัด และเรียกไปโอเซนเซอร์แบบนี้ว่าแอฟฟินิตี ไปโอเซนเซอร์ (affinity biosensor) เมื่องจากแอพทาเมอร์เป็นสารชีวภาพที่จับอย่างจำเพาะเจาะจงกับสาร ที่ต้องการวิเคราะห์ จึงมีการนำแอพทาเมอร์มาใช้ในแอฟฟินิตีไปโอเซนเซอร์ [16] โดยใช้กับทรานชดิวเซอร์หลาย ประเภท เช่น ทรานสดิวเซอร์เชิงไฟฟ้าเคมี ดังตัวอย่างในการศึกษาประสิทธิภาพการส่งผ่านอิเล็กตรอนให้แก่ ขั้วไฟฟ้าที่เปลี่ยนแปลงไปของตัวติดฉลากบนแอพทาเมอร์ [17] หรือทรานซดิวเซอร์ที่วัดการเพิ่มขึ้นของมวลหลังการ จับกันของสารที่ต้องการวิเคราะห์และแอพทาเมอร์ ซึ่งเทคนิค เชิงแสงเป็นเทคนิคที่ใช้กันมากเนื่องจากมีความไวและสามารถตรวจวัดได้แบบต่อเนื่อง (real time) [16]

เทคนิคเชิงแสงแบ่งได้เป็นเทคนิคที่ไม่ใช้สารติดฉลาก และเทคนิคที่ใช้สารติดฉลาก เทคนิคที่ไม่ใช้สาร ติดฉลาก เช่น เทคนิคไดนามิกไลท์สแคทเทอริ่ง (dynamic light scattering) หรือเทคนิคเซอร์เฟซพลาสมอน เรโซแนนส์ (Surface Plasmon Resonance: SPR) มีข้อดีคือลดความยุ่งยากในการเตรียมตัวอย่าง แต่พบว่า ยังมีข้อจำกัด เช่นเทคนิค SPR ไม่เหมาะสมกับการตรวจวัดสารที่ต้องการวิเคราะห์ที่มีโมเลกุลขนาดเล็ก ในขณะที่เทคนิคที่ใช้การติดฉลากจะให้ความไวในการวิเคราะห์สูงกว่า โดยงานวิจัยนี้สนใจการติดฉลากด้วย สารเรื่องแสง (fluorescent dye หรือ fluorophore)

ในภาวะปกติโมเลกุลแอพทาเมอร์ มีได้หลายโครงสร้าง แต่เมื่อจับกับสารที่ต้องการวิเคราะห์ โมเลกุล แอพทาเมอร์จะมีโครงสร้างตติยภูมิที่จำเพาะ ซึ่งความเสถียรเพิ่มขึ้นเกิดจากอันตรกิริยาของการจับกันระหว่าง โมเลกุลแอพทาเมอร์และสารที่ต้องการวิเคราะห์ เขา จึงสามารถสร้างไปโอเซนเซอร์เชิงแสงจากโมเลกุลแอพทา เมอร์ได้โดยการติดฉลากสารเรื่องแสงที่บริเวณใกล้เคียง หรือตรงกับส่วนที่จับกับสารที่ต้องการวิเคราะห์ ส่งผล ให้สิ่งแวดล้อมของสารเรื่องแสงมีการเปลี่ยนแปลงและทำให้เกิดการเปลี่ยนค่าควอนตัมยีลด์ (quantum yield) ของการเปล่งแสงฟลูออเรสเซนส์ หรืออีกทางเลือกหนึ่งคือการอาศัยคุณสมบัติฟลูออเรสเซนส์แอนไอโซทรอปี

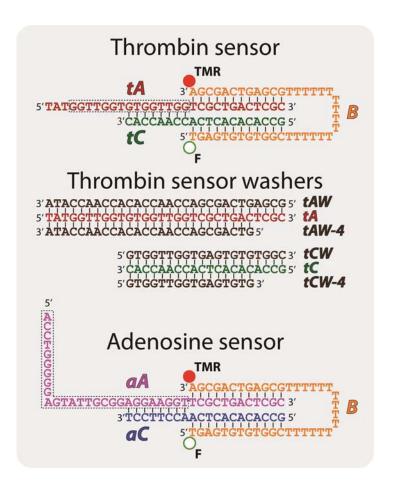
(fluorescence anisotropy) ซึ่งจะเปลี่ยนแปลงค่าเมื่ออิสรภาพในการเคลื่อนที่แบบหมุนของโมเลกุลสารเรือง แสงเปลี่ยนแปลงไป เนื่องจากการที่โมเลกุลแอพทาเมอร์จับกับสารที่ต้องการวิเคราะห์ [23] (รูปที่ 1a) อย่างไรก็ ตามการติดฉลากด้วยสารเรืองแสงเพียงชนิดเดียวก็ยังมีข้อเสียเพราะโดยส่วนใหญ่นักวิจัยต้องทราบโครงสร้าง แบบตติยภูมิของแอพทาเมอร์ล่วงหน้า เพื่อเป็นข้อมูลในการเลือกตำแหน่งติดฉลากสารเรืองแสง


การติดฉลากด้วยสารสองชนิดสามารถแก้ปัญหาดังกล่าวได้ ตัวอย่างแรก ที่มีการรายงานคือการติด ฉลากสารเรื่องแสงและเควนเซอร์บนโมเลกุลแอพทาเมอร์ที่มีการดัดแปลงให้มีโครงสร้างแบบ hairpin (รูปที่ การจับกันระหว่างสารที่ต้องการวิเคราะห์กับแอพทาเมอร์ทำให้สมดุลของปฏิกิริยาเปลี่ยนและทำให้ 1b) การเปลี่ยนแปลงนี้ทำให้ระยะห่างระหว่างสารเรื่องแสงและเควนเชอร์ โครงสร้าง เปิดออก hairpin (quencher) เปลี่ยนแปลงไปส่งผลให้ความเข้มแสงฟลูออเรสเซนส์เพิ่มขึ้น ในลักษณะคล้ายคลึงกับการทำงาน ของ molecular beacon เซนเซอร์แบบผสมชนิดนี้ซึ่งมีชื่อเรียกว่า molecular aptamer beacons (MABs) ได้รับการปรับปรุงให้มีประสิทธิภาพดียิ่งขึ้นตั้งแต่นั้นเป็นต้นมา ยกตัวอย่างเช่นการติดฉลากโดยใช้คู่สารเรื่อง แสงที่เกิดการถ่ายโอนพลังงานแบบฟอสเตอร์ (เรียกโดยย่อว่า เฟรท) (Förster Resonance Energy Transfer: FRET) ซึ่งข้อดีของเทคนิคเฟรทคือมีความไวสูงและมีระยะการเกิดอันตรกิริยาอยู่ในช่วง 10 ถึง 100 อังสตรอม^[26] ในขณะที่เทคนิคเควนซึ่งมีข้อจำกัดคือระยะการเกิดอันตรกิริยาอยู่ในช่วงแคบไม่เกิน 2 อังสตรอม ^[27, 28] หรือการพัฒนา structure switching aptamer ทำการแยกติดฉลากสารเรื่องแสงและเควนเชอร์บน ทำให้เทคนิคดังกล่าวใช้ได้กับแอพทาเมอร์แทบทุกชนิดโดยไม่จำเป็นต้อง สายออลิโกนิวคลีโอไทด์สองสาย ทราบโครงสร้างตติยภูมิของแอพทาเมอร์ หรือธรรมชาติของการจับกันระหว่างแอพทาเมอร์และสารที่ต้องการ วิเคราะห์

รูปที่ 1 หลักการทำงานของเซนเซอร์เชิงแสงแบบติดฉลากด้วยสารเรื่องแสงบนแอพทาเมอร์ (a) เซนเซอร์เชิง แสงที่อาศัยหลักการฟลูออเรสเซนส์แอนไอโซโทรปี ซึ่งแปรผกผันกับอิสระภาพในการเคลื่อนที่แบบหมุนของ โมเลกุลสารเรื่องแสง (F) (b) เซนเซอร์เชิงแสงที่อาศัยหลักการเควนซิ่ง (quenching) โดยโมเลกุลตัวให้ พลังงาน (F) ถ่ายพลังงานให้โมเลกุลเควนเชอร์ (quencher: Q) เมื่อระยะห่างระหว่างโมเลกุลมีค่าน้อยกว่า 2 อังสตรอม และ (c) เซนเซอร์เชิงแสงที่อาศัยหลักการถ่ายโอนพลังงานแบบฟอร์สเตอร์ (หรือเฟรท) โดยโมเลกุล ตัวให้พลังงาน (donor: D) ถ่ายพลังงานให้โมเลกุลตัวรับพลังงาน (acceptor: A) เมื่อระยะห่างระหว่างโมเลกุล มีค่าอยู่ในช่วง 10 – 100 อังสตรอม (ดัดแปลงมาจาก [24, 25])

อย่างไรก็ตามเซนเซอร์ชนิด MABs มีข้อเสียที่สำคัญคือการติดฉลากแบบถาวรโดยพันธะโคแวเลนท์ ทำให้ต้องทำการติดฉลากทุกครั้งที่มีการเปลี่ยนชนิดของแอพทาเมอร์ ซึ่งสารเรื่องแสงที่ใช้ติดฉลากแล้วไม่ สามารถนำมาใช้กับแอพทาเมอร์ชนิดใหม่ได้ ดังตัวอย่างงานวิจัยที่ปรากฏมาก่อนหน้านี้ [20, 29, 30] สิ่งนี้อาจไม่ เป็นปัญหาสำหรับการตรวจวัดสารที่ต้องการวิเคราะห์เพียงไม่กี่ตัว แต่อาจเป็นปัญหาสำหรับการตรวจวัดที่มี สารที่ต้องการวิเคราะห์หลายชนิดเพราะขั้นตอนการติดฉลากต้องอาศัยเวลาและค่าใช้จ่าย มีกลุ่มวิจัยบางกลุ่ม พยายามแก้ไขปัญหานี้โดยการใช้ระเบียบวิธี label free โดยการผสมสารเรื่องแสงชนิดที่จับกับสาย DNA โดย อันตรกิริยาแบบ non-covalent ลงในสารละลายและวัดความเปลี่ยนแปลงของอันตรกิริยาดังกล่าวเมื่อมีการ จับระหว่างแอพทาเมอร์และสารที่ต้องการวิเคราะห์ (เรียกเทคนิคนี้ว่า dye displacement assay [31]) หรือใช้ แอพทาเมอร์สองชนิดเรียงต่อกันโดยชนิดที่หนึ่งเป็นตัวจับสารที่ต้องการวิเคราะห์ในขณะที่อีกชนิดหนึ่งจับกับ สารเรื่องแสง เช่น malachite green [32] อย่างไรก็ตามของเสียมีพิษจากการใช้สารเรื่องแสงเหล่านั้นอาจเป็น ปัญหาสำหรับการใช้งานจริง

งานวิจัยนี้จึงสนใจที่จะพัฒนา MAB ที่สามารถเปลี่ยนชนิดของแอพทาเมอร์ โดยไม่ต้องมีการติดฉลาก ใหม่ ทำให้ประหยัดเวลาและค่าใช้จ่าย เซนเซอร์ชนิดใหม่นี้ประกอบด้วยสายออลิโกนิวคลีโอไทด์สามสาย (รูปที่ 2) สายที่หนึ่งทำหน้าที่เป็นส่วนฐาน (สาย B) ติดฉลากด้วยสารเรืองแสงสองชนิดที่เป็นคู่ถ่ายโอนพลังงานแบบ ฟอร์สเตอร์ (เรียกโดยย่อว่าเฟรท) (Förster Resonance Energy Transfer: FRET) สายที่สองเป็นสาย-แอพทาเมอร์ (สาย A ตัวอย่างในรูปที่ 2 ใช้ชื่อว่า สาย tA และ สาย aA) และสายที่สามเป็นสายคู่สมของสาย-แอพทาเมอร์ (สาย C ตัวอย่างในรูปที่ 2 ใช้ชื่อว่า สาย tC และ สาย aC) ทั้งนี้สาย A และสาย C มี ความจำเพาะกับสารที่ต้องการวิเคราะห์แต่สามารถเปลี่ยนได้ ส่วนสาย B ถูกออกแบบให้ไม่ต้องเปลี่ยน ดังนั้น โครงสร้างของเซนเซอร์จึงคล้ายกับโครงสร้างแอนทิบอดีซึ่งประกอบด้วยส่วนแปรผัน (variable domain) (ซึ่ง เทียบได้กับสาย A และสาย C) ประกอบเข้ากับส่วนคงที่ (constant domain) (ซึ่งเทียบได้กับสาย B) ลักษณะ การออกแบบดังกล่าวนี้ช่วยประหยัดค่าใช้จ่ายเพราะส่วนที่มีราคาแพงคือสาย B สามารถใช้ได้กับแอพทา-เมอร์หลายชนิด เมื่อประกอบกันแล้ว เซนเซอร์มีโครงสร้างสองแบบ คือแบบปิดและแบบเปิด ในสภาวะที่ไม่มี สารที่ต้องการวิเคราะห์ โครงสร้างแบบปิดมีความเสถียรกว่าเนื่องจากการเกิด sticky end ระหว่างสาย A และ สาย C แต่ในสภาวะที่มีสารที่ต้องการวิเคราะห์ในสารละลาย sticky end ถูกทำลายจากการจับกันระหว่าง แอพทาเมอร์และสารที่ต้องการวิเคราะห์ ส่งผลให้โครงสร้างแบบเปิดมีความเสถียรมากกว่า เมื่อพิจารณาในแง่ ของการถ่ายโอนพลังงานแบบเฟรท พบว่าโครงสร้างแบบปิดและแบบเปิดตรงกับสถานะถ่ายโอนพลังงานได้ดี (เรียกว่าสถานะเฟรทสูง) และสถานะถ่ายโอนพลังงานได้ไม่ดี (เรียกว่าสถานะเฟรทต่ำ) ซึ่งจะเห็นได้ว่าลักษณะ การทำงานเช่นนี้ใช้ได้กับแอพทาเมอร์แทบทุกชนิด เพื่อทดสอบแนวคิด คณะผู้วิจัยได้ประดิษฐ์เซนเซอร์สอง ชนิดที่ใช้หลักการดังกล่าวข้างต้น โดยเซนเซอร์ชนิดแรกใช้สำหรับตรวจวัดโปรตีนทรอมบินซึ่งมีส่วนสำคัญใน กระบวนการแข็งตัวของเลือด และเซนเซอร์ชนิดที่สองสำหรับตรวจวัดอะดิโนซีนซึ่งเป็นสารตั้งต้นที่สำคัญใน กระบวนการสังเคราะห์สารทางชีวภาพหลายชนิด โดยโปรตีนทรอมบินเป็นตัวอย่างสารที่ต้องการวิเคราะห์ที่มี ค่าคงที่การแตกตัว (dissociation constant K_d) ต่ำในระดับนาโนโมลาร์ ในขณะที่อะดิโนซีนเป็นตัวอย่างสาร ที่ต้องการวิเคราะห์ที่มีค่าคงที่การแตกตัวสูงในระดับไมโครโมลาร์ จากนั้นคณะผู้วิจัยได้สาธิตการเปลี่ยนชนิด ของเซนเซอร์ทีละขั้น เริ่มจากการชะเอาส่วนแปรผันของเซนเซอร์สำหรับตรวจวัดโปรตีนทรอมบิน (สาย tA และสาย tC) ออกจากสาย B จากนั้นประกอบส่วนแปรผันของเซนเซอร์สำหรับตรวจวัดอะดิโนซีน (สาย aA และสาย aC) ลงบนสาย B



รูปที่ 2 หลักการทำงานของ molecular aptamer beacon แบบเปลี่ยนชนิดได้ ไดอะแกรมส่วนบนแสดงการ ทำงานของเซนเซอร์สำหรับใช้วัดโปรตีนทรอมบิน สร้างจากสาย B ที่มีการติดฉลากด้วยสารเรื่องแสงสองชนิดที่ เป็นคู่เฟรทคือฟลูออเรสซีน (fluorescein แทนด้วยวงกลมกลวง) และเททระเมทิลโรดามีน (tetramethylrhodamine แทนด้วยวงกลมทึบ) สายแอพทาเมอร์สำหรับโปรตีนทรอมบิน (anti-thrombin aptamer strand) (สาย tA) และสายคู่สมของสายแอพทาเมอร์สำหรับโปรตีนทรอมบิน (anti-thrombin aptamer complementary strand) (สาย tC) ในกรณีไม่มีทรอมบิน โครงสร้างแบบปิด (ในสถานะเฟรทต่ำ) จากการเกิด sticky end แต่เมื่อมีทรอมบินจับกับ สายแอพทาเมอร์ สมดุลของอันตรกิริยาเปลี่ยนไป ทำให้โครงสร้างแบบเปิดเสถียรกว่า ไดอะแกรมส่วนกลาง แสดงกระบวนการเปลี่ยนชนิดเซนเซอร์ (reconfiguration) เริ่มจากการผสมสายซะ (washers) ที่เหมาะสม กับสาย tA (เรียกสายซะนี้ว่าสาย tAW) และสายซะที่เหมาะสมกับสาย tC (เรียกสายซะนี้ว่าสาย tCW) เพื่อดึง สาย tA และสาย tC ออกจากสาย B โดยอาศัยกระบวนการแทนที่สาย (strand displacement) จากนั้นสาย แอพทาเมอร์สำหรับอะดิโนซีน (anti-adenosine aptamer strand) (สาย tA) และสายคู่สมของสายแอพทาเมอร์สำหรับอะดิโนซีน (anti (สาย tA)

3. วิธีการทดลอง

3.1 วัสดุและสารเคมี

ใช้ออลิโกนิวคลีโอไทด์ทั้งหมดจากบริษัทอินทิเกรทเทด ดีเอ็นเอ เทคโนโลยี (Integrated ดีเอ็นเอ DNA Technology: IDTDNA, Coralville, IA, USA) โดยมีชื่อและลำดับเบสดังแสดงในรูปที่ 3 ส่วนฐานคือ สาย B มีความยาว 30 เบส ปลายด้าน 5' ติดฉลากด้วยสารเรื่องแสงฟลูออเรสซีน (fluorescein: F) (แสดง ติดฉลากด้วยสารเรื่องแสงเททระเมทิลโรดามีน ส่วนปลายด้าน 3' ด้วยวงกลมกลวง) rhodamine: TMR) (แสดงด้วยวงกลมทึบ) สายที่จับกับโปรตีนทรอมบิน (สาย tA) มีความยาว 30 เบส ถูก ออกแบบให้เข้าคู่เบสกับสาย B ที่ปลายด้าน 3' ความยาว 12 เบส ซึ่งยาวพอสำหรับการเข้าคู่เบสที่เสถียร ส่วน ที่เหลือของสาย tA เป็นส่วนของแอพทาเมอร์ที่จำเพาะกับโปรตีนทรอมบิน (anti-thrombin aptamer) ความ ยาว 15 เบส^[1] (ล้อมด้วยกรอบเส้นประ) สายคู่สมกับสาย tA (สาย tC) มีความยาวตั้งแต่ 17 ถึง 20 เบส ซึ่งมี 12 เบสของสาย tC เข้าคู่เบสกับสาย B ที่ปลายด้าน 5' และที่เหลือเข้าคู่เบสกับสาย tA เกิดเป็น sticky end โดยบริเวณที่เกิด sticky end นี้ซ้อนทับกับส่วนของแอพทาเมอร์ที่จำเพาะกับโปรตีนทรอมบินของสาย tA สาย ที่จับกับอะดิโนซีน (สาย aA) มีความยาว 39 เบส และสายคู่สมกับสาย aA (สาย aC) มีความยาว 20 เบส ซึ่ง สาย aA และ สาย aC เข้าคู่เบสความยาว 12 เบส กับสาย B และมีส่วนเข้าคู่เบสระหว่างกัน เกิดเป็น sticky end คล้ายกับกรณีของสาย tA และ tC ดังกล่าวมาข้างต้น ออลิโกนิวคลีโอไทด์ที่ถูกติดฉลากผ่านกระบวนการ ทำให้บริสุทธิ์โดยกระบวนการ reverse phase HPLC ตามมาตรฐานของบริษัทผู้ผลิต ส่วนออลิโกนิวคลีโอไทด์ ที่ไม่ติดฉลากผ่านกระบวนการ desalted และไม่มีกระบวนการทำให้บริสุทธิ์อื่นใดนอกเหนือจากนั้น การ ออกแบบลำดับเบสของออลิโกนิวคลีโอไทด์แต่ละเส้นทำด้วยมือโดยพิจารณาจากค่าพลังงานอิสระของกิบส์จาก โปรแกรม SciTools บนเวบไซท์ของบริษัทผู้ผลิต (<u>www.idtdna.com</u>) เพื่อหลีกเลี่ยงการเข้าคู่เบสรวมถึง โครงสร้างทุติยภูมิที่ไม่ต้องการ

รูปที่ 3 ชื่อและลำดับเบสของออลิโกนิวคลีโอไทด์แต่ละสาย กรอบเส้นประแสดงบริเวณที่เป็นแอพทาเมอร์ที่ จำเพาะกับโปรตีนทรอมบิน (บน) และบริเวณที่เป็นแอพทาเมอร์ที่จำเพาะกับอะดิโนซีน (ล่าง)

โปรตีนทรอมบิน ใช้โปรตีนทรอมบินจากพลาสมาของมนุษย์จากบริษัท Sigma-Aldrich (T6884, St Louis, MO, USA) วัดความเข้มข้นของโปรตีนทรอมบินโดยใช้ค่า $\mathbf{E}_{280}^{1\%} = 18.3$ (ข้อมูลจากบริษัทผู้ผลิต) และ เก็บในสารละลายบัฟเฟอร์ประกอบด้วย Tris ความเข้มข้น 10 มิลลิโมลาร์ ค่า pH 8.0 และ BSA (B4284, Sigma Aldrich, St Louis, MO, USA) ความเข้มข้น 0.1% โดยมวลต่อปริมาตร แบ่งสารละลายเป็นหลอด ปริมาตรหลอดละ 200 ไมโครลิตร เก็บที่อุณหภูมิ -20 องศาเซลเซียส สำหรับการจัดเก็บระยะยาว ก่อนใช้ สารละลายโปรตีนทรอมบินถูกทำให้ละลายและถูกผสมจนสารละลายเป็นเนื้อเดียวกัน และถูกใช้หมดภายใน 5 วัน

อะดิโนซีน ใช้อะดิโนซีนจากบริษัท Sigma-Aldrich (A9251, St Louis, MO, USA) วัดความเข้มข้น ของอะดิโนซีนโดยใช้ค่า ϵ_{259} =15,400 $\mathrm{M^{-1}cm^{-1}}^{[33]}$ (ข้อมูลจากบริษัทผู้ผลิต)

3.2 การเตรียมเซนเซอร์

สต็อกของสารละลายออลิโกนิวคลิโอไทด์ถูกเตรียมโดยเติมน้ำปราศจากไอออน (deionized water) ผสมกับดีเอ็นเอที่มาในรูปผงพร้อมละลายน้ำ (lyophyilized) วัดความเข้มข้นของสารละลายดีเอ็นเอที่ไม่มีการ ติดฉลากจากค่า OD₂₆₀ ประกอบกับค่าสัมประสิทธิ์การดูดกลืนแสงที่ได้รับจากบริษัทผู้ผลิต ในกรณีของ สารละลายดีเอ็นเอที่มีการติดฉลาก วัดค่าความเข้มข้นของสารละลายดีเอ็นเอจากค่าการดูดกลืนแสงของ TMR ที่ความยาวคลื่น 558 นาโนเมตร (OD₅₅₈) ร่วมกับค่าสัมประสิทธิ์การดูดกลืนแสงเท่ากับ 75,200 M⁻¹ cm⁻¹ [34] จากนั้น สต็อกของสารละลายดีเอ็นเอถูกแบ่งเป็นหลอด ปริมาตรหลอดละ 200 ไมโครลิตร แล้วเก็บที่อุณหภูมิ -20 องศาเซลเซียสเพื่อการเก็บรักษาระยะยาว การรวมสายดีเอ็นเอเพื่อทำเป็นเซนเซอร์สำหรับตรวจวัดโปรตีน ทรอมบินทำโดยผสมสาย B สาย tA และสาย tC ตามอัตราส่วนที่ต้องการในสารละลายบัฟเฟอร์ (Tris pH 8.0 ความเข้มข้น 10 มิลลิโมลาร์) มีโซเดียมคลอไรด์ความเข้มข้น 200 มิลลิโมลาร์ สำหรับที่อัตราส่วน 1:1:1 (B:tA:tC) ใช้ความเข้มข้น 15 ไมโครโมลาร์สำหรับทุกสาย และที่อัตราส่วนอื่นที่สูงขึ้นใช้ความเข้มข้นที่เพิ่มขึ้น เป็นสัดส่วนกันไป จากนั้นส่วนผสมถูกให้ความร้อนที่อุณหภูมิ 90 องศาเซลเซียสในอ่างน้ำร้อน เป็นเวลา 10 นาที ก่อนปล่อยให้เย็นลงอย่างช้าๆข้ามคืนจนกระทั่งถึงอุณหภูมิห้อง กระบวนการรวมสายดีเอ็นเอเพื่อทำเป็น เซนเซอร์สำหรับตรวจวัดอะดิโนซีนมีลักษณะการทำแบบเดียวกัน

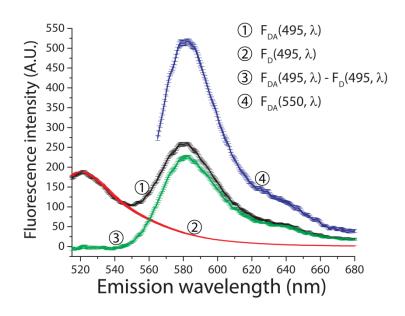
3.3 การวัดประสิทธิภาพการถ่ายโอนพลังงานด้วยกระบวนการ FRET และการแปลผล

กระบวนการวัดค่า (ratio)_A การเปลี่ยนแปลงโครงสร้างของเซนเซอร์ถูกติดตามด้วยการวัดค่า ประสิทธิภาพการถ่ายโอนพลังงานด้วยกระบวนการ FRET (เรียกว่า ค่า E) ค่า E เกี่ยวข้องกับระยะห่าง R ระหว่างตัวให้ (FRET donor) ซึ่งในที่นี้คือฟลูออเรสซีน และตัวรับ (FRET acceptor) ในทีนี้คือเททระเมทิล-โรดามีน ดังสมการ $\mathbf{E} = \frac{\mathbf{R}_0^6}{\mathbf{R}_0^6 + \mathbf{R}^6}$ เมื่อ \mathbf{R}_0 คือค่ารัศมีฟอสเตอร์บ่งบอกระยะห่างที่ทำให้ค่า E มีค่า 50 % ใน งานวิจัยนี้วัดค่า E โดยระเบียบวิธี (ratio)_A หากเลือกค่าความยาวคลื่นกระตุ้นฟลูออเรสซีนและเททระเมทิลโรดามีนให้ใกล้เคียงกับค่าความยาวคลื่นกระตุ้นที่มีประสิทธิภาพมากที่สุด ที่ความยาวคลื่น 495 นาโน เมตร และ 550 นาโนเมตร จะได้ว่าค่า(ratio)_A สัมพันธ์กับค่า E ดังสมการ

$$\left(\text{ratio}\right)_{A} = \frac{\gamma}{\gamma + \beta} \times \frac{\varepsilon_{F}(495) \times E + \varepsilon_{TMR}(495)}{\varepsilon_{TMR}(550)} \tag{1}$$

เมื่อ γ คือสัดส่วนของเซนเซอร์ที่มีการติดฉลากสมบูรณ์ทั้งตัวให้และตัวรับ

eta คือสัดส่วนของเซนเซอร์ที่มีการติดฉลากตัวรับเพียงอย่างเดียว


 $\epsilon_{\text{F}}(495)$, $\epsilon_{\text{TMR}}(495)$ และ $\epsilon_{\text{TMR}}(550)$ คือสัมประสิทธิ์การดูดกลืนแสงของฟลูออเรสซีนที่ ความยาวคลื่น 495 นาโนเมตร ของเททระเมทิลโรดามีนที่ความยาวคลื่น 495 นาโนเมตรและที่ 550 นาโน-เมตร ตามลำดับ

ในอีกด้านหนึ่ง (ratio) คือสัดส่วนระหว่างค่าการเปล่งแสงทั้งหมดของ тмк เมื่อกระตุ้นที่ความยาว คลื่น 495 นาโนเมตร (ผ่านกระบวนการ FRET และกระบวนการกระตุ้นโดยตรง) และค่าการเปล่งแสงทั้งหมด

ของ TMR เมื่อกระตุ้นที่ความยาวคลื่น 550 นาโนเมตร (ผ่านกระบวนการกระตุ้นโดยตรงเพียงอย่างเดียว) ดัง แสดงในสมการที่ 2 (ดัดแปลงจาก [35])

$$(ratio)_{A} = \frac{\sum_{i} F_{TMR} (\lambda_{495}, \lambda_{i})}{\sum_{i} F_{TMR} (\lambda_{550}, \lambda_{i})}$$
 (2)

ดังนั้นสามารถวัด (ratio) ได้โดยทำตามกระบวนการต่อไปนี้ [26, 35] ขั้นแรก กระตุ้นด้วยความยาว คลื่น 495 นาโนเมตร วัดสเปกตรัมการเปล่งแสง เรียกสเปกตรัมที่ได้ว่า F_{DA} (495, λ) (รูปที่ 4) และกระตุ้นที่ ความยาวคลื่น 550 นาโนเมตร วัดสเปกตรัมการเปล่งแสง เรียกสเปกตรัมที่ได้ว่า F_{DA} (550, λ) จากนั้นวัด สเปกตรัมการเปล่งแสงของฟลูออเรสซีนที่ได้จากดีเอ็นเอที่มีการติดฉลากด้วยฟลูออเรสซีน เพียงอย่างเดียว ที่ ความยาวคลื่นกระตุ้น 495 นาโนเมตร ปรับค่าความสูงของยอดสเปกตรัมที่ได้ ให้เท่ากับความสูงของค่าความ เข้มการเปล่งแสงของฟลูออเรสซีนในสเปกตรัม F_{DA} (495, λ) เรียกสเปกตรัมที่ได้นี้ว่า F_{D} (495, λ) ค่าเศษใน สมการที่ 2 ได้จากพื้นที่ใต้สเปกตรัม F_{DA} (495, λ) และค่าส่วนในสมการที่ 2 ได้จากพื้นที่ใต้ สเปกตรัม F_{DA} (550, λ)

รูปที่ 4 สเปกตรัมการเปล่งแสงที่จำเป็นในการคำนวณ (ratio) $_A$ $_{DA}$ $_{DA}$

สเปกตรัมการเปล่งแสงทั้งหมดวัดโดยเครื่องสเปกโตรโฟโตมิเตอร์รุ่น LS55 ยี่ห้อ Perkin Elmer (Perkin Elmer Inc., Waltham, MA, USA) เพื่อให้แน่ใจว่าสัญญาณการเปล่งแสงที่วัดได้เป็นตัวแทนของ สัญญาณการเปล่งแสงทั้งหมด ได้มีการใช้โพลาไรเซอร์สำหรับการกระตุ้น (excitation polarizer) และ โพลา ไรเซอร์สำหรับการเปล่งแสง (emission polarizer) โดยแสงกระตุ้นจะมีโพลาไรเซชันในแนวดิ่ง วัดสเปกตรัม การเปล่งแสงสองสเปกตรัม สเปกตรัมแรกคือแสงที่เปล่งออกมามีโพลาไรเซชันในแนวดิ่ง (เรียกว่า $F_{VH}(\lambda_{ex},\lambda)$) และสเปกตรัมที่สองคือแสงที่เปล่งออกมามีโพลาไรเซชันในแนวระดับ (เรียกว่า $F_{VH}(\lambda_{ex},\lambda)$) สเปกตรัมที่เป็นตัวแทนของความเข้มแสงทั้งหมด $F_{total}(\lambda_{ex},\lambda)$ สามารถสร้างจากการคำนวณความเข้มแสง ทั้งหมดที่แต่ละความยาวคลื่น λ , โดยใช้สมการ

$$\begin{split} F_{\text{total}}\left(\lambda_{\text{ex}},\lambda_{\text{i}}\right) &= F_{\text{VV}}\left(\lambda_{\text{ex}},\lambda_{\text{i}}\right) + 2 \times G\left(\lambda_{\text{i}}\right) \times F_{\text{VH}}\left(\lambda_{\text{ex}},\lambda_{\text{i}}\right) \\ \text{เมื่อ } G\left(\lambda_{\text{i}}\right) &= G\left(\lambda_{\text{i}}\right) = \frac{F_{\text{HV}}\left(\lambda_{\text{ex}},\lambda_{\text{i}}\right)}{F_{\text{HH}}\left(\lambda_{\text{ex}},\lambda_{\text{i}}\right)} \end{split} \tag{3}$$

การไตเตรตความเข้มข้นของทรอมบินและอะดิโนซีน เซนเซอร์สำหรับการตรวจวัดทรอมบิน หรือ สำหรับการตรวจวัดอะดิโนซีนที่รวมสายแล้ว (ใช้ชื่อว่า tC-B-tA และ aC-B-aA ตามลำดับ) ถูกทำให้เจือจาง จากสารละลายสต็อกด้วยสารละลายบัฟเฟอร์ ผสมกับสารละลายเกลือ MgCl₂ และ KCl ในหลอดพลาสติก ขนาด 600 ไมโครลิตร เก็บไว้ในที่มืดที่อุณหภูมิห้อง รอเป็นเวลา 30 นาที จากนั้นเติมทรอมบินหรืออะดิโนซีน และรออีก 1 ชั่วโมง ส่วนผสมของสารละลายในขั้นตอนสุดท้าย (เว้นเสียว่าเขียนเป็นอย่างอื่น) ประกอบด้วย tC-B-tA หรือ aC-B-aA ความเข้มข้น 133 นาโนโมลาร์ (วัดจากค่าการดูดกลืนแสงของ TMR ที่ความยาวคลื่น 558 นาโนเมตร) BSA ความเข้มข้น 0.1% โดยมวลต่อปริมาตร NaCl ความเข้มข้น 1.77 มิลลิโมลาร์ (ที่เหลือ จากกระบวนการรวมสาย) MgCl₂ KCl และ ทรอมบิน/อะดิโนซีน ที่ความเข้มข้นต่างๆ ในสารละลายบัฟเฟอร์

การชะส่วนแปรผันของเซนเซอร์สำหรับตรวจวัดทรอมบิน เซนเซอร์สำหรับตรวจวัดทรอมบินที่รวม สายแล้ว (tC-B-tA) ถูกเจือจางด้วยสารละลายบัฟเฟอร์ ผสมกับสารละลายสต็อกของเกลือ $MgCl_2$ และ KCl เก็บไว้ในที่มืดที่อุณหภูมิห้อง รอเป็นเวลา 30 นาที จากนั้นผสมสายชะ (tAW หรือ tAW-4 หรือ tCW หรือ tCW-4 แล้วแต่การทดลอง) และรออีก 1 ชั่วโมง ส่วนผสมของสารละลายในขั้นตอนสุดท้าย ประกอบด้วย tC-B-tA ความเข้มข้น 133 นาโนโมลาร์ BSA ความเข้มข้น 0.1% โดยมวลต่อปริมาตร NaCl ความเข้มข้น 1.77 มิลลิโมลาร์ $MgCl_2$ และ KCl ความเข้มข้น 5 มิลลิโมลาร์ (ความเข้มข้นที่ทำให้เซนเซอร์มีความไวมากที่สุด) และสายชะที่ความเข้มข้นต่างๆ ในสารละลายบัฟเฟอร์

การประกอบเซนเซอร์สำหรับตรวจวัดอะดิโนซีน สาย B ถูกทำให้เจือจางด้วยสารละลายบัฟเฟอร์ ผสมกับสารละลายสต็อกของเกลือ $MgCl_2$ และ KCl เก็บไว้ในที่มืดที่อุณหภูมิห้อง รอเป็นเวลา 30 นาที จากนั้นผสมสาย aA และ aC และรออีก 1 ชั่วโมง และทำการวัด (ratio)_A (สำหรับตัวอย่างที่ไม่มีอะดิโนซีน) หรือเติมอะดิโนซีนให้มีความเข้มข้น 50 ไมโครโมลาร์ และรอเป็นเวลา 1 ชั่วโมงแล้วจึงทำการวัด (ratio)_A สำหรับตัวอย่างที่ต้องเติมอะดิโนซีน

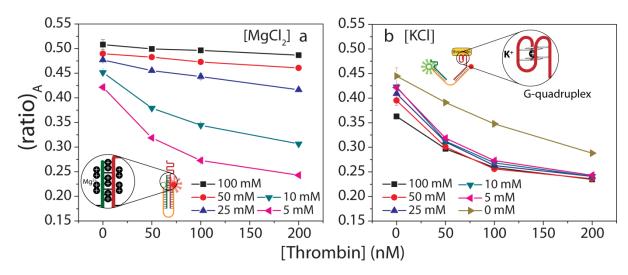
การชะส่วนแปรผันของเซนเซอร์สำหรับตรวจวัดทรอมบินและการประกอบเซนเซอร์สำหรับตรวจวัดอะดิโนซีนต่อกันเป็นลำดับ การทดลองถูกแบ่งออกเป็น 6 ขั้นตอนตามลำดับดังนี้ ขั้นที่ 1 เป็นการรวมสาย
ของเซนเซอร์สำหรับตรวจวัดทรอมบิน ขั้นที่ 2 เป็นการชะสาย tC ขั้นที่ 3 เป็นการชะสาย tA ขั้นที่ 4 เป็นการ
ประกอบสาย aA ขั้นที่ 5 เป็นการประกอบสาย aC และขั้นที่ 6 เป็นการวัดการตอบสนองของเซนเซอร์ที่
ประกอบได้ต่ออะดิโนซีนความเข้มข้น 20 ไมโครโมลาร์ เพื่อความสะดวก ตัวอย่างจะถูกเตรียมในหลอด
พลาสติกขนาด 600 ไมโครลิตร จำนวน 6 หลอด สำหรับ 6 ขั้นตอนการทดลอง ซึ่งรายละเอียดการผสมสาร
ในแต่ละหลอด มีดังนี้

หลอดที่ 1 เตรียมเซนเซอร์สำหรับการตรวจวัดทรอมบิน (tC-B-tA) ให้มีความเข้มข้น 15 ไมโครโมลาร์ ในสารละลายบัฟเฟอร์ที่มี NaCl ความเข้มข้น 200 มิลลิโมลาร์ ในหลอดพลาสติกปริมาตร 600 ไมโครลิตร รอ เป็นเวลา 1 ชั่วโมง (เก็บหลอดไว้ในที่มืด ที่อุณหภูมิห้อง ยกเว้นระบุนอกเหนือจากนี้) จากนั้นเจือจางด้วย สารละลายบัฟเฟอร์และผสม $MgCl_2$ และ KCl รอเป็นเวลา 30 นาที จากนั้นเติม BSA และรออีกเป็นเวลา 1 ชั่วโมงก่อนทำการวัด (ratio) $_A$ ส่วนผสมของสารละลายในขั้นตอนสุดท้าย ประกอบด้วยเซนเซอร์สำหรับ ตรวจวัดทรอมบินที่ประกอบแล้ว (คาดว่าอยู่ในรูป tC-B-tA) ความเข้มข้น 133 นาโนโมลาร์ (วัดจากความ เข้มข้นของสาย B) BSA ความเข้มข้น 0.1% โดยมวลต่อปริมาตร NaCl ความเข้มข้น 1.77 มิลลิโมลาร์ $MgCl_2$ และ KCl ความเข้มข้น 5 มิลลิโมลาร์

หลอดที่ 2 เตรียมเซนเซอร์สำหรับการตรวจวัดทรอมบิน (tC-B-tA) ให้มีความเข้มข้น 15 ไมโครโมลาร์ ผสมกับสาย tCW-4 ความเข้มข้น 75 ไมโครโมลาร์ ในสารละลายบัฟเฟอร์ที่มี NaCl ความเข้มข้น 200 มิลลิโม ลาร์ ในหลอดพลาสติกปริมาตร 600 ไมโครลิตร รอเป็นเวลา 1 ชั่วโมง จากนั้นเจือจางด้วยสารละลายบัฟเฟอร์ และผสม $MgCl_2$ และ KCl รอเป็นเวลา 30 นาที จากนั้นเติม BSA และรออีกเป็นเวลา 1 ชั่วโมงก่อนทำการวัด (ratio) $_A$ ส่วนผสมของสารละลายในขั้นตอนสุดท้าย ประกอบด้วยเซนเซอร์ที่ไม่สมบูรณ์ (คาดว่าอยู่ในรูป สาย B เข้าคู่เบสกับสาย tA หรือเรียกว่า B-tA hybrid) ความเข้มข้น 133 นาโนโมลาร์ (วัดจากความเข้มข้นของ สาย B) สาย tCW-4 ความเข้มข้น 655 นาโนโมลาร์ (คิดรวมจากทุกรูปแบบ ไม่ว่าจะอยู่ในรูปอิสระ หรือเข้าคู่ เบสกับสายอื่น) BSA ความเข้มข้น 0.1% โดยมวลต่อปริมาตร NaCl ความเข้มข้น 1.77 มิลลิโมลาร์ $MgCl_2$ และ KCl ความเข้มข้น 5 มิลลิโมลาร์

หลอดที่ 3 เตรียมเซนเซอร์สำหรับการตรวจวัดทรอมบิน (tC-B-tA) ให้มีความเข้มข้น 15 ไมโครโมลาร์ ผสมกับสาย tCW-4 ความเข้มข้น 75 ไมโครโมลาร์ และสาย tAW-4 ความเข้มข้น 75 ไมโครโมลาร์ ใน สารละลายบัฟเฟอร์ที่มี NaCl ความเข้มข้น 200 มิลลิโมลาร์ ในหลอดพลาสติกปริมาตร 600 ไมโครลิตร รอ เป็นเวลา 1 ชั่วโมง จากนั้นเจือจางด้วยสารละลายบัฟเฟอร์และผสม MgCl₂ และ KCl รอเป็นเวลา 30 นาที จากนั้นเติม BSA และรออีกเป็นเวลา 1 ชั่วโมงก่อนทำการวัด (ratio)_A ส่วนผสมของสารละลายในขั้นตอน สุดท้าย ประกอบด้วยเซนเซอร์ที่ไม่สมบูรณ์ (คาดว่าอยู่ในรูป สาย B) ความเข้มข้น 133 นาโนโมลาร์ (วัดจาก ความเข้มข้นของสาย B) สาย tCW-4 ความเข้มข้น 655 นาโนโมลาร์ (คิดรวมจากทุกรูปแบบ) สาย tAW-4 (คิดรวมจากทุกรูปแบบ) ความเข้มข้น 655 นาโนโมลาร์ BSA ความเข้มข้น 0.1% โดยมวลต่อปริมาตร NaCl ความเข้มข้น 1.77 มิลลิโมลาร์ MgCl₂ และ KCl ความเข้มข้น 5 มิลลิโมลาร์

หลอดที่ 4 เตรียมเซนเซอร์สำหรับการตรวจวัดทรอมบิน (tC-B-tA) ให้มีความเข้มข้น 15 ไมโครโมลาร์ ผสมกับสาย tCW-4 ความเข้มข้น 75 ไมโครโมลาร์ สาย tAW-4 ความเข้มข้น 75 ไมโครโมลาร์ และสาย aA ความเข้มข้น 30 ไมโครโมลาร์ ในสารละลายบัฟเฟอร์ที่มี NaCl ความเข้มข้น 200 มิลลิโมลาร์ ในหลอด พลาสติกปริมาตร 600 ไมโครลิตร รอเป็นเวลา 1 ชั่วโมง จากนั้นเจือจางด้วยสารละลายบัฟเฟอร์และผสม MgCl₂ และ KCl รอเป็นเวลา 30 นาที จากนั้นเติม BSA และรออีกเป็นเวลา 1 ชั่วโมงก่อนทำการวัด (ratio)_A ส่วนผสมของสารละลายในขั้นตอนสุดท้าย ประกอบด้วยเซนเซอร์ที่ไม่สมบูรณ์ (คาดว่าอยู่ในรูป B-aA hybrid) ความเข้มข้น 133 นาโนโมลาร์ (วัดจากความเข้มข้นของสาย B) สาย tCW-4 ความเข้มข้น 655 นาโนโมลาร์ (คิดรวมจากทุกรูปแบบ) สาย tAW-4 ความเข้มข้น 655 นาโนโมลาร์ (คิดรวมจากทุกรูปแบบ) สาย aA ความ เข้มข้น 266 นาโนโมลาร์ (คิดรวมจากทุกรูปแบบ) BSA ความเข้มข้น 0.1% โดยมวลต่อปริมาตร NaCl ความ เข้มข้น 1.77 มิลลิโมลาร์ MqCl₂ และ KCl ความเข้มข้น 5 มิลลิโมลาร์


หลอดที่ 5 เตรียมเซนเซอร์สำหรับการตรวจวัดทรอมบิน (tC-B-tA) ให้มีความเข้มข้น 15 ไมโครโมลาร์ ผสมกับสาย tCW-4 ความเข้มข้น 75 ไมโครโมลาร์ สาย tAW-4 ความเข้มข้น 75 ไมโครโมลาร์ สาย aA ความ เข้มข้น 30 ไมโครโมลาร์ และสาย aC ความเข้มข้น 30 ไมโครโมลาร์ ในสารละลายบัฟเฟอร์ที่มี NaCl ความ เข้มข้น 200 มิลลิโมลาร์ ในหลอดพลาสติกปริมาตร 600 ไมโครลิตร รอเป็นเวลา 1 ชั่วโมง จากนั้นเจือจางด้วย สารละลายบัฟเฟอร์และผสม MgCl2 และ KCl รอเป็นเวลา 30 นาที จากนั้นเติม BSA และรออีกเป็นเวลา 1 ชั่วโมงก่อนทำการวัด (ratio) ส่วนผสมของสารละลายในขั้นตอนสุดท้าย ประกอบด้วยเซนเซอร์สำหรับวัดอะดิ โนซีนที่ประกอบแล้ว (คาดว่าอยู่ในรูป aC-B-aA) ความเข้มข้น 133 นาโนโมลาร์ (วัดจากความเข้มข้นของสาย B) สาย tCW-4 ความเข้มข้น 655 นาโนโมลาร์ (คิดรวมจากทุกรูปแบบ) สาย tAW-4 ความเข้มข้น 655 นาโนโมลาร์ (คิดรวมจากทุกรูปแบบ) สาย aC ความเข้มข้น 266 นาโนโมลาร์ (คิดรวมจากทุกรูปแบบ) BSA ความเข้มข้น 0.1% โดยมวลต่อปริมาตร NaCl ความเข้มข้น 1.77 มิลลิโมลาร์ MeCl2 และ KCl ความเข้มข้น 5 มิลลิโมลาร์

หลอดที่ 6 เตรียมเซนเซอร์สำหรับการตรวจวัดทรอมบิน (tC-B-tA) ให้มีความเข้มข้น 15 ไมโครโมลาร์ ผสมกับสาย tCW-4 ความเข้มข้น 75 ไมโครโมลาร์ สาย tAW-4 ความเข้มข้น 75 ไมโครโมลาร์ สาย aA ความ เข้มข้น 30 ไมโครโมลาร์ และสาย aC ความเข้มข้น 30 ไมโครโมลาร์ ในสารละลายบัฟเฟอร์ที่มี NaCl ความ เข้มข้น 200 มิลลิโมลาร์ ในหลอดพลาสติกปริมาตร 600 ไมโครโมลาร์ ในสารละลายบัฟเฟอร์ที่มี NaCl ความ เข้มข้น 200 มิลลิโมลาร์ ในหลอดพลาสติกปริมาตร 600 ไมโครโมลาร์ ในสารละลายบัฟเฟอร์ที่มี งากนั้นเจือจางด้วย สารละลายบัฟเฟอร์และผสม MgCl2 และ KCl รอเป็นเวลา 30 นาที จากนั้นเติม BSA และอะดิโนซีน และรอ อีกเป็นเวลา 1 ชั่วโมงก่อนทำการวัด (ratio) ส่วนผสมของสารละลายในขั้นตอนสุดท้าย ประกอบด้วย เซนเซอร์สำหรับวัดอะดิโนซีนที่ประกอบแล้ว (คาดว่าอยู่ในรูป aC-B-aA) ความเข้มข้น 133 นาโนโมลาร์ (จัด จากความเข้มข้นของสาย B) สาย tCW-4 ความเข้มข้น 655 นาโนโมลาร์ (คิดรวมจากทุกรูปแบบ) สาย aA ความเข้มข้น 266 นาโนโมลาร์ (คิดรวมจาก ทุกรูปแบบ) สาย aC ความเข้มข้น 266 นาโนโมลาร์ (คิดรวมจากทุกรูปแบบ) ลาย aC ความเข้มข้น 0.1% โดยมวลต่อปริมาตร NaCl ความเข้มข้น 1.77 มิลลิโมลาร์ MgCl2 และ KCl ความเข้มข้น 5 มิลลิโมลาร์

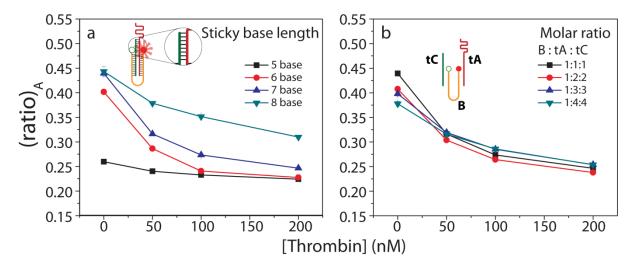
4. ผลการทดลองและวิจารณ์ผลการทดลอง

4.1 เซนเซอร์สำหรับตรวจวัดทรอมบิน: ผลของความเข้มข้นของ ${Mg}^{^{2+}}$ และ ${K}^{^{+}}$

ประสิทธิภาพของเซนเซอร์ขึ้นกับความสมคุลระหว่างการมีโครงสร้างแบบปิดที่แข็งแรง เมื่อไม่มีทรอม บินและความง่ายในการเปลี่ยนโครงสร้างเป็นโครงสร้างแบบเปิดเมื่อมีทรอมบินมาจับ สิ่งที่ต้องการคือเซนเซอร์ ส่วนใหญ่มีโครงสร้างแบบปิดเมื่อไม่มีทรอมบิน เพื่อให้ค่าประสิทธิภาพการถ่ายโอนพลังงานในตอนเริ่มต้นมีค่า สูง แต่ต้องการให้โครงสร้างเปบ่ยิดโม่ยนเป็นแบบเปิดโดยง่ายเมื่อมีทรอมบินมาจับ เพื่อสามารถเห็นการเปลี่ยนแปลง ที่ชัดเจน โครงสร้างแบบปิดมีความเสถียรในสภาวะที่สารละลายมีประจุบวกเพราะประจุบวกจะช่วยลดการ ผลักระหว่างหมู่ฟอสเฟตบนสายดีเอ็นเอสายคู่ทำให้การเข้าคู่เบสในส่วน sticky end มีความเสถียรมากยิ่งขึ้น ในขณะที่โครงสร้างแบบเปิดจะมีความเสถียรเมื่อสารละลายมี K^+ หรือ Na^+ เพราะไอออนดังกล่าวช่วยในการ เกิดโครงสร้าง G-quadruplex $^{(36, 37)}$ ซึ่งเป็นโครงสร้างตติยภูมิที่พบในแอพทาเมอร์ที่จำเพาะกับทรอมบิน $^{(38-40)}$ Mg^{2+} ถูกเลือกใช้ในการทำให้โครงสร้างแบบปิดเสถียรเนื่องจากมีประสิทธิภาพในการลดการผลักกันของหมู่ ฟอสเฟตเหนือไอออนบวกประจุเดี่ยวและไอออนประจุคู่ตัวอื่น $^{(41)}$ ในขณะที่มีไม่ค่อยมีผลต่อการเกิดโครงสร้าง G-quadruplex เมื่อเทียบกับไอออนบวกประจุเดี่ยว และ K^+ ถูกเลือกใช้ในการเพิ่มประสิทธิภาพการเปลี่ยน โครงสร้างจากแบบปิดเป็นแบบเปิด การที่จะได้มาซึ่งเซนเซอร์ที่ทำงานได้ดีจำเป็นต้องมีการทดสอบหาความ เข้มขึ้นที่เหมาะสมของไอออนสองชนิดดังกล่าว

ร**ูปที่ 5** ผลของ ${\rm Mg}^{2+}$ (รูป a) และ ผลของ ${\rm K}^+$ (รูป b) ต่อการตรวจวัดทรอมบิน เป็นที่คาดหมายว่า ${\rm Mg}^{2+}$ ทำ ให้โครงสร้างแบบปิดมีความเสถียรเพราะช่วยลดการผลักเนื่องจากแรงทางไฟฟ้าระหว่างหมู่ฟอสเฟต ในบริเวณ sticky end (รูป a ภาพเล็ก) ในขณะที่ ${\rm K}^+$ ช่วยในการเกิดโครงสร้าง G-quadruplex บนสาย tA (รูป b ภาพ เล็ก) ทำให้การเปลี่ยนโครงสร้างเป็นแบบเปิดเกิดได้ง่ายขึ้น

รูปที่ 5 แสดงผลการทดลองที่ได้จากการใช้ระเบียบวิธี (ratio) ที่ความเข้มข้นต่างๆของ ${
m Mg}^{2+}$ ${
m K}^{+}$ และทรอมบิน รูปแบบโดยทั่วไปของผลการทดลองในรูปที่ 5a แสดงให้เห็นการลดลงของ (ratio) เมื่อความ เข้มข้นของทรอมบินเพิ่มขึ้น ซึ่งการเปลี่ยนแปลงในลักษณะเช่นนี้สอดคล้องกับหลักการทำงานของเซนเซอร์ ที่ว่าการจับของทรอมบินเปลี่ยนสมดุลจากโครงสร้างแบบปิด (สภาวะ FRET สูง หรือ (ratio) สูง) เป็น

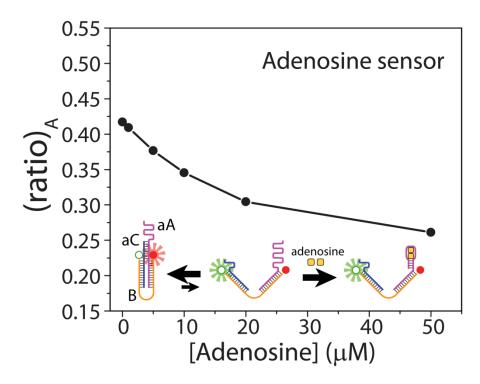

โครงสร้างแบบเปิด (สภาวะ FRET ต่ำ หรือ (ratio) ต่ำ) อย่างไรก็ตามเมื่อพิจารณาในรายละเอียดพบว่ามี ความแตกต่างที่เห็นได้ชัดในสองประเด็นด้วยกันคือ (ratio) ตอนเริ่มต้น (ในสภาวะที่ไม่มีทรอมบิน) และค่า ความไววิเคราะห์ (sensitivity) โดย (ratio) ตอนเริ่มต้นเพิ่มตามความเข้มข้นของ ${\rm Mg}^{2^+}$ ซึ่งสอดคล้องกับ สมมติฐานที่ตั้งไว้ข้างต้นว่าเสถียรภาพของ sticky end เพิ่มตามความเข้มข้นของ ${\rm Mg}^{2^+}$ ส่วนกรณีของความไว วิเคราะห์ ซึ่งมีความหมายคือค่าสัมบูรณ์ของความชันกราฟ มีค่ามากที่ ${\rm Mg}^{2^+}$ ความเข้มข้นต่ำ และลดลงเมื่อ ความเข้มข้นของ ${\rm Mg}^{2^+}$ เพิ่มสูงขึ้น เนื่องจากค่าความไววิเคราะห์บ่งบอกถึงความง่ายในการเปลี่ยนจาก โครงสร้างแบบปิดเป็นโครงสร้างแบบเปิด สามารถวิเคราะห์ได้ว่า ${\rm Mg}^{2^+}$ ขัดขวางการเปลี่ยนแปลงดังกล่าว ดังนั้นในขณะที่การเติม ${\rm Mg}^{2^+}$ มีผลดีคือทำให้โครงสร้างแบบปิดมีความเสถียร แต่ความเข้มข้นที่มากเกินไปจะ ส่งผลเสียทำให้การเปลี่ยนแปลงโครงสร้างเกิดขึ้นได้ยาก เนื่องจากความไววิเคราะห์เป็นสมบัติที่สำคัญของ เซนเซอร์ จึงเลือกใช้ค่าความเข้มข้นของ ${\rm Mg}^{2^+}$ ที่ 5 มิลลิโมลาร์ เป็นที่น่าสังเกตว่าช่วงของการตรวจวัดอยู่ใน ตอนต้นของช่วงนาโนโมลาร์ซึ่งตรงกับช่วงที่ได้จากเซนเซอร์ตรวจวัดทรอมบินที่มีการรายงานมาก่อนหน้า [29, 43]

จากนั้นทดลองเปลี่ยนค่าความเข้มข้นของ ${ t K}^{^{\dagger}}$ จาก 0 5 10 20 50 และ 100 มิลลิโมลาร์ ในขณะที่คง ความเข้มข้นของ ${
m Mg}^{2+}$ ไว้ที่ 5 มิลลิโมลาร์ จากผลการทดลองในรูปที่ 5b พบว่า (ratio) $_{
m A}$ มีแนวโน้มลดลงเมื่อ ความเข้มข้นของทรอมบินเพิ่มขึ้นในลักษณะที่คล้ายกับผลการทดลองในรูปที่ 5a อย่างไรก็ตามในกรณีนี้ $({\sf ratio})_{\!\scriptscriptstyle A}$ ตอนเริ่มต้นลดลงเมื่อความเข้มข้นของ ${\sf K}^{^{\!\scriptscriptstyle +}}$ เพิ่มสูงขึ้น ซึ่งน่าจะมีสาเหตุจากการที่ ${\sf K}^{^{\!\scriptscriptstyle +}}$ ช่วยในการเกิด Gquadruplex ในบริเวณส่วน overhang ของสาย tA ส่งผลให้ sticky end ที่พบในโครงสร้างแบบปิดถูก ทำลาย ส่วนค่าความไววิเคราะห์ที่ความเข้มข้นของ ${ t K}^{\!\scriptscriptstyle \perp}$ เป็น 5 10 25 และ 50 มิลลิโมลาร์มีค่าใกล้เคียงกันแต่ ลดลงเล็กน้อยที่ความเข้มข้น 100 มิลลิโมลาร์ เป็นเพราะว่าการที่จะเห็นการเปลี่ยนแปลงที่ชัดเจน การจับกับ ทรอมบินต้องก่อให้เกิดการเปลี่ยนแปลงโครงสร้างจากแบบปิดเป็นแบบเปิด และมีความเป็นไปได้สูงว่าในกรณี ของ $K^{^{+}}$ ที่ความเข้มข้น 100 มิลลิโมลาร์ เซนเซอร์โดยส่วนใหญ่มีโครงสร้างแบบเปิด การจับกับทรอมบินใน สถานการณ์เช่นนั้นจึงไม่ก่อให้เกิดการเปลี่ยนแปลงสัญญาณที่เห็นได้ชัด ส่งผลให้ค่าความไววิเคราะห์ต่ำ พิจารณากรณีไม่มี $K^{^+}$ พบว่า $(ratio)_A$ ตอนเริ่มต้นมีค่าสูงที่สุดแต่ค่าความไววิเคราะห์กลับมีค่าต่ำ ซึ่งผลที่ได้ก็ สอดคล้องกับความคิดที่ว่า K^{\dagger} หรือ Na^{\dagger} ช่วยเพิ่มความเสถียรให้กับ G-quadruplex ดังนั้นจึงเป็นการยากใน การเปลี่ยนเป็นโครงสร้างแบบเปิดหากไม่มี $K^{^{+}}$ ในสารละลาย อย่างไรก็ตามเป็นที่น่าสังเกตว่าถึงแม้ไม่มี $K^{^{+}}$ เซนเซอร์ก็ยังตอบสนองต่อทรอมบินซึ่งอาจมีสาเหตุมาจากการที่ยังมี Na^+ (ความเข้มข้น 1.77 มิลลิโมลาร์) ที่ ใช้ในกระบวนการรวมสายและหลงเหลืออยู่ในสารละลายหลังจากการเจือจาง หรืออาจเป็นเพราะทรอมบิน ช่วยเพิ่มความเสถียรให้โครงสร้าง G-quadruplex หรืออาจเป็นผลของทั้ง Na^+ และทรอมบินรวมกัน อย่างไรก็ดีจากผลการทดลองทำให้ได้ว่าความเข้มข้นที่เหมาะสมของ $K^{^{\dagger}}$ อยู่ที่ 5 มิลลิโมลาร์

4.2 เซนเซอร์สำหรับตรวจวัดทรอมบิน: ผลของความยาวของส่วน sticky end และผลของสัดส่วนของ การผสมสายดีเอ็นเอ

ต่อไปทำการทดลองหาค่าความยาวที่เหมาะสมของส่วน sticky end ตามที่ได้วิเคราะห์มาก่อนหน้า ความไววิเคราะห์ของเซนเซอร์ขึ้นกับส่งที่ขัดแย้งกันสองประการ กล่าวคือหากโครงสร้างแบบปิด ขาดความ

แข็งแรงโมเลกุลเซนเซอร์โดยส่วนใหญ่จะมีโครงสร้างแบบเปิด แต่หากโครงสร้างแบบปิดมีความเสถียร จนเกินไป การเปลี่ยนเป็นโครงสร้างแบบเปิดก็จะเกิดขึ้นได้ยาก ซึ่งไม่ว่าจะเป็นกรณีใดก็ส่งผลในแง่ลบต่อความ ไววิเคราะห์ จากการพิจารณาโครงสร้างจะเห็นได้ว่าเซนเซอร์ถูกออกแบบให้ส่วนหนึ่งของแอพทาเมอร์สามารถ เกิดเป็น sticky end เพื่อที่ว่าการจับกับสารที่ต้องการวิเคราะห์ลดความเสถียรของ sticky end เพื่อศึกษา ความยาวของ sticky end ที่เหมาะสม สาย tC ความยาว 17-20 เบส (เพิ่มความยาวทางด้านปลาย 3[,] ดูรูปที่ 3) ซึ่งจะก่อให้เกิด sticky end ความยาว 5-8 เบส ถูกใช้ในการประกอบเซนเซอร์ ในขณะที่สาย tA มีความ ยาวคงที่ ดังที่ปรากฏในรูปที่ 6a ทั้ง (ratio)₄ ตอนเริ่มต้นและความไววิเคราะห์เพิ่มขึ้นเมื่อความยาวของ sticky end เพิ่มจาก 5 – 7 เบส ซึ่งที่ความยาว 5 เบส sticky end สั้นจนทำให้โครงสร้างแบบปิดไม่มีความเสถียร เซนเซอร์โดยส่วนใหญ่จึงอยู่ในโครงสร้างแบบเปิด ดูได้จาก (ratio)_A ตอนเริ่มต้นที่ค่อนข้างต่ำและการเติมทรอ มบินไม่ทำให้เห็นการเปลี่ยนแปลงที่ชัดเจน เมื่อเพิ่มความยาวของ sticky end เป็น 6 และ 7 เบส ทำให้ เซนเซอร์ทำงานได้ดีขึ้นเพราะมีเซนเซอร์ในรูปโครงสร้างแบบปิดจำนวนมากขึ้น เมื่อเกิดการจับกับทรอมบินจึง เห็นการเปลี่ยนแปลงที่ชัดเจนยิ่งขึ้น จากผลการทดลองยังสรุปได้อีกว่า ถึงแม้ว่า sticky end ความยาว 7 เบส ทำให้โครงสร้างแบบปิดมีความเสถียรเห็นได้จาก (ratio)_A ตอนเริ่มต้นที่มีค่าสูง แต่ก็ไม่เสถียรจนเกินไป จึงเป็น เหตุผลให้ความไววิเคราะห์ในกรณีของ 7 เบสมีค่าสูงกว่ากรณีของ 6 เบส การเพิ่มความยาวเป็น 8 เบสไม่ทำ ให้ $(ratio)_A$ ตอนเริ่มต้นเปลี่ยนแปลง บ่งบอกว่าสัดส่วนของเซนเซอร์ที่มีโครงสร้างแบบปิดในกรณีของ stickyend ความยาว 7 เบสและความยาว 8 เบสไม่แตกต่างกันอย่างมีนัยสำคัญ แต่เนื่องจากความแข็งแรงที่ มากกว่า ทำให้ sticky end ความยาว 8 เบส ถูกทำลายได้ยากกว่าส่งผลให้ค่าความไววิเคราะห์ลดลง ดังนั้นจึง เลือกใช้ sticky end ความยาว 7 เบส



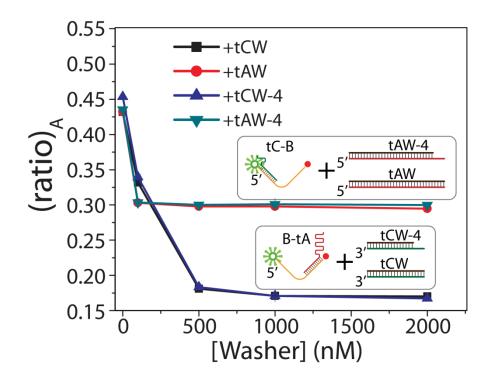
รูปที่ 6 (a) ผลของความยาว sticky end ต่อประสิทธิภาพของเซนเซอร์ โดยเปลี่ยนความยาวของสาย tC ตั้งแต่ทางปลายด้าน 3' ตั้งแต่ 17 – 20 เบส ใช้อัตราส่วนสายดีเอ็นเอที่ 1:1:1 (b) ผลของอัตราส่วนสายดีเอ็น เอ ต่อประสิทธิภาพของเซนเซอร์ โดยในขั้นตอนการรวมสาย ใช้สาย B ความเข้มข้น 15 ไมโครโมลาร์ที่ทุก อัตราส่วนผสม

ถัดไปเป็นผลของสัดส่วนโมลของสายดีเอ็นเอต่อประสิทธิภาพการทำงานของเซนเซอร์ โดยในขั้นตอน การรวมสาย ใช้สาย B ความเข้มข้น 15 ไมโครโมลาร์ ในขณะที่ความเข้มข้นของสาย tA และ สาย tC เปลี่ยนแปลงตามอัตราส่วนที่ต้องการ จากผลการทดลองในรูปที่ 6b พบว่า (ratio) ตอนเริ่มต้นและความไว วิเคราะห์จากทุกกรณีแตกต่างกันเล็กน้อย โดยความไววิเคราะห์และ (ratio) ตอนเริ่มต้นมีค่าสูงที่สุดในกรณี ของอัตราส่วน 1:1:1 (สาย B:สาย tA: สาย tC) และค่าทั้งสองลดลงเมื่อเพิ่มสัดส่วนของสาย tC และ สาย tA คณะผู้วิจัยยังไม่แน่ใจถึงสาเหตุของผลดังกล่าวแต่สิ่งหนึ่งที่เป็นไปได้คือที่ความเข้มข้นสูงๆ สาย tA และ สาย tC ที่เป็นอิสระเริ่มแข่งขันการจับกับดีเอ็นเอคู่สมในบริเวณ sticky end ส่งผลให้ sticky end ถูกทำลายและ ทำให้ (ratio) ตอนเริ่มต้นและความไววิเคราะห์มีค่าลดน้อยลง อย่างไรก็ดีข้อสังเกตดังกล่าวเป็นเพียงการ ตั้งสมมติฐาน และจำเป็นต้องมีการทำการทดลองเพิ่มเติมเพื่อทดสอบความถูกต้อง กล่าวโดยสรุปสำหรับใน งานวิจัยนี้ส่วนผสม 1:1:1 คืออัตราส่วนที่เหมาะสม

4.3 เซนเซอร์สำหรับตรวจวัดอะดิโนซีน

เพื่อพิสูจน์ว่ากลไกการทำงานของเซนเซอร์ที่พัฒนาขึ้น สามารถใช้ได้กับเซนเซอร์สำหรับตรวจวัดสาร ที่ต้องการวิเคราะห์ชนิดอื่น คณะผู้วิจัยจึงได้สร้างเซนเซอร์สำหรับตรวจวัดอะดิโนซีน ซึ่งเป็นสารที่ต้องการ วิเคราะห์ต้นแบบอีกชนิดหนึ่ง อะดิโนซีนแตกต่างกับทรอมบินในแง่ที่ว่าอะดิโนซีนและแอพทาเมอร์สำหรับจับ กับอะดิโนซีนมีค่าคงที่การแตกตัวอยู่ในช่วงไมโครโมลาร์ จึงจัดว่าความแข็งแรงในการจับกันระหว่างอะดิโนซีน กับแอพทาเมอร์สำหรับจับกับอะดิโนซีนมีน้อยกว่าในกรณีของทรอมบิน เซนเซอร์สำหรับตรวจวัดอะดิโนซีน ประกอบด้วยสาย B ที่ใช้ประกอบเป็นเซนเซอร์สำหรับตรวจวัดทรอมบิน แต่ใช้สายแอพทาเมอร์ที่จับอย่าง จำเพาะเจาะจงกับอะดิโนซีน (anti-adenosine aptamer) และสายคู่สมที่เหมาะกับสายแอพทาเมอร์ชนิดนี้ (สาย aA และ aC ในรูปที่ 2 และ 3) หลักการทำงานของเซนเซอร์ยังคงเดิม กล่าวคือในสภาวะที่ไม่มีอะดิโนซีน เซนเซอร์โดยส่วนใหญ่มีโครงสร้างแบบปิดเนื่องจาก sticky end ระหว่างสาย aA และ aC แต่การจับกัน ระหว่างอะดิโนซีนและแอพทาเมอร์ทำลายการเข้าคู่เบสดังกล่าวนำไปสู่โครงสร้างแบบเปิด เบื้องต้นในรูปที่ 7 แสดงให้เห็นว่าเซนเซอร์สำหรับตรวจวัดอะดิโนซีนมี (ratio) หีสู่ง (ประมาณ 0.42) ตอน เริ่มต้นในสภาวะที่ไม่มีอะดิโนซีนและ (ratio) มีค่าลดลงเมื่อความเข้มข้นของอะดิโนซีนเพิ่มสูงขึ้น ซึ่งแนวโน้ม การลดลงของ (ratio)_A ดังกล่าวตรงกับสิ่งที่พบในกรณีของเซนเซอร์สำหรับตรวจวัดทรอมบิน ต่างกันตรงที่ใน กรณีนี้ช่วงความเข้มข้นที่ตรวจวัดได้อยู่ในช่วงไมโครโมลาร์ สอดคล้องกับแอพทาเมอร์เซนเซอร์ที่มีการรายงาน มาก่อนหน้านี้^{129]} ดังนั้นเซนเซอร์สำหรับตรวจวัดอะดิโนซีนที่พัฒนาขึ้นจึงใช้งานได้และทางคณะผู้วิจัยเชื่อมั่นว่า หลักการทำงานดังกล่าวนี้จะสามารถประยุกต์ใช้ได้กับเซนเซอร์อีกหลายชนิด

รูปที่ 7 ความสัมพันธ์ระหว่าง (ratio) กับความเข้มข้นอะดิโนซี่นซึ่งแสดงการตอบสนองของเซนเซอร์สำหรับ ตรวจวัดอะดิโนซีน ซึ่งเซนเซอร์ประกอบด้วยสาย B ติดฉลากด้วยสารเรื่องแสง F และ TMR ส่วนสายแอพทา เมอร์และสายคู่สมเป็นสายแอพทาเมอร์ที่จำเพาะกับอะดิโนซีน (anti-adenosine aptamer) และสายคู่สม (สาย aA และสาย aC) การลดลงของ (ratio) เมื่อความเข้มข้นของอะดิโนซีนเพิ่มสูงขึ้นมีลักษณะคล้ายกับ กรณีของเซนเซอร์สำหรับตรวจวัดทรอมบิน ต่างกันตรงที่ในกรณีนี้ความเข้มข้นที่ตรวจวัดได้อยู่ในช่วงไมโครโม ลาร์


4.4 การเปลี่ยนชนิดเซนเซอร์

เพื่อแสดงศักยภาพของเซนเซอร์ที่พัฒนาขึ้น คณะผู้วิจัยทำการทดลองเพื่อแสดงให้เห็นว่าสามารถ เปลี่ยนเซนเซอร์สำหรับตรวจวัดทรอมบิน เป็นเซนเซอร์สำหรับตรวจวัดอะดิโนซีน โดยการชะเอาส่วนแปรผัน ของเซนเซอร์สำหรับตรวจวัดทรอมบิน (สาย tA และ tC) ออกจากสาย B จากนั้นประกอบส่วนแปรผันของ เซนเซอร์สำหรับตรวจวัดอะดิโนซีน (สาย aA และ aC) เข้ากับสาย B โดยการทดลองดังกล่าวแบ่งออกเป็น 3 ขั้นตอนย่อย คือ การชะส่วนแปรผันของเซนเซอร์สำหรับตรวจวัดทรอมบิน การประกอบเซนเซอร์สำหรับ ตรวจวัดอะดิโนซีน และ การชะส่วนแปรผันของเซนเซอร์สำหรับตรวจวัดทรอมบินและการประกอบเซนเซอร์สำหรับตรวจวัดอะดิโนซีน ต่อกันเป็นลำดับ

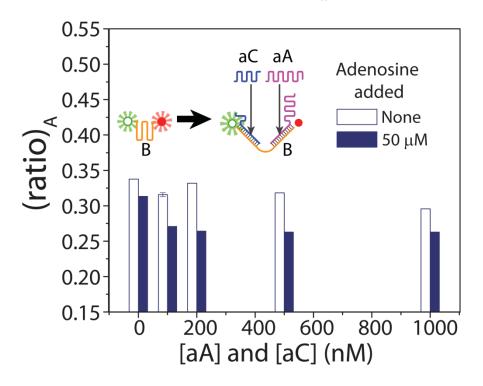
4.4.1 การชะส่วนแปรผันของเซนเซอร์สำหรับตรวจวัดทรอมบิน

การชะทำได้โดยการผสมสายคู่สมที่เหมาะสมซึ่งมีชื่อว่า สายชะ โดยส่วน overhang บนสาย tA และ สาย tC ทำหน้าที่เป็น toehold ^[45] สำหรับให้สายชะจับก่อนเกิดการชะเอาสายทั้งสองออกจากสาย B ในการ ทดลองนี้มีการใช้สายชะสองชุดเพื่อทดสอบประสิทธิภาพของการชะ ชุดแรกประกอบด้วยสาย tAW และ tCW (รูปที่ 3 และ 8) ซึ่งเป็นสายคู่สมที่สมบูรณ์กับสาย tA และสาย tC ในขณะที่ชุดที่สองสั้นกว่าชุดแรก 4 เบส (ประกอบด้วยสาย tAW-4 และ tCW-4) เหตุผลที่เลือกทดสอบใช้สายชุดที่สองเป็นดังนี้ เนื่องจากนอกจากสาย

tA และสาย tC ในเซนเซอร์สำหรับตรวจวัดทรอมบินแล้ว สายชะยังสามารถเข้าคู่เบสกับสาย aA และสาย aC ในเซนเซอร์สำหรับตรวจวัดอะดิโนซีนได้อีกด้วย หลังจากขั้นตอนการชะ สาย aA และสาย aC จะถูกเติมลงใน สารละลายเพื่อประกอบกับสาย B เป็นเซนเซอร์สำหรับตรวจวัดอะดิโนซีนที่สมบูรณ์ อย่างไรก็ตามสายชะที่ยัง หลงเหลืออยู่ในสารละลายจะขัดขวางกระบวนการประกอบเป็นเซนเซอร์ดังกล่าว ผลกระทบดังกล่าวเป็นสิ่งที่ หลีกเลี่ยงไม่ได้เพราะการออกออกแบบให้มีการใช้สาย B ร่วมกัน แต่สามารถทำให้เกิดได้ยากขึ้นโดยการทำให้ ส่วนเข้าคู่เบสระหว่างสายชะกับสาย tA/tC มีความยาวน้อยลง จึงเป็นสาเหตุให้คณะผู้วิจัยทดสอบการใช้สาย ชะชุดที่สอง ซึ่งหากพบว่ามีประสิทธิภาพไม่แตกต่างกับสายชะชุดแรกที่ยาวกว่า ก็จะใช้สายชะชุดที่สองในการ ทดลองต่อไป

รูปที่ 8 ความสัมพันธ์ระหว่าง (ratio) กับความเข้มข้นของสายชะ เซนเซอร์สำหรับตรวจวัดอะดิโนซีนถูกผสม กับสายชะสี่แบบ โดยสาย tAW (ความยาว 30 เบส) และ สาย tAW-4 (ความยาว 26 เบส) เป็นสายสำหรับชะ สาย tA ออกจากเซนเซอร์สำหรับวัดทรอมบิน เหลือสาย tC บนสาย B (เรียกว่า tC–B hybrid) และของเสียที่ เป็นดีเอ็นเอสายคู่ (ภาพเล็ก บน) ในขณะที่สาย tCW (ความยาว 19 เบส) และ สาย tCW-4 (ความยาว 15 เบส) เป็นสายสำหรับชะสาย tC ออกจากเซนเซอร์สำหรับวัดทรอมบิน เหลือสาย tA บนสาย B (เรียกว่า tA–B hybrid) และของเสียที่เป็นดีเอ็นเอสายคู่ (ภาพเล็ก ล่าง) ทั้ง tC–B hybrid และ tA-B hybrid มี (ratio) ที่ ลดลงเมื่อเทียบกับ (ratio) ของโครงสร้างแบบปิด ทั้งนี้เนื่องจากระยะห่างระหว่างสารเรืองแสง F และ TMR ที่เพิ่มขึ้น หลังจาก sticky end ถูกทำลาย

รูปที่ 8 แสดงผลจากการผสมสายชะที่ความเข้มข้นต่างๆกับเซนเซอร์สำหรับตรวจวัดทรอมบินที่ความ เข้มข้น 133 นาโนโมลาร์ การลดลงอย่างรวดเร็วของ (ratio)_A ในช่วงต้นน่าจะมีสาเหตุจากการที่สาย tA (หรือ สาย tC ทั้งนี้ขึ้นกับสายชะที่ใช้) ถูกชะออกจากเซนเซอร์ ทำให้โครงสร้างแบบปิดถูกทำลาย เมื่อการชะสมบูรณ์ (ratio)_A มีค่าไม่เปลี่ยนแปลงถึงแม้จะเพิ่มความเข้มข้นของสายชะ เป็นที่น่าสังเกตว่าในกรณีของสาย tCW และ

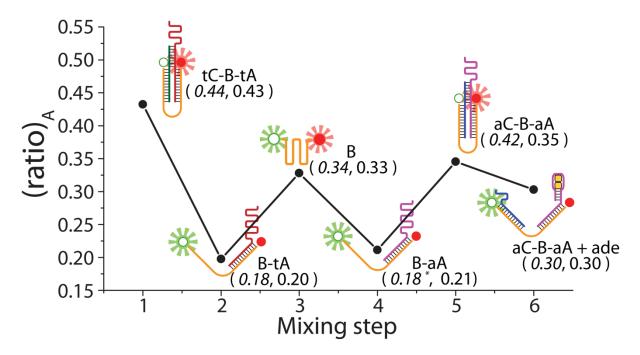

tCW-4 การชะที่สมบูรณ์เกิดขึ้นที่ความเข้มข้นต่ำ (น้อยกว่า 500 นาโนโมลาร์) เมื่อเทียบกับกรณีของสายชะ tAW และ tAW-4 ซึ่งตรงกับสิ่งที่คาดไว้เพราะเมื่อพิจารณาความยาวในการเข้าคู่เบสแล้ว tCW – tC hybrid และ tCW-4 – tC hybrid มีความยาวมากกว่า tAW – tA hybrid และ tAW-4 – tA hybrid ดังนั้นการแทนที่ ของสายชะจึงเกิดได้ง่ายกว่า นอกจากนั้นจากผลการทดลองจะเห็นว่าสายชะแบบสั้นมีประสิทธิภาพเทียบเท่า กับสายชะแบบสมบูรณ์ ดังนั้นจะใช้สายชะแบบสั้นในการทดลองขั้นต่อไป

เป็นที่น่าสนใจว่า (ratio) $_{\rm A}$ สุดท้ายในกรณีของการใช้สายชะ tCW และ tCW-4 (มีค่าประมาณ 0.3) สูง กว่า (ratio) $_{\rm A}$ ในกรณีของการใช้สายชะ tAW และ tAW-4 (มีค่าประมาณ 0.2) อยู่ประมาณ 50% เมื่อพิจารณา จากโครงสร้างของ DNA hybrid ที่เหลือจากการชะ ในทั้งสองกรณีแล้วพบว่าระยะห่างระหว่างสารเรื่องแสงทั้ง สองไม่น่าที่จะแตกต่างกันมากถึงขนาดที่ทำให้ (ratio) $_{\rm A}$ แตกต่างกันมากขนาดนั้น ทำให้ต้องมีการหาสาเหตุ อื่นๆที่ส่งผลต่อค่าประสิทธิภาพของการถ่ายโอนพลังงานแบบฟอร์สเตอร์ (และค่า (ratio) $_{\rm A}$) เมื่อสาย tA ถูกชะ ฟลูออเรสซีนอยู่ติดกับปลายสายดีเอ็นเอสายเดี่ยว แต่เมื่อสาย tC ถูกชะ ฟลูออเรสซีนอยู่ติดกับส่วน overhang ดังนั้นฟลูออเรสซีนในทั้งสองกรณีอยู่ในสภาวะที่แตกต่างกัน มีการรายงานจากหลายกลุ่มวิจัยมา ก่อนหน้านี้ถึงผลของสภาวะแวดล้อมต่อค่า quantum yield ของฟลูออเรสซีน ($\Phi_{\rm F}$) โดยหนึ่งในนั้นคือ Holden และคณะได้รายงานว่า $\Phi_{\rm F}$ เพิ่มสูงขึ้นกว่า 40 %เมื่อฟลูออเรสซีนอยู่ติดกับ overhang เปรียบเทียบ กับกรณีที่อยู่ที่ปลายของดีเอ็นเอสายเดี่ยว $^{[46]}$ ดังนั้นคณะผู้วิจัยจึงตั้งสมมติฐานว่าเมื่อสาย tA ถูกชะ มีความ เป็นไปได้ที่ $\Phi_{\rm F}$ มีค่าสูงกว่าในกรณีเมื่อสาย tC ถูกชะ และเนื่องจาก $\Phi_{\rm F}$ มากทำให้ระยะฟอร์สเตอร์ $R_{\rm O}$ มีค่า มาก $^{[26]}$ ทำให้ประสิทธิภาพของกระบวนการ FRET มีค่ามากถึงแม้ระยะเฉลี่ยระหว่างโมเลกุลตัวให้กับตัวรับจะ ไม่แตกต่างกัน

4.4.2 การประกอบเซนเซอร์สำหรับตรวจวัดอะดิโนซีน

สำหรับการประกอบ สาย B สาย aA และสาย aC ถูกผสมกันและปล่อยให้เกิดอันตรกิริยาที่อุณหภูมิห้อง ความเข้มข้นของสาย B มีค่า 133 นาโนเมตรในขณะที่เปลี่ยนความเข้มข้นของสายแอพทาเมอร์และสายคู่สม ทำการวัด (ratio) ก่อนและหลังเติมอะดิโนซีน 50 ไมโครโมลาร์เพื่อตรวจดูการตอบสนองของเซนเซอร์ รูปที่ 9 แสดงผลที่ได้ ในสภาวะที่ไม่มีอะดิโนซีน (ratio) ของสาย B (คอล้มน์โปร่งอันแรก) มีค่าประมาณ 0.34 หลังจากผสมสาย aC และสาย aA (ratio) มีค่าลดลงเล็กน้อยในตอนแรก (ที่ความเข้มข้น 100 นาโนโมลาร์) เพิ่มขึ้นหลังจากนั้น และลดลงอย่างต่อเนื่องที่ความเข้มข้นสูงขึ้น คณะผู้วิจัยตั้งสมมุติฐานว่าการลดลงของ (ratio) ในช่วงแรกมีสาเหตุมาจากการที่สาย aC และสาย aA บางส่วนประกอบเข้ากับสาย B แต่เป็นไปแบบ ไม่สมบูรณ์ จึงทำให้ปลายของสาย B ด้านที่เกิดการเข้าคู่เบสเหยียดยาวออก ระยะห่างระหว่าง F-TMR เพิ่ม มากขึ้นและ (ratio) ลดลง เมื่อความเข้มข้นของสาย aC และสาย aA เพิ่มสูงขึ้น การประกอบเป็นเซนเซอร์มี ความสมบูรณ์มากขึ้น ทำให้เกิด sticky end และทำให้ (ratio) มีค่าสูงขึ้น อย่างไรก็ตามคณะผู้วิจัยยังไม่แน่ใจ ถึงสาเหตุของการลดลงของ (ratio) เมื่อความเข้มข้นของสาย aC และสาย aA เพิ่มสูงขึ้น กรประกอบเป็นเชณะที่ไม่มี หรอมบินลดลงเมื่อความเข้มข้นของสาย tC และสาย tA เพิ่มสูงขึ้น (รูปที่ 6b) คณะผู้วิจัยตั้งสมมติฐานว่า สาเหตุอาจมาจากการเข้าคู่เบสระหว่างเชนเซอร์ต่างโมเลกุลเนื่องจากปริมาณสาย aA (หรือสาย tA) และสาย

aC (หรือสาย tC) ซึ่งการทดลองเพิ่มเติมด้วยเทคนิคอื่น เช่น Fluorescence Cross Correlation Spectroscopy (FCCS) จะเป็นประโยชน์อย่างยิ่งในการทดสอบสมมติฐานดังกล่าว


ร**ูปที่ 9** ความสัมพันธ์ระหว่าง (ratio)_A กับความเข้มข้นของสาย aA และสาย aC สาย B สาย aA และสาย aC ถูกผสมเข้าด้วยกันและสำหรับทุกตัวอย่าง อะดิโนซีนความเข้มข้น 50 ไมโครโมลาร์ถูกเติมเพื่อทดสอบการ ตอบสนองของเซนเซอร์

เมื่อเติมอะดิโนซีนความเข้มข้น 50 ไมโครโมลาร์ (ratio)_A มีค่าลดลงในทุกตัวอย่าง ในกรณีของ ตัวอย่างที่ 1 (สาย B เพียงอย่างเดียว) (ratio)_A ลดลงประมาณ 7 เปอร์เซนต์และน่าจะมีสาเหตุจากอันตรกิริยา แบบไม่จำเพาะ (non-specific interaction) ระหว่างอะดิโนซีนและสาย B อย่างไรก็ตามเมื่อมีสาย aA และ aC การลดลงของ (ratio)_A มีความชัดเจนมากยิ่งขึ้น (มากถึง 20 % ที่ความเข้มข้น 200 นาโนโมลาร์) และ น่าจะมีสาเหตุมาจากการจับกันระหว่างเซนเซอร์และอะดิโนซีน ดังนั้นถึงแม้จะประสบปัญหาอันตรกิริยาแบบ ไม่จำเพาะระหว่างอะดิโนซีนและสาย B คณะผู้วิจัยเชื่อว่าสามารถสร้างเซนเซอร์ที่ทำงานได้ที่อุณหภูมิห้องโดย การผสมสายดีเอ็นเอทั้งสามเข้าด้วยกัน

4.4.3 การชะส่วนแปรผันของเซนเซอร์สำหรับตรวจวัดทรอมบินและการประกอบเซนเซอร์สำหรับตรวจ-วัดอะดิโนซีนต่อกันเป็นลำดับ

ในขั้นตอนสุดท้าย คณะผู้วิจัยทำการสาธิตให้เห็นว่าสามารถเปลี่ยนเซนเซอร์จากชนิดสำหรับตรวจวัด ทรอมบินเป็นชนิดสำหรับตรวจวัดอะดิโนซีน ด้วยการชะและการประกอบเป็นลำดับต่อกันไปในการทดลอง เดียว การทดลองถูกแบ่งออกเป็น 6 ขั้นตอนการผสม และในแต่ละขั้นตอนสารตัวอย่างจะถูกทำละลายและวัด (ratio) รูปที่ 7 แสดงผลการทดลองที่ได้ พร้อมกับรูปวาดและชื่อของผลิตภัณฑ์ที่คาดว่าจะเกิดขึ้นในแต่ละ ขั้นตอนการผสม รวมถึง (ratio) ที่คาดว่าจะวัดได้ (ตัวเลขตัวแรกในวงเล็บซึ่งได้จากการทดลองในขั้นตอนอื่น

ก่อนหน้านี้) และที่วัดได้จริง (ตัวเลขตัวที่สอง) ในขั้นตอนการผสมที่ 1 (ratio)_A ที่วัดได้มีค่าประมาณ 0.43 แต่ เมื่อชะเอาสาย tC ออกในขั้นตอนที่ 2 ทำให้ (ratio)_A ลดลงเหลือ 0.20 ในขณะที่การชะเอาสาย tA ออกไป ด้วยทำให้ (ratio)_A เพิ่มขึ้นเป็น 0.33 ซึ่งผลจากทั้งสามขั้นตอนถือว่าใกล้เคียงกับค่าที่คาดเอาไว้ ในขั้นตอนที่ 4 การประกอบสาย aA กับสาย B ทำให้ (ratio) $_{\rm A}$ ลดลงเหลือ 0.21 ซึ่งยังคงใกล้เคียงกับค่าที่คาดไว้ แต่หลังจาก การประกอบสาย aC ในขั้นตอนที่ 5 (ratio) ที่วัดได้ ซึ่งมีค่าประมาณ 0.35 มีความแตกต่างกับค่า 0.42 ที่ได้ จากการทดลองก่อนหน้านี้ ((ratio)_A ตอนเริ่มต้นในรูปที่ 7) ซึ่งคณะผู้วิจัยเชื่อว่าน่าจะเป็นเพราะในการทดลอง ้นี้การประกอบเซนเซอร์ทำที่อุณหภูมิห้องแทนที่จะเป็นที่ 90 ℃ ที่ใช้ในการทดลองก่อนหน้านี้ ดังนั้นจึงเป็นไป ได้ว่าเกิดอุปสรรคในการรวมสายดีเอ็นเอเป็นเซนเซอร์จากโครงสร้างทุติยภูมิที่ไม่ต้องการ ผลิตภัณฑ์ที่ได้ยังตอบสนองต่ออะดิโนซีนความเข้มข้น 20 ไมโครโมลาร์ดังแสดงในขั้นตอนที่ 6 เป็นที่น่าสังเกต ว่าค่าที่เท่ากันของ (ratio) ที่วัดได้จริงกับที่คาดไว้เป็นเพียงความบังเอิญเท่านั้น โดยสรุปผลการทดลองที่ได้ จากขั้นตอนการผสมที่ 1-4 สอดคล้องเป็นอย่างดีกับค่าที่คาดไว้ และในขั้นตอนที่ 5 มีความเป็นไปได้ว่าเกิดการ รวมสายเป็นเซนเซอร์ที่ไม่สมบูรณ์ แต่เซนเซอร์ที่ได้ก็ยังตอบสนองต่ออะดิโนซีนในลักษณะที่คาดเอาไว้ดังแสดง ในขั้นตอนที่ 6 ดังนั้นการทดลองนี้พิสูจน์ให้เห็นว่าการแบ่งโมเลกุลเซนเซอร์เป็นสองส่วน ทำให้การเปลี่ยนชนิด เซนเซอร์จากที่จำเพาะกับสารที่ต้องการวิเคราะห์หนึ่งไปเป็นเซนเซอร์ที่จำเพาะกับสารที่ต้อง-การตรวจวัดอีก ชนิดหนึ่ง สามารถทำได้โดยสะดวกโดยการชะและการประกอบส่วนแปรผันที่มีราคาถูก กับส่วนติดฉลากด้วย สารเรื่องแสงที่มีราคาแพง ถึงแม้ว่าจะยังมีข้อจำกัดบางประการ เช่นการรวมสายที่ไม่สมบูรณ์หรือของเสียที่ เกิดขึ้นในแต่ละขั้นตอนการผสม แต่เซนเซอร์ที่พัฒนาขึ้นได้แสดงให้เห็นในเบื้องต้นว่ารูปแบบดังกล่าวใช้งานได้ เช่นการตรึงโมเลกุลเซนเซอร์ลงบนผิวแก้วอาจจะช่วยเพิ่มประสิทธิภาพของ และหากมีการพัฒนาปรับปรุง เซนเซอร์ได้ คณะผู้วิจัยเชื่อมั่นว่าเซนเซอร์รูปแบบนี้จะมีประโยชน์โดยเฉพาะกับงานในด้าน high throughput screening ที่ใช้ดีเอ็นเอเป็นเซนเซอร์ตรวจวัดสารที่ต้องการวิเคราะห์ในปริมาณมากและหลากหลายชนิด การ ตรึงเซนเซอร์ที่พัฒนาขึ้นนี้ลงบนพื้นผิวแก้วจะเพิ่มความสะดวกและยืดหยุ่นในการออกแบบและการผลิต DNA chip และสามารถเปลี่ยนชนิดของเซนเซอร์บน chip ให้สามารถตรวจวัดสารได้หลากหลายชนิด ส่งผลให้ ค่าใช้จ่ายในการผลิตและการใช้งานลดลงเป็นอย่างมาก

รูปที่ 10 ความสัมพันธ์ระหว่าง (ratio) กับลำดับขั้นตอนการผสมในการทดลองที่มีการชะและการประกอบ เซนเซอร์เป็นลำดับต่อกันไป แต่ละลำดับใกล้กับจุดแสดงข้อมูลมีรูปวาดและชื่อของผลิตภัณฑ์ที่คาดว่าจะได้ (ratio) ที่คาดว่าจะวัดได้ (ตัวเลขตัวแรกในวงเล็บ) จากการทดลองในขั้นตอนอื่นก่อนหน้านี้ และที่วัดได้จริง (ตัวเลขตัวที่สอง) โดยกำหนดให้ (ratio) ที่คาดว่าจะวัดได้ในขั้นตอนที่ 4 เท่ากับค่าในขั้นตอนที่ 2 เนื่องจาก โครงสร้างที่คล้ายกัน ถึงแม้ว่ายังไม่มีการวัดค่าจริงมาก่อนหน้านี้

5. สรุปผลการทดลอง

ในงานวิจัยนี้คณะผู้วิจัยได้สาธิตให้เห็นว่ามีความเป็นไปได้ที่จะสร้าง molecular aptamer beacon แบบเปลี่ยนชนิดใหม่ได้ โดยการแบ่งเซนเซอร์ออกเป็นสองส่วน ส่วนที่มีการติดฉลากด้วยสารเรื่องแสงที่มีราคา แพงเป็นส่วนคงที่ที่ใช้ได้กับเซนเซอร์หลากหลายชนิด และส่วนที่จับกับสารที่ต้องการวิเคราะห์เป็นส่วนที่ เปลี่ยนได้ คณะผู้วิจัยได้สร้างเชนเซอร์สำหรับตรวจวัดทรอมบินและเซนเซอร์สำหรับตรวจวัดอะดิโนซีนโดยใช้ หลักการออกแบบดังกล่าว และพบว่าประสิทธิภาพของเซนเซอร์ที่ผลิตขึ้นเทียบได้กับ molecular aptamer beacon ที่มีการพัฒนามาก่อนหน้า นอกจากนั้นยังได้สาธิตให้เห็นว่าสามารถเปลี่ยนเซนเซอร์สำหรับตรวจวัด ทรอมบินให้เป็นเซนเซอร์สำหรับตรวจวัดอะดิโนซีน โดยมีสายชะเป็นตัวช่วย ถึงแม้ว่าจะยังมีข้อด้อย คณะผู้วิจัยเชื่อมั่นว่าหากพัฒนาเพิ่มเติม เช่นการตรึงเซนเซอร์นี้ลงบนพื้นผิวแก้ว จะสามารถต่อยอดแนวคิดนี้ ให้สามารถใช้งานได้จริงโดยเฉพาะเกี่ยวกับงานทางด้าน high throughput screening ที่มีการใช้ DNA chip ในการตรวจวัดสารหลายชนิดในปริมาณมาก

6. ข้อเสนอแนะสำหรับงานวิจัยในอนาคต

ควรมีการพัฒนาให้เซนเซอร์ถูกตรึงบนพื้นผิวแก้วเพื่อประสิทธิภาพที่สูงขึ้น

7. Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

7.1 ผลงานตีพิมพ์ในวารสารวิชาการระดับนานาชาติ

- C. Buranachai, P. Thavarungkul, P. Kanatharana, "Reconfigurable optical biosensor based on DNA aptamers and a DNA molecular beacon" *ChemPhysChem* **2012** (submitted)

7.2 การนำเสนอผลงานในที่ประชุมวิชาการ

- C. Buranachai, P. Thavarungkul, P. Kanatharana, "Reconfigurable and Reusable Labeled Optical Biosensor Based on Aptamer DNA Molecular Beacon" การประชุม
 "นักวิจัยร่นใหม่...พบ...เมธีวิจัยอาวโสสกว." ครั้งที่ 10 วันที่ 14-16 ตลาคม พ.ศ. 2553
- C. Buranachai, P. Thavarungkul, P. Kanatharana, "Reconfigurable and Reusable Labeled Optical Biosensor Based on Aptamer DNA Molecular Beacon" การประชุม
 "นักวิจัยรุ่นใหม่...พบ...เมธีวิจัยอาวุโสสกว." ครั้งที่ 11 วันที่ 19-21 ตุลาคม พ.ศ. 2554

8. หนังสืออ้างอิง

- [1] L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, J. J. Toole, *Nature* **1992**, *355*, 564.
- [2] D. M. Held, J. D. Kissel, J. T. Patterson, D. G. Nickens, D. H. Burke, *Frontiers in Bioscience* **2006**, *11*, 89.
- [3] J. Ciesiolka, M. Yarus, Rna-a Publication of the Rna Society 1996, 2, 785.
- [4] M. G. Wallis, R. Schroeder, *Progress in Biophysics & Molecular Biology* **1997**, *67*, 141.
- [5] R. D. Jenison, S. C. Gill, A. Pardi, B. Polisky, *Science* **1994**, *263*, 1425.
- [6] M. Sassanfar, J. W. Szostak, *Nature* **1993**, *364*, 550.
- [7] M. Michaud, E. Jourdan, A. Villet, A. Ravel, C. Grosset, E. Peyrin, *Journal of the American Chemical Society* **2003**, *125*, 8672.
- [8] R. B. Kotia, L. J. Li, L. B. McGown, *Analytical Chemistry* **2000**, *72*, 827.
- [9] D. Jellinek, L. S. Green, C. Bell, N. Janjic, *Biochemistry* **1994**, *33*, 10450.
- [10] F. Ylera, R. Lurz, V. A. Erdmann, J. P. Furste, *Biochemical and Biophysical Research Communications* **2002**, *290*, 1583.
- [11] N. M. Sayer, M. Cubin, A. Rhie, M. Bullock, A. Tahiri-Alaoui, W. James, *Journal of Biological Chemistry* **2004**, *279*, 13102.
- [12] M. N. Stojanovic, D. M. Kolpashchikov, *Journal of the American Chemical Society* **2004**, *126*, 9266.
- [13] B. R. Eggins, *Biosensors: an introduction*, Wiley & Teubner, Chichester, **1996**.

- [14] P. R. Mathewson, J. W. Finley, in *ACS Symposium Series*, The American Chemical Society, **1992**.
- [15] B. Mattiasson, *Trac-Trends in Analytical Chemistry* **1984**, *3*, 245.
- [16] S. P. Song, L. H. Wang, J. Li, J. L. Zhao, C. H. Fan, *Trac-Trends in Analytical Chemistry* **2008**, *27*, 108.
- [17] Y. Xiao, A. A. Lubin, A. J. Heeger, K. W. Plaxco, *Angewandte Chemie-International Edition* **2005**, *44*, 5456.
- [18] L. M. Furtado, H. B. Su, M. Thompson, D. P. Mack, G. L. Hayward, *Analytical Chemistry* 1999, 71, 1167.
- [19] M. Liss, B. Petersen, H. Wolf, E. Prohaska, *Analytical Chemistry* **2002**, *74*, 4488.
- [20] R. Yamamoto, P. K. R. Kumar, *Genes to Cells* **2000**, *5*, 389.
- [21] J. Homola, S. S. Yee, G. Gauglitz, Sensors and Actuators B-Chemical 1999, 54, 3.
- [22] T. Hermann, D. J. Patel, *Science* **2000**, *287*, 820.
- [23] R. A. Potyrailo, R. C. Conrad, A. D. Ellington, G. M. Hieftje, *Analytical Chemistry* **1998**, 70, 3419.
- [24] N. Hamaguchi, A. Ellington, M. Stanton, *Analytical Biochemistry* **2001**, *294*, 126.
- [25] M. N. Stojanovic, P. de Prada, D. W. Landry, *Journal of the American Chemical Society* **2000**, *122*, 11547.
- [26] R. M. Clegg, Methods in Enzymology 1992, 211, 353.
- [27] J. R. Lakowicz, *Principles of Fluorescence Spectroscopy*, 2nd ed., Kluwer Academic/Plenum Publishers, New York, **1999**.
- [28] B. Valeur, Molecular Fluorescence, Wiley-VCH, New York, 2002.
- [29] R. Nutiu, Y. Li, Journal of the American Chemical Society 2003, 125, 4771.
- [30] R. Nutiu, Y. F. Li, Chemistry-a European Journal 2004, 10, 1868.
- [31] M. N. Stojanovic, D. W. Landry, *Journal of the American Chemical Society* **2002**, *124*, 9678.
- [32] W. C. Xu, Y. Lu, Analytical Chemistry **2010**, 82, 574.
- [33] E. Volkin, W. E. Cohn, Methods of biochemical analysis 1954, 1, 287.
- [34] R. M. Clegg, A. I. H. Murchie, A. Zechel, C. Carlberg, S. Diekmann, D. M. J. Lilley, Biochemistry 1992, 31, 4846.
- [35] Z. K. Majumdar, R. Hickerson, H. F. Noller, R. M. Clegg, *Journal of Molecular Biology* **2005**, *351*, 1123.
- [36] J. R. Williamson, M. K. Raghuraman, T. R. Cech, *Cell* **1989**, *59*, 871.

- [37] O. L. Acevedo, L. A. Dickinson, T. J. Macke, C. A. J. Thomas, *Nucleic Acids Research* **1991**, *19*, 3409.
- [38] J. R. Williamson, Annual Review of Biophysics and Biomolecular Structure **1994**, 23, 703.
- [39] K. Y. Wang, S. McCurdy, R. G. Shea, S. Swaminathan, P. H. Bolton, *Biochemistry* **1993**, 32, 1899.
- [40] K. Y. Wang, S. H. Krawczyk, N. Bischofberger, S. Swaminathan, P. H. Bolton, *Biochemistry* **1993**, *32*, 11285.
- [41] V. A. Bloomfield, D. M. Crothers, I. J. Tinoco, *Nucleic Acids: structures, properties, and functions*, University Science Books, Sausalito, **2000**.
- [42] F. He, Y. Tang, S. Wang, Y. Li, D. Zhu, *Journal of the American Chemical Society* **2005**, 127, 12343.
- [43] J. J. Li, X. Fang, W. Tan, *Biochemical and Biophysical Research Communications* **2002**, *292*, 31.
- [44] K. Padmanabhan, K. P. Padmanabhan, J. D. Ferrara, J. E. Sadler, A. Tulinsky, *The Journal of Biological Chemistry* **1993**, *268*, 17651.
- [45] B. Yurke, A. J. Turberfield, A. P. Mills, F. C. Simmel, J. L. Neumann, *Nature* **2000**, *406*, 605.
- [46] L. Wang, A. K. Gaigalas, J. Blasic, M. J. Holden, *Spectrochimica Acta Part A* **2004**, *60*, 2741.

ภาคผนวก

Chittanon Buranachai <chittanon.buranachai@gmail.com>

Wiley-VCH manuscript services: IMPORTANT! Your Submission is finished

ChemPhysChem@wiley-vch.de < ChemPhysChem@wiley-vch.de>

Sat, Mar 10, 2012 at 10:35

To: chittanon.buranachai@gmail.com Cc: ChemPhysChem@wiley-vch.de

Dear Author,

You have successfully finished your submission of manuscript "Reconfigurable optical biosensor based on DNA aptamers and a DNA molecular beacon" by Chittanon Buranachai, Assoc. Prof. Dr. Panote Thavarungkul

Assoc. Prof. Dr. Proespichaya Kanatharana .

Your manuscript will be available in a few minutes from the menu "Manuscripts at the Publisher" on your ManuscriptXpress Personal Homepage at

http://www.manuscriptXpress.com

Please access your homepage with

login: c.buranachai

and your personal password

Your manuscript number is: cphc.201200209.

Best wishes

ChemPhysChem (Editorial Office)

Wiley-VCH Verlag GmbH & Co. KGaA

Location of the Company: Weinheim, Germany; Chairman of the Supervisory Board: Stephen M. Smith;

Trade Register: Mannheim, HRB 432833;

General Partner: John Wiley & Sons GmbH, Location: Weinheim; Trade Register Mannheim: HRB

432296; Managing Directors: Bijan Ghawami, Dr. Jon Walmsley

COPYRIGHT TRANSFER AGREEMENT

for publication in "ChemPhysChem" (the "Journal") published by Wiley-VCH Verlag GmbH & Co. KGaA ("Wiley-VCH").

Dear Contributor(s):

Thank you for submitting the Contribution for publication. In order to expedite the editing and publishing process and enable Wiley-VCH to disseminate the Contribution to the fullest extent, we need you to accept this agreement. If the Contribution is not accepted for publication, or if the Contribution is subsequently rejected, this Agreement shall be null and void. Publication cannot proceed without your acceptance of this Agreement.

§1 FOR ALL JOURNALS EXCLUDING ChemistryOpen A. RIGHTS GRANTED

1. The Contributor hereby grants to Wiley-VCH for the duration of the statutory term of copyright protection, the full and exclusive rights comprised in the Contribution including but not limited to the right to publish, republish, transmit, sell, distribute, store and process in electronic media of any kind, include in

Reconfigurable optical biosensor based on DNA aptamers and a DNA molecular beacon

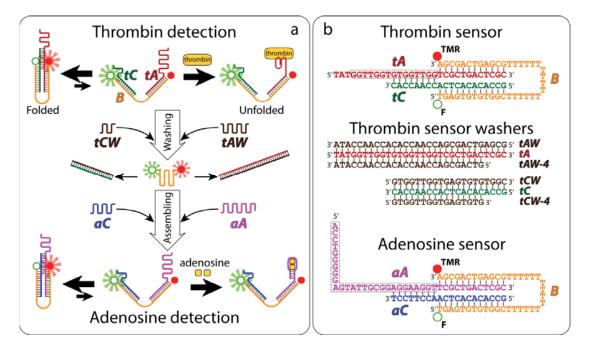
Chittanon Buranachai*[a], Panote Thavarungkul[a] and Proespichaya Kanatharana[b]

[a] Trace Analysis and Biosensor Research Center
Department of Physics
Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand)
Fax: (+66)(74)558849
E-mail: chittanon.b@psu.ac.th

[b] Trace Analysis and Biosensor Research Center Department of Chemistry Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand)

Abstract

In order to alter a typical molecular aptamer beacon (MAB), that uses a hybrid labeled optical sensor based on a molecular beacon – aptamer, to detect a different analyte there is currently a need to change the whole sensor unit including the expensive labeling fluorophores. In this work a DNA-based reconfigurable molecular aptamer beacon was developed. It is composed of two parts: a variable part and a constant part. The variable part comprises an aptamer strand and its complementary strand while the constant part is an oligonucleotide doubly labeled with a Förster Resonance Energy Transfer (FRET) pair and the two parts become joined via DNA hybridization. The sensor exists in two conformations: a folded (high FRET) and an unfolded (low FRET) in the absence and presence of the aptamer-target binding respectively. This sensor can be reconfigured by washing away the aptamer and the complementary strand using proper complementary strands, called washers. As a proof of the principle, a sensor that bound the enzyme thrombin, an analyte with a strong binding, was first constructed and then reconfigured to bind adenosine, selected as an analyte with a weak binding. We believe that the design is of universal use and could be further developed for producing low cost large scale screening applications.


1. Introduction

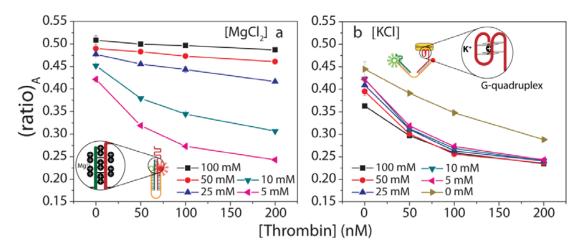
Sensors based on functional DNA have become more popular in the past decade.^[1] One of the most fundamental building blocks of this type of sensor is an aptamer, which is a single stranded oligonucleotide capable of binding specifically to its target and is selected *via* the method of systematic evolution of ligands by exponential enrichment (SELEX).^[2] Aptamers rival antibodies in many circumstances, such as even when the working condition is hostile to protein.^[3] There are several detection techniques utilizing the aptamer based sensors, such as electrochemical^[4], mass sensitive^[5], surface plasmon resonance^[6], colorimetric and UV-Vis spectroscopy especially *via* the aggregation of nanoparticles.^[7] However, the method utilizing fluorescent dyes labeling still offers good sensitivity. Since an aptamer usually undergoes conformational change upon binding to its target^[8], one can achieve a labeled aptamer sensor by putting fluorescent dyes at positions adjacent to or on the target binding site where the binding leads to changes in the dyes' microenvironment and, therefore, changes in their fluorescence quantum yield. Alternatively one could utilize the change in the dye rotational freedom that occurs -on

binding to its target resulting in a change in the fluorescence anisotropy. [9] Though a single label proved to be cost effective, often it required a tertiary structure of the aptamer and the nature of the aptamer-target binding to be known *a priori*. [1] Double labeling could be utilized to avoid such a complication. In some of the very first demonstrations, modified aptamers capable of forming open-closed structures were doubly labeled with a fluorescent dye and a quencher. [10] Binding of the target shifted the equilibrium causing structural changes. This in turn changed the proximity of the dye-quencher resulting in a change in the fluorescence intensity, similar to the way the original molecular beacon worked. [11] These hybrid sensors, a.k.a. molecular aptamer beacons (MABs)[12], have been improved over time. For example, the introduction of the structure switching aptamer led to a universal design applicable to virtually any type of aptamer without prior knowledge of its secondary or tertiary structure or the nature of the aptamer-target binding.

However, almost all MABs shared one drawback: the fluorescent dyes were covalently labeled. While this should not be a problem with a single target small scale detection, it can be problematic in the case of a multiple target large scale detection because labeling fluorescent dyes is laborious and expensive and it is cumbersome to do every time for detecting a new target. Several groups have been trying to overcome this issue by using the "label free" method either by dye displacement essays^[14] or by using a double aptamer in which one aptamer worked as a receptor to a target of interest and the other worked as a reporter binding to the signaling fluorophore malachite green.^[15] However, the waste from organic dyes may pose problems when applied to real uses.

Here we present an alternative and economical MAB consisting of three oligonucleotides (Figure 1). One is a base (B strand) doubly labeled with a FRET (Förster Resonance Energy Transfer) pair. The second is an aptamer (A strand, exemplified as tA and aA strands in the figures) and the third is a complementary strand to the aptamer (C strand, exemplified as tC and aC strands). The A and C strands are specific to a given target but are replaceable and the B strand is designed to be unchanged. Therefore, the sensor structure is similar to an antibody where a variable domain (consisted of A and C strands) is joined to a constant domain (B strand). This approach is economical because the expensive B strand can be used with many types of aptamer. Once annealed, the sensor exists in two conformations: folded and unfolded. In the absence of the target, the folded conformation is more favored via the formation of a sticky end between the A and C strands. In the presence of the target, however; the sticky end gives way to the formation of an aptamer-target binding, resulting in a more stable unfolded conformation. In terms of FRET, the folded and unfolded conformations correspond to a high FRET and a low FRET state. The design is of universal use and it can be configured to detect different targets. To prove our concept, a thrombin sensor and an adenosine sensor were constructed using the described principle. Also, we demonstrate a step-by-step reconfiguration where the variable domain of the thrombin sensor (the tA and tC strands) can be removed and that of the adenosine sensor (the aA and aC strands) can be assembled onto the bare B strand.

Figure 1. (a) The operation principle of the reconfigurable molecular aptamer beacon sensor. The top panel shows a thrombin sensor constructed from the B strand doubly labeled with fluorescein (F: open circle) and tetramethylrhodamine (TMR: filled circle) as a FRET pair, an anti-thrombin aptamer strand (tA strand) and an anti-thrombin aptamer complementary strand (tC strand). In the absence of thrombin, the folded structure (high FRET state) is thermodynamically favored *via* the sticky end formation but binding to thrombin shifts the equilibrium towards the unfolded structure (low FRET state). The middle panel shows the reconfiguration; first an anti-thrombin aptamer washer (tAW strand) and an anti-thrombin aptamer complementary washer (tCW strand) are added to remove tA and tC strands via strand displacement. Then, in the bottom panel, an anti-adenosine aptamer strand (aA strand) and an anti-adenosine aptamer complementary strand (aC strand) are added to assemble an adenosine sensor. The annealed sensor can detect adenosine following the same mechanism as in the case of the thrombin sensor. (b) The names and sequences of oligomers used in this study. Dashed line boxes mark the aptamer sequences.


2. Results and discussion

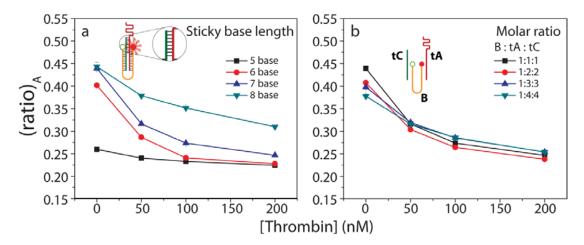
Thrombin sensor

The effect of Mg²⁺ and K⁺ concentration

The performance of the sensor relies on a balance between a strong folded conformation in the absence of thrombin and an ease of transition to the unfolded conformation once thrombin binds. One would prefer a major fraction of the sensors to be in the folded structure prior to adding thrombin for a high initial FRET efficiency value but would rather have an efficient structural switching after thrombin binding for a big decrease in the FRET efficiency. The folded conformation is stable in the presence of cationic species because of the metal ions-phosphate oxygen interaction while the unfolded conformation is likely to be stable in the presence of either K⁺ or Na⁺ because these two ions help with the strong formation of a G-quadruplex^[16] found in the anti-thrombin aptamer.^[17] Mg²⁺ is chosen to stabilize the folded structure due to its superior efficiency compared with other mono and divalent cations^[18] while having a much weaker effect on the G-quadruplex formation when compared with monovalent cations^[19] and K⁺ is chosen to ease the transition from

the folded to the unfolded structure. In order to obtain the optimal performance, the concentrations of the two ions need to be optimized.

Figure 2. The effect of Mg^{2+} (a) and K^+ (b) concentration on thrombin detection. It is anticipated that Mg^{2+} ions stabilize the folded conformation by screening electrostatic repulsion between two phosphate backbones forming the sticky end (a, inset) while K^+ ions facilitate the G-quadruplex formation of the tA strand (b, inset) helping the transition to the unfolded structure upon thrombin binding.

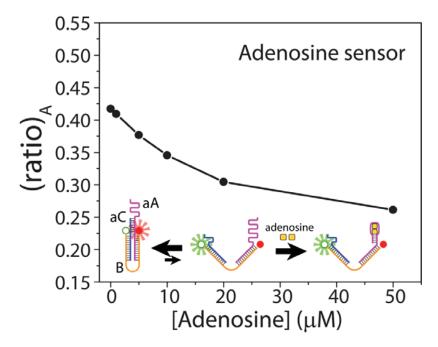

Figure 2 shows the results obtained from the (ratio)_A method^[20] performed at different concentrations of Mg²⁺, K⁺ and thrombin. The method is reliable and the obtained (ratio) a is proportional to the FRET efficiency (Equation (1)). The general trend of the result in Figure 2a shows a decrease in the $(ratio)_A$ upon increasing thrombin concentration. This follows the working principle of the sensor that thrombin binding shifts the equilibrium from the folded conformation (high FRET i.e. high (ratio) $_{A}$) to the unfolded one (low FRET i.e. low (ratio)_A). However there are differences in two aspects: the initial $(ratio)_A$ and the sensitivity. The initial $(ratio)_A$ in the absence of thrombin increases with the increasing Mg²⁺ concentration. This agrees with our hypothesis mentioned above that the sticky end is stable at high salt concentration. The sensitivity, defined as the absolute value of the slope, on the other hand is high at low [Mg²⁺] and tapers off with increasing [Mg²⁺]. Since the sensivity reflects how easily the folded structure can switch to the unfolded one, it can be deduced that Mg²⁺ counteracts the transition. Therefore, while adding Mg²⁺ has the desirable effect of stabilizing the folded conformation, too high a concentration prevents the conformational transition. The sensitivity is an important property of a sensor, therefore 5 mM was chosen as the working concentration for Mg²⁺. Note that the detection range is in the early nanomolar range, which is comparable to the thrombin sensors previously reported.[12, 13]

Then the concentration of K^+ was varied from 0, 5, 10, 20, 50 and 100 mM while the Mg^{2+} concentration was fixed at 5 mM. When compared with Figure 2a, the results in Figure 2b show a similar trend of the $(ratio)_A$ decrease with the increasing thrombin concentration. However, the initial $(ratio)_A$ in this case decreases with increasing $[K^+]$. This is likely due to the fact that K^+ facilitates the formation of the G-quadruplex structure in the overhang region of the tA strand, which in turn, disrupts the sticky end of the folded conformation. The sensitivities in the case of 5, 10, 25 and 50 mM are comparable but slightly decrease at 100 mM. This is due to the fact that the sensor needs to bind thrombin while it is in the folded conformation in order to cause the change in the $(ratio)_A$ and it is

likely that at 100 mM K⁺ a majority of the sensor is already in the unfolded conformation even in the absence of thrombin. At 0 mM K⁺, while the initial (ratio)_A is the highest, the sensivity is low. This also agrees with the notion that a G-quadruplex formation needs monovalent cations, K⁺ and Na⁺ in particular, as stabilizer; therefore it is difficult to switch to the unfolded structure in the absence of K⁺. Note that at 0 mM K⁺ the sensor still responds to thrombin possibly due to the background Na⁺ (1.77 mM) used during the sensor preparation (see Experimental section for more details) and is still present after dilution or that thrombin itself helps to stabilize the G-quadruplex^[21] or both effects combined. Focusing on the highest sensitivity, 5 mM was then chosen as the working concentration for K⁺.

The effect of sticky end length and the effect of strand mixing ratio

The sticky end length was varied to find the optimum strength of the folded structure. As already discussed, the sensivity of the sensor depends on two contradicting effects: if the folded structure is too weak then the majority of the sensor will be in the unfolded conformation but if it is too strong it will resist the transition to the unfolded structure upon the binding of thrombin. In either case, the sensitivity will be compromised. The sensor is designed to have a portion of the aptamer sequence being able to form a sticky end so that the binding of an analyte weakens the sticky end formation. To study the suitable sticky end length, the tA strand was kept unchanged while the tC strand was varied in length from 17-20 bases extending in the 3' direction (Figure 1b) corresponding to 5-8 sticky bases. As shown in Figure 3a, the initial (ratio)_A and the sensitivity both increased as the sticky base was extended from 5-7 bases. At 5-bases long the sticky end was too short for a stable folded structure so the majority of sensors started in the unfolded conformation, judged from the low (ratio) and adding thrombin did not produce a significant change. Increasing the sticky base length to 6 and 7 bases improved the situation because more of the sensors favored the folded conformation and the binding with thrombin was more easily measurable. From the result it might be deduced that even though the 7-base sticky end provided good stability, it was not too strong for an efficient transition to occur. Therefore, the sensitivity of 7-base long was more than that of 6-base long sticky end. Extending the sticky region to 8-base long did not significantly increase the initial (ratio)_A implying that at a 7-base long sticky end, the folded species population had already reached the plateau. However, the decrease of sensitivity at 8-base long is likely because the sticky end became stronger and was able to compete more effectively with the thrombin binding. As a result, the optimal length of the sticky end was set at 7 bases.


Figure 3. (a) The effect of the sticky base length. The sticky base length was extended in the 3' direction of the tC strand, and the mixing ratio for all cases was 1:1:1 (B:tA:tC). (b) The effect of the strand mixing ratio. During the annealing process, the B strand was kept at 15 μ M for all the mixing ratios.

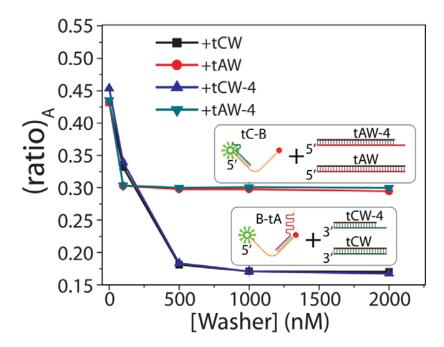
The effect of the molar ratio of the mixing strands was also tested by fixing the B strand at 15 μ M in the annealing step while the tA and tC strands were varied according to the desired ratio. From the results presented in Figure 3b, there were slight differences in both the initial (ratio)_A and the sensitivities from the different mixing ratios. Both the sensitivity and the initial (ratio)_A were highest in the case of the 1:1:1 (B:tA:tC) mixing ratio and decreased with any higher portion of the tA and tC strands. We are not certain about the reason behind these interesting results but one possibility is that at a high concentration, free tA and tC strands start to invade the sticky end in the folded structure of the annealed sensor, therefore, lowering the initial (ratio)_A. Since the (ratio)_A at high concentration of thrombin should be comparable across all mixing ratios, decreasing the initial value also decreases the sensitivity. More experiments are needed to verify our hypothesis, and as far as the performance of the sensor is concerned, the mixing ratio of 1:1:1 (B:tA:tC) was used for later experiments.

Adenosine sensor

To prove that the sensor design is not limited to only one aptamer-target partner, we chose adenosine as a second model target. Unlike thrombin, adenosine is a weak binding target with the dissociation constant in the micro-molar range. The adenosine sensor has the same B strand used for the thrombin sensor but the aptamer strand and its complementary strand were switched to an anti-adenosine aptamer strand and an anti-adenosine aptamer complementary strand (aA and aC strands; Figure 1 and 4). The same working principle was applied: the majority of the sensor was in the folded conformation via the formation of the sticky end between the aA and aC strands and the binding of adenosine disrupted the hybridization leading to the unfolded structure. A preliminary result in Figure 4 showed that the adenosine sensor had a high initial (ratio)_A of ~0.42 in the absence of adenosine and the (ratio)_A decreased with increasing adenosine concentration before slightly tapering off at a high concentration. This was as expected from the behavior of the sensor as we have seen in the case of the thrombin sensor. The

linear concentration range was in the micro-molar region which also agrees well with other aptamer based adenosine sensors. [13] Therefore, the adenosine sensor followed the same working principle and the B strand can be shared between the two sensors. We anticipate that this concept can also be applied to many more types of sensor.

Figure 4. Plot of the (ratio)_A versus adenosine concentration showing a response from the adenosine sensor. The sensor was composed of the B strand doubly labeled with F and TMR. The aptamer strand and the complementary strand were an anti-adenosine aptamer and anti-an adenosine aptamer complementary (aA and aC strands). The decrease in the (ratio)_A with increasing adenosine concentration resembled the case of the thrombin sensor with a linear detection range in the micro-molar region.


Reconfiguration

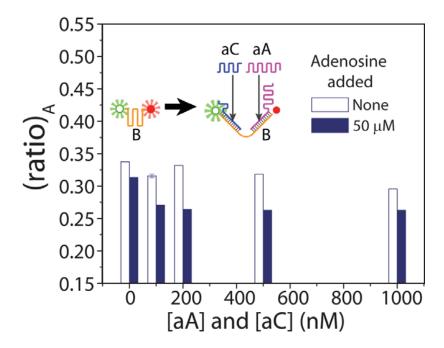
To realize the full potential of the design, we performed a reconfiguration experiment to demonstrate that starting from the thrombin sensor, the variable domain, i.e. the tA and tC strands, could be washed and the adenosine sensor could be constructed by assembling the aA and aC strands on the bare B strand. The experiment was done in three steps: the washing, the assembling and the sequential washing-assembling experiment.

Washing

The washing was done by mixing in the suitable complementary strands, the so called washers. The single stranded overhang on the tA and tC strands served as the "toehold" [23] for the washers to bind before strand displacement by branch migration leaving the B strand bare. Two sets of washing strands were used to test the washing efficiency; the first set, consisted of tAW and tCW strands (Figure 1 and 5), was fully complementary to the tA and tC strands while the second set was shorter than the first set by 4 bases (tAW-4 and tCW-4 strands). The reason behind trying the shorter strand version was as follows. The washers can hybridize not only to the tA and tC strands (in the thrombin sensor) but also to the aA and aC strands (in the adenosine sensor). After the washing step, the aA and aC

strands will be added to assemble the adenosine sensor, however the free washers still present in the solution might prevent this assembly. This undesired effect is unavoidable due to the design of sharing the B strand but could be lessened if the number of pairing bases between the washers and the tA/tC strands is low. Therefore, the short strand version of the washers (tAW-4 and tCW-4) was also tested for the washing efficiency. If proven to be as effective as the fully complementary ones (tAW and tCW), the short strand version will be used in later experiments.

Figure 5. Plot of (ratio)_A versus washer concentrations. The annealed thrombin sensor was mixed with four types of washers. The tAW strand (30-mer) and the tAW-4 strand (26-mer) were used to wash the tA strand resulting in a tC-B hybrid and a ds-DNA waste (top inset), while the tCW strand (19-mer) and the tCW-4 strand (15-mer) were to wash the tC strand resulting in a B-tA hybrid and a ds-DNA waste (bottom inset). The hybrid products have a reduced (ratio)_A when compared with that of the folded conformation due to an increase in the F-TMR intermolecular distance upon loss of the sticky end.

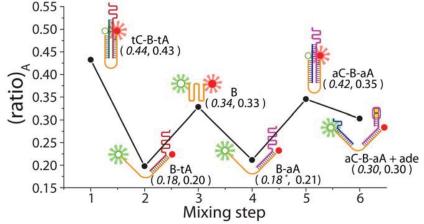

Figure 5 shows the results from mixing the washers at different concentration with a 133 nM thrombin sensor. The steep drop in the $(ratio)_A$ at the beginning was likely due to the removal of the tA strand (or tC strand, depending on the washer being used), and resulted in the disruption of the folded structure. Once the washing was complete, the $(ratio)_A$ reached a terminal value and remained unchanged even with increasing amounts of the washers. Note that only small amounts (less than 500 nM) of the tCW and tCW-4 washers were needed for complete washing, while a larger concentration of the tAW and tAW-4 washers was required. This was not unexpected because the tCW – tC and tCW-4 – tC strand hybridization (27 bases and 23 bases) were longer than that of the tAW – tA and tAW-4 – tA strand hybridization (19 bases and 15 bases) so allowing the strand displacement to occur more easily. Also from the results, it can be seen that the short strand version of the washer was as effective as the full length and they will be used in the later steps.

It is of interest, that the terminal (ratio)_A in the case of using the tCW and tCW-4 washers (~ 0.3) were approximately 50% higher than that in the case of using the tAW and

tAW-4 washers (~0.2). Since the structures of the washed products should be very similar between the two cases (Figure 5 inset), this difference was unlikely to be caused entirely by the difference in the average F-TMR intermolecular distance. This led us to consider another factor that could affect the FRET efficiency (and the (ratio)_A). When the tA strand was removed, fluorescein was at the end of a single stranded region while when the tC strand was removed, fluorescein was next to an overhang. As a result, fluorescein in both cases was in a different immediate environment. There have been several reports on the dependence of the fluorescence quantum yield of fluorescein (Φ_F) on its surroundings. Among them, Holden and coworkers reported that Φ_F when the dye was next to an overhang was up to 40% higher than in the case where the dye was labeled at the end of the single stranded DNA. Therefore we hypothesize that when the tC strand and the tA strand were removed, it was possible that Φ_F in the former case was higher than that in the latter case. Since the higher Φ_F means the longer is the Förster distance $R_0^{[20]}$, and this leads to a higher FRET efficiency even though the average intermolecular distances are the same.

Assembling

For the assembling experiment, the B, aA and aC strands were mixed and incubated at room temperature. The concentration of the B strand was kept at 133 nM while the concentration of the aptamer and the aptamer complementary strand were varied. The (ratio)_A was measured before and after adding 50 µM of adenosine to check the sensor response and the results are presented in Figure 6. In the absence of adenosine, the $(ratio)_A$ of the B strand (first open column) was ~ 0.34. After mixing the aC and aA strands, the $(ratio)_A$ slightly dropped initially (at 100 nM), increased afterwards and then continued to decrease again at higher concentrations. We hypothesize that the slight decrease of the (ratio)_A at the beginning was due to a partial binding of the aC and aA strands onto the B strand. The partial binding was likely to stretch a portion of the B strand where the hybridization occurs resulting in a longer F-TMR separation and a lower (ratio)_A. At higher concentration of the aC and aA strands, the annealing was more complete. Annealed sensors were capable of forming sticky ends therefore increasing the (ratio)A. We are still not certain about the reason for the decreasing (ratio), with the increasing aA and aC strands concentrations. Because the thrombin sensor showed a similar behavior where the initial (ratio)_A dropped with an increasing mixing ratio of the tA and tC strands (Figure 3b), we hypothesize that this might be due to unwanted intermolecular hybridization among different sensors due to an excessive aA (or tA) and aC (or tC) strands. More investigations, such as using Fluorescence Cross Correlation Spectroscopy (FCCS) measurements^[26] could be very helpful to verify our hypothesis.


Figure 6. Plot of the $(ratio)_A$ versus the anti-adenosine aptamer (aA) and anti-adenosine aptamer complementary (aC) concentrations. The B, aA and aC strands were mixed together and for every sample, 50 μ M of adenosine was added afterward to check the sensor response.

In the presence of 50 μ M of adenosine, the (ratio)_A decreased in every sample. In the case of the B strand alone (the first open column in Figure 6), the decrease was approximately 7% and was likely due to a non-specific interaction between adenosine and the B strand. However, in the presence of the aA and aC strands, the decrease was more pronounced (up to approximately 20% at 200 nM aA and aC strands concentration) and it was likely to come from the binding between the sensor and adenosine. Therefore despite the possible non-specific binding at the beginning, we believe that the functioning sensor can be constructed at room temperature by simply mixing the three strands together.

Sequential washing and assembling

In the final step, we demonstrated that the thrombin sensor can be reconfigured to be the adenosine sensor by means of sequencial washing and assembling, which can be done in one experiment. We divided this experiment into six mixing steps and at each step the mixture was diluted and the $(ratio)_A$ was measured. The result is shown in Figure 7. Next to each data point is a cartoon drawing, along with its name of an anticipated sensor form, an expected $(ratio)_A$ (the first number in a parenthesis) obtained earlier from previous experiments and an actual $(ratio)_A$ measured in this experiment. In the mixing step #1 the measured $(ratio)_A$ was ~ 0.43 , while washing away the tC strand in step #2 made the $(ratio)_A$ drop to 0.20 and removing the tA strand in step #3 made it increase to 0.33; and all agreed well with the expected values. In step #4, the aA strand assembly on the B strand decreased $(ratio)_A$ to 0.21, which was still close to the expected value. The measured $(ratio)_A$ of \sim 0.35 after incorporating the aC strand in step #5 was lower than the 0.42 obtained previously (the initial $(ratio)_A$ in Figure 4). We believe that this was due to the fact that in this experiment the assembly was carried out at room temperature not at 90 °C as

done previously. Therefore, there might still be some unwanted secondary structure hindering the annealing. Nevertheless the reconfigured sensor still responded to 20 μΜ adenosine as shown in step #6. Note that a perfect match between the expected and the actual (ratio)_A in this step could be merely incidental. In summary, the results from the mixing step #1 to #4 agreed guite well with the expected values and in the mixing step #5 it was likely to have incomplete annealing. However, the sensor still behaved in the direction that we anticipated. Consequently, this experiment verified our claim that by dividing a molecular beacon aptamer into 2 parts, one type of sensor can be reconfigured to be another type by a simple washing – assembling of the variable domain while the expensive labeled constant domain is still in use. Even though the current version of our sensor, being free in bulk solution, has some limitations, such as some incomplete annealing or the wastes that keep piling up after each step of mixing, it has been successful in proving that our principles are correct. Some modifications, such as surface immobilization, should improve its performance. We believe that the design will be beneficial especially in an area of low cost-high throughput screening based on a DNA chip where large amounts of DNA sensors are used to detect multiple targets. By immobilizing our sensor on the surface, the chip design and construction will be more flexible and can be reconfigured to detect multiple targets several times. This in turn is likely to drive the production and operation cost down drastically.

Figure 7. Plot of the $(ratio)_A$ taken from different mixing steps of the sequential washing and assembling experiment. For a given mixing step, the cartoon drawing next to each data point shows the expected form of the sensor along with its name, the expected $(ratio)_A$ (first number in the parenthesis) is deduced from the results shown previously and the actual $(ratio)_A$ (second number) measured in this experiment. The expected $(ratio)_A$ of the mixing step #4 is assumed to be the same as that of the mixing step #2 due to structural similarity even though no prior measurement has been made. See the Supporting information for the mixing procedures.

3. Conclusion

In this study, we have demonstrated that a reconfigurable molecular aptamer beacon was possible to construct. By dividing the sensor into three modules, the expensive labeled part was static, and is shared while the anti-target aptamer part was labile and can be replaced at low cost. We chose to construct a thrombin sensor and an adenosine sensor using this concept and the performances were comparable to conventional molecular aptamer beacons. Once created, the thrombin sensor can be reconfigured to be an

adenosine sensor on the fly by the help of proper washers. Though there is some room for improvements on the efficiency of reconfiguring, we believe that with some modifications, such as surface immobilization, we can push this prototype into real use, especially in an area of high throughput detections based on a DNA chip where various types and large amounts of molecular aptamer beacons are immobilized for detection of multiple targets.

Experimental section

Materials

DNA constructs: All oligonucleotides were purchased from Integrated DNA Technology (IDTDNA, Coralville, IA, USA). Shown in Figure 1b are the DNA sequences and names: the base (B strand) is a 30-mer labeled on the 5' end with fluorescein (F) and on the 3' end with tetramethylrhodamine (TMR). The anti-thrombin aptamer strand (tA strand) is a 30-mer designed to hybridize to the B strand on the 3' end with a 12 base long double stranded region to ensure the stability during working conditions. The rest of the tA strand contains the canonical 15-base anti-thrombin aptamer sequence.[27] The anti-thrombin aptamer complementary strand (tC strand) has various lengths from 17 to 20 bases. Twelve bases of the tC strand hybridize to the B strand on the 5' end while the rest is the sticky bases complementary to the anti-thrombin aptamer in the tA strand overlapping the thrombin binding region. The anti-adenosine aptamer strand (aA strand) is a 39-mer and the antiadenosine aptamer complementary strand (aC strand) is a 20-mer. Similar to the case of the tA and tC strands, both the aA and aC strands form a 12-base double stranded region with the B strand and a sticky region to each other. The labeled oligos were purified by reverse phase HPLC as a standard procedure of the manufacturer and the unlabeled oligos were desalted. No further treatments were performed prior to use. The design of the oligos was done heuristically with the aid of using SciTools (provided by the manufacturer at www.idtdna.com) to minimize any unintended secondary structures.

Thrombin: Thrombin from human plasma was purchased from Sigma (T6884 Sigma Aldrich, St Louis, MO, USA). The concentration of thrombin was calculated by measuring the OD₂₈₀ and using $E_{280}^{1\%} = 18.3$ provided by the manufacturer. The protein was stored in 0.1% w/v BSA (B4284 Sigma Aldrich, St Louis, MO, USA) in 10 mM Tris pH 8.0, and kept as 200 μ L aliquots at -20 $^{\circ}$ C for long term storage. For each measurement, the thrombin solution was thawed and mixed well prior to use. Each aliquot was used only within 5 days after thawing.

Adenosine: Adenosine was purchased from Sigma (A9251 Sigma Aldrich, St Louis, USA). The concentration was calculated by using $\varepsilon_{259} = 15,400 \text{ M}^{-1} \text{ cm}^{-1}.^{[28]}$

Sensor preparation

Stock solutions of oligos were made by diluting lyophilized DNA powder in DI water. The concentrations of the stock solution of unlabeled oligos were obtained by measuring the OD₂₆₀ using the extinction coefficient values provided by the manufacturer. The concentration of the stock solution of the doubly labeled oligos were calculated from the measured absorption of TMR at 558 nm (OD₅₅₈) using the extinction coefficient value of

75,200 M $^{-1}$ cm $^{-1}$. $^{[29]}$ The stock solutions were then kept as 200 μ L aliquots at -20° C for long term storage. An annealed thrombin sensor was prepared by mixing the B, tA and tC strands at the desired ratio in the presence of 200 mM NaCl in 10 mM Tris pH 8.0. For the 1:1:1 (B:tA:tC) strand mixing ratio, 15 μ M of each was used and scaled up accordingly for the higher mixing ratio. The mixture was incubated at 90° C for 10 minutes in a water bath and left to cool down to room temperature overnight. An annealed adenosine sensor was prepared by the same method.

FRET measurement and analysis

The (*ratio*)_A *measurement*: The conformational changes of the sensor were followed by measurement of the Förster Resonance Energy Transfer (FRET) efficiency. In short, FRET efficiency E is related to the intermolecular distance R between the FRET donor (fluorescein in our case) and the FRET acceptor (tetramethylrhodamine in our case) by

$$E = \frac{R_0^6}{R_0^6 + R^6}$$
 where R_0 is the Förster radius defining the separation when E is 50%. In this

work we measured E via the $(ratio)_A$ method. Selecting fluorescein and tetramethylrhodamine excitation wavelengths near their absorption maxima at 495 nm and 550 nm respectively, the $(ratio)_A$ is related to E as follows:

$$\left(\text{ratio}\right)_{A} = \frac{\gamma}{\gamma + \beta} \times \frac{\varepsilon_{F}(495) \times E + \varepsilon_{TMR}(495)}{\varepsilon_{TMR}(550)} \tag{1}$$

Where γ is the fraction of sensors with a complete donor-acceptor labeling β is the fraction of sensors singly labeled with only acceptor ϵ_F (495), ϵ_{TMR} (495) and ϵ_{TMR} (550) are the extinction coefficient of

fluorescein at 495 nm, of tetramethylrhodamine at 495 nm and at 550 nm, respectively.

Alternatively, the (ratio)_A can be taken as a ratio between the TMR total emission intensity being excited at 495 nm (via the effect of FRET combined with that of direct excitation) and the TMR total emission intensity being excited at 550 nm (via the effect of direct excitation alone), as shown in Equation (2) (adapted from ^[30]).

$$(\text{ratio})_{A} = \frac{\sum_{i} F_{TMR} (\lambda_{495}, \lambda_{i})}{\sum_{i} F_{TMR} (\lambda_{550}, \lambda_{i})}$$
 (2)

Therefore, the (ratio)_A is measured by first taking an emission spectrum with an excitation wavelength at 495 nm and removing the contribution of the donor emission using a known fluorescein emission spectrum. Then the second emission spectrum is obtained by a 550 nm excitation. The (ratio)_A is the ratio of the spectral area of the two spectra. (See the Supporting information for more details.)

All emission spectra were measured on a Perkin Elmer LS55 spectrofluorometer (Perkin Elmer Inc., Waltham, MA, USA). To ensure that the measured emission signal represented the total fluorescence intensity, an excitation and an emission polarizer were employed during the measurement. For a given measurement, the excitation light was maintained vertically polarized by the excitation polarizer, while two emission spectra were collected: one with the vertical emission polarizer and the other with the horizontal emission polarizer. The two obtained spectra were denoted $F_W(\lambda_{ex}, \lambda)$ and $F_{VH}(\lambda_{ex}, \lambda)$.

The spectrum representing the total fluorescence intensity $F_{total}(\lambda_{ex}, \lambda)$ was constructed by calculating the total fluorescence intensity at each emitted wavelength λ_i using^[31]:

$$F_{total}\left(\lambda_{ex},\lambda_{i}\right) = F_{VV}\left(\lambda_{ex},\lambda_{i}\right) + 2 \times G\left(\lambda_{i}\right) \times F_{VH}\left(\lambda_{ex},\lambda_{i}\right) \tag{3}$$
 Where $G\left(\lambda_{i}\right)$ is the G factor at a given λ_{i} obtained from $G\left(\lambda_{i}\right) = \frac{F_{HV}\left(\lambda_{ex},\lambda_{i}\right)}{F_{HH}\left(\lambda_{ex},\lambda_{i}\right)}$

Thrombin and adenosine titration: The annealed thrombin sensor (designated tC-B-tA) or the annealed adenosine sensor (designated aC-B-aA) was diluted from the annealing stock with 10 mM Tris pH 8.0, mixed with MgCl₂ and KCl stock solutions and incubated in a micro-centrifuge tube in the dark at room temperature for 30 minutes. Thrombin or adenosine was then added and the incubation allowed to proceed for 1 hour. Unless specified otherwise, the final mixture was 133 nM tC-B-tA (measured from the absorption of TMR at OD₅₅₈) in 0.1% BSA in 10 mM Tris pH 8.0 containing residual 1.77 mM NaCl used in annealing and various concentrations of MgCl₂, KCl and thrombin/adenosine.

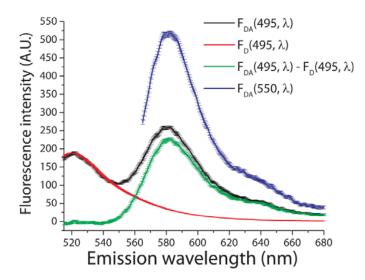
Washing: The annealed thrombin sensor (tC-B-tA) was diluted with 10 mM Tris pH 8.0, mixed with MgCl₂ and KCl stock solutions and incubated at room temperature in the dark for 30 minutes. Then the washer strand (tAW, tAW-4, tCW or tCW-4) was mixed and the solution was incubated at room temperature for 1 hour. The final mixture was 133 nM tA-B-tC in 0.1% BSA in 10 mM Tris pH 8.0 containing residual 1.77 mM NaCl used in the annealing, 5 mM MgCl₂, 5 mM KCl (obtained from optimization) and various concentrations of the washer strand.

Assembling: The B strand was diluted with 10 mM Tris pH 8.0, mixed with MgCl₂ and KCl stock solutions and incubated at room temperature in the dark for 30 minutes. Then the aA and aC strands were mixed and the solution was incubated at room temperature for 1 hour. The measurement was done for the sample with no added adenosine. For the sample with adenosine, it was added afterwards and incubation was allowed for another hour before measurement. The final mixture is 133 nM of the B strand in 0.1% BSA in 10 mM Tris pH 8.0 containing residual 1.77 mM NaCl used in the annealing, 5 mM MgCl₂, 5 mM KCl, various concentration of the aA and aC strands and 50 μ M adenosine.

Sequential washing and assembling: The experiment was divided into 6 sequential steps: #1 annealing of the thrombin sensor (tC-B-tA), #2 washing of the tC strand, #3 washing of the tA strand, #4 assembling of the aA strand, #5 assembling of the aC strand and #6 testing the response with 20 μ M adenosine. The (ratio)_A was measured for each of the six steps. For a practical reason, the sample preparation was carried out in 6 batches for the 6 reaction steps. The details of the preparation can be found in the Supporting information.

Acknowledgements

We would like to acknowledge the financial support from the Thailand Research Fund and the Office of Higher Education Commission (MRG5280160). The financial and instrumental supports from the Trace Analysis and Biosensor Research Center, from the Department of Physics and from the Department of Chemistry, Faculty of Science, Prince of Songkla University are highly appreciated. We also thank Dr. Chongdee Thammakhet for useful discussions and Dr. Brian Hodgson for his help in a proof reading of the manuscript.


Keywords: aptamers · DNA nano-device · FRET · optical biosensor

- [1] E. J. Cho, J. W. Lee, A. D. Ellington, in *Annual Review of Analytical Chemistry, Vol. 2*, Annual Reviews, Palo Alto, 2009, pp. 241-264.
- [2] A. D. Ellington, J. W. Szostak, *Nature* 1990, *346*, 818-822; C. Tuerk, L. Gold, *Science* 1990, 505-510.
- [3] S. D. Jayasena, Clinical Chemistry 1999, 45, 1628-1650.
- [4] Y. Xiao, A. A. Lubin, A. J. Heeger, K. W. Plaxco, *Angewandte Chemie-International Edition* 2005, 44, 5456-5459.
- [5] M. Liss, B. Petersen, H. Wolf, E. Prohaska, *Analytical Chemistry* 2002, 74, 4488-4495.
- [6] K. Gebhardt, A. Shokraei, E. Babaie, B. H. Lindqvist, *Biochemistry* 2000, 39, 7255-7265.
- [7] V. Pavlov, Y. Xiao, B. Shlyahovsky, I. Willner, *Journal of the American Chemical Society* 2004, *126*, 11768-11769.
- [8] T. Hermann, D. J. Patel, Science 2000, 287, 820-825.
- [9] R. A. Potyrailo, R. C. Conrad, A. D. Ellington, G. M. Hieftje, *Analytical Chemistry* 1998, *70*, 3419-3425.
- [10] N. Hamaguchi, A. Ellington, M. Stanton, Analytical Biochemistry 2001, 294, 126-131; M. N. Stojanovic, P. de Prada, D. W. Landry, Journal of the American Chemical Society 2000, 122, 11547-11548.
- [11] S. Tyagi, F. R. Kramer, *Nature Biotechnology* 1996, *14*, 303-308; S. Tyagi, D. P. Bratu, F. R. Kramer, *Nature Biotechnology* 1998, *16*, 49-53.
- [12] J. J. Li, X. Fang, W. Tan, *Biochemical and Biophysical Research Communications* 2002, 292, 31-40.
- [13] R. Nutiu, Y. Li, Journal of the American Chemical Society 2003, 125, 4771-4778.
- [14] M. N. Stojanovic, D. W. Landry, *Journal of the American Chemical Society* 2002, *124*, 9678-9679.
- [15] W. C. Xu, Y. Lu, Analytical Chemistry 2010, 82, 574-578.
- [16] J. R. Williamson, M. K. Raghuraman, T. R. Cech, Cell 1989, 59, 871-880; O. L. Acevedo, L.
 A. Dickinson, T. J. Macke, C. A. J. Thomas, Nucleic Acids Research 1991, 19, 3409-3419.
- [17] J. R. Williamson, *Annual Review of Biophysics and Biomolecular Structure* 1994, *23*, 703-730; K. Y. Wang, S. McCurdy, R. G. Shea, S. Swaminathan, P. H. Bolton, *Biochemistry* 1993, *32*, 1899-1904; K. Y. Wang, S. H. Krawczyk, N. Bischofberger, S. Swaminathan, P. H. Bolton, *Biochemistry* 1993, *32*, 11285-11292.
- [18] V. A. Bloomfield, D. M. Crothers, I. J. Tinoco, *Nucleic Acids: structures, properties, and functions*, University Science Books, Sausalito, 2000.
- [19] F. He, Y. Tang, S. Wang, Y. Li, D. Zhu, *Journal of the American Chemical Society* 2005, *127*, 12343-12346.
- [20] R. M. Clegg, *Methods in Enzymology* 1992, *211*, 353-388.
- [21] K. Padmanabhan, K. P. Padmanabhan, J. D. Ferrara, J. E. Sadler, A. Tulinsky, *The Journal of Biological Chemistry* 1993, *268*, 17651-17654.
- [22] D. E. Huizenga, J. W. Szostak, *Biochemistry* 1995, 34, 656-665.
- [23] B. Yurke, A. J. Turberfield, A. P. Mills, F. C. Simmel, J. L. Neumann, *Nature* 2000, *406*, 605-608.
- [24] G. Vámosi, R. M. Clegg, *Biochemistry* 1998, 37, 14300-14316; J. R. Unruh, G. Gokulrangan, G. S. Wilson, C. K. Johnson, *Photochemistry and Photobiology* 2005, 81, 682-690; R. F. Delgadillo, L. J. Parkhurst, *Photochemistry and Photobiology* 2010, 86, 261-272.

- [25] L. Wang, A. K. Gaigalas, J. Blasic, M. J. Holden, *Spectrochimica Acta Part A* 2004, *60*, 2741-2750.
- [26] P. Schwille, F. J. Meyer-Almes, R. Rigler, Biophysical Journal 1997, 72, 1878-1886.
- [27] L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, J. J. Toole, Nature 1992, 355, 564-566.
- [28] E. Volkin, W. E. Cohn, Methods of biochemical analysis 1954, 1, 287-305.
- [29] R. M. Clegg, A. I. H. Murchie, A. Zechel, C. Carlberg, S. Diekmann, D. M. J. Lilley, *Biochemistry* 1992, *31*, 4846-4856.
- [30] Z. K. Majumdar, R. Hickerson, H. F. Noller, R. M. Clegg, *Journal of Molecular Biology* 2005, *351*, 1123-1145.
- [31] J. R. Lakowicz, *Principles of Fluorescence Spectroscopy*, 2nd ed., Kluwer Academic/Plenum Publishers, New York, 1999.

Supporting Information

(ratio)_A measurement: From Equation (2), the (ratio)_A can be measured by the following method^[1]. In detail, first, an emission spectrum with an excitation wavelength at 495 nm (F_{DA} (495, λ), Figure S1) and another emission spectrum with an excitation wavelength at 550 nm (F_{DA} (550, λ)) are measured. Then the unwanted contribution of the donor emission in spectrum F_{DA} (495, λ) is eliminated by subtracting a fluorescein emission spectrum (F_{D} (495, λ)), adjusted to have the peak height matched with that of F_{DA} (495, λ) to yield only a TMR emission spectrum sensitized by FRET. The obtained spectrum is called F_{DA} (495, λ)- F_{D} (495, λ). The numerator in equation 2 is the area under the spectrum F_{DA} (495, λ)- F_{D} (495, λ), whereas the denominator is the area under the spectrum F_{DA} (550, λ).

Figure S1. A set of emission spectra necessary to calculate the (ratio)_A value. F_{DA} (495, λ) and F_{DA} (550, λ) are fluorescence emission spectra taken from a sample doubly labeled with a fluorescein (donor) and tetramethylrhodamine (acceptor) excited at 495 nm and 550 nm, respectively. F_D (495, λ) is an emission spectrum taken from the sample singly labeled with fluorescein excited at 495 nm with peak height adjusted to match that of

spectrum $F_{DA}(495,\lambda)$. $F_{DA}(495,\lambda)$ - $F_{D}(495,\lambda)$ is a spectrum obtained by subtracting spectrum $F_{D}(495,\lambda)$ from spectrum $F_{DA}(495,\lambda)$. It represents an acceptor emission spectrum being excited via FRET and by direct excitation at 495 nm.

Sequential washing and assembling:

There were 6 batches corresponding to the 6 mixing steps.

Batch #1: The solution of 15 μ M of the annealed thrombin sensor (tC-B-tA) in 200 mM NaCl in 10 mM Tris pH 8.0 was incubated for 1 hour (at room temperature in the dark, unless stated otherwise). Then the sensor was diluted and mixed with MgCl₂ and KCl and incubated for 30 min. Then BSA was added in the final step and the mixture was incubated for 1 hour prior to the (ratio)_A measurement. The final mixture contains 133 nM (based on the B strand concentration) of the annealed thrombin sensor (expected to be tA-B-tC) in 0.1% BSA in 10 mM Tris pH 8.0 having a residual 1.77 mM NaCl used in the annealing step, 5 mM MgCl₂ and 5 mM KCl.

Batch #2: The solution of 15 μ M of the annealed thrombin sensor (tC-B-tA) mixed with 75 μ M of the tCW-4 strand in 200 mM NaCl in 10 mM Tris pH 8.0 was incubated for 1 hour. Then the mixture was diluted and mixed with MgCl₂ and KCl and incubated for 30 min. Then BSA was added in the final step and the mixture was incubated for 1 hour prior to the (ratio)_A measurement. The final mixture contains 133 nM (based on the B strand concentration) of incomplete thrombin sensor (expected to be B-tA) and 665 nM of the tCW-4 strand (total in all forms) in 0.1% BSA in 10 mM Tris pH 8.0 having a residual 1.77 mM NaCl used in the annealing step, 5 mM MgCl₂ and 5 mM KCl.

Batch #3: The solution of 15 μ M of the annealed thrombin sensor (tA-B-tC) mixed with 75 μ M of the tCW-4 strand and 75 μ M of the tAW-4 strand was incubated in 200 mM NaCl in 10 mM Tris pH 8.0 for 1 hour. Then the mixture was diluted and mixed with MgCl₂ and KCl and incubated for 30 min. Then BSA was added in the final step and the mixture was incubated for 1 hour prior to the (ratio)_A measurement. The final mixture contains 133 nM (based on the B strand concentration) of the incomplete sensor (expected to be B), 665 nM of the tCW-4 strand (total in all forms) and 665 nM of the tAW-4 strand (total in all forms) in 0.1% BSA in 10 mM Tris pH 8.0 having a residual 1.77 mM NaCl used in the annealing step, 5 mM MgCl₂ and 5 mM KCl.

Batch #4: The solution of 15 μ M of the annealed thrombin sensor (tA-B-tC) mixed with 75 μ M of the tCW-4 strand, 75 μ M of the tAW-4 strand and 30 μ M of the aA strand was incubated in 200 mM NaCl in 10 mM Tris pH 8.0 for 1 hour. Then the mixture was diluted and mixed with MgCl₂ and KCl and incubated for 30 min. Then BSA was added in the final step and the mixture was incubated for 1 hour prior to the (ratio)_A measurement. The final mixture contains 133 nM (based on the B strand concentration) of the incomplete adenosine sensor (expected to be B-aA), 665 nM of the tCW-4 strand (total in all forms), 665 nM of the tAW-4 strand (total in all forms) and 266 nM of the aA strand (total in all

forms) in 0.1% BSA in 10 mM Tris pH 8.0 having a residual 1.77 mM NaCl used in the annealing step, 5 mM MgCl₂ and 5 mM KCl.

Batch #5: The solution of 15 μ M of the annealed thrombin sensor (tA-B-tC) mixed with 75 μ M of the tCW-4 strand, 75 μ M of the tAW-4 strand, 30 μ M of the aA strand and 30 μ M of the aC strand was incubated in 200 mM NaCl in 10 mM Tris pH 8.0 for 1 hour. Then the mixture was diluted and mixed with MgCl₂ and KCl and incubated for 30 min. Then BSA was added in the final step and the mixture was incubated for 1 hour prior to the (ratio)_A measurement. The final mixture contains 133 nM (based on the B strand concentration) of the annealed adenosine sensor (expected to be aC-B-aA), 665 nM of the tCW-4 strand (total in all forms), 665 nM of the tAW-4 strand (total in all forms), and 266 nM of the aC strand (total in all forms) in 0.1% BSA in 10 mM Tris pH 8.0 having a residual 1.77 mM NaCl used in the annealing step, 5 mM MgCl₂ and 5 mM KCl.

Batch #6: The solution of 15 μ M of the annealed thrombin sensor (tA-B-tC) mixed with 75 μ M of thetCW-4 strand, 75 μ M of the tAW-4 strand, 30 μ M of the aA strand and 30 μ M of the aC strand was incubated in 200 mM NaCl in 10 mM Tris pH 8.0 for 1 hour. Then the mixture was diluted and mixed with MgCl₂ and KCl and incubated for 30 min. Then adenosine and BSA was added in the final step and the mixture was incubated for 1 hour prior to the (ratio)_A measurement. The final mixture contains 133 nM (based on the B strand concentration) of the annealed adenosine sensor (expected to be aC-B-aA), 665 nM of the tCW-4 strand (total in all forms), 665 nM of the tAW-4 strand (total in all forms) and 20 μ M of adenosine in 0.1% BSA in 10 mM Tris pH 8.0 containing a residual 1.77 mM NaCl used in the annealing step, 5 mM MgCl₂ and 5 mM KCl.

[1] R. M. Clegg, *Methods in Enzymology* 1992, *211*, 353-388; Z. K. Majumdar, R. Hickerson, H. F. Noller, R. M. Clegg, *Journal of Molecular Biology* 2005, *351*, 1123-1145.