

โครงการ: ค่าครอสเซคชันของการเกิดอนุภาคเบามีประจุในอันตรกิริยา ระหว่างนิวตรอนพลังงาน 175 ล้านอิเล็กตรอนโวลท์กับออกซิเจน Light-ion production in the interaction of 175 MeV neutrons with oxygen

โดย ผศ.ดร. อุดมรัตน์ ทิพวรรณ

รายงานวิจัยฉบับสมบูรณ์

โครงการ: ค่าครอสเซคชันของการเกิดอนุภาคเบามีประจุในอันตรกิริยา ระหว่างนิวตรอนพลังงาน 175 ล้านอิเล็กตรอนโวลท์กับออกซิเจน Light-ion production in the interaction of 175 MeV neutrons with oxygen

ผศ.ดร. อุดมรัตน์ ทิพวรรณ

อาคารวิจัยนิวตรอนพลังงานสูง ภาควิชาฟิสิกส์และวัสดุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

สหับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

Project Code: MGR5280165

(รหัสโครงการ)

Project Title: Light-ion production in the interaction of 175 MeV neutrons with oxygen

(ชื่อโครงการ) ค่าครอสเซคชันของการเกิดอนุภาคเบามีประจุในอันตรกิริยาระหว่าง

นิวตรอนพลังงาน 175 ล้านอิเล็กตรอนโวลท์กับออกซิเจน

Investigator : ผศ.ดร. อุดมรัตน์ ทิพวรรณ

(ชื่อนักวิจัย) ภาควิชาฟิสิกส์และวัสดุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

E-mail Address : udomrat@fnrf.science.cmu.ac.th

Project Period : 16 มีนาคม 2552 ถึงวันที่ 16 พฤศจิกายน 2554

(ระยะเวลาโครงการ)

บทคัดย่อ

ความสนใจในการประยุกต์ด้านนิวตรอนพลังงานสูง (E>20 MeV) ที่เพิ่มขึ้นในปัจจุบัน จำเป็นต้องใช้ข้อมูลการทดลองปฏิกิริยาที่เหนี่ยวนำด้วยนิวตรอนที่มีคุณภาพสูง เช่น dosimetry ที่ระดับความสูงของเครื่องบินพาณิชย์และในอวกาศ [1] การรักษามะเร็งด้วยรังสี [2-4] ผลของ single-event ในอิเลคทรอนิกส์ [5,6] รวมถึงการผลิตพลังงานนิวเคลียร์และ การ transmutation ของกากรังสี [7,8] ซึ่งล้วนจำเป็นอย่างยิ่งที่จะต้องทำความเข้าใจการประยุกต์ต่างๆ เหล่านี้ให้ดี ยิ่งขึ้นเพื่อทำการคำนวณการแพร่กระจายรังสีและผลกระทบทางรังสีได้อย่างมีประสิทธิภาพ สิ่ง สำคัญอีกประการหนึ่ง คือ การจะทดลองวัดจริงเพื่อให้ได้ข้อมูลที่ครบถ้วนสมบูรณ์ทุกธาตุตลอด ช่วงพลังงานแทบจะเป็นไปไม่ได้เนื่องจากต้องใช้กำลังคนมากมายและเงินทุนมหาศาล ดังนั้นจึง จำเป็นต้องอาศัยการคำนวณของการกระเจิงและปฏิกิริยานิวเคลียร์ด้วยแบบจำลองมาช่วย อย่างไรก็ตามผลการคำนวณที่ได้มักจะขึ้นอยู่กับแต่ละแบบจำลองที่ใช้ ดังนั้นการทดลองวัดจริง สำหรับบางธาตุบางช่วงพลังงานเหล่านี้นับว่าเป็น benchmark ให้กับการคำนวณเชิงทฤษฎี

ที่ neutron beam facility ของมหาวิทยาลัย Uppsala ประเทศสวีเดน มีนิวตรอนที่มี พลังงานกึ่งเดี่ยว (quasi-monoenergetic) ที่ขยายช่วงพลังงานสูงจนถึง 175 MeV พร้อมทั้งระบบ หัววัด MEDLEY ซึ่งประกอบด้วยกล้องโทรทรรศน์ จำนวน 8 ชุด วางในมุมองศาต่างๆ ภายในอู่ ปฏิกิริยาสุญญากาศ กล้องโทรทรรศน์แต่ละชุดประกอบด้วย หัววัดสารกึ่งตัวนำแบบ Silicon Surface barrier 2 หัววัดและหัววัดสารเรื่องแสงแบบซีเซียมไอโอไดด์ (CsI) ทั้งนี้ เพื่อให้สามารถวัด ในช่วงพลังงานที่สูงมากขนาดนี้เป็นไปได้ด้วยดี ก็จำเป็นต้องมีปรับเปลี่ยนการติดตั้งหัววัด [9] โดย

เปรียบเทียบกับการทดลองที่ช่วงพลังงาน 96 MeV ด้วย [10] โดยเปลี่ยนหัววัด ΔE อันที่สองที่มี ความหนาเป็น 1000 μ m SSBDs เช่นเดียวกันกับหัววัด E ก็เพิ่มความยาวเป็น 100 mm และ เส้นผ่าศูนย์กลาง 50 mm เทคนิค ΔE -E ถูกใช้เพื่อระบุชนิดอนุภาคเบามีประจุ โดยมี cutoff energies ที่ช่วงพลังงานต่ำมากที่ 2.5 MeV สำหรับโปรตอน และ 4.0 MeV สำหรับอัลฟา ข้อมูลที่ ได้มาทั้งหมดจะถูกเปรียบเทียบสัมพันธ์กับ elastic np scattering ซึ่งใช้วัดจากกล้องโทรทรรศน์ที่ 20°. สเปกตรัมพลังงานถูกวัดที่มุมทดลองจำนวน 8 มุม ตั้งแต่ 20° ถึง 160° ทีละ 20° ในรายงานนี้ จะแสดงให้เห็นกระบวนการจัดเก็บและวิเคราะห์ข้อมูลทั้งหมด โดยผลการทดลองค่าครอสเซคชัน ของการเกิดอนุภาคเบามีประจุ (p, d, t, 3 He และ α) สำหรับออกซิเจนที่ถูกเหนี่ยวนำโดยนิวตรอน พลังงาน 175 ล้านอิเล็กตรอนโวลท์ นำมาใช้เปรียบเทียบกับการคำนวณรูปแบบปฏิกิริยานิวเคลียร์ ในเชิงทฤษฎี การวิเคราะห์ข้อมูลจะทำต่อไปสำหรับไตรตอนและ 3 He ซึ่งต้องทำการสอบเทียบ พลังงานสำหรับหัววัดสารเรื่องแสงแบบซีเซียมไอโอไดด์ (CsI) และการคำนวณใหม่สำหรับการแก้ ใขการสูญเสียทั้งพลังงานและอนุภาคในตัวเป้าปฏิกิริยา

คำหลัก : double-differential cross sections, light-ion production, 175 MeV

Abstract

The growing interest in applications involving high-energy neutrons (E>20 MeV) requires high-quality experimental data on neutron-induced reactions. Examples are dosimetry at commercial aircraft altitudes and in space [1], radiation treatment of cancer [2-4], single-event effects in electronics [5,6], and energy production and transmutation of nuclear waste [7,8]. For all these applications, a better understanding of neutron interactions is essential for calculations of neutron transport and radiation effects. It should be emphasized that for these applications, it is beyond reasonable efforts to provide complete data sets. Instead, the nuclear data needed for a better understanding must come to a very large extent from nuclear scattering and reaction model calculations, which all depend heavily on nuclear models. These, in turn, are benchmarked by experimental nuclear reaction cross-section data.

At the new Uppsala neutron beam facility, the available energy range of quasi mono-energetic neutron beams is extended up to 175 MeV. The detector setup used in MEDLEY consists of eight so-called telescopes mounted at different angles inside an evacuated reaction chamber. Each of the telescopes consists of two fully depleted ΔE silicon surface barrier detectors (SSBD) and a CsI(TI) crystal. In order to make measurements at this higher neutron energy possible, some upgrades in the detector setup [9] compared to the campaign at 96 MeV [10] were applied. Accordingly, the second ΔE detectors have been replaced by 1000 μm thick SSBDs as well as the size of the crystals used as E detectors was increased to a total length of 100 mm and a diameter of 50 mm. The ΔE -E technique is used to identify the light ions, and cutoff energies as low as 2.5 MeV for protons and 4.0 MeV for alpha particles are achieved. The data are normalised relative to elastic np scattering measured in one of the telescopes at 20 degrees. Energy spectra have been measured at eight laboratory angles from 20° to 160° in steps of 20°. Procedures for data taking and data reduction are presented. Experimental Double-differential cross sections for light-ion (p, d and α) production in oxygen induced by 175 MeV neutrons are compared to theoretical reaction model calculations. Data analysis should be extended to tritons and ³He particles, this requires calibration of CsI(TI) scintillators for these particles, new calculations of the energy loss and thick target correction.

Keywords: double-differential cross sections, light-ion production, 175 MeV

กิตติกรรมประกาศ

โครงการวิจัยนี้ได้รับทุนพัฒนาศักยภาพในการทำงานวิจัยของอาจารย์รุ่นใหม่ ประจำปี พ.ศ. 2552 จากสำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย ซึ่ง ผู้วิจัยขอขอบพระคุณเป็นอย่างสูงมา ณ โอกาสนี้

นอกจากนี้ผู้วิจัยยังได้รับความช่วยเหลือสมทบในหลาย ๆลักษณะจากองค์กรและบุคคล ต่างๆ ดังรายนามต่อไปนี้

ภาควิชาฟิสิกส์และวัสดุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ ที่อนุญาตให้ เดินทางไปทำวิจัยและเสนอผลงานทั้งในและต่างประเทศ

ห้องปฏิบัติการ The (Theodor) Svedberg (TSL) Uppsala University เมือง Uppsala ประเทศสวีเดน สนับสนุนและเอื้อเฟื้อสถานที่ในการทำวิจัย

Department of Neutron Research, Uppsala University ประเทศสวีเดนให้ความกรุณา สนับสนุนทั้งด้านวิชาการ สถานที่ทำงาน อุปกรณ์เครื่องมือทดลองที่มีค่า และ คอมพิวเตอร์

Swedish Natural Science Research Council, the Swedish Nuclear Fuel and Waste Management Company, Swedish Radiation Safety Authority, Ringhals AB ประเทศสวีเดน และ Semiconductor Technology Academic Research Center (STARC) joint research program ประเทศญี่ปุ่น ที่ให้การสนับสนุนสมทบต่อผู้ร่วมวิจัย

ศาสตราจารย์ ดร. Jan Blomgren ผู้อำนวยการ Swedish Centre for Nuclear Technology และ ศาสตราจารย์ ดร. ถิรพัฒน์ วิลัยทอง ผู้อำนวยการศูนย์ความเป็นเลิศด้านฟิสิกส์ที่กรุณาให้ คำปรึกษาและคำแนะนำที่เป็นประโยชน์อย่างยิ่ง

ศาสตราจารย์ Stephan Pomp อาจารย์ประจำ Department of Neutron Research, Uppsala University ประเทศสวีเดน กรุณาให้คำแนะนำและเริ่มร่วมทำการทดลองเรื่องการเกิด อนุภาคเบามีประจุ โดยการเหนี่ยวนำด้วยนิวตรอนพลังงานสูง ด้วยระบบหัววัด Medley รวมทั้งให้ ที่พำนักในระหว่างการทดลองเก็บข้อมูล

รองศาสตราจารย์ Yukinobu Watanabe อาจารย์ประจำ Department of Advanced Energy Engineering Science, Kyushu University ประเทศญี่ปุ่น ที่กรุณาให้คำปรึกษาและ คำแนะนำที่เป็นประโยชน์อย่างยิ่งในเรื่อง รวมทั้งการให้ beam time โดยมีคิดค่าใช้จ่าย

ดร. Arjan Koning ผู้เชี่ยวชาญประจำ Nuclear Research and Consultancy Group (NRG) ประเทศเนเธอร์แลนด์ สำหรับโปรแกรม TALYS และรายละเอียดทางเทคนิค เพื่อทำนายค่าดับเบิ้ล ดิฟเฟอเรนเชียลครอสเซคชัน

และคุณฐานิตา เดชธรรมรงค์ เจ้าหน้าที่ของศูนย์วิจัยนิวตรอนพลังงานสูง มหาวิทยาลัย เชียงใหม่ที่ช่วยดูแลและจัดการเรื่องการเงิน ผู้วิจัยขอแสดงความขอบคุณเป็นอย่างยิ่งต่อทุกฝ่าย ถ้าปราศจากซึ่งการสนับสนุนเหล่านี้ โครงการวิจัยนี้คงไม่อาจสำเร็จลงได้อย่างแน่นอน

บทน้ำ

ในเชิงทฤษฎี นิวตรอนเป็นอนุภาคที่นิยมใช้ในการศึกษาปฏิกิริยานิวเคลียร์ต่างๆ ตั้งแต่ พลังงานต่ำจนถึงสูง การที่นิวตรอนไม่มีประจุ จึงสามารถเข้าไปทำอันตรกิริยากับนิวเคลียสของ ธาตุโดยตรง ในเชิงประยุกต์ นิวตรอนถูกนำไปใช้ประโยชน์ในหลายด้าน อาทิ การผลิตพลังงาน จากโรงไฟฟ้านิวเคลียร์แบบฟิสชันในปจัจุบัน และจากเตาปฏิกรณ์นิวเคลียร์แบบฟิวชันในอนาคต

การจำลอง (simulation) เป็นเทคนิควิธีที่นิยมใช้ในการคำนวณปริมาณรังสีที่จะให้กับ คนไข้ในการบำบัดมะเร็งด้วยนิวตรอนพลังงานสูง [11] รวมทั้งการหาโดสที่นักบินและลูกเรือได้รับ จากรังสีนิวตรอนคอสมิก (cosmic-ray neutrons) หรือ อัตราการเกิดความล้มเหลวจาก Single Event Effect ในส่วนประมวลผลของคอมพิวเตอร์และอุปกรณ์อิเล็กทรอนิกส์จากรังสีนิวตรอน คอสมิกเช่นเดียวกัน [12] ตัวแปรที่สำคัญประการหนึ่งสำหรับการจำลอง คือ ฐานข้อมูลทาง นิวเคลียร์ โดยเฉพาะอย่างยิ่ง ค่าครอสเซคชันของการเกิดอนุภาคเบามีประจุจากการเหนี่ยวนำของ นิวตรอนพลังงานสูง ซึ่งขึ้นอยู่กับชนิดของอนุภาคเบามีประจุ ได้แก่ โปรตอน ดิวเทอรอน และ อนุภาคอัลฟา ตลอดจนพลังงานและมุมปลดปล่อยของอนุภาคเบามีประจุดังกล่าว

ทั้งนี้ ฐานข้อมูลทางนิวเคลียร์ที่เกี่ยวข้องกับการเหนี่ยวนำด้วยนิวตรอนซึ่งมีใช้อยู่ใน ปัจจุบันนี้ยังเป็นปัญหาอยู่ เนื่องจากครอบคลุมเพียงนิวตรอนที่มีพลังงานต่ำจนถึงประมาณ 20 MeV เท่านั้น อันเป็นผลสืบเนื่องจากการใช้งานของเตาปฏิกรณ์นิวเคลียร์แบบฟิสชัน (เทอร์มัล นิวตรอน ≈ 0.25 eV) และแบบฟิวชัน (นิวตรอนเร็ว ≈ 14 MeV) ส่วนฐานข้อมูลทางนิวเคลียร์ สำหรับนิวตรอนที่มีพลังงานในช่วง 20-70 MeV มีน้อยมาก และแทบจะไม่มีเลยในกรณีที่นิวตรอน มีพลังงานมากกว่า 100 MeV ขึ้นไป นอกจากนั้น ห้องปฏิบัติการที่สามารถผลิตนิวตรอนพลังงาน สูงมีจำนวนจำกัด เช่นเดียวกันกับระบบหัววัดที่มีอำนาจการจำแนกชนิดและพลังงานของอนุภาค เบามีประจุ

อนึ่ง ช่วงพลังงานของนิวตรอนสำหรับฐานข้อมูลทางนิวเคลียร์ใหม่นี้กว้างมาก นิวตรอน พลังงานสูงก็ก่อให้เกิดปฏิกิริยานิวเคลียร์ที่หลากหลาย การทดลองวัดข้อมูลให้ครอบคลุมทุกชนิด ปฏิกิริยานิวเคลียร์และทุกพลังงานของนิวตรอนจึงเป็นไปไม่ได้ ด้วยเหตุนี้ จึงต้องนำการคำนวณ ทางทฤษฏีมาช่วยในการสร้างฐานข้อมูลทางนิวเคลียร์ใหม่นี้ ในช่วงหลายปีที่ผ่านมาได้มีการ พัฒนาโปรแกรมคอมพิวเตอร์ TALYS [13] โดยใช้แบบจำลองและทฤษฏีทางฟิสิกส์นิวเคลียร์ เพื่อ ทำนายโอกาสในการเกิดปฏิกิริยานิวเคลียร์ทุกชนิด โดยอาศัยข้อมูลที่ทดลองวัดได้สำหรับธาตุ หลักๆ ที่บางพลังงานของนิวตรอนเป็นเกณฑ์มาตรฐาน (benchmark) เพื่อทดสอบความแม่นยำ และเที่ยงตรงของผลการทำนายทางทฤษฏี ซึ่งนับว่าเป็นการส่งเสริมซึ่งกันและกัน

ในช่วงหลายปีที่ผ่านมา ได้มีการทดลองวัดดับเบิ้ลดิฟเฟอเรนเซียลครอสเซคชันของการ เกิดอนุภาคเบามีประจุ (double-differential light-ion production cross section) โดยการ เหนี่ยวนำด้วยนิวตรอนพลังงานสูงโดยกลุ่มวิจัยของ Department of Neutron Research, Uppsala University ประเทศสวีเดน ซึ่งได้พัฒนาระบบหัววัดอนุภาคเบามีประจุ [10] โดยใช้หลักการ $\Delta E + \Delta E + E$ ที่อาศัยการสูญเสียพลังงานของอนุภาคมีประจุ ตลอดจนการใช้เวลาที่แตกต่างกันตาม ชนิดของอนุภาค โดยใช้หัววัดแบบโทรทรรศน์ (telescope) จำนวน 8 ชุด แต่ละชุดประกอบด้วย หัววัดสารกึ่งตัวนำแบบ Silicon Surface barrier และหัววัดสารเรื่องแสงแบบ Csl วางอยู่ที่มุม ปลดปล่อยต่างๆ ตั้งแต่ 20° จนถึง 160° ด้วยเทคนิคนี้ กลุ่มวิจัยสามารถวัดพลังงานและมุม ปลดปล่อยของอนุภาคมีประจุได้ในช่วงกว้าง และมีค่า energy cutoff ที่ต่ำมาก คือ 2.5 MeV สำหรับโปรตอน และ 4 MeV สำหรับอนุภาคอัลฟา Udomrat และคณะ (2004, 2006, 2009) ดำเนินการทดลองวัดค่า DDX สำหรับธาตุซิลิกอน [14] ออกซิเจน [15] และคาร์บอน [16] ที่ พลังงานนิวตรอน 96 MeV และ กลุ่มวิจัยจาก LPC, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, และจาก SUBATECH, Université de Nantes, CNRS/IN2P3 ประเทศ ฝรั่งเศสได้มีการทำวิจัยร่วม โดย Blideanu และคณะ (2004) ดำเนินการทดลองวัดค่า DDX สำหรับธาตุเหล็ก ตะกั่ว และยูเรเนียม [17] ที่พลังงานนิวตรอน 96 MeV

ในปี พ.ศ. 2549 ห้องปฏิบัติการ The Svedberg Laboratory (TSL) ที่ Uppsala University ได้สร้างและปรับปรุง Neutron beam line ขึ้นใหม่ [18] จนสามารถผลิตนิวตรอนที่มี พลังงานสูงถึง 175 MeV จากปฏิกิริยา Li⁷(p,n) Be โดยใช้โปรตอนพลังงาน 180 MeV จากเครื่อง Cyclotron ทำให้ได้นิวตรอนที่มีพลังงานกึ่งเดี่ยว (quasi-monoenergetic) และมีค่าอำนาจการ จำแนกพลังงานประมาณ 5-10 MeV ด้วยเหตุนี้ กลุ่มวิจัยของ Uppsala University จึงได้เริ่ม โครงการทดลองวัดค่า DDX สำหรับธาตุต่าง ๆ อีกครั้งหนึ่ง Hayashi และคณะ (2007) ทำการวัด ค่า DDX สำหรับธาตุการ์บอน [19] (รูปที่ 2) และ Bevilacqua และคณะ (2010) เหล็กและบิสมัท [20] ที่พลังงานนิวตรอน 175 MeV

ทฤษฎี

2.1 ปฏิกิริยาหิวเคลียร์ (Nuclear Reaction)

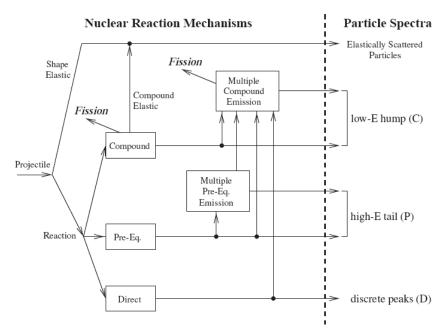
ปฏิกิริยานิวเคลียร์ (Nuclear Reaction) คือ กระบวนการที่นิวเคลียสเกิดการเปลี่ยนแปลง องค์ประกอบ ซึ่งเกิดจากการยิงด้วยอนุภาค, นิวคลีออน, นิวเคลียส, หรือรังสีแกมมาใส่นิวเคลียส เป้า แล้วเกิดการแลกเปลี่ยนพลังงานและโมเมนตัมระหว่างกัน ทำให้มีนิวคลีออนเพิ่มเข้าไปใน นิวเคลียสหรือออกไปจากนิวเคลียสหรือเกิดการเปลี่ยนแปลงจัดตัวใหม่ภายในนิวเคลียส โดย สามารถเขียนสมการของปฏิกิริยาได้ดังนี้

$$a + X \rightarrow Y + b + Q$$
 - value 2.1

หรือหรือเขียนได้อีกแบบหนึ่งเป็น

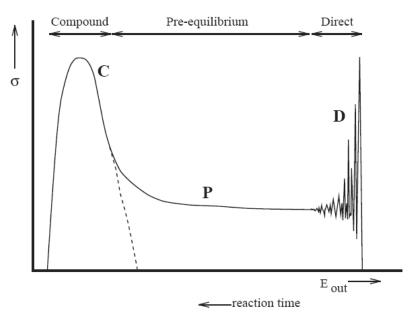
$$X(a,b)Y$$
 2.2

โดยที่ X เป็นนิวเคลียสที่เป็นเป้า , a คืออนุภาคกระสุนที่วิ่งเข้าชนเป้า , b คืออนุภาคที่ เกิดขึ้นใหม่หลังจากการชน และ Y คือนิวเคลียสของธาตุใหม่หลังจากการชน ปฏิกิริยานิวเคลียร์ใด ที่มีค่า Q-value เป็นลบ ก็จะมีค่า Energy threshold สำหรับอนุภาคกระสุนนั้น


การแบ่งแยกลักษณะปฏิกิริยานิวเคลียร์สามารถทำได้หลายวิธี อาทิ การแบ่งแยกตาม จำนวนครั้งของการชน (collision) ของนิวคลีออนเมื่อกระทำอันตรกิริยากับนิวเคลียส ได้แก่

Direct reactions โดยอนุภาคกระสุนจะชนกับนิวคลีออนไม่กี่ตัวของนิวเคลียส แล้วมีการ ปลดปล่อยนิวคลีออนออกมา

Compound or Equilibrium reactions โดยอนุภาคกระสุนจะชนกับนิวคลีออนทุกตัวภายใน นิวเคลียสมีส่วนรวมในการแบ่งปั้นพลังงานจากอนุภาคกระสุน จนกระทั่งเข้าสู่สภาวะสมดุล ก่อนที่ จะมีการปลดปล่อยนิวคลีออนออกมา


Pre-Compound or Pre-equilibrium reactions โดยอนุภาคกระสุนจะชนกับนิวคลีออน หลายตัวแต่มีการปลดปล่อยนิวคลีออนออกมา ก่อนที่จะเข้าสู่สภาวะสมดุล

ดังแสดงในรูปที่ 2.1

รูปที่ 2.1 การแบ่งแยกลักษณะปฏิกิริยานิวเคลียร์

หรือแบ่งแยกตามระดับเวลา (time scale) โดย Direct reactions จะเกิดขึ้นภายในเวลาที่สั้น มาก ประมาณ 10⁻²¹ วินาที ในขณะที่ Compound reactions ต้องใช้เวลาถึงประมาณ 10⁻¹⁵ - 10⁻¹⁹ วินาที ดังแสดงในรูปที่ 2.2

รูปที่ 2.2 การแบ่งแยกลักษณะปฏิกิริยานิวเคลียร์ตามเวลาที่ใช้ในกระบวนการ เกิดปฏิกิริยานิวเคลียร์ (reaction time)

หรือแบ่งตามกลไก (mechanism)ของกระบวนการการเกิดปฏิกิริยานิวเคลียร์ คือ

Compound or Equilibrium reactions โดยนิวคลีออนทุกตัวของนิวเคลียสเป้ามีส่วนรวมใน การแบ่งป[ั]นพลังงานจากอนุภาคกระสุน จนกระทั่งเข้าสู่สภาวะสมดุล ก่อนที่จะมีการปลดปล่อยนิ วคลีออนออกมา เหมือนกับการกลายเป็นไอของของเหลวที่กำลังเดือด

Pre-Compound or Pre-equilibrium reactions มีการปลดปล่อยนิวคลืออนออกมา ก่อนที่ จะเข้าสู่สภาวะสมดุล

Direct reactions โดยนิวคลีออนไม่กี่ตัวของนิวเคลียสเป้าที่เกิดอันตรกิริยากับอนุภาค กระสุนหรือมีส่วนรวมในการเกิดปฏิกิริยานิวเคลียร์

2.2 แบบจำลองนิวเคลียสประกอบ (Compound nucleus model)

หลังจากการคันพบอนุภาคนิวตรอนในปี 2475 โดย J. Chadwick การนำนิวตรอนมาศึกษา neutron-induced reaction ก็เริ่มต้นขึ้นตามมา จนกระทั่งปี ค.ศ. 1935 ผลการทดลองโดย E. Amaldi พบว่า นิวตรอนพลังงานต่ำมีค่าภาคตัดขวางสูงกว่า ค่า πR^2 เมื่อ R คือรัศมีของนิวเคลียส อย่างมากมาย ซึ่งเป็นปัญหาที่น่าประหลาดใจอย่างยิ่ง

ในปี 2479 N. Bohr ได้เสนอสมมุติฐานเพื่อตอบปัญหานี้ว่า กลไกของปฏิกิริยานิวเคลียร์นั้น เป็นแบบสองขั้นตอน (two-step process) คือ

ขั้นตอนแรก เมื่ออนุภาคที่ตกกระทบนิวเคลียสเป้าแล้วเกิดอันตรกิริยาอย่างแรง โดยการ ถ่ายทอดพลังงานให้กับนิวคลีออนต่างๆในนิวเคลียส ทำให้อนุภาคที่ตกกระทบมีลักษณะเป็นนิวคลี ออนส่วนหนึ่งของนิวเคลียส เป็นผลทำให้นิวคลีออนทั้งหมดก่อตัวเป็นนิวเคลียสประกอบ (compound nucleus, (C)*) ที่อยู่ในสถานะกระตุ้นขั้นตอนที่สอง ในช่วงระยะเวลาหนึ่งนิวคลี ออนหรือกลุ่มของนิวคลีออนที่อยู่บริเวณผิวของนิวเคลียสประกอบ มีโอกาสที่จะได้รับพลังงานมาก เพียงพอที่จะหลุดพันออกจากนิวเคลียส

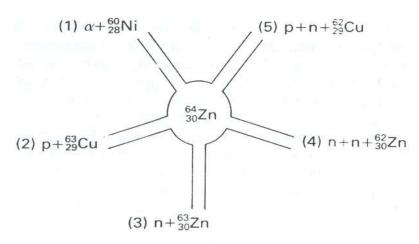
ซึ่งสามารถเขียนขั้นตอนของกระบวนการเกิดปฏิกิริยาเป็นสมการได้ดังนี้

$$a + X \rightarrow (C)^* \rightarrow Y + b$$

การเกิดนิวเคลียสประกอบนั้นเป็นสภาวะกึ่งกลางของการเกิดปฏิกิริยา ซึ่งแสดงว่าเกิด อันตรกิริยาอย่างแรงระหว่างอนุภาค(ที่ตกกระทบ) กับนิวคลีออนทั้งหลายในนิวเคลียสเป้า ทั้งนี้มี หลักฐานสนับสนุนคือ ช่วงระยะเวลาของการสลายตัวของนิวเคลียสประกอบนั้นนานกว่าเวลานิวเคลียร์ (characteristic nuclear time) ซึ่งหมายถึงระยะเวลาที่อนุภาคตกกระทบกับนิวเคลียส ผ่านเส้นผ่าศูนย์กลางนิวเคลียส ตัวอย่างเช่น ถ้าให้นิวตรอนพลังงาน 1 MeV เท่ากับมีความเร็ว ประมาณ 10^9 ซม/วินาที เคลื่อนที่ทะลุผ่านนิวเคลียสซึ่งเป็นระยะทางประมาณเส้นผ่าศูนย์กลาง 2R $\approx 2R_0A^{1/3} \approx 10^{-12}$ ซม พบว่าจะใช้เวลาเพียง 10^{-21} วินาที แต่การสลายตัวของนิวเคลียสประกอบ กลับใช้เวลาประมาณ 10^{-14} วินาที ซึ่งนานกว่าเวลานิวเคลียร์มากมาย แสดงว่าอนุภาคตกกระทบจะ

มีการชนและถ่ายเทพลังงานให้กับนิวคลีออนทั้งหลายในนิวเคลียสเป้า และทำให้นิวเคลียส ประกอบไปอยู่ในสถานะเสมือนนิ่ง (quasi-stationary state) หรือสถานะเสมือน (virtual state) แล้ว จึงเกิดการสลายตัว (decay or break up)

ข้อสมมุติฐานของ N. Bohr ยังมีใจความที่สำคัญว่า การ break up ใน step ที่ 2 เป็นอิสระ จากการ formation ใน step ที่ 1 หรือกล่าวได้ว่า เนื่องจากนิวเคลียสประกอบอยู่ในสถานะเสมือนนิ่ง นานมากๆ จน "ลืม" ไปแล้วว่าเกิดขึ้นมาได้อย่างไร ทำให้การสลายตัวมีการแจกแจงเชิงมุม (Angular distribution) เป็นแบบสมมาตรรอบมุม 90° (90° symmetric) ดังรูปที่ และ


การสลายตัวของนิวเคลียสประกอบนั้น ขึ้นอยู่กับพลังงาน โมเมนตัมเชิงมุม และแพริตี้ เท่านั้น (conserved) และการสลายตัวนั้นอาจจะเกิดขึ้นได้หลายช่อง (channel) ดังสมการที่ 2.3

$$p + {}^{63}_{29}Cu \qquad \qquad {}^{63}_{30}Zn + n$$

$$({}^{64}_{30}Zn)^* \qquad \qquad {}^{62}_{29}Cu + n + p \qquad \qquad 2.3$$

$$\alpha + {}^{60}_{28}Ni \qquad \qquad {}^{62}_{30}Zn + 2n$$

ดังแสดงในรูป 2.3

รูปที่ 2.3 การสลายตัวของนิวเคลียสประกอบที่อาจจะเกิดขึ้นได้หลายช่อง (channel)

พลังงานกระตุ้น E_{c} (excitation energy) ของนิวเคลียสประกอบ มีค่าดังนี้

$$E_{\rm C} = E_{\rm B} + E_{\rm a}'$$
 2.3

เมื่อ $E_{\scriptscriptstyle B}$ คือ พลังงานยึดเหนี่ยว (Binding energy)

 $E_{
m a}^\prime$ คือ available energy เป็นสัดส่วนของพลังงานจลน์ของอนุภาคกระสุน

ซึ่งเป็นไปตามสมการ 2.3 กล่าวคือ อนุภาคกระสุนพาพลังงานจลน์มา E_a' แต่ใช้ประโยชน์ จริงเท่ากับสัดส่วนของ $(\frac{M_X}{m_a+M_X})$ ส่วนที่เหลือกลายเป็นพลังงานจลน์ของ CM ซึ่งใช้ประโยชน์ ในปฏิกิริยานิวเคลียร์ไม่ได้

ปฏิกิริยานิวเคลียร์ที่เกิดขึ้นตามแบบจำลองของนิวเคลียสประกอบ จะต้องเป็นไปตาม เงื่อนไขดังนี้

- ระยะของการเคลื่อนที่ของอนุภาคที่ตกกระทบนิวเคลียสเป้า ก่อนที่จะถูกดูดกลืนหรือ กระเจิงออก [บางครั้งเรียกว่า วิถีอิสระเฉลี่ย (mean free path)] มีขนาดน้อยกว่าเส้นผ่าศูนย์กลาง ของนิวเคลียสเป้ามากๆ
- 2. พลังงานกระตุ้นต้องน้อยกว่าค่าของ (A-1)S เมื่อ S เป็นพลังงานแยกตัว(Separation energy) ของนิวคลีออน อาทิ

$$S_n = \text{Neutron separation energy}$$

$$= B({}_Z^A X_N) - B({}_Z^{A-1} X_N)$$

$$= \left[m({}_Z^{A-1} X_N) - m({}_Z^A X_N) + m_n \right] c^2$$

$$S_p = \text{Proton separation energy}$$

$$= B({}_Z^A X_N) - B({}_Z^{A-1} X_N)$$

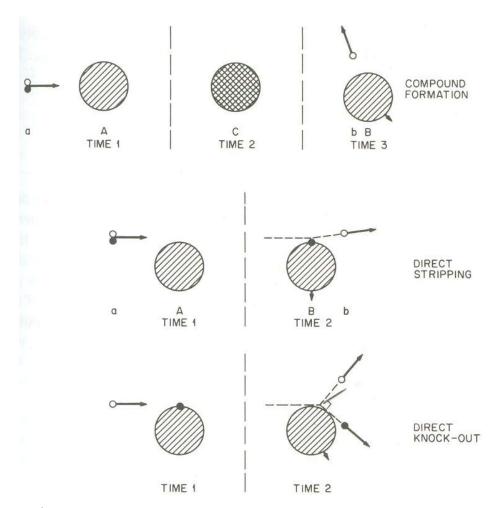
$$= \left[m({}_Z^{A-1} X_N) - m({}_Z^A X_N) + m({}^1 H) \right] c^2$$

2.3 ปฏิกิริยานิวเคลียร์โดยตรง (Direct nuclear reaction)

แบบจำลองนิวเคลียสประกอบถูกนำไปใช้อธิบายผลการทดลองปฏิกิริยานิวเคลียร์ได้ หลายชนิด แต่เมื่ออนุภาคกระสุนมีพลังงานเพิ่มสูงขึ้น พบว่าภาคตัดขวางของปฏิกิริยาแตกต่าง ออกไปจากนิวเคลียสประกอบ โดยการเกิดปฏิกิริยาเป็นกระบวนการใหม่ ที่เรียกว่า ปฏิกิริยา นิวเคลียร์โดยตรง หรืออันตรกิริยาโดยตรง (Direct interaction) โดยมีกลไกที่ต่างออกไป คืออนุภาค กระสุนทำอันตรกิริยากับนิวคลีออนของนิวเคลียสเป้าเพียงไม่กี่ตัว ดังนั้นแบบจำลองของการ เกิดปฏิกิริยาลักษณะนี้ เป็นกระบวนการเกิดปฏิกิริยาขั้นตอนเดียว โดยไม่เกิดสภาวะระหว่างกลาง (เป็นนิวเคลียสประกอบก่อน)

ลักษณะเด่นของปฏิกิริยาโดยตรงมีดังนี้

1. วิถีอิสระเฉลี่ยของอนุภาคตกกระทบมีค่ามากและมีช่วงชีวิตสั้น ดังนั้นที่พลังงานสูง การ เกิดปฏิกิริยาโดยตรงไม่เกิด resonance ที่ชัดเจน 2.อนุภาคที่หลุดออกมาในกรณีนี้จะมีพลังงานสูงมากกว่าที่เป็นกรณีของนิวเคลียส ประกอบ


3. ภาคตัดขวางเชิงอนุพันธ์ขึ้นอยู่กับทิศทางของอนุภาคที่หลุดออกมา และมีลักษณะเป็น ยอดในทิศทางตามอนุภาคกระสุน (forward peak) ดังแสดงในรูปที่

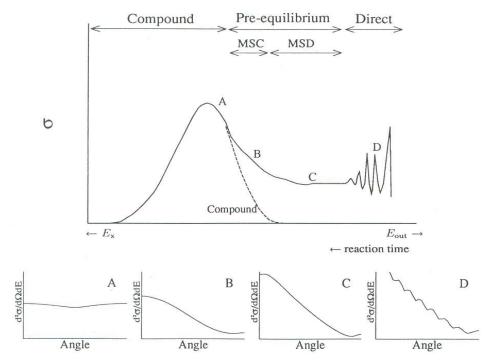
กลไกการเกิดปฏิกิริยาโดยตรงพบครั้งแรก จากการยิงดิวเทอรอนเข้าใส่นิวเคลียสเป้า และ เนื่องจากดิวเทอรอนเป็นการรวมตัวระหว่างโปรตอนและนิวตรอนอย่างหลวมๆ (B.E. \cong 2.2 MeV) เมื่อเคลื่อนที่เข้าหานิวเคลียส แรงนิวเคลียร์จะทำให้โปรตอนและนิวตรอนแยกออกจากกัน นิวคลี ออนตัวใดตัวหนึ่งที่ไม่ถูกจับให้อยู่กับนิวเคลียสจะเคลื่อนที่ต่อไปได้ ดังนั้นปฏิกิริยาที่เกิดขึ้นอาจจะ เป็น (d,p) หรือ (d,n) ซึ่งเรียกว่าปฏิกิริยาแยกตัว (stripping reaction)

จากกลไกการเกิดปฏิกิริยานิวเคลียร์โดยตรงนั้น เมื่ออนุภาคกระสุนตกกระทบกับผิวของ นิวเคลียสเป้า อันตรกิริยาจะเกิดขึ้นกับนิวคลีออนที่อยู่บริเวณของนิวเคลียส โดยนิวคลีออนในบริเวณอื่นจะไม่มีผลกระทบดังนั้นการถ่ายโอนโมเมนตัมเกิดขึ้นระหว่างอนุภาคกระสุนกับนิวคลีออน ที่ผิวเท่านั้น ส่วนนิวคลีออนในบริเวณแกนด้านในไม่มีส่วนในการเกิดปฏิกิริยา (ถ้าเป็นกรณีของ ปฏิกิริยานิวเคลียสประกอบนั้น นิวคลีออนในแกนด้านในมีส่วนในการโอนถ่ายพลังงานด้วย) อันตร กิริยาที่เกิดบริเวณผิวจะมีช่วงระยะแน่นอน เนื่องจากวิถีอิสระเฉลี่ยมีค่ามาก อนุภาคที่อยู่บริเวณผิว เมื่อชนกันแล้วจะหลุดออกมาโดยไม่เกิดนิวเคลียสประกอบ

ปฏิกิริยานิวเคลียร์โดยตรง มี 4 ประเภท คือ

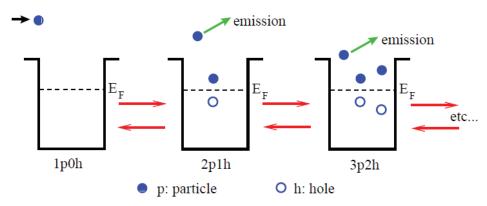
- 1. การกระเจิงแบบไม่ยืดหยุ่น (inelastic scattering) คืออนุภาคกระสุนและนิวคลีออนที่ ปลดปล่อยจากปฏิกิริยานิวเคลียร์เหมือนกัน แต่นิวเคลียสเป้าไปอยู่ในสถานะกระตุ้น ได้แก่ (p,p') หรือ (α,α') เป็นต้น
- 2. ปฏิกิริยาน็อคเอาท์ (knockout reaction) คือ มีนิวคลีออนอื่นปลดปล่อยจากปฏิกิริยา นิวเคลียร์ (มี 3 อนุภาคในสถานะสุดท้าย) ได้แก่ (p,n) หรือ (d,p) เป็นต้น
- 3. ปฏิกิริยาแยกตัว (transfer or stripping reaction) คือ มีนิวคลีออน 1 หรือ 2 ตัวถูกเปลี่ยน ถ่ายจากอนุภาคกระสุนไปสู่นิวเคลียสเป้า เช่น ดิวเทอรอนเปลี่ยนไปเป็นโปรตอนหรือนิวตรอนหลัง เกิดปฏิกิริยา ได้แก่ (d,p), (d,n) หรือ (α,p) เป็นต้น
- 4. ปฏิกิริยาจับตัว (pick-up reaction) คือเป็นกรณีตรงกันข้าม ถ้านิวคลีออน 1 หรือ 2 ตัว ถูกจับไปจากนิวเคลียสเป้าโดยอนุภาคกระสุน เช่น โปรตอนหรือนิวตรอนเปลี่ยนไปเป็นดิวเทอรอน หลังเกิดปฏิกิริยา ได้แก่ (p,d) หรือ (p,α) เป็นตัน

รูปที่ 2.4 กลไกและเวลาเกิดปฏิกิริยาของการเกิดปฏิกิริยานิวเคลียร์โดยตรง เทียบกับ เกิดปฏิกิริยานิวเคลียร์ประกอบ


2.4 การแจกแจงเชิงมุม (angular distributions)

การแจกแจงเชิงมุมที่พลังงานต่าง ๆในการเกิดปฏิกิริยานิวเคลียร์ระหว่างนิวเคลียสเป้ากับ อนุภาคกระสุน อาจเกิดขึ้นได้ 3 รูปแบบ ทั้งนี้ขึ้นอยู่กับพลังงานของอนุภาคกระสุน ซึ่งมี รายละเอียดดังนี้

ในกรณีที่อนุภาคกระสุนมีพลังงานต่ำ การเกิดปฏิกิริยานิวเคลียร์จะเป็นแบบ compound nucleus reaction คือเมื่ออนุภาคกระสุนเข้าไปทำอันตรกิริยากับนิวเคลียส แล้วถูกนิวเคลียสจับไว้ (capture) ซึ่งอนุภาคกระสุนจะถ่ายเทพลังงานให้กับนิวคลีออนในนิวเคลียส ทั้งอนุภาคกระสุนและ นิวคลีออนที่ได้รับพลังงานมาแล้ว ก็จะไปเกิดอันตรกิริยากับนิวคลีออนตัวอื่นต่อไปเรื่อยๆ จนกว่า พลังงานที่ได้รับมาทั้งหมดจะแผ่ขยายไปทั่วทั้งนิวเคลียสจนกระทั่งนิวเคลียสเข้าสู่ภาวะสมดุลย์ (statistical equilibrium) กลายเป็น compound nucleus ในสภาวะ excited state หลังจากนั้นจะมี


การสลายตัว (decay) ให้อนุภาคออกมา ซึ่งลักษณะเด่นของการเกิดปฏิกิริยานิวเคลียร์แบบนี้ จะมี การปลดปล่อยอนุภาคในลักษณะการแจกแจงแบบ isotropic distribution ดังแสดงในรูปที่ 2.5 (A)

ในกรณีที่อนุภาคกระสุนมีพลังงานสูง การเกิดปฏิกิริยานิวเคลียร์จะเป็นแบบ direct reaction คือเมื่ออนุภาคกระสุนเกิดอันตรกิริยากับนิวเคลียสแล้ว นิวเคลียสไม่สามารถจับอนุภาค กระสุนเอาไว้ได้ และอนุภาคกระสุนเองจะเหนี่ยวนำ (induce) ให้นิวเคลียสปลดปล่อยอนุภาค ออกมา ซึ่งจะมีลักษณะการแจกแจงแบบ forward-peaked angular distributions ดังแสดงในรูปที่ 2.5 (D)

รูปที่ 2.5 การแจกแจงเชิงมุมที่พลังงานต่าง ๆในการเกิดปฏิกิริยานิวเคลียร์แบบต่าง ๆ

ในกรณีที่อนุภาคกระสุนมีพลังงานปานกลาง การเกิดปฏิกิริยานิวเคลียร์จะเป็นแบบ pre-equilibrium reaction คือเมื่ออนุภาคกระสุนเกิดอันตรกิริยากับนิวเคลียส แล้วจะถ่ายเท พลังงานให้กับนิวคลีออนภายในนิวเคลียสเพียง 1 หรือ 2 ตัว ซึ่งมีลักษณะการเกิดเป็นแบบ particle-hole pairs หรือ exciton แต่ในขณะที่เกิด exciton จำนวนเพิ่มมากขึ้น และนิวเคลียสกำลัง จะเข้าสู่ภาวะสมดุลนั้น อาจมี exciton บางตัวที่มีพลังงานมากพอที่จะหลุดหนีออกก่อน ดังแสดงใน รูปที่ 2.6 ปฏิกิริยานิวเคลียร์ที่เกิดขึ้นในขณะที่นิวเคลียสกำลังเข้าสู่ภาวะสมดุลย์ เรียกว่า pre-equillibrium reaction ซึ่งยังแบ่งได้อีกเป็น 2 ชนิด คือ

รูปที่ 2.6 การเกิดปฏิกิริยานิวเคลียร์จะเป็นแบบ pre-equilibrium reaction คือเมื่ออนุภาค เกิดอันตรกิริยากับนิวเคลียส แล้วจะถ่ายเทพลังงานให้กับนิวคลีออนภายในนิวเคลียสเพียง 1 หรือ 2 ตัว ซึ่งมีลักษณะการเกิดเป็นแบบ particle-hole pairs หรือ exciton

- ก. Multistep compound reaction ซึ่งจะมีการปลดปล่อยอนุภาคในลักษณะการแจกแจง แบบ สมมาตรรอบมุม 90 องศา (angular distributions symmetric about 90°) ดังแสดงในรูปที่ 2.5 (B) แต่พลังงานของอนุภาคที่ถูกปลดปล่อยจะมีค่าสูงกว่ากรณีการเกิดปฏิกิริยานิวเคลียร์แบบ compound reaction
- ข. Multistep direction reaction ซึ่งจะมีการปลดปล่อยอนุภาคในลักษณะการแจกแจง แบบforward-peaked angular distributions ดังแสดงในรูปที่ 2.5 (C) แต่จะแปรผันกับพลังงานของ อนุภาคที่ถูกปลดปล่อยแบบราบเรียบ

2.5 แบบจำลองเชิงแสง (Optical Model)

ในทฤษฎีของนิวเคลียสประกอบนั้น มีการสมมุติว่าเมื่ออนุภาคตกกระทบกับนิวเคลียสและ ผ่านผิวเข้าไปในนิวเคลียส โดยเป็นการดูดกลืน (จับ) อนุภาคที่ตกกระทบทั้งหมด และจะปลดปล่อย อนุภาคออกมาด้วยพลังงานทั้งหมดกับกระบวน การสลายตัวของนิวเคลียสประกอบ

ส่วนแบบจำลองเชิงแสง สมมุติว่านิวเคลียสเป็นวัตถุโปร่งแสง (translucent) กับคลื่น (อนุภาค) ที่ตกกระทบ ส่วนใหญ่นำไปอธิบายปรากฏการณ์การกระเจิง (และดูดกลืน) ของอนุภาค ตามแบบจำลองนี้ กำหนดให้การกระเจิงเกิดขึ้นกับศักย์เชิงซ้อน (complex potential) U(r) โดยที่

$$U(r) = V(r) + iW(r)$$

ฟังก์ชันของ V และ W เป็นศักย์ที่ขึ้นกับระยะทางตามรัศมี โดย V(r) เป็นส่วนจริงที่ทำให้ เกิดการกระเจิงแบบยืดหยุ่น ซึ่งอธิบายส่วนของการเกิดอันตรกิริยาของนิวเคลียสเป้ากับอนุภาคที่ ตกกระทบ และ iW(r) เป็นส่วนจินตภาพเป็นสาเหตุของการดูดกลืน (จับ) อนุภาคที่ตกกระทบ ตัวอย่างเช่น ศักย์ U(r) เป็นหลุมศักย์สี่เหลี่ยม จะมีลักษณะดังนี้

$$\begin{split} U(r) &= -V_0 - iW_0 & , \quad r < R \\ &= 0 & , \quad r > R \end{split}$$

ให้คลื่นที่กระเจิงออกจากนิวเคลียสอยู่ในรูป $\dfrac{e^{ikr}}{r}$ เมื่อค่าของ $k=\sqrt{\dfrac{2m(E+V_0+iW_0)}{\hbar^2}}$

ซึ่งเป็นไปตามแบบของการแก้สมการชโรดิงเยอร์ที่มีศักย์ในรูปนี้ โดยเลขคลื่น k เป็นจำนวนเชิงซ้อน คือ k = k, + ik, เมื่อ k, เป็นส่วนจริงและ ik, เป็นส่วนจินตภาพ ตามลำดับ

ถ้าระยะนี้เท่ากับรัศมีของนิวเคลียส (ประมาณ 3 fm) ค่าของ W \cong 10 MeV และในกรณี ทั่วไป เมื่อการดูดกลืนมีค่าน้อยกว่าการกระเจิงแบบยืดหยุ่น สามารถประมาณได้ว่า $|V|\cong$ 40 MeV และ $|W|\cong$ 10 MeV

วิธีที่จะทำการคำนวณโดยใช้แบบจำลองเชิงแสง สิ่งแรกที่จะต้องทำ คือ การเลือกลักษณะ ของศักย์ ที่นิยมใช้มากคือหลุมศักย์สี่เหลี่ยม โดยมีรูปแบบดังนี้

$$k \cong \sqrt{\frac{2m(E+V_0)}{\hbar^2}} + \frac{iW_0}{2}\sqrt{\frac{2m}{\hbar^2}\frac{1}{(E+V_0)}}$$

ศักย์ที่ใช้คำนวณในแบบจำลองชั้น (shell model) ที่ใช้ประมาณ 40 MeV และค่าพลังงาน ของอนุภาคตกกระทบนิยมใช้ E = 10 MeV และระยะ d ที่ทำให้ความเข้มลดลงด้วยสัดส่วน 1/e (คล้ายคลึงกับวิถีอิสระเฉลี่ย) มีค่าเท่ากับ

$$d = \frac{1}{2k_i} = \frac{1}{W_0} \sqrt{\frac{\hbar^2 (E + V_0)}{2m}}$$

ถ้าระยะนี้เท่ากับรัศมีของนิวเคลียส (ประมาณ 3 fm) ค่าของ W \cong 10 MeV และในกรณี ทั่วไป เมื่อการดูดกลืนมีค่าน้อยกว่าการกระเจิงแบบยืดหยุ่น สามารถประมาณได้ว่า $|V|\cong$ 40 MeV และ $|W|\cong$ 10 MeV

วิธีที่จะทำการคำนวณโดยใช้แบบจำลองเชิงแสง สิ่งแรกที่จะต้องทำ คือ การเลือกลักษณะ ของศักย์ ที่นิยมใช้มากคือหลุมศักย์สี่เหลี่ยม โดยมีรูปแบบดังนี้

$$V(r) = -\frac{V_0}{1 + e^{\frac{r-R}{a}}}$$

ค่าคงตัวของ V₀, R และ a นั้น ปรับให้ได้ค่าของการคำนวณตรงกับข้อมูลที่ได้จากการ ทดลองของการกระเจิง ส่วนของการดูดกลืน W(r) จะมีค่าแตกต่างกันออกไปโดยเฉพาะที่พลังงาน ต่ำ ตามหลักการกิดกันของเพาลี กล่าวคือ นิวคลีออนที่อยู่ด้านในของนิวเคลียส (มีจำนวนเต็มแล้ว) จึงไม่สามารถจับนิวคลีออน (อนุภาค) ที่ตกกระทบเพิ่มได้อีก ยกเว้นที่บริเวณผิวซึ่งมี "valence" นิ วคลีออนอยู่จึงจับอนุภาคได้

ส่วนที่พลังงานสูง นิวคลีออนบริเวณภายในนิวเคลียสจะมีส่วนในการจับอนุภาคตกกระทบ ได้ จึงทำให้ฟังก์ชัน W(r) มีลักษณะคล้ายกันกับฟังก์ชัน V(r) ศักย์ที่ใช้ในแบบจำลองเชิงแสงจะเพิ่ม พจน์ของอันตรกิริยาระหว่างวงโคจรและสปินเข้าไปด้วย มีผลทำให้เกิดยอดตรงบริเวณผิวของ นิวเคลียส เพราะค่าความหนาแน่นสปินของนิวคลีออนที่อยู่ด้านในจะหมดไป (จับคู่กันหมด) นอกจากนี้ถ้าอนุภาคตกกระทบมีประจุ ก็จะต้องเพิ่มพจน์ที่เกี่ยวกับคูลอมบ์เข้าไปด้วย เมื่อได้ค่า ศักย์ที่ถูกต้องแล้ว ก็สามารถแก้สมการชโรดิงเยอร์ได้ โดยมีเงื่อนไขขอบเขตที่ระยะทาง r = R (รัศมี ของนิวเคลียส) และได้ค่าขนาดของการกระเจิง (scattering amplitude) เชิงซ้อน I เพื่อเปรียบเทียบ กับค่าภาคตัดขวางที่วัดได้จากการทดลอง ดังแสดงในรูปที่

2.6 TALYS

TALYS 1.2 (Version: December 21, 2009) Copyright (C) 2009 โดยผู้แต่งประกอบด้วย A.J. Koning, S. Hilaire and M.C. Duijvestijn [13] เป็นโปรแกรมคอมพิวเตอร์ที่ใช้สำหรับการ วิเคราะห์และทำนายปฏิกิริยานิวเคลียร์ที่เกี่ยวข้องกับนิวตรอน, โฟตอน, โปรตอน, ดิวเทอรอน, ไตรตอน, He-3 และอัลฟา สำหรับชาตุที่มีเลขมวลตั้งแต่ 12 ขึ้นไป ในช่วงพลังงานตั้งแต่ 1 keV จนถึง 200 MeV หรือ ตั้งแต่ช่วง unresolved resonance ไปจนถึง intermediate energies

คุณสมบัติทั่วไปของ TALYS มีดังต่อไปนี้

- In general, an exact implementation of many of the latest nuclear models for direct, compound, pre-equilibrium and fission reactions.
- A continuous, smooth description of reaction mechanisms over a wide energy range (0.001-200 MeV) and mass number range (12 < A < 339).
- Completely integrated optical model and coupled-channels calculations by the ECIS-06 code [22].
- Incorporation of recent optical model parameterisations for many nuclei, both phenomenological (optionally including dispersion relations) and microscopical.
- Total and partial cross sections, energy spectra, angular distributions, double-differential spectra and recoils.
 - Discrete and continuum photon production cross sections.
- Excitation functions for residual nuclide production, including isomeric cross sections.
- An exact modeling of exclusive channel cross sections, e.g. (n; 2np), spectra, and recoils.

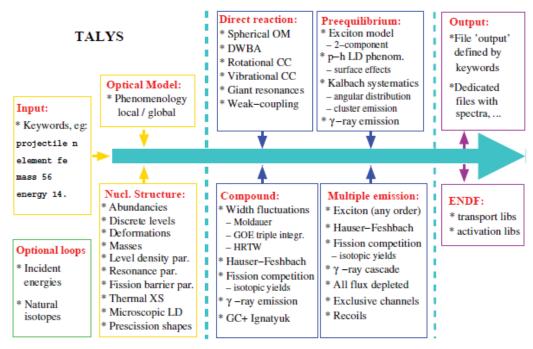
- Automatic reference to nuclear structure parameters as masses, discrete levels, resonances, level density parameters [23], deformation parameters, fission barrier and gamma-ray parameters, generally from the IAEA Reference Input Parameter Library [24].
- Various width fluctuation models for binary compound reactions and, at higher energies, multiple Hauser-Feshbach emission until all reaction channels are closed.
 - Various phenomenological and microscopic level density models.
- Various fission models to predict cross sections and fission fragment and product yields.
- Models for pre-equilibrium reactions, and multiple pre-equilibrium reactions up to any order.
 - Astrophysical reaction rates using Maxwellian averaging.
- Option to start with an excitation energy distribution instead of a projectile-target combination, helpful for coupling TALYS with intranuclear cascade codes or fission fragment studies.
- Use of systematics if an adequate theory for a particular reaction mechanism is not yet available or implemented, or simply as a predictive alternative for more physical nuclear models.
- Automatic generation of nuclear data in ENDF-6 format (not included in the free release).
- Automatic optimization to experimental data and generation of covariance data (not included in the free release).
 - A transparent source program.
 - Input/output communication that is easy to use and understand.
 - An extensive user manual.
 - A large collection of sample cases.

2.7 TALYS input file

เนื่องจากโปรแกรมคอมพิวเตอร์ TALYS ถูกออกแบบให้ใช้งานได้สะดวกสำหรับผู้ใช้ (friendly user) แม้แต่ผู้ที่มีความรู้ทางฟิสิกส์นิวเคลียร์เพียงเบื้องต้น ก็สามารถใช้งานได้ โดย Input file ของ TALYS ประกอบ (แบบที่สั้นที่สุด เพียง 4 บรรทัด) ด้วย

```
projectile n (อนุภาคกระสุน)
element Fe (นิวเคลียสเป้า)
mass 56 (เลขมวลของนิวเคลียสเป้า)
energy 14. (พลังงานของอนุภาคกระสุน)
```

แต่สำหรับผู้ใช้ที่มีความเชี่ยวชาญก็สามารถระบุสิ่งที่ต้องการได้ตามละเอียดที่กำหนดไว้ใน คู่มือ ยกตัวอย่าง Input file สำหรับการคำนวณค่าครอสเซคชันของการเกิดอนุภาคเบามีประจุ ได้แก่ โปรตอน, ดิวเทอรอน, ไตรตอน, He-3 และอนุภาคอัลฟา โดยการเหนี่ยวนำด้วยนิวตรอน พลังงาน 175 ล้านอิเล็กตรอนโวลท์กับออกซิเจน มีดังนี้


```
outbasic y
sysreaction p d t h a
projectile n
mass 16
element o
energy 175.
# simple (binary) cm to lab
channelenergy n
# full cm to lab with recoils
labddx y
recoil y
outpreequilibrium y
ddxmode 2
spherical y
elwidth 1.0
outangle y
# Parameters
# =======
Kph 17.
Esurf
          12.
M2constant 0.6
# output
# =====
filespectrum n p d t h a
```

- fileddxa n 10.
- fileddxa n 20.
- fileddxa n 30.
- fileddxa n 40.
- fileddxa n 50.
- fileddxa n 60.
- fileddxa n 70.
- fileddxa n 80.
- fileddxa n 90.
- fileddxa n 100.
- IIICaaxa II 100
- fileddxa n 110.
- fileddxa n 120.
- fileddxa n 130.
- fileddxa n 140.
- fileddxa n 150.
- fileddxa n 160.
- fileddxa n 170.
- fileddxa n 180.
- fileddxa p 10.
- fileddxa p 20.
- fileddxa p 30.
- fileddxa p 40.
- fileddxa p 50.
- fileddxa p 60.
- fileddxa p 70.
- fileddxa p 80.
- fileddxa p 90.
- fileddxa p 100.
- fileddxa p 110.
- fileddxa p 120.
- fileddxa p 130.
- fileddxa p 140.
- fileddxa p 150.
- печила р 100
- fileddxa p 160.
- fileddxa p 170.
- fileddxa p 180.
- fileddxa d 10.
- fileddxa d 20.
- fileddxa d 30.
- fileddxa d 40.
- fileddxa d 50.
- fileddxa d 60.
- fileddxa d 70.
- fileddxa d 80.
- fileddxa d 90.
- fileddxa d 100.

- fileddxa d 110.
- fileddxa d 120.
- fileddxa d 130.
- fileddxa d 140.
- fileddxa d 150.
- fileddxa d 160.
- fileddxa d 170.
- fileddxa d 180.
- fileddxa t 10.
- fileddxa t 20.
- fileddxa t 30.
- fileddxa t 40.
- fileddxa t 50.
- fileddxa t 60.
- fileddxa t 70.
- fileddxa t 80.
- fileddxa t 90.
- fileddxa t 100.
- ilicaaxa t 100
- fileddxa t 110.
- fileddxa t 120.
- fileddxa t 130.
- fileddxa t 140.
- fileddxa t 150.
- fileddxa t 160.
- fileddxa t 170.
- fileddxa t 180.
- fileddxa h 10.
- fileddxa h 20.
- fileddxa h 30.
- fileddxa h 40.
- fileddxa h 50.
- fileddxa h 60.
- fileddxa h 70.
- fileddxa h 80.
- fileddxa h 90.
- fileddxa h 100.
- fileddxa h 110.
- fileddxa h 120.
- fileddxa h 130.
- fileddxa h 140.
- fileddxa h 150.
- fileddxa h 160.
- fileddxa h 170.
- fileddxa h 180.
- fileddxa a 10.
- fileddxa a 20.

fileddxa a 30. fileddxa a 40. fileddxa a 50. fileddxa a 60. fileddxa a 70. fileddxa a 80. fileddxa a 90. fileddxa a 100. fileddxa a 110. fileddxa a 120. fileddxa a 130. fileddxa a 140. fileddxa a 150. fileddxa a 160. fileddxa a 170. fileddxa a 180.

แผนผังการทำงานของ TALYS แสดงในรูปที่

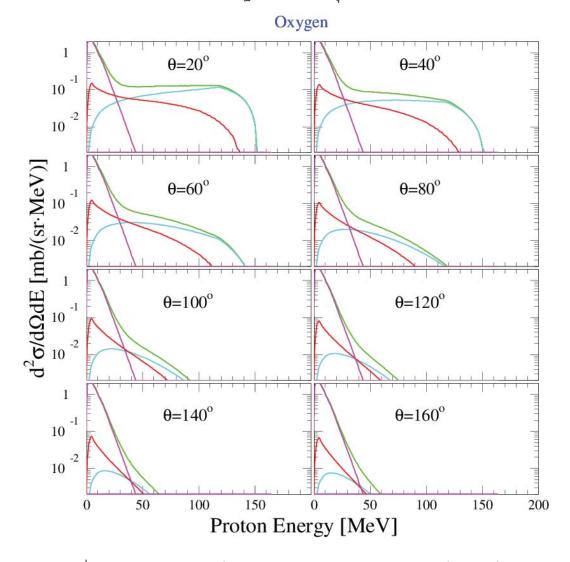
รูปที่ 2.7 แผนผังการทำงานของโปรแกรมคอมพิวเตอร์ TALYS ที่ใช้สำหรับการวิเคราะห์ และทำนายปฏิกิริยานิวเคลียร์

2.7 TALYS Optical Model Potential (OMP) parameterisations

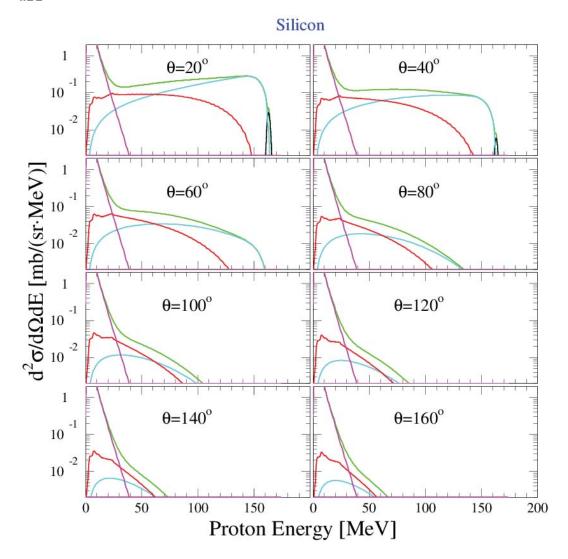
สำหรับการคำนวณเกี่ยวกับ Optical Model นั้น เป็นส่วนเดียวที่ไม่ได้เขียนขึ้นโดยคณะผู้ แต่ง TALYS แต่เอาโปรแกรมคอมพิวเตอร์ที่เรียกว่า ECIS [22] ซึ่งเปรียบเสมือนเป็นโปรแกรม มาตรฐานที่นิยมใช้กันแพร่หลาย โดยนำมาใส่เป็นส่วนหนึ่งส่วนเดียวกัน แต่จะเรียกใช้ Optical Model Potential (OMP) parameterisation ที่เป็นของคณะผู้แต่งเอง [24] ดังแสดงในตารางที่ 2.1 สำหรับ neutron global OMP และ ตารางที่ 2.2สำหรับ proton global OMP

v_1^p	= 59.30 + 21.0(N - Z)/A - 0.024A	MeV
v_2^p	$= 0.007067 + 4.23.10^{-6}A$	MeV^{-1}
v_3^p	$= 1.729.10^{-5} + 1.136.10^{-8}A$	MeV^{-2}
v_4^p	$= v_4^n$	MeV^{-3}
	= 14.667 + 0.009629A	MeV
-	$= w_2^n$	MeV
d_1^p	= 16.0 + 16.0(N - Z)/A	MeV
d_2^p	$=d_2^n$	MeV^{-1}
d_3^p	$=d_3^n$	MeV
v_{sol}^p	$=v_{so1}^n$	MeV
v_{so2}^p	$=v_{so2}^n$	MeV^{-1}
w_{so1}^p	$= w_{sol}^n$	MeV
	$= w_{so2}^n$	MeV
E_f^p	= -8.4075 + 0.01378A	MeV
\bar{V}_C	$= 1.73.Z.A^{-1/3}/r_C$	MeV

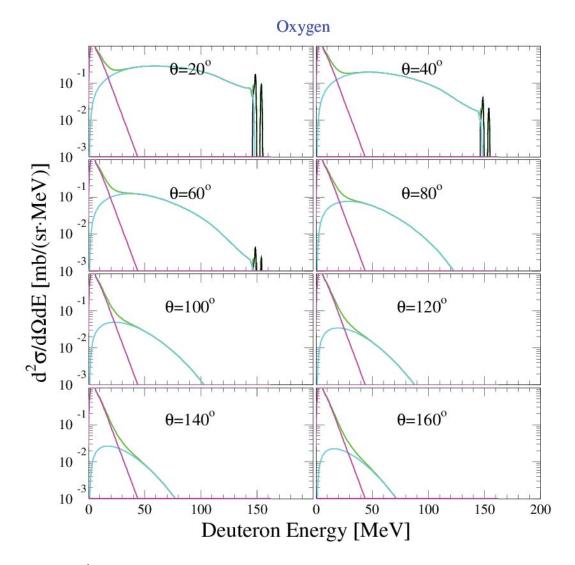
ตารางที่ 2.1 ค่า Potential depth parameters and Fermi energy สำหรับ neutron global OMP

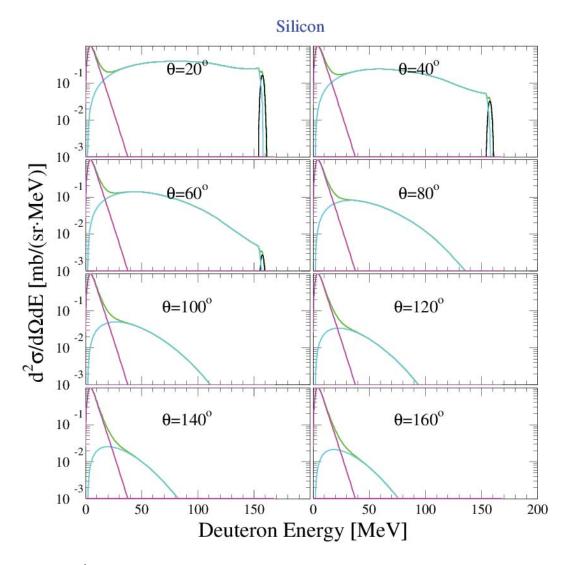

v_1^n	= 59.30 - 21.0(N - Z)/A - 0.024A	MeV
v_2^n	$= 0.007228 - 1.48.10^{-6}A$	MeV^{-1}
v_3^n	$= 1.994.10^{-5} - 2.0.10^{-8}A$	MeV^{-2}
v_4^n	$=7.10^{-9}$	MeV^{-3}
w_1^n	= 12.195 + 0.0167A	MeV
w_2^n	=73.55+0.0795A	MeV
d_1^n	= 16.0 - 16.0(N - Z)/A	MeV
d_2^n	$= 0.0180 + 0.003802/(1 + \exp[(A - 156.)/8.)]$	MeV -1
d_3^n	= 11.5	MeV
v_{sol}^n	= 5.922 + 0.0030A	MeV
v_{so2}^n	= 0.0040	MeV^{-1}
w_{sol}^n	= -3.1	MeV
w_{so2}^n	= 160.	MeV
E_f^n	=-11.2814+0.02646A	MeV

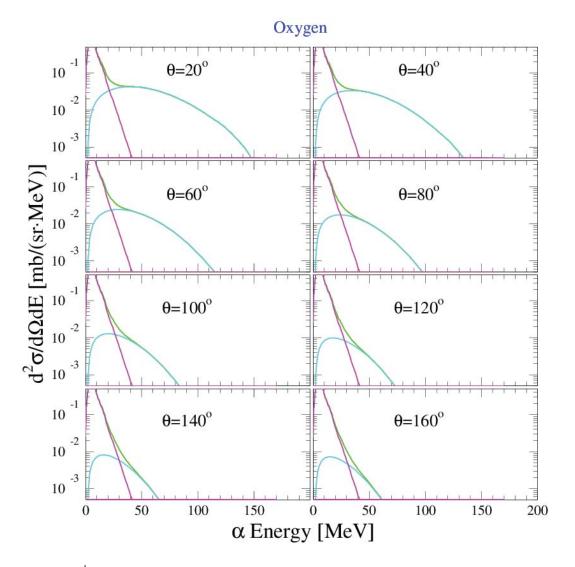
ตารางที่ 2.2 ค่า Potential depth parameters and Fermi energy สำหรับ proton global OMP

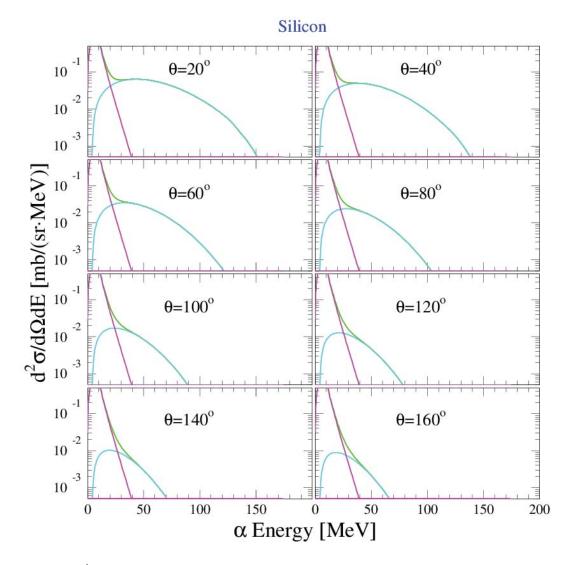

2.8 TALYS output

ผลลัพธ์ของการคำนวณทางทฤษฎีจาก TALYS สำหรับค่าครอสเซคชันของการเกิด อนุภาคเบามีประจุ ได้แก่ โปรตอน ดิวเทอรอน และอนุภาคอัลฟา โดยการเหนี่ยวนำด้วยนิวตรอน พลังงาน 175 ล้านอิเล็กตรอนโวลท์กับออกซิเจน และซิลิกอน แสดงในรูปที่ 2.8 ถึง 2.13


โดยที่เส้นสีม่วง คือ Compound reaction เส้นสีแดง คือ Multistep compound reaction เส้นสีฟ้า คือ Multistep direction reaction เส้นสีดำ คือ Direction reaction เส้นสีเขียว คือ ผลรวมของปฏิกิริยานิวเคลียร์ทุกแบบ


รูปที่ 2.8 ผลลัพธ์จาก TALYS ในการคำนวณค่าครอสเซคชันของการเกิดโปรตอน โดยการ เหนี่ยวนำด้วยนิวตรอนพลังงาน 175 ล้านอิเล็กตรอนโวลท์กับออกซิเจน โดยที่เส้นสีม่วง คือ Compound reaction เส้นสีแดง คือ Multistep compound reaction เส้นสีฟ้า คือ Multistep direction reaction เส้นสีดำ คือ Direction reaction เส้นสีเขียว คือ ผลรวมของปฏิกิริยานิวเคลียร์ทุก แบบ


รูปที่ 2.9 ผลลัพธ์จาก TALYS ในการคำนวณค่าครอสเซคชันของการเกิดโปรตอน โดยการ เหนี่ยวนำด้วยนิวตรอนพลังงาน 175 ล้านอิเล็กตรอนโวลท์กับซิลิกอน โดยที่เส้นสีม่วง คือ Compound reaction เส้นสีแดง คือ Multistep compound reaction เส้นสีฟ้า คือ Multistep direction reaction เส้นสีดำ คือ Direction reaction เส้นสีเขียว คือ ผลรวมของปฏิกิริยานิวเคลียร์ทุก แบบ


รูปที่ 2.10 ผลลัพธ์จาก TALYS ในการคำนวณค่าครอสเซคชันของการเกิดดิวเทอรอน โดย การเหนี่ยวนำด้วยนิวตรอนพลังงาน 175 ล้านอิเล็กตรอนโวลท์กับออกซิเจน โดยที่เส้นสีม่วง คือ Compound reaction เส้นสีแดง คือ Multistep compound reaction เส้นสีฟ้า คือ Multistep direction reaction เส้นสีดำ คือ Direction reaction เส้นสีเขียว คือ ผลรวมของปฏิกิริยานิวเคลียร์ทุก แบบ

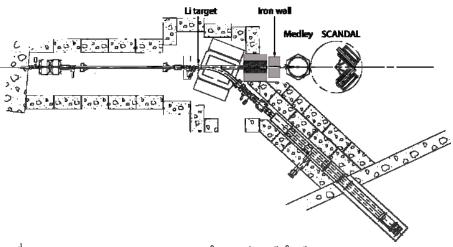
รูปที่ 2.11 ผลลัพธ์จาก TALYS ในการคำนวณค่าครอสเซคชันของการเกิดดิวเทอรอน โดย การเหนี่ยวนำด้วยนิวตรอนพลังงาน 175 ล้านอิเล็กตรอนโวลท์กับซิลิกอน โดยที่เส้นสีม่วง คือ Compound reaction เส้นสีแดง คือ Multistep compound reaction เส้นสีฟ้า คือ Multistep direction reaction เส้นสีดำ คือ Direction reaction เส้นสีเขียว คือ ผลรวมของปฏิกิริยานิวเคลียร์ทุก แบบ

รูปที่ 2.12 ผลลัพธ์จาก TALYS ในการคำนวณค่าครอสเซคชันของการเกิดอัลฟา โดยการ เหนี่ยวนำด้วยนิวตรอนพลังงาน 175 ล้านอิเล็กตรอนโวลท์กับออกซิเจน โดยที่เส้นสีม่วง คือ Compound reaction เส้นสีแดง คือ Multistep compound reaction เส้นสีฟ้า คือ Multistep direction reaction เส้นสีดำ คือ Direction reaction เส้นสีเขียว คือ ผลรวมของปฏิกิริยานิวเคลียร์ทุก แบบ

รูปที่ 2.13 ผลลัพธ์จาก TALYS ในการคำนวณค่าครอสเซคชันของการเกิดอัลฟา โดยการ เหนี่ยวนำด้วยนิวตรอนพลังงาน 175 ล้านอิเล็กตรอนโวลท์กับซิลิกอน โดยที่เส้นสีม่วง คือ Compound reaction เส้นสีแดง คือ Multistep compound reaction เส้นสีฟ้า คือ Multistep direction reaction เส้นสีดำ คือ Direction reaction เส้นสีเขียว คือ ผลรวมของปฏิกิริยานิวเคลียร์ทุก แบบ

สำหรับ output file ของ TALYS มีขนาดใหญ่มาก เนื่องจากมีการคำนวณปฏิกิริยา นิวเคลียร์ทุกช่องทั้งหมด (all opened channels) ทุกค่าครอสเซคชันที่เกิดขึ้น (all associated cross sections), รวมทั้งสเปกตรา (spectra) และ การแจกแจงเชิงมุม (angular distributions) จึงใส่ ไว้ในภาคผนวกแทน

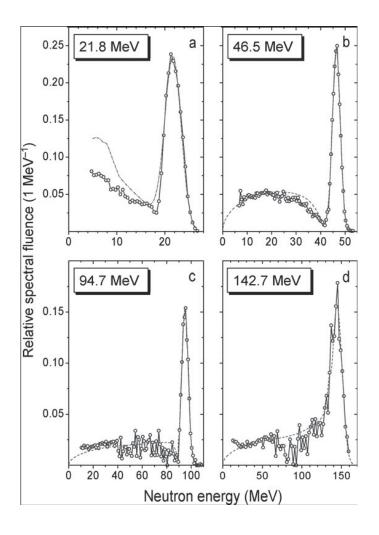
วิธีการทดลอง


3.1 TSL Neutron facility

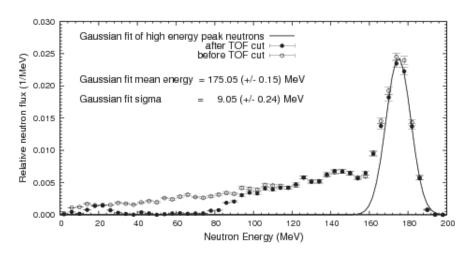
ห้องปฏิบัติการ The (Theodor) Svedberg (TSL) ตั้งอยู่ที่ Uppsala University เมือง Uppsala ประเทศสวีเดน โดยตั้งชื่อตาม ศาสตราจารย์ทางเคมีกายภาพ Theodor Svedberg (2427-2514) ซึ่งเป็นผู้ได้รับรางวัลโนเบลสาขาวิชาเคมี (2505)

ในปี 2488 Gustaf Werner Corporation ได้บริจาคเงินเพื่อสร้างเครื่องเร่งอนุภาคแบบ synchro-cyclotronที่มีขนาดใหญ่มาก (ในสมัยนั้น) ซึ่งยังคงใช้มาจนถึงปัจจุบันนี้

กิจกรรมหลักในการใช้เวลาบีมของ TSL คือการบำบัดรักษาโรคมะเร็งด้วยรังสีโปรตอน การ ฉายรังสีทั้งนิวตรอนและโปรตอนในเชิงการพาณิชย์ นอกจากนี้ก็ยังสามารถใช้กับการวิจัยทาง วิชาการขั้นพื้นฐานสำหรับโครงการที่เกี่ยวข้องกับ Uppsala University รวมทั้งโปรแกรมวิจัยที่ ได้รับทุนจากสหภาพยุโรป (EU)

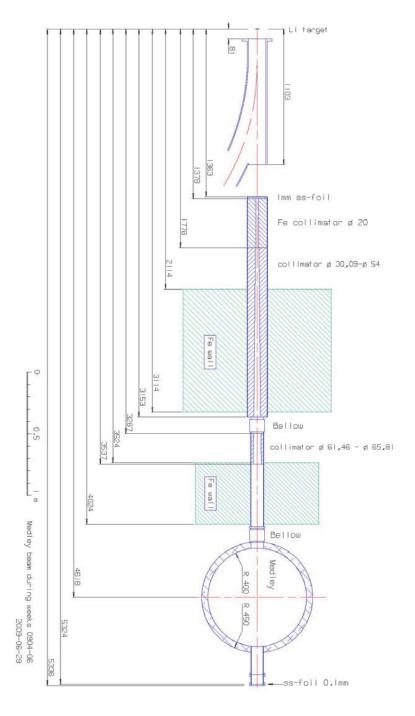

Neutron facility แห่งแรกสร้างขึ้นที่ TSL ในช่วงปลายปี 2523 และใช้งานมาจนกระทั่งปี 2546 หลังจากนั้น Neutron beam line ใหม่ได้ถูกสร้างขึ้นและแล้วเสร็จในปีต่อมา [18] (รูปที่ 3.1) โดยสามารถผลิตนิวตรอนที่มีพลังงานกึ่งเดี่ยว (quasi-monoenergetic) ตั้งแต่ประมาณ 22 MeV ถึง 175 MeV จากปฏิกิริยา Li⁷(p,n) Be โดยใช้โปรตอนที่มีพลังงานตั้งแต่ประมาณ 25 MeV ถึง 180 MeV จากเครื่องไซโคลตรอน ดังแสดงในตารางที่ 3.1 และรูปที่ 3.2

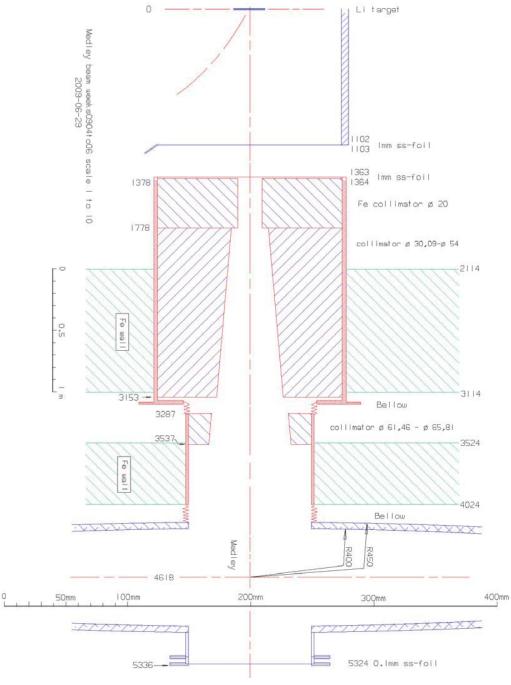
รูปที่ 3.1 ภาพวาด Neutron beam line ใหม่ แล้วเสร็จในปี 2547


Incident proton	⁷ Li target	Average energy of	Neutrons in the
energy (MeV)	thickness (mm)	peak neutrons (MeV)	high-energy peak(%)
24.68± 0.04	2	21.8	~ 50
$49.5 \!\pm 0.2$	4	10	39
97.9 ± 0.3	8.5	94.7	41
147.4 ± 0.6	23.5	142.7	55 (upper limit)
179.3 ± 0.8	23.5	174.9	39

ตารางที่ 3.1 การผลิตนิวตรอนที่มีพลังงานกึ่งเดี่ยว (quasi-monoenergetic) ตั้งแต่ประมาณ 22 MeV ถึง 175 MeV จากปฏิกิริยา Li⁷(p,n) ⁷Be โดยใช้โปรตอนที่มีพลังงานตั้งแต่ประมาณ 25 MeV ถึง 180 MeV จากเครื่องไซโคลตรอน

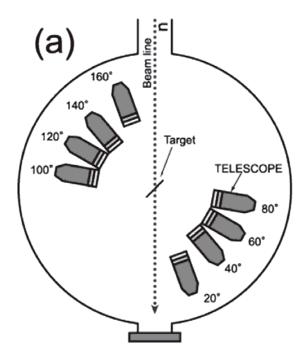
รูปที่ 3.2 สเปกตรัมของนิวตรอนที่มีพลังงานกึ่งเดี่ยว (quasi-monoenergetic) ตั้งแต่ประมาณ 22 MeV ถึง 143 MeV จากปฏิกิริยา Li⁷(p,n) Be โดยใช้โปรตอนที่มีพลังงานตั้งแต่ประมาณ 25 MeV ถึง 148 MeV จากเครื่องไซโคลตรอน


การทดลองวัดค่าครอสเซคชันของการเกิดอนุภาคเบามีประจุ โปรตอน ดิวเทอรอน และอัลฟา โดยการเหนี่ยวนำด้วยนิวตรอนพลังงาน 175 ล้านอิเล็กตรอนโวลท์กับออกซิเจนครั้งนี้ นิวตรอนที่ใช้ในการทดลองเป็นนิวตรอนจากปฏิกิริยา Li⁷(p,n)⁷Be โดยใช้โปรตอนที่มีพลังงาน 180 MeV ทำให้มีพลังงานกึ่งเดี่ยว (quasi-monoenergetic) คือมีจำนวนนิวตรอนที่พลังงานพีค 175 MeV ประมาณร้อยละ 52.1 โดยมีค่าอำนาจการจำแนกพลังงานประมาณ 5-10 MeV และมีนิวตรอน พลังงานต่ำ ที่เรียกว่า neutron tail ซึ่งมีพลังงานลดหลั่นจากพลังงานพีคไปจนถึงศูนย์ อีกประมาณ ร้อยละ 47.9 สเปกตรัมของนิวตรอนที่มีพลังงานกึ่งเดี่ยว (quasi-monoenergetic) 175 MeV จาก ปฏิกิริยา Li⁷(p,n)⁷Be โดยใช้โปรตอนที่มีพลังงาน 180 MeV แสดงในรูปที่


รูปที่ 3.3 สเปกตรัมของนิวตรอนที่มีพลังงานกึ่งเดี่ยว (quasi-monoenergetic) 175 MeV จาก ปฏิกิริยา Li⁷(p,n)⁷Be โดยใช้โปรตอนที่มีพลังงาน 180 MeV ที่ใช้ในการทดลองครั้งนี้

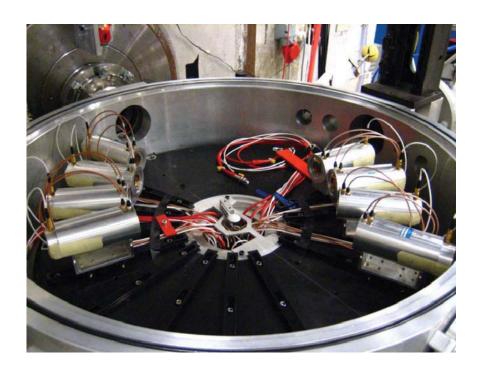
ในรูปที่ 3.1 โปรตอนที่ทะลุผ่านเป้าลิเธียม จะถูกเบี่ยงเบนด้วยแม่เหล็กขนาดใหญ่ไปยังแท่ง กราไฟต์ ที่บรรจุในถ้ำกำบังรังสีตะกั่ว ซึ่งทำหน้าที่เป็นนิวตรอนมอนิเตอร์ชนิดหนึ่ง ส่วนนิวตรอน พลังงานกึ่งเดี่ยว 175 MeV ที่เกิดจากจากปฏิกิริยา Li⁷(p,n) Be จะถูกส่งผ่านไปยังสถานีการทดลอง นิวตรอน อาทิ ระบบหัววัดอนุภาคเบามีประจุ MEDLEY ระบบหัววัดการกระเจิงนิวตรอน SCANDAL เป็นต้น โดยนิวตรอนถูกทำให้เป็นลำโดยใช้ชุดของคอลลิเมเตอร์ที่ทำด้วยเหล็ก ดัง แสดงในรูปที่ 3.5 คอลลิเมเตอร์ชุดที่หนึ่งเป็นรูปทรงกระบอกที่มีเส้นผ่าศูนย์กลางภายใน 20 มม และ ยาว 400 มม คอลลิเมเตอร์ชุดที่สองเป็นรูปทรงกระบอก ยาว 1375 มม โดยภายในเป็นรูปกรวยที่หัว และที่ท้าย มีเส้นผ่าศูนย์กลางภายใน 30.09 มม และ 54.00 มม ตามลำดับ และคอลลิเมเตอร์ชุดที่

สามเป็นรูปทรงกระบอก ยาว 250 มม โดยภายในเป็นรูปกรวยที่หัวและที่ท้าย มีเส้นผ่าศูนย์กลาง ภายใน 61.46 มม และ 65.81 มม ตามลำดับ


รูปที่ 3.4 ชุดของคอลลิเมเตอร์ทั้งสามชุดที่ทำด้วยเหล็ก เพื่อทำให้นิวตรอนพลังงานสูงเป็น ลำ และส่งผ่านไปยังระบบหัววัดอนุภาคเบามีประจุ Medley

รูปที่ 3.5 ภาพขยายชุดของคอลลิเมเตอร์ทั้งสามชุดที่ทำด้วยเหล็ก

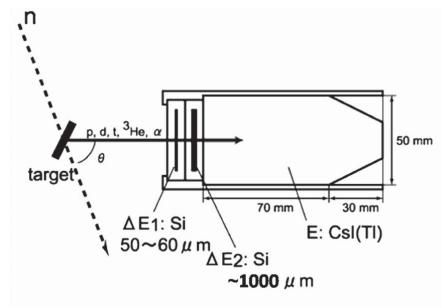
3.2 ระบบหัววัดอนุภาคเบามีประจุ MEDLEY


MEDLEY [9,10] ประกอบหัววัดแบบโทรทรรศน์ (telescope) จำนวน 8 ชุด แต่ละชุด ประกอบด้วยหัววัดสารกึ่งตัวนำแบบ Silicon Surface barrier และหัววัดสารเรื่องแสงแบบซีเซียมไอ โอไดด์ (CsI) วางอยู่ที่มุมปลดปล่อยต่างๆ ตั้งแต่ 20° จนถึง 160° ภายในอู่สุญญากาศที่มีขนาด เส้นผ่าศูนย์กลาง 90 ซม ดังรูปที่ 3.6

รูปที่ 3.6 ภาพวาดระบบหัววัดอนุภาคเบามีประจุ MEDLEY ซึ่งแสดงการวางชุดหัววัดแบบ โทรทรรศน์ทั้งแปด วางอยู่ที่มุมปลดปล่อยต่างๆ ตั้งแต่ 20° จนถึง 160° โดยแบ่งออกเป็นสองกลุ่ม คือ forward และ backward angles เทียบกับทิศทางของลำนิวตรอน และเป้าปฏิกิริยาที่จุด ศูนย์กลางของอู่สุญญากาศ

หัววัดแบบโทรทรรศน์แต่ละชุดจะวางอยู่บนรางที่สามารถเลื่อนให้เข้าใกล้หรือห่างไกลจาก เป้าปฏิกิริยาที่จุดศูนย์กลางของอู่สุญญากาศ เพื่อปรับให้มุมตันที่รองรับมีค่าสูงสุด โดยที่ไม่ไปขวาง ลำนิวตรอน ระยะห่างระหว่างเป้าตรงจุดศูนย์กลางถึงหัววัดแบบโทรทรรศน์อยู่ระหว่าง 140 ถึง 280 มม และรางทั้งแปดก็ยึดติดอยู่บนถาดกลมโดยห่างกันทีละ 20° ทำให้สามารถวัดอนุภาคได้ที่มุม ปลดปล่อย (emission angle) ตั้งแต่ 20° จนถึง 160° เทียบกับทิศทางของลำนิวตรอนที่เข้ามา โดย แบ่งออกเป็นสองกลุ่ม คือ forward และ backward angles ดังรูปที่ 3.7 โดยที่ถาดกลม(สีดำในรูป) สามารถหมุนได้รอบ 360 องศา ดังนั้นชุดหัววัดแบบโทรทรรศน์ทั้งสองกลุ่มสามารถสลับฟากกันได้ (1-4 ↔ 5-8) ซึ่งในทางปฏิบัติจะแบ่งการเก็บข้อมูลเป็น 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์ โดยชุดที่หนึ่งจัดให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 วางที่มุมปลดปล่อยตั้งแต่ 20°

จนถึง 160° ตามลำดับแบบปกติ ส่วนชุดที่สองก็หมุนถาดกลมไป 180 องศา ก็จะเกิดการสลับฟาก กันที่ทำให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 ไปวางที่มุมปลดปล่อย 160° จนถึง 20° แทน (1:160°, 2:140°,...,7:40° และ 8:20°) จึงมีข้อดีคือในกรณีที่(ชุด)หัววัดแบบโทรทรรศน์ที่มุมปลดปล่อยใด ๆมี ปัญหาในระหว่างการทดลองที่ไม่สามารถแก้ไขได้ ก็ยังคงสามารถเก็บข้อมูลที่มุมปลดปล่อยนั้นได้ จาก(ชุด)หัววัดแบบโทรทรรศน์ที่อยู่ตรงกันข้ามกัน (1:8, 2:7, 3:6 และ 4:5)



รูปที่ 3.7 ภาพถ่ายของระบบหัววัดอนุภาคเบามีประจุ MEDLEY ซึ่งแสดงการวางชุดหัววัด แบบโทรทรรศน์ทั้งแปด วางอยู่ที่มุมปลดปล่อยต่าง ๆ ตั้งแต่ 20° จนถึง 160° เทียบกับทิศทางของลำ นิวตรอนที่เข้ามาจากช่องวงกลมทางซ้ายบน

3.3 หัววัดแบบโทรทรรศน์ (telescope)

ชุดหัววัดแบบโทรทรรศน์ (telescope) ใช้เทคนิค $\Delta E + \Delta E + E$ สำหรับระบุชนิด (Particle identification) และสอบเทียบพลังงาน (Energy calibration) ของอนุภาคเบามีประจุหลากชนิดและมี หลายพลังงานต่อเนื่อง โดยอาศัยหลักการที่ว่า อนุภาคมีประจุเกิดการสูญเสียพลังงานบางส่วน เมื่อ เคลื่อนที่ทะลุผ่านหัววัด ΔE ที่มีความหนาขนาดต่างๆกัน แล้วสูญเสียพลังงานที่เหลือทั้งหมดให้กับ หัววัด E กล่าวคือ ถ้าอนุภาคมีประจุชนิดเดียวกัน แต่ต่างพลังงาน หรืออนุภาคมีประจุต่างชนิดกัน แต่มีพลังงานเท่ากัน จะสูญเสียพลังงานในหัววัดแต่ละตัวไม่เท่ากัน ซึ่งรายละเอียดจะกล่าวในหัวข้อ การวิเคราะห์ข้อมูล

ชุดหัววัดแบบโทรทรรศน์ประกอบด้วยหัววัดซิลิกอนลำดับที่หนึ่ง (ΔE_1) หัววัดซิลิกอน ลำดับที่หนึ่ง (ΔE_1) และหัววัดซีเซียมไอโอไดด์ (E) ดังแสดงในรูปที่ 3.8 และ 3.9

รูปที่ 3.8 ภาพวาดของชุดหัววัดแบบโทรทรรศน์ (telescope) ประกอบด้วยหัววัดซิลิกอน ลำดับที่หนึ่ง (ΔE_1) หัววัดซิลิกอนลำดับที่หนึ่ง (ΔE_1) และหัววัดซีเซียมไอโอไดด์ (E)

ด้วยเหตุที่ใช้หัววัดซิลิกอนลำดับที่หนึ่ง (ΔE_1) ที่มีความหนาเพียง 50 หรือ 60ไมครอน จึง ทำให้ค่า cutoff energies มีค่าต่ำมาก คือ 3 MeV สำหรับโปรตอน, 3.5 MeV สำหรับดิวเทอรอน และ 4 MeV สำหรับอัลฟา ซึ่งรายละเอียดจะกล่าวในภายหลัง

และหลังจากที่ The Svedberg Laboratory (TSL) ได้สร้างและปรับปรุง Neutron beam line ขึ้นใหม่ [18] จนสามารถผลิตนิวตรอนที่มีพลังงานสูงถึง 175 MeV ทางกลุ่มวิจัยก็ได้เปลี่ยนหัววัด ซิลิกอนลำดับที่สอง (ΔE_2) จากเดิมที่มีความหนาเพียง 400 หรือ 500 ไมครอน เป็น 1000 ไมครอน จึงทำให้อำนาจการจำแนกพลังงานที่บริเวณพลังงานสูง (มากกว่า 100 MeV) มีค่าสูงขึ้น และได้ เปลี่ยนหัววัดซีเซียมไอโอไดด์ (E) จากเดิมที่มีความหนาเพียง 50 มิลลิเมตร เป็น 100 มิลลิเมตร ซึ่ง มีความหนาเพียงพอที่สามารถทำให้โปรตอนพลังงานสูงถึง 200 MeV ถ่ายทอดพลังงานให้กับหัววัด จนหมดได้ [9]

จากการปรับปรุงหัววัดแบบโทรทรรศน์ ทั้ง 8 ชุดดังกล่าว ทำให้ระบบหัววัด MEDLEY สามารถทดลองวัดดับเบิ้ลดิฟเฟอเรนเซียลครอสเซคชันของการเกิดอนุภาคเบามีประจุ (double-differential light-ion production cross section) โดยการเหนี่ยวนำด้วยนิวตรอนพลังงาน 175 MeV ได้อย่างมีประสิทธิภาพ รายละเอียดจะกล่าวในหัวข้อการวิเคราะห์ข้อมูล

รูปที่ 3.9 ภาพถ่ายของชุดหัววัดแบบโทรทรรศน์ประกอบด้วยหัววัดสารกึ่งตัวนำแบบ Silicon Surface barrier ขนาดบางและหนา และหัววัดสารเรื่องแสงแบบซีเซียมไอโอไดด์ (CsI) ที่ยัง ไม่ได้ต่อสายสัญญาณ โดยแต่ละชุดวางอยู่บนรางที่สามารถเลื่อนให้เข้าใกล้หรือห่างไกลจากเป้า ปฏิกิริยาที่จุดศูนย์กลางของอู่สุญญากาศ

3.4 เป้าปฏิกิริยา (Reaction target)

สำหรับเป้าปฏิกิริยาซิลิกอนไดออกไซด์(ควอทซ์) ซิลิกอน ไฮโดรคาร์บอน(โพลีเอธิลีน) และ คาร์บอน(แกรไฟต์) รายละเอียดเกี่ยวกับเป้าปฏิกิริยาแสดงไว้ในตารางที่ 3.2 แสดง โดยเป้าแต่ละ อันจะถูกแขวนตรึงด้วยลวดเส้นเล็กมากกับกรอบอลูมิเนียมที่มีขนาด กว้าง 200 มม และ ยาว 140 มม โดยมีขนาดที่ใหญ่กว่าเส้นผ่าศูนย์กลางของลำนิวตรอนที่มีขนาดเท่ากับ 42.08 มม เพื่อไม่ให้ กรอบอลูมิเนียมไปขวางลำนิวตรอน ดังรูป 3.10(ซ้าย) แล้วกรอบอลูมิเนียมแต่ละอันนั้นจะยึดกับตัว แขวนใต้ฝ่าปิดของอู่สุญญากาศ ดังรูป 3.10 (ขวา) ดังนั้นเมื่อต้องการวัดอันตรกิริยาของนิวตรอนกับ เป้าใด ก็ปรับหมุนให้กรอบอลูมิเนียมที่มีเป้าอันที่ต้องการนั้นให้อยู่ในลำนิวตรอน รวมทั้งปรับหมุน ให้กรอบอลูมิเนียมทุกอันขึ้นหมดหรือไม่มีเป้าอยู่ในลำนิวตรอน สำหรับการวัดรังสีภูมิหลัง (background)

ชนิดของ เป้าปฏิกิริยา	น้ำหนัก (g)	ความหนา (<i>μ</i> m)	เส้นผ่าศูนย์กลาง (mm)	จำนวน นิวเคลียสเป้า
SiO ₂	1.153	1000	22	1.1556E+22
Si	1.132	1000	22	2.4273E+22
CH ₂	2.293	5000	25	9.8443E+22
С	0.7176	500	22	3.5979E+22

ตารางที่ 3.2 แสดงรายละเอียดเกี่ยวกับเป้าปฏิกิริยาซิลิกอนไดออกไซด์(SiO₂) ซิลิกอน(Si) ไฮโดรคาร์บอน(CH₂) และคาร์บอน(C) ที่ใช้ในการทดลอง

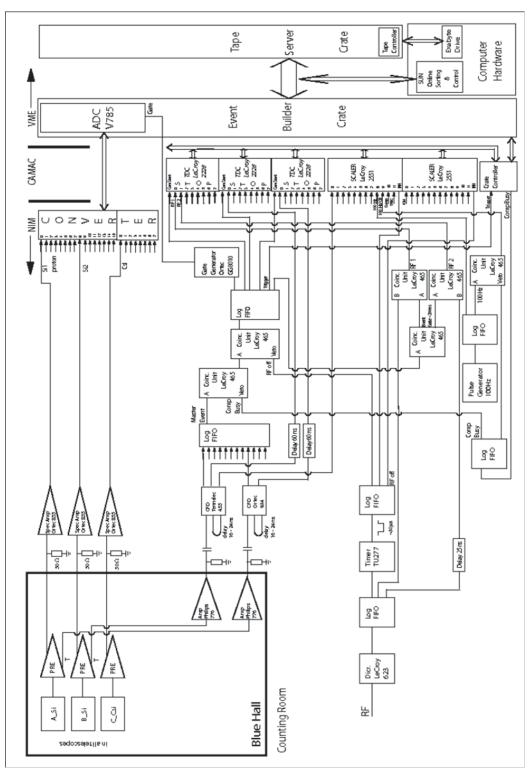
ตำแหน่งของเป้าปฏิกิริยาเมื่อปรับหมุนกรอบอลูมิเนียมที่มีเป้าอันที่ต้องการให้อยู่ในลำ นิวตรอนนั้น จะถูกจัดให้ระนาบของเป้าปฏิกิริยาทำมุม 45° กับทิศทางของลำนิวตรอน (ดังรูปที่ 3.7) เพื่อผลกระทบของการสูญเสียทั้งพลังงานและอนุภาคของอนุภาคเบามีประจุในตัวเป้า ปฏิกิริยามีน้อยที่สุด รวมทั้งเพื่อให้มุมตันที่รองรับระหว่างเป้าปฏิกิริยากับหัววัดแบบโทรทรรศน์แต่ ละชุดมีค่าใกล้เคียงกัน

รูปที่ 3.10 ภาพถ่ายการแขวนตรึงเป้าซิลิกอนกับกรอบอลูมิเนียม(ซ้าย) แล้วติดตั้งกับตัวแขวนใต้ฝา ปิดของอู่สุญญากาศ(ขวา)

3.5 วงจรอิเล็กทรอหิกส์และระบบเก็บข้อมูล(Electronics and data acquisition)

ในรูปที่ 3.11 สัญญาณจากแต่ละหัววัด ดังระบุชื่อด้วย A, B และ C สำหรับหัววัดซิลิกอน ลำดับที่หนึ่ง (ΔE_1) หัววัดซิลิกอนลำดับที่สอง (ΔE_2) และหัววัดซีเซียมไอโอไดด์ (E) จะถูกแปรด้วย charge-sensitive preamplifier แล้วแยกออกเป็น 2 แขนง คือ สัญญาณพลังงาน (E) และ สัญญาณเวลา (T)

สัญญาณพลังงาน (E) จะถูกขยาย (Amplify) และปรับรูป (Shape) ด้วยตัวขยายสัญญาณ (Amplifier) ของบริษัท ORTEC รุ่น Dual Spec Amp 855 แล้วถูกส่งต่อไปยัง 32 Channel Multievent Peak Sensing ADC(Analog-to-Digital Convertor) ของบริษัท CAEN เพื่อเปลี่ยนจาก สัญญาณความสูงพัลส์ (Pulse height) แบบอนาล็อกไปเป็นดิจิตอล โดยระบุเป็น EA1, EB1 และ EC1 สำหรับชุดหัววัดแบบโทรทรรศน์ชุดที่ 1 ไปจนถึง EA8, EB8 และ EC8 สำหรับชุดหัววัดแบบโทรทรรศน์ชุดที่ 3.11


สัญญาณเวลา (T) จะถูกเปลี่ยน (Convert) ไปเป็นสัญญาณลอจิกระบบ NIM ด้วย Constant Fraction Discriminator แบบ Quad รุ่น 934 ของบริษัท ORTEC และรุ่น TC 455 ของบริษัท Tennelec โดยระบุเป็น TA1 และ TB1 สำหรับชุดหัววัดแบบโทรทรรศน์ชุดที่ 1 ไปจนถึง TA8 และ TB8 สำหรับชุดหัววัดแบบโทรทรรศน์ชุดที่ 8 ตามลำดับ ดังแสดงในรูปที่ 3.12 แล้วสัญญาณทั้ง 16

จะแบ่งเป็น 2 สาย โดยสายแรกจะถูกส่งต่อไปยัง TDC(Time-to-Digital Convertor) เพื่อเป็น สัญญาณเวลาสิ้นสุด(stop signal) โดยมีสัญญาณเวลาเริ่มต้น(start signal) จาก Radio Frequency (RF) ของไซโคลตรอน เพื่อเปลี่ยนจากสัญญาณเวลาแบบอนาล็อกไปเป็นดิจิตอล โดยความ แตกต่างทางเวลาที่ได้ เรียกว่า Time-Of-Flight (TOF) (เนื่องจากในทางปฏิบัติจะนิยมชะลอ (delay) สัญญาณเวลาเริ่มต้น(start signal) จาก Radio Frequency (RF) ของไซโคลตรอน ออกไปจนมา หลังจากสัญญาณเวลาสิ้นสุด(stop signal)จากหัววัด เพื่อลด busy time ของระบบการวัด สัญญาณเวลา จึงได้เป็น Reversed TOF แทน กล่าวคือ ทำให้ดูเหมือนว่าอนุภาคพลังงานสูง เคลื่อนที่ช้ากว่าอนุภาคพลังงานต่ำ ซึ่งตรงข้ามกับความเป็นจริง)

ส่วนสายที่สองจะถูกส่งต่อไปยัง Logic FIFO (Fan In, Fan Out) เพื่อสร้างเป็น Master gate เพื่อแจ้งให้ระบบเก็บข้อมูลเริ่มทำงาน (สาเหตุที่ใช้เฉพาะสัญญาณเวลา (T) จากหัววัดซิลิกอนลำดับ ที่หนึ่ง (ΔE_1) และหัววัดซิลิกอนลำดับที่สอง (ΔE_2) ตัวใดตัวหนึ่ง หรือทั้งสองตัวสร้างเป็น Master gate โดยไม่ได้ใช้หัววัดซีเซียมไอโอไดด์ (E) ร่วมด้วย ทั้งนี้พบว่าหัววัดซีเซียมไอโอไดด์ สามารถ ตรวจวัดอนุภาคมีประจุได้ แต่ไม่ได้มาจากเป้าปฏิกิริยาโดยการเหนี่ยวนำของนิวตรอน กลับปรากฏ ว่ามาจากตัวหัววัดซีเซียมไอโอไดด์เอง เนื่องจากมีขนาดใหญ่มาก จึงมีโอกาสที่จะถูกชนโดย นิวตรอนที่อยู่นอกลำนิวตรอน ที่เรียกว่า neutron halo)

ระบบการเก็บข้อมูลเป็นแบบเหตุการณ์ต่อเหตุการณ์ (event-by-event) โดยข้อมูลทั้งด้าน พลังงานและเวลาจากหัววัดซิลิกอนลำดับที่หนึ่ง (ΔE_1) หัววัดซิลิกอนลำดับที่สอง (ΔE_2) และหัววัด ซีเซียมไอโอไดด์ (E) ในแต่ละชุดหัววัดแบบโทรทรรศน์ทั้ง 8 ชุดพร้อมกันในคราวเดียว ในลักษณะ คล้ายกับเมตริกซ์ ที่เรียกว่า Ntuple โดยมีเงื่อนไขว่า หัววัดซิลิกอนลำดับที่หนึ่ง (ΔE_1) หัววัด ซิลิกอนลำดับที่สอง (ΔE_2) ตัวใดตัวหนึ่ง หรือทั้งสองตัว ในชุดหัววัดแบบโทรทรรศน์ชุดใดชุดหนึ่ง สามารถตรวจวัดอนุภาคมีประจุได้ (เรียกว่า 1 เหตุการณ์ = 1 Master gate) ก็จะจัดการเก็บข้อมูล จากทุกหัววัด แม้ว่าในชุดหัววัดแบบโทรทรรศน์ชุดอื่นจะไม่มีข้อมูลก็ตาม โดยข้อมูลของแต่ละ เหตุการณ์ก็จะถูกเก็บเรียงลำดับเวลาก่อนหลังตามเวลาที่ชุดหัววัดแบบโทรทรรศน์ตรวจวัดอนุภาค มีประจุได้

การเก็บข้อมูลก็แบ่งเป็นหมวดตามชนิดของเป้าปฏิกิริยา อาทิ ซิลิกอนไดออกไซด์(ควอทซ์) ซิลิกอน ไฮโดรคาร์บอน(โพลีเอธิลีน) และคาร์บอน(แกรไฟต์) รวมทั้งไม่มีเป้าปฏิกิริยา(รังสีภูมิหลัง) โดยมีสัดส่วนประมาณ 30:35:15:5:15 ตามลำดับ หลังจากนั้นก็มีกระบวนการวิเคราะห์ข้อมูลโดยใช้ โปรแกรมคอมพิวเตอร์ PAW

รูปที่ 3.11 ภาพวาดของวงจรอิเล็กทรอนิกส์และระบบเก็บข้อมูล

3.6 กระบวนการวิเคราะห์ข้อมูล (Data analysis Procedure)

กระบวนการวิเคราะห์ข้อมูลดิบ เป็นไปตามขั้นตอนดังนี้

ก. การระบุชนิดของอนุภาคเบามีประจุ (Particle identification)

โดยใช้เทคนิค $\Delta E + \Delta E + E$ ที่อาศัยการสูญเสียพลังงานของอนุภาคมีประจุ ซึ่งจะแตกต่าง กันตามชนิดของอนุภาคเบามีประจุ หลักการวัดพลังงานของอนุภาคมีประจุนั้น สามารถวัดได้จาก พิสัย (range) ของอนุภาคเมื่อเคลื่อนที่ผ่านตัวกลาง (ในทีนี้คือ หัววัดรังสี) ซึ่งมีนิยามตามสมการ 3.1

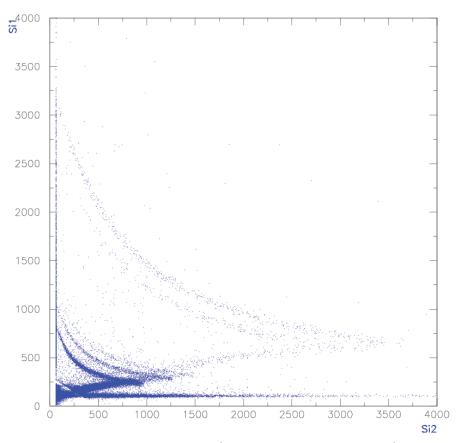
$$R = \int_{E_0}^0 \frac{dE}{(-dE/dx)}$$
 3.1

เมื่อ E คือ พลังงานจลน์ของอนุภาคมีประจุที่กำลังเคลื่อนที่ในตัวกลาง

 $\frac{dE}{dx}$ คือ อัตราการสูญเสียพลังงานของอนุภาคมีประจุ ในระหว่างทางที่วิ่งไปในตัวกลาง โดยมี ศัพท์เฉพาะเรียกว่า stopping power หรือ Linear energy transfer (LET) มีหน่วยเป็น J/m หรือ MeV/cm หรือ keV/ μ m ซึ่งได้จากการคำนวณทางทฤษฎีตามสมการที่เรียกว่า Bethe-Bloch formula ดังต่อไปนี้

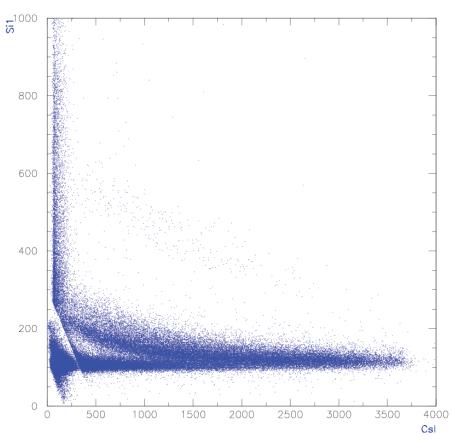
$$-\frac{dE}{dx} = \frac{4\pi k_0^2 Z_0^2 e^4 N Z'}{m_e v_0^2} \left[\ln\left(\frac{2m_e v_0^2}{I}\right) - \ln(1 - \beta^2) - \beta^2 \right]$$
 3.2

เมื่อ


หลักการวัดพลังงานของอนุภาคมีประจุชนิดเดียวกันนั้น โดยทั่วไปนิยมใช้หัววัดที่มีความ หนาเพียงพอที่จะหยุดอนุภาคตัวที่มีพลังงานสูงสุด เรียกว่า หัววัด E ยกตัวอย่าง การวัดพลังงาน ของโปรตอน 1 และ 2 MeV สามารถใช้หัววัดสารกึ่งตัวนำแบบซิลิกอน ที่มีความหนา 50 ไมครอน ซึ่งเทียบเท่ากับพิสัยของโปรตอนที่มีพลังงาน 2 MeV ส่วนโปรตอนที่มีพลังงานต่ำกว่า 2 MeV ก็จะ มีพิสัยที่สั้นลงไปตามลำดับ หรือกล่าวอีกนัยหนึ่งคือ โปรตอนทุกตัวที่มีพลังงานต่ำกว่าตั้งแต่ 2 MeV ลงมา เมื่อเคลื่อนที่ในหัววัดสารกึ่งตัวนำแบบซิลิกอน ที่มีความหนา 50 ไมครอนจะหยุดอยู่ภายใน หัววัดนั้นเสมอ แต่ในทางปฏิบัตินั้นยากที่จะวัดพิสัยได้โดยตรง จึงต้องอาศัยการวัดจากพลังงาน ทั้งหมดที่อนุภาคมีประจุถ่ายทอดให้กับหัววัด (จึงถูกเรียกว่า หัววัด E) โดยวัดจากจำนวนของคู่ อิเล็กตรอน-โฮลที่ถูกสร้างขึ้นในกรณีหัววัดสารกึ่งตัวนำแบบซิลิกอน หมายความว่าเมื่อโปรตอน 2 MeV เคลื่อนที่ผ่านหัววัดรังสีจะถ่ายทอดพลังงาน(ก่อให้เกิดจำนวนของคู่อิเล็กตรอน-โฮล)มากกว่า โปรตอน 1 MeV

ข้อจำกัดของหัววัด E คือไม่สามารถระบุชนิดของอนุภาคมีประจุที่มีพลังงานเท่ากันได้ ยกตัวอย่าง โปรตอน และอัลฟาที่ต่างมีพลังงานเท่ากับ 2 MeV ถ้าใช้หัววัดสารกึ่งตัวนำแบบซิลิกอน ที่มีความหนา 50 ไมครอน จะไม่สามารถบอกได้ว่าเป็นอนุภาคตัวใด แม้ว่าพิสัยของโปรตอน 2 MeV จะยาวกว่าพิสัยของอัลฟาที่พลังงานเท่ากัน เนื่องจากทั้งสองกรณีต่างถ่ายทอดพลังงาน(ก่อให้เกิด

จำนวนของคู่อิเล็กตรอน-โฮล)เท่ากัน ดังนั้นจึงจำเป็นต้องใช้เทคนิค ΔE +E คือใช้หัววัด 2 หัววัด (จะเหมือนหรือต่างชนิดกันก็ได้) โดยหัววัดตัวหน้าจะต้องมีความหนา (บาง, หัววัด ΔE) ที่อนุภาค เบามีประจุชนิดต่าง ๆสามารถเคลื่อนที่ทะลุผ่านไปได้ ส่วนหัววัดตัวหลังจะต้องมีความหนาเพียง พอที่จะหยุดอนุภาคตัวที่มีพลังงานสูงสุด เรียกว่า หัววัด E (เหมือนกรณีที่กล่าวในข้างต้น)


หลักการของการระบุชนิดและวัดพลังงานด้วยเทคนิค ΔE +E คือ เมื่ออนุภาคมีประจุต่าง ชนิดกันแต่มีพลังงานเท่ากันเคลื่อนที่ทะลุผ่านหัววัด ΔE จะถ่ายทอดพลังงานให้หัววัด ΔE นั้นไม่ เท่ากัน ยกตัวอย่าง โปรตอน และอัลฟาที่มีพลังงานเท่ากับ 12 MeV ต่างเคลื่อนที่ทะลุผ่านหัววัดสาร กึ่งตัวนำแบบซิลิกอน ที่มีความหนา 50 ไมครอน สำหรับโปรตอนนั้น จะถ่ายทอดพลังงานให้หัววัด ΔE เพียง 0.5 แต่อัลฟากลับถ่ายทอดพลังงานให้ถึง 8.5 MeV ดังนั้นจากความแตกต่างนี้จึงสามารถ ระบุชนิดของอนุภาคเบามีประจุที่เคลื่อนที่ทะลุผ่านหัววัด ΔE ได้ (แต่ทั้งนี้ไม่สามารถใช้เฉพาะ หัววัด ΔE เพียงอย่างเดียวได้ โดยเฉพาะกรณีที่ต้องการระบุชนิดและวัดพลังงานของอนุภาคเบามี ประจุหลากชนิดและมีหลายพลังงานต่อเนื่อง ซึ่งจะประสบปัญหาในทางกลับกัน เมื่อเป็นกรณีที่ อนุภาคคนละชนิด และต่างพลังงาน แต่กลับถ่ายทอดพลังงานให้หัววัด ΔE เท่ากัน ก็จะไม่สามารถ แยกแยะได้ดังนั้นจึงจำเป็นต้องมีหัววัด E เพื่อที่จะแก้ปัญหาในกรณีนี้

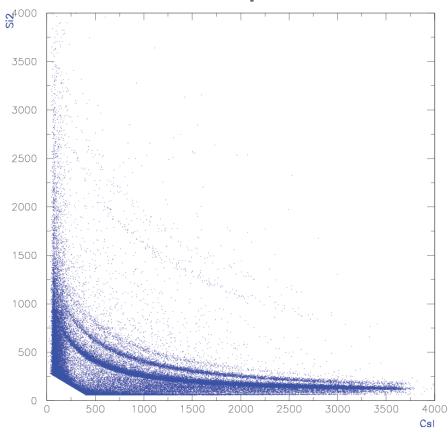
จากรูป 3.12 จะเห็นได้ว่าเทคนิค $\Delta E + E$ สามารถระบุชนิดและวัดพลังงานของอนุภาคเบามี ประจุหลากชนิดและมีหลายพลังงานต่อเนื่อง โดยจะแยกออกเป็นแถบ (band) ของโปรตอน, ดิวเทอ รอน, ไตรตอน, He-3 และอัลฟาได้อย่างชัดเจน

รูปที่ 3.12 กราฟ 2 มิติระหว่างหัววัด ΔE (Si1 ในแนวแกน x) กับหัววัด E (Si2 ในแนวแกน y) สำหรับการระบุชนิดของอนุภาคเบามีประจุ (Particle identification) ที่ในอยู่ในช่วงพลังงานต่ำ

แต่อย่างไรก็ตามเทคนิค ΔE +E ก็ยังมีข้อจำกัดในตัวเอง คือ ขนาดความหนาของหัววัด ΔE จะเป็นตัวแปรที่กำหนดพลังงานสูงสุดของอนุภาคมีประจุแต่ละชนิดที่จะถูกหยุดอยู่ในหัววัด ซึ่ง เรียกว่า cutoff energies (เปรียบเสมือนปัญหาของหัววัด E ที่กล่าวในข้างต้น ซึ่งไม่สามารถระบุ ชนิดของอนุภาคมีประจุที่ต่างมีพลังงานเท่ากันได้) หมายถึงถ้าใช้หัววัด ΔE ที่หนามากก็จะทำให้ค่า cutoff energies มีค่าสูงขึ้นไปตามนั้น ซึ่งเป็นปัญหาในช่วงพลังงานต่ำ แต่ในทางกลับกันถ้าใช้หัววัด ΔE ที่บาง เพื่อทำให้ค่า cutoff energies มีค่าต่ำมากที่สุดเท่าที่จะเป็นไปได้ ก็จะไปก่อให้เกิดปัญหา ในช่วงพลังงานสูงแทน กล่าวคือยิ่งอนุภาคมีประจุมีพลังงานสูงมากแค่ไหน เมื่อเคลื่อนที่ทะลุผ่าน หัววัด ΔE ก็จะถ่ายทอดพลังงานให้หัววัด ΔE น้อยตามไปแค่นั้น แล้วถ้ายิ่งหัววัด ΔE บางลงมาก แค่ไหน อนุภาคมีประจุมีพลังงานสูงก็จะถ่ายทอดพลังงานน้อยลง จนทำให้แถบ (band) ของ โปรตอน, ดิวเทอรอน, ไตรตอน ที่บริเวณพลังงานสูงใกล้ชิดกันจนยากที่จะแยกแยะได้ ดังจะให้ได้ จากรูปที่ 3.13

รูปที่ 3.13 กราฟ 2 มิติระหว่างหัววัด ΔE (Si1 ในแนวแกน x) กับหัววัด E (Csi ในแนวแกน y) ซึ่ง ไม่การระบุชนิดของอนุภาคเบามีประจุ (Particle identification) ที่ในอยู่ในช่วงพลังงานสูง

ทางออกของปั้ญหาที่กลับไปมาดังกล่าว คือ ใช้หัววัด ΔE สองหัว คือ ΔE_1 และ ΔE_2 โดยตัว ที่หนึ่งจะเป็นตัวที่บาง เพื่อให้ค่า cutoff energies มีค่าต่ำ ส่วนตัวที่สองจะเป็นตัวที่หนา เพื่อให้ค่า อำนาจการจำแนกพลังงานที่ดีในบริเวณที่พลังงานสูง


ในการทดลองครั้งนี้ใช้หัววัดซิลิกอนลำดับที่หนึ่ง (ΔE_1) ที่มีความหนา(บาง)เพียง 50 ถึง 60 ไมครอน ซึ่งทำให้มีค่า cutoff energies คือ ประมาณ 2.0-2.4 MeV สำหรับโปรตอน, 2.6-3.0 MeV สำหรับดิวเทอรอน และ 3.0-3.5 MeV สำหรับไตรตอน ส่วนหัววัดซิลิกอนลำดับที่สอง (ΔE_2) ที่มี ความหนาประมาณ 1000 ไมครอน จะสัมพันธ์กับค่า cutoff energies (หรืออาจจะเรียกว่า Punch through energies เนื่องจากอนุภาคมีประจุได้เคลื่อนที่ทะลุผ่านหัววัดนี้ไป) คือ ประมาณ 11.8-12.2 MeV สำหรับโปรตอน, 15.9-16.5 MeV สำหรับดิวเทอรอน และ 18.8-19.5 MeV สำหรับไตรตอน ดัง แสดงในตารางที่ 3.2

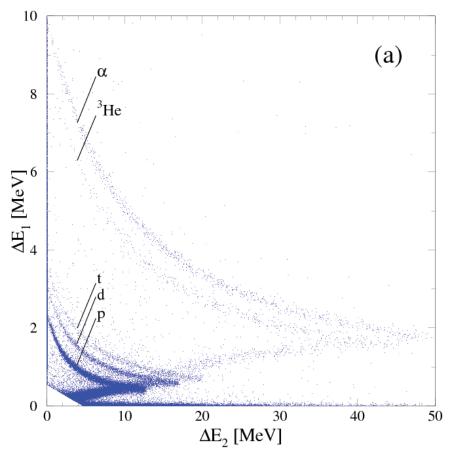
Protons	thickness	ESi_1	thickness	ESi_2	$\mathrm{Si}_1 + \mathrm{Si}_2$	$\Delta \mathrm{ESi}_1$
	$Si_1 (\mu m)$	(MeV)	$Si_2 (\mu m)$	(MeV)	(μm)	(MeV)
T1	64.9	2.394	1026	12.249	1090.9	0.442
T2	60.5	2.292	1018	12.179	1078.5	0.414
Т3	63.9	2.337	1012	12.156	1075.9	0.438
T4	52.9	2.091	549	8.524	601.9	0.473
T5	50.4	1.990	1008	12.150	1058.4	0.347
T6	50.1	1.990	962	11.846	1012.1	0.351
T7	61.7	2.292	963	11.861	1024.7	0.431
T8	53.4	2.091	1016	12.228	1069.4	0.365
Deuterons	thickness	ESi_1	thickness	ESi_2	$Si_1 + Si_2$	ΔESi_1
	$Si_1 (\mu m)$	(MeV)	$Si_2 (\mu m)$	(MeV)	(μm)	(MeV)
T1	64.9	3.090	1026	16.497	1090.9	0.599
T2	60.5	2.933	1018	16.433	1078.5	0.560
Т3	63.9	3.056	1012	16.321	1075.9	0.592
T4	52.9	2.695	549	11.454	601.9	0.638
T5	50.4	2.591	1008	16.322	1058.4	0.470
T6	50.1	2.591	962	15.920	1012.1	0.476
T7	61.7	2.991	963	15.907	1024.7	0.585
T8	53.4	2.695	1016	16.398	1069.4	0.496
Tritons	thickness	ESi_1	thickness	ESi_2	$Si_1 + Si_2$	ΔESi_1
	$Si_1 (\mu m)$	(MeV)	$Si_2 (\mu m)$	(MeV)	(μm)	(MeV)
T1	64.9	3.494	1026	19.475	1090.9	0.717
T2	60.5	3.392	1018	19.424	1078.5	0.670
Т3	63.9	3.494	1012	19.386	1075.9	0.708
T4	52.9	3.093	549	13.517	601.9	0.760
T5	50.4	2.992	1008	19.329	1058.4	0.561
Т6	50.1	2.992	962	18.825	1012.1	0.569
T7	61.7	3.430	963	18.793	1024.7	0.700
T8	53.4	3.093	1016	19.398	1069.4	0.593

ตารางที่ 3.2 แสดงความหนาของหัววัดซิลิกอนลำดับที่หนึ่ง (Si₁) และลำดับที่สอง (Si₂) และค่า cutoff energies สำหรับกรณีโปรตอน, ดิวเทอรอน และ ไตรตอน ตามลำดับ

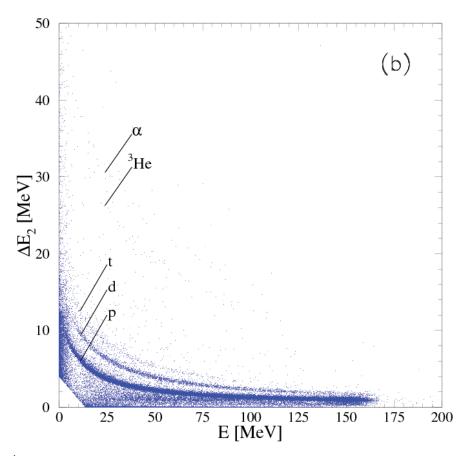
และหลังจากที่ได้สร้างและปรับปรุง Neutron beam line ขึ้นใหม่ จนสามารถผลิตนิวตรอนที่ มีพลังงานสูงถึง 175 MeV จึงเป็นเหตุผลที่จำเป็นต้องเปลี่ยนหัววัดซิลิกอนลำดับที่สอง (ΔE_2) จาก เดิมที่มีความหนาเพียง 400 หรือ 500 ไมครอน ซึ่งมีอำนาจการจำแนกพลังงานที่ดีเพียงพอที่จะ แยกแยะแถบของโปรตอน, ดิวเทอรอน, ไตรตอน ที่บริเวณพลังงานสูงได้แค่ประมาณ 100 MeV เท่านั้น โดยการคำนวณทางทฤษฎีพบว่าจำเป็นต้องใช้หัววัดซิลิกอนลำดับที่สอง (ΔE_2) ที่มีความ

หนาอย่างน้อยเท่ากับ 1000 ไมครอน จึงจะมีอำนาจการจำแนกพลังงานที่บริเวณพลังงานสูง ประมาณ 200 MeV ได้ดีเทียบเท่าเดิม ดังจะเห็นได้จากรูปที่ 3.14

รูปที่ 3.14 กราฟ 2 มิติระหว่างหัววัด ΔE (Si2 ในแนวแกน x) กับหัววัด E (CsI ในแนวแกน y) สำหรับการระบุชนิดของอนุภาคเบามีประจุ (Particle identification) ที่ในอยู่ในช่วงพลังงานสูง

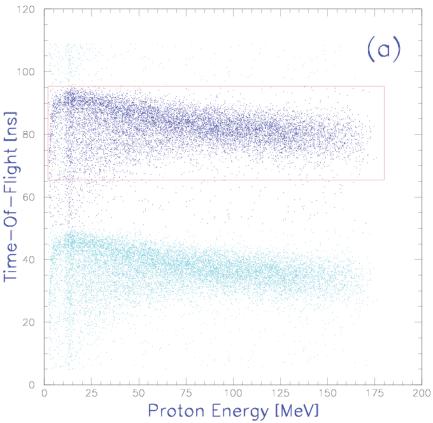

ข. การสอบเทียบพลังงานของอนุภาคเบามีประจุ(Energy calibration)

ส่วนการสอบเทียบพลังงานของอนุภาคเบามีประจุนั้น กระทำโดยการเปรียบเทียบกับผล การคำนวณทางทฤษฎี(ดังสมการ 3.2) สำหรับพลังงานของอนุภาคมีประจุที่สูญเสียเมื่อเคลื่อนที่ ผ่านสสาร(หัววัดแต่ละตัว) ในทางปฏิบัติเริ่มต้นด้วยอนุภาคโปรตอนที่มีพลังงานเริ่มต้นตั้งแต่ต่ำ แล้วเพิ่มพลังงานขึ้นทีละ 0.5 MeV ไปจนถึงพลังงานสูง 200 MeV จากนั้นคำนวณพลังงานของ โปรตอนสำหรับแต่ละพลังงานเริ่มต้น ที่สูญเสียเมื่อเคลื่อนที่ผ่านหัววัดซิลิกอนลำดับที่หนึ่ง ซึ่งทราบ ความหนาที่แน่นอน ดังนั้นเมื่อลบแต่ละพลังงานของโปรตอนที่สูญเสียไป (ΔE_1) ออกจากแต่ละ พลังงานเริ่มต้น ก็จะได้พลังงานที่เหลืออยู่ ซึ่งก็ใช้เป็นพลังงานเริ่มต้นของแต่ละโปรตอนเพื่อ คำนวณพลังงานที่สูญเสียไป ทั้งสองคราว($\Delta E_1 + \Delta E_2$) ออกจากแต่ละพลังงานเริ่มต้น ก็จะได้

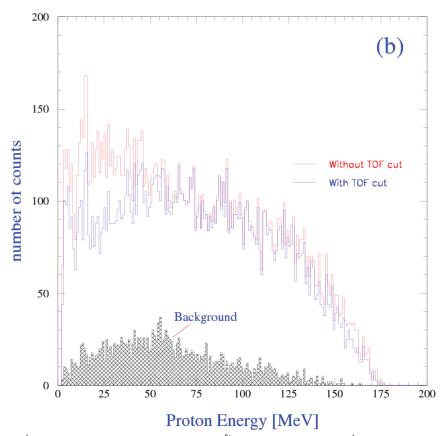

พลังงานที่จะถ่ายทอดทั้งหมดให้หัววัดซีเซียมไอโอไดด์ (E) (โดยวิธีนี้ไม่จำเป็นต้องคำนวณ พลังงานที่สูญเสียเมื่อเคลื่อนที่ผ่านหัววัดซีเซียมไอโอไดด์ ซึ่งเป็นสสารคนละตัวกัน)

หลังจากนั้นก็ดำเนินการคำนวณคล้ายเดิมอีกครั้ง แต่เปลี่ยนเป็นอนุภาคดิวเทอรอน, ไตร ตอน, He-3 และอัลฟาที่มีพลังงานเริ่มต้นตั้งแต่ต่ำ จนถึงพลังงานสูง 200 MeV ตามลำดับ โดย พลังงาน ΔE_1 , ΔE_2 และ E ที่คำนวณได้สำหรับแต่ละชนิดของอนุภาคมีประจุ ที่มีพลังงานเริ่มต้น ตั้งแต่ต่ำจนถึงพลังงานสูงแสดงดังเส้นสีแดงในรูปที่ 3.15 และ 3.16

การสอบเทียบพลังงานของอนุภาคเบามีประจุแต่ละชนิดและมีหลายพลังงานต่อเนื่องนั้น กระทำได้โดยการฟิทแถบของโปรตอน, ดิวเทอรอน, ไตรตอน, He-3 และอัลฟากับเส้นสีแดงแต่ละ เส้น ในคราวเดียวกัน โดยให้เส้นกลางแต่ละแถบซ้อนทับกับเส้นสีแดงให้ใกล้ที่สุด


รูปที่ 3.15 กราฟ 2 มิติระหว่างหัววัด ΔE_1 กับหัววัด ΔE_2 สำหรับการสอบเทียบพลังงานของ อนุภาคเบามีประจุ (Energy calibration) ที่ในอยู่ในช่วงพลังงานต่ำ

รูปที่ 3.16 กราฟ 2 มิติระหว่างหัววัด ΔE_2 กับหัววัด E สำหรับการสอบเทียบพลังงานของ อนุภาคเบามีประจุ (Energy calibration) ที่ในอยู่ในช่วงพลังงานสูง


ค. การสอบเทียบเวลาและการกำจัดนิวตรอนพลังงานต่ำ (Time calibration and low-energy neutron rejection) โดยใช้เทคนิค Time-of-Flight ที่อาศัยสัญญาณเวลาเริ่มต้น (start signal)จาก Radio Frequency (RF) ของไซโคลตรอน และสัญญาณเวลาสิ้นสุด(stop signal) จากหัววัดสารกึ่งตัวนำแบบซิลิกอน โดยความแตกต่างของเวลาดังกล่าวนั้นเป็นผลรวมของเวลาบิน (Flight time)ของนิวตรอนที่ใช้ในการเคลื่อนที่จากเป้าลิเธียมจนมาชนกับเป้าปฏิกิริยาที่อยู่ตรง กลางอู่สุญญากาศ Medley กับเวลาบินของอนุภาคมีประจุตามชนิดที่เกิดจากการเหนี่ยวนำด้วย นิวตรอนกับนิวเคลียสของเป้าปฏิกิริยา ใช้ในการเคลื่อนที่จนมาถึงหัววัด

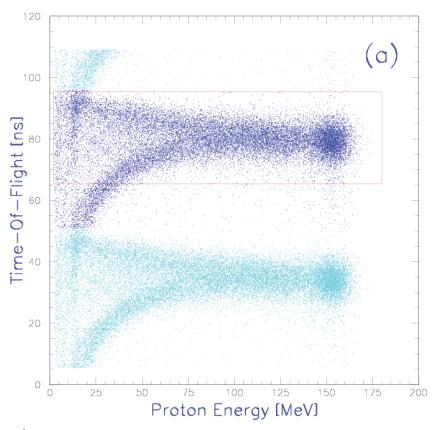
เนื่องจากเวลาบินจะนานหรือสั้น ขึ้นอยู่กับมวลและพลังงานของอนุภาคชนิดนั้น ยกตัวอย่าง นิวตรอนพลังงานสูงจะเคลื่อนที่เร็วกว่านิวตรอนพลังงานต่ำ ดังนั้นด้วยระยะทางที่ เท่ากัน เวลาบินของนิวตรอนพลังงานสูงก็จะสั้นกว่านิวตรอนพลังงานต่ำ เนื่องจากนิวตรอนที่ผลิต จากปฏิกิริยา Li⁷(p,n)⁷Be เป็นนิวตรอนที่มีพลังงานกึ่งเดี่ยว (quasi-monoenergetic) ตั้งแต่ พลังงานต่ำ จนถึง 175 MeV ดังนั้นจึงสามารถใช้เทคนิค Time-of-Flight เพื่อกำจัดเหตุการณ์ที่ อนุภาคเบามีประจุเกิดขึ้นจากการเหนี่ยวนำของนิวตรอนพลังงานต่ำ ซึ่งไม่ต้องการออกไปได้ จาก กราฟรูปที่ 3.17 ซึ่งเป็นกราฟ 2 มิติระหว่างพลังงานของอนุภาคมีประจุกับเวลาบินของนิวตรอน โดยจะเห็นแถบที่มีความเข้มตรงบริเวณที่เวลาบินของนิวตรอนมีค่าประมาณ 80-90 ns ซึ่งเป็น โปรตอนที่เกิดขึ้นจากการเหนี่ยวนำของนิวตรอนพลังงานสูง 175 MeV (ตรงบริเวณพีคในรูปที่) จากนิวเคลียสของออกซิเจนในเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์ (ควอทซ์)ซึ่งโปรตอนที่เกิดขึ้น จากการเหนี่ยวนำดังกล่าวสามารถมีพลังงานได้ตั้งแต่พลังงานสูงลดหลั่นไปทางจนถึงพลังงานต่ำ (จากขวาไปซ้าย) ส่วนบริเวณที่ไล่ลงมาจากเวลาบินของนิวตรอนที่มีค่าประมาณ 70 ns นั้นก็เป็น โปรตอนที่เกิดขึ้นจากการเหนี่ยวนำของนิวตรอนพลังงานต่ำลงไปจากพีคในรูปที่ (สาเหตุที่ทำให้ นิวตรอนพลังงานสูงมีค่าเวลาบินมากกว่านิวตรอนพลังงานต่ำ ซึ่งตรงข้ามกับหลักการข้างต้น เนื่องจากในทางปฏิบัติจะนิยมชะลอ (delay) สัญญาณเวลาเริ่มต้น(start signal)จาก Radio Frequency (RF) ของไซโคลตรอน ออกไปจนมาหลังจากสัญญาณเวลาสิ้นสุด(stop signal)จาก หัววัด เพื่อลด busy time ของระบบการวัดสัญญาณเวลา)

รูปที่ 3.17 กราฟ 2 มิติระหว่าง เวลาในการบิน (Time-of-flight) กับพลังงานของโปรตอน สำหรับเป้าซิลิกอนไดออกไซด์ พร้อมทั้ง cut (เส้นสีแดง) ที่ใช้ในการเลือกเฉพาะเหตุการณ์ที่อนุภาค เบามีประจุเกิดขึ้นจากการเหนี่ยวนำของนิวตรอนพลังงานสูงเท่านั้น

หลังจากนี้เป็นต้นไป กระบวนการวิเคราะห์ข้อมูลจะเปลี่ยนจากข้อมูลแบบเหตุการณ์ต่อ เหตุการณ์ ในรูป Ntuple ไปเป็นข้อมูลแบบสเปกตรัมในรูปฮีสโตแกรม ดังนั้นสามารถสร้าง cut ดัง กรอบเส้นสีแดงในรูปที่ เพื่อเลือกเอาเฉพาะเหตุการณ์ที่อนุภาคเบามีประจุเกิดขึ้นจากการเหนี่ยวนำ ของนิวตรอนพลังงานสูงเท่านั้นไปสร้างเป็นฮีสโตแกรม ดังแสดงรูปที่ 3.18 ซึ่งพล็อตเปรียบเทียบ ระหว่างใช้ (เส้นสีน้ำเงิน) และไม่ใช้ (เส้นสีแดง) เทคนิค Time-of-Flight เพื่อกำจัดโปรตอนที่ เกิดขึ้นจากการเหนี่ยวนำของนิวตรอนพลังงานต่ำ

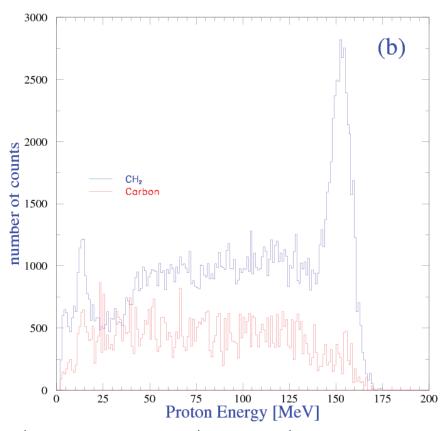
รูปที่ 3.18 ฮีสโตแกรมของโปรตอนจากเป้าซิลิกอนไดออกไซด์ ที่มุมปลดปล่อย 20° ใน กรณีเมื่อไม่ใช้ cut (เส้นสีแดง) และใช้ cut (เส้นสีน้ำเงิน) พร้อมทั้งแสดง background (เส้นแรเงา) สำหรับกรณีที่ไม่มีเป้าปฏิกิริยา

ง. การลบรังสีภูมิหลัง (background subtraction)


เนื่องจากไม่ใช่เฉพาะนิวตรอนที่ชนกับเป้าปฏิกิริยาเท่านั้นที่เกิดจากการเหนี่ยวนำให้เกิด อนุภาคมีประจุ แต่นิวตรอนที่ไปชนกับคอลลิเมเตอร์ เกราะกำบังรังสี ท่อสุญญากาศ อู่สุญญากาศ หรือแม้แต่ตัวหัววัดรังสีเอง ก็สามารถเหนี่ยวนำให้เกิดอนุภาคมีประจุที่ไม่ต้องการ รวมเรียกว่ารังสี ภูมิหลัง ซึ่งเป็นเรื่องยากมากที่จะป้องกันแม้ว่าจะเพิ่มหรือปรับปรุงทั้งเกราะกำบังรังสีและคอลลิเม เตอร์แล้วก็ตาม ทั้งนี้เนื่องจากนิวตรอนไม่มีประจุ ยิ่งไปกว่านั้นนิวตรอนที่ใช้ในการทดลองนี้มี

พลังงานสูงมาก ดังนั้นการกำจัดผลของรังสีภูมิหลังจึงวิธีทำการทดลองเก็บข้อมูลเลียนแบบกรณีที่ มีเป้าปฏิกิริยาอยู่ในลำนิวตรอน (target-in) โดยไม่มีเป้าปฏิกิริยาอยู่ในลำนิวตรอน (target-out) ดังนั้นเมื่อนำข้อมูลในกรณีที่ไม่มีเป้าปฏิกิริยาอยู่ในลำนิวตรอน หลังจากดำเนินการวิเคราะห์ตั้งแต่ การระบุชนิด การสอบเทียบพลังงาน การสอบเทียบเวลาและการกำจัดนิวตรอนพลังงานต่ำ จนกระทั่งได้เป็นฮีสโตแกรม (เส้นแรเงา) ดังแสดงรูปที่ 3.18 แล้วทำการ normalise ด้วยจำนวน นิวตรอนมอนิเตอร์ที่เท่ากันทั้งสองกรณี ก็สามารถนำมาหักลบกันทำให้กำจัดผลของรังสีภูมิหลัง ออกไปได้ ทั้งนี้โดยถือว่าผลของการที่นิวตรอนไปกระเจิงกับเป้าปฏิกิริยาก่อน แล้วไปชนกับสิ่งรอบ ข้างและเหนี่ยวนำให้เกิดอนุภาคมีประจุที่ไม่ต้องการอีกทีนั้น มีผลน้อยจนสามารถตัดทิ้งได้ (ผล ดังกล่าวนี้ไม่สามารถกำจัดได้ตามวิธีข้างต้น เนื่องจากไม่มีเป้าปฏิกิริยาอยู่ในลำนิวตรอน)

จ. Absolute cross-section normalisation เป็นการหาค่าดับเบิ้ลดิฟเฟอเรนเซียลครอส เซคชัน โดยการเทียบกับค่าดิฟเฟอเรนเซียลครอสเซคชันของไฮโดรเจนจากกระบวนการ np scattering ที่เป็นค่ามาตรฐาน เมื่อทราบจำนวนนิวตรอนที่เข้ามาและจำนวนนิวเคลียสของ ไฮโดรเจนที่กระทำอันตรกิริยากัน แต่ในทางปฏิบัติต้องทดลองเก็บข้อมูลปรับเลือกให้เป้าปฏิกิริยา ชนิดโพลีเอทธิลีน ซึ่งเป็นสารประกอบไฮโดรคาร์บอนให้มาอยู่ในลำนิวตรอน หลังจากดำเนินการ วิเคราะห์ตั้งแต่การระบุชนิด (โดยในกรณีนี้คัดเลือกเฉพาะโปรตอน) การสอบเทียบพลังงาน การ สอบเทียบเวลา จากรูปที่ 3.19 ซึ่งเป็นกราฟ 2 มิติระหว่างพลังงานของโปรตอนกับเวลาบินของ นิวตรอน โดยจะเห็นเป็นดวงกลมตรงบริเวณที่เวลาบินของนิวตรอนมีค่าประมาณ 80-90 ns และ พลังงานของโปรตอนประมาณ 140-160 MeV ซึ่งได้จากกระบวนการ np scattering ระหว่าง นิวตรอนกับโปรตอน (นิวเคลียสของไฮโดรเจนในเป้าปฏิกิริยาชนิดโพลีเอทธิลีน) ที่กระเจิงออกไป ยังชุดหัววัดโทรทรรศน์ที่มุม 20°


สำหรับแถบเข้มโค้งที่ต่อเนื่องจากดวงกลมลงมาด้านล่าง ซึ่งไล่ลงมาจากเวลาบินของ นิวตรอนที่มีค่าประมาณ 70 ns นั้น เป็นโปรตอนจากกระบวนการ np scattering เหมือนกับกรณี ข้างต้น แต่มาจากการกระเจิงของนิวตรอนที่มีพลังงานต่ำกว่าพีคลงไป (สาเหตุที่เป็นเส้นโค้ง เนื่องมาจากว่าความสัมพันธ์ระหว่างพลังงานกับเวลาบินของนิวตรอนมิได้เป็นเชิงเส้นตรง)

ส่วนแถบเข้มตรงที่ต่อเนื่องจากดวงกลมมาด้านซ้าย เป็นโปรตอนที่เกิดขึ้นจากการ เหนี่ยวนำของนิวตรอนพลังงานสูง 175 MeV จากนิวเคลียสของคาร์บอน, ¹²C(n,px), ในเป้า ปฏิกิริยาชนิดโพลีเอทธิลีน ซึ่งโปรตอนที่เกิดขึ้นจากการเหนี่ยวนำดังกล่าวสามารถมีพลังงานได้ ตั้งแต่พลังงานสูงลดหลั่นไปจนถึงพลังงานต่ำ (รูปที่ 3.19 จากขวาไปซ้าย)

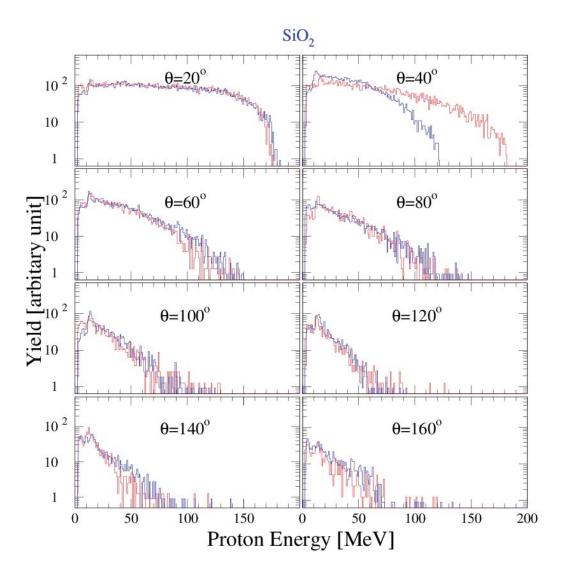
รูปที่ 3.19 กราฟ 2 มิติระหว่าง เวลาในการบิน (Time-of-flight) กับพลังงานของโปรตอน สำหรับเป้าโพลีเอธิลีน (ซ้าย)

ดังนั้นจึงสามารถใช้ cut อันเดียวกับก่อนหน้านี้ ดังกรอบเส้นสีแดงในรูปที่ 3.19 เพื่อเลือก เอาเฉพาะเหตุการณ์ที่โปรตอนที่เกิดขึ้นจากกระบวนการ np scattering สำหรับไฮโดรเจนและการ เหนี่ยวนำสำหรับคาร์บอนในเป้าปฏิกิริยาชนิดโพลีเอทธิลีน โดยนิวตรอนพลังงานสูงเท่านั้นไปสร้าง เป็นฮีสโตแกรมเส้นสีน้ำเงิน ดังแสดงรูปที่ 3.20

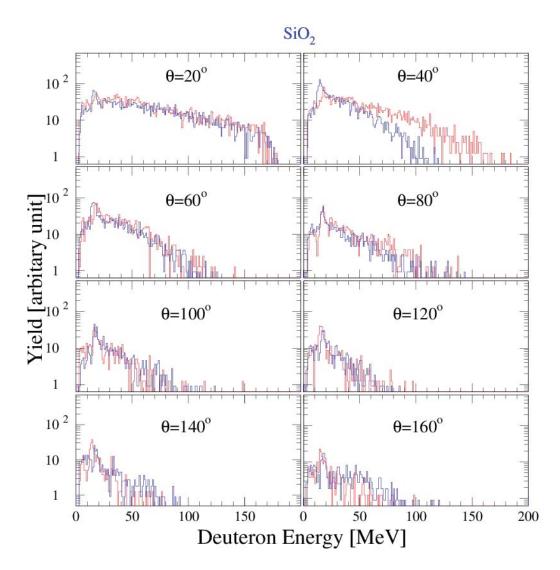
รูปที่ 3.20 ฮีสโตแกรมของโปรตอน ที่มุมกระเจิง 20° ซึ่งปรากฏพีคของ *np* scattering ของ ไฮโดรเจน สำหรับเป้าโพลีเอธิลีน (เส้นสีน้ำเงิน) และสำหรับเป้าคาร์บอน (เส้นสีแดง) หลังจาก กระบวนการการกำจัดนิวตรอนพลังงานต่ำ และการลบรังสีภูมิหลัง

ส่วนฮีสโตแกรมเส้นสีแดงนั้น เป็นผลลัพธ์ที่ได้จากกระบวนการวิเคราะห์ที่เหมือนกันทุก ประการ เพียงแต่เปลี่ยนไปใช้เป้าปฏิกิริยาชนิดคาร์บอน (แกรไฟต์) ดังนั้นหลังจากทำการ normalise ด้วยจำนวนนิวตรอนมอนิเตอร์และจำนวนนิวเคลียสของคาร์บอนให้เท่ากันสำหรับเป้า ปฏิกิริยาทั้งสองชนิด ก็สามารถนำมาหักลบกันทำให้กำจัดโปรตอนที่เกิดขึ้นจากการเหนี่ยวนำ สำหรับคาร์บอนในเป้าปฏิกิริยาชนิดโพลีเอทธิลีน โดยนิวตรอนพลังงานสูงออกไปได้ สุดท้ายก็จะ เหลือเฉพาะโปรตอนจากกระบวนการ np scattering สำหรับไฮโดรเจนเท่านั้น

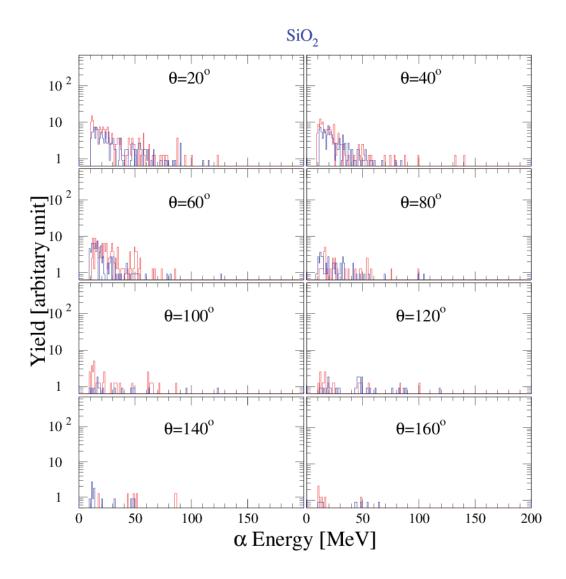
กล่าวคือ พื้นที่ใต้พีค (ผลรวมของจำนวนนับ)ของฮีสโตแกรมที่เป็นผลลัพธ์จากการหักลบ ดังกล่าวนั้น จะสัมพันธ์โดยตรงกับค่าดิฟเฟอเรนเชียลครอสเซคชันของไฮโดรเจนจากกระบวนการ np scattering ($d\sigma_H(E_0,\varphi)/d\Omega$) ที่เป็นค่ามาตรฐาน โดยสามารถคำนวณหาค่าดับเบิ้ลดิฟเฟอ เรนเชียลครอสเซคชันสำหรับธาตุ X ใด ๆ ได้ตามสมการดังต่อไปนี้ โดยที่


$$\frac{d^2\sigma_X(E_0,\theta,E)}{d\Omega dE} = \frac{Y_X(\theta,E)}{Y_H(\varphi)} \frac{N_X}{N_H} \frac{\Phi_{CH_2}}{\Phi_{Xi}} \frac{\Omega_{CH_2}}{\Omega_X} \frac{d\sigma_H(E_0,\varphi)}{d\Omega} \frac{1}{\Delta E},$$
3.3

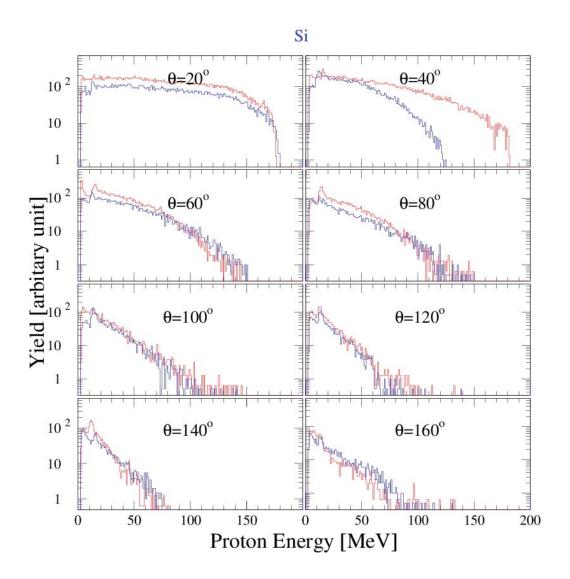
โดยที่ $Y_{X}(\theta, E)$ คือ ผลรวมของจำนวนนับในช่องพลังงาน (energy bin) ΔE ณ พลังงาน E ที่มุม ปลดปล่อย θ สำหรับอนุภาคมีประจุแต่ละชนิด, N_{X} , N_{H} เป็นจำนวนนิวเคลียสของธาตุ X ในเป้า ปฏิกิริยานั้นและจำนวนนิวเคลียสของธาตุไฮโดรเจน H ในเป้าปฏิกิริยาชนิดโพลีเอทธิลีน ตามลำดับ Φ_{X} , $\Phi_{CH_{2}}$ เป็นค่า relative neutron fluences ในกรณีการเก็บข้อมูลสำหรับเป้าปฏิกิริยา X และเป้าปฏิกิริยาชนิดโพลีเอทธิลีนตามลำดับ, Ω_{X} , $\Omega_{CH_{2}}$ เป็นมุมตันของเป้าปฏิกิริยา X และเป้าปฏิกิริยาชนิดโพลีเอทธิลีน ที่รองรับกับหัววัดแบบโทรทรรศน์ ตามลำดับ และค่าดิฟเฟอเรนเชีย ลครอสเซคชันของไฮโดรเจนจากกระบวนการ np scattering E ที่มุมกระเจิง θ = 20 $^{\circ}$ ณ พลังงาน E_{o} = 175 MeV คำนวณจากโปรแกรมคำนวณทางทฤษฎีของ SAID Partial-Wave Analysis Facility [26] มหาวิทยาลัย George Washington มลรัฐ Virginia ประเทศสหรัฐอเมริกา โดยมีค่าเท่ากับ 19.9 mb/sr/MeV


ผลการทดลอง

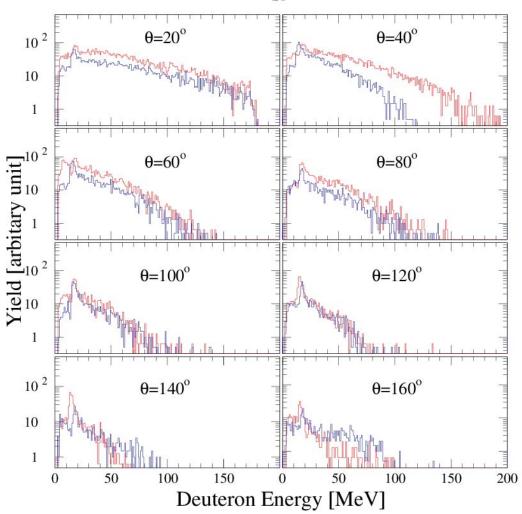
การคำนวณหาค่าดับเบิ้ลดิฟเฟอเรนเซียลครอสเซคชันสำหรับธาตุออกซิเจนนั้น เนื่องจาก ในทางปฏิบัติไม่สามารถหาเป้าปฏิกิริยาชนิดออกซิเจนบริสุทธิ์ได้ (เหมือนกับกรณีของธาตุ ไฮโดรเจน H ที่ต้องใช้เป้าปฏิกิริยาชนิดโพลีเอทธิลีนแทน) จึงจำเป็นต้องใช้ เป้าปฏิกิริยาชนิด ซิลิกอนไดออกไซด์แทน ดังนั้นขั้นตอนจะต้องวิเคราะห์หาค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชัน สำหรับเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์ และเป้าปฏิกิริยาชนิดซิลิกอน แล้วจึงนำมาหักลบกัน เพื่อให้เหลือผลลัพธ์เป็นค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชันสำหรับธาตุออกซิเจนเพียงอย่าง เดียว โดยดำเนินการวิเคราะห์ข้อมูลสำหรับเป้าปฏิกิริยาทั้งสอง รวมทั้งกรณีไม่มีเป้าปฏิกิริยา(รังสี ภูมิหลัง) ตามขั้นตอนที่กล่าวในบทที่ผ่านมา ตั้งแต่การระบุชนิด การสอบเทียบพลังงาน การสอบ เทียบเวลาและการกำจัดนิวตรอนพลังงานต่ำ ซึ่งได้สเปกตรัมของโปรตอน, ดิวเทอรอน, และอัลฟา สำหรับเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์ ที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° แสดงดังรูปที่ 4.1, 4.2 และ 4.3 ตามลำดับ โดยพล็อตเปรียบเทียบกันระหว่างข้อมูล 2 ชุด ตามลักษณะการจัด วางชุดหัววัดแบบโทรทรรศน์ โดยเส้นสีแดงแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 วางที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับแบบปกติ ส่วนเส้นสีน้ำเงินแสดงข้อมูล กรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 8 ถึง 1 ไปวางที่มุมปลดปล่อย 20° จนถึง 160° ตามลำดับ แบบสลับฟาก เพื่อทดสอบความถูกต้องและแน่นอน ซึ่งพบว่าข้อมูลจากชุดหัววัดแบบโทรทรรศน์ 2 เมื่ออยู่ในลักษณะการจัดวางแบบสลับฟาก ที่มุมปลดปล่อย 140° สอดคล้องกันดีกับชุดหัววัด แบบโทรทรรศน์ 7 ที่มุมเดียวกัน แต่เมื่ออยู่ในลักษณะการจัดวางแบบปกติ ที่มุมปลดปล่อย 40° กลับมีป[ั]ญหา ไม่สอดคล้องกับชุดหัววัดแบบโทรทรรศน์ 7 ที่มุมเดียวกัน ดังนั้นที่มุมปลดปล่อย 40° จะเลือกใช้เฉพาะข้อมูลจากชุดหัววัดแบบโทรทรรศน์ 7 เท่านั้น


4.1 เป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์

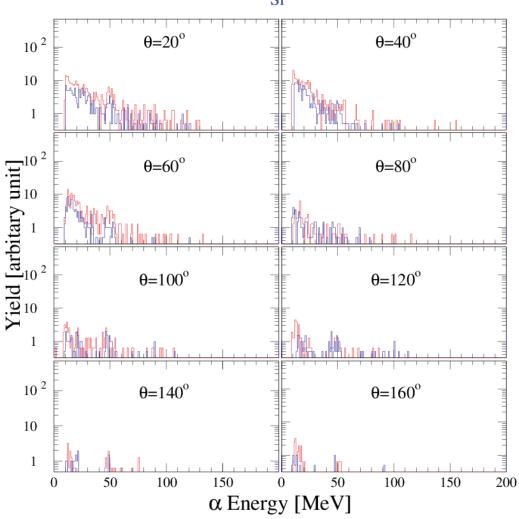
รูปที่ 4.1 สเปกตรัมของโปรตอนสำหรับเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์ โดยพล็อต เปรียบเทียบกันระหว่างข้อมูล 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์ โดยเส้นสี แดงแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 วางที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับแบบปกติ ส่วนเส้นสีน้ำเงินแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 8 ถึง 1 ไปวางที่มุมปลดปล่อย 20° จนถึง 160° ตามลำดับแบบสลับฟาก


รูปที่ 4.2 สเปกตรัมของดิวเทอรอนสำหรับเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์ โดยพล็อต เปรียบเทียบกันระหว่างข้อมูล 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์ โดยเส้นสี แดงแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 วางที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับแบบปกติ ส่วนเส้นสีน้ำเงินแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 8 ถึง 1 ไปวางที่มุมปลดปล่อย 20° จนถึง 160° ตามลำดับแบบสลับฟาก

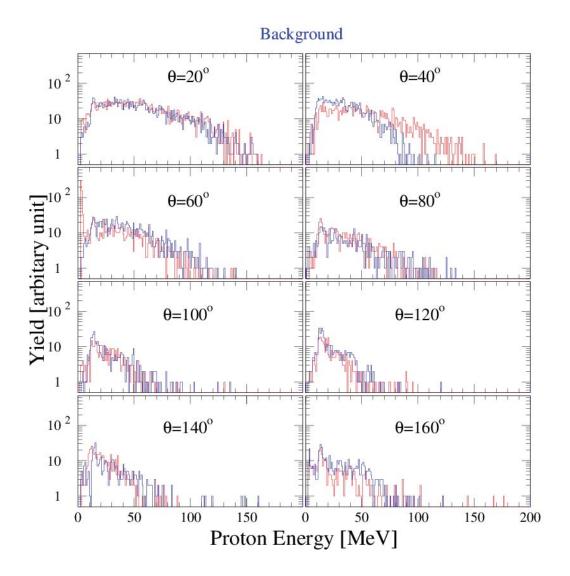
รูปที่ 4.3 สเปกตรัมของอัลฟาสำหรับเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์ โดยพล็อต เปรียบเทียบกันระหว่างข้อมูล 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์ โดยเส้นสี แดงแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 วางที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับแบบปกติ ส่วนเส้นสีน้ำเงินแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 8 ถึง 1 ไปวางที่มุมปลดปล่อย 20° จนถึง 160° ตามลำดับแบบสลับฟาก

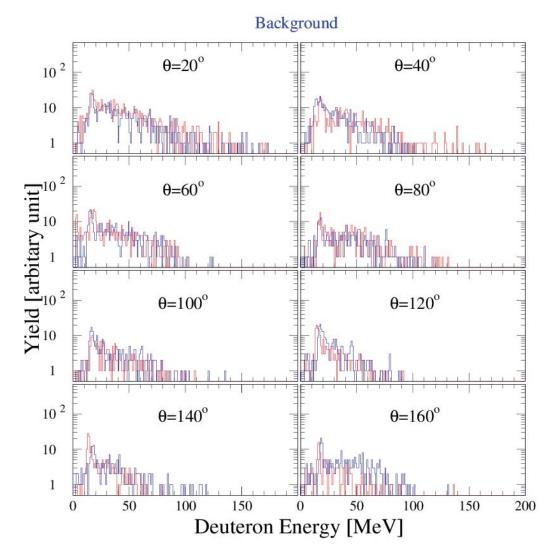

4.2 เป้าปฏิกิริยาชนิดซิลิกอน

สเปกตรัมของโปรตอน, ดิวเทอรอน, และอัลฟาสำหรับเป้าปฏิกิริยาชนิดซิลิกอนที่มุม ปลดปล่อยตั้งแต่ 20° จนถึง 160° แสดงดังรูปที่ 4.4, 4.5 และ 4.6 ตามลำดับ

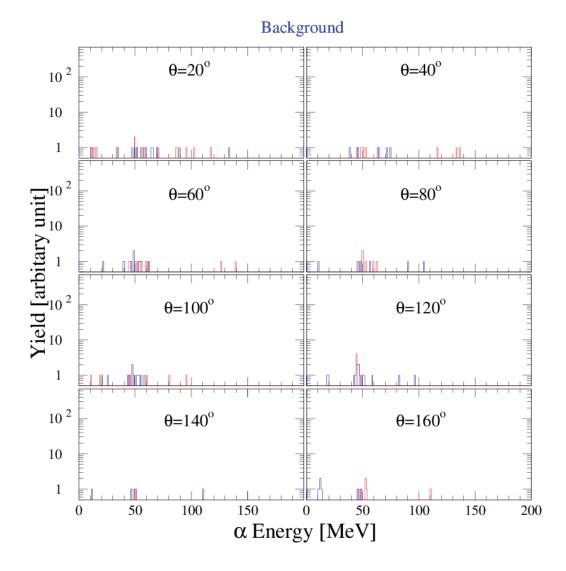


รูปที่ 4.4 สเปกตรัมของโปรตอนสำหรับเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์ โดยพล็อต เปรียบเทียบกันระหว่างข้อมูล 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์ โดยเส้นสี แดงแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 วางที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับแบบปกติ ส่วนเส้นสีน้ำเงินแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 8 ถึง 1 ไปวางที่มุมปลดปล่อย 20° จนถึง 160° ตามลำดับแบบสลับฟาก

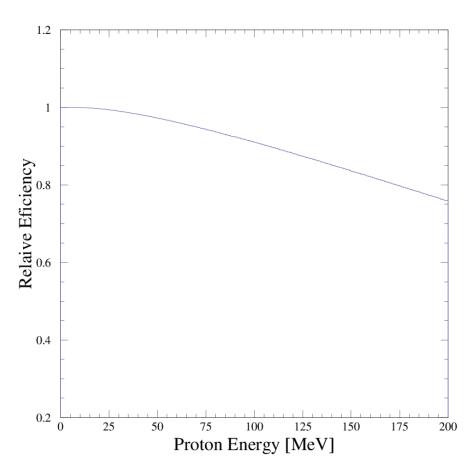

รูปที่ 4.5 สเปกตรัมของดิวเทอรอนสำหรับเป้าปฏิกิริยาชนิดซิลิกอน โดยพล็อต เปรียบเทียบกันระหว่างข้อมูล 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์ โดยเส้นสี แดงแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 วางที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับแบบปกติ ส่วนเส้นสีน้ำเงินแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 8 ถึง 1 ไปวางที่มุมปลดปล่อย 20° จนถึง 160° ตามลำดับแบบสลับฟาก

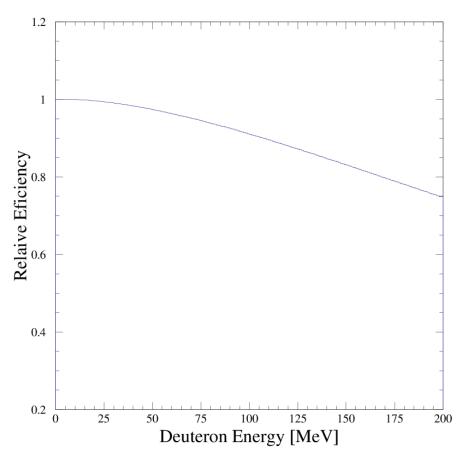

รูปที่ 4.6 สเปกตรัมของอัลฟาสำหรับเป้าปฏิกิริยาชนิดซิลิกอน โดยพล็อตเปรียบเทียบกัน ระหว่างข้อมูล 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์ โดยเส้นสีแดงแสดงข้อมูล กรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 วางที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับ แบบปกติ ส่วนเส้นสีน้ำเงินแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 8 ถึง 1 ไปวางที่มุม ปลดปล่อย 20° จนถึง 160° ตามลำดับแบบสลับฟาก

4.3 รังสีภูมิหลัง

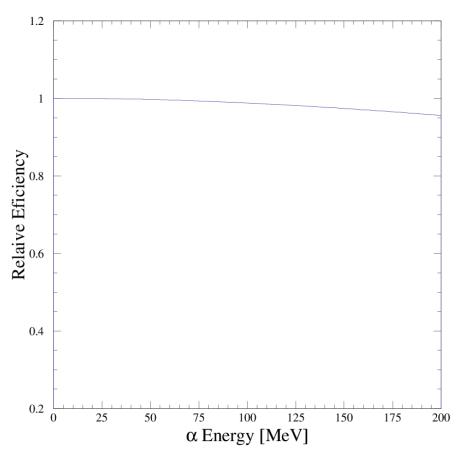

สเปกตรัมของโปรตอน, ดิวเทอรอน, และอัลฟาสำหรับกรณีไม่มีเป้าปฏิกิริยาในลำนิวตรอน (รังสีภูมิหลัง)ที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° แสดงดังรูปที่ 4.7, 4.8 และ 4.9 ตามลำดับ

รูปที่ 4.7 สเปกตรัมของโปรตอนสำหรับกรณีไม่มีเป้าปฏิกิริยาในลำนิวตรอน(รังสีภูมิหลัง) โดยพล็อตเปรียบเทียบกันระหว่างข้อมูล 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์ โดยเส้นสีแดงแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 วางที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับแบบปกติ ส่วนเส้นสีน้ำเงินแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 8 ถึง 1 ไปวางที่มุมปลดปล่อย 20° จนถึง 160° ตามลำดับแบบสลับฟาก


รูปที่ 4.8 สเปกตรัมของดิวเทอรอนสำหรับกรณีไม่มีเป้าปฏิกิริยาในลำนิวตรอน(รังสีภูมิ หลัง) โดยพล็อตเปรียบเทียบกันระหว่างข้อมูล 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบ โทรทรรศน์ โดยเส้นสีแดงแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 วางที่มุม ปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับแบบปกติ ส่วนเส้นสีน้ำเงินแสดงข้อมูลกรณีที่จัดให้ชุด หัววัดแบบโทรทรรศน์ 8 ถึง 1 ไปวางที่มุมปลดปล่อย 20° จนถึง 160° ตามลำดับแบบสลับฟาก

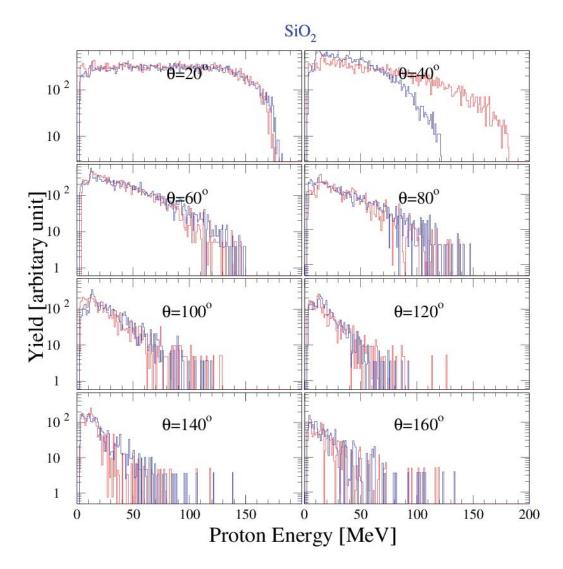

รูปที่ 4.9 สเปกตรัมของอัลฟาสำหรับกรณีไม่มีเป้าปฏิกิริยาในลำนิวตรอน(รังสีภูมิหลัง) โดย พล็อตเปรียบเทียบกันระหว่างข้อมูล 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์ โดย เส้นสีแดงแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 วางที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับแบบปกติ ส่วนเส้นสีน้ำเงินแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 8 ถึง 1 ไปวางที่มุมปลดปล่อย 20° จนถึง 160° ตามลำดับแบบสลับฟาก

ก่อนที่จะทำการลบรังสีภูมิหลังออก จำเป็นจะต้องดำเนินการแก้ไขต่างๆ อาทิ

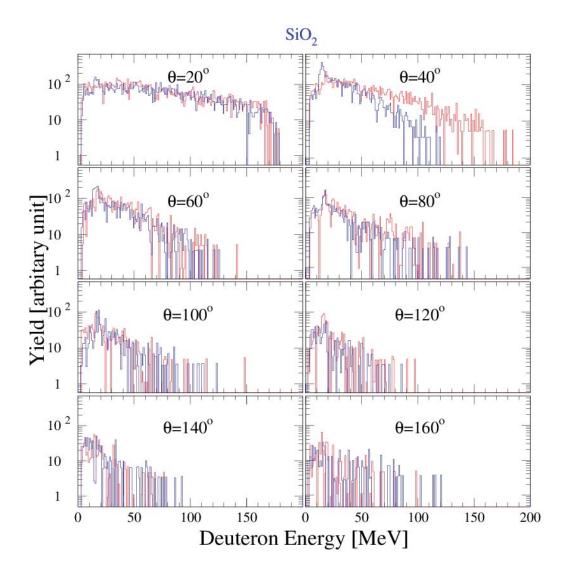

1. ผลของ dead time ในการเก็บบันทึกข้อมูลที่แตกต่างกันระหว่างกรณีที่มีเป้าปฏิกิริยา อยู่ในลำนิวตรอน (target-in) และกรณีที่ไม่มีเป้าปฏิกิริยาอยู่ในลำนิวตรอน (target-out) โดยผลดังกล่าวนี้ไม่ขึ้นกับชนิดหรือพลังงานของอนุภาคมีประจุ 2. ผลของประสิทธิภาพของหัววัดซีเซียมไอโอไดด์ กล่าวคือเกิดการสูญเสียของอนุภาคมี ประจุ (พลังงานสูง) เมื่อเคลื่อนที่ภายในหัววัดซีเซียมไอโอไดด์ โดยจะมีโอกาสที่ เกิดปฏิกิริยานิวเคลียร์กลายเป็นอนุภาคตัวอื่น หรือถูกดูดกลืน ซึ่งโอกาส(หรือ ประสิทธิภาพ)นั้น จะขึ้นกับทั้งชนิดและพลังงานของอนุภาคมีประจุ ดังแสดงในรูปที่ ถึง สำหรับกรณีของโปรตอน, ดิวเทอรอน, และอัลฟา ตามลำดับ โดยผลดังกล่าวนี้ไม่ ขึ้นกับชนิดของเป้าปฏิกิริยา

รูปที่ 4.10 ประสิทธิภาพสัมพัทธ์ของหัววัดซีเซียมไอโอไดด์สำหรับกรณีของโปรตอนที่ พลังงานต่างๆ

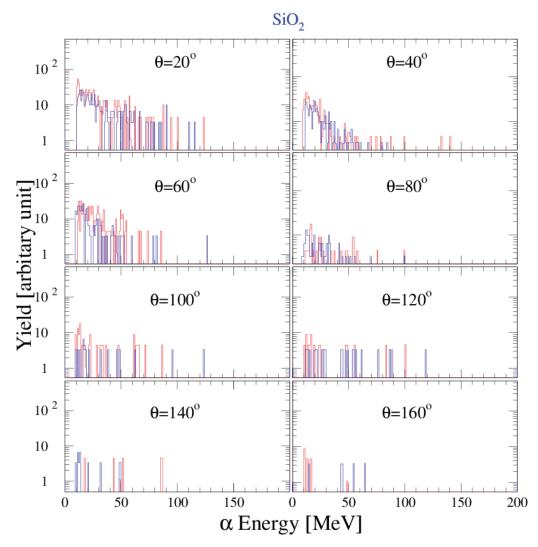
รูปที่ 4.11 ประสิทธิภาพสัมพัทธ์ของหัววัดซีเซียมไอโอไดด์สำหรับกรณีของดิวเทอ รอนที่พลังงานต่างๆ



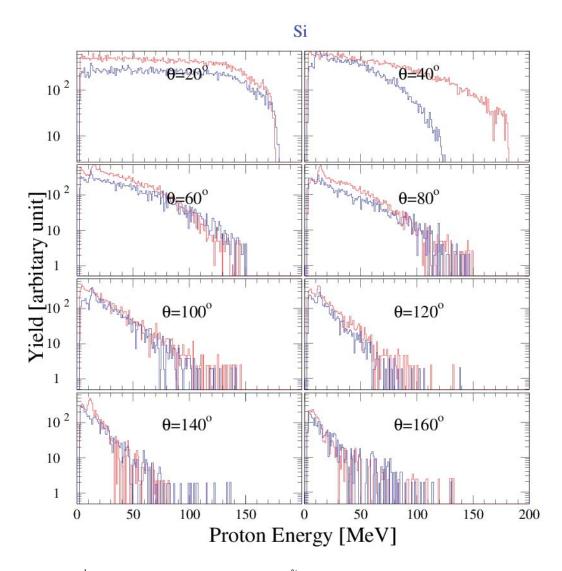
รูปที่ 4.12 ประสิทธิภาพสัมพัทธ์ของหัววัดซีเซียมไอโอไดด์สำหรับกรณีของอัลฟาที่ พลังงานต่างๆ


ในทางปฏิบัติเพื่อความสะดวกในการลบรังสีภูมิหลัง และการกำจัดผลของซิลิกอนออกจาก ซิลิกอนไดออกไซด์ เพื่อให้เหลือเป็นผลลัพธ์ของธาตุออกซิเจนเท่านั้น จึงเลือกทำการ normalise สเปกตรัมของโปรตอน, ดิวเทอรอน, และอัลฟาสำหรับเป้าปฏิกิริยาชนิดซิลิกอนและเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์ทั้งสองกรณี ด้วยจำนวนนิวตรอนมอนิเตอร์ที่เท่ากันกับกรณีไม่มีเป้า ปฏิกิริยาในลำนิวตรอน

4.4 สเปกตรัมสำหรับเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์หลังจากลบรังสีภูมิหลัง


สเปกตรัมของโปรตอน, ดิวเทอรอน, และอัลฟา สำหรับกรณีเป้าปฏิกิริยาชนิดซิลิกอน ได ออกไซด์หลังจากลบรังสีภูมิหลัง ที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° แสดงดังรูปที่ 4.13, 4.14 และ 4.15 ตามลำดับ

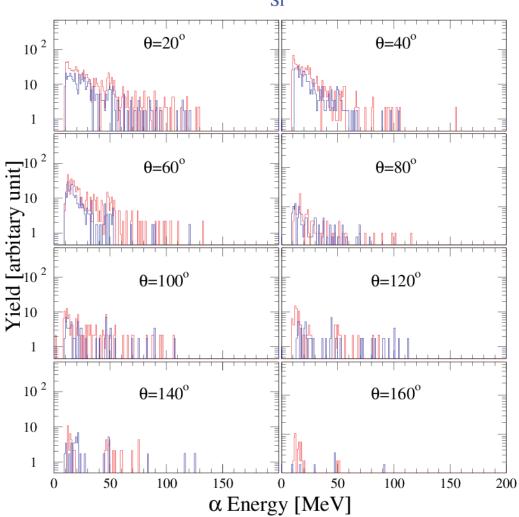
รูปที่ 4.13 สเปกตรัมของโปรตอนสำหรับเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์หลังจากลบ รังสีภูมิหลัง โดยพล็อตเปรียบเทียบกันระหว่างข้อมูล 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบ โทรทรรศน์ โดยเส้นสีแดงแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 วางที่มุม ปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับแบบปกติ ส่วนเส้นสีน้ำเงินแสดงข้อมูลกรณีที่จัดให้ชุด หัววัดแบบโทรทรรศน์ 8 ถึง 1 ไปวางที่มุมปลดปล่อย 20° จนถึง 160° ตามลำดับแบบสลับฟาก


รูปที่ 4.14 สเปกตรัมของดิวเทอรอนสำหรับเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์หลังจาก ลบรังสีภูมิหลัง โดยพล็อตเปรียบเทียบกันระหว่างข้อมูล 2 ชุด ตามลักษณะการจัดวางชุดหัววัด แบบโทรทรรศน์ โดยเส้นสีแดงแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 วางที่มุม ปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับแบบปกติ ส่วนเส้นสีน้ำเงินแสดงข้อมูลกรณีที่จัดให้ชุด หัววัดแบบโทรทรรศน์ 8 ถึง 1 ไปวางที่มุมปลดปล่อย 20° จนถึง 160° ตามลำดับแบบสลับฟาก

รูปที่ 4.15 สเปกตรัมของอัลฟาสำหรับเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์หลังจากลบรังสี
ภูมิหลัง โดยพล็อตเปรียบเทียบกันระหว่างข้อมูล 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบ
โทรทรรศน์ โดยเส้นสีแดงแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 วางที่มุม
ปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับแบบปกติ ส่วนเส้นสีน้ำเงินแสดงข้อมูลกรณีที่จัดให้ชุด
หัววัดแบบโทรทรรศน์ 8 ถึง 1 ไปวางที่มุมปลดปล่อย 20° จนถึง 160° ตามลำดับแบบสลับฟาก

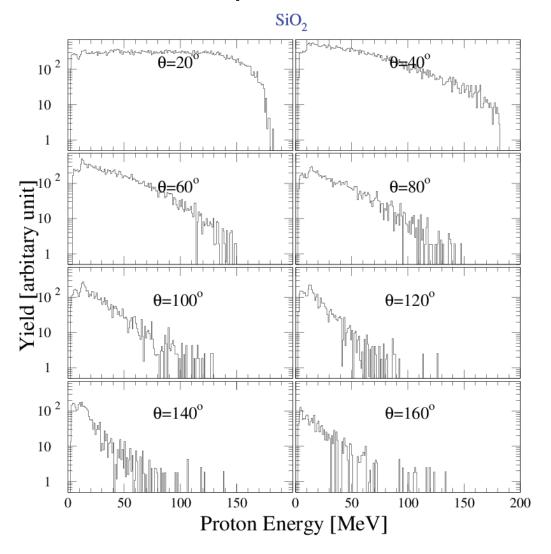

4.5 สเปกตรัมสำหรับเป้าปฏิกิริยาชนิดซิลิกอนหลังจากลบรังสีภูมิหลัง

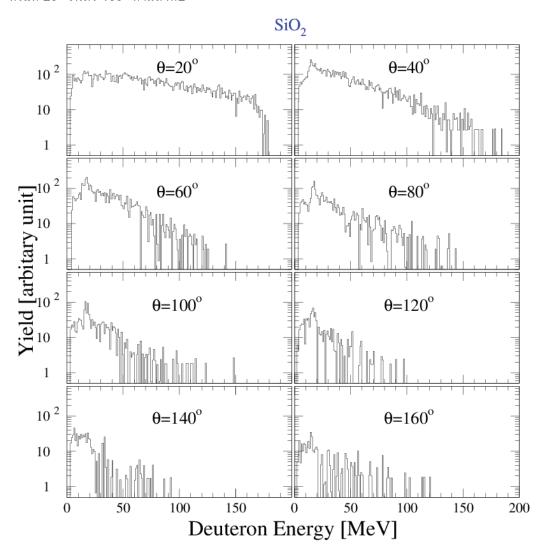
สเปกตรัมของโปรตอน, ดิวเทอรอน, และอัลฟา สำหรับกรณีเป้าปฏิกิริยาชนิดซิลิกอน หลังจากลบรังสีภูมิหลัง ที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° แสดงดังรูปที่ 4.16, 4.17 และ 4.18 ตามลำดับ



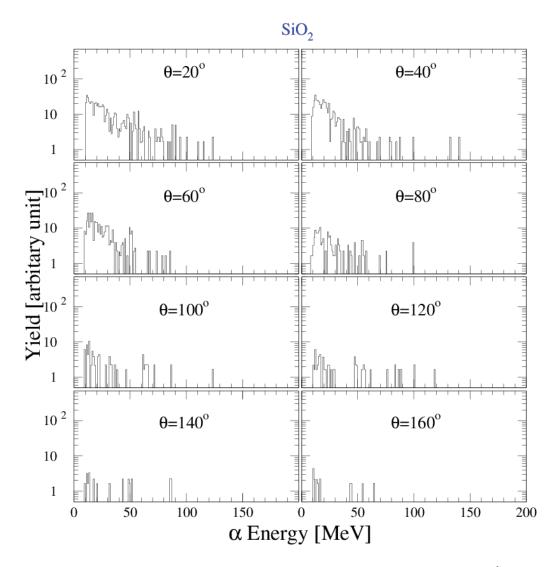
รูปที่ 4.16 สเปกตรัมของโปรตอนสำหรับเป้าปฏิกิริยาชนิดซิลิกอนหลังจากลบรังสีภูมิหลัง โดยพล็อตเปรียบเทียบกันระหว่างข้อมูล 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์ โดยเส้นสีแดงแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 วางที่มุมปลดปล่อยตั้งแต่

20° จนถึง 160° ตามลำดับแบบปกติ ส่วนเส้นสีน้ำเงินแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบ โทรทรรศน์ 8 ถึง 1 ไปวางที่มุมปลดปล่อย 20° จนถึง 160° ตามลำดับแบบสลับฟาก

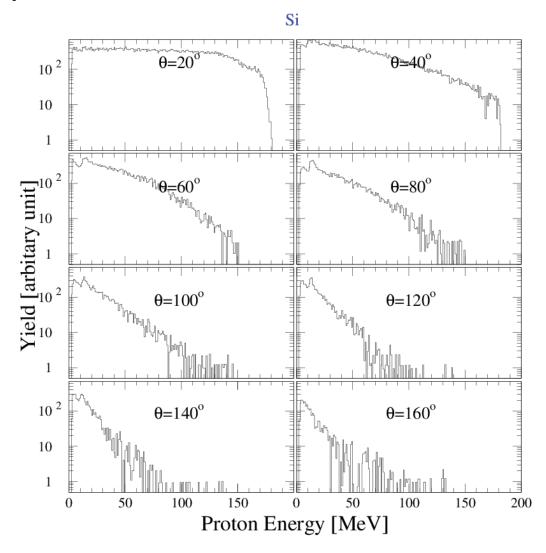

รูปที่ 4.17 สเปกตรัมของดิวเทอรอนสำหรับเป้าปฏิกิริยาชนิดซิลิกอนหลังจากลบรังสีภูมิ หลัง โดยพล็อตเปรียบเทียบกันระหว่างข้อมูล 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบ โทรทรรศน์ โดยเส้นสีแดงแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 วางที่มุม ปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับแบบปกติ ส่วนเส้นสีน้ำเงินแสดงข้อมูลกรณีที่จัดให้ชุด หัววัดแบบโทรทรรศน์ 8 ถึง 1 ไปวางที่มุมปลดปล่อย 20° จนถึง 160° ตามลำดับแบบสลับฟาก

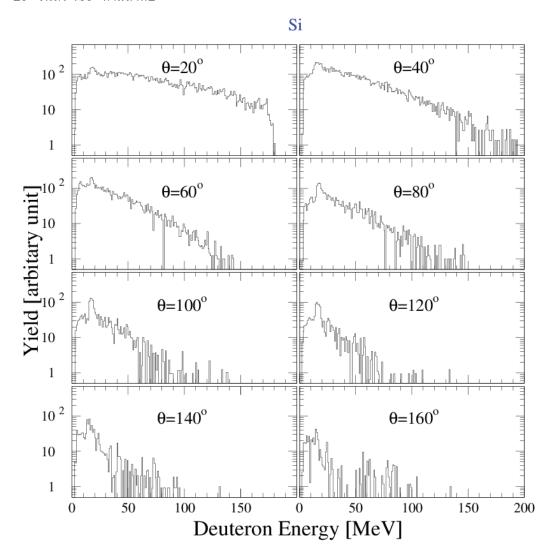

รูปที่ 4.18 สเปกตรัมของอัลฟาสำหรับเป้าปฏิกิริยาชนิดซิลิกอนหลังจากลบรังสีภูมิ โดย พล็อตเปรียบเทียบกันระหว่างข้อมูล 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์ โดย เส้นสีแดงแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 1 ถึง 8 วางที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับแบบปกติ ส่วนเส้นสีน้ำเงินแสดงข้อมูลกรณีที่จัดให้ชุดหัววัดแบบโทรทรรศน์ 8 ถึง 1 ไปวางที่มุมปลดปล่อย 20° จนถึง 160° ตามลำดับแบบสลับฟาก

4.6 สเปกตรัมสำหรับเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์รวมทั้ง 2 ชุด ตาม ลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์แบบปกติ และแบบสลับฟาก

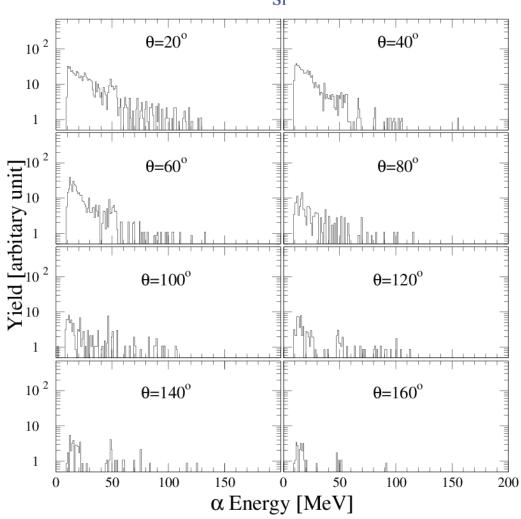

หลังจากนั้นนำสเปกตรัมสำหรับเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์จากข้อมูลทั้ง 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์ แบบปกติ (เส้นสีแดง) และแบบสลับฟาก(เส้นสี น้ำเงิน) จากรูปที่ในหัวข้อที่แล้ว มาบวกรวมกัน จะได้สเปกตรัมของโปรตอน, ดิวเทอรอน, และอัลฟา สำหรับกรณีเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์หลังจากลบรังสีภูมิหลัง ที่มุม ปลดปล่อยตั้งแต่ 20° จนถึง 160° แสดงดังรูปที่ 4.19, 4.20 และ 4.21 ตามลำดับ

รูปที่ 4.19 สเปกตรัมของโปรตอนสำหรับเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์รวมทั้ง 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์แบบปกติ และแบบสลับฟาก ที่มุมปลดปล่อย ตั้งแต่ 20° จนถึง 160° ตามลำดับ


รูปที่ 4.20 สเปกตรัมของดิวเทอรอนสำหรับเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์รวมทั้ง 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์แบบปกติ และแบบสลับฟาก ที่มุมปลดปล่อย ตั้งแต่ 20° จนถึง 160° ตามลำดับ


รูปที่ 4.2 สเปกตรัมของอัลฟาสำหรับเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์รวมทั้ง 2 ชุด ตามลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์แบบปกติ และแบบสลับฟาก ที่มุมปลดปล่อย ตั้งแต่ 20° จนถึง 160° ตามลำดับ

4.7 สเปกตรัมสำหรับเป้าปฏิกิริยาชนิดซิลิกอนรวมทั้ง 2 ชุด ตามลักษณะการจัดวาง ชุดหัววัดแบบโทรทรรศน์แบบปกติ และแบบสลับฟาก

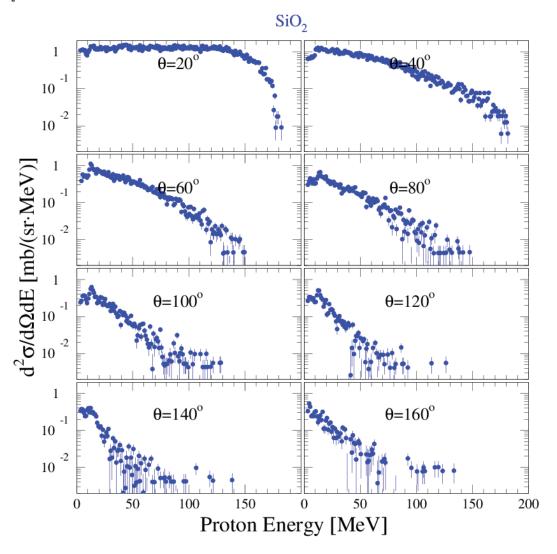

หลังจากนั้นนำสเปกตรัมสำหรับเป้าปฏิกิริยาชนิดซิลิกอนจากข้อมูลทั้ง 2 ชุด ตามลักษณะ การจัดวางชุดหัววัดแบบโทรทรรศน์ แบบปกติ (เส้นสีแดง) และแบบสลับฟาก(เส้นสีน้ำเงิน) จากรูป ที่ในหัวข้อที่แล้ว มาบวกรวมกัน จะได้สเปกตรัมของโปรตอน, ดิวเทอรอน, และอัลฟา สำหรับกรณี เป้าปฏิกิริยาชนิดซิลิกอนหลังจากลบรังสีภูมิหลัง ที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° แสดงดัง รูปที่ 4.22, 4.23 และ 4.24 ตามลำดับ

รูปที่ 4.22 สเปกตรัมของโปรตอนสำหรับเป้าปฏิกิริยาชนิดซิลิกอนรวมทั้ง 2 ชุด ตาม ลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์แบบปกติ และแบบสลับฟาก ที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับ

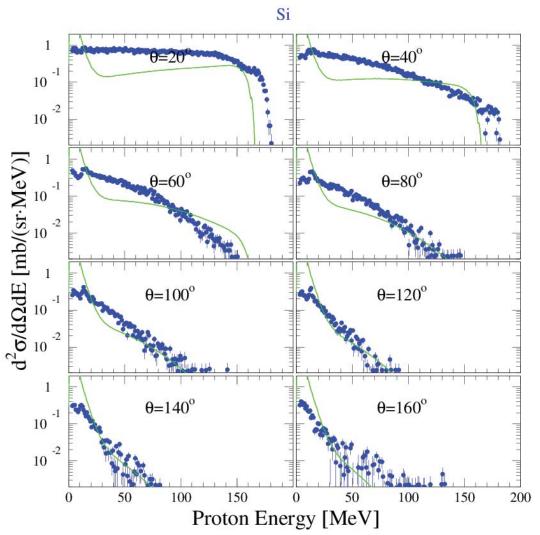
รูปที่ 4.23 สเปกตรัมของดิวเทอรอนสำหรับเป้าปฏิกิริยาชนิดซิลิกอนรวมทั้ง 2 ชุด ตาม ลักษณะการจัดวางชุดหัววัดแบบโทรทรรศน์แบบปกติ และแบบสลับฟาก ที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับ

รูปที่ 4.24 สเปกตรัมของอัลฟาสำหรับเป้าปฏิกิริยาชนิดซิลิกอนรวมทั้ง 2 ชุด ตามลักษณะ การจัดวางชุดหัววัดแบบโทรทรรศน์แบบปกติ และแบบสลับฟาก ที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับ

ส่วนขั้นตอนในการวิเคราะห์หาค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชันธาตุออกซิเจนนั้น สามารถทำได้ 2 แนวทาง คือ

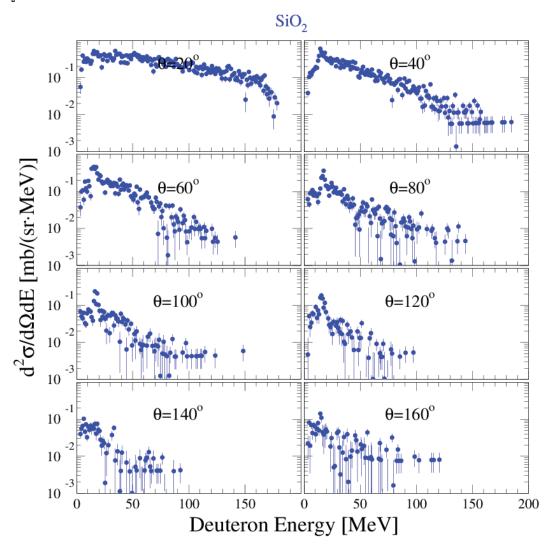

1. นำสเปกตรัมเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์ และเป้าปฏิกิริยาชนิดซิลิกอนมา normalise ด้วยจำนวนนิวเคลียสของซิลิกอนสำหรับเป้าปฏิกิริยาทั้งสองชนิดจาก ตารางที่ 3.2 ให้เท่ากัน ก่อนนำมาหักลบกัน แล้วจึงทำให้คำนวณค่าดับเบิ้ลดิฟเฟอเรน เชียลครอสเซคชันโดยใช้สมการที่

2. คำนวณค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชันสำหรับเป้าปฏิกิริยาชนิด ซิลิกอนไดออกไซด์ และเป้าปฏิกิริยาชนิดซิลิกอน โดยใช้สมการที่ แล้วจึงนำมาหักลบ กัน เพื่อให้เหลือผลลัพธ์เป็นค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชันสำหรับธาตุ ออกซิเจนเพียงอย่างเดียว

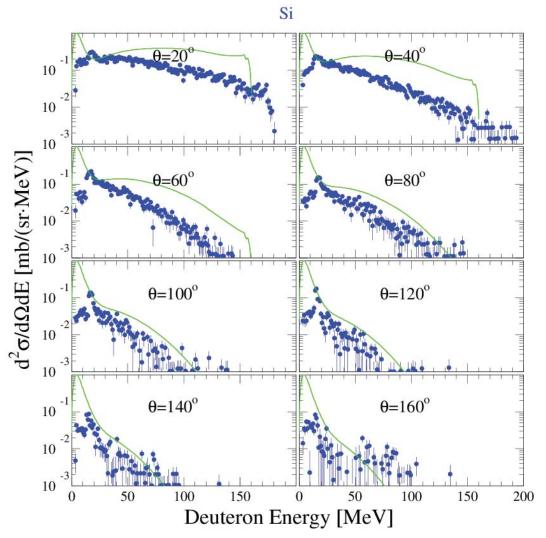

ในการทดลองนี้เลือกใช้วิธีที่ 2 เนื่องจากสามารถใช้ผลคำนวณค่าดับเบิ้ลดิฟเฟอเรนเชีย ลครอสเซคชันสำหรับธาตุซิลิกอนที่ได้ไปเปรียบเทียบกับผลคำนวณของ S. Hirayama et. al [] ซึ่งเป็นกลุ่มร่วมวิจัยจากประเทศญี่ปุ่น ซึ่งรับผิดชอบกรณีของธาตุซิลิกอน เพื่อ ทดสอบความถูกต้องซึ่งกันและกัน

4.8 ค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชันสำหรับเป้าปฏิกิริยาชนิด ซิลิกอนไดออกไซด์ และเป้าปฏิกิริยาชนิดซิลิกอน

กรณีของโปรตอน ค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชัน สำหรับเป้าปฏิกิริยาชนิด ซิลิกอนไดออกไซด์ และเป้าปฏิกิริยาชนิดซิลิกอนที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° แสดงดัง รูปที่ 4.25 และ 4.26 ตามลำดับ



รูปที่ 4.25 ค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชันของโปรตอน สำหรับเป้าปฏิกิริยาชนิด ซิลิกอนไดออกไซด์ ที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับ

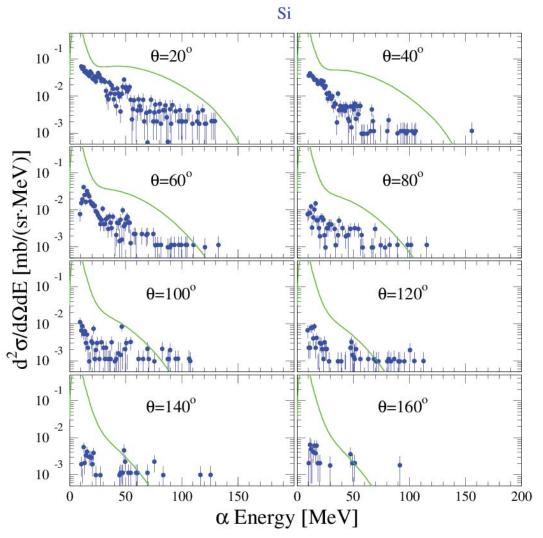


รูปที่ 4.26 ค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชันของโปรตอน สำหรับเป้าปฏิกิริยาชนิด ชิลิกอน ที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับ พร้อมผลลัพธ์ของการคำนวณทางทฤษฎี จาก TALYS [13] (เส้นสีเขียว)

กรณีของดิวเทอรอน ค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชัน สำหรับเป้าปฏิกิริยาชนิด ซิลิกอนไดออกไซด์ และเป้าปฏิกิริยาชนิดซิลิกอนที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° แสดงดัง รูปที่ 4.27 และ 4.28 ตามลำดับ

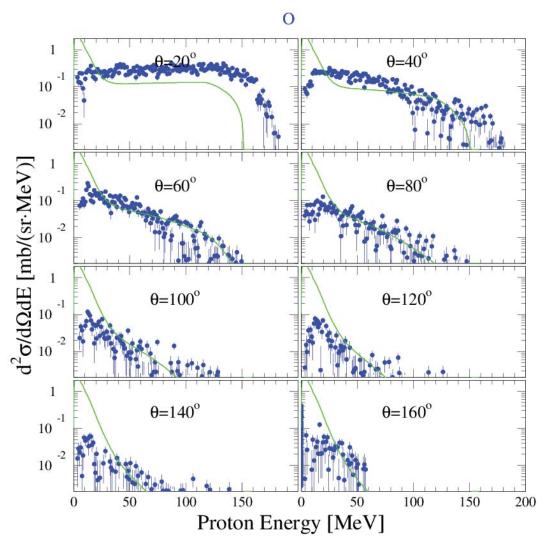


รูปที่ 4.27 ค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชันของดิวเทอรอน สำหรับเป้าปฏิกิริยา ชนิดซิลิกอนไดออกไซด์ ที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับ

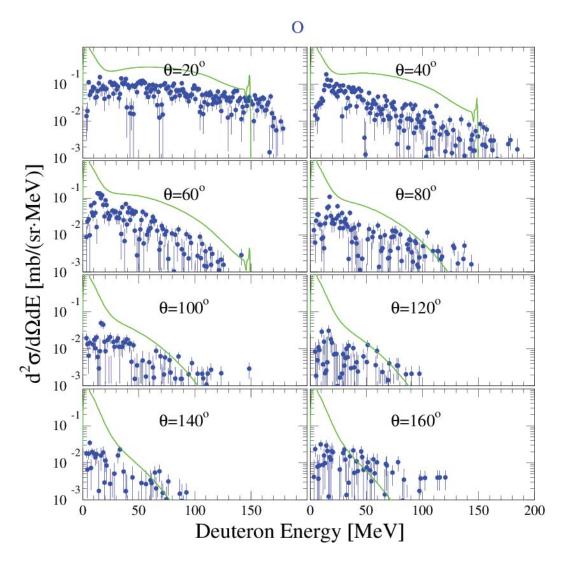


รูปที่ 4.28 ค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชันของดิวเทอรอน สำหรับเป้าปฏิกิริยา ชนิดซิลิกอน ที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับ พร้อมผลลัพธ์ของการคำนวณทาง ทฤษฎีจาก TALYS [13] (เส้นสีเขียว)

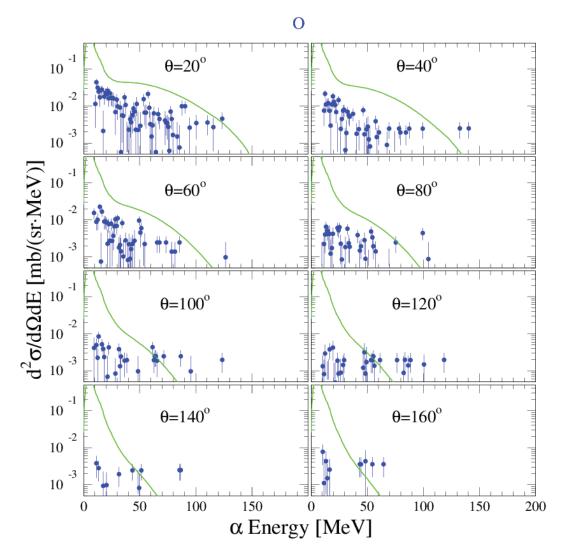
กรณีของอัลฟา ค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชัน สำหรับเป้าปฏิกิริยาชนิดซิลิกอน ไดออกไซด์ และเป้าปฏิกิริยาชนิดซิลิกอนที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° แสดงดังรูปที่ 4.29 และ 4.30 ตามลำดับ


รูปที่ 4.29 ค่าดับเบิ้ลดิฟเฟอเรนเซียลครอสเซคชันของอัลฟา สำหรับเป้าปฏิกิริยาชนิด ซิลิกอนไดออกไซด์ ที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับ

รูปที่ 4.30 ค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชันของดิวเทอรอน สำหรับเป้าปฏิกิริยา ชนิดซิลิกอน ที่มุมปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับ พร้อมผลลัพธ์ของการคำนวณทาง ทฤษฎีจาก TALYS [13] (เส้นสีเขียว)


4.9 ค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชันสำหรับออกซิเจน

หลังจากนั้นทำการ normalise ด้วยจำนวนนิวตรอนมอนิเตอร์และจำนวนนิวเคลียสของ ซิลิกอนให้เท่ากันสำหรับเป้าปฏิกิริยาทั้งสองชนิด ก็สามารถนำมาหักลบกันทำให้กำจัดโปรตอนที่ เกิดขึ้นจากการเหนี่ยวนำสำหรับซิลิกอนในเป้าปฏิกิริยาชนิดซิลิกอนไดออกไซด์ สุดท้ายก็จะเหลือ เฉพาะค่าดับเบิ้ลดิฟเฟอเรนเซียลครอสเซคชันของโปรตอนสำหรับธาตุออกซิเจนเท่านั้น ดังแสดง ในรูปที่ 4.31



รูปที่ 4.31 ค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชันของโปรตอน สำหรับออกซิเจน ที่มุม ปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับ พร้อมผลลัพธ์ของการคำนวณทางทฤษฎีจาก TALYS [13] (เส้นสีเขียว)

ส่วนรูปที่ 4.32 และ 4.33 แสดงค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชันของดิวเทอรอน และอัลฟา สำหรับธาตุออกซิเจน ตามลำดับ

รูปที่ 4.32 ค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชันของดิวเทอรอน สำหรับออกซิเจน ที่มุม ปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับ พร้อมผลลัพธ์ของการคำนวณทางทฤษฎีจาก TALYS [13] (เส้นสีเขียว)

รูปที่ 4.33 ค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชันของอัลฟา สำหรับออกซิเจน ที่มุม ปลดปล่อยตั้งแต่ 20° จนถึง 160° ตามลำดับ พร้อมผลลัพธ์ของการคำนวณทางทฤษฎีจาก TALYS [13] (เส้นสีเขียว)

บทวิจารณ์

หลังจากที่ The Svedberg Laboratory (TSL) ได้สร้างและปรับปรุง Neutron beam line ขึ้น ใหม่ จนสามารถผลิตนิวตรอนที่มีพลังงานสูงถึง 175 MeV ทางกลุ่มวิจัยก็ได้เปลี่ยนหัววัดซิลิกอน ลำดับที่สอง (ΔE_2) ที่มีความหนาเป็น 1000 ไมครอน จึงทำให้อำนาจการจำแนกพลังงานที่บริเวณ พลังงานสูง (มากกว่า 100 MeV) มีค่าสูงขึ้น และได้เปลี่ยนหัววัดซีเซียมไอโอไดด์ (E) ที่มีความหนา เป็น 100 มิลลิเมตร ทำให้ระบบหัววัด MEDLEY สามารถทดลองวัดดับเบิ้ลดิฟเฟอเรนเชียลครอส เซคชันของการเกิดอนุภาคเบามีประจุ (double- differential light-ion production cross section) โดยการเหนี่ยวนำด้วยนิวตรอนพลังงาน 175 MeV ได้อย่างมีประสิทธิภาพ โดยเฉพาะอย่างยิ่งการ ระบุชนิดและการสอบเทียบพลังงานของอนุภาคเบามีประจุ

ในทางตรงกันข้ามเนื่องจากเครื่องไซโคลตรอนที่ เป็นเครื่องเก่ามีอายุการใช้งานมานาน ซึ่ง ไม่สามารถแก้ไขหรือปรับปรุงให้จ่ายกระแสโปรตอนให้ได้มากขึ้น โดยเฉพาะอย่างยิ่งที่พลังงาน 180 MeV ดังนั้น Neutron beam line ที่สร้างขึ้นใหม่ จึงต้องออกแบบให้ระยะห่างระหว่างเป้าลิเธียม กับสถานีการทดลองนิวตรอนลดระยะสั้นลง เพื่อให้ความเข้มของจำนวนนิวตรอนเพิ่มขึ้น แต่กลับ ทำให้รังสีภูมิหลังเพิ่มขึ้น และที่มีผลเสียอย่างยิ่งต่อการกำจัดนิวตรอนพลังงานต่ำ ซึ่งกระทำได้ไม่ดี ดังเดิมเหมือนที่นิวตรอนพลังงาน 96 MeV [14,15,16]

ผลการวัดและวิเคราะห์ค่าดับเบิ้ลดิฟเฟอเรนเซียลครอสเซคชันของการเกิดอนุภาคเบามี ประจุ ได้แก่ โปรตอน ดิวเทอรอน และอัลฟา โดยการเหนี่ยวนำด้วยนิวตรอนพลังงาน 175 ล้าน อิเล็กตรอนโวลท์กับออกซิเจน ได้ผลเป็นที่น่าพอใจอย่างยิ่ง โดยเฉพาะเมื่อเปรียบเทียบกับผลการ ทดลองที่นิวตรอนพลังงาน 96 MeV [15] พบว่าสอดคล้องกันดี แต่เมื่อเปรียบเทียบกับผลการ คำนวณทางทฤษฎี โดยใช้โปรแกรมคอมพิวเตอร์ TALYS พบว่ามีความแตกต่างกัน โดยเฉพาะ อย่างยิ่งที่มุมปลดปล่อยที่มีค่าน้อย และในกรณีสำหรับดิวเทอรอน และอัลฟา (ซึ่งเป็นอนุภาคที่ ซับซ้อน (complex ejectiles) กว่าโปรตอน) ซึ่งเป็นตัวบ่งชี้ว่าโปรแกรมคอมพิวเตอร์ TALYS ยัง ไม่ให้ผลลัพธ์เป็นที่น่าพอใจ

ส่วนค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชันสำหรับธาตุซิลิกอนที่ได้เป็นผลพลอยได้ เมื่อ นำไปเปรียบเทียบกับผลคำนวณของ Hirayama และคณะ [19] ซึ่งเป็นกลุ่มร่วมวิจัยจากประเทศ ญี่ปุ่น ซึ่งรับผิดชอบกรณีของธาตุซิลิกอน พบว่าสอดคล้องกันดี

หลังจากนี้จะวิเคราะห์ค่าดับเบิ้ลดิฟเฟอเรนเชียลครอสเซคชันของไตรตอน และ He-3 รวมทั้งการแก้ไขต่างๆ (corrections) อาทิ ผลจากความหนาของเป้า ประสิทธิภาพของหัววัดสาร เรื่องแสงแบบ CsI ผลจากนิวตรอน wrap around และคำนวณค่า energy-differential และ production cross sections เพื่อที่จะตีพิมพ์คาดว่าจะตีพิมพ์วารสาร Physical Reviews C หรือไป เสนอผลงาน International Conference on Nuclear Data for Science and Technology, Spring, 2013 ที่เมืองนิวยอร์ค ประเทศสหรัฐอเมริกา

ทั้งนี้ภายหลังจากการตีพิมพ์ในวารสาร Physical Reviews C ข้อมูลที่ได้จากการวัดและ วิเคราะห์ทั้งหมดคาดว่าจะได้รับการบรรจุในฐานข้อมูลทางนิวเคลียร์ Experimental Nuclear Reaction Data (EXFOR) [21] ของ International Network of Nuclear Reaction Data Centres (NRDC)

เอกสารอ้างอิง

- [1] D. O'Sullivan, D. Zhou and E. Flood, *Investigation of cosmic rays and their secondaries at aircraft altitudes*, Radiat. Meas. 34, 277–280 (2001).
- [2] R. Orecchia, A. Zurlo, A. Loasses, M. Krengli, G. Tosi, S. Zurrida, P. Zucali, and U. Veronesi, *Particle Beam Therapy (Hadron therapy): Basis for Interest and Clinical Experience*, Eur. J. Cancer 34, 459 (1998).
- [3] D.L. Schwartz, J. Einck, J. Bellon, and G.E. Laramore, Fast Neutron Radiotherapy For Soft Tissue And Cartilaginous Sarcomas At High Risk For Local Recurrence, Int. J. Radiat. Oncol. Biol. Phys. 50, 449 (2001).
- [4] G. E. Laramore and T. W. Griffin, Fast neutron radiotherapy: where have we been and where are we going? The jury is still out--regarding Maor et al., Int. J. Radiat. Oncol., Biol., Phys. 32, 879 (1995).
- [5] Single-Event Upsets in Microelectronics, topical issue, eds. H.H.K. Tang and N. Olsson, Mat. Res. Soc. Bull. **28** (2003).
- [6] M. B. Chadwick and E. Normand, *Use of new ENDF/B-VI proton and neutron cross section for single event upset calculations*, IEEE Trans. Nucl. Sci., **46**, 1386 (1999).
- [7] A.J. Koning, J.-P. Delaroche and O.Bersillon, Nuclear data for accelerator driven systems: nuclear models, experiments and data libraries, Nucl. Instr. Meth. **A414**, 49 (1998).
- [8] A. Koning, H. Beijers, J. Benlliure, O. Bersillon, J. Blomgren, J. Cugnon, M. Duijvestijn, Ph. Eudes, D. Filges, F. Haddad, S. Hilaire, C. Lebrun, F.-R. Lecolley, S. Leray, J.-P. Meulders, R. Michel, R.-D. Neef, R. Nolte, N. Olsson, E. Ostendorf, E. Ramström, K.-H. Schmidt, H. Schuhmacher, I. Slypen, H.-A. Synal, R. Weinreich, *HINDAS A European Nuclear Data Program for Accelerator-Driven Systems*, J. Nucl. Sci. Tech., Suppl. 2, 1161 (2002).
- [9] R. Bevilacqua, S. Pomp, V. Simutkin, M. Hayashi, S. Hirayama, Y. Naitou, Y. Watanabe, U. Tippawan, M. Tesinsky, G. Ban, J.L Lecouey, F. R. Lecolley, N. Marie, and Q. Hamel, Medley spectrometer for light ions in neutron-induced reactions at 175 MeV, Nuclear Instruments and Methods in Physics Research A 646 (2011) 100–107.
- [10] S. Dangtip, A. Ataç, B. Bergenwall, J. Blomgren, K. Elmgren, C. Johansson, J. Klug, N. Olsson, G. Alm Carlsson, J. Söderberg, O. Jonsson, L. Nilsson, P.-U. Renberg, P. Nadel-Turonski, C. Le Brun, F.R. Lecolley, J.F. Lecolley, C. Varignon, Ph. Eudes, F. Haddad, M. Kerveno, T. Kirchner, and C. Lebrun, *A facility for measurements of nuclear cross sections for fast neutron cancer therapy*, Nucl. Instr. Meth. Phys. Res. A **452**, 484 (2000).
- [11] L. J. Cox, T.D. Bohm, M.B. Chadwick, P.M. Deluca, Jr., and J.V. Siebers, *PEREGRINE Monte Carlo Dose Calculations for Radiotherapy Using Clinically Realistic Neutron and Proton Beam.*, Int. Conf. on Nuclear Data for Science and Technology, Eds. Reffo, G., Ventura, A. and Grandi, C., (Trieste, Italy), 1693-1699 (1997).
- [12] D. Lambert, J. Baggio, G. Hubert, V. Ferlet-Cavrois, O. Flament, F. Saigné, F. Wrobel, H. Duarte, J. Boch, B. Sagnes, N. Buard, and T. Carrière, *Neutron-Induced SEU in SRAMs: Simulations With n-Si and n-O Interactions*, IEEE Trans. Nucl. Sci., **52**, 2332 (2005).

- [13] A.J. Koning, S. Hilaire and M.C. Duijvestijn, "TALYS-1.0", Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, and S. Leray, (EDP Sciences, 2008), p. 211.
- [14] U. Tippawan, S. Pomp, J. Blomgren, S. Dangtip, C. Gustavsson, J. Klug, L. Nilsson, M. Österlund, N. Olsson, O. Jonsson, A. V. Prokofiev, P.-U. Renberg, P. Nadel-Turonski, V. Corcalciuc, Y. Watanabe, and A. Koning, *Light-ion production in the interaction of 96 MeV neutrons with carbon*, Physical Review **C79**, 064611 (2009).
- [15] U. Tippawan, S. Pomp, A. Atac, B. Bergenwall, J. Blomgren, S. Dangtip, A. Hildebrand, C. Johansson, J. Klug, P. Mermod, L. Nilsson, M. Österlund, N. Olsson, A. V. Prokofiev, P. Nadel-Turonski, V. Corcalciuc, and A. Koning, *Light-ion production in the interaction of 96 MeV neutrons with oxygen*, Phys. Rev. **C73**, 034611 (2006).
- [16] U. Tippawan, S. Pomp, A. Atac, B. Bergenwall, J. Blomgren, S. Dangtip, A. Hildebrand, C. Johansson, J. Klug, P. Mermod, L. Nilsson, M. Österlund, N. Olsson, K. Elmgren, O. Jonsson, A. V. Prokofiev, P.-U. Renberg, P. Nadel-Turonski, V. Corcalciuc, Y. Watanabe, and A. Koning, *Light-ion production in the interaction of 96 MeV neutrons with silicon*, Phys. Rev. **C 69**, 064609 (2004).
- [17] V. Blideanu, F. R. Lecolley, J. F. Lecolley, T. Lefort, N. Marie, A. Ataç, G. Ban, B. Bergenwall, J. Blomgren, S. Dangtip, K. Elmgren, Ph. Eudes, Y. Foucher, A. Guertin, F. Haddad, A. Hildebrand, C. Johansson, O. Jonsson, M. Kerveno, T. Kirchner, J. Klug, Ch. Le Brun, C. Lebrun, M. Louvel, P. Nadel-Turonski, L. Nilsson, N. Olsson, S. Pomp, A. V. Prokofiev, P.-U. Renberg, G. Rivière, I. Slypen, L. Stuttgé, U. Tippawan, and M. Österlund, *Nucleon-induced reactions at intermediate energies: New data at 96 MeV and theoretical status*, Physical Review **C70** (2004) 014607.
- [18] S. Pomp, A. V. Prokofiev, J. Blomgren, C. Ekström, O. Jonsson, D. Reistad, V. Ziemann, N. Haag, A. Hildebrand, L. Nilsson, B. Bergenwall, C. Johansson, P. Mermod, N. Olsson, M. Österlund, and U. Tippawan, *The new Uppsala neutron beam facility*, in Proceedings of International Conference on Nuclear Data for Science and Technology, Santa Fe, NM, September 26–October 1, 2004, AIP Conf. Proc. No. 769, edited by Robert C. Haight, Mark B. Chadwick, Toshihiko Kawano, and Patrick Talou (AIP, New York, 2005), p. 780.
- [19] M. Hayashi, Y. Watanabe, J. Blomgren, L. Nilsson, A. Öhrn, M. Österlund, S. Pomp, A. Prokofiev, V. Simutkin, P.-A. Söderström, U. Tippawan, *Measurement of light-ion production at the new Uppsala neutron beam facility*, in Proceedings of International Conference on Nuclear Data for Science and Technology, Nice, France, April 22-27, 2007, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, and S. Leray (EDP Sciences Proceedings, 2008), p.1347.
- [20] R. Bevilacqua, S. Pomp, V. Simutkin, U. Tippawan, P. Andersson, J. Blomgren, M. Österlund, M. Hayashi, S. Hirayama, Y. Naito, Y. Watanabe, M. Tesinsky, F. R. Lecolley, N. Marie, A. Hjalmarsson, A. Prokofiev, and A. Kolozhvari, Neutron induced light-ion production from Iron and Bismuth at 175 MeV, , Eleventh Symposium on Neutron and Ion Dosimetry Symposium, October, 12-16 2009, Cape Town, South Africa, Radiation Measurements, 45 (2010) 1145-1150.
- [21] http://www-nds.iaea.org/exfor/
- [22] J. Raynal, Notes on ECIS94, CEA Saclay Report No. CEA-N-2772, (1994).
- [23] A.J. Koning, S. Hilaire and S. Goriely, Global and local level density models, Nucl Phys. A810,

13-76 (2008).

[24] R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatyuk, A.J. Koning, S. Hilaire, V. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahori, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E. Soukhovitskii, P. Talou, H. Yinlu, and G. Zhigang, .RIPL - Reference Input Parameter Library for calculation of nuclear reactions and nuclear data evaluation., Nucl. Data Sheets **110**, 3107 (2009).

[25] A.J. Koning and J.P. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV , Nucl. Phys. **A713**, 231 (2003).

[26] R.A. Arndt, W.J. Briscoe, R.L. Workman, I.I. Strakovsky, and M. Paris. SAID Partial-Wave Analysis Facility. Available from: http://gwdac.phys.gwu.edu/.

Output จากโครงการวิจัยที่ได้รับทุนจาก สกอ. และ สกว.

- 1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ
- 1.1 U. Tippawan, T. Vilaithong, S. Pomp, P. Andersson, R. Bevilacqua, J. Blomgren,
- C. Gustavsson, L. Nilsson, M. Österlund, V. Simutkin, H. Sjöstrand, M. Hayashi, S. Hirayama, Y. Naitou, Y. Watanabe, A. Hjalmarsson, A. Prokofiev, and M. Tesinsky, *Light-Ion Production in 175 MeV Neutron-Induced Reactions on Oxygen*, Journal of the Korean Physical Society, Vol. 59, No. 2, August 2011, pp. 1979-1982.
- 1.2 S. Hirayama, Y. Watanabe, Y. Naitou, P. Andersson, R. Bevilacqua, C. Gustavsson, M. Österlund, S. Pomp, V. Simutkin, H. Sjösterlund, A. Hjalmarsson, A. Prokofiev, M. Tesinsky and **U. Tippawan**, *Light-ion Production from a Thin Silicon Target Bombarded by 175 MeV Quasi Mono-energetic Neutrons*, Journal of the Korean Physical Society, Vol. 59, No. 2, August 2011, pp. 1447-1450.
- 2. การนำผลงานวิจัยไปใช้ประโยชน์
- 3. อื่นๆ
- 3.1 เสนอผลงานวิจัยแบบโปสเตอร์ ในหัวข้อเรื่อง LIGHT-ION PRODUCTION IN 175 MEV NEUTRON-INDUCED REACTIONS ON OXYGEN ในการประชุมนานาชาติ International Conference on Nuclear Data for Science and Technology ในระหว่างวันที่ 26-30 เมษายน 2553 ที่เมืองเชจู ประเทศเกาหลีใต้
- 3.2 เสนอผลงานวิจัยแบบโปสเตอร์ ในหัวข้อเรื่อง PROTON PRODUCTION IN 175 MEV NEUTRON-INDUCED REACTIONS ON OXYGEN ในการประชุม"นักวิจัยรุ่นใหม่...พบ...เมธี วิจัยอาวุโส สกว." ครั้งที่ 10 วันที่ 14-16 ตุลาคม 2553 ชะอำ เพชรบุรี
- 3.3 เสนอผลงานวิจัยแบบโปสเตอร์ ในหัวข้อเรื่อง DEUTERON PRODUCTION IN 175 MEV NEUTRON-INDUCED REACTIONS ON OXYGEN ในการประชุมวิชาการประจำปี ครั้งที่ 6 ของสมาคมฟิสิกส์ไทย Siam Physics Congress (SPC2011) ในระหว่างวันที่ 23-26 มีนาคม 2554 จอมเทียน พัทยา ชลบุรี
- 3.2 เสนอผลงานวิจัยแบบโปสเตอร์ ในหัวข้อเรื่อง ALPHA PRODUCTION IN 175 MEV NEUTRON-INDUCED REACTIONS ON OXYGEN ในการประชุม"นักวิจัยรุ่นใหม่...พบ...เมธี วิจัยอาวุโส สกว." ครั้งที่ 11 วันที่ 19-21 ตุลาคม 2554 ชะอำ เพชรบุรี

Light-ion Production in 175 MeV Neutron-induced Reactions on Oxygen

U. TIPPAWAN,^{1,2,*} T. VILAITHONG,¹ S. POMP,² P. ANDERSSON,² R. BEVILACQUA,² J. BLOMGREN,² C. GUSTAVSSON,² L. NILSSON,² M. ÖSTERLUND,² V. SIMUTKIN,² H. SJÖSTRAND,² M. HAYASHI,³ S. HIRAYAMA,³ Y. NAITOU,³ Y. WATANABE,³ A. HJALMARSSON,⁴ A. PROKOFIEV⁴ and M. TESINSKY⁵

¹Plasma and Beam Physics Research Facility, Chiang Mai University, 50200 Chiang Mai, Thailand ²Division of Applied Nuclear Physics, Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden ³Department of Advanced Energy Engineering Science, Kyushu University, Japan ⁴The Svedberg Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden ⁵Department of Nuclear and Reactor Physics, Royal Institute of Technology, 106 91 Stockholm, Sweden

(Received 26 April 2010)

Data on light-ion production in light nuclei such as carbon, nitrogen and oxygen are particularly important in calculations of dose distributions in human tissue for radiation therapy at neutron beams, and for dosimetry of high energy neutrons produced by high-energy cosmic radiation interacting with nuclei (nitrogen and oxygen) in the atmosphere. When studying neutron dose effects, special consideration on carbon and oxygen is needed since they are, by weight, the most abundant elements in human tissue. The MEDLEY setup at The Svedberg Laboratory (TSL), Uppsala, Sweden has been used to measure such data with double-differential cross sections (DDX) for the $(n, xp), (n, xd), (n, xt), (n, ^3\text{He})$, and (n, α) reactions from C, O, Si, Ca, Fe, Pb, and U around 96 MeV.

At the new Uppsala neutron beam facility the available energy range of quasi mono-energetic neutron beams is extended up to 175 MeV. The detector setup used in MEDLEY consists of eight so-called telescopes mounted at different angles inside an evacuated reaction chamber. Each of the telescopes consists of two fully depleted ΔE silicon surface barrier detectors (SSBD) and a CsI(Tl) crystal. In order to make measurements at this higher neutron energy possible some changes in the detector setup compared to the campaign at 96 MeV were applied Accordingly, the second ΔE detectors have been replaced by 1000 μ m thick SSBDs as well as the size of the crystals used as E detectors was increased to a total length of 100 mm and a diameter of 50 mm. The ΔE - E technique is used to identify the light ions, and cutoff energies as low as 2.5 MeV for protons and 4.0 MeV for alpha particles are achieved. The data are normalised relative to elastic np scattering measured in one of the telescopes at 20 degrees. Preliminary DDXs for oxygen are presented and compared with theoretical calculations.

PACS numbers: 29.40.Mc, 13.85.Tp

Keywords: Double-differential cross sections, Light-ion production, 175 MeV

DOI: 10.3938/jkps.59.1979

I. INTRODUCTION

In personal dosimetry in aircraft and spacecraft, radiation treatment of cancer, single-event effects in electronics, energy production and transmutation of spent nuclear fuel, applications of neutrons with energies above 20 MeV are essential. Better results on direct reactions models using such higher energies are obvious when compared to the lower energies. This underlines the great importance of $20-200~{\rm MeV}$ region for new experimental cross section data.

Data on neutron induced light-ion production in light nuclei, such as carbon, nitrogen and oxygen, are of great interest in calculation of dose distribution in human tissue for radiation therapy with fast neutrons, as well as for dosimetry of high-energy neutrons produced by high energy cosmic radiation interacting with nuclei (nitrogen and oxygen) in the upper atmosphere. When studying neutron dose effects in radiation therapy and at high altitude, special consideration on carbon and oxygen is needed due to their dominant elements (18% and 65% by weight, respectively) in average human tissue. $^{16}_{8}\mathrm{O}_{8}$ is also a double magic nucleus.

A 'complete' set of experiments has been conducted at The Svedberg Laboratory (TSL) in Uppsala in the past few years to measure double-differential cross sections of the (n, px), (n, dx), (n, tx), $(n, ^3\text{He}x)$, and $(n, \alpha x)$ reactions from light to heavy nuclide such as carbon [1], oxygen [2], silicon [3], calcium [4], iron, lead and uranium [5] around incident neutron energies of 96 MeV At first changes are needed as the "old" neutron beam where the neutron fluence above 100 MeV with cyclotron op-

^{*}E-mail: udomrat@fnrf.science.cmu.ac.th

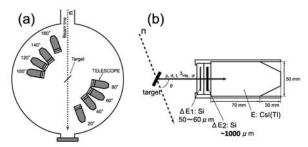


Fig. 1. The MEDLEY setup (a) arrangement of eight telescopes inside the MEDLEY scattering chamber, and (b) construction details of each three-element telescope.

erating in FM mode seems too low to collect sufficiently good statistics within reasonable time. Consequently, construction on a new neutron beam line started in 2004 with shorter distance from the neutron production point to the experimental area, leading to delivery of higher neutron fluxes. At present a quasi-monoenergetic neutron beam, with energies up to 175 MeV, is available and well characterized [6]. The MEDLEY spectrometer [7] semi-permanently installed at TSL, has also been upgraded with larger CsI detectors to be able to stop protons up to 180 MeV. The CsI crystals have a total length of 100 mm. The first 70 mm is made cylindrical with a diameter of 50 mm and the remaining 30 mm is tapered to 18 mm diameter to match the size of the readout system. The readout is performed by Hamamatsu S3204-08 photodiodes (PD). The crystals, together with the PDs, are mounted inside an aluminum tube and have been manufactured by Saint-Gobain, France. In addition 1000 μ m thick ΔE silicon surface-barrier detectors have substituted the previous 500 μ m thick ones, to improve the identification of particles in the high emission energy range.

II. EXPERIMENTAL METHODS

At the TSL neutron beam facility, neutrons are produced via the $^7\mathrm{Li}(\mathrm{p,n})$ reaction. A cyclotron is accelerating protons up to 179.3 (± 0.8) MeV; these, after the extraction, are transported in the experimental hall where they impinge on an enriched $^7\mathrm{Li}$ target, 23.5 mm thick, producing peak neutrons with energy of 175.0 (± 2.5) MeV and low-energy tail neutrons. Time-of-flight (TOF) measurements are used in the off-line analysis to select peak neutrons and reject tail neutrons. The TOF data are measured as a time difference between master trigger signal and RF timing signal from the cyclotron.

The residual proton beam is deflected by a bending magnet into a beam dump, where it is integrated in a Faraday cup in order to monitor the beam current. A neutron beam is shaped with a cylindrical iron collimator and then transported inside the Medley chamber through a second conical iron collimator.

The distance between the neutron production target and the centre of Medley is 4618 mm; here the quasimonoenergetic neutron beam has a diameter of 42.08 mm. The relative neutron beam intensity is measured downstream the Medley setup by an ionization chamber monitor (ICM) and a thin-film breakdown counter (TFBC). The Medley spectrometer consists of eight three-elements telescopes mounted inside an evacuated reaction chamber with a diameter of 90 cm. A schema of Medley is presented in Fig. 1(a). Each telescope is mounted on an individual rail along a radius of the chamber; the rails are displaced in steps of 20°. The basis of the chamber is 36° rotatable without breaking the vacuum. In the standard configuration the eight telescopes occupy the positions 20° to 160°, at 20° intervals. Each telescope consists of two fully depleted silicon surface detectors serving as ΔE detector and a CsI(Tl) scintillator serving as E detector (Fig. 1(b)) To obtain a low-energy threshold (down to 2 MeV for protons), we have installed a thin silicon detector in the front side of each telescope; this is identified as Si1, with a thickness of 50 μ m to 60 μ m. The second silicon detector (Si2) is 1000 μ m thick, to detect and identify particles within the high energy range. The CsI(Tl) scintillators have a diameter of 50 mm and a total length of 100 mm, sufficient to fully stop all of the produced particles. A reaction target is placed at the centre of the Medley chamber. A 22 mm diameter 500 μ m thick (cylindrical) disk of SiO₂ is used as the oxygen target. For the subtraction of the silicon contribution, measurements are performed using a 22 mm diameter 1000 μ m thick (cylindrical) disk of silicon. Their weights are 1153 (± 1) mg and 1132 (± 1) mg, respectively. For absolute cross-section normalization, a 25 mm diameter and 5.0 mm thick polyethylene (CH₂)_n target is used. Its weight is 2293 (± 1) mg. These targets are mounted on individual frames and interchangeable without opening the chamber. Instrumental background is measured by removing the target from the neutron beam.

III. DATA ANALYSIS PROCEDURE

The $\Delta E-E$ technique is used to identify light charged particles ranging from protons to α particle. Clear separation of all particles is obtained over their entire energy range; therefore the particle identification procedure is straightforward. Energy calibration of all detectors is obtained from the data itself [2,3]. Events in the $\Delta E-E$ bands are fitted with respect to the energy deposited in the two silicon detectors. This energy is determined from the detector thicknesses and calculations of energy loss in silicon. Supplementary calibration points are provided by the H(n,p) reaction, as well as transitions to the ground state. The energy of each particle type is obtained by adding the energy deposited in each element of the telescope.

Low-energy charged particles are stopped in the ΔE_1 detector leading to a low-energy cut-off for particle identification of about 3 MeV for hydrogen isotopes and about 8 MeV for helium isotopes. Nevertheless, the

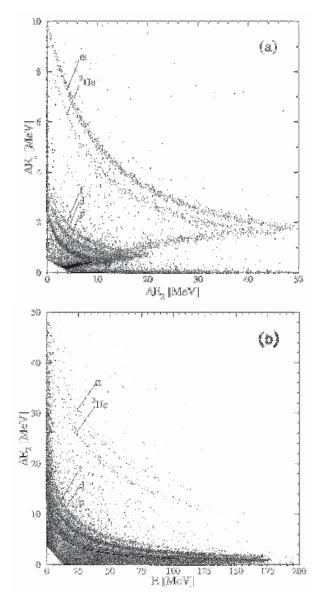


Fig. 2. Particle identification spectra at 20° for the $\Delta E_1 - \Delta E_2$ (a) and $\Delta E_2 - E$ (b) detector combinations.

helium isotopes, stopped in the ΔE_1 detector, are analyzed and a remarkably low cut-off, about 4 MeV, can be achieved for the experimental α -particle spectra. These α -particle events are not clearly separated from ³He events in the same energy region. However, the yield of ³He is much smaller than the α -particle yield in the region merely above 8 MeV, where the particle identification works properly. That the relative yield of ³He is small is also supported by the theoretical calculations in the evaporation peak region. In conclusion, the ³He yield is within the statistical uncertainties of the α -particle yield for α energies between 4 and 8 MeV.

Knowing the energy calibration and the flight distances, TOF of each charged particle from the reaction target at the centre of Medley to the Si1 detector is subtracted from the total TOF. The resulting neutron TOF

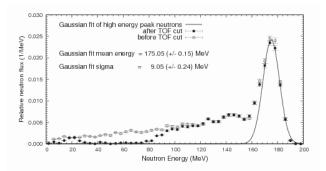


Fig. 3. Accepted experimental neutron spectrum. Empty circles and filled circles are experimental data, respectively before and after the TOF cut. The lines are Gaussian fits of the peaks. Total integral normalized to unity.

is used for the selection of light-ion events induced by neutrons in the 175 MeV energy peak of the incident neutron spectrum. The experimental accepted neutron spectrum is shown in Fig. 3; this has been produced using data from CH₂ target and kinematics calculations. The present TOF cut selects 78% of all events, half of them in the 175 MeV peak and another half in the low energy tail; the contribution of the low energy wraparound peak is less than 2%.

Absolute double-differential cross sections are obtained by normalising the target-in data to the number of recoil protons emerging from the CH₂ target Background and $^{12}C(n,xp)$ events are subtracted from the measured proton production at 20° . The (n,p) elastic scattering cross section data are available on-line from the SAID Partial-Wave Analysis Facility, based at George Washington University (Virginia, USA) [8].

The cross sections for oxygen are obtained after subtraction of the silicon data [9] from the SiO₂ data with proper normalization with respect to the number of silicon nuclei in the two targets. Preliminary energy spectra for proton at the laboratory angle of 20° to 160° for protons compared with the calculations based on the GNASH [10] and TALYS [11] models, are shown in Fig. 4, respectively. The error bars represent statistical uncertainties.

The accepted neutron spectrum includes now neutrons with energies down to 80 MeV, and peak neutrons represent 50% of the total; an improvement of the TOF gate, to increase the fraction of peak neutrons and exclude low energy neutrons, is desired and will be possibly performed in the following analysis. Also thick target correction [12] needs to be implemented, to correctly evaluate light-ion production also in the low energy range, corresponding to the compound emission region; in current preliminary results energy loss and even absorption of charged particles with low kinetic energy lead to an underestimation of this energy region. Data analysis should be extended to other isotopes (deuterons, tritons, ³He, and α particles); this requires calibration of CsI(Tl) scintillators for these particles, new calculations of the energy loss and thick target correction.

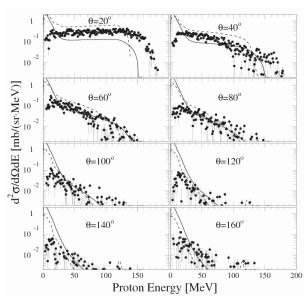


Fig. 4. Preliminary energy spectra for proton at the laboratory angle of 20° to 160° for protons compared with the calculations based on the GNASH [1] and TALYS [11] models respectively. Note that GNASH calculation was performed for $E_n = 150 \text{ MeV}$.

IV. SUMMARY AND OUTLOOK

We have measured the double-differential cross sections of (n, xp) reactions O at 175 MeV using the new Uppsala neutron beam facility for the first time. Further analysis including other particle types will be required for detailed comparison. Preliminary double-differential cross sections for silicon are presented at this conference by the contribution of S. Hirayama $et\ al.$ [9].

A series of light-ion production measurements are under analysis for other targets, C, Fe, Bi, and U, at 175 MeV in order to meet nuclear data needs for fast neutron applications.

ACKNOWLEDGMENTS

The authors thank the Svedberg Laboratory for excellent support. U.T. expresses his gratitude to the Thailand Research Fund (TRF) for financial support under Project No.MGR5280165. This work was supported by the Swedish Natural Science Research Council, the Swedish Nuclear Fuel and Waste Management Company, Swedish Radiation Safety Authority (ssm.se), Ringhals AB and the Semiconductor Technology Academic Research Center (STARC) joint research program

REFERENCES

- [1] U. Tippawan et al., Phys. Rev. C 79, 064611 (2009).
- [2] U. Tippawan et al., Phys. Rev. C 73, 034611 (2006).
- [3] U. Tippawan et al., Phys. Rev. C 69, 064609 (2004): Phys. Rev. C 73, 039902(E) (2006).
- [4] M. Hayashi et al., in Proceedings of Inter. Conf. Nuclear data for Science and Technology (Nice, France, 2008), p. 1347.
- [5] V. Blideanu et al., Phys. Rev. C 70, 014607 (2004).
- [6] A. Prokofiev et al., in AIP Conf. Proc. 769, 800 (2005).
- [7] S. Dangtip *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A **452**, 484 (2000).
- [8] SAID Nucleon Nucleon scattering database. The George Washington University, Virginia, USA. http://gwdac.phys.gwu.edu.
- [9] S. Hirayama et al., Inter. Conf. on Nucl. Data for Sci. and Techn.-ND2010 (Jeju, Korea, 2010).
- [10] ICRU Report 63, International Commission on Radiation Units and Measurements, Bethesda, MD, 2000.
- [11] A. J. Koning, S. Hilaire and M. C. Duijvestijn, in Proceedings of Inter. Conf. Nucl. data for Sci. and Techn. (Nice, France, 2008), p. 211.
- [12] S. Pomp and U. Tippawan, Nucl. Instrum. Methods Phys. Res., Sect. A 572, 893 (2007).

Light-ion Production from a Thin Silicon Target Bombarded by 175 MeV Quasi Mono-energetic Neutrons

S. HIRAYAMA, Y. WATANABE* and Y. NAITOU

Department of Advanced Energy Engineering Science, Kyushu University, Fukuoka 816-8580, Japan

P. Andersson, R. Bevilacqua, C. Gustavsson, M. Österlund, S. Pomp, V. Simutkin and H. Sjöstrand Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden

A. HJALMARSSON and A. PROKOFIEV

The Svedberg Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden

M. Tesinsky

Department of Nuclear and Reactor Physics, Royal Institute of Technology, 106 91 Stockholm, Sweden

U. TIPPAWAN

Plasma and Beam Physics Research Facility, Chiang Mai University, 50200, Thailand

(Received 26 April 2010)

Double-differential production yields of light ions $(p,d,t,\,^3\mathrm{He},\,\mathrm{and}\,\alpha)$ from a thin silicon target induced by 175 MeV quasi mono-energetic neutrons were measured using the MEDLEY setup at the The Svedberg Laboratory (TSL) in Uppsala in order to benchmark evaluated nuclear data and nuclear reaction models. The MEDLEY is a conventional spectrometer system which consists of eight counter telescopes. Each telescope is composed of two silicon surface barrier detectors as the ΔE detectors and a CsI(Tl) scintillator as the E detector for particle identification. The telescopes are placed at angles from 20° to 160° in steps of 20°. The measured double-differential yields of light ions are compared with PHITS calculations using the following nuclear reaction options: the high-energy nuclear data library (JENDL/HE-2007), the quantum molecular dynamics (QMD) model, and the intra-nuclear cascade (INC) model.

PACS numbers: 29.30.-h, 29.27.-a

Keywords: Single event effects, 175 MeV, Quasi mono-energetic neutrons, Double-differential yield, Light-

ions, PHITS

DOI: 10.3938/jkps.59.1447

I. INTRODUCTION

Recently, single event effects (SEEs) caused by cosmicray neutrons in logic and memory circuits have been recognized as one of key reliability issues for advanced CMOS technology. When an electronic memory circuit is exposed to neutron radiation, charged particles can be produced by nuclear reactions with atomic nuclei in materials. The charge deposited by them is collected to a bit node by drift and diffusion processes, and then a flip of the memory information can be caused when the collected charge exceeds its critical charge. This phenomenon is called a single-event upset (SEU). Recent work has clarified that the contribution from secondary light ions (i.e., p, d, t, ³He and α) to SEU becomes increasingly important as the size of microelectronic devices becomes smaller and smaller [1,2]. Therefore, more reliable nuclear reaction models which can predict neutron induced light-ion production from silicon in the incident energy range from MeV to GeV are strongly required to simulate accurately the SEEs. Since the validity of nuclear reaction models should be evaluated by comparison with measurements, a lot of experiment data over the wide incident energy range are needed for improvement of nuclear reaction models. However, there is no measurement for neutron induced light-ion production from silicon in the energy range more than 100 MeV

In the present work, we have measured double- differential production yields of light ions $(p,d,t,{}^{3}\text{He},\text{ and }\alpha)$ from a thin silicon target bombarded by 175 MeV quasi mono-energetic neutrons at the The Svedberg Laboratory (TSL [3]) in Uppsala. The experimental data are compared with the calculations using the PHITS code

^{*}E-mail: watanabe@aees.kyushu-u.ac.jp

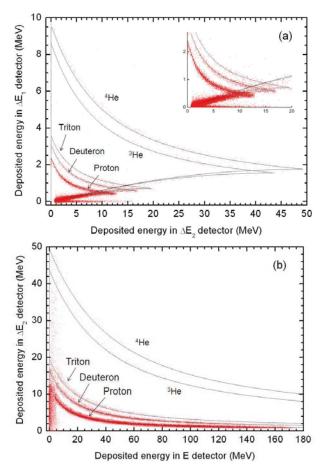


Fig. 1. (Color online) Two-dimensional scatter plots of energy calibration and particle identification at 20° for (a) ΔE_1 - ΔE_2 and (b) ΔE_2 - ΔE . The solid lines are the results of energy-loss calculations for light ion $(p,d,t,{}^3\mathrm{He}$ and $\alpha)$. The insert in (a) presents the enlarged area of hydrogen isotopes.

[4] with evaluated high-energy nuclear data library and nuclear reaction models. The results are reported in this paper.

II. EXPERIMENTAL METHOD

Details of the experimental set up have been described in Refs. 5 and 6. A thin silicon target placed in the MEDEY chamber was irradiated by quasi monoenergetic neutrons generated by the $^{7}\text{Li}(p,n)^{7}\text{Be reac}$ tion. The target consisted of double silicon wafer discs and its size was 0.96 mm thick and 25 mm in diameter. Energy and angular distributions of light ions produced from the silicon target were measured with the MEDLEY setup which was composed of eight telescopes placed at angles from 20° to 160° in steps of 20° . Each telescope consisted of two silicon surface barrier detectors (50 \sim 60 μ m and 1000 μ m) as the Δ E detector and a CsI(Tl) detector as the E detector. Moreover, the incident neutron spectrum was measured using the same setup with both 5 mm - thick polyethylene (CH_2) target 25 mm in diameter and 1 mm - thick carbon target 22

mm in diameter by means of a conventional proton recoil method [10].

III. DATA ANALYSIS

Data analysis procedure based on ΔE -E particle identification technique is basically the same as in the previous measurements [5-7]. Energy calibration of all detectors was made using the relation between measured pulse height and calculated energy deposition in each detector as follows. Events in the ΔE -E bands were fitted with respect to the energy deposition in the ΔE detectors, which was determined from the thickness and the energy loss calculated with the SRIM code [8]. For the energy calibration of the E detectors, the following approximate expressions were applied to each light-ion particle, which reflect a non-linear relationship between the light output and the energy deposition in the CsI(Tl) scintillator [9]:

$$E = a + bL + c(bL)^2$$
 for hydrogen isotopes, (1)

$$E = a + bL + c \ln(1 + dL)$$
 for helium isotopes, (2)

where L is the light output, and a, b, c, and d are the fitting parameters. The parameter c depends on the kind of charged particles. Figure 1 shows two-dimensional scatter plots for ΔE_1 - ΔE_2 and ΔE_2 -E at 20° after energy calibration. Each light ion is found to be clearly separated. The efficiency correction due to the reaction losses in the CsI(Tl) scintillator was implemented using the same method as described in Ref. 7. The incident neutron spectrum was obtained from the data analysis of the recoil proton from np scattering in the measurement of CH₂ at 20°. Details of deriving neutron spectrum have been reported in Ref. 10.

The measured double-differential production yields of light-ions per incident neutron on the target were determined using the following expression:

$$\left(\frac{d^2Y}{dEd\Omega}\right)_j = \frac{N_j(E,\theta) \times \frac{1}{f(E)}}{S_n \times \Delta E \times \Delta \Omega},$$
(3)

where j denotes the kind of particles $(p,d,t,{}^3\mathrm{He}$ and $\alpha)$, $N_{\mathrm{j}}(E,\theta)$ is the net counts in a certain energy bin ΔE , f(E) is the effective efficiency which includes the energy loss effect in the CsI(Tl) scintillator, and S_{n} is the total number of incident neutrons on the target. In Eq. (3), the solid angle $\Delta\Omega$ was given under an assumption that the target is treated as a point source. It was confirmed that this assumption is valid by a comparison of the PHITS simulation between a point source and a plane source, in which the difference is only 1%.

Figures 2 to 5 show the measured double-differential yields of protons, deuterons, tritons, and α particles by solid circles. The error bars are given as the statistical error. The systematic error was estimated to be approximately 8%. For protons and deuterons, the measured

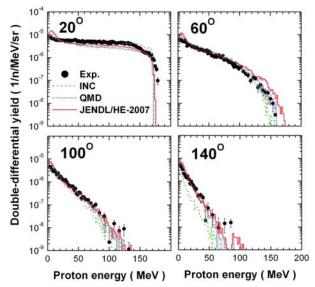


Fig. 2. (Color online) Comparison between measured (n, xp) spectra from 20° to 140° in steps of 40° and PHITS calculations with JENDL/HE2007, QMD and INC models.

double-differential yields show a strong angular dependence at high emission energies above 30 MeV. On the other hand, the measured angular distributions of triton and α particle are less steep than those of protons and deuterons, particularly at small angles.

IV. BENCHMARK USING PHITS CODE

The measured double-differential yields are compared with the PHITS calculations using three nuclear reaction options: the evaluated nuclear data library (JENDL/HE-2007 [11]), the quantum molecular dynamics (QMD) [12], and the intra-nuclear cascade model (INC) [13]. Note that INC is used for only proton, because INC cannot predict the dynamical process of complex particle production. The source neutron spectrum calculated using the empirical formula [10] is used as an input of the PHITS calculation. It should be noted that the energy loss of charged particles generated by nuclear reactions in the silicon target is taken into account explicitly in the PHITS calculation.

Figure 2 shows the results of proton production yields. The calculations with JENDL/HE-2007 and QMD give fairly good descriptions of the spectra at angles except 20°. The INC calculation underestimates largely the measurement over the wide emission energy ranges at backward angles, although it reproduces the measured data at 20° better than the JENDL/HE-2007 and QMD calculations.

The results of deuteron production are shown at angles from 20° to 80° in Fig. 3. There are obvious differences between the calculations with JENDL/HE-2007 and QMD. The calculations with JENDL/HE-2007 show relatively good agreement with the measured deuteron yields at small and large angles. However, the QMD

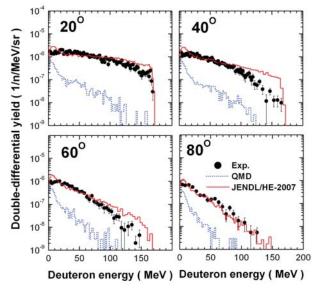


Fig. 3. (Color online) Comparison between measured (n,xd) spectra from 20° to 80° in steps of 20° and PHITS calculations with JENDL/HE2007 and QMD models.

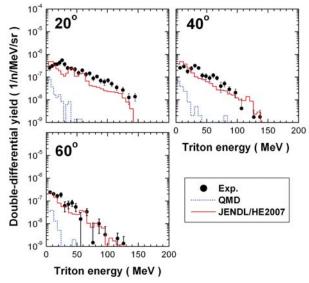


Fig. 4. (Color online) The same as in Fig. 3, but for triton production at three forward angles of 20° , 40° , and 60° .

calculations significantly underestimate the experimental data over the wide emission energy range.

Figures 4 and 5 show the production yields of triton and α particle. The JENDL/HE-2007 calculations are in better agreement with the measurements than the QMD calculations. They have the same tendency as seen in the deuteron production yields and underestimate the measured data. It should be noted that the same is true for $^3{\rm He}$ production.

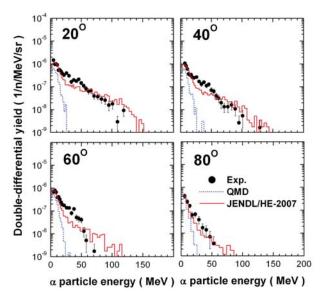


Fig. 5. (Color online) The same as in Fig. 3, but for α particle production.

V. SUMMARY AND CONCLUSIONS

The double-differential production yields of light-ion $(p,d,t,\,^3{\rm He}$ and $\alpha)$ from silicon bombarded by 175 MeV quasi mono-energetic neutrons were measured at the The Svedberg Laboratory (TSL). The measured yields were compared with the PHITS calculations to benchmark the evaluated high energy nuclear data and nuclear reaction models. The JENDL/HE-2007 and QMD calculations reproduce the measured yields better than the INC calculations for proton production. The INC calculations underestimate measurements considerably at larger angles. For light complex particle emission, the QMD calculations significantly underestimate the measured data over the wide emission energy and angular ranges, whereas the JENDL/HE-2007 calculations provide relatively good agreement with the measured yields.

As remarked above, the present work suggests that it

should be necessary to improve the reaction models used in the PHITS code so that dynamical production process of light complex particles can be properly described.

ACKNOWLEDGMENTS

We would like to thank the staff of the The Svedberg Laboratory for their assistance during the experiments. U. T. expresses his gratitude to the Thailand Research Fund (TRF) for financial support under Project No.MGR5280165. This work was supported in part by the Semiconductor Technology Academic Research Center (STARC) joint research program.

REFERENCES

- S. Abe et al., Inter. Conf. on Nucl. Data for Sci. and Techn.-ND2010 (Jeju, Korea, 2010).
- [2] H. Kobayashi *et al.*, in *Proceedings of the 47th IEEE Inter. Reliability Physics Symposium-IRPS* (Montreal, Canada, 2009), p. 206.
- [3] S. Pomp et al., in AIP Conf. Proc. **769**, 780 (2005).
- [4] H. Iwase, K. Niita and T. Nakamura, J. Nucl. Sci. Technol. 39, 1142 (2002).
- [5] M. Hayashi et al., in Proceedings of Inter. Conf. on Nucl. Data for Sci. and Techn. (Nice, France, 2008), p. 1091.
- [6] U. Tippawan et al., Phys. Rev. C 79, 064611 (2009).
- [7] S. Hirayama et al., J. Nucl. Sci. Technol. 1, 69 (2011).
- [8] SRIM-2008, URL: http://www.srim.org/.
- [9] S. Dangtip *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A **452**, 484 (2000).
- [10] Y. Naitou et al., Inter. Conf. on Nucl. Data for Sci. and Techn.-ND2010 (Jeju, Korea, 2010).
- [11] Y. Watanabe et al., in AIP Conf. Proc. 769, 326 (2005); Inter. Conf. on Nucl. Data for Sci. and Techn.-ND2010 (Jeju, Korea, 2010).
- [12] K. Niita et al., Phys. Rev. C 52, 2620 (1995).
- [13] H. W. Bertini, ORNL-3383, Oak Ridge National Laboratory, 1963.

DEUTERON PRODUCTION IN 175 MEV NEUTRON-INDUCED REACTIONS ON OXYGEN

<u>U. Tippawan</u>*, 1,2, S. Pomp², P. Andersson², R. Bevilacqua², J. Blomgren², C. Gustavsson², M. Hayashi³, S. Hirayama³, A. Hjalmarsson⁴, Y. Naitou³, L. Nilsson², M. Österlund², A. Prokofiev⁴, V. Simutkin², H. Sjöstrand², M. Tesinsky⁵, T. Vilaithong¹, and Y. Watanabe

*Corresponding author. E-mail: udomrat@fnrf.science.cmu.ac.th

Abstract

Over the past years several applications involving high-energy neutrons (E>20 MeV) have been developed or are under consideration, e.g., radiation treatment of cancer, neutron dosimetry at commercial aircraft altitudes, soft-error effects in computer memories, accelerator-driven transmutation of nuclear waste and energy production. Data on light-ion production in light nuclei such as carbon, nitrogen and oxygen are particularly important in calculations of dose distributions in human tissue for radiation therapy at neutron beams, and for dosimetry of high energy neutrons produced by high-energy cosmic radiation interacting with nuclei (nitrogen and oxygen) in the atmosphere. When studying neutron dose effects, it is especially important to consider carbon and oxygen, since they are, by weight, the most abundant elements in human tissue. Such data have been measured with the MEDLEY setup based at The Svedberg Laboratory (TSL), Uppsala, Sweden. It has been used to measure differential cross sections for elastic nd scattering and double-differential cross sections for the (n,xp), (n,xd), (n,xt), (n,x 3 He), and (n,x α) reactions from C, O, Si, Ca, Fe, Pb, and U around 96 MeV.

In the new Uppsala neutron beam facility the available energy range of quasi monoenergetic neutron beams is extended up to 175 MeV. The detector setup used in MEDLEY consists of eight so-called telescopes mounted at different angles inside an evacuated reaction chamber. Each of the telescopes consists of two fully depleted ΔE silicon surface barrier detectors (SSBD) and a CsI(Tl) crystal. To allow for measurements at this higher neutron energy some changes in the detector setup compared to the campaign at 96 MeV had to be made. The second ΔE detectors have been replaced by 1000 μ m thick SSBDs and the size of the crystals used as E detectors was increased to a total length of 100 mm and a diameter of 50 mm. The ΔE -E technique is used to identify the light ions, and cutoff energies as low as 2.5 MeV for protons and 4.0 MeV for alpha particles are achieved. Suppression of events induced

¹Plasma and Beam Physics Research Facility, Chiang Mai University, P.O. Box 217, 50200, Chiang Mai, Thailand

²Division of Applied Nuclear Physics, Department of Physics and Astronomy, Uppsala University, Box 525, SE-751 20 Uppsala, Sweden

³Department of Advanced Energy Engineering Science, Kyushu University, Japan

⁴The Svedberg Laboratory, Uppsala University, Box 533, SE-751 21 Uppsala, Sweden ⁵Department of Nuclear and Reactor Physics, Royal Institute of Technology, 106 91 Stockholm, Sweden

by neutrons in the low-energy tail of the neutron field is achieved by time-of-flight techniques. The data are normalised relative to elastic *np* scattering measured in one of the telescopes at 20 degrees. Preliminary double-differential cross sections for oxygen are presented and compared with theoretical reaction model calculations.

Keywords: double-differential cross sections, deuteron production, 175 MeV