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Abstract

Project Code : MRG5280204

Project Title :  wuudaedlasstnedszamisuiiafnsantansniivasasnslsd
\wnnIn PZT

Investigators :  Assistant Professor Dr. Wimalin Sukthomya Laosiritaworn
Department of Industrial Engineering, Faculty of Engineering,
Chiang Mai University
Assistant Professor Dr. Rattikorn Yimnirun
School of Physics, Institute of Science, Suranaree University of
Technology

E-mail Address : wimalin@hotmail.com

Project Period : March 16, 2009 to March 15, 2011

In this research project, artificial neural network, one of the data mining tools, was
used to investigate and predict hysteresis properties of ferroelectric materials. Those are
soft PZT by varying electric field frequency and amplitude and uniaxial stress, hard PZT
by varying electric field frequency and amplitude over a wide range, and BT by electric
field frequency and amplitude and system structure in both ceramic and single crystal
forms. From the study, suitable network architectures were retrieved which yielded
accurate predicted hysteresis results even the varying parameters give hysteresis
properties with very much different in values. This therefore provide more advantages
upon previously used power law scaling, which had to divide hysteresis data into many
subgroups having similar hysteresis behaviors before taking the scaling. According to its
efficiency of the artificial neural network in this research project, new inter-disciplinary
knowledge between the use of data mining and materials science data has been achieve

which may be used for real applications in the future.

Keywords : Artificial Neural Network, Ferroelectric, Hysteresis properties, PZT, BT
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Applied field
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LTI NI R auAaa N awIN Lade
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o amnaIM IANAIA9 (remanent polarization, Py) 1T eaniwtams Winensdias

2

TuszuuslsBinnindesmazasswanmenanidugud  Seazlnisasdiuwinwisay)

ANUNAUDIFUIY LL&@\‘]VL@T@T\‘]@'@ C A flugﬂﬁ 4

a0

o @gwnlndauans (coercive field, Ec) 1w rawulwihaaunanndaslslunisinans

o & oy A & & A A& ) A A &

IWanwamslwihdviadugud  Soezlinsesduwinwiosu)muiiavasanindd
i aeiu uaaaldane dusz g lugun 4

d? d' a A A - Id d?’ ai % a A A d dl' =3 A [ d'
o  AuNWTmNaTBa (hysteresis area) 1w Aunlar98ainaidadacioisnunianasnun
o v A & o v @ ' A £
gasllunsnauiauaszninganig iz lwnauluun WNUINAFFaaULRN T
winsaNuIndunisundasliniaguydo(dissipation energy)

1F T T T ] 1 T T
pz) T w25
0.5 - 05 F Akl .
E(e) Q=0

1) pﬂ
.5 U L A5t / J
-lF . N E ] -1 L M

L1 500 1000 1500 2000 -1 0.5 1] 0.5 1

)
gﬂﬁ 3 dhatheawnlwit E() uazamnaamalwit p(t) Eudssduiunm e LTS QHTTG R
é’muzyﬂmamwﬁyﬁmavLWWWLLa:amaJVLWWWmﬂuaﬂ%aLﬂﬁﬂmﬂﬁﬂumuﬁ'ﬂ@uﬁaﬂmwgi
whﬁ'u@aa@nm(a:wulumswww%Lﬁﬂw%mmuq@m&mﬁ?u) mugﬂmasﬁ’muam
anumhanasznisya st iuszswne i noueniing lévial
frsuannslsBiannan wazgUNWEUINLERITINe ITaveIglndutie
(aaudasann Chakrabarti and Acharyya, 1999).
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uthoug  Néegluwninafiasdaned®s o anudvssswinialiifannunians
TERIFNINWIIN INH LR FUINAINNAIINILED LarTINILaNLAIABIRUINGIE
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NAUBIANURIINIWNEaITzULNS IsBL A nnIn e ld auwn A LS R auanutani
1 v A waa Aa é‘ o d 6 aAa 6 qzdl o s
AalWiAaauassinaITad mmsﬁoﬂiﬁﬂgmimmawaﬂaLLa:mﬂJizqﬂ@ﬂwmmy “IN
faonaudfsnwiimalniade  wazswwlWivings  szswnnilddszendlslu
v v Y & a =) I 1 1
msgandaudasInin  (transformer)  @saawslsdidnninadsesiluuuudan  (H6n
s WdAnaafe) uaz Fetiufindayafidainuags (high-capacity magnetic recording
. = ° A & a = A v A A =
media) T9a2T9zvi N TNSISBLENS LD ALV PR E S ATRIE GHE R ILK

ToR) A9t ﬁnﬂﬂ‘sﬂwﬁluudﬂ'ﬁﬂs:qﬂmﬁl"ﬁﬁﬂﬁmsﬁﬂm%ama‘%f%mﬂuaaﬁﬁhlﬂu

Y = A o A & vl o
lumumadmi‘nmad INNIANENNIRNINUINILTINNUNR LT &17 PZT Vl,mlm?n’]

s wvaa aa Y v o e a d‘po g a
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1. MImANUFIN Ui WA EMNesss A fuanad f wazuaniliae Eo w9
§WNVa9ENT PZT uuudanlannusunnsluanwme Ao fY*E, (Yimnirun et al.,
2006a)

2. MIMANNEIR USSR U EMNeIEe Tuaues o anwd f uazuauilage
Eo v098wn1a9813 PZT unudanlaanuaunusluanwme A— A o o f °%E,
e A @ Aufhadie g o (Yimnirun et al., 2006b)

3. MIRANNFNNUTIERININUNITINaITa ﬁuqm%gﬁ T 289813 PZT uuudaule
ANNFNABS Iuane Ao T % (Yimnirun et al., 2007a)

4. MIMIANNUFNNUTIZAININUNTRINSIT A nuanud f wazuauilfae Eo w9
swNva9ans PZT wupudilannusunnsluanwme Ac f2“EX (Yimnirun et
al., 2007b)

5. MIWIANNFNANUTIZRININUN19TTNaITR nugmnnlvesans PZT WUULD 9 be

ANUFNANBTIUANIE A oc T2 (Yimnirun et al., 2007c¢)

g: dq, 0’ o 6 1 v a 1 g e 6 1 dq’ dl &
nsilumsmanusunusainanaltrundinin - anusuRuienisiunis
& o Ao o o o AdA o o o ' s o
WInTWAUTiaInUIadsmMeuantaNa  bnIainialudsdudassmenan)unnninnitea,
LLﬂsazﬁﬂmsﬂmﬁagaﬁazﬁaLLﬁJ‘: LT ﬁ']ﬁaom‘ﬁ\mﬁaga A nu f AlRAAUAINNINIA
Q dl v dQ/o = v o 1 Qo v v o =) Qs Qs
PRINN LALRVTINRIV0d f ua9zriimIuwnuaInaudn lusvinnsileny By lwnnownas
\ = A o o A & o \ ~ A ' v a ' & '
2819 3NN LU IWINAU TN W 3 @ 1w § onda T a:naimmmmqammﬂuama
10 laglanwizadnedy waeaulsn 3 Lﬂuqm%{]ﬁ T vl eatinasvas f iiuWansunue
A o ' & A PN ' o o ' o AV A
uilsduday 13 Ep wananndt lumsneeunazianndiwiauiunuiilden R-Square f1laid
WN HONINIH ﬂ'ﬂﬁﬂﬂ%ﬁ@gaﬁmmlumiﬂm‘*ﬁa;&a Al b dnsTouieudn WenTw
% - fd‘ v o U o v dl L 1 Y o = = v
aumsmﬁwawwuﬁ‘nvl,@mmmmmhjmm£1°11agﬁmm"l,wvl,@mmsmaaavlmL‘Wﬂﬂ(ﬂ @
dq‘ =1 Aaada o v lﬂl " Y v Y g: dl o e 6 1
g ﬁmmsmﬁmmwa;&ahw"l,maﬂmayamum TaafsNaNIDRIA NN FUNWETENRIN
daudsduuazaudianald  nanzauiumahlddsegndlgldadnag  laglddaam
ANMNTUN TS qlugﬂaumsmdmﬁ@ma@% % FNMIRVTINEY) N9l FNUGTINSITIN
LLﬁa%aluﬁisw"mamw:zﬁiamnmn aumsawalﬁ’agiugﬂﬂaﬁ%’mam%ﬁﬁﬂzjmm:aulunﬂ
fFr9anvasnnlsawnidi bl le
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2.3 MIMWIUEMINRNI RN ITH

lasmlsdaneiganialdannisnanss azdsznaudsdayalna lsiotumslnih
wazfiiuauavaIawa Wi 9 inaidugausuvastayaduiunais g iiaidurids

ma%%aé’ma@ﬂugﬂﬁ 5

R K M

X
b X

02 A

polarization {p(t))

0.4

06

x -0.5 b4

Sasosadt XA
external electric field (E(t))

{ Q 1 =Y =) U & o 1 { ) 1 Q
gﬂﬁ 5 mamagﬂaama%ama"lwm FIGUAUIN LT WA TN TN ANRAIN WA LILTT A
A9 (2pr) waz dawn IWiauany (£E;) Aadunisnaauns p uazuny E ausau

ﬁnﬂgﬂLLam@hﬁ"Lﬁmiﬁ‘haaaamummiﬁ‘hmu 100 ﬁjé’%é’ﬂ‘*ﬁaga (Ei,pi)

it lumsmwnnlannwaesWssitunmsadamansla g g wdanaidana lnia

‘é Q L 1 v L Qs g: U Qs
‘ﬁ\‘iLLﬁ@Gﬂ’JW&Iﬁ&JW%fﬁZ%’)’N%EIHQIWQ’]VLSLGIW%T’]‘]Jm/lﬂNVLW‘W’W%%Q&‘ﬁ’]&l’]‘iﬂ%’]vl(ﬂﬂ(iﬁ&lﬂ’]‘i
A=¢PdE )

atnilafiony lunmedjiauwznuidayaninuldldidudoyauvudaiiias usdaziiu
@ oA o & & 4 wna a & ] A& A
magmmuvlmamaa aanslumamuwnazlsismIinsadiamaaiiiatszan tenpasnu
A ac & A ad A A . A =« & A
Sﬁﬂumifmﬂmzmamfﬁmsamammm\m%l (trapezoidal method) watdunsdszanasmiiun

o . o A A & A o A A x>
lanTw 1w mgﬂ‘n 6 Sﬁqﬁ]:mminmwuﬁl@ﬂﬂmaogﬂamawmmﬂ@maumi

A:%[f(x)+f(x+h)]h )
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(2

A A ) = = v v A v o o Ad o

L h ﬂawa@qﬂluLLujLLﬂu X ‘ﬁ\i"ﬂzl’%uvl@’g"lﬂ']ﬂ"l h Uauae g "ﬂz‘ﬂ'ﬂ. W%V]Yﬁ’l’]ﬂ’]‘iﬂizu’]m
g; A v Y dy t:ll a ¢:§/

uullﬂ’]nl’llﬂaﬂ’]wuﬂ%‘id&ﬂﬂ?lu

&

Y (x)

1 F4 1 1 [
510 6 mamitunlansm TaedTmmdasuniany

o & A A a Aa Y A @ A
Gaus e vdsmeidaazlaunu y fodlualaoti (P) uazunn x Aadn

auwn IWiasuen (E) asnuazaansafmim s iunvessdamesdalaadd

1
A:ZE(R+1+F?)(Ei+1_Ei) @)

v %

We i Ae  awitlumsnyduniia)dayantuinlutisnad grasmniaunds

< <
g I lunitasau(witsany)

2.4 NIAELaaauaIa INaT Il TwaIaNd Lazda N HNRNANS

Tun1T398a79%  WanNINNITRINITANBUULAZNWN LA NTINYDINTINAITILRL 619
a mdl' a A a U A 1 o 2 1
ATanamaNlfan 91099 danaITadin  Aa A lwa LSt TuaIfne  wazANEwIN WA
WNaN LN LTI NI TUNENANIZNUNLAAINANNLAWEINALULLNWA LI BN 8

A lwan s T a1 ﬁaﬂ'waonawVLiLsﬁ%'uLﬁaamw"[%lﬁhmﬂuanﬁ@i’umﬁ'ﬂg{uﬁ

oA a a a A A ' oy v A a o A
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a o dw -3 a Aa d' 1 p.l' d' 1 c.l' %
lunsdeilatuiindanesTanais raNamanade  Tsduafsuadlwan bsiosuwad
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1. evdudsnazifudnausadlna lsirtuasasniiadwudazay Solunfazasld P
A @ v d _ oA o v da . o
Aalwan lalrtuasensiduuin wez P Aalwanlsiotuasaanlenduay uazan
wsnazifudwinasssasmaiadr lwan laotuassns lag count P* 1AudwInaTd
a _ & o & 4 «
uuan wae count P~ tiuswinasaniduau

2. avsavluldazsdamnaIgrniuinuas v e Inan lststwasans tawudntn

v & 1 + v | v v = 1 — v o o o g; d‘ a J
vanbinuale P udtiduauwauldinuludr P~ usvinmstusiwinesaniiedn

3. WeFuganstufinualdhen P wisdan countP azldanadovasdlnanlaindu

v tﬁl 13 1 o = s YV o 1 — v — tﬁl 1 lﬂl

assiliuenuan uazluiuas@aanuliiiegn P~ wisday count P iNawiend
vuay

4. lummeasd  unItinBaneITalanuaNuNaIN I BRMNAUINLAZAL 9%
Asonldrwie a9 P ouaz P Senlnsifesny eouw a1 P, Mifluaaunuuas
P A Y
Wawlwnis 9lumanasssazm laan
P"+|P~

p—_— Il 4)
2

nailumewian P uaz P un wilalasnistssanondasu sufstszanmanng
L dl 1 v s e dl a v
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slope = h-Fh _R-R (5)
E-E FE-0

A o , a o oAl A ] & @ ! & o o A
I@Uﬂ@ﬂu%%d 1 uae 2 @8 @WuﬁiwLNQK%WNNQWNWﬂﬂQWﬂ%UMﬂ&%ﬂﬂﬂ?ﬁﬂ%U@WNQWQULNQ

FaIMIRIANIWA LT TUAIANAIBUIN  Was @B @‘hLmu’,aLﬁaauwﬁmﬁamdwguﬁua:

mﬂﬂdnguﬁmm‘hﬁuLﬁaﬁaomimﬁﬂwm%mfumﬁnﬁmau NANAIUNIMILL YN 3EY
498NN 16N

P-P
7 -r-g 2| ©
1 2

uazlurinwaafeanu azanansndw gy INHRn a9 1a La g1 INANT LT WA BN
= 1 = U & v = ¥
AUA WA LTI T AN T2 lARUNITAIT

E -E
E =E -P ¥J ©)
' 1(Pl_Pz

A o ' A ° oA o A ' & o ' & o @
Taundurnd 1 uaz 2 Ao @I’]LmuﬂL3JE]IWE]’]VLiL‘II%mJﬂ’]ﬁJ’mﬂ’J’IfJIuULLazuE]Uﬂ%ﬁﬂuﬂ@]’lua’mu
tﬂl v 1 L v v =) o ] ‘ﬂl o a v 1 6
LA INITRIENRIN IWNHIANRIG 1AL LAz Ao mLmuuuaiwmvlﬁm"mmmaalmflgmzl

LLa:mﬂﬂ’hguﬁmuéwﬁuLflaﬁaamsmamu"lvxlﬁwﬁnﬁ’mﬁmmﬂ LATANRWINRNA1INLT W

funuaaddan lunik glunisnaassaznn laan

£ - E. +|E, ®)
2
Pr (E1, P1)
s
(E2 ,P2)

{ Y ' Y ' v
U7 8 naaamsni P, Tagmssznaliseningaaesgalinnusuminy
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2.5 mIaanuuulasstnulszaaniioy

luﬂﬁsﬂszqﬂmﬁl*’ﬁmﬂma"ﬂ']mh::mwLﬁﬂmﬁaﬁflﬂﬁﬁ’]mﬂﬁagaﬁfu lamnsladan

AH1IRANNAN UI@ULQW”IZ?] ﬂﬂd@dl%ﬂ’]dq&m’]ﬁﬂii&l A2a8 4RIV LLﬁ@NVL@?ﬁGﬁ fa

Published Year

Application type

Descriptions

1990 System-level Decision | To determine operational policies for
Making hierarchical manufacturing systems under a
multiple criteria decision making framework
1999 Part classification and | Part classification system to facilitate the
coding retrieving and reviewing similar parts from the
part polygon picture database
1999 Part-Family and To cluster machine cells in cellular
Machine Cell manufacturing
1993 Process Selection to combine human and machine intelligence to
achieve integrated collaborative planning
1993 Process Sequencing To automate the process selection and task
sequencing in machining processes
1995 Job Scheduling To determine the scheduling rule from the
shop floor status and dispatching rules
classified by a neural network composed of
adalines
2006 Machining Process To establish the nonlinear multivariate
Optimization relationships between wire boning parameters
and responses by MLP_BP. Finally, a GA is
adopted to find the most desired parameter
1993 Machining Process To detect machine faults from Frequency
Monitoring domain analyzed by MLP_BP
1993 Failure detection To monitor machine degradation and
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Published Year

Application type

Descriptions

detecting faults or failures provided by a
pattern discrimination model, based on
CMAC

1993 Process control To control laser heating for a fiber placement
composite manufacturing process
1998 Tool wearing To identify tool wear based on process
monitoring parameters, cutting forces, and acoustic
emission measures of the cutting process
1991 Surface roughness To control and inspect surface Roughness
inspection related to R forecasting by MLP_BP
1993 Sampling plan To determining multistage and multiattribute
determination acceptance sampling inspection plans for
quality assurance in serial production systems.
1999 Statistical process To identify the patterns in the control chart by

control

taking 16 consecutive points

aauilasan: Wang and Kusiak (2001)

fnyulunsldnulassrnassaninouluew; a@ma@]‘? lammsldnarinuenl

o o 1 Qs U ) a g J a {
mmawwuﬁ%zmwﬂaamu Ao LKL QM%Q&ILLﬂﬂVLG]Jﬁ LLa:am’muawaaqm%Qwﬁﬁ

- { v IQ QG'I { =~
damuaiouns NiNb,Os (NN) al#ldinavasansnuignifiga lasfiladidudaina

~ £ % s @ ' @ a ' A £ P &
mqwmﬂuﬂawmu "]Ix‘ﬂ@ﬂ%“ﬂi’]ﬂ’)’]ﬂﬁ]’i]UI@]&JNﬂ@lﬂﬂ’l’]&m‘iqﬂﬁ“ﬂadﬂﬂ'ﬁ&l’]ﬂ“ﬂq@ wanInNh

ﬂ'ommmﬁwm51Lﬂaﬁ%uﬁmmﬁqwﬂﬁgﬂﬁm (Laosiritaworn et al., 2008) ugaalwiAnS

mwmmmlunwsﬂnqnmﬁmaﬂwUﬂi:m'ﬂLﬁwlumaﬁﬂufa@]‘mamiﬂuaﬂ'wﬁ AL

= ac & o v vaa ad a = a o
NIIANWIIYW %u’ma;&aawmaamamamﬂﬂﬁwaamiLWﬂiaLaﬂmrl Jarnnisaanstuy

Tassrngisernid mlﬁmm:ﬁ'u*’ﬁﬁmaﬁaga

[ =
Iﬂixﬂl'] NI p A @RAINTHE

(Artificial

Neural Network: ANN) fauuudiaaInig

AMAMans Lﬁa'ﬁﬁaaamiﬁﬁmmadLﬂ%aﬂjmﬂszmﬂuauaamgwﬁ (Kevin, 1997) 1

lasednadszanifie ﬁamss’mmjuLmummumammUﬂi:mawaﬂaﬂ 9 naaelmians
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= v [ J 1 1 v 1 JQ/ lﬂ‘
Fouitasmunsngniaesueinshedislassedzamiduaatugdi© 9 uazluns
a s . P o , a o A £z =
Aenzidayslaniodemnifisnasiimmanihisdizanifou@gln - 9)  awiu
lovsdne lavazdasinsannitadsiiduazaantaingnuld dogun 10 lasdaasld
Jaspshidnuaazawd arvinun (weight) Juariwuatininassifadssingy laslassane
Ussmiisuudaznhoazlidnszauyagin (threshold) umimuainihminmuesidais

o v v = ' [ 5 1 = o A v
WIALDIA aamﬂmm@%mw:mmmadNaawﬁvl,ﬂ Elx‘lIﬂix‘]‘Iﬂ S pEAs VIS THEV ) E]‘Havl,@] (Kumar,
2005)

X1 \Wl

X W |

T e
T

X1 |

~ o Yo 1 = a o
5UN 9 LL‘]J‘]Jfl]'Iﬁ’ENﬂ"lig%Tﬁu@ﬂﬂi%fﬂ'ﬂfﬂlelGluﬂ’ﬂiJW'JW]’f]i

U

('*?'im http://www.sageintelligent.com/product.html)

Input nodes Output nodes

. Hidden nodes
Connections

517 10 Tasearenees Insednedszannifion

(ﬁm http://www.sageintelligent.com/product.html)
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o ' s a o { o w =
lumsdowaslesstnedszanifion Sispuazinafinmsdwinndiny o9
fuInULEAd laasda U

1 :, Ed - o 6 d' [ o o U s d! 1
1. ehnin (weight) lunmsvianusessasdszannits ae3utladusindinanadads Gaen
Yoo ¥ oo . . o . . . d .Y e,
munidududaslslunmenunusyyisdadsidmeasasdizamn  Geduinnny
v d' =4 A 6 a % o L% 1 > =1 % > 6
WINALUToULRN aw kol §lusrUuLTaslIe’Inese a9usndnuaas a1l U UW LS

o 4 2 o = { o o @ @ o @ ' o o A
Audrhwnn  Selupensdinihapiutnuearlenudgagannniidaduaidu  § e

A Yo g’ v K A ' a A [l =
LE‘]aﬂi"ljﬂﬁuﬁ‘ﬁ%ﬂ‘ﬂ\‘mNa@laﬂ§$ﬁﬂ'ﬁﬂ"|W°ﬂax‘11ﬂ‘N°ﬂ"lEl‘].]izﬁ']“l’ll,‘ﬂEJN

2. WenTun37Iw (summation function) wiaWsriduyagiu (basic function) Tunsviau
vaawaalszan  Aamamnaniusassyaamladnhiduaiminidnanten  las

Warttuyagiwazimilumanut Selsiduyagiusansnudsaandu 2 dzinn da

n. WarifuyagnuBudu  (linear  basis  function) luWsriduziialailasunau

< 6 v o A P [ >

(Hyperplane)  lasiduWsrituyagiuduaufinis  wamwanmnudyaulady
W aauaadluaunisi (9)

U =2 WX (9)
=1
Wa U = WATINIINMININRY I ITIUNTNTUN
W = WNUIFITANTERINTUN | MU |

] o ¢ & & A .
X, = ﬂqwaaWﬁ"ﬂqﬂLTﬂaﬂiza']ﬂTuﬂj

u. WinduyagwBeded  (radial basis  function) DuWeriturilalaafailes
(Hypersphere) iuwsnduyagiuduaungss wavmannminusyyrmdadmingi
asugasluaunisi (10)

Ui = (10)
Wa U = WENNIINMINURL MDA i
W = WANURIFTINTERINTUN § N |
: o & I3 < 4.
X, = AINAAWTINITARUITENTUN |

f. ﬂdﬁﬁuﬂizﬁu (activation function) w3anTwwaswesiau (transfer function) ¥
winNdszanananuvassyprmliidunasnivassasdszsm Samafenlswais

mz@juﬁwa@i 2l EnTAwmIinwaslaTtglszaniioy ek 1adssidnuad
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& o o @ & o ' P o &d & o
iaddszanazgnihainnnudenlasldWeituyagiu dauninadwineananiaridu
yaguazgnulasdisWeidunszdu duaasluaunan (11)

Ii = zWinj Wi (11)
A : o ¢ I3 4.
Wa X, = AWEANFINNLDAALTEaMNTUN j
Wy = FWRNURIFITaNTERINTUN | N |
o 6 & %
n= fwuwssddszamlusuiegiu

waranvasiididnluauni (1) ezgnudasdioisidunszguiunadnives
wraadsean asaunisn (12)

0, =0(1) (12)

A ' o ¢ & A = ' o o o & o
) O = aWaantALTaslsyan datiluanifaasringnuasaalszanead

v
o

anluruna bl wiaudnaawivadlassanodseaninay
Q= ﬂdﬁﬁuﬂizﬁu

Tasm U Tasstnedszmmifisnuuuwanstusnwmnwnwibsdssanifisuaasudaz sl
f{hLflué’aawhﬁ'uua:ﬂaﬁ%’um:éjumiaz%”'uﬁvl,sjﬁ‘htﬂuﬁaomﬁauﬁ'u Wariturnelaud
foultlulassnodszan loun Wentwandlod (Heaviside Function) %dﬁgﬂuuu
Gagumafi (13) Weridwdadwugae (Piecewise Linear Function) sssun1sii (14)
WerTudnuasa (Sigmoid Function) 1zu Wendwlawwasludnuny (Hyperbolic
Tangent Function) @9sunsfi (15) Weridudnuasd (Logistic Function) d9gunish
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ABSTRACT

In this work, the Artificial Neural Network (ANN) was used to model ferroelectric hysteresis using
data measured from soft lead zirconate titanate [Pb (Zr,-,Ti,)O; or PZT] ceramics as an application.
Data from experiments were split into training, testing and validation dataset. Four ANN models
were developed separately to predict output of the hysteresis area, remnant, coercivity and
squareness. Each model has two neurons in the input layer, which represent field amplitude and
field frequency. The ANNs were trained with varying number of hidden layer and number of
neurons in each layer to find the best network architecture with highest accuracy. After the networks
have been trained, they were used to predict hysteresis properties of the unseen testing patterns of
input. The predicted and the testing data were found to match very well which suggests the ANN
success in modeling ferroelectric hysteresis properties obtained from experiments.

INTRODUCTION

During recent years, ferroelectric materials have become more and more attractive in terms of both
fundamental and technological interest e.g. high-speed recording media in nonvolatile memory
application [1]. In such an application, the amplitude (/o) and frequency (f) dependence of
hysteresis parameters are of important consideration. Theoretical studies have mainly focused on the
use of power law scaling to investigate how hysteresis properties response to external field
parameters (i.e. /pand f of the applied electric field) in a form of Ae f“L/ where A denotes the

hysteresis area, @and f are exponents to the scaling e.g. Ref. [2]. In spite of its reasonable success
on finding how hysteresis area relates to the field, each exponent obtained in this way is not truly
independent. This is since with a small number of data, the non-linear regression for multiple
independent variables (i.e. f'and /) has limitation arisen from convergence problems. Therefore, in
previous works, aand f were extracted separately [2]. Specifically, one exponent was extracted at a
time and when it was retrieved, it was assumed constant and fed back to the power law to find
another exponent. However, though this method is sound, the extracted exponents are very
vulnerable where a small change or error in @ could cause a considerable change in £ Moreover,
the hysteresis behavior is also very different between low and high frequency regions, so one has to
propose two different power law scaling relations applicable to the low-frequency and
high-frequency limits e.g. Refs.[3] and [4]. Being evident, this power law technique becomes
problematic unless the frequency region (high or low) is known in advance. Consequently, in this
work, we aim to provide another sophisticate technique which can be used to model the hysteresis
behavior i.e. the Artificial Neural Network (ANN) which is widely used in industries for various
purposes due to its ability to ‘learn” from examples.

All ﬂwB reserved. No part of contents of this paper may be reproduced or fransmitted in any form or by any means without the written permission of the
blisher: Trans Tech Publi s Lid, , www.ttp.net (ID: 117.47 147 122-03M12/09,16:29:07)
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BACKGROUND THEORIES

Artificial neural network (ANN) is a computer programming that mimic human nervous system. It
can be used to model relationship between given inputs and their related outputs from examples.
ANN is made up of simple processing element, neuron, connected together. Neurons can be located
in the input layer, hidden layer or output layer. ANN is used to model or ‘learn’ relationship by
tuning a set of parameters called “weight’ (the strength of the connection between neurons). This
weight alteration process is called training. In the training process, a set of examples of
input-output pairs is passed through the model and the weights adjust in order to minimize the error
between the answer from the network and the desired outputs.  The weight adjustment procedure is
controlled by the learning algorithm. Once the error is minimal, the network is successfully trained.
The trained network is able to predict output for unseen input. In this study, the Back Propagation
(BP) algorithm, one of the most widely used algorithm [5], was used. The algorithm can be
summarized as the following [6].

Initially, the BP performs a “forward pass’, where the input is fed through the network to attain the
output by calculate weighted sum (S;) for every neuron, i.e. S, = Z a,w, , where g; is the activation

level of unit , and wy; is the weight from unit / to unit /. Then, the sigmoid transfer function, i.e.

1 ; :
g(x)= Ti® where x = S, were applied to the output. Then, g(x = S;) becomes the output of unit
+e™

J» and the same procedure repeats for all neurons. After that, the BP performs a ‘backward pass’,
where the error 8, = (1, —a,)g’(S,) Is calculated to update (adjust) the weight for each neuron for

the output layer but J, =[Z o, wm} g'(S_,.) for the hidden layer. In these equations, 4 is the target
"

value for unit /, g;is the output value for unit /, g’(x) is the derivative of the sigmoid function g
and §; is weighted sum of inputs to /. Then, the weight adjustment is calculated as Aw, =nd q,

where 77 is the learning rate. These forward and backward processes repeat with new input vector
until stopping criteria are met.

EXPERIMENTAL RESULTS AND DISCUSSIONS

In this study, the relation between the input data (f'and %) and the output data (the hysteresis area A,
the remnant polarization p,, the coercivity /.. and the loop squareness) was established by the ANN
modeling. The measured hysteresis properties were obtained from commercial soft PZT ceramic
disks (PKI-552, Piezo Kinetics Inc., USA) with diameter of 10 mm and thickness of 1 mm. The data
were taken at room temperature (25 °C) by with / ranging from 0.6 to 100 Hz and £ ranging from
to 6 to 18 kV/cm. The details of the experimental setup and data acquisition were described
elsewhere [7].

In the modeling, four ANN were trained separately for 4, p,, /., and loop squareness. All models
have the same two inputs, which are %, and /'and only one output. Of all 75 records available, data
were separated into three sets; training dataset, validate dataset, and testing dataset, at the ratio of
68%, 16%, and 16% respectively. Training dataset was the data used to tune the weight to the
correct value. Validate dataset was used during training process to prevent ‘overfitting’. Testing
dataset was used after the training process finished as “unseen’ data to test the model accuracy. Data
were preprocessed before training. Input data were coded to the range between [-1,1] and output to
the range between [0,1]. In the training process, architecture search were carried out. The search
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was performed for up to two hidden layers, and up to 10 nodes in each layer. Results from training
process were shown in Table 1 and Fig. 1.

Table 1 ANN training results

Output of ANN Best Training Testing
model architecture
MAE R-squared MAE R-square
Hysteresis Area 2-7-10-1* 741.825.26 0.996 947,941.95 0.994
Remnant 2-8-2-1*% 74.92 0.999 134.00 0.996
Coercitity 2-8-9-1* 11.320 0.998 16.732 0.997
Squareness 2-7-9-1*% 0.011 0.956 0.015720 0.907

* 4 digits represent number of neurons in input, first hidden, second hidden, and output layer.

In measuring how close the forecast value are to the actual one, two indexes were used, which are
Mean Absolute Error (MAE) and R-square. MAE is a measure of average absolute different of
actual output and predicted output from the model, and R-square is the goodness of fit of the model.
The closer this ratio to 1 the better the model is. The results shown in Table 1 indicate a good fit of
all model as MAE are low and R-square is very close to 1.
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a) Actual against output plot of testing data b) Scatter plot of testing data

Fig. 1 Comparison of the predicted data (output) with the real data (target) from the area
Then, with the weight obtained, ANNs were used to generate data to compare with the “unseen’. An
example of comparing the output (predicted data) with the target (actual data) for all dataset of Area
model is given in Fig. 1. In Fig. la, the actual against output plot shows good agreement which
verifies the successfulness of the modeling. In addition, the scatter plot of data (Fig. 1b) also shows
a very good fit to straight line with just small deviation. These can be concluded that the model can
provide very accurate approximation for data.

In addition, it is also of interest to use the model to investigate the hysteresis behavior and compare
with experiment [2]. Figs. 2(a.,b) show the mean effect plot for 4 as a function £ (by averaging over
/) and the mean effect plot for 4 as a function of f (by averaging over k;). As can be seen, the
relation between 4 and /2, or 4 and /'is not trivial and can be categorized into 3 main groups which
are for the minor loops, the minor loops at their transition to saturated loops and the saturated loops.
This is in good agreement with previous experiment [2]. In the previous experiment investigation,
the minor and saturated loops had to be analyzed separately unless the power law scaling would not
be much useful. However, in this ANN study, the method can be used to accurately predict
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(forecast) the data over the whole considered range of input parameters with ease.
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3BT
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3BT Fah 9301 408 L]
= SEH < 3E+08
2B407 y =-1E+08Ln(x) + S5E+08
2 E+08 R?=0.9779
1.E407
y =22473x - 9E+06 ‘m
R?=0.9936
SEH6 TE 08 y = -1E+07Ln(x) + 2E+408
R? =0.6087
0.E+00 0.E+00
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E(KV/cm) f(He)
a) Effect of amplitude /2, on area 4 b) Effect of frequency fon area 4

Fig. 2 a) The mean effect plot for 4 as a function % (by averaging over f) and b) the mean
effect plot for 4 as a function of / (by averaging over £).

CONCLUSIONS

In this work, the Artificial Neural Network is used to model ferroelectric hysteresis using data
measured from soft lead zirconate titanate ceramics. The ANNs were trained to relate the inputs,
which are the field amplitude and the field frequency, to the outputs, which are the hysteresis area,
the remnant polarization, the coercivity and the loop squareness. From the training, the best
algorithm was achieved and used to generate output to test with ‘unseen” data. From the testing, the
output was found to agree well with the available experimental data. This well matching over the
whole range of considered parameters can then imply its success in modeling ferroelectric
hysteresis.
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1a thir work, the relationshp between hvsteresiy area of hard lead zrconate fifanate
and external perturbaiionwas modeled using the Artificial Newral Network (ANN] The
model developed has the applied electric field parameters and femperature as inputs,
and the hosteresty areq av an ouiput Thea ANN war frammed with expermmental data
and vsed to predict hysteresis area of the unseen testing patterns of input. The predicted
and the actiual data of the testing set were found to agree very well for all considered
mput parameters Furthermore, unlike previous power-law investigation where the low-
field data had to be dwscarded in avoiding non-convergence problem, this work can
model the data for the whole range with fine accuracy This therefore suggests the ANN
success in modeling hard ferroelectric hysteresis properties and underlines ity supertor
performance upon typical power-law scaling technigue

Keywords Artificial Neural Network: Hysteresis Area; Hard Lead Zirconate Titanate

1. TIntroduction

Ferroelectric hysteresis modeling has recently been a topic of interest due to its success in
predicting hysteresis properties [1-6]. However, most smdies have mainly focused on the
use of power law scaling to empirically investigate how hysteresis properties response to
external field parameters (i.e. amplitude E; and frequency f of the applied electric field)
and temperature T in a form of A o f‘xE@3 T* where A denotes the hysteresis area, while
«, B and y are exponents to the scaling. In spite of its reasonable success, each exponent
obtained in this way may not truly independent. This is since the use of non-linear fit
for multiple independent variables has limitation arisen from non-convergence problems
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when the number of data in the fit is not enough, or the data is with very much different
in their behaviors. Therefore, in previous investigations [1, 2], @ and § were extracted
separately, where one exponent was assumed constant and fed back to the power law to
find another exponent. Consequently, the extracted exponents are very vulnerable to errors
as a small change or error in « could cause a considerable change in g. Moreover, in
hard ferroelectric materials, the hysteresis behavior is very different between minor- and
saturated-hysteresis loops, and one has to propose two different power law scaling relations
[3, 4]. The problem becomes even more complicated when the temperature effect is taken
into account [5, 6]. Consequently, one can perform the temperature scaling only when the
hysteresis is of saturated shape to avoid the non-convergence problem [6]. Being evident,
the power law scaling technique may not be the best preference in such the case. Therefore,
in this work, we consider the use of Artificial Neural Network (ANN) to model the complex
hysteresis behavior of the hard lead zirconate titanate ceramics. This is due to the ANN's
ability in relating unknown correlations [7], and its success in modeling material properties
prepared/measured under various conditions [8-12].

2. Experimental Setups, Results and Discussions

In this work, the hysteresis area A was obtained from the commercial hard PZT ceramic
disks (APC-840, APC International, Ltd., USA) with a diameter of 8 mm and a thickness of
1 mm. Details of the experimental setup are explained elsewhere [4, 6]. The field frequency
f was varied from 1 to 100 Hz, the field amplitude Ey was varied from 0 to 35 kV/cm,
and the temperature T was varied from 25 to 180°C. In the ANN modeling, the network
training process was divided into 4 phases i.e. the analysis, the preprocessing, the design
and the training phases. In the analysis phase, raw area data were analyzed using ‘Alyuda
Neurolntelligence’ software and those unsuitable for neural network training were marked,
which include missing values, wrong type values and outliers. In this phase, input data
(T, f in the natural log-scale, and Ej), output data (A4) and the types of data (numeric) were
set. Information regarding to input and output data can be found in Table 1. Next, the data
were divided into three sefs i.e. training, validation, and testing data sels. The training set
was used in the training process to adjust network’s weight. The validation set was used to
tune other network parameters. For example, it was used to detect number of hidden units
when the network performance became worse. Finally, the testing set was used to test the
trained network on its performance with the ‘unseen’ data. In this works, as there were 538
records (of input-output) available, data were divided with the ratio of training: validation:
testing of 366:86:86 records.

In the preprocessing phase, the data had been scaled into the comparable range before
it was fed to a neural network to minimize mismatch ranged effect [7]. All input data were

Table 1
Input and output data used in ANN training
Parameters Unit Type Min Max Scaling Factor
T Celsius Input 25 180 0.012903
log (f) log (Hz) Input 0 2 1
E KV/em Input 10 35 0.08
A plem?® Output 0.0708 517111 0.193647
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scaled to the range [—1, 1] via §F = ! and X, = SRnin + (X — Xiin) % SF,
where X is an actual value of a wnslderecf mpuﬂoutpul, X 18 the minimum actual value,
Xmax 18 maximum actual value, SRy, is the lower scaling range limit, SRy is the upper
scaling range limit, SF is the scaling factor, and X, is the preprocessed value. After that,
the output data (in the output layer) was scaled to the range of [0, 1] using the logistic
activation functioni.e. F (x) [7]. The scaling factors used in these equations were
also summarized in Table 1.

After data was preprocessed, the next phase was the design phase. In this phase,
network architecture (number of hidden layers and number of hidden nodes) and network
properties (error and activation functions) were specified. In this work, exhaustive search
was conducted to identify the appropriate number of hidden layer and hidden nodes. Search
was carried out for up to 2 hidden layers and 40 nodes in each layer. The best architecture
obtained was found to be 2 hidden layers with 30 neurons in the first hidden layer and 11
neurons in the second layer. Network properties including error and activation function were
also set in this stage. Input and output activation function used was logistic function. Output
error function used was sum-of-squares function where the error was calculated from the
sum of the squared differences between the actual value and neural network output. After
network architecture and network properties had been identified, the network was trained
using quick propagation algorithm. Stopping criteria used were the mean average value
less than 0.1 and maximum 500 iterations.

To validate the model accuracy, the mean absolute error (MAE) and the correlation
coefficient () were used to value the predicting performance. They were calculated from

the formula MAE = —‘—'—'f‘ 2 and r = n2 e i O FIO oy ) , where

\/”O_,‘:‘—j fi 2 (rm_1 fr)‘-\/ﬂ!, =1 Jr‘.-) e 1 ¥ IZ
Jf: is the prediction from neural network for record 7, y; is the actual value for record i, n is
the total number of data. In general, the smallest MAE is desirable as il indicates that only
small prediction error exists, while the correlation coefficient » should be close to 1 to assure
the model appropriateness. From the training result, the MAE for training, validation, and
testing data set are 0.073015, 0.061952, and 0.069630 respectively (all with r > 0.994).
As MAE's are small and r's are very close to 1, it can be concluded that the model is
very accurate. Further, actual data and predicted output from ANN were plotted in order
to visualize ANN model accuracy. For instance, Fig. 1 shows a scatter plot of testing data
and their corresponding output from the ANN. The plot forms a straight with only small
deviation suggesting the good fit of the model.

To compare the predicting hysteresis area behavior with real experiment [6], the trained
ANN was used to predict hysteresis area for the combination of input as the following;
T at 9 levels (25, 40, 60, 80, 100, 120, 140, 160, 180), J at 11 levels (1, 2, 4, 6, 8, 10,
20, 40, 60, 80, 100) and Ep at 6 levels (10, 15, 20, 25, 30, 35), which makes a total of
594 (9 « 11 % 6) combinations. The results are shown in Fig. 2 which is the mean effect
plot for A as a function of T by averaging over all f and £, (upper left), the mean effect
plot for A as a function of f by averaging over all T and Ey (upper right), and the mean
effect plot for A as a function of Ey by averaging over all T and f (lower left). As can be
seen, the relation between A and T, A and [ and A and E; are evident. For instance, the
A and T relations (upper left) show a slight decrease of A on increasing 7', This is as the
higher temperature brings more thermal fluctuation into the system so less electrical work
is required in cycling the polarization. However, the A-T dependence seems to be very
small which could be due to that the considered temperatures are relatively much lower
than the Curie point, so the magnitude of spontaneous polarization does not change much
with temperature in this range. From the A-f relation (upper right), a steeper decay of A
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Figure 1. Scatter plot of actual and output plot of testing data. (See Color Plate XLI)

in f is found. This is expected as the faster of the field switching, the less polarization can
response to the field changes. As a result, the average polarization gets smaller and this
lessens the remnant polarization, the coercive field, and hence the hysteresis area. Finally,
for the A-Ej relation, it is found that with increasing the field amplitude Ej. the area A
increases. This is since the more ‘electric force’ supplying into the system, the higher

Main Effects Plot (data means) for Area
3 Temperature Frequency
Z"|
o i v\‘“'-—o—-
0

L T L T U U ] Ll 4 U T 1 1
25 40 60 80 100 120 140 160 180 1 2 4 6 8 10 20 40 60 80 100
ED
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Figure 2. Main effects plot of hysteresis area predicted from ANN.
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chances the polarizations orienting in following the field signal into the field direction. This
therefore enhances the remnant polarization and to cancel the higher remnant polarization
requires higher field in the opposite direction, which enhances the coercive field. Being
evident, unlike the temperature 7', the field parameters (f and Ej) have more influences on
the hysteresis area (for the considered ranges of parameters in this study). One is therefore
required to be aware of undesired field-variation due to electric noises (e.g. from poor circuit
assembling) or material degradation, but may feel relieved on temperature fluctuation.

As can be seen, the relations among the area A and perturbation parameters (f, Eo,
T were found and their behaviors are in good agreement with the dynamic ferroelectric
hysteresis results (e.g. [5, 6]). However, in the previous experiment investigation [6], only
hysteresis area measured at the field amplitude higher than the coercive field are allowed
in the scaling unless the power law scaling would not be much useful (as the non-linear fits
do not converge). Nevertheless, in this ANN study, the method can be used to accurately
predict (forecast) the data over the whole considered range of input parameters with ease.

3. Conclusions

In this work, the Artificial Neural Network is used to model ferroelectric hysteresis area
using data measured from hard lead zirconate titanate ceramics. The network was trained
to relate the inputs, which are the field amplitude, the field frequency and the temperature,
to the output which is the hysteresis area. From the training, the best network architectures
were achieved from exhaustive search. The architecture used was 3 neurons in the input
layer, 30 neurons in the first hidden layer, 11 neurons in the second hidden layer and 1
neuron in the output layer. After training, the network was used to generate data for 594 sets
of input-output. The output obtained from ANN was found to agree well with the available
experimental data. This well matching over the whole range of considered parameters can
imply its success in modeling hard ferroelectric hysteresis.
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Abstract

This paper proposed an application of Artificial Neural Network (ANN) to
concurrently model ferroelectric hysteresis properties of Barium Titanate in both single-
crystal and bulk-ceramics forms. In the ANN modeling, there are 3 inputs, which are type
of materials (single or bulk), field amplitude and frequency, and 1 output, which is
hysteresis area. Appropriate number of hidden layer and hidden node in were achieved
through a search of up to 2 layers and 30 neurons in each layer. After ANN had been
properly trained, a network with highest accuracy was selected. Query file of unseen input
data was then input to the selected network to obtain the predicted hysteresis area. From
the results, the target and predicted data were found to match very well. This therefore
suggests that ANN can be successfully used to concurrently model ferroelectric hysteresis
property even though the considered ferroelectrics are with different domains, grains and

microscopic crystal structures.

Keywords: Artificial Neural Network, Hysteresis Area, Barium Titanate.
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1. Introduction

The dynamic ferroelectric hysteresis properties in response to external electric
field parameter (i.e. filed amplitude Eq and field frequency f) have recently gained an
intense interest. This is since if the understanding of how the hysteresis properties relate
to the field perturbation is fully obtained, one may use this knowledge in designing state
of the art ferroelectric applications with high efficiency. Nevertheless, most previous
investigations on the topic focused only on the use of simple empirical power-law-scaling

to relate the hysteresis area to the field parameters. For instance, the area scaling has a

form Ao f“E/ where o and Bare exponents to the scaling, which can be extracted from

regression analysis presuming that they are constant. Nevertheless, in some ferroelectric
systems, the exponents « and S are not constant but in fact are functions of field
parameters, i.e. « as a function of Eq, and £ as a function of f. For instance, the BaTiOs;
single crystals were found to present unusual power-law-scaling behavior [1]. The

was found above the coercive field

hysteresis area scaling in the form Aoc f *®E)*®

condition, but Acc 17528 ELST \wag found under the coercive field condition. As can

be seen, even in a same crystal, « and g vary with the Eq-range. Moreover, the frequency
exponent « for the coercive field is indeed a function of field-amplitude E; i.e. « =
1.667E¢-2.804 [1]. Similarly, in BaTiO3z bulk ceramics, the scaling takes the forms

—0.024E,-0.036 (= —0.004 f +1.055
Ao f RS

under

above the coercive field but Aoc f%24F-005g 2004 T+367

the coercive field [2]. Being obvious, the simple power-law-scaling is no longer simple.
The scaling-relation is very different for above and under the coercive field. Further, the
scaling-exponents are not truly constant but functions of field parameters. In addition,
even with the same chemical composition, the single crystal and polycrystalline ceramics
have different scaling formalisms. Consequently, alternative applicable techniques are
required for substitution i.e. the Artificial Neural Network (ANN) in this work. This is
due to the ANN’s ability to ‘learn” from examples, which proves it to be useful in
modeling complex correlations [3]. Recently, it was found to provide success in modeling
ceramic power preparation [4] and in modeling of material properties prepared/measured

under various conditions [5-7].
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In this work, the ANN was used to concurrently model ferroelectric hysteresis of
both BaTiOj3 single crystal and BaTiO3 bulk ceramics (which have different microscopic
domain orientations). The input hysteresis area was split into training, testing and
validation data. The model developed has 3 neurons in the input layer, which represent
Eo, f and type of BaTiOj3 (single crystal or bulk ceramics), and 1 neuron in the output
layer, which represents the hysteresis area. ANNs were trained with varying number of
neurons in hidden layer to find the best network architecture with highest accuracy. After
the network has been trained, it was used to predict hysteresis properties of the unseen

testing patterns of input.

2. Background Theories

Acrtificial neural network (ANN) simulated human nerve system in order to create
a computational model that has ability to ‘learn’ from example the same way as human
do. It can be used to model unknown relationship between inputs and outputs by
presenting ‘examples’ to the network. Multilayer perceptron (MLP) is the type of ANN
used as shown in Fig.1. In the MLP, simple processing element or ‘neurons’ are locating
in layers typically consist of input, hidden and output layers. Each neuron performs a
simple task as follows; When inputs are fed into neuron, each neuron attains output by

calculating weighted sum (S;) from Zajvvij , Where a; is the activation level of unit i, and
i

wij is the weight from unit i to unit j. Logistic transfer function, i.e. g(x) :L_ where x
: 1+e™”
=§;, was applied to calculate the output of that particular neuron.

These neurons are connected together and the strength of the connection
(connection weight) are assigned initially with small random number. By tuning these
weights, ANN can learn relationship between set of input and output parameters. This
tuning process is call ‘learning’. A number of learning algorithms are available to govern
the learning process. The most extensively used learning algorithm is the back
propagation [8]. Back propagation is a two steps learning algorithm consists of forward

and backward pass. In the forward pass input pattern is presented to the input layer. Then
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neurons in each layer calculate their output until the final outputs in the output layer are
obtained. In the backward pass the target patterns is applied to the output layer. Then the
difference between the obtained output and target output is calculated and weights are

adjusted to minimize this error. Error in the output layer is calculated from

5, =(t;—a;)g'(S;) and ¢, {Z@wkj}g'(sj) for the hidden layers. In these equations, t;
k

is the target value for unit j, ais the output value for unit j, g’(x) is the derivative of the

logistic function g and S; is weighted sum of inputs to j. Then, the weight adjustment is

calculated as Aw; =nd;a; where 7 is the learning rate. These processes are repeated

until the stopping criteria are met [11]. In this research, the stopping criterion used were

the mean average value less than 0.1 or maximum iterations of 500.

3. Experimental Setups, Results and Discussions

In this work, the dynamic ferroelectric hysteresis data (the P-E loops) were
measured from single-crystal and bulk-ceramics of Barium Titanate (BaTiOs3). The used
BaTiOj3 single crystal was of tetragonal {001} phase containing a-c domains and grown
by the Remeika process [5,10] (triangular-shaped plates with 5 mm edge length and
thickness of 0.5 mm). The hysteresis loops were measured with frequency f covering from
1 to 300 Hz and field amplitude E, from 0 to 6.6 kV/cm, where the field was applied on
the (001) direction [1]. On the other hand, the BaTiO3 bulk ceramics was prepared by a
conventional mixed-oxide method (T¢ = 124.5 °C, disc-shaped plates with a diameter of 8
mm and thickness of 1 mm). The hysteresis loops were measured with f covering from 1
to 100 Hz and E, from 0 to 15 kV/cm [1]. Both BaTiO3z were characterized at room
temperature (25 °C) by using a modified Sawyer-Tower circuit. The electric field was
applied to a sample by a high voltage ac amplifier (Trek 610D) with the input sinusoidal
signal from a function generator (HP 3310A). The P-E loops were recorded by a digital
oscilloscope (HP 54645A, 100 MHz). Each loop was obtained after 20 sampling cycle to

average out the noise deformation.

Then the experimental hysteresis data of BaTiO; were supplied to the ANN.

However, due to the extreme electrical noises, those with very high f and very low Eg
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were discarded. The input data range used in this work is listed in Table 1 where 619 data
records were available for ANN training. All available data were randomly separated in
to three datasets for training, validating and testing purposes with the ratio 421: 99: 99
records respectively. The training dataset is used for adjusting weights of ANN. The
validating dataset is used during training to prevent overtraining problem. Note that
overtraining is a typical problem occurred with back propagation algorithm, where ANN
is trained too much. When this happens, the ANN performs well on ‘seen’ data but
performs poorly on ‘unseen’ data. The testing data is used after the training is over and all
the weights are preserved to test the accuracy of the network. Training data were
summarized in Table 1. There are 3 inputs to ANN which are type of materials (single
crystal or bulk ceramics), field amplitude and frequency. ANNs were trained to model the
relationship between the inputs to the output (the hysteresis area). To prepare the data for
the ANN in an appropriate scale, input data were preprocessed by scaling into the range
between -1 to 1 and output data was scaled to the range of 0 to 1. This process was done
by using scaling factors (SF). The SF is calculated from (SRmax-SRmin)/(Xmax-Xmin) Where
SRmax is the upper scaling range limit, SRni, is the lower scaling range limit, Xmax is the
maximum actual value, and Xmi, is the minimum actual value. Then the preprocessed
value is calculated from SRpin + (X-Xmin)xSF, where X is the actual numeric value. The

used SF for each parameter was also shown in Table 1.

After data had been preprocessed, the network architecture (for selecting the
number of hidden layer and number of hidden node) and network properties (error and
activation function) were specified. The extensive search was conducted to identify the
appropriate number of hidden layer and hidden node. Search was carried out for up to 2
hidden layers and 30 nodes in each layer. The best architecture obtained was found to be
10 and 18 neurons in the first and second layer respectively (shown in Fig. 1). The
accuracy of this model is measured from mean absolute error (MAE) and the square of
correlation coefficient (R?). MAE is calculated from the average of the absolute difference
between actual data and predicted data. As a result, the lower the MAE the better. The R?
is a statistical ratio that measure actual and predicted data and the closer of this ratio to 1

the better the model is. MAE and R? are calculated as follows:
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n f_v.
MAE = Zi—1|n' y'|

and

0L (T ()
Jn(ZL )-8 0] (L)~ (Z )

R =

where f; is the prediction from neural network for record i, y; is the actual value for record

i, and n is the total number of data.

From the trained network, the training and testing data provided MAE of 15.37
and 26.31 with R? of 0.9802 and 0.9297 respectively. Being apparent, the small value of
MAE and the R? being close to 1 confirm the validity of the ANN modeling of BaTiOj3 in
both single-crystal and ceramics in this work. For a graphical verification, a plot of actual
target (from experiment) and output (from ANN) of testing data is shown in Fig. 2. As
can be seen, the figure shows a very well match of those two set of data. Including with
previous works in modeling hysteresis properties over extensive ranges but in the same
ceramic disc, this work proves that ANN is a very resourceful and reliable technique

which can be used to model ferroelectric hysteresis across systems with high accuracy.

The best trained ANN is used to ‘query’ or predict hysteresis area. Query file was
prepared for the input of single crystal and bulk ceramics for the range of f from 5 to 220
Hz and E, from 2 to 1400 kV/cm. Approximately 6400 records were fed to ANN in order
to obtain hysteresis area value. The plot of these data is shown in Fig. 3 which is a plot of
the actual experimental hysteresis area (open square) as a function of field amplitude for
various frequencies for both the single crystal and the bulk ceramics. Lines in the figure
are from ANN modeling. It can be seen from Fig. 3 that predicted data from ANN provide
good approximation of hysteresis area as the lines are properly match between each open

square.

4. Summary
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In this work, the Artificial Neural Network was used to concurrently model
ferroelectric hysteresis properties of both single-crystal and bulk-ceramics Barium
Titanate. In the modeling, inputs are type of materials (single or bulk), field amplitude
and frequency, and output is hysteresis area. Then, the architecture of the network with
highest accuracy was selected and used to generate sequence of predicted outputs. The
target and predicted data were found to match well even concurrently using the data from
ferroelectrics with different grain, domain and crystal structure. This may approve the
ANN a superior and versatile technique which can be used to model ferroelectrics with

different microscopic structure.
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Table 1 Input and output data used in ANN training

Table 1

Parameter Type | Dataformat | Scaling | Min Max Scaling
range factor
Type of materials Input | Categorical [-1,1] n/a n/a n/a
Frequency (Hz) Input | Numerical [-1,1] 1 240 0.008368
Field amplitude (V/mm) Input | Numerical [-1,1] 16.67 1500 0.001348
Hysteresis area (mCV/cm) | Output | Numerical [0,1] 0.00013 | 1180.73 | 0.000847
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Figure 1
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Figure 1 Artificial neural network composed of 3-10-18-1 neurons multilayer.
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Figure 2 Plot of target and output plot of testing data of ANN architecture 3-10-18-1
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Figure 3
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in the figure are from ANN modeling.
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A ct

In this work, Artificial Neural Network (ANN) modeling was used to model

ferroelectric hysteresis_under the influence of compressive uniaxial stress using the

hysteresis data ine oft Lead Zirconate Titanate as an application. The main
objective is to f external stress, including electric field perturbation, on
the co Si erties, which are hysteresis area, remnant polarization,

coercivity an uadness. With its false tolerance abilities, ANN was used to predict

how the stress N (on applying and releasing), the stress magnitude (o) the electric
field amplitude (EF), and the electric frequency (f) affect on the hysteresis properties,
quantitatively. The best network architecture with highest accuracy was found in the
ANN training through extensive architecture search. It was then used to predict hysteresis
properties of the unseen testing patterns of input. The predicted and the actual testing data
were found to match very well for the whole extensive range of considered input

parameters. This well match, even when the stress was applied, certifies the ANN one of
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the superior techniques, which can be used for the benefit of technological development
of ferroelectric applications.

Keywords: Artificial Neural Network, Hysteresis Properties, Soft Lead Zirconate

Titanate, Uniaxial Stress.

1. Introduction

During recent years, the ferroelectric hysteresis cO f frequent

investigating issue due to the need of important ferroelectri s [¥,2]. In such an
application, the amplitude (Eo) and frequency (f) dependence o Sis parameters are
of important consideration. Both experimental and theoretical Studies have mainly

focused on the use of power law scaling to investigate how hysteresis properties response

to external field parameters in a form 0§ A «< where A denotes the hysteresis area,

a and S are exponents to the scaling . [1]. In spite of its reasonable

success on finding how hysteresi ield, each exponent obtained in this
way is not truly independent. Th lous works, « and g were extracted
separately [3]. Specifically, one s extracted at a time and when it was
retrieved, it was assumed constant an d back to the power law to find another
exponent. However, though this method is sound, the extracted exponents are very

vulnerable where a small change or error in « could cause a considerable change in £. In

addition, wit er g of relevant parameters in the scaling such as the inclusion

of the stress p e eek for the scaling in the form Ao f“E/o”, the problem

becomeSge 0 cated and some approximation has to be applied. For instance,
instead aghitude of the hysteresis area, one has to consider the difference

between the a rrent applied stress and that of the unstressed to form the scaling [4]

(A=A _)oc f“Elo”. 1)

Though its reasonable success in constructing the scaling formalism, it is very

obvious that the zero-stress hysteresis-area A _, in Eq. (1) must be known before hand

for each f and Eq conditions. On the other hand, in some systems, the unstressed condition

is not accessible such as in films structure where the internal stress is induced from the
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lattice spacing mismatch between the films and the substrate. In this case, one cannot
make the best use of Eqg. (1) in the modeling. Instead, one has to phenomenologically
propose new scaling function using either trial-and-error or more sophisticate empirical

methods. Moreover, when including the minor hysteresis loop, 2 scaling functions have to

differently proposed for minor loop and saturated loop even wit e d in the
same ferroelectric ceramic [5]. Further, the scaling exponents are ts but a
function of field parameters, e.g. @ may be a function of nd b ction of f
[5]. Therefore, there is no guarantee if there really exists si -law-scaling form

(where the exponents « , fand yare truly constant) for all ferrO%gcils systems. In such

cases, the simple power-law-scaling is no longer simple.

Consequently, in this work, Artificial Neural Network (ANN), another

sophisticate technique, was applied to resis behavior. ANN is a technique

widely used in industries for various p ility to ‘learn’ from examples.

Further, the ANN was recently found in modeling properties of material
prepared/measured under various COR herefore, in this work, the ANN was
used to model ferroelectric hystere anical loading condition using soft Lead

Zirconate Titanate as an application.

ries

Acrtific (ANN) is a statistical model of actual system built by
tuning gown as weight. It can perform function mapping for a set of
given val orresponding set of outputs [14]. ANN simulates biological
neural ne an brains so that it can learn to pick up relationship or pattern in

data the same human brain function. The type of ANN used in this paper is a
multilayer perceptron (MLP) which consist of input layer, hidden layer and output layer,
e.g. see Fig. 1. Each layer consists of simple processing elements called neuron and
neurons in each layer are connected together to form a neural network. Weight is assigned
to each connection between neurons, initially by small random number. By tuning

adjusting these weights, ANN can be used to learn relationship between input and output.
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A number of training algorithms are available for weight tuning process. In this
study, the Back Propagation (BP) algorithm, one of the most widely used algorithms [1],
was applied. In BP learning, two steps were performed, the forward pass and the

backward pass. In the forward pass, inputs are fed to ANN. Each neurons attain output by

calculate weighted sum (S;) from Za.w. where g is the activation level o
i

it !

iti, and Wij

is the weight from unit i to unit j. Then, the logistic transfer functi

where x = Sj, were applied to the output. Then, g(x = S;) beco nit j, and
the same procedure repeats for all neurons to obtain the final output is then
compared with its corresponding target value and the deviatio een them are
calculated in the backward pass. Error in the output layer is calculated from

e hidden layers. In these equations, t;

§;=(t;—a;)g'(s;) and &, ={Z§kwk1}g’ S;) for
k

is the target value for unit j, a;is the outp 9’'(x) is the derivative of the

logistic function g and S; is weighfg su . Then, the weight adjustment is

calculated as Aw; =nd,;a; where 7 s nifYy rate. These forward and backward

processes repeat with new input vector un ing criteria are met [11].

hysteresis loops, the loop area A, the remnant polarization Py, the hysteresis coercivity E,

and the hysteresis loop squareness S were extracted and used as output hysteresis data for
the ANN training. The input data for the ANN are the field frequency f, the field
amplitude E,, the stress application (applying or releasing), and the stress magnitude o.

These actual input experimental data were used to train the artificial neural network for
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predicting the output hysteresis properties. Input and output of the ANN are summarized
in Table 1.

As can be seen in Table 1, 2 network architectures were considered to maximize

the training efficiency and for accuracy comparison. Specifically, in the first architecture,

a single ANN was used to model four outputs in the same ti
neurons in input layer (representing stress application, o, Eo, a

layer (representing A, P, E; and S). In the second ar

separately to model the four outputs, i.e. 1 network for 1 the number of

hidden layers and hidden nodes in each hidden layers sear ducted for up to 2
layers and up to 30 neurons in each layer. Appropriate number of f®tden layer and hidden
nodes were achieved through heuristic and exhaustive search. Note that the best

architecture is listed in the format XX-XX-XX-XX where XX refers to the number of

nodes in input layer, first hidden lay ayer and output layer respectively.

After that, the raw input-output data 0 r ere separated into 3 sets which are

training, validate and testing d i0 6: 126: 126 respectively.

From the training, the n ighest accuracy for each architecture were

found and they are summarized in Tab he network accuracy is measured in terms of

mean absolute error (MAE) and the square of correlation coefficient () i.e.

::1| fi B yi|

MA

§ 0y (204 ()
(X0 0)- (200 ()~ ()

where f; is the prediction from neural network for record i, y; is the actual value for record

and

i, and n is the total number of data. In general, the smaller of MAE and the closer of r? to
1 are desirable. Therefore, from Table 2, it can be concluded that training with 4 separate
networks (second architecture) can improve modeling accuracy judging from both MAE
and r>. However, the first architecture required much less time and effort in training and

provide acceptable r? (> 0.8978). An example of scatter plot can be found in Figure ,
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which shows the plot between target value (testing group) and output from ANN of the
network trained to model hysteresis area with the architecture of 4-19-25-1. Further, Fig.
3 shows the comparison between the actual data (open square) and that from the ANN

predicting (lines). Being evident, the predicting data forms well representatives for the

actual experiments data for both applying and releasing stresses. i e the
previous power-law-scaling investigation where the scaling wa 0 one
particular stress application (applying) [4], as applying are of
different behaviors, this work can modeling both stress applyi at the same
time. Therefore, including with the good r? provided, it can be con that the ANN is

one of the appropriate and successful techniques in modeling ferroelectric hysteresis even

under both electrical and mechanical perturbations.

4. Summary

In this work, the ANN wa

e hysteresis properties of soft PZT
ceramics under loading condition. B gréement between the actual experiment
values and those from the ANN predictio NN has assured itself one of the fruitful
techniques in modeling ferroelectric hysteresis properties even under applied stresses.

Further, without the need to separate the data for the stress applying and stress releasing,

the ANN investigation r approved its advantage over the conventional power law
scaling techniq %
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Table 1

Table 2 Input and output data used in ANN training

Parameter Type Data format Max i
Stress action Input Categorical | n/a n
Stress magnitude Input Numerical | 0.75
Field amplitude Input Numerical | 1800
Field frequency Input Numerical | 100
Hysteresis area Output | Numerical | 49111000 | 248720
Remnant polarization | Output Numerical | 8496.2 147.3
Hysteresis Coercivity | Output Numerical 654.9 169.34
Loop squareness Output Nu 5 0.10709
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Table 3 ANN training results

Table 2

ANN Architecture ANN Training
Output MAE R
A 748556.95 | 0.971936 0.963404
4-24-13- Pr 213.03 0.940677 0.906773
First
4 E. 34.263541 | 0.975414 35.135949 0.980771
S 0215 0.012338 0.879406
4-19-25- A 767065.37 0.978375
1
4-22-22- P, 227.54 0.933713
1
Second
4-30-27- Ec 24.66 0.988093 33.61 0.983918
1
4-30- 0.006037 0.969711 0.011621 0.897849
1
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Figure 2

Soatter Plot
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Figure 3
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Figure 14 Comparison of the actual data (open square) and that from the ANN predicting
(lines) for the field amplitude E, ranging from 600 to 1800 mV and at o= 0.375

kN/m(5mm )? for (a) stress applying and (b) stress releasing.

70



