

รายงานวิจัยฉบับสมบูรณ์

นิเวศวิทยาของไฟในป่าที่มีไม้สนและผลกระทบของไฟต่อสังคมพืช และพลวัตรของธาตุอาหาร บริเวณภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว

โดย

นายกอบศักดิ์ วันธงไชย

รายงานวิจัยฉบับสมบูรณ์

นิเวศวิทยาของไฟในป่าที่มีไม้สนและผลกระทบของไฟต่อสังคมพืช และพลวัตรของธาตุอาหาร บริเวณภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว

นายกอบศักดิ์ วันธงไชย ภาควิชาวนวัฒนวิทยา คณะวนศาสตร์ มหาวิทยาลัยเกษตรศาสตร์

สนับสนุนโดยสำนักงานคณะกรรมการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

คณะผู้วิจัยขอขอบพระคุณสำนักงานกองทุนสนับสนุนการวิจัยและสำนักงานคณะกรรมการ อุดมศึกษาที่ได้ให้การสนับสนุนการศึกษาวิจัยเรื่อง "นิเวศวิทยาของไฟในป่าที่มีไม้สนและผลกระทบของไฟ ต่อสังคมพืชและพลวัตรของธาตุอาหารบริเวณภูก่มข้าว อุทยานแห่งชาติน้ำหนาว" ประจำปังบประมาณ 2552-2554 ขอขอบพระคุณคณะที่ปรึกษาอันประกอบด้วย รศ. ดร. สันต์ เกตุปราณีต และ รศ. ดร. ดอกรัก มารอด ที่ได้เสนอแนะข้อคิดเห็นอันเป็นประโยชน์อย่างมากต่อการศึกษาวิจัย ขอขอบพระคุณกรมอุทยาน แห่งชาติ สัตว์ป่าและพันธุ์พืชที่อนุญาตให้คณะผู้วิจัยได้ดำเนินการศึกษาวิจัยในพื้นที่ ขอขอบพระคุณ คุณ สิงขร รักษ์มณี หัวหน้าอุทยานแห่งชาติน้ำหนาว คุณเกษมสุข สุขสวัสดิ์ ผู้ช่วยหัวหน้าอุทยานแห่งชาติน้ำหนาว กุกท่านที่ได้ให้ความช่วยเหลือและอำนวยความสะดวกตลอด การเก็บข้อมูลในพื้นที่ ขอขอบพระคุณคุณ พันธุ์พงษ์ คงเดชอดิศักดิ์ หัวหน้าสถานีควบคุมไฟป่าเพชรบูรณ์ และเจ้าหน้าที่สถานีควบคุมไฟป่าจังหวัดเพชรบูรณ์ ที่ได้ให้ความกรุณาช่วยทำแนวกันไฟ เผาแปลงทดลอง และดำเนินการควบคุมการเผาแปลงทดลองให้สำเร็จลุล่วงไปได้ด้วยดี คณะผู้วิจัยขอขอบพระคุณคณะวน ศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ที่ได้ให้ความอนุเคราะห์ยานพาหนะและอำนวยความสะดวกในด้าน ต่างๆ ตลอดการดำเนินการวิจัย และขอขอบคุณนิสิตและบุคลากรคณะวนศาสตร์ทุกท่านที่ได้มีส่วนร่วมใน การดำเนินการศึกษาวิจัยในครั้งนี้ให้สำร็จลุล่วงลงได้

คณะผู้วิจัย สิงหาคม 2554 รหัสโครงการ: MRG5280208

ชื่อโครงการ: นิเวศวิทยาของไฟในป่าที่มีไม้สนและผลกระทบของไฟต่อสังคมพืชและพลวัตร

ของธาตุอาหาร บริเวณภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว

นักวิจัยและสถาบัน: นายกอบศักดิ์ วันธงไชย ภาควิชาวนวัฒนวิทยา คณะวนศาสตร์

มหาวิทยาลัยเกษตรศาสตร์

E-mail Address: fforksw@ku.ac.th

ระยะเวลาโครงการ: 2 ปี (16 มีนาคม 2552 – 15 มีนาคม 2554)

บทคัดย่อ:

ไฟป่าที่เกิดขึ้นจากมนุษย์เป็นสิ่งที่ปรากฏให้เห็นได้ทั่วไปในป่าของประเทศไทยรวมทั้งในป่าสน ซึ่งแม้ว่าป่าสนนั้นจะเป็นระบบนิเวศที่พึ่งไฟแต่การที่ป่าสนนั้นถูกไฟไหม้บ่อยครั้งย่อมส่งผลต่อสังคมพืช การหมุนเวียนธาตุอาหารอันนำไปสู่ความเสื่อมโทรมของระบบนิเวศ การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อ ศึกษาลักษณะโครงสร้างและองค์ประกอบของสังคมพืช พลวัตรการหมุนเวียนธาตุอาหารและลักษณะฤติ กรรมไฟในป่าสนเสื่อมโทรมและป่าสนผสมก่อ บริเวณภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว จังหวัด เพชรบูรณ์ โดยการวางแปลงศึกษาขนาด 50 × 50 เมตร จำนวนป่าละ 3 แปลง เพื่อศึกษาลักษณะ โครงสร้างของเชื้อเพลิง โครงสร้างและองค์ประกอบสังคมพืช คุณสมบัติของดิน และปริมาณคาร์บอนใน เชื้อเพลิงและในดินในระดับความลึก 15 ซม. ลักษณะพฤติกรรมไฟระหว่างการทดลองเผา และศึกษา ผลกระทบของการเผาต่อลักษณะต่างๆ ข้างต้นในป่าแต่ละประเภท

ผลการศึกษาพบว่า พฤติกรรมของไฟในป่าสนเสื่อมโทรมซึ่งมีหญ้าเป็นเชื้อเพลิงหลักนั้นมีไฟที่มี ความรุนแรงสูง (626.7 kW/m) กว่าป่าสนผสมก่อ (47.9 kW/m) ที่มีเชื้อเพลิงที่หลากหลายประเภท มากกว่า และนอกจากนี้ความชื้นของเชื้อเพลิงละความต่อเนื่องของเชื้อเพลิงนั้นมีผลต่อลักษณะ พฤติกรรมไฟเช่นกัน โดยป่าสนเสื่อมโทรมต้องใช้ระยะเวลาประมาณ 2 ปี ในการที่เชื้อเพลิงจะสะสม กลับมาเท่ากับระดับเดิมก่อนที่จะมีการเผา ในขณะที่ป่าสนผสมก่อต้องการระยะเวลาการสะสมเชื้อเพลิง ให้กลับมาสู่ระดับเดิมในเวลาประมาณ 2-3 ปี ผลกระทบของการเผาต่อการสูญเสียคาร์บอนสู่บรรยากาศ พบว่าไฟส่งผลให้เกิดการปลดปล่อยคาร์บอนออกสู่บรรยากาศโดยที่คาร์บอนที่สูญเสียออกไปนั้นมาจาก เชื้อเพลิงในส่วนที่อยู่เหนือพื้นดินเป็นส่วนใหญ่ โดยที่คาร์บอนในดินไม่ได้รับผลกระทบอย่างมีนัยสำคัญ เมื่อประมาณการสะสมคาร์บอนในเชื้อเพลิงภายหลังการเผาพบว่าป่าสนเสื่อมโทรมต้องใช้ระยะเวลา ประมาณ 2 ปี ในการสะสมคาร์บอนให้เท่ากับก่อนที่จะมีการเผาในขณะที่ป่าสนผสมก่อต้องการ ระยะเวลาประมาณ 3 ปี พลวัตรการเปลี่ยนแปลงของธาตุอาหารในเชื้อเพลิงก็พบว่าภายลังการเผาไป แล้ว 1 ปี ปริมาณชาตุอาหารในเชื้อเพลิงยังคงมีปริมาณน้อยกว่าก่อนการเผา เช่นกัน ในขณะที่การ เปลี่ยนแปลงของธาตุอาหารในดินนั้นพบว่ามีเพียงในโตรเจนทั้งหมดที่เพิ่มขึ้นอย่างมีนัยสำคัญและ ฟอสฟอรัสในรูปที่เป็นประโยชน์ที่ลดลงอย่างมีนัยสำคัญ การเผาทั้งในป่าสนเสื่อมโทรมและป่าสนผสม ก่อนั้นไม่ได้ส่งผลกระทบอย่างรุนแรงต่อคุณสมบัติทางกายภาพบางประการ โดยเฉพาะความหนาแน่น รวมของดินและลักษณะเนื้อดิน อีกทั้งไม่ได้ส่งผลต่อคุณสมบัติทางเคมีของดินโดยภาพรวมอย่างมี นัยสำคัญ เนื่องจากอุณหภูมิในดินระหว่างการเผาไม่มีการเปลี่ยนแปลงไปอย่างมีนัยสำคัญโดยเฉพาะ

ระยะเวลาที่อุณหภูมิในดินสูงเกินค่าอุณหภูมิวิกฤติมีค่าต่ำจนไม่ส่งผลกระทบต่อคุณสมบัติทางเคมีในดิน โดยเฉพาะกับธาตุอาหารที่มีอุณหภูมิจดเดือดสูง สำหรับผลกระทบของไฟต่อลักษณะโครงสร้างและ องค์ประกอบของสังคมพืชนั้นพบว่าโครงสร้างของลูกไม้และไม้หนุ่มทั้งความหนาแน่น ความสูงและ ขนาดเส้นผ่านศูนย์กลางได้รับผลกระทบจากการเผาในขณะที่ไม้ใหญ่ไม่ได้รับผลกระทบมากนัก ดังนั้น ในระยะยาวหากไม่มีมาตรการในการจัดการไฟที่มีประสิทธิภาพโดยเฉพาะในป่าสนเสื่อมโทรม กระบวนการสืบพันธุ์และการทดแทนของสังคมพืชอาจได้รับผลกระทบจนทำให้เปลี่ยนสภาพเป็นป่าทุ่ง หญ้าไปได้ในที่สุด

คำหลัก: นิเวศวิทยาของไฟ, ป่าสนเสื่อมโทรม, ป่าสนผสมก่อ, พฤติกรรมไฟ, ผลกระทบของไฟ, สมบัติ ของดิน, พลวัตรชาตุอาหาร, การสูญเสียคาร์บอน, อุทยานแห่งชาติน้ำหนาว Project Code: MRG5280208

Project Title: Fire ecology in pine-related forests and its effects on vegetation and nutrient

dynamics at Phu Koom Khaw, Nam Nao national park

Investigator: Kobsak Wanthongchai, Department of silviculture, Faculty of Forestry,

Kasetsart University, Chatuchak, Bangkok, Thailand

E-mail Address: fforksw@ku.ac.th

Project Period: 2 years (16 March 2009 – 15 March 2011)

Abstract:

Anthropogenic burning has become a common phenomenon throughout Thailand's forest including pine-related forest ecosystem. Although this ecosystem is fire-dependent ecosystem, too frequent fires may affect plant species composition and nutrient dynamics, thereby resulting in ecosystem degradation. This study aimed to determine fire effects on vegetation structure and composition, and nutrient dynamics and investigate fire behaviour characteristics in degraded pine forest, and pine-oak forest, at Phu Kum Khao, Nam Nao National park. Three 50 × 50 m replicate plots were setup for each forest community, where the experimental burning has been conducted. Pre- and post-burn ecosystem characteristics (i.e. fuel properties, fire behaviour, vegetation structure and composition, soil properties and carbon storage at 15 cm soil depths) were compared to determine fire effects on ecosystem properties in these forests.

The result showed that fire intensity in degraded pine forest (626.7 kW/m), which grasses was the main fuel loads, were greater than that of pine-oak forest (47.9 kW/m) where fuel loads was more diverse. In addition, the different in fuel structure and composition, in particular fuel moisture content, and fuel continuity, also resulted in different fire behaviour. Recovery period of fuel loads to pre-burn level in degraded pine forest was about 2 years, while the pine-oak forest required 2-3 years to reach pre-burn fuel loads level. The results indicated that carbon losses through the atmosphere were mainly from burning of aboveground fuel loads, while fire did not affect to belowground carbon significantly. Recovery period of carbon to the pre-burn level for degraded pine forest and pine-oak forest were 2 and 3 years, respectively. Aboveground nutrient pool dynamics as a result of fire revealed that post burn aboveground nutrient pool at 1 year after fire was still lower than pre-burn pool. Belowground nutrient pool dynamics for 1 year after the fire was significantly increased for total N, while available P was significantly decreased. Experimental burning did not result in soil properties changes significantly, neither soil physical properties, in particular soil bulk density and soil texture, nor soil chemical properties. This is because heat did not penetrate deep into the soil

layer, and hence the residence time of heating for any given critical temperatures was relatively short. The overstory structure and composition for both degraded pine forest and pine-oak forest were not affected by fire significantly, while saplings and seedlings structures (i.e. density, height, and diameter) were affected by burning obviously. Unless there are the effectively fire management program, especially for the degraded pine forest, the natural regeneration and succession may be affected seriously, and hence lead to ecosystem degradation. Finally this forest may be absolutely disappeared and replaced by degraded grassland ecosystem.

Keywords: Fire ecology, Degraded pine forest, Pine-oak forest, Fire behaviour, Fire effects, Soil properties, Nutrient dynamics, Carbon loss, Nam Nao national park

สารบัญ

	หน้า
กิตติกรรมประกาศ	I
บทคัดย่อ	II
สารบัญเรื่อง	VI
สารบัญตาราง	VII
สารบัญภาพ	X
บทน้ำ	1
วัตถุประสงค์	3
การตรวจเอกสารงานวิจัยที่เกี่ยวข้อง	4
สถานที่ศึกษา	10
วิธีการศึกษาวิจัย	20
ผลการศึกษา	
- พลวัตรของเชื้อเพลิงและพฤติกรรมไฟในป่าสนเสื่อมโทรมและป่าสนผสมก่อ	27
- ผลกระทบของการเผาป่าสนเสื่อมโทรมและป่าสนผสมก่อต่อลักษณะโครงสร้าง	56
และองค์ประกอบของสังคมพืช	
- ผลกระทบของการเผาป่าสนเสื่อมโทรมและป่าสนผสมก่อต่อการเก็บกักและ	81
ปลดปล่อยคาร์บอนออกสู่บรรยากาศ	
- ผลกระทบของการเผาป่าสนเสื่อมโทรมและป่าสนผสมก่อต่อคุณสมบัติของดิน	92
และพลวัตรของธาตุอาหาร	
วิจารณ์ผลการศึกษาและข้อเสนอแนะ	
- ผลกระทบของไฟต่อโครงสร้างและองค์ประกอบสังคมพืชป่าสน	110
- ผลกระทบของไฟในป่าสนกับปัญหาการปลดปล่อยคาร์บอนสู่บรรยากาศ	114
- ความหนักเบาของไฟ (Fire severity) ที่ส่งผลกระทบต่อระบบนิเวศ	116
- แนวทางการจัดการไฟจากผลของลักษณะความรุนแรงของไฟ	120
- ข้อเสนอแนะสำหรับงานวิจัยและแนวทางการบริหารจัดการไฟป่าในพื้นที่	121
เอกสารอ้างอิง	125
ตารางภาคผนวก	133
ภาพกิจกรรมการดำเนินงานวิจัย	154
Output จากโครงการวิจัย	168

สารบัญตาราง

Table		หน้า					
1	ข้อมูลภูมิอากาศเฉลี่ยจากสถานีอุตุนิยมวิทยาจากพื้นที่รอบอุทยานแห่งชาติ	16					
	น้ำหนาว พ.ศ. 2542-2552						
2							
	เสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ค่า standard error of the						
	mean แสดงในวงเล็บ						
3	ความชื้นของเชื้อเพลิงประเภทต่างๆ ในป่าสนเสื่อมโทรม (PF) และป่าสน						
	ผสมก่อ (O-PF) อุทยานแห่งชาติน้ำหนาว จังหวัดเพชรบูรณ์						
4	ความสูงของเชื้อเพลิงในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)	30					
	อุทยานแห่งชาติน้ำหนาว จังหวัดเพชรบูรณ์						
5	การปกคลุมของเชื้อเพลิงในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-	31					
	PF) อุทยานแห่งชาติน้ำหนาว จังหวัดเพชรบูรณ์						
6	สภาพพื้นที่ทางกายภาพ และช่วงเวลาของการเผาแปลงทดลองป่าสนเสื่อม	32					
	โทรม (PF) และป่าสนผสมก่อ (O-PF)						
7	ลักษณะภูมิอากาศเฉลี่ยระหว่างการเผาแปลงทดลอง โดยเครื่องมือตรวจวัด	33					
	สภาพภูมิอากาศเคลื่อนที่ (Kestrel 4500)						
8	อุณหภูมิของไฟที่ระดับความสูง 20 และ 50 ซม. เหนือพื้นดินในป่าสนเสื่อม	35					
	โทรม (PF) และป่าสนผสมก่อ (O-PF) ค่า standard error of the mean						
	แสดงในวงเล็บ						
9	ปริมาณเชื้อเพลิงก่อนเผาทั้งหมด ปริมาณสิ่งที่หลงเหลือจากการเผา	38					
	ปริมาณเชื้อเพลิงที่หายไป						
	และ เปอร์เซ็นต์เชื้อเพลิงที่หายไปในแปลงตัวอย่างของป่าสนเสื่อมโทรม						
	(PF) และป่าสนผสมก่อ (O-PF) ค่า standard error of the mean แสดงใน						
	วงเล็บ						
10	ค่าเฉลี่ยลักษณะพฤติกรรมไฟในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ	40					
	(O-PF) ค่า standard error of the mean แสดงในวงเล็บ						
11	อัตราการลามในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) อุทยาน	45					
	แห่งชาติน้ำหนาว จังหวัดเพชรบูรณ์						
12	ค่าความร้อนของเชื้อเพลิงและค่าปริมาณความร้อนสุทธิของเชื้อเพลิงในป่า	46					
	สนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) อุทยานแห่งชาติน้ำหนาว						
	จังหวัดเพชรบูรณ์						

13	ค่าความรุนแรงไฟในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)	48					
	อุทยานแห่งชาติน้ำหนาว จังหวัดเพชรบูรณ์						
14	ความสูงเปลวไฟในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)						
15	ความยาวเปลวไฟในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)	50					
	อุทยานแห่งชาติน้ำหนาว จังหวัดเพชรบูรณ์						
16	การศึกษาพฤติกรรมของไฟป่าในประเทศไทย 51						
17	ประมาณระยะเวลาและปริมาณการสะสมเชื้อเพลิงในป่าสนเสื่อมโทรม (PF)	55					
	และป่าสนผสมก่อ (O-PF) จากการสร้างความสัมพันธ์ระหว่างระยะเวลากับ						
	ปริมาณเชื้อเพลิง						
18	ลักษณะโครงสร้างของไม้ยืนต้น (tree) สังคมพืชป่าสนเสื่อมโทรม (PF) และ	58					
	ป่าสนผสมก่อ (O-PF) บริเวณภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว						
19	ลักษณะโครงสร้างของไม้รุ่น (Sapling) สังคมพืชป่าสนเสื่อมโทรมและป่าสน	62					
	ผสมก่อบริเวณภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว						
20	ลักษณะโครงสร้างของลูกไม้ (Seedling) สังคมพืชป่าสนเสื่อมโทรมและป่า	62					
	สนผสมก่อบริเวณภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว						
21	ความหลากชนิดของไม้ยืนต้น (tree) ในป่าสนเสื่อมโทรมและป่าสนผสมก่อ	64					
	บริเวณสวนสนภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว						
22	ความหลากชนิดของไม้หนุ่ม (sapling) และลูกไม้ (seedling) ในป่าสนเสื่อม	65					
	โทรม (PF) และป่าสนผสมก่อ (O-PF) บริเวณสวนสนภูกุ่มข้าว อุทยาน						
	แห่งชาติน้ำหนาว						
23	Bray-Curtis cluster analysis สำหรับไม้ยืนต้นในป่าสนเสื่อมโทรมและป่า	66					
	สนผสมก่อ บริเวณสวนสนภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว						
24	การเปลี่ยนแปลงความหนาแน่นของไม้ยืนต้นขนาดใหญ่ (dbh > 4.5 ซม.)	69					
	ภายหลังการเผา 1 ปี						
25	การเปลี่ยนแปลงขนาดเส้นผ่านศูนย์กลางที่ระดับอกและพื้นที่หน้าตัดของไม้	70					
	ยืนตันขนาดใหญ่ (dbh > 4.5 ซม.) ที่สำคัญบางชนิด ภายหลังการเผา 1 ปี						
26	ลักษณะโครงสร้างของไม้รุ่น (Sapling) สังคมพืชป่าสนเสื่อมโทรมและป่าสน	71					
	ผสมก่อบริเวณภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว ภายหลังการเผา 1 ปี						
27	ลักษณะโครงสร้างของลูกไม้ (Seedling) สังคมพืชป่าสนเสื่อมโทรมและป่า	75					
	สนผสมก่อบริเวณภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว ภายหลังการเผา 1 ปี						
28	ความเข้มขันของคาร์บอน (%) ในพืชกลุ่มต่างๆ ในแต่ละช่วงเวลา ในป่าสน	82					
	เสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)						
29	ความเข้มข้นของคาร์บอนในสิ่งที่หลงเหลือภายหลังการเผา (ขึ้เถ้า ถ่าน และ	83					
	ส่วนที่ใหม้ใฟบางส่วน) ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)						
L							

30	ความเข้มข้นของคาร์บอนในดินและรากพืชขนาดเล็กที่ระดับความลึก 0-15	84				
	ซม ในป่าสนเสื่อทโทรม (PF) และป่าสนผสมก่อ (O-PF)					
31	ปริมาณคาร์บอน (Carbon pool) ของส่วนที่อยู่เหนือพื้นดินในเชื้อเพลิงแต่	85				
	ละกลุ่มก่อนการเผาแปลงทดลองในป่าสนเสื่อมโทรม (PF) และป่าสนผสม					
	ก่อ (O-PF)					
32	ปริมาณคาร์บอน (Carbon pool) ของส่วนที่อยู่ใต้ดินที่ระดับความลึก 0-15					
	ซม. ก่อนการเผาแปลงทดลอง ปริมาณที่พบหลังการเผาทันที และการ					
	สูญเสียคาร์บอนจากการเผาในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-					
	PF)					
33	ปริมาณคาร์บอนที่หลงเหลือในส่วนต่างๆ เหนือพื้นดินภายหลังการเผาและ	88				
	ปริมาณคาร์บอนที่สูญหายไปจากการเผาในป่าสนเสื่อมโทรม (PF) และป่า					
	สนผสมก่อ (O-PF)					
34	การเปลี่ยนแปลงของปริมาณคาร์บอนในเชื้อเพลิงเหนือพื้นดิน ส่วนที่อยู่ใต้	89				
	ดินและปริมาณคาร์บอนรวมทั้งในส่วนเหนือพื้นดินและใต้ดิน (ดินและราก					
	พืชขนาดเล็กที่ระดับความลึก15 cm) ในระยะเวลา 1 ปีภายหลังการเผา ใน					
	ป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)					
35	ประมาณระยะเวลาและปริมาณการสะสมคาร์บอนในเชื้อเพลิงในป่าสนเสื่อม	90				
	โทรม (PF) และป่าสนผสมก่อ (O-PF) จากการสร้างความสัมพันธ์ระหว่าง					
	ระยะเวลากับปริมาณคาร์บอน					
36	การเปลี่ยนแปลงของคุณสมบัติทางเคมีของดินภายหลังการเผาป่าสนเสื่อม					
	โทรม (PF) และป่าสนผสมก่อ (O-PF) ที่ระดับความลึก 0-15 ซม					
37	ปริมาณชาตุอาหารในส่วนของเชื้อเพลิงประเภทต่างๆ ก่อนการเผา	106				
	ภายหลังการเผา 1 ปี และการเปลี่ยนแปลงของธาตุอาหาร ในป่าสนผสม					
	เสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)					
38	ปริมาณชาตุอาหารในดินที่ระดับ 0-15 ซม.ใต้ดิน ก่อนการเผาแปลงทดลอง	109				
	ภายหลังการเผาแปลงทดลองเป็นระยะเวลา 1 ปี และการเปลี่ยนแปลงของ					
	ธาตุอาหาร ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)					
39	ปริมาณคาร์บอนที่สูญหายไประหว่างการเกิดไฟในป่าบางประเภท	115				
40	อุณหภูมิวิกฤตสำหรับชาตุอาหารและสิ่งมีชีวิตในดิน	117				

สารบัญภาพ

Figure		หน้า				
1	ตำแหน่งที่ตั้งของอุทยานแห่งชาติน้ำหนาว	10				
2	ขอบเขตพื้นที่อุทยานแห่งชาติน้ำหนาว จังหวัดเพชรบูรณ์ และจังหวัดชัยภูมิ					
	และบริเวณพื้นที่ศึกษาบริเวณภูกุ่มข้าว					
3	ระดับความสูงของพื้นที่อุทยานแห่งชาติน้ำหนาว	12				
4	ชุดดินบริเวณอุทยานแห่งชาติน้ำหนาว	13				
5	ลักษณะทางธรณีวิทยาของพื้นที่อุทยานแห่งชาติน้ำหนาว	15				
6	แสดงสังคมพืชบริเวณอุทยานแห่งชาติน้ำหนาว					
7	แผนผังการวางแปลงทดลองเก็บข้อมูลเชื้อเพลิงในป่าสนและป่าสนผสมก่อ	22				
	(C= ตำแหน่งจุดไฟ, B = แปลงย่อยเก็บข้อมูลเชื้อเพลิงก่อนเผา, A= แปลง					
	ย่อยเก็บสิ่งที่หลงเหลือทันทีจากการเผาหลัง และ 2,4,6,12 = แปลงย่อยเก็บ					
	ข้อมูลหลังเผา 2,4,6, และ 12 เดือน ตามลำดับ)					
8	ลักษณะโครงสร้างของเชื้อเพลิงจำแนกตามกลุ่มของพืช ในป่าสนเสื่อมโทรม	27				
	(PF) และป่าสนผสมก่อ (O-PF)					
9	การเปลี่ยนแปลงของสภาพภูมิอากาศในระหว่างการเผาแปลงทดลอง	34				
10	ลักษณะอุณหภูมิของไฟที่ระดับความสูง 20 และ 50 ซม. เหนือพื้นดิน	35				
11	การเปลี่ยนแปลงอุณหภูมิบริเวณผิวดิน , 2, 5, และ 10 ใต้ดินระหว่างการ					
	เผา (a, b, c: ป่าสนเสื่อมโทรม, d, e,f: ป่าสนผสมก่อ)					
12	สัดส่วนของส่วนที่หลงเหลือภายหลังการเผาป่าสนเสื่อมโทรม (PF) และป่า	39				
	สนผสมก่อ (O-PF)					
13	อัตราการลุกลามของไฟในแต่ละแนวการเผาไหม้ทั้ง 4 แนว ในป่าสนเสื่อม	41				
	โทรม (PF) และป่าสนผสมก่อ (O-PF) ป่าสนเสื่อมโทรม (A, B, C) ป่าสน					
	ผสมก่อ (D, E, F)					
14	ความสูงของเปลวไฟในแต่ละแนวการเผาไหม้ทั้ง 4 แนว ในป่าสนเสื่อม	42				
	โทรม (PF) และป่าสนผสมก่อ (O-PF) ป่าสนเสื่อมโทรม (A, B, C) ป่าสน					
	ผสมก่อ (D, E, F)					
15	แบบจำลองการลุกลามของไฟในป่าสนเสื่อมโทรม (A, B, C) และป่าสนผสม	43				
	ก่อ (D, E, F) เส้นชั้นระยะเวลาของป่าสนเสื่อมโทรมเท่ากับ 1 นาที เส้นชั้น					
	ระยะเวลาของป่าสนผสมก่อเท่ากับ 5 นาที					

16	ลักษณะพฤติกรรมไฟด้านหัวไฟ (head-fire burning direction) ของป่าสน	44				
	เสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ตัวอักษร ^{a, b} แสดงความ					
	แตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent <i>t-test</i> , <i>P</i> <0.05) ของ					
	ลักษณะพฤติกรรมไฟด้านหัวไฟ ระหว่างพื้นที่					
17	แนวโน้มการเปลี่ยนแปลงปริมาณเชื้อเพลิงในแต่ละประเภทและปริมาณ	54				
	เชื้อเพลิงรวมในช่วงระยะเวลา 1 ปีภายหลังการเผา ในป่าสนเสื่อมดทรม					
	(PF) และป่าสนผสมก่อ (O-PF)					
18	สมการความสัมพันธ์ระหว่างปริมาณเชื้อเพลิงกับระยะเวลาเพื่อใช้ในการ	55				
	ประมาณระยะเวลาการสะสมของเชื้อเพลิงที่จะสะสมกลับสู่ในระดับก่อนการ					
	เผาในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)					
19	การกระจายของของไม้ใหญ่ตามขนาดชั้นเส้นผ่านศูนย์กลาง ในป่าสนเสื่อม	58				
	โทรม					
20	การกระจายของของไม้ใหญ่ตามขนาดชั้นเส้นผ่านศูนย์กลาง ในป่าสนผสม	59				
	ก่อ					
21	ดัชนีพื้นที่ผิวใบ (A) และเปอร์เซนต์การปกคลุมเรือนยอดของไม้ชั้นบน (B)	59				
	ในป่าสนเสื่อมโทรม (PF-1, PF-2, PF-3) และป่าสนผสมก่อ (O-PF-1, O-					
	PF-2, O-PF-3)					
22	ตัวอย่างภาพถ่ายเรือนยอดของป่าสนผสมก่อ (บน) และป่าสนเสื่อมโทรม	60				
	(ล่าง)					
23	การกระจายตามชั้นขนาดเส้นผ่านศูนย์กลางโคนตันของไม้รุ่นในป่าสนเสื่อม	63				
	โทรมและป่าสนผสมก่อ ก่อนการเผาแปลงทดลอ					
24	ความหลากชนิด (Shannon-Wiener Index) ของไม้ยืนต้น (tree) ไม้หนุ่ม	64				
	(sapling) และลูกไม้ (seedling) ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ					
	(O-PF) ก่อนการเผาแปลงทดลอง					
25	Bray-Curtis cluster analysis สำหรับไม้ยืนต้น (tree) ในป่าสนเสื่อมโทรม	66				
	และป่าสนผสมก่อ บริเวณสวนสนภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว					
26	Bray-Curtis cluster analysis สำหรับไม้หนุ่ม (sapling) ในป่าสนเสื่อมโทรม	67				
	และป่าสนผสมก่อ บริเวณสวนสนภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว					
27	Bray-Curtis cluster analysis สำหรับลูกไม้ (seedling) ในป่าสนเสื่อมโทรม	67				
	และป่าสนผสมก่อ บริเวณสวนสนภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว					
28	อัตราการตายของไม้ยืนต้นขนาดใหญ่ (dbh > 4.5 ซม.) ภายหลังการเผา 1	68				
	ปี					
29	การเปลี่ยนแปลงขนาดเส้นผ่านศูนย์กลางที่ระดับอกของไม้ยืนต้นขนาดใหญ่	70				

30	การเปลี่ยนแปลงความหนาแน่นของไม้หนุ่มภายหลังการเผา 1 ปี ในป่าสน	72		
	เสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)			
31	การเปลี่ยนแปลงขนาดเส้นผ่าศูนย์กลางที่โคนต้น (D ₀) และเส้นผ่าศูนย์กลาง	72		
	ที่ระดับความสูงเพียงอก (DBH) ของไม้หนุ่มภายหลังการเผา 1 ปี ในป่าสน			
	เสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)			
32	การเปลี่ยนแปลงขนาดความสูงของไม้หนุ่มภายหลังการเผา 1 ปี ในป่าสน	73		
	เสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)			
33	การเปลี่ยนแปลงขนาดพื้นที่หน้าตัดไม้หนุ่มภายหลังการเผา 1 ปี ในป่าสน	73		
	เสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)			
34	การเปลี่ยนแปลงขนาดพื้นที่เรือนยอด (a) และเปอร์เซนต์การปกคลุมพื้นที่	74		
	(b) ของไม้หนุ่มภายหลังการเผา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสน			
	ผสมก่อ (O-PF)			
35	การเปลี่ยนแปลงความหนาแน่นของลูกไม้ ภายหลังการเผา 1 ปี ในป่าสน	75		
	เสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)			
36	การเปลี่ยนแปลงขนาดเส้นผ่าศูนย์กลางที่โคนตัน (D₀) ของลูกไม้ ภายหลัง	76		
	การเผา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)			
37	การเปลี่ยนแปลงขนาดความสูงของลูกไม้ ภายหลังการเผา 1 ปี ในป่าสน	76		
	เสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)			
38	การเปลี่ยนแปลงขนาดพื้นที่เรือนยอด (a) และเปอร์เซนต์การปกคลุมพื้นที่	77		
	(b) ของลูกไม้ ภายหลังการเผา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสน			
	ผสมก่อ (O-PF)			
39	การกระจายตามชั้นขนาดเส้นผ่าศูนย์กลางที่โคนตัน (D ₀) ของไม้หนุ่มก่อน			
	การเผา และ 1 ปี ภายหลังการเผา ในป่าสนเสื่อมโทรม (PF: a) และป่าสน			
	ผสมก่อ (O-PF: b)			
40	การกระจายตามชั้นขนาดเส้นผ่าศูนย์กลางที่โคนตัน (D ₀) ของลูกไม้ก่อนการ	79		
	เผา และ 1 ปี ภายหลังการเผา ในป่าสนเสื่อมโทรม (PF: a) และป่าสนผสม			
	ก่อ (O-PF: b)			
41	อัตราส่วนระหว่างจำนวนหน่อทั้งหมดต่อจำนวนต้นกล้าของลูกไม้	80		
	(Seedling ratio) ก่อนการเผาแปลงทดลอง และภายหลังการเผา 1 ปี ในป่า			
	สนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)			
42	ค่าเฉลี่ยความเข้มข้นของคาร์บอนในพืชกลุ่มต่างๆ ในป่าสนเสื่อมโทรม (PF)	82		
	และปาสนผสมก่อ (O-PF) ตัวอักษร a, b ในวงเล็บแสดงความแตกต่างอย่าง			
	มีนัยสำคัญทางสถิติ (p<0.05) ของความเข้มขันคาร์บอนในระหว่างกลุ่มพืช			
	ในป่าแต่ละประเภท			

_	90	
สมการความสัมพันธ์ระหว่างปริมาณคาร์บอนในเชื้อเพลิงเหนือพื้นดินกับ		
ระยะเวลาเพื่อใช้ในการประมาณระยะเวลาการสะสมของคาร์บอนใน		
เชื้อเพลิงที่จะสะสมกลับสู่ในระดับก่อนการเผาในป่าสนเสื่อมโทรม (PF) และ		
ป่าสนผสมก่อ (O-PF)		
การเปลี่ยนแปลงความหนาแน่นรวมของดิน (soil bulk density) จากผลของ 92		
การเผาในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)		
การเปลี่ยนแปลงความเป็นกรด-ด่างของดินจากการเผาป่าสนเสื่อมโทรม	93	
(PF) และป่าสนผสมก่อ (O-PF) ในแปลงต่าง ๆ ที่ระดับความลึก 0-5 และ 5-		
15 ซม.		
ค่าเฉลี่ยความเป็นกรด-ด่างของดินจากการเผาป่าสนเสื่อมโทรม (PF) และ	94	
ป่าสนผสมก่อ (O-PF) ในแปลงต่างๆ ที่ระดับความลึก 0-5 และ 5-15 ซม.		
	95	
¹ .		
15 ซม.		
ค่าเฉลี่ยปริมาณอินทรียวัตถในดินจากการเผาป่าสนเสื่อมโทรม (PF) และป่า		
'		
แนวโน้มการเปลี่ยนแปลงในโตรเจนทั้งหมดในดิน ก่อนการเผาและภายหลัง	97	
การเผาในระยะเวลา 12 เดือน ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ		
(O-PF)		
แนวโน้มการเปลี่ยนแปลงของฟอสฟอรัสในรูปที่เป็นประโยชน์ในดิน ก่อน	98	
การเผาภายหลังการเผาทันที และภายหลังการเผา 12 เดือน ในป่าสนเสื่อม		
โทรม (PF) และป่าสนผสมก่อ (O-PF)		
แนวโน้มการเปลี่ยนแปลงของแคดไออนที่แลกเปลี่ยนได้ (Exchangeable	99	
Cations: K, Ca, Mg, Na) ในดิน ก่อนการเผาภายหลังการเผาทันที และ		
PF)		
, ,	104	
1		
	107	
(3.1.)		
เหนือพื้นดินในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)		
	เชื้อเพลิงที่จะสะสมกลับสู่ในระดับก่อนการเผาในป่าสนเสื่อมโทรม (PF) และ ป่าสนผสมก่อ (O-PF) การเปลี่ยนแปลงความหนาแน่นรวมของดิน (soil bulk density) จากผลของ การเผาในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) การเปลี่ยนแปลงความเป็นกรด-ด่างของดินจากการเผาป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ในแปลงต่างๆ ที่ระดับความลึก 0-5 และ 5-15 ซม. คำเฉลี่ยความเป็นกรด-ด่างของดินจากการเผาป่าสนเสื่อมโทรม (PF) และ ป่าสนผสมก่อ (O-PF) ในแปลงต่างๆ ที่ระดับความลึก 0-5 และ 5-15 ซม. การเปลี่ยนแปลงปริมาณอินทรียวัตถุในดินจากการเผาป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ในแปลงต่างๆ ที่ระดับความลึก 0-5 และ 5-15 ซม. คำเฉลี่ยปริมาณอินทรียวัตถุในดินจากการเผาป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ในแปลงต่างๆ ที่ระดับความลึก 0-5 และ 5-15 ซม. แนวโน้มการเปลี่ยนแปลงในโตรเจนทั้งหมดในดิน ก่อนการเผาและภายหลัง การเผาในระยะเวลา 12 เดือน ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) แนวโน้มการเปลี่ยนแปลงของฟอสฟอรัสในรูปที่เป็นประโยชน์ในดิน ก่อน การเผาภายหลังการเผาทันที และภายหลังการเผา 12 เดือน ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) แนวโน้มการเปลี่ยนแปลงของแคดไออนที่แลกเปลี่ยนได้ (Exchangeable Cations: K, Ca, Mg, Na) ในดิน ก่อนการเผาภายหลังการเผาทันที และ ภายหลังการเผา 12 เดือน ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ร้อยละของธาดุอาหาร (total C, N, P. K, Ca, Mg) ในส่วนต่างๆ ของ เชื้อเพลิงประเภทต่างๆ ในป่าสนเสื่อมโทรม (PF) และปาสนผสมก่อ (O-PF) เชื่อเพลิงประเภทต่างๆ ในป่าสนเสื่อมโทรม (PF) และปาสนผสมก่อ (O-PF) เขียบเทียบระหว่างก่อนการเผาและภายหลังการเผาผ่านไป 1 ปี การเปลี่ยนแปลงของปริมาณธาตุอาหาร (N, P, K, Ca, Mg) ของเชื้อเพลิง	

55	ร้อยละการเปลี่ยนแปลงของปริมาณธาตุอาหารในดินที่ระดับความลึก 0-15						
	ซม. ภายหลังการเผา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-						
	PF)						
56	แนวโน้มการเปลี่ยนแปลงในโตรเจนทั้งหมด (total N) และในโตรเจนในรูปที่	119					
	เป็นประโยชน์ (NH₄-N, NO₃-N) ภายหลังการเผา						
57	แนวโน๊มการเปลี่ยนแปลงความอุดมสมบูรณ์ของพื้นที่จากการเปลี่ยนแปลง	119					
	ของในโตรเจน						
58	สามแหลี่ยมองค์ประกอบของการบูรณาการจัดการไฟป่าที่ประกอบด้วย การ	123					
	จัดการไฟป่า ลักษณะทางนิเวศวิทยาไฟป่าและลักษณะทางเศรษฐกิจสังคม						
	วัฒนธรรมที่เกี่ยวข้องกับไฟป่า						

คำนำ

ระบบนิเวศของสังคมพืชปาสน (pine forest) เป็นสังคมพืชที่มีไม้สนเป็นองค์ประกอบ (pine-related forest ecosystem) ซึ่งจากสถิติของกรมอุทยานแห่งชาติ สัตว์ป่าและพันธุ์พืชรายงานว่า ป่าสนเขา สวนป่า ไม้สนในภาคตะวันออกเฉียงเหนือและภาคเหนือของประเทศไทยนั้นมีพื้นที่รวมกันทั้งสิ้นประมาณ 1.8% ของพื้นที่ป่าไม้ทั้งประเทศ แม้จะมีพื้นที่ไม่กว้างขวางมากนัก แต่ก็เป็นระบบนิเวศที่มีความสำคัญไม่น้อยไป กว่าสังคมพืชป่าไม้ประเภทอื่นๆ โดยที่สังคมพืชป่าสน นั้นส่วนมากจะอยู่บนภูเขาสูงที่เป็นพื้นที่ต้นน้ำลำธาร ที่ช่วยให้ป่าบริเวณนั้นสามารถอำนวยประโยชน์ทั้งทางตรงและทางอ้อมต่อชุมชนโดยรอบและชุมชนที่อยู่ ตอนล่าง นอกจากนี้ป่าประเภทดังกล่าวมีความโดดเด่นอยู่ในบริเวณที่เป็นแหล่งท่องเที่ยวที่สวยงามสามารถ ดึงดูดนักท่องเที่ยวให้มาเยี่ยมชมเป็นจำนวนมากในแต่ละปี นอกจากนี้สวนป่าไม้สนชนิดต่างๆ ทั้งไม้สน พื้นเมืองได้แก่สนสองใบ (Pinus merkusii) สนสามใบ (P. kesiya) และไม้สนต่างถิ่น เช่นสนคาริเบีย (P. caribea) สนโอโอคาร์ปา (P. oocarpa) มีการปลูกเพื่อฟื้นฟูระบบนิเวศป่าไม้บริเวณพื้นที่ต้นน้ำที่สูงชันเป็น จำนวนมากด้วยเช่นกัน

อย่างไรก็ตามสังคมพืชป่าสนเขา และสวนป่าไม้สนนั้นประสบปัญหาเรื่องไฟป่าที่เผาไหม้พื้นที่เป็น ประจำทุกปี ซึ่งไฟที่เกิดขึ้นนั้นล้วนแต่มีสาเหตุมาจากการกระทำของมนุษย์ทั้งสิ้น ทั้งนี้เนื่องมาจากบริเวณ พื้นป่าของสังคมพืชเหล่านี้ประกอบด้วยเชื้อเพลิงที่ติดไฟได้ง่ายโดยมีหญ้าและใบสนที่ร่วงหล่นเป็นเชื้อเพลิง หลัก ประกอบกับมีกิจกรรมที่เกี่ยวข้องกับไฟของชาวบ้านที่เข้มข้นโดยรอบพื้นที่ป่า เช่นการเผาวัสดุเศษ เหลือทางการเกษตรฯ จึงทำให้ป่าสน และสวนป่าไม้สนถูกไฟเผาไหม้อยู่เป็นประจำเกือบทุกปี จากลักษณะ ที่สังเกตพบในเบื้องต้นนั้นพบว่าสังคมพืชเหล่านี้มักจะมีแต่เฉพาะไม้สนขนาดใหญ่ที่เป็นไม้ชั้นเรือนยอดบน ขึ้นกระจายอยู่อย่างห่างๆ โดยจะขาดไม้ชั้นเรือนยอดรองๆ ลงมา และโดยเฉพาะอย่างยิ่งจะไม้ค่อยพบลูกไม้ หรือไม้หนุ่มของไม้สนภายในชั้นเรือนยอดของโครงสร้างป่า อีกทั้งพื้นป่ามักจะมีหญ้าชนิดต่างๆ ปกคลุม อย่างหนาแน่นอันเป็นผลมาจากไฟป่าที่เผาใหม้ทุกปี จากลักษณะดังกล่าวสามารถคาดการณ์ได้ว่า ขบวนการสืบพันธุ์และการทดแทนตามธรรมชาติของระบบนิเวศเหล่านี้กำลังอยู่ในสภาวะที่มีปัญหา เนื่อง การจากขาดลูกไม้ กล้าไม้ที่จะขึ้นมาทดแทนไม้ใหญ่ที่ค่อยๆ ตายลงไป ซึ่งมีการสำรวจพบว่าไม้สนขนาด ใหญ่หลายต้นนั้นถูกฟ้าผ่าตายเนื่องจากมีลำต้นที่สูงตระหง่านอยู่ในพื้นที่โล่งแจ้ง นอกจากนี้การเก็บชันสน ของชาวบ้านนั้นก็มีส่วนทำให้ไม้สนนั้นเสื่อมโทรมลงอย่างมากด้วยเช่นกัน ดังนั้นสังคมพืชเหล่านี้จึงประสบ กับปัญหาความเสื่อมโทรมลงจากปัญหาไฟป่าที่เกิดขึ้นอยู่เป็นประจำทุกปีและการเก็บยางสนมาอย่าง ต่อเนื่องเป็นเวลานานซึ่งอาจจะส่งผลให้ลักษณะโครงสร้าง ขบวนการทดแทนตามธรรมชาติ ตลอดทั้งมี ผลกระทบการหมุนเวียนของธาตุอาหารในระบบนิเวศเหล่านี้เปลี่ยนแปลงไป

โดยทั่วไปไม้สนนั้นสามารถทนทานต่อไฟได้ (อุทิศ, 2008) เนื่องจากมีลักษณะต่างๆ เช่น เปลือกที่ ค่อนข้างหนา ตาได้รับการปกป้องจากกลุ่มใบที่กระจุกอยู่ที่ปลายยอด สามารถแตกหน่อออกมาได้ภายหลัง จากไฟทำลายยอดเดิมฯ แต่อย่างไรก็ตามความสามารถในการทนไฟของไม้ชนิดใดๆ และของสังคมพืชนั้น จะต้องอยู่ในระบอบการเผา (burning regime) ที่เหมาะสม กล่าวคือต้องมีความถี่ของการเผา ความรุนแรง ของไฟ และขนาดพื้นที่ที่ถูกเผาที่สอดคล้องกับขบวนการต่างๆ ภายในระบบนิเวศของสังคมพืชนั้นๆ โดยเฉพาะอย่างยิ่งความถี่ของการเกิดไฟนั้นจัดเป็นปัจจัยสำคัญที่น่าจะมีผลต่อการคงอยู่ของไม้สนในระบบ นิเวศที่มีไม้สนเป็นองค์ประกอบ จากการศึกษาพบว่า ไม้สนสามใบนั้นไม่มีระยะของลูกไม้ที่เรียกว่า "grass-like stage" ซึ่งเป็นสิ่งที่สำคัญอย่างยิ่งต่อการอยู่รอดภายใต้สภาพแวดล้อมที่มีไฟเป็นปัจจัยรบกวน ดังนั้น กล้าไม้สนสามใบจึงต้องการช่วงเวลาที่กล้าไม้จะสามารถพัฒนาตัวให้มีความสูงเกินความสูงของเปลวไฟ ซึ่ง จะทำให้สามารถรอดพันอันตรายจากไฟได้

เนื่องจากในปัจจุบันจะพบว่าไม้สนนั้นขึ้นกระจายอยู่อย่างห่างๆ มาก จากการที่ไฟเผาทำลายลูกไม้ กล้าไม้ ส่งผลให้หญ้าซึ่งเป็นพืชที่ชอบแสงมากนั้นสามารถเจริญเติบโตได้อย่างดี ประกอบกับการตายของไม้ ใหญ่ยิ่งทำให้พื้นป่าโล่งมากยิ่งขึ้น หญ้าจึงเข้ายึดครองพื้นที่มากขึ้นเรื่อยๆ ซึ่งหากลักษณะดังกล่าวยังคง ดำเนินต่อไปโดยไม่มีการจัดการที่เหมาะสม อาจจะทำให้สังคมพืชป่าสนนั้นเปลี่ยนแปลงไปในทางที่เสื่อม โทรมลงกลายเป็นสังคมทุ่งหญ้า (savanna) ได้ในที่สุด นอกจากนี้สังคมย่อยป่าเต็งรังผสมสนและสังคมย่อย ป่าสนผสมไม้ก่อเป็นป่าที่มีลักษณะเฉพาะของการขึ้นอยู่ร่วมกันตามปัจจัยสิ่งแวดล้อม ที่ยังไม่มีการศึกษา ทางด้านของนิเวศวิทยาไฟป่าและอิทธิพลของไฟต่อการคงอยู่ของสังคมพืชย่อยเหล่านี้ในประเทศไทย และ ด้วยสาเหตุที่มีการขึ้นอยู่ของพันธุ์พืชในป่าเต็งรังและไม้สนผสมปะปนกันซึ่งต่างก็มีปริมาณของเชื้อเพลิงสูง มากในฤดูแล้ง ประกอบกับส่วนต่างๆ ของไม้สนมียางหรือน้ำมันที่ติดไฟได้ง่าย ร่วงหล่นทับถมอยู่เป็นชั้น หนาบนพื้นป่าและผุสลายช้ามาก จึงเป็นแหล่งเชื้อเพลิงอย่างดีในช่วงฤดูแล้งซึ่งจะมีอิทธิพลอย่างมากต่อ พฤติกรรมไฟที่เกิดขึ้นตลอดทั้งผลกระทบต่อพืชและธาตุอาหาร

ดังนั้นการศึกษาทำความเข้าใจในระบอบการเผา โดยการศึกษาผ่านทางด้านนิเวศวิทยาของไฟใน พื้นที่ พฤติกรรมของไฟที่เกิดขึ้น ตลอดทั้งอิทธิพลและผลกระทบของไฟต่อลักษณะโครงสร้างของป่า และ ผลกระทบต่อดินและการหมุนเวียนของธาตุอาหารในสังคมพืชป่าสน และสวนป่าไม้สนจึงเป็นสิ่งสำคัญและ จำเป็นอย่างยิ่งในอันที่จะทำให้ทราบถึงลักษณะของระบอบการเผาที่เหมาะสมที่อยู่ภายในช่วงของความผัน แปรตามธรรมชาติ (natural variation) ของระบบนิเวศสำหรับสังคมพืชนี้ เพื่อปรับปรุงและรักษาสภาพป่า เหล่านี้ไว้ให้มีผลผลิตหรืออำนวยประโยชน์อย่างยั่งยืนทั้งทางด้านนิเวศวิทยา ด้านเศรษฐกิจ ด้านการ ท่องเที่ยว ด้านการศึกษาวิจัย และการรักษาไว้ซึ่งความหลากหลายทางชีวภาพของระบบนิเวศ นอกจากนี้ ความเข้าใจอย่างถ่องแท้ในเรื่องนิเวศวิทยาของไฟจะช่วยให้การดำเนินการควบคุมหรือจัดการไฟในพื้นมีมี ประสิทธิภาพมากยิ่งขึ้น โดยที่สามารถลดปัญหาหมอกควันและลดปริมาณการปลดปล่อยก๊าซเรือนกระจก จากการเผาป่าที่มากเกินความจำเป็นที่ระบบนิเวศนั้นๆ ต้องการ แต่เป็นที่น่าเสียดายว่าข้อมูลทางด้าน นิเวศวิทยาป่าไม้ นิเวศวิทยาของไฟ พฤติกรรมไฟ และผลกระทบของไฟต่อสิ่งแวดล้อมในด้านต่างๆ ใน สังคมพืชป่าสน ยังมีการศึกษาที่น้อยมาก จึงมีความจำเป็นอย่างยิ่งยวดที่จะต้องดำเนินการศึกษาในครั้งนี้

วัตถุประสงค์

- 1. เพื่อศึกษาลักษณะโครงสร้างของป่า การสืบพันธุ์ตามธรรมชาติและคุณสมบัติของดินทาง กายภาพและเคมี และปริมาณคาร์บอนที่สะสมในเชื้อเพลิง ในสังคมพืชป่าสนเสื่อมโทรมและป่าสนผสม ก่อ บริเวณภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว
- 2. เพื่อศึกษานิเวศวิทยาของไฟและพฤติกรรมของไฟในสังคมพืชป่าสนเสื่อมโทรมและป่าสน ผสมก่อ บริเวณภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว
- 3. เพื่อศึกษาผลกระทบของไฟต่อลักษณะโครงสร้างป่า การสืบพันธุ์ตามธรรมชาติคุณสมบัติของ ดิน พลวัตรการหมุนเวียนของธาตุอาหาร และการสูญเสียคาร์บอน รวมทั้งแนวโน้มการเปลี่ยนแปลง ภายหลังไฟไหม้ในระยะเวลา 1 ปี ในสังคมพืชป่าสนเสื่อมโทรมและป่าสนผสมก่อ บริเวณภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว

การตรวจเอกสารงานวิจัยที่เกี่ยวข้อง

1. สังคมพืชป่าสน

สังคมพืชป่าสน (pine forest) เป็นสังคมพืชที่มีไม้สนเป็นองค์ประกอบ (pine-related forest ecosystem) ซึ่งประกอบด้วย 3 สังคมย่อย (association) ได้แก่ สังคมย่อยป่าสน (pine forest) สังคม ย่อยป่าสนผสมไม้ก่อ (pine-oak forest) และสังคมย่อยป่าเต็งรังผสมสน (pine-dipterocarp forest) ซึ่ง เป็นสังคมพืชที่ปกติมักพบอยู่ในพื้นที่ที่มีระดับความสูงน้อยกว่า 1400 เมตร จากระดับน้ำทะเล ดินลึก พอสมควร ดินมีสภาพเป็นกรด มีช่วงความแห้งแล้งยาวนาน มีไฟป่าค่อนข้างบ่อย สังคมพืชป่าสนเขา นั้นจำแนกโดยอาศัยพันธุ์ไม้หลักเพียงอย่างเดียว คือป่าที่มีไม้สนสองใบ (*Pinus merkusii*) และสนสาม ใบ (*P. kesiya*) เป็นไม้เด่น ส่วนป่าเต็งรังผสมสนและป่าสนผสมไม้ก่อเป็นสังคมที่มีไม้สนขึ้นอยู่เป็นไม้ เรือนยอดเด่น เช่นกัน (อุทิศ, 2008)

การศึกษาทางด้านนิเวศวิทยาของไฟป่าในแต่ละระบบนิเวศนั้นเป็นสิ่งจำเป็นในการที่จะทราบถึง ลักษณะโดยธรรมชาติของระบบนิเวศแต่ละแห่งที่มีไฟเป็นปัจจัยรบกวนว่ามีขนาดความรุนแรง ความถึ่ และผลกระทบมากน้อยเพียงใด ดังนั้นการศึกษาทางด้านนิเวศวิทยาไฟป่าจึงมีการดำเนินการศึกษากัน มาอย่างต่อเนื่องยาวนาน โดยเฉพาะในระบบนิเวศแถบทวีปอเมริกาเหนือ ออสเตรเลีย และยุโรป ที่ซึ่ง ป่าหลายประเภทมีไฟเป็นปัจจัยรบกวนในระบบนิเวศที่ยังคงดำเนินต่อเนื่องมาจากอดีตสู่ปัจจุบัน (Agee, 1993; Pyne, 2001) อย่างไรก็ตามแม้ว่าไฟจะเป็นปัจจัยที่รบกวนระบบนิเวศป่าไม้ก็ตามแต่การปรากฏ อยู่ของไฟนั้นหากอยู่ในช่วงของความผันแปรตามธรรมชาติ (natural variation of disturbance) แล้ว ระบบนิเวศนั้น ๆ ก็จะยังคงอยู่และให้ประโยชน์ทั้งทางตรงและทางอ้อมอย่างเหมาะสม แต่หากเมื่อใดก็ ตามที่ปัจจัยรบกวนดังกล่าวมีมากเกินช่วงของความผันแปรตามธรรมชาติ ก็จะทำให้ระบบนิเวศขาด ความสมดุล ไม่สามารถให้ประโยชน์ได้อย่างครบถ้วนและเสื่อมโทรมลงไปในที่สุด (Swanson et al., 1994)

2. นิเวศวิทยาของไฟป่า

นิเวศวิทยาไฟป่านั้นเป็นการศึกษาถึงความสัมพันธ์ระหว่างไฟ และปัจจัยสิ่งแวดล้อมอื่นๆ ซึ่ง ศึกษาถึงลักษณะพฤติกรรมไฟ อิทธิพลของไฟที่เกิดขึ้นต่อพืช สัตว์ และสิ่งแวดล้อมต่างๆ เช่น ดิน น้ำ การหมุนเวียนธาตุอาหาร โดยมีเป้าหมายหลักในการนำความรู้ไปใช้ในการดำเนินการจัดการไฟป่าใน พื้นที่เพื่อให้ตอบสนองต่อเป้าหมายการจัดการไฟป่าในพื้นที่นั้นๆ (สันต์, 2530) ดังนั้นการศึกษา ทางด้านนิเวศวิทยาของไฟนั้นมีขอบเขตการศึกษาที่กว้างขวางมาก และสามารถศึกษาในเชิงลึกได้อย่าง หลากหลายแนวทาง เนื่องจากเป็นการศึกษาถึงปัจจัยสิ่งแวดล้อมต่างๆ และผลกระทบที่เกิดขึ้น อย่างไร ก็ตามสิ่งสำคัญอันดับแรกของการศึกษาทางด้านนิเวศวิทยาไฟป่านั้นคือการเข้าใจถึงลักษณะพฤติกรรม ไฟที่เกิดขึ้นผลกระทบในเบื้องต้นต่อพืชพรรณ ดินและการหมุนเวียนของธาตุอาหาร

การศึกษาทางด้านนิเวศวิทยาของไฟในป่าที่มีไม้สนเป็นองค์ประกอบนั้นมีการศึกษาอย่างมาก ในทวีปอเมริกาเหนือ ในประเทศสหรัฐอเมริกา คานาดา และประเทศในทวีปยุโรป โดยเฉพาะประเทศ สเปน โปรตุเกส สวีเดนและเดนมาร์ก เป็นต้น อย่างไรก็ตามการศึกษานิเวศวิทยาไฟป่าในป่าสนสำหรับ ประเทศไทยยังมีความขาดแคลนข้อมูลการวิจัยอย่างมาก ซึ่งพบว่ามีการศึกษาอยู่เพียงบางด้านเท่านั้น (คนึงนิจ, 2539; อาภรณ์, 2539) จึงยังไม่สามารถที่จะสรุปถึงลักษณะของนิเวศวิทยาของไฟและระบอบ การเผา (fire regime) ของป่าสนในประเทศไทยได้อย่างชัดเจน ดังนั้นจึงต้องอาศัยข้อมูลจากการศึกษา เทียบเคียงของระบบนิเวศในป่าสนของประเทศอเมริกา สเปนและโปรตุเกสมาใช้ โดยที่ระบอบการเผาที่ เกิดขึ้นในสังคมพืชป่าสนนั้นสามารถจำแนกได้เป็น understory fire regime, mixed fire regime, stand replacement fire regime (Arno and Fiedler, 2005) ซึ่งจะพบว่า understory fire regime ของสังคมพืช ปาสนในประเทศต่างๆ ดังกล่าวข้างต้น มีความใกล้เคียงกับสังคมพืชที่มีไม้สนเป็นองค์ประกอบสำหรับ ประเทศไทย โดยที่ระบอบการเผาแบบดังกล่าวนั้นไฟจะมีความรุนแรงไม่สูงมาก มีความถี่ของการเกิด ไฟที่สูงอยู่ระหว่าง 1-30 ปี จากการศึกษาส่วนมากพบว่าต้นไม้มีการสืบพันธุ์ตามธรรมชาติเป็นหย่อมๆ ที่มีชั้นอายุเดียว (Arno *et al.*, 1995; Bonnicksen, 2000) ซึ่งกลุ่มของลูกไม้เหล่านี้จะมีการพัฒนาต่อ ทดแทนตันไม้ใหญ่ที่ค่อยๆ ตายลงไปจากการทำลายของลม แมลง ฟ้าผ่าหรือจากไฟ ซึ่งต่อมาไฟก็จะ เผาทำลายเศษซากเหล่านี้ทำให้เกิดสภาพแวดล้อมที่เหมาะต่อการเจริญของกลุ่มลูกไม้กล้าไม้ที่เกิดมา ทดแทน หลังจากนั้นไฟที่เกิดขึ้นต่อมาซึ่งมีความรุนแรงไม่มากนั้นก็จะทำลายลูกไม้กล้าไม้ออกไป บางส่วนแต่ยังคงมีกล้าไม้บางส่วนที่สามารถทนทานและเจริญเติบโตพัฒนาการต่อไปเป็นไม้ใหญ่ได้ใน ที่สุด (Arno and Fiedler, 2005) การที่มีไฟเกิดขึ้นถี่นั้นเป็นสิ่งจำเป็นสำหรับป่าสนเช่น ponderosa pine ในการที่จะรักษาสภาพป่าที่โปร่งซึ่งเป็นสิ่งสำคัญต่อการพัฒนาให้ต้นไม้มีขนาดใหญ่และมีอายุยืน ยาวนาน อย่างไรก็ตามการความถี่และความรุนแรงของการเผานั้นเป็นองค์ประกอบที่สำคัญอย่างยิ่งใน การรักษาสภาพป่าให้คงอยู่ ในช่วงศตวรรษที่ 20 นั้น ป่าสนชนิดต่างๆ ในทวีปอเมริกาเหนือได้รับการ ป้องกันไฟป่าเป็นอย่างดีแม้แต่ในบางระบบนิเวศที่ไฟเป็นปัจจัยในการดำรงอยู่ เช่นป่าสน ponderosa pine ส่งผลให้พื้นป่าแน่นทึบขึ้น มีการเจริญเติบโตของลูกไม้กล้าไม้ใต้พื้นป่าอย่างมากส่งผลให้การ เจริญเติบโตของหมู่ไม้ลดลงเนื่องจากการแก่งแย่งปัจจัยสิ่งแวดล้อมต่าง ๆ ส่งผลให้ป่ามีความเสี่ยงต่อการ ถูกทำลายของโรคแมลงและการเกิดไฟที่มีความรุนแรงที่อาจเป็น stand replacement fire ได้ (Pyne, 2001) ซึ่งสามารถทำลายหรือสร้างความเสียหายอย่างมากต่อระบบนิเวศได้ เช่นเดียวกับที่ Williams mountain pine นั้นตกอยู่ในสภาพของการถดถอยเสื่อมโทรม (1998) ได้รายงานว่าหมู่ไม้ table อันมีสาเหตุมาจากการป้องกันไฟที่มากเกินไปและการขาดความเข้าใจในด้าน นิเวศวิทยาของไม้ชนิดนี้ อย่างไรก็ตามการที่ไฟเกิดถี่เกินไปก็อาจจะเป็นสาเหตุให้ป่านั้นเกิดการเสื่อม โทรมลงได้เช่นกัน โดยที่ไฟนั้นจะไฟรบกวนขบวนการสืบพันธุ์ตามธรรมชาติ เปลี่ยนแปลงลักษณะ โครงสร้างของป่าในระยะยาวได้ (Goldammer, 2002) จากความเข้าใจในเรื่องนิเวศวิทยาของไฟในป่า สนประเภทต่างๆ ที่มีไฟเป็นปัจจัยรบกวนที่มีการศึกษามาเป็นเวลาหลายทศวรรษทำให้ปัจจุบันมี การศึกษาการจัดการไฟโดยมีการนำไฟไปใช้ในการฟื้นฟูระบบนิเวศป่าสนหรือรักษาสภาพป่าให้คงอยู่ใน หลายพื้นที่ (White, 1986; Waldrop *et al.*, 1987; Fulé and Covington, 1994; Biswell, 1999; Arno and Allison-Bunnell, 2002; Bailey and Covington, 2002; Arocena and Opio, 2003; Fulé et al., 2004; Arno and Fiedler, 2005)

สำหรับพฤติกรรมของไฟ ความร้อนที่เกิดขึ้นระหว่างการเผาตลอดทั้งช่วงระยะเวลาที่ความร้อน ปรากฏอยู่ในพื้นที่ (resident time of heating) นั้นก็เป็นสิ่งที่จำเป็นในการศึกษาทางด้านนิเวศวิทยาของ ไฟเช่นกัน เนื่องจากสิ่งเหล่านี้จะเป็นตัวบ่งบอกถึงความสามารถของการอยู่รอดของตันไม้ และความ รุนแรงของของไฟที่เกิดขึ้นก็ยังส่งผลต่อรูปแบบของการหมุนเวียนของธาตุอาหารที่เปลี่ยนแปลงไป (DeBano et al., 1998; Neary et al., 1999) พฤติกรรมไฟนั้นผันแปรไปตามสภาพภูมิประเทศ สภาพ ภูมิอากาศและลักษณะของเชื้อเพลิงในแต่ละท้องที่ (Chandler et al., 1983; Pyne et al., 1996) ดังนั้น จึงไม่เป็นการสมควรที่จะนำผลการศึกษาจากพื้นที่หนึ่งมาประยุกต์ใช้ในอีกพื้นที่หนึ่ง แม้ว่าจะเป็นระบบ นิเวศเดียวกันก็ตาม (Goldammer, 1993) แม้ว่าไฟป่าในประเทศไทยส่วนใหญ่เป็นไฟประเภทไฟผิวดิน (surface fire) แต่ความรุนแรงของไฟนั้นแตกต่างกันไปตามระบบนิเวศและพื้นที่ เช่นไฟป่าในป่าเต็งรังมี ความรุนแรงของไฟ (fire intensity) ระหว่าง ตั้งแต่ 51-1000 kW/m เป็นตัน (Akaakara et al., 2003; Visithipanit and Viriya, 2005; Wanthongchai, 2008; คนึงนิจ, 2539)

ผลกระทบของไฟป่าต่อระบบนิเวศที่มีไม้สนเป็นองค์ประกอบ 3.1 ผลกระทบต่อพืชพรรณ

โดยทั่วไปการที่ไม้จะสามารถทนทานหรือพัฒนาให้สามารถดำรงอยู่ได้ภายใต้สภาวะแวดล้อมที่ มีไฟนั้น พืชต้องมีการปรับตัวในเรื่องของสรีรวิทยาเช่น มีเปลือกหนา สามารถแตกหน่อได้ดี มีตาที่ได้รับ การปกป้องจากความร้อน มีลักษณะของเมล็ดและการแพร่กระจายของเมล็ดที่สอดคล้องกับไฟหรือ ช่วงเวลาการเกิดไฟฯ (Whelan, 1995) โดยเฉพาะความหนาของเปลือกนั้นเป็นปัจจัยที่สำคัญอย่างยิ่งที่ จะช่วยป้องกันความเสียหายของลำต้นจากไฟ ซึ่งความชื้นในเปลือกหรือความหนาแน่นของเปลือกนั้นมี ความสำคัญน้อยกว่าความหนาของเปลือกอย่างมาก (Agee, 1993) ซึ่งหากเนื้อเยื่อพืชได้รับความร้อน 60 °C ต่อเนื่องเป็นเวลานาน 1 นาที จะทำให้เนื้อเยื่อนั้นได้รับความเสียหาย (Hare, 1961) โดยที่ความ หนาของเปลือกอย่างน้อย 1-1.3 ซม. นั้นจะช่วยป้องกันความเสียหายจากไฟได้ (Wright and Bailey, 1982) นอกจากนี้ยังอาจจะสามารถจำแนกพันธุ์ไม้ตามลักษณะของไม้ชนิดนั้นได้เป็น ชนิดพันธุ์ที่ไม่มี การปรับตัวต่อไฟ (avoiders) ชนิดพันธุ์ที่อาจจะถูกทำลายได้จากไฟแต่สามารถแตกหน่อหรือยอด ออกมาได้ภายหลัง (endurers) ชนิดที่แม้จะถูกทำลายโดยไฟแต่ก็มีเมล็ดอยู่ในพื้นที่ในดินที่สามารถจะ งอกขึ้นมาใหม่ได้ (evaders) ชนิดพันธุ์ไม้เบิกนำที่มีการเจริญเติบโตที่รวดเร็วมาก (Invaders) และชนิด พันธุ์ซึ่งสามารถทนทานอยู่ในสภาพที่มีไฟได้เช่นมีเปลือกหนา (Resisters) (Edmonds *et al.*, 2000) แต่ แม้ว่าไม้ชนิดนั้นๆ จะสามารถทนทานต่อไฟได้ก็ตาม กล้าไม้ของไม้ชนิดนั้นๆ ก็ยังคงต้องการช่วง ระยะเวลาที่ไม่มีไฟในการที่จะสามารถเจริญเติบโตรอดพ้นจากอันตรายของไฟ ซึ่งหลักการนี้เป็นสิ่งที่ นำไปสู่การใช้เทคนิคการเผาตามกำหนด (prescribed burning) ในการควบคุมความรุนแรงและกำหนด ความถี่ของการเผาเพื่อส่งเสริมขบวนการสืบพันธุ์ตามธรรมชาติ

ไฟนั้นมีผลกระทบต่อพืชพรรณทั้งในระดับตัน (individual scale) และระดับหมู่ไม้ (community scale) และทั้งในระยะสั้นและระยะยาว ซึ่งโดยทั่วไปพืชพรรณที่ระดับล่างมักจะได้รับผลกระทบมากและ ความเสียหายจะค่อยๆ ลดลงตามระดับความสูงของชั้นเรือนยอดที่เพิ่มมากขึ้น เช่น ไฟทำให้ลูกไม้ในป่า

้เต็งรังนั้นจะมีอัตราการตาย 100 เปอร์เซ็นต์ ขณะที่ไม้หนุ่มมีอัตราการตายเพียง 58 เปอร์เซ็นต์ (สุรเด่น, 2532) สันต์ และคณะ (2534) กล่าวว่าป่าสนเขามีไฟเกิดขึ้นเป็นประจำทุกปี ซึ่งทำให้สภาพป่ามีแต่ ดันไม้ขนาดใหญ่ ต้นไม้ชั้นสองไม่มี พื้นป่ามีลูกไม้สนและพืชล้มลุกต่างๆ ซึ่งจะถูกไฟเผาไหม้ตายไป ทุกๆ ปี ซึ่งไฟนั้นไม่ค่อยมีผลกระทบต่อไม้ใหญ่มากนัก เพราะการตายของไม้สนนั้นจะสัมพันธ์กับรอย ใหม้เกรียมของเรือนยอดหรือโคนตันถูกไฟเผาอย่างรุนแรง กล่าวคือถ้าเรือนยอดใหม้เกรียมเกิน 90 เปอร์เซ็นต์ ต้นไม้จะตายภายในเวลา 2 ปี แต่ถ้าเรือนยอดไหม้เกรียมน้อยกว่า 80 เปอร์เซ็นต์ โอกาสที่ ต้นไม้จะรอดก็มีมาก อีกทั้งยางสนช่วยป้องกันการเข้าทำลายของโรคและแมลง และเปลือกที่หนาช่วย ้ป้องกันไฟได้ดี แต่การเกิดไฟทุกปีทำให้พื้นดินปราศจากสิ่งปกคลุม น้ำจะระเหยออกจากดินทำให้พื้นที่ แห้งแล้ง ต้นไม้ใหญ่เจริญเดิบโตช้าลง ส่วนไม้วัยรุ่นที่ถูกไฟทุกปีจะมีการเจริญเติบโตทั้งทางความโตและ ความสูงลดลง 25 และ 20 เปอร์เซ็นต์ ตามลำดับ ต้นไม้ที่มีขนาดใหญ่และเรือนยอดที่สูงนั้นมักจะได้รับ อันตรายน้อยกว่าจากอาการยอดใหม้เกรียม เมื่อเปรียบเทียบกับไม้ขนาดเล็ก ต้นไม้ที่มีตาขนาดใหญ่ หรือมีตาที่ถูกเผาภายหลังจากการทำให้ตามีความแข็งแกร่ง จะมีความเสียหายจากไฟที่น้อย เช่นกัน สัดส่วนของเรือนยอดที่ใหม้เกรียมนั้นก็สามารถใช้เป็นตัวพยากรณ์การตายของต้นไม้ได้โดยเฉพาะไม้สน (Peterson and Ryan, 1986) คนึ่งนิจ (2539) พบว่า ภายหลังเกิดไฟใหม่ไม้วัยรุ่นจะมีความหนาแน่น ลดลง 40 เปอร์เซ็นต์ ขณะที่ลูกไม้นั้นตายหมด อย่างไรก็ตามการศึกษาดังกล่าวนั้นเป็นการศึกษาใน แปลงที่มีขนาดค่อนข้างเล็ก กล่าวคือมีการทดลองเผาแปลงขนาดเพียง 5×10 เมตร เท่านั้น ซึ่งการเผา ในแปลงขนาดเล็กนี้อาจจะยังไม่เห็นผลกระทบที่ชัดเจนเนื่องจากความร้อนที่สะสมหรือการเผาไหม้สะสม ยังมีน้อยอาจจะทำให้พฤติกรรมของไฟ ความรุนแรงของไฟ ตลอดทั้งผลกระทบที่เกิดขึ้นนั้นอาจจะน้อย กว่าการเผาแปลงขนาดใหญ่ ซึ่งจะส่งผลกระทบที่รุนแรงกว่าและส่งผลกระทบที่เป็นบริเวณกว้างกว่า

3.2 ผลกระทบต่อการหมุนเวียนธาตุอาหาร

ภายใต้สภาวะที่ระบบนิเวศมีความสมดุล อินทรียวัตถุในดินจะค่อย ๆ ถูกย่อยสลายโดย ขบวนการทางกายภาพ (physical process) และชีวภาพ (biological process) และปลดปล่อยธาตุ อาหารที่เป็นประโยชน์ต่อพืชลงสู่ดิน ซึ่งพืชจะสามารถดูดนำไปใช้ประโยชน์ใด้และมีส่วนที่เหลือเกินกว่า ที่พืชจะนำไปใช้ได้บางส่วน ในขณะเดียวกันพืชก็ปลดปล่อยธาตุอาหารกลับคืนสู่ดินจากการร่วงหล่นและ ตายของส่วนต่าง ๆ ของพืช ซึ่งเป็นขบวนการหมุนเวียนธาตุอาหารของพืชในระบบนิเวศ (Jordan, 1985) อย่างไรก็ตามไฟเป็นขบวนการทางกายภาพที่กระตุ้นการปลดปล่อยธาตุอาหารจากอินทรียวัตถุลงสู่ดิน อย่างรวดเร็ว ธาตุอาหารหลายชนิด เช่นในโตรเจนในรูปของ แอมโมเนียม ($\mathrm{NH_4}^+$) และในเตรท ($\mathrm{NO_3}^2$) ฟอสฟอรัสในรูปที่เป็นประโยชน์ต่อพืช (available P) ตลอดทั้งธาตุอาหารอื่น ๆ จะเพิ่มขึ้นอย่างมากใน ดินชั้นบนภายหลังการเผาไฟ (Raison et al., 1985; Kauffman et al., 1993; Khanna et al., 1994; Khanna and Raison, 2006) ซึ่งเป็นผลมาจากการที่ไฟไปเร่งขบวนการย่อยสลายอินทรียวัตถุและเกิด การชะล้างของธาตุอาหารจากขึ้เถ้าลงสู่ดิน อย่างไรก็ตามธาตุอาหารเหล่านี้แม้จะมีปริมาณเพิ่มสูงมาก ภายหลังการเผาแต่ธาตุอาหารส่วนใหญ่จะลดลงสู่ระดับปกติหรือต่ำกว่าเดิมภายในระยะเวลาอันสั้น หาก พืชไม่สามารถดูดไปใช้ประโยชน์ได้ทั้งหมด ธาตุอาหารส่วนที่เหลือก็จะถูกชะล้างลงสู่ชั้นใต้ดินและสูญ หายออกไปจากระบบ (DeBano et al., 1998)

ไฟนั้นมีผลกระทบต่อดินที่หลากหลาย ซึ่งความหนักเบาของผลกระทบนั้นส่วนมากขึ้นอยู่กับ ความหนักเบาของการเผา ขบวนการเผาและการถ่ายเทความร้อนลงสู่ดิน ระดับความลึกที่ความร้อนลง ไปถึง คุณสมบัติของดิน และความแตกต่างของระดับอุณหภูมิระหว่างดินที่เปลี่ยนแปลงไป (DeBano and Neary, 2005) โดยทั่วไปแล้ว ไฟจะมีผลกระทบต่อคุณสมบัติของดินจาก 1) ขบวนการถ่ายเทความ ร้อนลงสู่ดิน 2) ขึ้เถ้าที่อยู่ในพื้นที่ภายหลังการเผาและ 3) อิทธิพลของความร้อนและขึ้เถ้าร่วมกัน (Khanna and Raison, 2006) โดยมีงานวิจัยอยู่มากมายที่ศึกษาผลกระทบของไฟต่อคุณสมบัติของดิน (Certini, 2005; DeBano and Neary, 2005) ซึ่งโดยที่สามารถสรุปได้ว่าผลกระทบนั้นมีความ หลากหลายและแตกต่างไปตามปัจจัยดังกล่าวข้างต้น ระยะเวลาของการศึกษา ตลอดทั้งวิธีการใน การศึกษาและกระบวนการในการวิเคราะห์ ซึ่ง Certini (2005) กล่าวว่าผลกระทบที่เห็นชัดจากไฟคือการ สูญเสียอินทรียวัตถุ ในขณะที่ขี้เถ้าที่เกิดขึ้นและการเพิ่มขึ้นของขบวนการ mineralization จากไฟนั้นทำ ให้ชาตุอาหารหลายชนิดอยู่ในรูปที่พืชสามารถใช้ประโยชน์ได้ทันที่ (Bauhus *et al.*, 1993) แต่ชาตุ อาหารส่วนมากจะถูกชะล้างลงสู่ดินชั้นล่างโดยที่พืชไม่สามารถใช้ประโยชน์ได้ (Fisher and Binkley, 2000) เป็นที่แน่ชัดว่าในโตรเจนทั้งหมด (total nitrogen) นั้นมีแนวโน้มที่ลดลงจากผลของไฟเนื่องจาก ธาตุชนิดนี้มีจุดเดือดต่ำ จึงระเหยออกไปจากพื้นที่ได้มาก เช่น Wanthongchai et al (2008) พบว่า ในโตรเจนนั้นสูญหายไประหว่าง 63-88 เปอร์เซ็นต์ จากการเผาป่าเต็งรัง ทั้งนี้การสูญเสียธาตุอาหาร ดังกล่าวมีความสัมพันธ์อย่างใกล้ชิดกับปริมาณเชื้อเพลิงที่ถูกเผา (Raison *et al.*, 1985; Kauffman *et* al., 1993; Khanna et al., 1994; Wanthongchai et al., 2008)

ในระหว่างขบวนการเผา ชาตุอาหารที่อยู่ในดินและพืชจะสูญหายออกไปจากพื้นที่โดย 1) การ ระเหย (volatilization) เช่น ธาตุในโตรเจน 2) ขึ้เถ้าที่ถูกพัดพาไประหว่างเผาและหลังเผาโดยลม เช่น ฟอสฟอรัส และ ธาตุอาหารอื่นๆ 3) กษัยการดิน (soil erosion) โดยเฉพาะบริเวณผิวหน้าดิน เนื่องจาก การเปิดโล่งของพื้นที่ภายหลังการเผา และ 4) ชะล้าง (leaching) ลงสู่ชั้นใต้ดิน (Raison *et al.*, 1985; Kauffman et al., 1993; Giardina et al., 2000) ชาตุอาหารในปริมาณมากที่ถูกปลดปล่อยออกมาจาก การขบวนการเผานั้นจะอยู่ในรูปที่พืชสามารถนำไปใช้ประโยชน์ใด้ทันที แต่อย่างไรก็ตามพืชนั้นสามารถ ดูดธาตุอาหารได้ในปริมาณที่จำกัด ดังนั้นธาตุอาหารจำนวนมากจะเหลือจากการดูดนำไปใช้ของพืช ซึ่ง ส่วนที่เหลือนี้จะถูกชะล้างลงสู่ชั้นใต้ดินและสูญหายออกไปจากระบบอย่างถาวร นอกจากนี้ธาตุอาหารที่ สำคัญบางชนิด เช่น ฟอสฟอรัส แคลเซียม โปแตสเซียม นั้นมีปริมาณความเข้มข้นที่สูงมากในขึ้เถ้าและ เถ้าถ่าน โดยเฉพาะในขี้เถ้าที่เกิดจากการเผาไหม้อย่างสมบูรณ์ (ขี้เถ้าสีเทาขาว) (Khanna *et al.*, 1994) ซึ่งขึ้เถ้าเหล่านี้มีน้ำหนักที่เบามากและมีความเสี่ยงอย่างยิ่งต่อการที่จะถูกพัดพาออกไปจากพื้นที่โดยลม หรือน้ำใหลบ่าหน้าดิน ส่งผลให้ชาตุอาหารสูญหายไปจากพื้นที่ (Raison *et al.*, 1985; Khanna *et al.*, 1994) จากกลไกการสูญเสียของธาตุอาหารของระบบนิเวศจากการเผานั้น การสูญเสียธาตุอาหารสู่ บรรยากาศ (atmospheric loss) คิดเป็นสัดส่วนที่สูงที่สุด ในขณะที่การสูญเสียชาตุอาหารจากกษัยการ ดิน ลม หรือน้ำ อาจเคลื่อนย้ายไปสะสมอยู่ในพื้นที่ใกล้เคียงได้และธาตุอาหารบางส่วนอาจคงเหลืออยู่ใน พื้นที่จากส่วนที่ไม่ได้ถูกเผา ทั้งนี้ปัจจัยสำคัญที่จะบ่งบอกถึงความหนัก-เบา (magnitude) ของการสูญ หายของธาตุอาหารจากการเผาได้แก่ ความรุนแรงของการเผา (burning intensity) ความหนักเบาของ

การเผา (burning severity) ปริมาณเชื้อเพลิงที่ถูกเผา (fuel consumption) องค์ประกอบของเชื้อเพลิงที่ ถูกเผา (vegetation structure and composition) ตลอดทั้งความถี่ในการเผา (burning frequency) (Raison, 1979; Macadam, 1989; Kauffman et al., 1994; Neary et al., 1999) ดังนั้นปัจจัยต่างๆ ข้างต้น ซึ่งอาจจะกล่าวโดยรวมว่าคือลักษณะพฤติกรรมของไฟและนิเวศวิทยาไฟระหว่างการเผาจึงเป็น สิ่งสำคัญที่ต้องทำการประเมินเพื่อใช้อธิบายถึงผลกระทบที่เกิดขึ้นจากการไฟ

การศึกษาทางด้านพลวัตรของธาตุอาหารจากไฟป่าในระบบนิเวศป่าสนในเขตอบอุ่นนั้นมีการ ดำเนินการมาอย่างต่อเนื่องและยาวนานในต่างประเทศ ซึ่ง Carter et al.(2004) Certini (2005) และ Neary et al.(1999) ได้มีการสรุปรวบรวมเอาไว้ สำหรับประเทศไทยนั้นมีเพียง Wanthongchai et al.(2008) และ Toda et al. (2007) ที่ได้ศึกษาผลของการเผาป่าเต็งรังต่อพลวัตรของธาตุอาหาร ซึ่ง พบว่าการเผาที่มีความถี่ของการเผาที่เหมาะสมนั้นได้ช่วยลดการสูญเสียธาตุอาหารจากการเผาได้ ในขณะที่การเผาที่ถี่เกินไปนั้นส่งผลให้สภาพพื้นที่มีความอุดมสมบูรณ์ลดลง (Wanthongchai et al., 2008) อย่างไรก็ตามการศึกษาถึงผลกระทบของไฟต่อพลวัตรของธาตุอาหารในระบบนิเวศที่มีไม้สนเป็น องค์ประกอบหรือในป่าประเภทอื่นๆ ในประเทศไทยนั้น ยังไม่เคยมีการดำเนินการศึกษามาก่อน

สถานที่ศึกษา

1. สถานที่ตั้งและลักษณะทั่วไป

อุทยานแห่งชาติน้ำหนาว (Figure 1) ตั้งอยู่ในเขตเทือกเขาเพชรบูรณ์ฝั่งตะวันออก ซึ่งวางตัวใน แนวเหนือใต้ อยู่ระหว่างเส้นละติจูดที่ 16 องศา 30 ลิปดาถึง 16 องศา 57 ลิปดา เหนือ และเส้นลองจิจูด ที่ 101 องศา 23 ลิปดา ถึง 101 องศา 45 ลิปดา ตะวันออก ครอบคลุมพื้น 3 อำเภอของจังหวัด เพชรบูรณ์ คืออำเภอเมืองเพชรบูรณ์ อำเภอหล่มสัก อำเภอน้ำหนาว และ 1 อำเภอของจังหวัดชัยภูมิ คืออำเภอคอนสาร ตั้งอยู่ในแนวเขตแบ่งระหว่างภาคเหนือกับภาคตะวันออกเฉียงเหนือ รวมเนื้อที่ ทั้งหมดประมาณ 603,750 ไร่ หรือ 966 ตารางกิโลเมตร (กรมป่าไม้, 2534) มีอาณาเขตติดต่อกับพื้นที่ ป่าอื่นๆ ดังนี้

ทิศเหนือ จดอำเภอภูหลวง จังหวัดเลย
 ทิศใต้ จดอุทยานแห่งชาติภูเขียว อุทยานแห่งชาติตาดหมอก
 ทิศตะวันออก จดอุทยานแห่งชาติภูกระดึง และอุทยานแห่งชาติภูผาม่าน
 ทิศตะวันตก จดเขตรักษาพันธุ์สัตว์ป่าภูผาแดง (ศูนย์วิจัยป่าไม้, 2553)

สำหรับการศึกษาครั้งนี้ เลือกทำการศึกษาบริเวณสังคมพืชป่าสนเสื่อมโทรมและสังคมย่อยป่าสน ผสมก่อ บริเวณที่เรียกว่าสวนสนภูกุ่มข้าว ดังปรากฏใน (Figure 2)

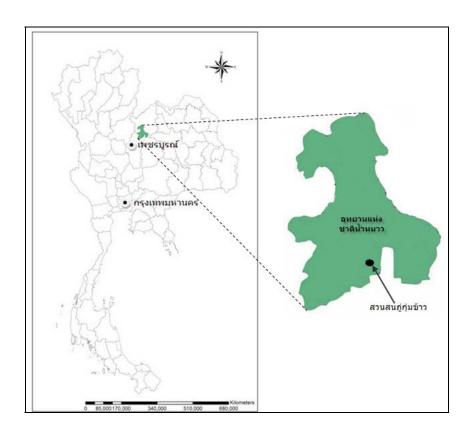
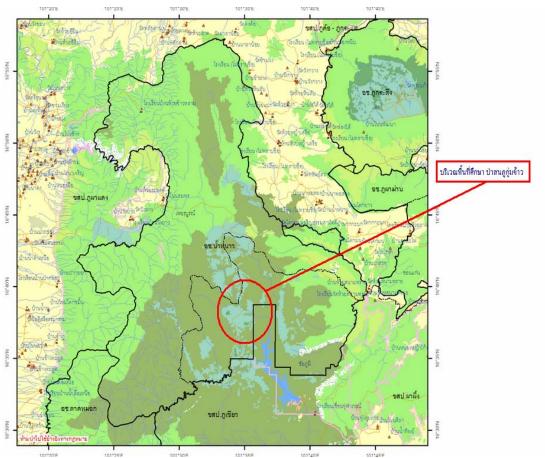
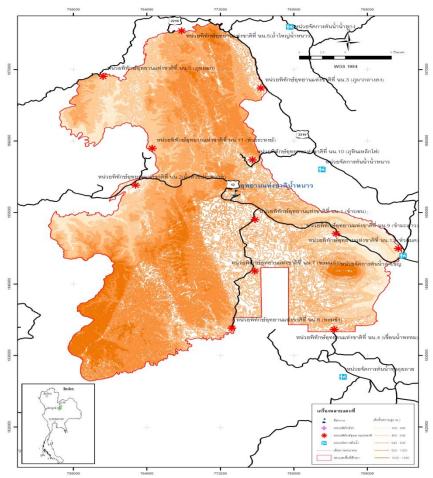



Figure 1 ตำแหน่งที่ตั้งของอุทยานแห่งชาติน้ำหนาว

ที่มา: กรมอุทยานแห่งชาติสัตว์ป่าและพันธุ์พืช (2553)

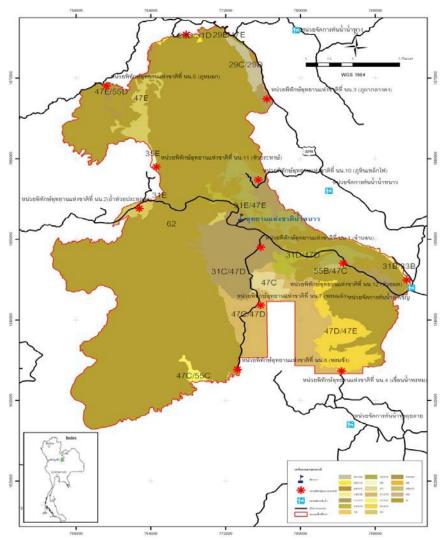

Figure 2 ขอบเขตพื้นที่อุทยานแห่งชาติน้ำหนาว จังหวัดเพชรบูรณ์ และจังหวัดชัยภูมิ และบริเวณพื้นที่ ศึกษาบริเวณภูกุ่มข้าว

2. ลักษณะภูมิประเทศ

เนื่องจากภูเขาในแถบภาคตะวันออกเฉียงเหนือเป็นภูเขาที่เกิดจากการยกตัวในอดีต ทำให้มี ลักษณะเป็นภูเขายอดราบ หรือมีที่ราบอยู่บนยอดเขา แต่บริเวณเชิงเขาจะเป็นหน้าผาชัน อัน เนื่องมาจากการกัดเซาะ เพราะบริเวณขอบนั้น เป็นหินทรายที่ยังจับตัวกันไม่แน่น ทำให้ง่ายต่อการกัด เซาะ ก่อให้เกิดเป็นหน้าผาชัน ซึ่งมีลักษณะเป็นโต๊ะ หรือ Meza มีความความสูงโดยเฉลี่ยประมาณ 800 เมตร จากระดับน้ำทะเลปานกลาง จุดสูงสุดในบริเวณอุทยานแห่งชาติอยู่ที่ภูด่านอีป้อง ซึ่งสูงประมาณ 1,271 เมตร จากระดับน้ำทะเลปานกลาง (Figure 3)

จากที่ตั้งและลักษณะภูมิประเทศที่เป็นภูเขาสูงชันสลับซับซ้อน และเป็นเทือกเขาที่ต่อเนื่อง ได้มี พันธุ์ไม้ธรรมชาติหลากหลาย โดยเฉพาะสนเขาที่ปกคลุมอย่างหนาแน่น จึงทำให้เป็นแหล่งต้นน้ำของ แม่น้ำชี ซึ่งอยู่ทางด้านตะวันออกของอุทยานแห่งชาติ โดยผ่านลำน้ำที่อยู่ในเขตอุทยานแห่งชาติได้แก่ ลำน้ำพรม ลำน้ำเชิญ นอกจากนั้นยังเป็นแหล่งต้นน้ำของแม่น้ำป่าสักซึ่งอยู่ทางด้านตะวันตกของอุทยาน แห่งชาติ โดยผ่านหัวยน้ำดุก และหัวยขอนแก่น

ส่วนความลาดชั้นของพื้นที่ในเขตอุทยานแห่งชาติน้ำหนาวนั้น สามารถแบ่งออกได้เป็น 3 ระดับ ได้แก่ พื้นที่ที่มีความลาดชั้นน้อยกว่าร้อยละ 10 , ร้อยละ 10 – 30 และมากกว่าร้อยละ 30 ซึ่งพื้นที่ทั้ง 3 ประเภทดังกล่าวครอบคลุมพื้นที่ประมาณ 213, 584 และ 169 ตารางกิโลเมตร ตามลำดับ (กรมป่าไม้, 2534)



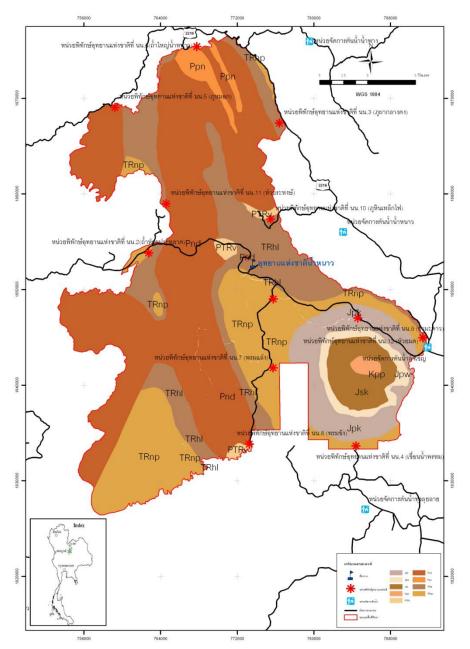
ที่มา: ศูนย์วิจัยป่าไม้ (2553)

Figure 3 ระดับความสูงของพื้นที่อุทยานแห่งชาติน้ำหนาว

3. ลักษณะทางปฐพีวิทยา

พื้นที่ทั้งหมดของอุทยานแห่งชาติน้ำหนาว จัดอยู่ในประเภทหน่วยดินที่ลาดเชิงซ้อน (slop complex, sc) ลักษณะของหน่วยดินนี้เกิดจากการสลายตัวของหินหลายชนิด จึงทำให้มีลักษณะที่ แตกต่างกันไปทั้งเนื้อดิน สีดิน และปฏิกิริยาของดินตามแต่วัตถุตันกำเนิด เช่น ดินที่เกิดจากหินทราย จะ มีเนื้อดินเป็นดินเนื้อหยาบ ปฏิกิริยาเป็นกรด ดินที่เกิดจากหินดินดานหรือหินปูนจะมีเนื้อดินละเอียด ปฏิกิริยาของดินเป็นกลางหรือเป็นด่าง หินต้นกำเนิดดินในบริเวณนี้ส่วนใหญ่เป็นหินทราย หินดินดาน หินปูน หินทรายแป้งและหินกรวดมนปนอยู่บ้าง ลักษณะของดินส่วนใหญ่เป็นดินตื้น มีหินโผล่อยู่ทั่วไป ส่วนที่เป็นดินลึก มีทั้งที่มีเนื้อดินเป็นดินทรายและดินเหนียว และปฏิกิริยาของดินมีทั้งที่เป็นกรดและเป็น ด่างเกิดอยู่ปะปนกัน ไม่สามารถแยกออกจากกันได้ จึงได้รวมเป็นหน่วยเดียวกัน (Figure 4) (กรมป่าไม้ , 2534)

ที่มา: ศูนย์วิจัยป่าไม้ (2553)


Figure 4 ชุดดินบริเวณอุทยานแห่งชาติน้ำหนาว

4. ลักษณะทางธรณีวิทยา

สภาพทางธรณีวิทยา (geological features) ในอุทยานแห่งชาติน้ำหนาว (Figure 5) มีธรณี สัณฐานเป็นเทือกเขาสูงชันที่มีที่ราบเล็กน้อย หินที่พบในพื้นที่นี้แบ่งออกเป็น 2 ชุดใหญ่ คือ หินชุด ราชบุรี (Ratchaburi group) มีอายุในราวยุคเพอร์เมียน (permain period) ในมหายุคพาลีโอโซอิค (paleozoic era) ตอนปลาย คือประมาณ 280 ล้านปีมาแล้ว หินชุดนี้ที่พบในบริเวณนี้เป็นหินปูน (limestone) มีสีเทาถึงเทาดำ เรียงตัวเป็นชั้นหนาๆ มีรอยแตกมาก เป็นลักษณะหินที่อำนวยให้เกิดถ้ำได้ ดี พบถ้ำขนาดใหญ่ในบริเวณอุทยานแห่งชาติหลายแห่ง ในบางชั้นหินเชิร์ต (Chert) สีดำแทรกสลับอยู่ บางๆ การกระจายตัวของหินชุดนี้พบได้ในบริเวณด้านทิศเหนือและทิศใต้ ของอุทานยานแห่งชาตินี้

หินชุดโคราช (Khorat group) กำเนิดขึ้นในมหายุคมีโซโซอิก (mesozoic era) ประมาณ 230 ล้านปีมาแล้ว หินชุดโคราชที่ปรากฏในพื้นที่ เป็นหินตะกอน (sedimentary rock) พบว่ามีอยู่ 6 หน่วย หินด้วยกัน โดยมีชั้นหินอายุน้อยวางตัวอยู่บนชั้นหินที่มีอายุแก่กว่า หินที่มีอายุน้อยที่สุดที่พบคือ หน่วย หินภูพาน (Phu Phan formation) ซึ่งเป็นหินทรายปนกรวด (conglomeratic sandstone) สีขาวปน น้ำตาลเหลือง เม็ดตะกอนขนาดปานกลาง ถึงขนาดหยาบ มีกรวดปน มีความคงทนต่อการกร่อนได้ดี หน่วยหินถัดมา คือ หน่วยหินเสาขัว (Sao Khua formation) ลักษณะหน่วยหินนี้เป็นหินทราย (sand stone) สีแดงอ่อน เม็ดตะกอนขนาดเล็ก บางบริเวณเป็นหินทรายแป้ง (silt stone) มีกรวดปนบ้าง ใน บริเวณที่เป็นหินทรายแป้ง ปรากฏว่ารูปทรงของภูเขาจะเอียงลาด บริเวณใดเป็นหินทราย ภูเขาจะมี ลักษณะเป็นผาชัน ถัดต่ำลงมาเป็นหน่วยหินพระวิหาร (Phra Wiharn formation) หินหน่วยนี้เป็นหินที่ คงทนต่อการกร่อนสูงมาก เป็นหินทรายสีขาวถึงสีชมพู ขนาดตะกอนปานกลางถึงหยาบ ถัดต่อมาเป็น หน่วยหินภูกระดึง (Phu Kra Dung formation) ลักษณะหินส่วนใหญ่เป็นหินดินดาน (shale) สีน้ำตาล แดงและสีน้ำตาลเทา มีแร่ไมก้า (mica) ปะปน และหินทรายแป้งสีน้ำตาลแดง และสีน้ำตาลเทา มี่แร่ ไมก้าปนอยู่เช่นกัน ลำดับถัดลงมาเป็นหน่วยหินน้ำพอง (Nam Phong formation) ลักษณะเป็นหินทราย สีแดงถึงสีน้ำตาล พบหินกรวดมน (conglomerate) บ้างเล็กน้อย หน่วยหินที่อยู่ชั้นล่างสุดของชุดหิน โคราชคือ หน่วยหินหัวยลาด (Huai Hin Lat formation) ลักษณะของหน่วยหินนี้เป็นหินกรวดมนและมี หินทรายปนบ้างเล็กน้อย การกระจายตัวของหินชุดโคราชนี้ส่วนใหญ่พบในบริเวณทิศตะวันออก - ทิศ ตะวันตกของพื้นที่อุทยานแห่งชาติ

ลักษณะธรณีสัณฐานในภูมิประเทศที่เป็นเขตอุทยานแห่งชาติ เป็นเทือกเขาที่มีการวางตัวแบบ กระทะหงาย (syncline) การวางตัวของชั้นหินต่างๆ จะอยู่ในแนวทิศเหนือ- ทิศใต้ สำหรับลำดับการ วางตัวของหินนั้น หินที่มีอายุน้อยจะอยู่ข้างบน ซึ่งเป็นการวางตัวแบบปกติวิสัย พบรอยเลื่อน (fault) ขนาดใหญ่อยู่ 2 แห่ง คือ บริเวณเขาหัวยไฮ และเขาขุนพาย การวางตัวของรอยเลื่อนทั้งสองกล่าวโดย คร่าวๆ อยู่ในแนวทิศเหนือ-ทิศใต้ (กรมป่าไม้, 2534)

ที่มา: ศูนย์วิจัยป่าไม้ (2553)

Figure 5 ลักษณะทางธรณีวิทยาของพื้นที่อุทยานแห่งชาติน้ำหนาว

5. ลักษณะภูมิอากาศ

เนื่องจากในพื้นที่อุทยานแห่งชาติน้ำหนาว ไม่มีสถานีตรวจวัดอากาศเป็นของตนเอง จึงนำข้อมูล จากสถานีตรวจวัดอากาศในพื้นที่ใกล้เคียง ได้แก่ ข้อมูลจากสถานีอุตุนิยมวิทยาเพชรบูรณ์ สถานี อุตุนิยมวิทยาหล่มสัก และสถานีอุตุนิยมวิทยาชัยภูมิ มาใช้ในการอธิบายลักษณะภูมิอากาศในพื้นที่ ซึ่งมี ข้อมูลดัง Table 1

Table 1 ข้อมูลภูมิอากาศเฉลี่ยจากสถานีอุตุนิยมวิทยาจากพื้นที่รอบอุทยานแห่งชาติน้ำหนาว พ.ศ. 2542-2552

	71.111. 20 12 200				
	ปริมาณ	ความชื้น			
	น้ำฝน	สัมพัทธ์	อุณหภูมิเฉลี่ย	อุณหภูมิสูงสุด	อุณหภูมิต่ำสุด
เดือน	(mm.)	(%)	(°C)	(°C)	(°C)
ม.ค.	4.04	62.91	24.85	32.07	17.98
ก.พ.	13.42	61.52	26.95	34.12	20.18
มี.ค.	55.08	63.27	28.95	35.87	22.52
เม.ย.	91.80	68.67	30.17	36.52	24.44
พ.ค.	161.36	77.48	28.95	34.06	24.56
ື້ນ.ຍ.	150.60	79.09	28.68	33.31	24.55
ก.ค.	121.13	79.58	28.29	32.63	24.32
ส.ค.	209.10	81.45	27.98	32.20	24.17
ก.ย.	239.67	82.94	27.72	32.06	23.97
ต. ค.	98.14	77.00	27.69	32.55	23.24
พ.ย.	13.30	69.15	26.00	31.93	20.54
ช.ค.	2.08	64.88	24.40	30.98	18.25
รวม	1159.72				
เฉลี่ย	96.64	72.33	27.55	33.19	22.39

ที่มา: กรมอุตุนิยมวิทยา (2553)

6. ลักษณะพืชพรรณ

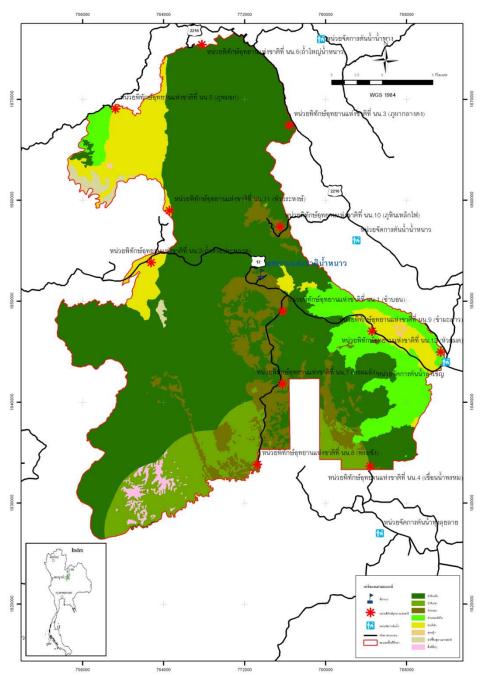
กรมป่าไม้ (2534) ได้ทำการจำแนกพื้นที่ป่าไม้ในอุทยานแห่งชาติน้ำหนาว ซึ่งพื้นที่ป่า ครอบคลุมพื้นที่ร้อยละ 95.3 ของพื้นที่ทั้งหมด ซึ่งสามารถจำแนกสังคมพืชได้เป็นลักษณะต่างๆ ดังนี้ ป่าดิบ (tropical evergreen forest) มีพื้นที่ 62.2 % ประกอบด้วยสภาพป่า 3 ลักษณะ คือ

- (1) ป่าดิบชื้น(moist evergreen forest) จะพบตามหุบเขาและริมห้วยที่มีความชื้นสูง
- (2) ป่าดิบเขา(hill evergreen forest) พบเป็นหย่อมๆ และขึ้นปะปนกับป่าสนเขาในพื้นที่ที่มี ความลาดชัน และมีระดับ ความสูงประมาณ 800 เมตรขึ้นไป โครงสร้างของป่าสามารถแบ่งโครงสร้าง ชั้นเรือนยอดได้ 3 ชั้น การเจริญทดแทนตามธรรมชาติอยู่ในเกณฑ์ดี มีจำนวนลูกไม้และไม้รุ่นค่อนข้างสูง ชนิดไม้ที่สำคัญได้แก่ ทะโล้ (Schima wallichii choisy), ก่อขน (Lithocarpus tubulosus A.Camus), แดงดง (Aglaia rufinervis (Blume) Bentv), ยางปาย (Dipterocarpus costatus C.F.Gaertn.), ก่อขึ้หมู (Lithocarpus vestitus Chun), ก่อแหลม (Castanopsis ferox (Roxb.) Spach), ส้าน (Dillenia obvata (Blume) Hoogland), กระบก (Irvingia malayana Oliv. ex a. Benn.) และเม็ก (Syzygium gratum (Wight) S.N. Mitra var. gratum) เป็นตัน
- (3) ป่าดิบแล้ง(dry evergreen forest) ขึ้นอยู่ที่ระดับความสูงประมาณ 500 เมตรขึ้นไป และมี ลักษณะพื้นที่เป็นดินดาน ลักษณะโครงสร้างชั้นเรือนยอดแบ่งออกเป็น 3 ชั้น การเจริญทดแทนตาม ธรรมชาติอยู่ในเกณฑ์ดี มีจำนวนลูกไม้และไม้รุ่นค่อนข้างสูง ชนิดไม้ที่สำคัญ ได้แก่ ก่อเดือย (Castanopsis acuminatissima (Blume) A.DC.), ก่อขึ้หมู (Lithocarpus vestitus Chun), ยางปาย (Dipterocarpus costatus C.F.Gaertn.), ยมหิน (Chukrasia velutina Wight & Arn.), แดงสะแง (Schoutenia ovata Korth.), หว้า (Syzygium cumini (L.) Skeels) และมะกอกด่อน (Schrebera swietenioides Roxb.) เป็นตัน

ป่าเบญจพรรณ (mix deciduous forest) มีพื้นที่ 22.4 % เป็นชนิดป่าเบญจพรรณที่ไม่มีไม้สัก ลักษณะโครงสร้างชั้นเรือนยอดแบ่งออกเป็น 3 ชั้น การเจริญทดแทนตามธรรมชาติอยู่ในเกณฑ์ปาน กลาง ไม้ที่สำคัญได้แก่ ตะแบกแดง (Lagerstroemia calyculata Kurz), กระท้อน (Sandoricum koetjape Merr.), มะค่าโมง (Afzelia xylocarpa (Kurz) Craib), สัมกบ (Hymenodictyon excelsum Wall.), แสนคำ (Terminalia nigrovenulosa Pierre ex Laness.), ไทร (Ficus concinna Miq.), กระโดน (Careya sphaerica Roxb.), แดง (Xylia xylocarpa (Roxb.) Taub. var. kerrii (Craib & Hutch.) I.C.Nielsen), เพกา (Oroxylum indicum (L.) Kurz) และปอแดง (Sterculia guttata Roxb.) เป็นตัน

ป่าเต็งรัง (dry dipterocarp forest) มีพื้นที่ 5.4 % ขึ้นอยู่ที่ระดับความสูงประมาณ 400 -600 เมตร ลักษณะโครงสร้างชั้นเรือนยอดแบ่งออกเป็น 2 ชั้น แต่บริเวณที่ขึ้นปะปนกับป่าสนเขาจะมี 3 ชั้น เรือนยอด การเจริญทดแทนตามธรรมชาติอยู่ในเกณฑ์ดี ชนิดไม้ที่พบ ได้แก่ เต็ง (Shorea obtusa Wall.ex Blume), รัง (Shorea siamensis Miq. var. siamensis), มะม่วงหัวแมงวัน (Buchanania lanzan Spreng.), ติ้ว (Gratoxylum formosum (Jack) Dyer), ยอป่า (Morinda coreia Ham.), หนาม แท่ง (Catunaregam tomentosum (Kurz) Bakh.f.), เชียด (Cinnamomum bejolghota (Buch.-Ham.)

Sweet), สมอ (*Terminalia chebula* Retz.), ก่อขึ้หมู (*Lithocarpus vestitus* Chun) และก่อแหลม (*Castanopsis ferox* (Roxb.) Spach) เป็นต้น


ป่าสนเขา (Pine Forest) มีพื้นที่ 3.9 % ประกอบด้วยป่าสนสองใบ (*Pinus merkusii* Jungh.& de Vriese) และสนสามใบ (*P. kesiya* Royle ex Gordon) แต่ส่วนใหญ่จะเป็นป่าสนสามใบ นอกจากนี้จะ พบป่าสนขึ้นปะปนกับป่าดิบเขา หรือป่าเต็งรังด้วย

- (1) ป่าสนสามใบ ลักษณะโครงสร้างของป่าแบ่งออกเป็น 2 ชั้นเรือนยอด การเจริญทดแทนตาม ธรรมชาติอยู่ในเกณฑ์ปานกลาง ชนิดไม้ที่สำคัญ ได้แก่ สนสามใบ (*P. kesiya* Royle ex Gordon), ปอ แก่นเทา (*Grewia eriocarpa* Juss.), กระทุ่มบก (*Anthocephalus chinensis* (Lamk.) A. Rich. ex Walp.), เหมือดโลด (*Aporosa villosa* (Wall. ex Lindl.) Baill.), กระโดน (*Careya sphaerica* Roxb.) และหว้า (*Syzygium cumini* (L.) Skeels) เป็นต้น
- (2) ป่าสนสองใบ ลักษณะโครางสร้างแบ่งออกเป็น 2 ชั้นเรือนยอด การสืบพันธุ์ตามธรรมชาติอยู่ ในเกณฑ์ปานกลาง ชนิดไม้ที่สำคัญ เช่น สนสองใบ (*P. merkusii* Jungh.& de Vriese), เหมือดโลด (*Aporosa villosa* (Wall. ex Lindl.), เหียง (*Dipterocarpus obtusifolius* Teijsm.ex Miq), หนามแท่ง (*Catunaregam tomentosum* (Kurz) Bakh.f.), มะกอกด่อน (*Schrebera swietenioides* Roxb.), ติ้ว (*Gratoxylum formosum* (Jack) Dyer) และจันดง Diospyros curtisii King et Gambleเป็นต้น

พื้นที่อื่นๆ ได้แก่ ป่าไผ่ ร้อยละ 0.9 ทุ่งหญ้า 0.5 % และไร่ร้าง มีพื้นที่ 4.7 %

ตามข้อมูลของแผนแม่บท อุทยานแห่งชาติน้ำหนาว ของกรมป่าไม้ (2534) และการสำรวจของ ชมพูนุช และขนิษฐา (2547) และรายงานข้อมูลพื้นฐานของศูนย์วิจัยป่าไม้ (2553) ไม่ได้ทำการจัดแบ่ง สังคมย่อยของป่าสนไว้ อย่างไรก็ตาม ธวัชชัย (2550) ได้กล่าวถึง สังคมพืชป่าเต็งรัง-ไม้สน ที่พบใน อุทยานแห่งชาติน้ำหนาวไว้ นอกจากนี้ อุทิศ (2541) ได้กล่าวถึงผลการศึกษา สังคมพืชป่าสนผสมก่อใน เขตรักษาพันธุ์สัตว์ป่าภูเขียว ซึ่งมีอาณาเขตเชื่อมต่อกับอุทยานแห่งชาติน้ำหนาวไว้ โดยพบว่าในสังคม พืชป่าสนผสมก่อ มีไม้เหียง ซึ่งเป็นไม้ป่าเต็งรัง ที่ขึ้นได้ดีในที่สูงและชื้น ขึ้นอยู่ สอดคล้องกับรายงาน ของจงรัก (2550) ที่กล่าวถึงการซ้อนทับระหว่างสังคมพืชป่าเต็งรังผสมสนกับป่าดิบเขาระดับต่ำสังคม สนเขา-ก่อ ลักษณะดังกล่าวเป็นลักษณะที่พบในพื้นที่ที่ทำการศึกษา

นอกจากนี้จากการสำรวจของชมพูนุช และขนิษฐา (2547) พบว่า มีไม้ก่อในสกุลต่างๆ เป็นไม้ที่ มีปริมาณมากที่สุด และมีปริมาณอยู่ในอันดับต้น ของทุกชนิดป่า แม้ในทุ่งหญ้า ในป่าสนเขา พบว่ามีทั้ง ไม้เหียงและไม้ก่อ มีปริมาณอยู่ในอันดับต้น และพบว่ามีไม้เหียงขึ้นในป่าดิบเขาด้วย สำหรับแผนที่แสดง การกระจายของสังคมพืชในบริเวณอุทยานแห่งชาติน้ำหนาวดังแสดงใน Figure 6.

ที่มา: ศูนย์วิจัยป่าไม้ (2553)

Figure 6 แสดงสังคมพืชบริเวณอุทยานแห่งชาติน้ำหนาว

วิธีการศึกษาวิจัย

1. การวางแปลงทดลอง

- 1.1 คัดเลือกพื้นที่ศึกษาที่สังคมป่าสนซึ่งเป็นป่าที่เสื่อมโทรม (degraded pine forest; PF) และ สังคมย่อยป่าสนผสมก่อ (pine-oak sub community forest; O-PF) บริเวณภูกุ่มข้าว ในพื้นที่อุทยาน แห่งชาติน้ำหนาว จังหวัดเพชรบูรณ์
- 1.2 วางแปลงศึกษาขนาด 50 × 50 เมตร ชนิดป่าละ 3 แปลง ภายในแปลงได้แบ่งแปลงออกเป็น 4 แปลงย่อย ขนาด 25 × 25 เมตร ปักหลักขอบแปลง เพื่อสะดวกในการค้นหาภายหลังโดยใช้ท่อ พีวีซี จากนั้นทำแนวกันไฟรอบแปลง โดยมีความกว้างประมาณ 10 เมตร ซึ่งดำเนินการโดยเจ้าหน้าที่สถานี ควบคุมไฟป่าเพชรบูรณ์ และเจ้าหน้าที่อุทยานแห่งชาติน้ำหนาว (Figure 7)

2. การเก็บข้อมูล

2.1 การเก็บข้อมูลก่อนเผา

- 2.1.1 วางแปลงขนาด 2 × 2 เมตร ภายในแปลงย่อยขนาด 25 × 25 เมตร ที่วางแปลง ไว้แล้ว ที่บริเวณมุมทั้งสี่ห่างจากขอบแปลงทดลอง 10 เมตร จำนวน 4 แปลง (จุด B ใน Figure 7) เพื่อ ศึกษาลักษณะของเชื้อเพลิงก่อนเผา และวางแปลงขนาด 50 × 50 เซนติเมตร จำนวน 4 แปลง (จุด A ใน Figure 7) บริเวณใกล้กับแปลงศึกษาเชื้อเพลิงก่อนเผาแปลงทดลองเพื่อศึกษาลักษณะของสิ่งที่ หลงเหลือทันทีภายหลังเผา นอกจากนี้ได้วางแปลงขนาด 2 × 2 เมตร เพื่อติดตามการเปลี่ยนแปลงของ ปริมาณเชื้อเพลิงและปริมาณคาร์บอนภายในเวลา 1 ปี (จุด 2, 4, 6, และ 12 ใน Figure 7)
- 2.1.2 สำรวจชนิด จำนวน ประมาณและเปอร์เซ็นต์การปกคลุมพื้นที่ของไม้พื้นล่าง (เชื้อเพลิง) กลุ่มต่างๆ ได้แก่ ไม้พุ่ม (shrub) ไม้ล้มลุก (herb) และหญ้า (grass) อีกทั้งไม้หนุ่ม (sapling) และลูกไม้ (seedling) ศึกษาสมบัติเชื้อเพลิงในแต่ละแปลงทดลองขนาด 2 × 2 เมตร โดยสำรวจก่อนทำ การเผาแปลงทดลองประมาณ 10 วัน ในช่วงฤดูไฟป่า ซึ่งสมบัติเชื้อเพลิงก่อนเผาและขณะเผาไม่ แตกต่างกัน นอกจากนี้ทำการประมาณความต่อเนื่องของเชื้อเพลิงโดย ประมาณการเปอร์เซ็นต์การปก คลุมพื้นที่แยกไปตามแต่ละประเภทของเชื้อเพลิง ซึ่งได้แก่ ซากพืช, กิ่งที่ร่วงหล่น, หญ้า, ไม้พุ่ม, ไม้ล้มลุกและกล้าไม้ยืนตัน โดยให้ผู้ที่ทำการเก็บตัวอย่าง จำนวน 4 คนทำการประมาณเปอร์เซ็นต์การ ปกคลุมของเชื้อเพลิงแต่ละประเภท จากนั้นนำมาหาค่าเฉลี่ย
- 2.1.3 ความสูงของเชื้อเพลิง วัดความสูงของแต่ละประเภทเชื้อเพลิงโดยเชื้อเพลิง ประเภทเศษซากพืช และหญ้า ซึ่งมีความสูงค่อนข้างสม่ำเสมอ จะทำการสุ่มวัดในแปลงย่อย 2 x 2 เมตร แปลงละ 3 จุด บริเวณที่เชื้อเพลิงมีความสูงที่สุด ความสูงปานกลาง และความสูงต่ำสุด แล้วนำมาหา ค่าเฉลี่ย สำหรับพืชล้มลุก ไม้พุ่ม และลูกไม้ของไม้ยืนต้น ซึ่งมีความสูงไม่สม่ำเสมอจะทำการวัดความสูง ของเชื้อเพลิงทุกต้น แล้วนำมาหาค่าเฉลี่ย โดยใช้ค่าเฉลี่ยความสูงที่ได้นำมาคูณด้วย 2/3 จะได้ค่าความ สูงของของเชื้อเพลิง

- 2.1.4 ศึกษาสมบัติและปริมาณของเชื้อเพลิง ทำการตัดชั่งน้ำหนักเชื้อเพลิงทั้งหมดที่อยู่ ภายในแปลงขนาด 2 × 2 ม. ซึ่งแยกประเภทเชื้อเพลิงเป็น เศษชากพืช หญ้า พืชล้มลุก ไม้พุ่ม และ ลูกไม้ของไม้ยืนต้น แล้วทำการสุ่มตัวอย่างเชื้อเพลิงในแต่ละประเภท ๆละ 400 กรัม เพื่อนำไปหา ความชื้นและวิเคราะห์หาน้ำหนักแห้งของเชื้อเพลิงทั้งหมด และปริมาณชาตุอาหารในพืช
- 2.1.5 เก็บตัวอย่างดินในแปลงย่อย 2 × 2 เมตร ภายหลังจากเก็บเชื้อเพลิงแล้ว โดยใช้ อุปกรณ์เก็บตัวอย่างดิน Split tube sampler (eijkelkamp agri search equipment, Netherlands) โดย ทำการเก็บตัวอย่างดินแบบไม่รบกวนโครงสร้างของดิน (undisturbed soil sample) และ เก็บตัวอย่าง ดินแบบทำลายโครงสร้าง (disturbed soil sample) ที่ระดับความลึก 0-5 และ 5-15 ซม.
- 2.1.6 การศึกษาลักษณะโครงสร้างและองค์ประกอบของสังคมพืช สำหรับไม้ยืนต้นที่มี ขนาดเส้นผ่านศูนย์กลางเกิน 4.5 ซม. (tree) ได้ติดหมายเลขต้นไม้ทุกต้นในแปลง บันทึกชนิด จากนั้น วัดขนาดเส้นผ่านศูนย์กลางที่ระดับอก ประมาณความสูง และบันทึกความสูงของรอยไหม้เกรียมที่พบ บริเวณลำต้น สำหรับลักษณะโครงสร้างและองค์ประกอบของไม้หนุ่มและลูกไม้ ได้สำรวจโดยวางแปลง ขนาด 4×4 เมตร (จุด Dใน Figure 7) สำหรับศึกษาไม้หนุ่ม และวางแปลงขนาด 2 × 2 เมตร ภายใน แปลงขนาด 4×4 เมตรสำหรับลูกไม้ ตามลำดับ โดยติดหมายเลขที่ต้นไม้ทุกต้น บันทึกชนิด จากนั้นวัด ขนาดเส้นผ่านศูนย์กลางที่โคนต้น เส้นผ่านศูนย์กลางที่ระดับอก ความสูงทั้งหมด ขนาดพื้นที่เรือนยอด และความสูงของรอยใหม้เกรียมที่พบบริเวณลำต้น
- 2.1.7 ถ่ายภาพเรือนยอดที่บริเวณกึ่งกลางของแปลงย่อย ขนาด 25 × 25 เมตรโดยใช้ เลนส์ตาปลา (Fish eye lenses ขนาด 18 มม.) ติดกับกล้องถ่ายภาพดิจิตอล ทำการถ่ายที่ความสูงจาก พื้นดิน 1 เมตร โดยถ่ายภาพในขณะที่ท้องฟ้าไม่มีการรบกวนจากแสงอาทิตย์ (ก่อนพระอาทิตย์ขึ้น, หลัง พระอาทิตย์ตก, หรือในช่วงเวลาที่เมฆบดบังดวงอาทิตย์)

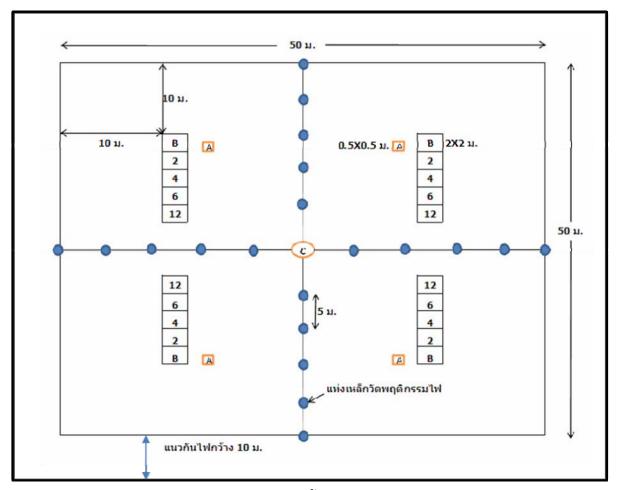


Figure 7 แผนผังการวางแปลงทดลองเก็บข้อมูลเชื้อเพลิงในป่าสนและป่าสนผสมก่อ (C= ตำแหน่งจุด ไฟ, B = แปลงย่อยเก็บข้อมูลเชื้อเพลิงก่อนเผา, A= แปลงย่อยเก็บสิ่งที่หลงเหลือทันทีจากการเผาหลัง และ 2,4,6,12 = แปลงย่อยเก็บข้อมูลหลังเผา 2,4,6, และ 12 เดือน ตามลำดับ)

2.2 การเก็บข้อมูลในขณะเผา

2.2.1 การเตรียมการก่อนทำการเผา

2.2.1.1 ทำการติดตั้งอุปกรณ์ที่ใช้ศึกษาพฤติกรรมของไฟ โดยปักหลักด้วย แท่งเหล็กที่มีความสูง 3 เมตร ปักเป็นแนวกากบาทครอบคลุมทั่วแปลง ห่างกันแท่งละ 5 เมตร จำนวน ด้านละ 5 แท่ง เพื่อใช้ศึกษาความสูงเปลวไฟและอัตราไฟลาม (Figure 7)

2.2.1.2 ติดตั้งเครื่องตรวจวัดภูมิอากาศแบบเคลื่อนที่ (Kestrel pocket weather tracker) เพื่อตรวจสอบสภาพภูมิอากาศตลอดช่วงการเผา โดยทำการบันทึกความเร็วลม ทิศทางลม ความชื้นสัมพัทธ์ และอุณหภูมิของอากาศ

2.2.2 การเก็บข้อมูลขณะเผา

ทำการเก็บข้อมูลในขณะเผาในช่วงเดือนกุมภาพันธ์ถึงมีนาคม ซึ่งอยู่ในช่วงฤดูไฟป่า โดยมี รายละเอียดในการเก็บข้อมูลมีดังนี้ 2.2.2.1 ทำการจุดไฟเผาที่จุดกึ่งกลางของแปลง เก็บข้อมูลอัตราการลุกลาม ของไฟ ความสูงของเปลวไฟ ด้วยการประมาณระยะทางที่ไฟเคลื่อนที่ไป ตามแนวที่ปักแท่งเหล็กไว้ ทุกๆ 1 นาที และจับเวลาเมื่อไฟเคลื่อนที่ผ่านแท่งเหล็ก แล้วทำการถ่ายรูปเปลวไฟเพื่อเปรียบเทียบ ความสูงกับขีดวัดระดับความสูงของแท่งเหล็ก

2.2.2.2 วัดอุณหภูมิของดินที่ระดับความลึก 0, 2, 5 และ 10 เซนติเมตร โดยใช้ เครื่อง Thermocouple รุ่น Testo-171 (TESTO Company, Lenzkich) ติดตั้งในดินและวัดอุณหภูมิ ต่อเนื่องทุก 2 วินาที พร้อมทั้งวัดอุณหภูมิในอากาศ ความเร็วลม ทิศทางลม ความชื้นสัมพัทธ์ ด้วย เครื่องวัดอุณหภูมิอากาศแบบเคลื่อนที่ รุ่น Kestrel-4500 (Nielsen-Kellerman Company, Boothwyn, PA) และวัดอุณหภูมิของไฟด้วยเครื่อง Spot infrared รุ่น MINOLTA TA 510 ที่ระดับความสูงจาก พื้นดิน 20 และ 50 เซนติเมตร

2.2.3 การเก็บข้อมูลหลังเผา

2.2.3.1 ภายหลังการเผาทั่วทั้งพื้นที่ในแต่ละแปลงเสร็จทันที วางแปลงย่อย ขนาด 0.5 X 0.5 เมตร จำนวน 4 แปลง (Figure 7, จุด A) โดยใช้เครื่องดูดฝุ่น ทำการเก็บสิ่งที่เหลือจาก การเผา (residues) ได้แก่ ขี้เถ้า (ash) ถ่าน (charred material) และส่วนที่ไม่ไหม้ไฟ (unburned material) โดยเก็บสิ่งต่างๆ ให้หมดภายในแปลงที่วางไว้ จากนั้นทำการเก็บตัวอย่างดินเช่นเดียวกับการ เก็บข้อมูลก่อนเผานำตัวอย่างกลับไปห้องปฏิบัติการ เพื่อนำไปวิเคราะห์ปริมาณที่หลงเหลือ และชาตุ อาหารต่างๆ

2.2.3.2 ทำการเก็บข้อมูลสมบัติของแหล่งเชื้อเพลิง และเก็บตัวอย่างเชื้อเพลิง ภายหลังการเผา 2, 4, 6 และ 12 เดือนโดยวางแปลงขนาด 2 × 2 เมตร (Figure 7, จุด 2, 4, 6 และ 12) ในแปลงที่ทำการเผาทดลอง จำนวนแปลงละ 4 จุด หลังจากนั้นทำการเก็บตัวอย่างดิน โดยใช้วิธีการสุ่ม และเก็บข้อมูลเชื้อเพลิงและดิน เช่นเดียวกับการเก็บข้อมูลก่อนเผาและหลังเผา

2.2.3.3 สำรวจชนิดและปริมาณของไม้หนุ่ม ลูกไม้ และไม้พื้นล่างอื่นๆ ภายหลังการเผาที่ระยะเวลา 6 และ 12 เดือน ในแปลงตัวอย่าง

3. การวิเคราะห์ตัวอย่างในห้องปฏิบัติการ

3.1 นำตัวอย่างเชื้อเพลิงแต่ละประเภทและสิ่งที่หลงเหลือจากการเผาทั้งหมด (ขี้เถ้า ถ่าน และส่วนที่ไม่ไหม้ไฟ) ที่เก็บมาจากภาคสนามที่บันทึกน้ำหนักสดไว้ มาทำการอบที่อุณหภูมิ 105 องศา เซลเซียส เป็นเวลา 48 ชั่วโมง หรือจนกว่าน้ำหนักจะคงที่ ชั่งน้ำหนักที่อบแห้งได้เพื่อคำนวณหา เปอร์เซ็นต์ความชื้น ดังสมการ

 $Fm = [(Fw - Dw)/Dw] \times 100$

เมื่อ Fm = เปอร์เซ็นต์ความชื้นของเชื้อเพลิงแต่ละประเภท

Fw = น้ำหนักสดตัวอย่าง (กรัม)

Dw = น้ำหนักแห้งตัวอย่าง (กรัม)

จากนั้นนำความชื้นที่ได้ไปคำนวณหาปริมาณมวลชีวภาพของเชื้อเพลิงแต่ละประเภท ต่อไป

- 3.2 ค่าปริมาณความร้อนของเชื้อเพลิง นำตัวอย่างแยกตามประเภทของเชื้อเพลิงมาอบให้ แห้งอุณหภูมิ 80 องศาเซลเซียส แล้วบดโดยละเอียด นำไปวิเคราะห์ค่าปริมาณความร้อนโดยใช้เครื่อง adiabatic bomb calorimeter
- 3.3 ตัวอย่างดินที่เก็บแบบทำลายโครงสร้างที่ระดับความลึก 0-5 และ 5-15 เซนติเมตร ทำการผึ่งตัวอย่างดินให้แห้งที่อุณหภูมิห้องจากนั้นทำการแยกส่วนที่เป็นดินและราก นำดินที่แยกได้ไปบด และร่อนด้วยตะแกรงขนาด 2 มิลลิเมตร เพื่อนำไปวิเคราะห์ชาตุอาหาร สำหรับส่วนที่เป็นราก นำตัวอย่างไปอบแห้งเพื่อหาปริมาณมวลชีวภาพของราก และหาปริมาณชาตุอาหาร
- 3.4 ตัวอย่างดินที่เก็บแบบไม่รบกวนโครงสร้างของดินที่ระดับความลึก 0-5 และ 5-15 เซนติเมตร ทำการผึ่งตัวอย่างดินให้แห้งที่อุณหภูมิห้องจากนั้นทำการแยกส่วนที่เป็นดินและราก นำดินที่ แยกได้ไปบดและร่อนด้วยตะแกรงขนาด 2 มิลลิเมตร นำดินขนาดเล็กกว่า 2 มิลลิเมตร และราก นำไป อบแห้งที่อุณหภูมิ 105 องศาเซลเซียส จากนั้นนำรากที่ได้ไปคำนวณหาน้ำหนักแห้งของราก สำหรับดิน ที่ได้ชั่งน้ำหนัก เพื่อคำนวณหาค่าความหนาแน่นรวม (bulk density) ของดินในแต่ละชั้นดิน ดังสมการ

BD = Wsr/ Vs

เมื่อ BD = ความหนาแน่นรวมของดินที่มีขนาดเล็กกกว่า 2 มิลลิเมตร

Wsr = น้ำหนักแห้งของดิน (กรัม)

Vs = ปริมาตรรวมของดิน (เซนติเมตร)

- 3.5 ตัวอย่างดินรบกวนโครงสร้างนำมาร่อน โดยตัวอย่างดินที่ผ่านการร่อนด้วยตะแกรง ขนาด 2 มม. และตัวอย่างพืชที่บดละเอียดแล้ว นำไปวิเคราะห์หาปริมาณชาตุอาหารที่ห้องปฏิบัติการ ปฐพีวิทยาป่าไม้ คณะวนศาสตร์ ดังนี้
- 3.5.1 ตัวอย่างดิน วิเคราะห์ total C, total N, pH, organic matter, available P, exchangeable K, Ca, Mg, Na
- 3.5.2 ตัวอย่างพืชและส่วนที่หลงเหลือภายหลังใหม้ วิเคราะห์ total C, total N, total P, total K, total Ca, total Mg
- 3.6 คำนวณปริมาณธาตุอาหารต่อพื้นที่จากปริมาณมวลชีวภาพของพืช ความหนาแน่นของ ดิน และปริมาณธาตุอาหารที่ได้จากการวิเคราะห์

4. การวิเคราะห์ข้อมูล

4.1 คำนวณอัตราการลุกลามของไฟต่อระยะทางและอัตราการลุกลามต่อหน่วยพื้นที่ คำนวณ ความรุนแรงของไฟ (fireline intensity) จากสมการของ Byram (1959)

$$I_B = 0.007 \text{hwr}$$

เมื่อ $I_{\scriptscriptstyle B}$ = ความรุนแรงของไฟ (kW/m)

h = ความร้อนของการเผาใหม้ (cal/g)

w = เชื้อเพลิงที่ถูกเผา (ton/ha)

r = อัตราการลุกลามของไฟ (m/min)

4.2 วิเคราะห์ค่าดัชนีความหลากหลายของไม้ยืนต้น (diversity index) ต่างๆ ได้แก่

4.2.1 Shannon-Weiner diversity index;

$$H' = -\sum p_i \ln p_i$$

เมื่อ H'= Shannon-Weiner diversity index

S = จำนวนชนิดพันธุ์ทั้งหมด

 P_i = ความถี่ที่พบในแต่ละชนิดพันธุ์

4.2.2 ดัชนีความคล้ายคลึงของสังคมพืช โดย Bray-Curtis cluster analysis;

$$B = 2C/(A+B)$$

เมื่อ B = Bray Curtis similarity index

A, B = จำนวนชนิดที่พบเฉพาะในแปลง A และแปลง B เท่านั้น

C = จำนวนชนิดพันธุ์ที่พบทั้งในแปลง A และ B

- 4.3 คำนวณค่าดัชนีพื้นที่ผิวใบ เปอร์เซ็นต์การปกคลุมเรือนยอด และขนาดพื้นที่เรือนยอดจาก ภาพถ่ายเรือนยอดโดยใช้โปรแกรม Hemiview version 2.1
- 4.4 วิเคราะห์ลักษณะโครงสร้างและองค์ประกอบของสังคมพืชอื่นๆ ได้แก่ ความหนาแน่นของ ต้นไม้ ขนาดพื้นที่หน้าตัด การกระจายของต้นไม้ตามชั้นขนาดเส้นผ่าศูนย์กลางฯ
- 4.5 วิเคราะห์ค่าความสำคัญต่างๆ ของสังคมพืช โดยนำข้อมูลชนิดพันธุ์ไม้ จำนวนต้น และ ขนาดความโตทางด้านเส้นผ่านศูนย์กลางของต้นไม้ในแปลงตัวอย่างมาคำนวณเพื่อหาลักษณะเชิง ปริมาณและค่าความสำคัญต่างๆ ดังนี้

4.5.1 ความหนาแน่น (Density, D) ของตันไม้ที่ปรากฏในพื้นที่

D = <u>จำนวนต้นของพันธุ์ไม้ชนิดนั้น</u> ขนาดพื้นที่ทั้งหมดที่ทำการสำรวจ

- 4.5.2 ความเด่นด้านพื้นที่หน้าตัด (Dominance, D_o) ของต้นไม้ต่อพื้นที่ $D_o = \frac{พื้นที่หน้าตัดของต้นไม้ชนิดนั้น
 ขนาดพื้นที่ทั้งหมดที่ทำการสำรวจ$
- 4.5.3 ความถี่ (Frequency, F) ของจำนวนแปลงตัวอย่างที่ปรากฏพันธุ์ไม้ชนิดนั้น

 F = <u>จำนวนแปลงตัวอย่างที่ชนิดไม้นั้นปรากฏ</u>

 ขนาดพื้นที่ทั้งหมดที่ทำการสำรวจ
- 4.5.4 ค่าความสัมพันธ์ด้านความหนาแน่นของชนิดไม้ (Relative Density; RD) ซึ่งเป็น ค่าความสัมพันธ์ของความหนาแน่นของชนิดไม้ที่ศึกษาต่อความหนาแน่นทั้งหมดของพันธุ์ไม้ทุกชนิด

RD = ความหนาแน่นของไม้ชนิดนั้น (D) x 100 ผลรวมความหนาแน่นของไม้ทุกชนิด

4.5.6 ค่าความสัมพันธ์ด้านความเด่นของชนิดไม้ (Relative Dominance; RD_o) ซึ่งเป็น ค่าความสัมพันธ์ระหว่างความเด่นของชนิดไม้ที่ศึกษาต่อค่าความเด่นทั้งหมดของพันธุ์ไม้ทุกชนิด

> RD_o = <u>ความเด่นของไม้ชนิดนั้น (D_o)</u> x 100 ผลรวมความเด่นของไม้ทุกชนิด

4.5.7 ค่าความสัมพันธ์ด้านความถี่ของชนิดไม้ (Relative Frequency; RF) ซึ่งเป็นค่า ความสัมพันธ์ระหว่างความถี่ของชนิดพันธุ์ไม้ที่ศึกษาต่อความถี่ทั้งหมดของพันธุ์ไม้ทุกชนิด

> RD = <u>ความถี่ของไม้ชนิดนั้น (F)</u> x 100 ผลรวมของความถี่ของไม้ทุกชนิด

4.5.8 ค่าดัชนีความสำคัญของพันธุ์ไม้ (Importance Value Index; IVI) โดยเป็นค่า ผลรวมของค่าความสัมพันธ์ต่างๆ ของพันธุ์ไม้ชนิดนั้นในสังคม

IVI = RD + RD_o + RF

- 4.6 เปรียบเทียบอิทธิพลของการเผาต่อลักษณะต่างๆ ของระบบนิเวศโดยการวิเคราะห์ เปรียบเทียบความแตกต่างทางสถิติที่ระดับความเชื่อมั่น 95%
- 4.7 การวิเคราะห์ทางสถิติ ทำการวิเคราะห์ความแตกต่างของค่าความผันแปรทางสถิตโดยใช้ Independent t-test statistics เปรียบเทียบปริมาณเชื้อเพลิง คุณสมบัติของดิน ธาตุอาหารในเชื้อเพลิง พฤติกรรมไฟระหว่างการเผา ลักษณะโครงสร้างของสังคมพืชต่าง ๆ ระหว่างป่าสนเสื่อมโทรมและป่าสน ผสมก่อ และการเปลี่ยนแปลงของเชื้อเพลิงและธาตุอาหารระหว่างก่อนและหลังการเผา ในการวิเคราะห์ ข้อมูลทางสถิติทั้งหมดดำเนินการโดยใช้โปรแกรมสถิติสำเร็จรูป

ผลการศึกษา

พลวัตรของเชื้อเพลิงและพฤติกรรมไฟในป่าสนเสื่อมโทรมและป่าสนผสมก่อ

1. ลักษณะโครงสร้างของเชื้อเพลิงในป่าสนเสื่อมโทรมและป่าสนผสมก่อ

1.1 โครงสร้างและปริมาณเชื้อเพลิง

ลักษณะโครงสร้างของเชื้อเพลิงในป่าสนเสื่อมโทรมและป่าสนผสมก่อ ดังแสดงใน Figure 8 โดย พบว่าโครงสร้างของเชื้อเพลิงในป่าสนเสื่อมโทรมประกอบด้วยหญ้าเป็นส่วนสำคัญที่สุด (45%) รองลงมา คือส่วนของเศษชากพืชที่ร่วงหล่นซึ่งได้แก่ส่วนของหญ้าที่แห้งตาย (44%) โดยมีสัดส่วนของหญ้า ประมาณครึ่งหนึ่งของเชื้อเพลิงทั้งหมดที่พบ โดยหญ้าที่พบขึ้นอยู่อย่างหนาแน่นทำให้พื้นที่ดังกล่าวมี ความเสี่ยงต่อการเกิดไฟไหม้ในทุกปี นอกจากนี้ยังเป็นอุปสรรคสำคัญต่อการสืบพันธุ์ตามธรรมชาติ ตลอดทั้งขบวนการทดแทนของสังคมพืช โดยเฉพาะไม้สนสามใบ เนื่องจากเมล็ดพืชไม่สามารถตก กระทบถึงพื้นดินได้โดยตรงและไม่สามารถแก่งแย่งแข่งขันในเรื่องของแสงสว่างและปัจจัยสิ่งแวดล้อม เพื่อการเจริญเติบโตได้ ทำให้สังคมพืชในบริเวณดังกล่าวเสื่อมโทรมลงอย่างต่อเนื่อง สำหรับป่าสนผสมก่อ พบว่าส่วนของเศษซากพืชจากการร่วงหล่นของใบไม้มีสัดส่วนมากที่สุด (55%) รองลงมาคือส่วนของ กิ่งขนาดเล็กที่ร่วงหล่นและหญ้าตามลำดับ ซึ่งใบไม้ที่ร่วงหล่นเป็นแหล่งเชื้อเพลิงสำหรับป่าสนผสมก่อ และป่าผลัดใบอื่นๆ ที่พบในประเทศทั่วไป เช่นป่าเต็งรังและป่าผสมผลัดใบ

จากการศึกษาเชื้อเพลิงในป่าเชิงปริมาณ พบว่าโดยทั่วไปป่าสนเสื่อมโทรมมีปริมาณเชื้อเพลิงต่อ พื้นที่สูงกว่าป่าสนผสมก่อ โดยมีค่าเฉลี่ยของเชื้อเพลิงในป่าสนเสื่อมโทรมและป่าสนผสมก่อ เท่ากับ 12.9 และ 8.7 ตันต่อเฮกแตร์ ตามลำดับ โดยเชื้อเพลิงส่วนใหญ่ในป่าสนเสื่อมโทรมคือหญ้า ในขณะที่ เชื้อเพลิงส่วนใหญ่ในป่าสนผสมก่อคือเศษใบไม้ที่ร่วงหล่น (Table 2)

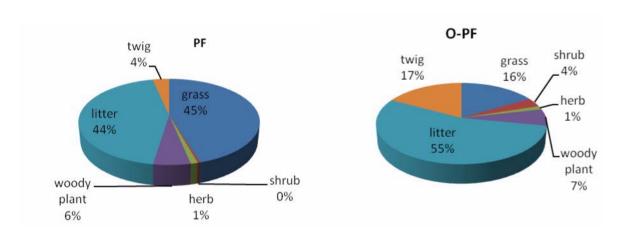


Figure 8 ลักษณะโครงสร้างของเชื้อเพลิงจำแนกตามกลุ่มของพืช ในป่าสนเสื่อมโทรม (PF) และป่าสน ผสมก่อ (O-PF)

Table 2 น้ำหนักแห้งของเชื้อเพลิงแต่ละประเภทก่อนเผาในแปลงตัวอย่างของป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ค่า standard error of the mean แสดงในวงเล็บ

ualoa		น้ำหนักแห้งของเชื้อเพลิงแต่ละประเภทก่อนเผา (ton/ha)								
แปลง ตัวอย่าง	หญ้า	ไม้พุ่ม	ไม้ล้มลุก	กล้าไม้	ซากพืช	กิ่งไม้	รวมทั้งหมด			
AI 105 IA	(grass)	(shrub)	(herb)	(seeding)	(litter)	(twig)	(total)			
PF1	6.00	0.02	0.19	1.25	6.14	0.16	13.76			
PF2	6.09	0.08	0.17	0.62	5.58	1.15	13.69			
PF3	5.43	0.05	0.06	0.35	5.38	0.00	11.29			
เฉลี่ย	5.84 ^a	0.05 ^a	0.14 ^a	0.74 ^a	5.70 ^a	0.44 ^a	12.92 ^a			
เพศบ	(0.21)	(0.02)	(0.04)	(0.27)	(0.23)	(0.36)	(0.81)			
O-PF1	1.57	0.60	0.17	0.69	6.00	2.63	11.66			
O-PF2	1.95	0.22	0.10	0.78	2.48	0.97	6.51			
O-PF3	0.78	0.10	0.09	0.26	5.86	0.89	7.98			
เฉลี่ย	1.44 ^b	0.31 ^a	0.12 ^a	0.58 ^a	4.78 ^a	1.50 ^a	8.72 ^a			
เฉลย	(0.34)	(0.15)	(0.02)	(0.16)	(1.15)	(0.57)	(1.53)			

หมายเหตุ: ตัวอักษร ^{ล, b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test*, *P*<0.05) ระหว่างพื้นที่ ในเชื้อเพลิงแต่ละ ประเภท

1.2 ความชื้นของเชื้อเพลิง

ผลการศึกษาความชื้นของเชื้อเพลิง ในป่าสนเสื่อมโทรม มีความชื้นเชื้อเพลิงเฉลี่ย 83.00 % โดยเชื้อเพลิงประเภทไม้พุ่ม มีความชื้นมากที่สุด เท่ากับ 147.77% รองลงมาคือ ไม้ลัมลุก, กล้าไม้, หญ้า, ชากพืช และกิ่งไม้ มีความชื้น เท่ากับ 143.59 %, 119.30 %, 44.90 %, 22.59 % และ 19.85 % ตามลำดับ สำหรับป่าสนผสมก่อมีความชื้นเชื้อเพลิงเฉลี่ย 83.28 % โดยเชื้อเพลิงประเภทไม้ลัมลุก มีความชื้นมากที่สุด เท่ากับ 64.69 % รองลงมาคือ กล้าไม้, ไม้พุ่ม, หญ้า, ซากพืช และกิ่งไม้ มีความชื้น เท่ากับ 122.24%, 100.57 %, 67.75 %, 25.21% และ 19.25 % ตามลำดับ เมื่อพิจารณาความชื้นของ เชื้อเพลิงแล้วจะพบว่า ในป่าสนผสมก่อ จะมีค่าเฉลี่ยของความชื้นของเชื้อเพลิงมากกว่าป่าสนเสื่อมโทรมโดยในป่าทั้ง 2 ชนิด จะมีเชื้อเพลิงที่มีความชื้นสูง คือ ไม้ลัมลุก, ไม้พุ่ม และกล้าไม้ ในขณะที่หญ้า ซาก พืช และกิ่งไม้ จะมีความชื้นที่ด่ำกว่า ดังแสดงใน Table 3 และเชื้อเพลิงที่มีความชื้นด่ำดังกล่าว เป็น เชื้อเพลิงที่มีอยู่ปริมาณมาก และเมื่อเปรียบเทียบการศึกษาพฤติกรรมไฟป่าของคนึงนิจ (2539) ในป่า ชนิดต่างๆ ที่ภูกระดึง จ.เลย โดยนำผลการศึกษาในป่าสนและป่าดิบเขามาเปรียบเทียบกับป่าสนเสื่อมโทรมและป่าสนผสมก่อในการศึกษานี้พบว่า ความชื้นของเชื้อเพลิงในการศึกษาครั้งนี้มีค่าสูงกว่ามากโดยในป่าสนมีความชื้นเชื้อเพลิง 44 % และในป่าดิบเขามีความชื้นเชื้อเพลิง 57 %

Table 3 ความชื้นของเชื้อเพลิงประเภทต่าง ๆ ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) อุทยานแห่งชาติน้ำหนาว จังหวัดเพชรบูรณ์

	ความชื้นของเชื้อเพลิงประเภทต่างๆ (%)							
	แปลง	หญ้า	ไม้พุ่ม	ไม้ล้มลุก	กล้าไม้	ซากพืช	กิ่งไม้	เฉลี่ย
ชนิดป่า	ที่	(grass)	(shrub)	(herb)	(seeding)	(litter)	(twig)	รวม
	1	71.07	169.62	152.59	103.65	22.93	21.29	90.19
PF	2	44.54	121.03	118.80	133.41	32.92	18.41	78.19
	3	19.08	152.65	159.38	120.84	11.91	0.00	92.77
•		44.90 ^a	147.77 ^a	143.59 ^a	119.30 ^a	22.59 ^a	19.85 ^a	83.00 ^a
	เฉลี่ย	(15.00)	(14.23)	(12.55)	(8.63)	(6.07)	(6.67)	(4.49)
	1	67.87	127.27	163.44	110.39	29.07	26.30	87.39
O-PF	2	60.82	59.22	197.38	128.61	21.82	13.85	80.28
	3	74.54	115.21	133.24	127.71	24.73	17.60	82.17
		67.75 ^a	100.57 ^a	164.69 ^a	122.24 ^a	25.21 ^a	19.25 ^a	83.28 ^a
	เฉลี่ย	(3.96)	(20.96)	(18.53)	(5.93)	(2.11)	(3.69)	(2.13)

หมายเหตุ: ตัวอักษร^{ล, b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test, P*<0.05) ระหว่างพื้นที่ ในความชื้นของ เชื้อเพลิงแต่ละประเภท

1.3 ความสูงของเชื้อเพลิง

ผลการศึกษาความสูงของเชื้อเพลิง ในป่าสนเสื่อมโทรม มีความสูงของเชื้อเพลิง เฉลี่ย 0.42เมตร โดยเชื้อเพลิงประเภทหญ้า มีความสูงของเชื้อเพลิง มากที่สุด เท่ากับ 06 เมตร รองลงมาคือ กล้าไม้, ไม้ล้มลุก, ไม้พุ่ม, ซากพืช และกิ่งไม้ มีความสูงของเชื้อเพลิง เท่ากับ 0.53 เมตร 0.34 เมตร, 0.26 เมตร, 0.16 เมตร และ 0.04 เมตร ตามลำดับ สำหรับป่าสนผสมก่อมีความสูงของเชื้อเพลิง เฉลี่ย 0.44 เมตร โดยเชื้อเพลิงประเภทไม้ล้มลุก มีความสูงของเชื้อเพลิง มากที่สุด เท่ากับ 0.93 เมตร รองลงมาคือ หญ้า, ไม้พุ่ม, กล้าไม้, ซากพืช และกิ่งไม้ มีความสูงของเชื้อเพลิง เท่ากับ 0.71 เมตร, 0.50 เมตร, 0.41 เมตร, 0.06 เมตร และ 0.03 เมตร ตามลำดับ เมื่อพิจารณาสูงของเชื้อเพลิง แล้วจะพบว่า ใน ป่าสนผสมก่อ จะมีค่าเฉลี่ยความสูงของเชื้อเพลิง มากกว่าป่าสนเสื่อมโทรม ดังแสดงใน Table 4

Table 4 ความสูงของเชื้อเพลิงในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) อุทยานแห่งชาติน้ำ หนาว จังหวัดเพชรบูรณ์

		<u> </u>	ความสูงของเชื้อเพลิง (เมตร)							
ชนิด	แปลง	หญ้า	ไม้พุ่ม	ไม้ล้มลุก	กล้าไม้	ซากพืช	กิ่งไม้	เฉลี่ย		
<u>ป่า</u>	ที่	(grass)	(shrub)	(herb)	(seeding)	(litter)	(twig)	รวม		
	1	1.10	0.28	0.37	0.67	0.17	0.05	0.44		
PF	2	1.10	0.38	0.38	0.44	0.23	0.03	0.42		
	3	0.99	0.12	0.28	0.48	0.07	-	0.39		
		1.06 ^a	0.26 ^a	0.34 ^a	0.53 ^a	0.16 ^a	0.04 ^a	0.42 ^a		
	เฉลี่ย	(0.04)	(80.0)	(0.03)	(0.07)	(0.05)	(0.01)	(0.01)		
	1	0.69	0.84	0.27	0.63	0.06	0.02	0.42		
	2	0.80	0.43	2.38	0.26	0.04	0.04	0.66		
O-PF	3	0.64	0.23	0.15	0.33	0.08	0.03	0.24		
		0.71 ^b	0.50 ^a	0.93 ^a	0.41 ^a	0.06 ^a	0.03 ^a	0.44 ^a		
	เฉลี่ย	(0.05)	(0.18)	(0.72)	(0.11)	(0.01)	(0.01)	(0.12)		

หมายเหตุ: ตัวอักษร ^{a, b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test, P*<0.05) ระหว่างพื้นที่ ในความสูงของ เชื้อเพลิงแต่ละประเภท

1.4 การปกคลุมและความต่อเนื่องของเชื้อเพลิง

ผลการศึกษาการปกคลุมของเชื้อเพลิงในป่าสนเสื่อมโทรม มีการปกคลุมของเชื้อเพลิง เฉลี่ย 30.97 เปอร์เซ็นต์ โดยเชื้อเพลิงประเภทหญ้า มีการปกคลุมของเชื้อเพลิงมากที่สุด เท่ากับ 74.85 % รองลงมาคือ ซากพืช, กล้าไม้, ไม้ล้มลุก, ไม้พุ่ม, และกิ่งไม้ มีการปกคลุมของเชื้อเพลิงเท่ากับ 62.71% 21.46 %, 11.29 %, 2.53 % และ 1.97 % ตามลำดับ สำหรับป่าสนผสมก่อมีการปกคลุมของ เชื้อเพลิงเฉลี่ย 25.29 % โดยเชื้อเพลิงประเภทซากพืช มีความการปกคลุมของเชื้อเพลิงมากที่สุด เท่ากับ 60.82 % รองลงมาคือ หญ้า, กล้าไม้, ไม้พุ่ม, ไม้ล้มลุก, และกิ่งไม้ การปกคลุมของเชื้อเพลิง เท่ากับ 50.50 %, 19.94%, 11.55 %, 7.38 % และ 1.57% ตามลำดับ เมื่อพิจารณาการปกคลุมของ เชื้อเพลิงแล้วจะพบว่า ในป่าสนเสื่อมโทรมจะมีการปกคลุมของเชื้อเพลิงของเชื้อเพลิงมากกว่าป่าสนผสม ก่อ (Table 5)

สำหรับความต่อเนื่องของเชื้อเพลิงในป่าสนเสื่อมโทรม มีความต่อเนื่องเฉลี่ย เท่ากับ 100 % เนื่องจากทุกแปลงมีความต่อเนื่องของเชื้อเพลิงเต็มพื้นที่ ในขณะที่ป่าสนผสมก่อ มีความต่อเนื่องของ เชื้อเพลิง เท่ากับ 97.67 % เนื่องจากมีบางส่วนของพื้นที่แปลง ไม่มีเชื้อเพลิงปกคลุมอยู่ (Table 5)

Table 5 การปกคลุมของเชื้อเพลิงในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) อุทยานแห่งชาติ น้ำหนาว จังหวัดเพชรบูรณ์

ชนิด	แปลง		การเ	ไกคลุมของเ	ชื้อเพลิงประ	เภทต่างๆ	(%)		ความ
ป่า	ม ผู่	หญ้า	ไม้พุ่ม	ไม้ล้มลุก	กล้าไม้	ซากพืช	กิ่งไม้	เฉลี่ย	ต่อเนื่องของ
		(grass)	(shrub)	(herb)	(seeding)	(litter)	(twig)	รวม	เชื้อเพลิง (%)
	1	69.06	0.67	13.31	29.69	64.38	1.82	29.82	100.00
PF	2	74.69	4.13	10.50	23.44	54.06	2.11	28.15	100.00
	3	80.81	2.81	10.06	11.25	69.69	-	34.93	100.00
		74.85 ^a	2.53 ^a	11.29 ^a	21.46 ^a	62.71 ^a	1.97 ^a	30.97 ^a	
	เฉลี่ย	(3.39)	(1.01)	(1.02)	(5.41)	(4.59)	(0.15)	(2.04)	100.00
	1	49.50	18.35	8.15	15.50	65.50	1.23	26.37	98.00
O-PF	2	52.00	4.30	4.00	33.75	49.15	1.45	24.11	97.00
	3	50.00	12.00	10.00	10.56	67.81	2.02	25.40	98.00
		50.50 ^b	11.55°	7.38 ^a	19.94 ^a	60.82 ^a	1.57 ^a	25.29 ^a	
	เฉลี่ย	(0.76)	(4.06)	(1.77)	(7.05)	(5.87)	(0.24)	(0.65)	97.67

หมายเหตุ: ตัวอักษร ^{ล. b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test, P*<0.05) ระหว่างพื้นที่ ในการปกคลุมของ เชื้อเพลิงแต่ละประเภท

2. ลักษณะสิ่งแวดล้อมไฟระหว่างการเผา

2.1 ลักษณะการเผา

ได้ทำการเผาแปลงทดลองในช่วงระหว่างวันที่ 1-5 กพ. 2553 แต่เนื่องจากเกิดฝนตกขึ้นในวัน สุดท้ายของการเผาทำให้ไม่สามารถเผาแปลงป่าสนผสมก่อแปลงที่ 2 (-PF-2) ได้ จึงต้องทำการเผาใน วันที่ 20 กพ. 2553 (ดู Table 6) ในระหว่างการเผา ได้ประสานความร่วมมือในการทำแนวกันไฟและ การเผาแปลงทดลองกับเจ้าหน้าที่สถานีควาบคุมไฟป่าเพชรบูรณ์ การเผากระทำในช่วงเวลากลางวัน เพื่อให้ได้ผลใกล้เคียงกับลักษณะการเกิดไฟป่าโดยส่วนใหญ่ ระยะเวลาการเผาแปลงทดลองในป่าสน เสื่อมโทรมซึ่งเชื้อเพลิงเกือบทั้งหมดประกอบด้วยหญ้าที่มีความแห้งและติดไฟได้ง่าย ใช้เวลาประมาณ 35-49 นาที ต่อการเผาแปลงขนาด 50 × 50 เมตร ในขณะที่แปลงป่าสนผสมก่อ ซึ่งมีองค์ประกอบของ เชื้อเพลิงที่หลากหลายและในบางพื้นที่เชื้อเพลิงขาดความต่อเนื่อง เนื่องจากมีร่องรอยของช้างหากินอยู่ ในพื้นที่ มีหญ้าล้ม เกิดช่องว่างของเชื้อเพลิง ทำให้เชื้อเพลิงไม่มีความต่อเนื่อง ประกอบกับไม้พื้นล่างที่ หลากหลาย มีความชื้นอยู่สูง จึงทำให้การเผาในแปลงป่าสนผสมก่อใช้เวลาที่นาน ตั้งแต่ 70 นาที โดยเฉพาะแปลงป่าสนผสมก่อแปลงที่ 2 (O-PF-2) ซึ่งมีปัญหาจากช้างป่าทำลายแปลงอย่างมาก ทำให้

ใช้เวลาการเผานานถึง 108 นาที แต่พื้นที่ในแปลงก็ไม่ได้ถูกเผาทั่วทั้งแปลงยังคงเหลือจุดที่ไม่ติดไฟหรือ ไหม้เพียงเล็กน้อยอยู่หลายจุด เมื่อเปรียบเทียบกับแปลงอื่นๆ ที่ถูกเผาซึ่งทั่วทั้งพื้นที่จะถูกเผาทั้งหมด

Table 6 สภาพพื้นที่ทางกายภาพ และช่วงเวลาของการเผาแปลงทดลองป่าสนเสื่อมโทรม (PF) และป่า สนผสมก่อ (O-PF)

แปลง	ระดับความ	ความ	ทิศทาง	วัน เวลา ที่ทำการเผาแปลงทดลอง			
	สูงของพื้นที่	ลาดชั้น	ด้านลาด	 วันที่	เวลาเริ่ม	เวลาเสร็จ	รวม
	(m)	(%)					(นาที)
PF-1	870	13.4	NE-80	1 กพ. 53	11.55 น.	12.30 น.	35.5
PF-2	865	17.2	NW-310	2 กพ. 53	12.44 น.	13.33 น.	48.48
PF-3	890	15.4	S-180	3 กพ. 53	10.24 น.	11.01 น.	37
O-PF-1	890	7.3	SE-170	5 กพ. 53	12.31 น.	13.41 น.	70
O-PF-2	900	6.2	NW-315	20 กพ. 53	14.12 น.	16.00 น.	108
O-PF-3	885	3.8	NE-45	4 กพ. 53	12.54 น.	14.14 น.	80

2.2 สภาพภูมิอากาศระหว่างการเผา

จากการติดตั้งเครื่องตรวจวัดสภาพภูมิอากาศเคลื่อนที่ในบริเวณที่ทำการเผาแปลงทดลอง พบว่าลักษณะของสภาพภูมิอากาศที่สำคัญที่มีอิทธิพลต่อพฤติกรรมไฟ ได้แก่ อุณหภูมิอากาศ ความชื้น สัมพัทธ์ในบรรยากาศ ความเร็วและทิศทางลม มีความผันแปรแตกต่างกันไปในแต่ละพื้นที่ตลอด ช่วงเวลาการเผา ดังแสดงใน Figure 9 อุณหภูมิอากาศมีค่าเฉลี่ยระหว่าง 25.2-30.9 องศาเซลเซียส ความชื้นสัมพัทธ์มีค่าเฉลี่ยระหว่าง 35.2-37.9 % Table 7 สำหรับความเร็วและทิศทางลมนั้นมีความผัน แปรค่อนข้างมากระหว่างก่อนการเผา ระหว่างการเผาและภายหลังการเผา ความเร็วเฉลี่ยของลมมีค่า ระหว่าง 0.2-1.3 เมตรต่อวินาที ทิศทางลมโดยส่วนใหญ่จะพัดไปทางทิศตะวันตกและตะวันตกเฉียงใต้ อย่างไรก็ตามเนื่องจากเกิดความผิดพลาดของเครื่องมือตรวจวัดอากาศ ทำให้ไม่สามารถตรวจวัดทิศทาง ของกระแสลมระหว่างการเผาแหลงทดลองป่าสนเสื่อมโทรมแปลงที่ 1 (PF-1) ได้

Table 7 ลักษณะภูมิอากาศเฉลี่ยระหว่างการเผาแปลงทดลอง โดยเครื่องมือตรวจวัดสภาพภูมิอากาศ เคลื่อนที่ (Kestrel 4500)

		ความเร็วลม	อุณหภูมิอากาศ	ความชื้นสัมพัทธ์	
	plot	(m/s)	(°C)	ในอากาศ (%)	ทิศทางลม
ป่าสนเสื่อม	PF-1	0.52	30.87	35.24	Na
โทรม	PF-2	1.32	28.17	52.83	SW
	PF-3	0.97	27.06	54.10	W, NW
ป่าสนผสมก่อ	O-PF-1	0.54	28.87	48.97	SW, W, NW
	O-PF-2	0.19	25.15	57.88	SW, W
	O-PF-3	0.33	27.50	54.29	S, SW

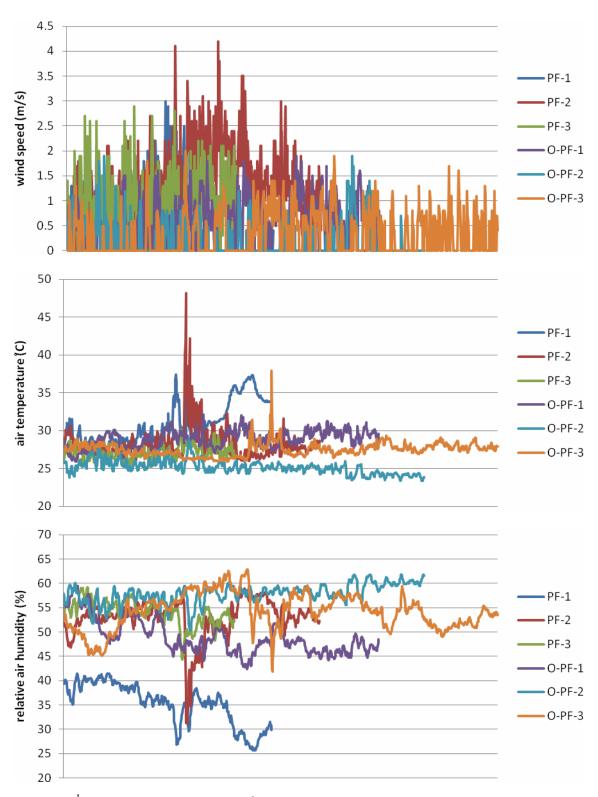


Figure 9 การเปลี่ยนแปลงของสภาพภูมิอากาศในระหว่างการเผาแปลงทดลอง

2.3 อุณหภูมิของไฟ

จากการศึกษาพบว่าอุณหภูมิของไฟโดยเฉลี่ยที่ระดับ 20 ซม. จากพื้นดินโดยทั่วไปมีค่าสูงกว่าที่ ระดับ 50 ซม. จากพื้นดินในทุกพื้นที่ โดยอุณหภูมิของไฟเฉลี่ยในป่าสนเสื่อมโทรมที่ระดับความสูงของ ไฟ 20 ซม. มีค่าเท่ากับ 586.5 °C โดยมีค่าอุณหภูมิสูงสุดและต่ำสุดที่ตรวจวัดได้จากกล้อง digital infrared เท่ากับ 895 และ 240 °C ตามลำดับ ในขณะที่อุณหภูมิเฉลี่ยในป่าสนผสมก่อที่ระดับความสูง ของไฟ 20 ซม. มีค่าเท่ากับ 389.7 °C โดยมีค่าอุณหภูมิสูงสุดและต่ำสุดที่ตรวจวัดได้ 679 และ 86 °C ตามลำดับ (Table 8 และ Figure 10)

Table 8. อุณหภูมิของไฟที่ระดับความสูง 20 และ 50 ซม. เหนือพื้นดินในป่าสนเสื่อมโทรม (PF) และป่า สนผสมก่อ (O-PF) ค่า standard error of the mean แสดงในวงเล็บ

plot	ความสูงขเ	องจุดที่วัด (cm)
plot	20 cm	50 cm
PF1	556.65	387.23
PF2	558.00	483.73
PF3	644.71	544.00
เฉลี่ย	586.46 ^a (29.13)	471.65 ^a (45.65)
ต่ำสุด-สูงสุด	240-895	43-802
O-PF1	463.79	387.48
O-PF2	280.35	174.91
O-PF3	424.93	341.27
เฉลี่ย	389.69 ^b (55.81)	301.22 ^a (64.55)
ต่ำสุด-สูงสุด	86-679	99-684
ب ب	a, b	

หมายเหตุ: ตัวอักษร ^{a, b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test, P*<0.05) ของอุณหภูมิไฟ ระหว่างพื้นที่

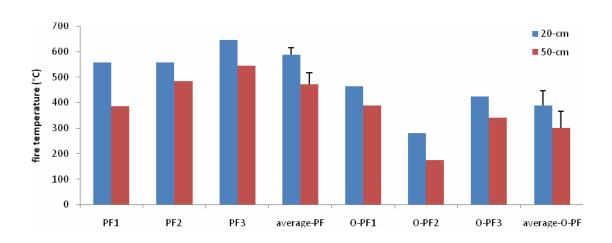


Figure 10 ลักษณะอุณหภูมิของไฟที่ระดับความสูง 20 และ 50 ซม. เหนือพื้นดิน 2.4 อุณหภูมิดินที่ระดับความลึกต่าง ๆ

โดยปกติอุณหภูมิของดินทั่วไปจะสูงในบริเวณที่อยู่ใกล้ผิวดินและมีแนวโน้มลดลงตามระดับ ความลึกของดินที่เพิ่มขึ้น เมื่อมีการเผาพื้นที่พบว่าอุณหภูมิของดินมีการเปลี่ยนแปลงโดยที่อุณหภูมิของ ดินที่อยู่ใกล้พื้นผิวจะมีการเปลี่ยนแปลงมากกว่าในดินที่อยู่ลึกลงไป และพบว่าที่ระดับความลึกของดิน ตั้งแต่ 5 ซม. ลงไปนั้นอุณหภูมิของดินมีการเปลี่ยนแปลงเพียงเล็กน้อย (Figure 11) โดยที่อุณหภูมิดินที่ ระดับผิวดิน เพิ่มสูงขึ้นเกิน 100 °C ในทุกแปลง ซึ่งอุณหภูมิบริเวณผิวดินที่สูงเกิน 48-54 °C นี้มี ผลกระทบต่อรากพืชในบริเวณนั้น (Hare, 1961) ในขณะที่อุณหภูมิที่สูงเกิน 49-63 °C ก็มีผลกระทบต่อ สัตว์ขนาดเล็กเช่นใส้เดือนดิน แมลงขนาดเล็กในดิน (Lyon et al., 1978) และนอกจากนี้อุณหภูมิที่สูงเกิน 60 °C ก็มีผลต่อเชื้อราในดิน (Dunn et al., 1985) ซึ่งการตายของรากพืช สัตว์ขนาดเล็กในดินและเชื้อรา ต่างๆ นั้น ส่งผลกระทบต่อขบวนการย่อยสลายอินทรียวัตถุในดินและกระบวนการเปลี่ยนแปลงของ ปริมาณคาร์บอนที่อยู่ในดินในระยะยาวได้ อย่างไรก็ตามอุณหภูมิที่ระดับความลึก 2, 5 และ 10 ซม. นั้น มีการเปลี่ยนแปลงที่น้อยมาก และพบว่าดินที่ระดับความลึกต่างๆ นั้น ไม่มีอุณหภูมิสูงเกิน 30 °C ในทุก แปลง แต่อย่างไรก็ตาม อุณหภูมิในดินที่สูงขึ้นและความยาวนานของอุณหภูมิที่สูงขึ้นย่อมส่งผลกระทบ ต่อกิจกรรมของสิ่งมีชีวิตขนาดเล็กในดินได้บ้าง ซึ่งอาจจะไปมีผลกระทบต่อการเปลี่ยนแปลงของธาตุ อาหารในดินได้ แต่เนื่องจากข้อจำกัดในด้านของเวลาการบันทึกอุณหภูมิดิน ทำให้ไม่สามารถบันทึกการ เปลี่ยนแปลงอุณหภูมิดินตั้งแต่เริ่มเผาจนกระทั่งอุณหภูมิภายในดินกลับสู่ระดับเดิมก่อนเผาได้

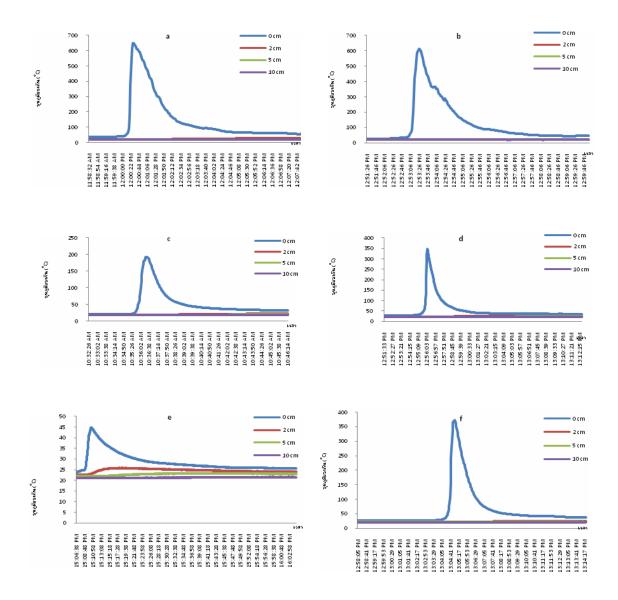


Figure 11 การเปลี่ยนแปลงอุณหภูมิบริเวณผิวดิน , 2, 5, และ 10 ใต้ดินระหว่างการเผา (a, b, c: ป่าสน เสื่อมโทรม, d, e,f: ป่าสนผสมก่อ)

3. ปริมาณเชื้อเพลิงที่ถูกเผาและสิ่งที่หลงเหลือภายหลังการเผา

เมื่อทำการทดลองเผา เชื้อเพลิงที่มีอยู่ในพื้นที่จะถูกเผาทำลายไปและเกิดสิ่งที่หลงเหลือ ภายหลังการเผา ได้แก่ เถ้า (ash) ถ่านและผงถ่าน (charcoal) และส่วนที่ไม่ไหม้ไฟ (unburned material) โดยสิ่งที่หลงเหลือภายหลังการเผาเป็นสิ่งบ่งบอกถึงประสิทธิภาพของการเผาว่ามีความ สมบูรณ์มากน้อยพียงใด เมื่อนำปริมาณเชื้อเพลิงก่อนการเผาลบด้วยปริมาณสิ่งที่หลงเหลือจากการเผาจะทำให้ทราบปริมาณเชื้อเพลิงที่ถูกเผาไหม้ไปจริง จากการศึกษาพบว่าการเผาในป่าสนเสื่อมโทรมทำให้เชื้อเพลิงในพื้นที่ถูกเผาไปทั้งสิ้นโดยเฉลี่ย 71.5 % (9 ตันต่อเฮกแตร์) ในขณะที่เชื้อเพลิงในป่าสนผสมก่อได้สูญหายไปจากการเผาเพียง 28.5 % (3 ตันต่อเฮกแตร์) เท่านั้น (Table 9) เมื่อพิจารณา องค์ประกอบของส่วนที่หลงเหลือภายหลังการเผาป่าสนเสื่อมโทรมพบว่าขี้เถ้ามีสัดส่วนที่สูงที่สุด (45%)

ในขณะที่ส่วนที่ไม่ไหม้ไฟมีสัดส่วนมากที่สุด (54%) เมื่อมีการเผาป่าสนผสมก่อ (Figure 12) สาเหตุ สำคัญที่ทำให้เชื้อเพลิงในป่าสนผสมก่อยังคงเหลือในพื้นที่อยู่มากภายหลังการเผาได้แก่ลักษณะ โครงสร้างของเชื้อเพลิงที่นอกจากจะประกอบด้วยเศษใบไม้ที่ร่วงหล่นแล้ว ยังประกอบด้วยไม้พื้นล่าง จำนวนมากที่มีความชื้นในเชื้อเพลิงที่สูงกว่าหญ้า ทำให้การเผาไหม้ไม่สมบูรณ์ มีส่วนที่ไม่ไหม้ไฟ จำนวนมาก และนอกจากนี้ความไม่ต่อเนื่องของเชื้อเพลิงซึ่งส่งผลต่อการลุกลามของไฟ ยังเป็นปัจจัย สำคัญที่ทำให้การเผาในพื้นที่มีส่วนที่ไม่ไหม้ไฟหลงเหลืออยู่มาก

Table 9 ปริมาณเชื้อเพลิงก่อนเผาทั้งหมด ปริมาณสิ่งที่หลงเหลือจากการเผา ปริมาณเชื้อเพลิงที่หายไป และ เปอร์เซ็นต์เชื้อเพลิงที่หายไปในแปลงตัวอย่างของป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ค่า standard error of the mean แสดงในวงเล็บ

	ูปริมาณ		หลงเหลือจากการ	รเผา (ตัน/แฮกแตร์)	ปริมาณ	 เปอร์เซ็นต์
แปลง ตัวอย่าง	เชื้อเพลิงก่อน เผา (ตัน/แฮกแตร์)	ขี้เถ้า	ถ่าน	ส่วนที่ไม่ไหม้ไฟ	เชื้อเพลิงที่ถูก เผา (ตัน/แฮกแตร์)	เชื้อเพลิงที่ หายไป
PF-1	13.76	1.68	0.87	0.69	10.52	76.44
PF-2	13.69	1.61	0.94	1.90	9.25	67.52
PF-3	11.29	1.72	1.16	0.43	7.98	70.68
เฉลี่ย PF	12.92	1.67 ^a (0.03)	0.99 ^a (0.09)	1.01 ^a (0.45)	9.25 ^a (0.73)	71.54 ^a (2.61)
O-PF-1	11.66	1.73	1.42	3.19	5.33	45.72
O-PF-2	6.51	0.85	1.51	3.03	1.12	17.25
O-PF-3	7.98	0.91	1.79	3.48	1.80	22.62
เฉลี่ย	8.72	1.16 ^a	1.57 ^b	3.23 ^b	2.75 ^b	28.53 ^b
O-PF	0.72	(0.28)	(0.11)	(0.13)	(1.30)	(8.73)

หมายเหตุ: ตัวอักษร ^{a, b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test, P*<0.05) ปริมาณสิ่งที่หลงเหลือจากการเผา ระหว่างพื้นที่

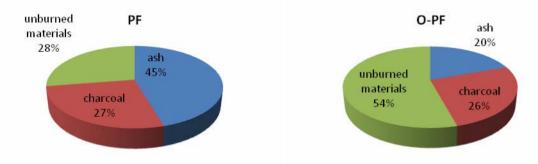


Figure 12 สัดส่วนของส่วนที่หลงเหลือภายหลังการเผาป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

4. ลักษณะพฤติกรรมไฟ

ลักษณะของพฤติกรรมไฟในแต่ละทิศทางของการใหม้นั้นมีความแตกต่างกันไป (Table appendix 1) โดยไฟจะมีอัตราการลุกลาม ความสูงเปลวไฟและอัตราการลุกลามที่สูงในทิศทางที่ตาม กระแสลม (head-fire direction) ในขณะที่พฤติกรรมของไฟจะต่ำในทิศทางที่ไฟไหมัสวนทางกับทิศทาง ลม (back-fire direction) นอกจากนี้ลักษณะโครงสร้างและองค์ประกอบของเชื้อเพลิงก็มีอิทธิพลสำคัญ ต่อลักษณะพฤติกรรมไฟด้วยเช่นกัน โดยเฉพาะประเภทเชื้อเพลิง ปริมาณเชื้อเพลิง และความต่อเนื่อง ของเชื้อเพลิง นอกจากนี้ลักษณะของพฤติกรรมของไฟภายในแต่ละทิศทางนั้น ๆ ก็ยังมีความผันแปร แตกต่างกันไปตามระยะทางที่เผาไหม้ด้วยเช่นกัน โดยที่ลักษณะพฤติกรรมของไฟในบางแกนของการ เผาใหม้ในช่วงแรกจะมีลักษณะที่ไม่สูงและจะค่อย ๆ พัฒนาอัตราการลุกลาม ความสูงของเปลวไฟและ ความรุนแรงมากขึ้น ในขณะที่บางแกนไม่มีแนวโน้มที่ชัดเจน แต่จะมีความผันแปรขึ้น-ลงตลอดช่วงเวลา ของการเผา ดังแสดงใน Figure 13 และ 14 ซึ่งแสดงให้เห็นว่าลักษณะพฤติกรรมของไฟนั้นมีความผัน แปรอยู่ตลอดเวลาในระหว่างช่วงการเผา

Figure 15 แสดงแบบจำลองลักษณะการลุกลามของไฟในป่าสนเสื่อมโทรมและป่าสนผสมก่อ โดยมีการประยุกต์มาจากการทำเส้นชั้นระดับความสูง (contour line) ในการทำแผนที่ ซึ่งแบบจำลอง การลุกลามของไฟในป่าสนมีการแบ่งเส้นชั้นระยะเวลาการลุกลามในทุก 1 นาที ในขณะที่แบบจำลองการ ลุกลามของไฟในป่าสนผสมก่อมีการแบ่งเส้นชั้นระยะเวลาการลุกลามในทุก 5 นาที เนื่องจากอัตราเร็ว ของการลุกลามของป่าทั้ง 2 ประเภทนั้นมีอัตราเร็วที่แตกต่างกันมาก จากแบบจำลองที่ได้จะพบว่ายิ่ง ความห่างระหว่างเส้นชั้นระยะเวลามีมากหมายความว่าบริเวณดังกล่าวเป็นจุดที่ไฟมีอัตราการลุกลามที่ สูง ในขณะที่บริเวณที่เส้นชั้นระยะเวลามีมากหมายกวามว่าบริเวณที่ไฟมีอัตราการลุกลามที่ด่ำมากหรือเป็น บริเวณที่ไฟได้ดับลงไปแล้ว ความแตกต่างของอัตราการลุกลามในแต่ละแกนการเผามีสาเหตุสำคัญ 2 ประการคือ 1) ลักษณะของลมโดยเฉพาะทิศทางของลม และ 2) ลักษณะของเชื้อเพลิงโดยเฉพาะ ประเภทและความต่อเนื่องของเชื้อเพลิง ดังนั้นผลกระทบที่จะเกิดขึ้นในพื้นที่ในแต่ละบริเวณนั้นก็น่าจะมี ความผันแปรไปได้อย่างมาก เช่นกัน เนื่องจากอัตราการลุกลามที่แตกต่างกันไปนั้นมีนัยต่อผลกระทบใน ระบบนิเวศหลายด้าน เช่นปริมาณความร้อนที่แผ่ลงสู่ดิน ความยาวนานของความร้อนที่แผ่ลงสู่ดิน

(resident time of heating) การตายของลูกไม้กล้าไม้ ปริมาณอินทรียวัตถุบริเวณหน้าดินและในดินชั้น บนที่ได้รับผลกระทบฯ เป็นต้น (DeBano *et al.*, 1998; Carter and Foster, 2004; Certini, 2005; Khanna and Raison, 2006; Wanthongchai *et al.*, 2008)

จากลักษณะพฤติกรรมไฟที่มีความผันแปรนั้น การอธิบายลักษณะพฤติกรรมของไฟในภาพรวม แต่ละพื้นที่จึงต้องอาศัยค่าเฉลี่ยของลักษณะพฤติกรรมไฟในแต่ละแปลงที่ทำการเผา จากการศึกษา พบว่าพฤติกรรมไฟโดยเฉลี่ยในป่าสนเสื่อมโทรมและป่าสนผสมก่อโดยภาพรวมมีความแตกต่างกันอย่าง ชัดเจน (Table 10) โดยอัตราการลุกลามของไฟในป่าสนโดยเฉลี่ยมีค่าเท่ากับ 1.89 เมตร/นาที ในขณะ ที่อัตราการลุกลามในป่าสนผสมก่อนั้นมีค่าเพียง 0.55 เมตร/นาที เท่านั้น ความรุนแรงของไฟซึ่งเป็น ค่าที่บ่งบอกถึงอัตราการปลดปล่อยพลังงานความร้อนจากไฟของการเผาไหม้เชื้อเพลิงในส่วนที่อยูเหนือ พื้นดินก็พบว่าไฟที่เกิดขึ้นในป่าสนเสื่อมโทรมและป่าสนผสมก่อมีความรุนแรงเฉลี่ยเท่ากับ 362.62 และ 26.28 kW/m เมื่อพิจารณาเฉพาะลักษณะพฤติกรรมไฟด้านหัวไฟ (Head fire behavior) ซึ่งเป็นด้านที่มี อัตราการลุกลามและความรุนแรงของไฟสูงที่สุด (Figure 16) พบว่าทั้งอัตราการลุกลาม ความสงเปลว ไฟ ความยาวเปลวไฟและความรุนแรงของไฟ บริเวณด้านหัวไฟของการเผาป่าสนเสื่อมโทรมมีค่าสูงกว่า การเผาในป่าสนผสมก่ออย่างมีนัยสำคัญ

Table 10. ค่าเฉลี่ยลักษณะพฤติกรรมไฟในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ค่า standard error of the mean แสดงในวงเล็บ

พฤติกรรมไฟป่า	ประเภทป่า			
MPIAILI3397 FMT I	PF	O-PF		
Rate of spread (m/min)	1.89 ^a (0.45)	0.55 ^b (0.10)		
Flame height (m)	1.29 ^a (0.27)	0.39 ^b (0.22)		
Flame length (m)	1.21 ^a (0.11)	0.36 ^b (0.10)		
Fireline intensity (kW/m)	362.62 ^a (30.87)	26.28 ^b (12.18)		
Heat release per unit area (kJ/m)	288.6 ^a (22.88)	85.80 ^b (40.71)		

หมายเหตุ: ตัวอักษร ^{a, b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test, P*<0.05) ระหว่างพื้นที่ ของลักษณะ พฤติกรรมไฟ

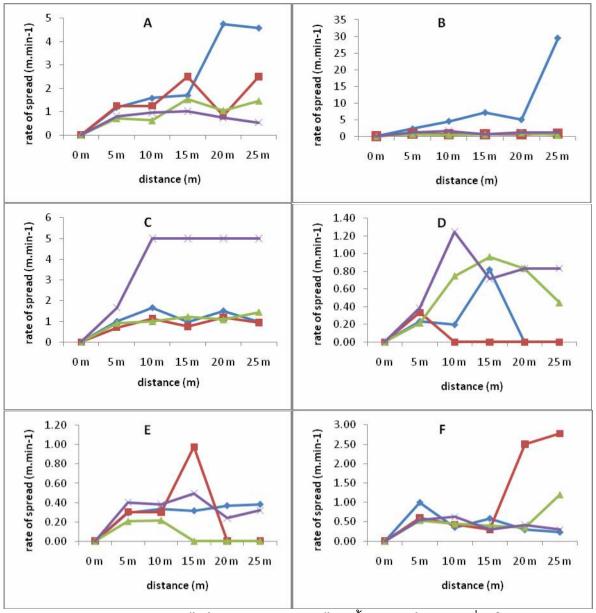


Figure 13 อัตราการลุกลามของไฟในแต่ละแนวการเผาไหม้ทั้ง 4 แนว ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ป่าสนเสื่อมโทรม (A, B, C) ป่าสนผสมก่อ (D, E, F)

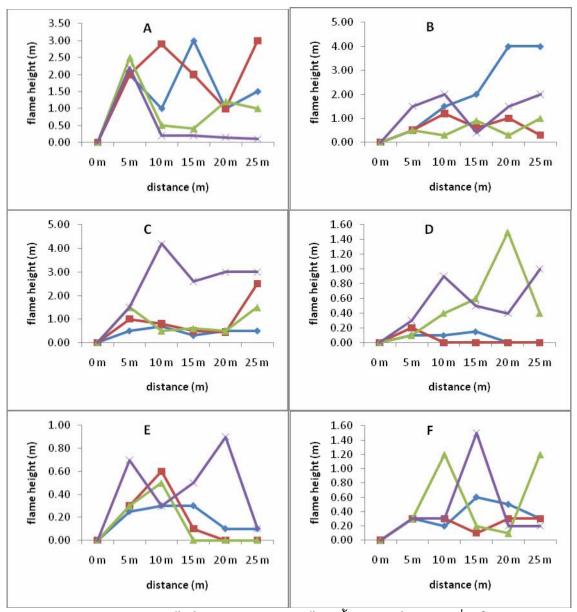


Figure 14 ความสูงของเปลวไฟในแต่ละแนวการแผาไหม้ทั้ง 4 แนว ในป่าสนเสื่อมโทรม (PF) และป่าสน ผสมก่อ (O-PF) ป่าสนเสื่อมโทรม (A, B, C) ป่าสนผสมก่อ (D, E, F)

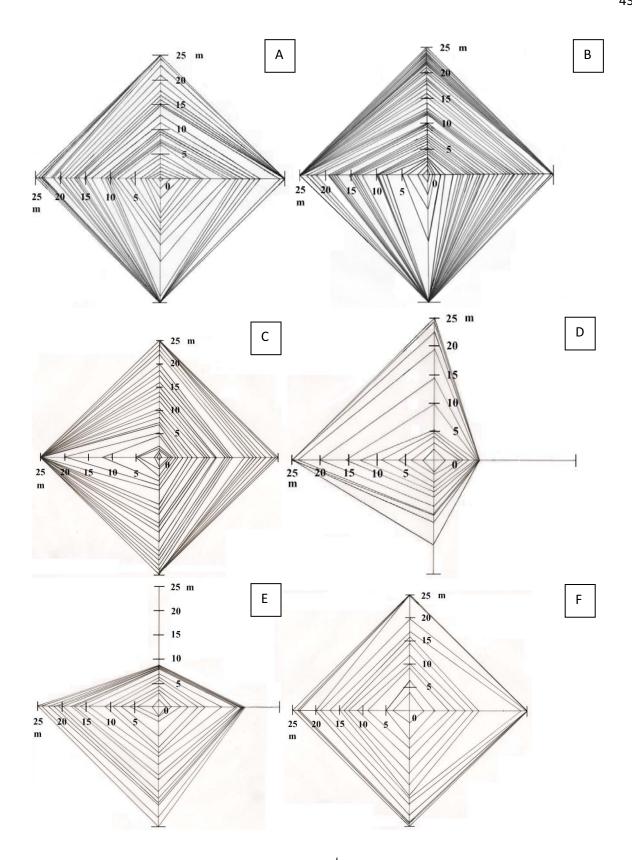


Figure 15 แบบจำลองการลุกลามของไฟในป่าสนเสื่อมโทรม (A, B, C) และป่าสนผสมก่อ (D, E, F) เส้นชั้นระยะเวลาของป่าสนเสื่อมโทรมเท่ากับ 1 นาที เส้นชั้นระยะเวลาของป่าสนผสมก่อเท่ากับ 5 นาที

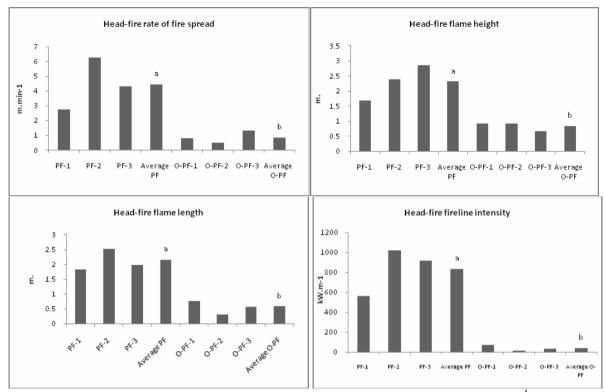


Figure 16. ลักษณะพฤติกรรมไฟด้านหัวไฟ (head-fire burning direction) ของป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ตัวอักษร ^{a, b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test*, *P*<0.05) ของลักษณะพฤติกรรมไฟด้านหัวไฟ ระหว่างพื้นที่

4.1 อัตราการลามและรูปแบบการเผาไหม้ในแต่ละทิศทาง

ผลการศึกษาอัตราการลามของไฟป่าในป่าสนเสื่อมโทรม มีอัตราการลามด้านหัวไฟเฉลี่ย เท่ากับ 4.46 เมตร/นาที อัตราการลามด้านหางไฟเฉลี่ยเท่ากับ 0.80 เมตร/นาที และอัตราการลามด้าน ปีกไฟเฉลี่ย 1.15 เท่ากับ เมตร/นาที และอัตราการลามเฉลี่ยรวม เท่ากับ 1.89 เมตร/นาที สำหรับในป่า สนผสมก่อมีอัตราการลามด้านหัวไฟเฉลี่ย เท่ากับ 0.88 เมตร/นาที อัตราการลามด้านหางไฟเฉลี่ย เท่ากับ 0.33 เมตร/นาที และอัตราการลามด้านปีกไฟเฉลี่ย เท่ากับ 0.49 เมตร/นาที และอัตราการลาม เฉลี่ยรวม เท่ากับ 0.55 เมตร/นาที ดังแสดงใน Table 11 จากผลการศึกษาที่ได้ จะพบว่าอัตราการลาม ของป่าสนเสื่อมโทรมมีค่ามากกว่าอัตราการลามในป่าสนผสมก่อ ในทุกด้าน เนื่องมาจากปัจจัยด้าน ปริมาณเชื้อเพลิง ซึ่งในพื้นที่ป่าสนเสื่อมโทรมมีปริมาณเชื้อเพลิงมากกว่า และปัจจัยด้านภูมิประเทศ ซึ่ง ก็คือ ความลาดชันของพื้นที่ โดยพื้นที่ป่าสนเสื่อมโทรมมีความลาดชันมากกว่าพื้นที่ป่าสนผสมก่อซึ่งมี ความลาดชันของพื้นที่ โดยพื้นที่ป่าสนเสื่อมโทรมมีความลาดชันมากกว่าพื้นที่ป่าสนผสมก่อซึ่งมี กวามลาดชันของพื้นที่ โดยพื้นที่ป่าสนเสื่อมโทรมมีความลาดชันมากกว่าพื้นที่ป่าสนผสมก่อซึ่งมี ความลาดชันของไฟในป่าสนผสมก่อในการศึกษานี้พบว่า อัตราการลามของไฟในป่าสนเสื่อมโทรมแล่า ลูงกว่าช่วงอัตราการลามของไฟในป่าสนผสมก่อในการศึกษานี้พบว่า อัตราการลามของไฟในป่าสนผสมก่ออยู่ในช่วงเดียวกับป่าดิบเขา คือ มีค่า 1.5 -1.8 เมตร/นาที ในขณะที่อัตราการลามของไฟในป่าสนผสมก่อยู่ในช่วงเดียวกับป่าดิบเขา คือ มีค่า 0.3 – 1.0 เมตร/นาที

Table 11 อัตราการลามในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) อุทยานแห่งชาติน้ำหนาว จังหวัดเพชรบูรณ์

<u>u</u>		อัตราการลาม (เมตร/นาที)					
ชนิดป่า	แปลงที่	หัวไฟ	หางไฟ	ปีกไฟ 1	ปีกไฟ 2	เฉลี่ยปีกไฟ	เฉลี่ยรวม
	1	2.76	0.81	1.67	1.01	1.34	1.56
PF	2	6.28	0.65	0.74	0.81	0.78	2.12
	3	4.33	0.95	1.23	1.44	1.34	1.99
		4.46 ^a	0.80 ^a	1.21 ^a	1.09 ^a	1.15 ^a	1.89 ^a
	เฉลี่ย	(1.02)	(0.09)	(0.27)	(0.19)	(0.19)	(0.17)
	1	0.80	0.33	0.48	0.64	0.56	0.56
O-PF	2	0.53	0.21	0.34	0.37	0.36	0.36
	3	1.32	0.44	0.50	0.59	0.55	0.71
		0.88 ^b	0.33 ^b	0.44 ^b	0.53 ^a	0.49 ^b	0.55 ^b
	เฉลี่ย	(0.23)	(0.07)	(0.05)	(80.0)	(0.07)	(0.10)

หมายเหตุ: ตัวอักษร ^{a, b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test*, *P*<0.05) ระหว่างพื้นที่ ในอัตราการลาม แต่ละด้าน

4.2 ค่าความร้อนของเชื้อเพลิง

ค่าความร้อนของเชื้อเพลิง เป็นค่าของพลังงานที่ช่วยให้เกิดการเผาไหม้ติดต่อกัน (heat of combustion หรือ heat value) ซึ่งเป็นค่าที่ใดจากการเผาไหม้ที่สมบูรณ์ ซึ่งวัดโดย bomb calorimeter แต่ในธรรมชาติการเผาไหม้ส่วนใหญ่จะไม่สมบูรณ์ เนื่องจากมีความร้อนบางอย่างที่สูญเสียไป เช่น การ สูญเสียความร้อนเนื่องจากการแผ่รังสี การระเหยของความชื้น เป็นต้น ดังนั้น ค่าความร้อนที่เกิดจาก การเผาไหม้สมบูรณ์เมื่อหักออกจากค่าความร้อนที่สูญเสียไป จะได้ปริมาณความร้อนสุทธิ (heat yield) ในการศึกษาครั้งนี้ เชื้อเพลิงในป่าสนเสื่อมโทรม มีค่าความร้อนของเชื้อเพลิงเฉลี่ย เท่ากับ 4,218.98 แคลอรีต่อกรัม ปริมาณความร้อนสุทธิ เท่ากับ 2862.11 แคลอรี/กรัม และเชื้อเพลิงในป่าสนผสมก่อมีค่า ความร้อนของเชื้อเพลิงเฉลี่ย เท่ากับ 4,287.60 แคลอรีต่อกรัม ปริมาณความร้อนสุทธิ เท่ากับ 2930.73 แคลอรี/กรัม โดยมีเชื้อเพลิงประเภทกิ่งไม้ ที่มีค่าปริมาณความร้อนและค่าปริมาณสุทธิ สูงที่สุด เนื่องมาจากกิ่งไม้ที่เก็บตัวอย่างได้ มีกิ่งไม้สนรวมอยู่ด้วย ซึ่งไม้สนมีสารประกอบน้ำมัน หรือresin สูง ทำให้ค่าปริมาณความร้อนและค่าปริมาณความร้อนและค่าปริมาณความร้อนสุทธิมีค่าสูงไปด้วย ดังแสดงใน Table 12

จากการศึกษาของมนูญศักดิ์ (2530) เชื้อเพลิงในป่าเต็งรัง ที่สะแกราช มีปริมาณความร้อน 3,865.57 แคลอรี/กรัมการศึกษาของบุญส่ง (2541) ที่ห้วยขาแข้ง เชื้อเพลิงในป่าเต็งรัง มีปริมาณความร้อน 4,457.23 แคลอรี/กรัม ป่าเบญจพรรณ 4,220.98 แคลอรีต่อกรัม การศึกษาของฟองแก้ว (2549) ค่าความร้อนของเชื้อเพลิงในสวนป่ายูคาลิปตัส โดยศึกษาซากพืชที่เป็นใบยูคาลิปตัส คามาลดูเลนติส และหญ้าเท่ากับ 4,235 แคลอรีต่อกรัม และมีปริมาณความร้อนสุทธิ เท่ากับ 2,806.93 แคลอรีต่อกรัม ใน สวนป่ากระถินเทพา ศึกษาซากพืช ที่เป็นใบและกิ่งกระถินเทพา และหญ้า มีค่าความร้อนของเชื้อเพลิง เท่ากับ4,480 แคลอรี/กรัม ปริมาณความร้อนสุทธิ เท่ากับ 3,092.73 แคลอรี/กรัม การศึกษาของ Wiriya (2009) ทำการศึกษาในป่าเต็งรัง ที่ห้วยขาแข้งโดยทำการศึกษาค่าความร้อนแยกตามชนิดพืช ที่เป็น เชื้อเพลิงเด่น 11 ชนิด ได้ค่าความร้อนของเชื้อเพลิง เฉลี่ย เท่ากับ 4,505.85 แคลอรี/กรัม เมื่อ เปรียบเทียบผลการศึกษาที่ได้นี้กับผลการศึกษาในเชื้อเพลิงอื่นๆ จะพบว่าค่าความร้อนของเชื้อเพลิง และปริมาณความร้อนสุทธิของเชื้อเพลิงในชนิดป่าและเชื้อเพลิงต่างๆ มีค่าที่ได้เป็นไปในลักษณะ เดียวกัน

Table 12 ค่าความร้อนของเชื้อเพลิงและค่าปริมาณความร้อนสุทธิของเชื้อเพลิงในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) อุทยานแห่งชาติน้ำหนาว จังหวัดเพชรบูรณ์

		ค่าความร้อนของ	ปริมาณความร้อนสุทร์		
ชนิดป่า	ชนิดเชื้อเพลิง	เชื้อเพลิง	ของเชื้อเพลิง		
		(แคลอรี/กรัม)	(แคลอรี/กรัม)		
	หญ้า	4,128.61	2861.44		
	ไม้พุ่ม	4,240.48	2703.09		
	ไม้ล้มลุก	4,216.84	2679.45		
PF	กล้าไม้	4,222.21	2684.81		
	ซากพืช	4,075.17	2944.23		
	กิ่งไม้	4,430.60	3299.66		
	เฉลี่ย	4,218.98	2862.11		
	หญ้า	4,085.39	2818.23		
	ไม้พุ่ม	4,228.35	2690.96		
	ไม้ลัมลุก	4,165.58	2628.19		
O-PF	กล้าไม้	4,319.33	2781.94		
	ซากพืช	4,038.17	2907.23		
	กิ่งไม้	4,888.80	3757.86		
	เฉลี่ย	4,287.60	2930.73		

4.3 ความรุนแรงของไฟ

ผลการศึกษาความรุนแรงของไฟในป่าสนเสื่อมโทรม มีความรุนแรงของไฟด้านหัวไฟเฉลี่ย เท่ากับ 836.40 กิโลวัตต์/เมตร ความรุนแรงของไฟด้านหางไฟเฉลี่ย เท่ากับ 157.88 กิโลวัตต์/เมตร และ ความรุนแรงของไฟด้านปีกไฟเฉลี่ย เท่ากับ 228.10 กิโลวัตต์/เมตร และความรุนแรงของไฟเฉลี่ยรวม เท่ากับ 362.62 กิโลวัตต์/เมตร สำหรับในป่าสนผสมก่อมีความรุนแรงของไฟด้านหัวไฟเฉลี่ย เท่ากับ 40.16 กิโลวัตต์/เมตร ความรุนแรงของไฟด้านหางไฟเฉลี่ย เท่ากับ 15.58 กิโลวัตต์/เมตร และความ รุนแรงของไฟด้านปีกไฟเฉลี่ย เท่ากับ 24.69 กิโลวัตต์/เมตรและความรุนแรงของไฟเฉลี่ยรวม เท่ากับ 26.28 กิโลวัตต์/เมตร ดังแสดงใน **Table 13** จากผลการศึกษาที่ได้ จะพบว่าค่าความรุนแรงของไฟในป่า สนเสื่อมโทรมจะมีค่าสูงกว่าค่าความรุนแรงของไฟในป่าสนผสมก่อ สอดคล้องกับปริมาณเชื้อเพลิงที่ได้ ทำการศึกษาซึ่งมีผลต่อพฤติกรรมไฟซึ่งปริมาณเชื้อเพลิงที่สูง จะทำให้ไฟป่ามีความรุนแรงมาก และ เมื่อ เปรียบเทียบกับค่าของพฤติกรรมไฟต่อวิธีการควบคุมไฟป่าของ Andrew (1980) จะพบว่าความรุนแรง ของไฟในป่าสนเสื่อมโทรมมีความรุนแรงปานกลาง โดยพนักงานดับไฟไม่สามารถสกัดกั้นที่หัวไฟโดยใช้ เครื่องมือและแนวกันไฟธรรมดาได้ การควบคุมโดยใช้รถแทรกเตอร์ เครื่องฉีดน้ำ และสารเคมีโปรยจาก เครื่องบิน สำหรับความรุนแรงของไฟในป่าสนผสมก่อมีความรุนแรงต่ำ โดยพนักงานดับไฟสามารถดับ ไฟที่หัวไฟโดยใช้เครื่องมือและแนวกันไฟธรรมดาได้ ในขณะที่การศึกษาการจัดระดับชั้นอันตรายของไฟ ป่า ในอุทยานแห่งชาติดอยสุเทพ-ปุย ของ ศิริ (2539) จะพบว่า ในป่าสนเสื่อมโทรมมีความรุนแรงของไฟ ในระดับอันตราย สูงมากโดยใช้วิธีดับทางตรงโดยมุ่งสกัดที่แนวหัวไฟก่อนโดยใช้ slip on tank หรือ รถดับเพลิงหรือใช้การดับทางอ้อม โดยทำแนวกันไฟดักแนวหัวไฟซึ่งแม่ใช้วิธีทางอ้อมก็ลำบากและใช้ เวลามาก สำหรับป่าสนผสมก่อมีความรุนแรงของไฟ ในระดับอันตรายต่ำ โดยใช้วิธีดับทางตรงแบบดับ ทันที่ด้วยการใช้ที่ตบไฟและถังฉีดน้ำ และเมื่อเปรียบเทียบการศึกษาพฤติกรรมไฟป่าของคนึงนิจ (2539) ในป่าชนิดต่างๆ ที่ภูกระดึง จ.เลย โดยนำผลการศึกษาในป่าสนและป่าดิบเขามาเปรียบเทียบกับป่าสน เสื่อมโทรมและป่าสนผสมก่อในการศึกษานี้พบว่า ความรุนแรงของไฟที่ทำการศึกษาได้ มีความรุนแรง ของไฟในป่าสนสูงกว่าในป่าสนเสื่อมโทรม คือสูงถึง 3,940 กิโลวัตต์/เมตร ในขณะที่ความรุนแรงของไฟ ในป่าดิบเขา มีค่า 35.59 กิโลวัตต์/เมตร ซึ่งมีค่าสูงกว่าในป่าสนผสมก่อไม่มากนัก

Table 13 ค่าความรุนแรงไฟในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) อุทยานแห่งชาติน้ำ หนาว จังหวัดเพชรบูรณ์

		ความรุนแรงไฟ (กิโลวัตต์/เมตร)					
ชนิดป่า	แปลงที่	หัวไฟ	หางไฟ	ปีกไฟ 1	ปีกไฟ 2	เฉลี่ยปีกไฟ	เฉลี่ยรวม
	1	564.58	165.69	341.61	206.60	274.11	319.62
PF	2	1024.15	106.00	120.68	132.10	126.39	345.73
	3	920.48	201.95	261.48	306.12	283.80	422.51
		836.40 ^a	157.88 ^a	241.26 ^a	214.94 ^a	228.10 ^a	362.62 ^a
	เฉลี่ย	(139.17)	(27.97)	(64.57)	(50.41)	(50.93)	(30.87)
	1	71.36	29.44	42.81	57.09	49.95	50.17
O-PF	2	14.92	5.91	9.57	10.42	10.00	10.21
	3	34.21	11.40	12.96	15.29	14.12	18.46
•		40.16 ^b	15.58 ^b	21.78 ^b	27.60 ^b	24.69 ^b	26.28 ^b
	เฉลี่ย	(16.56)	(7.11)	(10.56)	(14.81)	(12.69)	(12.18)

หมายเหตุ: ตัวอักษร ^{a, b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test*, *P*<0.05) ระหว่างพื้นที่ ในความรุนแรงของ ไฟแต่ละด้าน

4.4 ความสูงเปลวไฟ และความยาวเปลวไฟ

ผลการศึกษาความสูงเปลวไฟในป่าสนเสื่อมโทรม มีความสูงเปลวไฟ เมตร ด้านหัวไฟเฉลี่ย เท่ากับ 2.31 เมตร ความสูงเปลวไฟด้านหางไฟเฉลี่ย เท่ากับ 0.82 เมตร และความสูงเปลวไฟด้านปีก ไฟเฉลี่ย เท่ากับ 1.29 เมตร ความสูงเปลวไฟด้านปีก ที่สุดเฉลี่ย มีค่าเท่ากับ 0.23 เมตร ความสูงเปลวไฟค่าต่ำ ที่สุดเฉลี่ย มีค่าเท่ากับ 0.23 เมตร ความสูงเปลวไฟค่าสูงสุดที่สุดเฉลี่ย มีค่าเท่ากับ 3.73 เมตร สำหรับ ในป่าสนผสมก่อมีความสูงเปลวไฟด้านหัวไฟเฉลี่ย เท่ากับ 0.40 เมตร ความสูงเปลวไฟด้านหางไฟเฉลี่ย เท่ากับ 0.37 เมตร และความสูงเปลวไฟด้านปีกไฟเฉลี่ย เท่ากับ 0.40 เมตร และความสูงเปลวไฟค่าสู่ง ที่สุดเฉลี่ย มีค่าเท่ากับ 0.39 เมตร ความสูงเปลวไฟค่าต่ำที่สุดเฉลี่ย มีค่าเท่ากับ 0.10 เมตร ความสูงเปลวไฟค่าสูง ที่สุดเฉลี่ย มีค่าเท่ากับ 1.30 เมตร ดังแสดงใน Table 14 จากผลการศึกษาที่ได้ จะพบว่า ค่าเฉลี่ยความ สูงเปลวไฟในป่าสนเสื่อมโทรม มีค่ามากกว่าค่าความสูงไฟในป่าสนผสมก่อ ในทุกๆ ด้านของการลุกลาม ในการลุกลามของไฟในป่าสนเสื่อมโทรมมีความสูงไฟที่แตกต่างกันมาก คือตั้งแต่ 0.1 – 4.2 เมตร และ ในป่าสนผสมก่อตั้งแต่ 0.1 – 1.50 เมตร เป็นผลมาจากความสูงของเชื้อเพลิงที่กระจายอย่างไม่สม่ำเสมอ ทั่วพื้นที่ รวมไปถึงการเข้าไปเก็บข้อมูลหรือติดตั้งอุปกรณ์เพื่อเก็บข้อมูล และการใช้ประโยชน์พื้นที่ของ สัตว์ป่า เช่น ช้าง และหมูป่า เป็นต้น ทำให้เชื้อเพลิงถูกเหยียบย่ำไป นอกจากนี้ความเร็วของลมในขณะ ทำการเผา ซึ่งมีการเปลี่ยนแปลงตลอดเวลาก็มีผลทำให้ความสูงของเปลวไฟและอัตราการลามแตกต่าง กันไปด้วย

Table 14 ความสูงเปลวไฟในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

		ความสูงเปลวไฟ (เมตร)							
ชนิด	แปลง		หาง						
ป่า	ที่	หัวไฟ	ไฟ	ปีกไฟ 1	ปีกไฟ 2	เฉลี่ยปีกไฟ	เฉลี่ย	ค่าต่ำสุด	ค่าสูงสุด
	1	1.70	0.57	2.18	1.12	1.65	1.39	0.10	3.00
PF	2	2.40	0.83	0.72	0.60	0.66	1.14	0.30	4.00
	3	2.84	1.05	0.50	0.92	0.71	1.33	0.30	4.20
		2.31 ^a	0.82 ^a	1.13 ^a	0.88 ^a	1.01 ^a	1.29 ^a	0.23 ^a	3.73 ^a
	เฉลี่ย	(0.33)	(0.14)	(0.53)	(0.15)	(0.32)	(80.0)	(0.07)	(0.37)
	1	0.62	0.20	0.13	0.60	0.37	0.39	0.10	1.50
O-PF	2	0.33	0.40	0.21	0.50	0.36	0.36	0.10	0.90
	3	0.26	0.50	0.38	0.60	0.49	0.44	0.10	1.50
		0.40 ^b	0.37 ^a	0.24 ^a	0.57 ^a	0.40 ^a	0.39 ^b	0.10 ^a	1.30 ^b
	เฉลี่ย	(0.11)	(0.09)	(0.07)	(0.03)	(0.04)	(0.02)	(0.00)	(0.20)

หมายเหตุ: ตัวอักษร ^{a, b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test, P*<0.05) ระหว่างพื้นที่ ในความสูงของเปลว ไฟแต่ละด้าน

ผลการศึกษาความยาวเปลวไฟ โดยการคำนวณจากสูตรคณิตศาสตร์ของ Byram (1959) ในป่า สนเสื่อมโทรม มีความยาวเปลวไฟด้านหัวไฟเฉลี่ย เมตร เท่ากับ 1.79 เมตร ความยาวเปลวไฟด้านหาง ไฟเฉลี่ย เท่ากับ 0.81 เมตร และความยาวเปลวไฟด้านปีกไฟเฉลี่ย เท่ากับ 0.34 เมตร และความยาวเปลวไฟด้านหัวไฟเฉลี่ย เท่ากับ 0.45 เมตร ความยาวเปลวไฟด้านหางไฟเฉลี่ย เท่ากับ 0.45 เมตร ความยาวเปลวไฟด้านหางไฟเฉลี่ย เท่ากับ 0.45 เมตร ความยาวเปลวไฟด้านหางไฟเฉลี่ย เท่ากับ 0.36 เมตร ดังแสดงใน ปีกไฟเฉลี่ย เท่ากับ 0.34 เมตร และความความยาวเปลวไฟเฉลี่ยรวม เท่ากับ 0.36 เมตร ดังแสดงใน Table 15 จากผลการศึกษาที่ได้ จะพบว่าในป่าสนเสื่อมโทรมมีค่าความยาวเปลวไฟมากกว่าป่าสนผสม ก่อในทุกทิศทางการลามของไฟ โดย เมื่อเปรียบเทียบกับค่าของพฤติกรรมไฟต่อวิธีการควบคุมไฟป่า ของ Andrew (1980) จะพบว่าความยาวเปลวไฟในป่าสนเสื่อมโทรม จัดอยู่ในระดับความรุนแรงทำ กลาง และความความยาวเปลวไฟในป่าสนผสมก่อจัดอยู่ในระดับความรุนแรงทำ สอดคล้องกับค่าความ รุนแรงของไฟที่ทำการศึกษาได้ และเมื่อเปรียบเทียบการศึกษาพฤติกรรมไฟป่าของคนึงนิจ (2539) ใน ป่าชนิดต่าง ๆ ที่ภูกระดึง จ.เลย โดยนำผลการศึกษาในป่าสนและป่าดิบเขามาเปรียบเทียบกับป่าสน เสื่อมโทรมและป่าสนผสมก่อในการศึกษานี้พบว่า ความยาวเปลวไฟที่ทำการศึกษาได้อยู่ในช่วงเดียวกัน คือ ความยาวเปลวไฟในป่าสน เท่ากับ 1.0 – 6.0 เมตร ความยาวเปลวไฟในป่าดิบเขา เท่ากับ 0.3 – 0.5 เมตร

Table 15 ความยาวเปลวไฟในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) อุทยานแห่งชาติน้ำ หนาว จังหวัดเพชรบูรณ์

		ความยาวเปลวไฟ (เมตร)						
ชนิดป่า	แปลงที่	หัวไฟ	หางไฟ	ปีกไฟ 1	ปีกไฟ 2	เฉลี่ยปีกไฟ	เฉลี่ยรวม	
	1	1.48	0.84	1.17	0.93	1.05	1.14	
PF	2	1.94	0.68	0.73	0.76	0.74	1.18	
	3	1.85	0.92	1.04	1.11	1.07	1.29	
		1.79 ^a	0.81 ^a	0.99ª	0.94 ^a	0.96 ^a	1.21 ^a	
	เฉลี่ย	(0.14)	(0.07)	(0.13)	(0.10)	(0.11)	(0.04)	
	1	0.57	0.38	0.45	0.51	0.48	0.48	
O-PF	2	0.28	0.18	0.23	0.24	0.23	0.23	
	3	0.41	0.25	0.26	0.28	0.27	0.31	
		0.45 ^b	0.28 ^b	0.32 ^b	0.35 ^b	0.34 ^b	0.36 ^b	
	เฉลี่ย	(80.0)	(0.06)	(0.07)	(80.0)	(80.0)	(0.07)	

หมายเหตุ: ตัวอักษร ^{a, b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test*, *P*<0.05) ระหว่างพื้นที่ ในความยาวของเปลว ไฟแต่ละด้าน

เมื่อเปรียบเทียบกับการศึกษาทางด้านพฤติกรรมของไฟในป่าธรรมชาติและสวนป่าในประเทศ ไทยที่ได้มีผู้ศึกษาไว้แล้ว (Table 16) จะพบว่าลักษณะพฤติกรรมไฟทั้งในด้านของอัตราการลุกลาม ความสูงของเปลวไฟและความรุนแรงของไฟในแต่ละพื้นที่มีความผันแปรแตกต่างกันไปแม้แต่ในพื้นที่ เดียวกันก็ตาม ซึ่งความรุนแรงของไฟในป่าสนจัดเป็นไฟที่มีความรุนแรงปานกลางในขณะที่ความรุนแรงของไฟในป่าสนผสมก่อนั้นมีความรุนแรงต่ำตามลักษณะการจำแนกความรุนแรงของไฟตามเกณฑ์ของ Cheney (1994) สาเหตุสำคัญเนื่องมาจากเชื้อเพลิงในป่าสนเสื่อมโทรมประกอบด้วยหญ้าเป็นส่วนใหญ่ มีความแห้งที่มากกว่า มีความต่อเนื่องของเชื้อเพลิงที่ดีกว่า จึงส่งผลต่ออัตราการลุกลามที่มากกว่า ความสูงและความยาวเปลวไฟที่สูงกว่าและความรุนแรงของไฟที่มากกว่า (Wanthongchai, 2008) ดังนั้นในการวางแผนการควบคุมไฟในป่าสนเสื่อมโทรมนั้นจึงต้องมีการเตรียมอุปกรณ์การควบคุมไฟป่า และกำลังคนที่มากกว่าการควบคุมไฟในป่าสนผสมก่อ

Table 16 การศึกษาพฤติกรรมของไฟป่าในประเทศไทย

แหล่ง		อัตรา	ความ	ความยาว	
เชื้อเพลิง	สถานที่	ไฟลาม	รุนแรงไฟ	เปลวไฟ	ผู้ทำการศึกษา
		(m/min)	(kW/m)	(m)	
	ดอยอ่าง				
ไร่ร้าง	ขาง	400.2	38627.83	10	ศิริรัตน์ (2528)
	ดอยอ่าง				Kaitpraneet and Thaiutsa
ไร่ร้าง	ขาง	7.8	38753.613	9.89	(1987)
เต็งรัง	ภูกระดึง	0.3-1	57.77	0.2-0.7	คนึ่งนิจ (2539)
เบญจพรรณ	ภูกระดึง	0.6-1	102.09	0.3-1	คนึ่งนิจ (2539)
ดิบแล้ง	ภูกระดึง	0.3-1	35.59	0.3-0.5	คนึ่งนิจ (2539)
ดิบเขา	ภูกระดึง	0.3-1	35.59	0.3-0.5	คนึ่งนิจ (2539)
ป่าสน	ภูกระดึง	1.5-1.8	3940	2.42	คนึ่งนิจ (2539)
เต็งรัง	สะแกราช	4.46	194.13	0.7-1.1	มนูญศักดิ์ (2530)
เต็งรัง	สะแกราช	1.6-4.3	34-363	0.54	มนูญศักดิ์ (2530)
เต็งรัง	ห้วยขาแข้ง	-	98.11	-	Bhumpakphan (1997)
เต็งรัง	ห้วยขาแข้ง	-	134.95	-	Bhumpakphan (1997)
เต็งรัง	ห้วยขาแข้ง	0.47	66.17	0.45	Himmaphan (2006)
เต็งรัง	ห้วยขาแข้ง	0.44	44.33	1.51	Himmaphan (2006)
เต็งรัง	ห้วยขาแข้ง	2.7	361.1	1.53	Wanthongchai (2011)
เต็งรัง	ห้วยขาแข้ง	2.6	466.8	1.27	Wanthongchai (2011)
เต็งรัง	ห้วยขาแข้ง	1.3	291.2	5.5	Wanthongchai (2011)
เต็งรัง	ห้วยขาแข้ง	0.67	110.71	0.7	บุญส่ง (2541)
เต็งรัง	ห้วยขาแข้ง	2.74	543.54	1.61	ศิริ และคณะ (2546)
เต็งรัง	ห้วยขาแข้ง	0.82	167.98	0.95	สุนทร (2546)
เต็งรัง	ห้วยขาแข้ง	1.07	286.98	1.35	สุนทร (2546)
เต็งรัง	ห้วยขาแข้ง	1.34	184.71	0.86	Wiriya (2009)
เต็งรัง	ห้วยขาแข้ง	2.75	414.76	1.27	Wiriya (2009)

Table 16 (ต่อ)

แหล่งเชื้อเพลิง	สถานที่	อัตรา ไฟลาม	ความ รุนแรงไฟ	ความยาว เปลวไฟ	ผู้ทำการศึกษา
		(m/min)	(kW/m)	(m)	
เต็งรัง	ห้วยขาแข้ง	2.39	408.61	1.24	Wiriya (2009)
เต็งรัง	สลักพระ	2.81	-	-	ศิริ (2543)
เต็งรัง	กาญจนบุรี	0.45	-	0.2-0.4	วีระพล (2546)
เต็งรัง	ดอยสุเทพ-ปุย	1.72	249.26	-	ศิริ (2539)
เต็งรัง	ดอยสุเทพ-ปุ่ย	-	243.22	1	ชัยรัตน์ (2546)
เบญจพรรณ	ห้วยขาแข้ง	0.595	91.37	0.64	บุญส่ง (2541)
เบญจพรรณ	ดอยสุเทพ-ปุย	3.41	-	-	กรีฑา (2540)
เบญจพรรณ	ดอยสุเทพ-ปุ๋ย	-	227.19	0.97	ชัยรัตน์ (2546)
เบญจพรรณ	้ ป่าสาธิตแม่หวด	0.73	179	0.84	ชาญชัยและคณะ (2519)
ดิบแล้ง	เขาอ่างฤาไน	0.31	32.57	0.39	อรรถพล (2548)
ดิบแล้ง	ดอยสุเทพ-ปุ่ย	-	25.85	0.28	ชัยรัตน์ (2546)
ทุ่งหญ้า	ทุ่งแสลงหลวง	2.24	3,965.85	2.44	สมศักดิ์ (2550)
ทุ่งหญ้า แปลงปลูกป่า	มวกเหล็ก	8.29	2,165.80	5.7	ศิริ (2534)
FPT	พบพระ-อุ้มผาง	0.92	108.35	0.78	พงษ์ศักดิ์ (2549)
สวนป่ายูคาลิปตัส	สวนป่าคลองตะเกรา	2.6	1341.31	3	ชัชวาลย์ (2548)
สวนป่ายูคาลิปตัส	สวนป่าคลองตะเกรา	1.65	7614.7	9.89	ชัชวาลย์ (2548)
สวนปากระถิน เทพา	สวนป่าลาดกระทิง	0.68	189.49	1.3	ฟองแก้ว (2549)
สวนป่ายูคาลิปตัส	สวนป่าลาดกระทิง	0.28	87.44	1.5	ฟองแก้ว (2549)
	อุทยานแห่งชาติ		120-		กอบศักดิ์ และคณะ
ไร่ร้าง	ดอยภูคา	1.1-1.9	2118	-	(2553)

5. พลวัตรของปริมาณเชื้อเพลิงในระยะเวลา 1 ปีภายหลังการเผา

ภายหลังการเผาผ่านไปในระยะเวลา 1 ปี เชื้อเพลิงต่าง ๆ ได้แก่ หญ้า ไม้พุ่ม ไม้ล้มลุก ลูกไม้ กล้าไม้ เศษชากพืช กิ่งไม้ขนาดเล็ก มีแนวโน้มการสะสมกลับมาอย่างช้า ๆ ดังแสดงใน Figure 17 โดย ที่ภาพรวมของปริมาณเชื้อเพลิงที่เพิ่มขึ้นกลับมานั้นมีแนวโน้มในลักษณะเดียวกันทั้งในป่าสนเสื่อมโทรม และป่าสนผสมก่อ โดยพบว่าเชื้อเพลิงทุกประเภทยกเว้นเศษชากพืชจะมีแนวโน้มที่จะฟื้นกลับมาสู่ระดับ เดิมภายในระยะเวลา 1 ปี หลังเผา สำหรับป่าสนเสื่อมโทรมพบว่าปริมาณหญ้าจะมีปริมาณเพิ่มขึ้นจาก ก่อนเผา (5.84 ตันต่อเฮกแตร์) กลับมาสู่ระดับที่ใกล้เคียงก่อนเผา ณ เวลา 1 ปี (5.24 ตันต่อเฮกแตร์) เช่นเดียวกับเชื้อเพลิงประเภทอื่น ๆ แต่สำหรับปริมาณเศษชากพืชนั้นกลับพบว่าปริมาณเศษชากพืชที่ เปลี่ยนแปลงในช่วงเวลา 1 ปีภายหลังการเผา (1.53 ตันต่อเฮกแตร์) ยังมีปริมาณน้อยกว่าก่อนเผา (5.70 ตันต่อเฮกแตร์) อยู่ค่อนข้างมาก สำหรับป่าสนผสมก่อนั้น ปริมาณหญ้าที่เพิ่มขึ้นกลับมาภายใน ระยะเวลา 1 ปี (1.75 ตันต่อเฮกแตร์) มีค่าใกล้เคียงกับปริมาณหญ้าก่อนที่จะทำการเผา (1.46 ตันต่อเฮกแตร์) ยังมี ปริมาณน้อยกว่าก่อนที่จะมีการเผาอย่างมาก 4.78 ตันต่อเฮกแตร์)

เมื่อพิจารณาปริมาณเชื้อเพลิงรวมทั้งหมด (Total fuel loads) จะพบว่าปริมาณเชื้อเพลิงยังไม่ สามารถฟื้นคืนกลับมาสู่ระดับเดิมได้ภายในระยะเวลา 1 ปี (Figure 17) โดยมีปัจจัยหลักมาจากปริมาณ ของเศษชากพืชเป็นสำคัญที่ยังมีปริมาณการสะสมกลับมาที่ยังน้อยกว่าปริมาณที่มีอยู่เดิมก่อนเผา ซึ่ง อาจคาดการณ์จากปริมาณเชื้อเพลิงได้ว่าพื้นที่ป่าทั้ง 2 ประเภทต้องใช้เวลามากกว่า 1 ปี จึงจะสามารถ ทำให้ปริมาณเชื้อเพลิงกลับมาอยู่ในระดับที่ใกล้เคียงกับปริมาณที่มีอยู่ก่อนเผา ซึ่งเมื่อทำการสร้าง สมการเพื่อประมาณหาช่วงเวลาที่ปริมาณเชื้อเพลิงที่สะสมกลับมาในแต่ละช่วงเวลา (Figure 18) ซึ่งพบว่าสมการ ประมาณหาช่วงเวลาที่เชื้อเพลิงจะฟื้นกลับมาสู่ระดับก่อนการเผาสำหรับป่าสนเสื่อมโทรม ได้แก่ Y = 3.2875ln(x) + 2.7462; r² = 0.9959 และป่าสนผสมก่อ ได้แก่ Y = 1.5193ln(x) + 3.7691; r² = 0.9466 เมื่อ Y คือปริมาณเชื้อเพลิงที่ประมาณได้ (ตันต่อเฮกแตร์) และ X คือระยะเวลา (จำนวนเดือน) จากการใช้สมการข้างต้นประมาณระยะเวลาการสะสมเชื้อเพลิงให้กลับมาสู่ระดับใกล้เคียงกับเมื่อก่อน การเผา พบว่าป่าสนเสื่อมโทรมต้องใช้ระยะเวลาประมาณ 22 เดือนที่ปริมาณเชื้อเพลิงจะสะสมกลับมาสู่ ในระดับที่ใกล้เคียงกับปริมาณที่มีอยู่ก่อนเผา ในขณะที่ป่าสนผสมก่อต้องใช้เวลามากกว่า 2 ปี จึงจะทำ ให้ปริมาณเชื้อเพลิงกลับสู่ระดับที่ใกล้เคียงกับปริมาณที่มีอยู่ก่อนเผา ในขณะที่ป่าสนผสมก่อต้องใช้เวลามากกว่า 2 ปี จึงจะทำ ให้ปริมาณเชื้อเพลิงกลับสู่ระดับที่ใกล้เคียงกับปริมาณที่มีอยู่ก่อนเผา (Table 17)

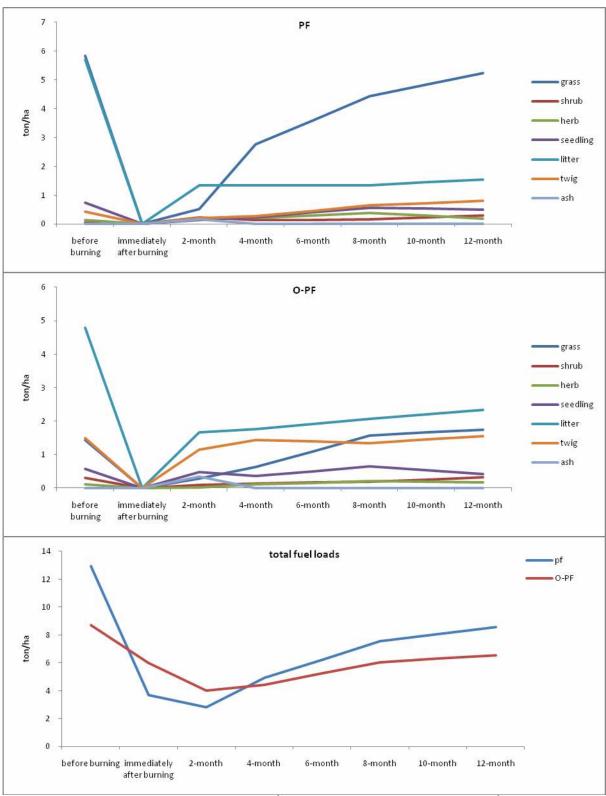


Figure 17 แนวโน้มการเปลี่ยนแปลงปริมาณเชื้อเพลิงในแต่ละประเภทและปริมาณเชื้อเพลิงรวมในช่วง ระยะเวลา 1 ปีภายหลังการเผา ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

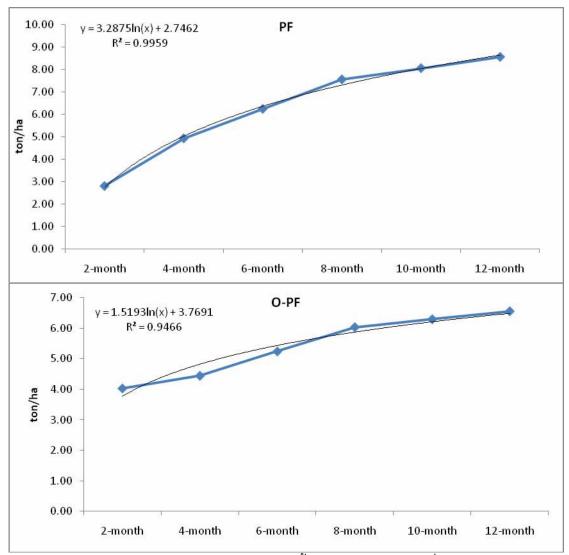


Figure 18 สมการความสัมพันธ์ระหว่างปริมาณเชื้อเพลิงกับระยะเวลาเพื่อใช้ในการประมาณระยะเวลา การสะสมของเชื้อเพลิงที่จะสะสมกลับสู่ในระดับก่อนการเผาในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

Table 17 ประมาณระยะเวลาและปริมาณการสะสมเชื้อเพลิงในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) จากการสร้างความสัมพันธ์ระหว่างระยะเวลากับปริมาณเชื้อเพลิง

ประเภท	ปริมาณเชื้อเพลิง (ton/ha)							
ป่า	ก่อนเผา	4 เดือน*	8 เดือน*	12 เดือน	18 เดือน	20 เดือน	22 เดือน	24 เดือน
	*			*	**	**	**	**
PF	12.92	4.92	7.55	8.55	12.25	12.59	12.91	13.19
O-PF	8.72	4.45	6.04	6.56	8.16	8.32	8.46	8.60

หมายเหตุ: * ข้อมูลจากการโดยตรงจากการวางแปลงสำรวจ, ** การประมาณการจากสมการ y = 3.2875ln(x) + 2.7462; r²= 0.9959 สำหรับป่าสนเสื่อมโทรม และ Y= 1.5193ln(x) + 3.7691; r²= 0.9466 สำหรับป่าสนผสมก่อ

ผลกระทบของการเผาป่าสนเสื่อมโทรมและป่าสนผสมก่อต่อลักษณะโครงสร้างและ องค์ประกอบของสังคมพืช

ลักษณะโครงสร้างของสังคมพืชก่อนการเผาแปลงทดลอง

1. ลักษณะโครงสร้างของไม้ชั้นบน (Overstory structure)

จากการวางแปลงศึกษาลักษณะโครงสร้างของป่าสนเสื่อมโทรมบริเวณภูกุ่มข้าว อุทยาน แห่งชาติน้ำหนาว พบว่าลักษณะโดยทั่วไปเป็นป่าโปร่งมีต้นไม้ขนาดใหญ่ (tree) ระหว่าง 225-375 ต้น/เฮกแตร์ โดยมีค่าเฉลี่ยเท่ากับ 304 ต้น/เฮกแตร์ มีขนาดพื้นที่หน้าตัดอยู่ในช่วง 10.14-12.01 ตร.ม./เฮกแตร์ เท่านั้น ในขณะที่ความหนาแน่นของไม้ใหญ่ในป่าสนผสมก่อมีค่าเฉลี่ยที่สูงกว่าป่าสนเสื่อมโทรมถุง ประมาณ 4 เท่า อีกทั้งมีขนาดพื้นที่หน้าตัดของไม้ใหญ่ที่สูงกว่าด้วยเช่นกัน (Table 18) จากการศึกษา ลักษณะการกระจายของต้นไม้ตามชั้นขนาดเส้นผ่านศูนย์กลาง (DBH distribution) พบว่าต้นไม้ส่วน ใหญ่ในพื้นที่เป็นไม้ขนาดเล็กและมีจำนวนลดลงตาชั้นขนาดเส้นผ่านศูนย์กลางที่ใหญ่ขึ้น อย่างไรก็ตาม สำหรับป่าสนเสื่อมโทรมพบว่าจำนวนตันไม้ที่มีขนาดเส้นผ่านศูนย์กลางใหญ่กว่า 40 ซม. มีค่าเพิ่มขึ้นอีกครั้ง เนื่องมาจากตันสนสาาใบที่เป็นไม้ขนาดใหญ่ในพื้นที่ (Figure 19 และ 20)

ค่าดัชนีพื้นที่ผิวใบ (Leaf area index; LAI) เปอร์เซ็นต์การปกคลุมเรือนยอดและขนาดพื้นที่ เรือนยอดของป่าสนผสมก่อมีค่าเฉลี่ยเท่ากับ 1.824, 30.5%, และ 12,450.6 ตร.ม./เฮกแตร์ ตามลำดับ ในขณะที่ป่าสนเสื่อมโทรมมีค่าดัชนีพื้นที่ผิวใบ เปอร์เซ็นต์การปกคลุมเรือนยอดและขนาดพื้นที่เรือนยอด เท่ากับ 1.122, 0.9%, และ 5,943.1ตร.ม./เฮกแตร์ ตามลำดับ (Table 18 และ Figure 21) โดยที่ค่าของ ดัชนีพื้นที่ผิวใบนั้นได้จากการถ่ายภาพเรือนยอด (Figure 22) แล้วทำการวิเคราะห์ด้วยโปรแกรม Hemiview 2.1

Table 18 ลักษณะโครงสร้างของไม้ยืนต้น (tree) สังคมพืชป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) บริเวณภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว

		ป่าสนเสื่อมโทรม			ป่าสนผสมก่อ			
	PF-1	PF-2	PF-3	เฉลี่ย	O-PF-1	O-PF-2	O-PF-3	เฉลี่ย
ความหนาแน่น	375	212 F	225	304.17 ^a	1662.5	856.25	1462.5	1327.08 ^b
(ต้น/เฮกแตร์)	3/3	312.5	225	(43.50)	1002.3	000.20	1402.5	(242.39)
พื้นที่หน้าตัด	12.01	10.10	11 12	11.11 ^a	21.28	14.00	15.02	17.40 ^b
(ตร.ม./เฮกแตร์)	12.01	10.18	11.13	(0.53)	21.20	14.98	15.93	(1.96)
พื้นที่เรือนยอด	E004 70	EE00 E0	7105.01	5943.09 ^a	14622.20	10004 71	10452.72	12450.61 ^b
(ตร.ม./เฮกแตร์)	5064.73	5599.52	7165.01	(630.16)	14633.39	12264.71	10453.73	(1210.14)

หมายเหตุ: ตัวอักษร ^{a, b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test, P*<0.05) ระหว่างพื้นที่ในลักษณะโครงสร้าง ของไม้ยืนต้นแต่ละประเภท

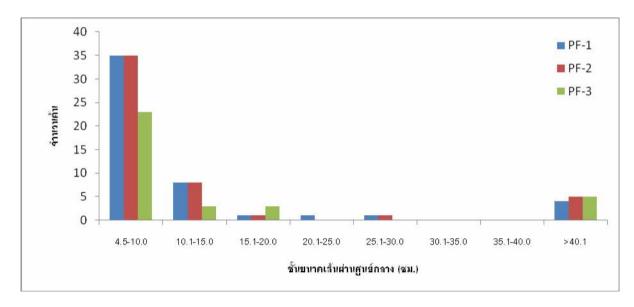


Figure 19. การกระจายของของไม้ใหญ่ตามขนาดชั้นเส้นผ่านศูนย์กลาง ในป่าสนเสื่อมโทรม

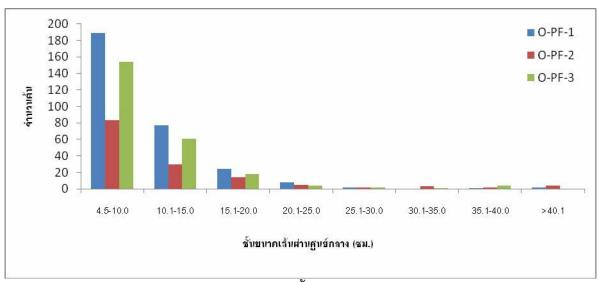


Figure 20. การกระจายของของไม้ใหญ่ตามขนาดชั้นเส้นผ่านศูนย์กลาง ในป่าสนผสมก่อ

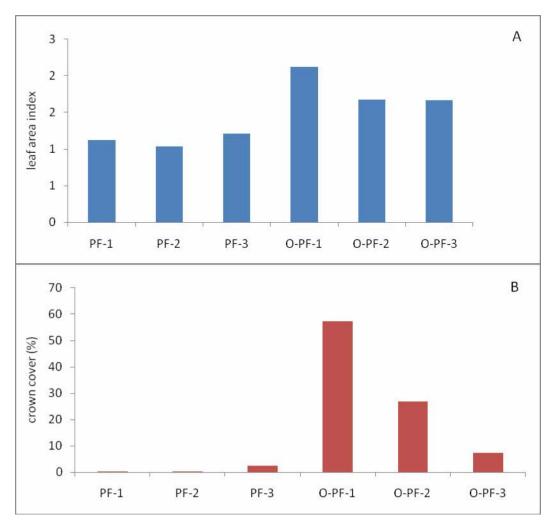


Figure 21. ดัชนีพื้นที่ผิวใบ (A) และเปอร์เซนต์การปกคลุมเรือนยอดของไม้ชั้นบน (B) ในป่าสนเสื่อม โทรม (PF-1, PF-2, PF-3) และป่าสนผสมก่อ (O-PF-1, O-PF-2, O-PF-3)

Figure 22. ตัวอย่างภาพถ่ายเรือนยอดของป่าสนผสมก่อ (บน) และป่าสนเสื่อมโทรม (ล่าง)

2. องค์ประกอบของพันธุ์ไม้ชั้นบน

สังคมพืชป่าสนเสื่อมโทรมในแต่ละแปลงพบไม้ยืนต้นจำนวน 33 ชนิด ในขณะที่ป่าสนผสมก่อ สำรวจพบไม้ยืนต้นจำนวน 25 ชนิด ดังแสดงใน **Table appendix 2**

โครงสร้างด้านตั้งของป่าสนเสื่อมโทรมประกอบด้วย 2 ชั้นเรือนยอดที่ชัดเจนโดยสังคมพืชป่าสน เสื่อมโทรมมีเพียงไม้สนสามใบ (Pinus kesiya) เป็นไม้เด่นที่สุดในเรือนยอดชั้นบนในทุกแปลงสำรวจ เนื่องจากเป็นไม้ชั้นเรือนยอดบนที่มีความสูงกว่า 30 เมตร ขึ้นโดดเด่นอยู่ในพื้นที่ โดยที่ไม้สนสามใบพบ ขึ้นกระจายอยู่ห่างๆ กระจายอยู่ทั่วพื้นที่ ในขณะที่พรรณไม้ชนิดอื่นๆ ประกอบด้วยพรรณไม้ในป่าดิบ เขา แต่ขึ้นอยู่เป็นชั้นเรือนยอดรองลงมาซึ่งมีความสูงไม่เกิน 10 เมตร โดยส่วนใหญ่ เช่น ตาฉี่เคย (Craibiodendron stellatum) สมอไทย (Terminalia chebula) จากการศึกษาค่าดัชนีความสำคัญของ พรรณไม้ (Importance value index; IVI) พบว่าไม้สนสามใบเป็นพรรณไม้เด่นของพื้นที่ในทุกแปลง ศึกษา โดยมีค่า IVI ระหว่าง 113.13-141.85 ในขณะที่ไม้กระโดน (Careya sphaerica) ตาฉี่เคย และ ตับเต่าตัน (Diospyros ehretiodes) มีค่าดัชนีความสำคัญที่อยู่ในระดับรองลงมา (Table appendix 3-5)

สำหรับป่าสนผสมก่อสามารถแบ่งลักษณะโครงสร้างทางด้านตั้งได้เป็น 3 ชั้นเรือนยอด โดยพบ ไม้สนสามใบขึ้นเป็นไม้เรือนยอดเด่นอยู่ชั้นบนสุดโดยมีความสูงประมาณ 30 เมตร ขึ้นอยู่กระจายอย่าง ห่างๆ ในพื้นที่ในลักษณะเช่นเดียวกับป่าสนเสื่อมโทรม สำหรับรรณไม้เรือนยอดชั้นที่สองประกอบด้วย พรรณไม้ในสังคมป่าดิบเขาโดยเฉพาะไม้ในวงศ์ก่อ (Fagaceae) เช่น ก่อหม่น (Lithocarpus grandifolius) ก่อแดง (Quercus auricoma) ขึ้นปะปนอยู่ผสมกับไม้ป่าเต็งรังบางชนิดเช่น ยางเหียง (Dipterocarpus obtusifolius) เหมือดโลด (Aporosa villosa) ขึ้นผสมปะปนอยู่เป็นไม้ชั้นรองซึ่งมีความ สูงประมาณ 15-20 เมตร ในขณะที่ชั้นเรือนยอดที่สามประกอบด้วยไม้ขนาดเล็กของไม้ชั้นเรือนยอดที่ สองและไม้ที่มีขนาดเล็กอื่นๆ เช่น มะขามป้อม (Phyllanthus emblica) คำมอกหลวง (Gardenia sootepensis) เหมือดแอ (Memecylon scutellatum) จากการพิจารณาลักษณะองค์ประกอบของชนิด พันธุ์ไม้ที่ปรากฏ พบว่าพื้นที่ป่าสนผสมก่อที่วางแปลงศึกษาบางแห่งมีลักษณะคล้ายกับป่าเต็งรังผสมสน บางบริเวณมีลักษณะคล้ายป่าสนผสมก่อ ซึ่งยากต่อการจำแนกได้อย่างชัดเจน เช่นเมื่อพิจารณาชนิด พันธุ์ไม้ที่พบและค่าดัชนีความสำคัญในป่าสนผสมก่อแปลงที่ 1 (O-PF-1) และ 2 (O-PF-2) จะมีลักษณะ ใกล้เคียงกับป่าสนผสมก่อ ในขณะที่แปลงป่าสนผสมก่อแปลงที่ 3 (O-PF-3) มีลักษณะคล้ายป่าเต็งรัง ผสมสนมากกว่า แม้ว่าพื้นที่ทั้งสามแห่งจะอยู่ในบริเวณเดียวกัน มีระดับความสูงที่ใกล้เคียงกันก็ตาม (Table Appendix 6-8)

3. ลักษณะโครงสร้างและองค์ประกอบของไม้รุ่น (Sapling) และลูกไม้ (Seedling)

ลักษณะโครงสร้างของไม้ชั้นล่างที่เป็นพืชที่ให้เนื้อไม้ (Woody plant) เป็นสิ่งที่บ่งบอกถึง ลักษณะของการสืบพันธุ์ตามธรรมชาติในสังคมพืชว่าจะมีแนวโน้มในลักษณะเช่นใด สำหรับป่าสนเสื่อม โทรมพบว่ามีค่าความหนาแน่นของไม้รุ่นและลูกไม้ระหว่าง 4375-9375 และ 17500-70000 ตันต่อเฮก แตร์ ตามลำดับ ในขณะที่ป่าสนผสมก่อมีค่าความหนาแน่นของไม้รุ่นและลูกไม้ระหว่าง 2500-6250 และ 47500-102500 ตันต่อเฮกแตร์ ตามลำดับ (Table 19 และ 20) ในขณะที่ขนาดพื้นที่หน้าตัดของไม้รุ่นใน ป่าสนเสื่อมโทรมและป่าสนผสมก่อมีค่าโดยเฉลี่ยไม่แตกต่างกันมากนัก โดยมีค่าเฉลี่ยเท่ากับ 3.63 และ 3.76 ตร.ม./เฮกแตร์ ตามลำดับ สำหรับการกระจายตามชั้นขนาดเส้นผ่านศูนย์กลางที่โคนต้นในไม้รุ่น พบว่าไม้รุ่นส่วนใหญ่ทั้งในป่าสนเสื่อมโทรมและป่าสนผสมก่อมีขนาดเส้นผ่านศูนย์กลางที่โคนต้นระหว่าง 1.1-3.0 ซม. (Figure 23)

เมื่อพิจารณาค่าเปอร์เซนต์การปกคลุมเรือนยอดของไม้รุ่นพบว่าป่าสนเสื่อมโทรม (37.45%) มี ค่าสูงกว่าป่าสนผสมก่อเล็กน้อย (31.48%) และมีความหนาแน่นของลูกไม้ที่น้อยกว่าป่าสนผสมก่อ ซึ่ง เมื่อพิจารณาในด้านของการถูกปัจจัยรบกวนอันได้แก่ไฟนั้น อาจกล่าวได้ว่าพื้นที่ป่าสนเสื่อมโทรมซึ่งมี ปัญหาไฟไหม้พื้นที่เกือบทุกปีส่งผลให้ไม้รุ่นที่ปรากฏอยู่มีแต่ตันที่มีขนาดใหญ่เท่านั้นที่จะสามารถทนอยู่ ภายใต้สภาพแวดล้อมที่มีไฟเกิดอยู่เป็นประจำเกือบทุกปี และการเกิดไฟในพื้นที่อยู่เป็นประจำเกือบทุก ปี ส่งผลต่อจำนวนลูกไม้ซึ่งได้รับผลกระทบโดยตรงจากไฟป่า

จากจำนวนชนิดไม้ที่พบในไม้รุ่นทั้งหมด 22 ชนิด พบไม้รุ่นในป่าสนเสื่อมโทรมและป่าสนผสม ก่อจำนวน 11 และ 13 ชนิด ตามลำดับ และจากจำนวนชนิดพันธุ์ไม้ที่สำรวจพบในลูกไม้ทั้งหมด 39 ชนิด พบลูกไม้ในป่าสนเสื่อมโทรมและป่าสนผสมก่อ จำนวน 24 และ 19 ชนิด ตามลำดับ (Table appendix 9 และ 10)

Table 19. ลักษณะโครงสร้างของไม้รุ่น (Sapling) สังคมพืชป่าสนเสื่อมโทรมและป่าสนผสมก่อ บริเวณภู กุ่มข้าว อุทยานแห่งชาติน้ำหนาว

	ป่าสนเสื่อมโทรม			ป่าสนผสมก่อ		
•	PF-1	PF-2	PF-3	O-PF-1	O-PF-2	O-PF-3
ความหนาแน่น (ตัน/เฮกแตร์)	4375	9375	6250	6250	5000	2500
D ₀ (ซม.)	3.11	1.98	2.25	3.19	0.61	3.34
DBH (ซม.)	1.44	0.54	0.92	1.48	0.43	1.79
Ht (೩.)	2.17	1.58	1.87	2.02	1.48	2.45
พื้นที่หน้าตัด (ตร.ม./เฮกแตร์)	3.83	3.61	3.45	6.08	1.18	4.03
พื้นที่เรือนยอด (ตร.ม./16 ตร.ม.)	4.57	6.55	6.86	8.32	2.08	4.71
การปกคลุมเรือนยอด (%)	28.56	40.95	42.85	52.00	13.01	29.44

Table 20. ลักษณะโครงสร้างของลูกไม้ (Seedling) สังคมพืชป่าสนเสื่อมโทรมและป่าสนผสมก่อบริเวณ ภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว

	ป่าสนเสื่อมโทรม			ป่าสนผสมก่อ		
	PF-1	PF-2	PF-3	O-PF-1	O-PF-2	O-PF-3
ความหนาแน่น (ต้น/เฮกแตร์)	17500	70000	65000	62500	102500	47500
D ₀ (ชม.)	0.56	0.43	0.52	0.66	0.46	0.20
Ht (រ.)	0.60	0.42	0.55	0.44	0.33	0.31
พื้นที่เรือนยอด (ตร.ม./4 ตร.ม.)	0.63	1.68	0.18	1.15	3.07	1.12
การปกคลุมเรือนยอด (%)	15.67	42.12	4.59	28.73	76.81	28.02

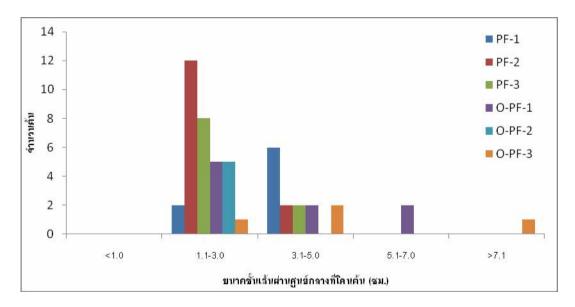


Figure 23 การกระจายตามชั้นขนาดเส้นผ่านศูนย์กลางโคนต้นของไม้รุ่นในป่าสนเสื่อมโทรมและป่าสน ผสมก่อ ก่อนการเผาแปลงทดลอง

4. ความหลากชนิดของพืชในสังคมป่าสนเสื่อมโทรมและป่าสนผสมก่อก่อนการเผาแปลง ทดลอง

4.1 ดัชนีความหลากหลายของไม้ยืนต้น

จากการศึกษาพบว่าความหลากหลายทางชนิดพันธุ์นไม้ยืนต้นขนาดใหญ่ (ขนาด เส้นผ่าศูนย์กลางมากกว่า 4.5 ซม.) ในป่าสนเสื่อมโทรมทุกแปลงมีค่าสูงกว่า 2.0 ซึ่งมากกว่าป่าสนผสม ก่อทุกแปลง (Table 21) เมื่อพิจารณาค่าดัชนีความหลากหลายรวมของทุกแปลงในแต่ละประเภทป่าก็ พบว่าป่าสนเสื่อมโทรมมีดัชนีความหลากหาบเท่ากับ 2.808 ในขณะที่ป่าสนผสมก่อมีค่าดัชนีความ หลากหลายเท่ากับ 2.083 (Figure 24) ซึ่งสอดคล้องกับจำนวนชนิดที่พบในป่าแต่ละประเภทเช่นกันที่ พบว่าจำนวนชนิดพันธุ์ไม้ยืนต้นที่พบทั้งหมดในการศึกษาครั้งนี้ 47 ชนิด นั้น พบในป่าสนเสื่อมโทรม โดยเฉลี่ยมากกว่าในป่าสนผสมก่อ (Table 21) แม้ว่าจำนวนต้นต่อหน่วยพื้นที่ของไม้ยืนต้นในป่าสนผสม ก่อจะมากกว่าก็ตาม

สำหรับความหลากชนิดของไม้หนุ่มและลูกไม้ซึ่งเป็นเสมือนดัชนีบ่งบอกถึงลักษณะของการ สืบพันธุ์ตามธรรมชาติของป่านั้น พบว่าดัชนีความหลากหลายของป่าสนเสื่อมโทรม (2.217) และป่าสน ผสมก่อ (2.390) มีค่าใกล้เคียงกัน (Figure 24) โดยที่ความหลากหลายในแต่ละแปลงสำรวจก็มีค่าผัน แปรแตกต่างกันออกไป ส่วนความหลากหลายของลูกไม้นั้นพบว่าป่าสนเสื่อมโทรม (2.829) มีค่าสูงกว่า ป่าสนผสมก่อ (2.436) เล็กน้อย (Figure 24) โดยที่ค่าความหลากหลายของไม้ในแต่ละแปลงมีค่าผัน แปรแตกต่างกันไปดังแสดงใน Table 22

Table 21 ความหลากชนิดของไม้ยืนต้น (tree) ในป่าสนเสื่อมโทรมและป่าสนผสมก่อ บริเวณสวนสนภู กุ่มข้าว อุทยานแห่งชาติน้ำหนาว

Site	Species	Shannon-wiener index (H')		
	number	H' index	Variance	
PF-1	21	2.684	0.015	
PF-2	18	2.508	0.020	
PF-3	13	2.111	0.031	
O-PF-1	13	1.711	0.003	
O-PF-2	9	1.566	0.006	
O-PF-3	14	1.708	0.006	

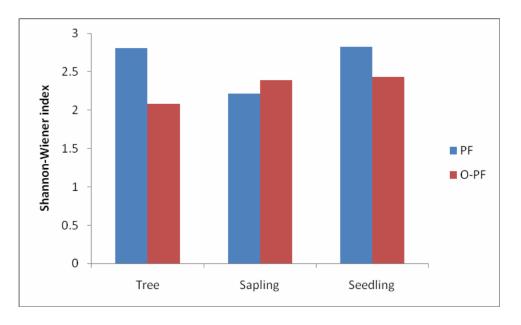


Figure 24 ความหลากชนิด (Shannon-Wiener Index) ของไม้ยืนต้น (tree) ไม้หนุ่ม (sapling) และ ลูกไม้ (seedling) ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ก่อนการเผาแปลงทดลอง

Table 22 ความหลากชนิดของไม้หนุ่ม (sapling) และลูกไม้ (seedling) ในป่าสนเสื่อมโทรม (PF) และ ป่าสนผสมก่อ (O-PF) บริเวณสวนสนภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว

Stage	Site	Species	Shannon-wiener	index (<i>H'</i>)
		number	H' index	Variance
	PF-1	5	1.550	0.058
	PF-2	6	1.675	0.026
Conling	PF-3	6	1.696	0.044
Sapling	O-PF-1	8	1.973	0.060
	O-PF-2	3	0.974	0.040
	O-PF-3	3	1.040	0.093
	PF-1	4	1.330	0.059
	PF-2	15	2.293	0.045
Coodline.	PF-3	11	2.192	0.022
Seedling	O-PF-1	12	2.315	0.023
	O-PF-2	7	1.312	0.026
	O-PF-3	9	1.913	0.040

4.2 ลักษณะความคล้ายคลึงของพันธุ์ไม้

จาก Figure 25, 26 และ 27 และTable 23 ซึ่งเป็นการศึกษาความคล้ายคลึงของสังคมพืช โดย วิธีการของ Bray-Curtis cluster analysis จะพบว่าสังคมพืชปาสนเสื่อมโทรมและป่าสนผสมก่อมีความ แดกต่างทางสังคมพืชทั้งในด้านของไม้ยืนต้น ไม้หนุ่มและลูกไม้กล้าไม้ นอกจากนี้แม้แต่ในสังคมพืช เดียวกันก็ยังมีความแตกต่างของสังคมพืชอยู่เช่นกัน เช่นเมื่อพิจารณาค่าดัชนีความคล้ายคลึงที่ 50 % ของไม้ใหญ่จะพบว่าแปลงศึกษาในป่าสนผสมก่อแต่ละแปลงนั้นมีความแตกต่างกัน แต่หากพิจารณา ดัชนีความคล้ายคลึงที่เพียงประมาณ 40 % แล้วจะพบว่าป่าสนผสมก่อมีความคล้ายคลึงกัน สิ่งนี้ได้ แสดงให้เห็นว่าสังคมพืชในแปลงป่าสนผสมก่อมีความคล้ายคลึงกันประมาณ 60 % (Table 23) ในขณะที่ป่าสนเสื่อมโทรมในแต่ละแปลงมีความคล้ายคลึงกันประมาณ 60 % ตำยคลึงกันดำมาก (ประมาณ 10-40 %) เท่านั้น (Figure 26 และ 27) ดังนั้นในภาพรวมของสังคมพืช ที่มีการวางแปลงก่อนการเผาพื้นที่นั้นมีความหลากหลายและผันแปรทั้งในระหว่างประเภทป่า (external variation) และภายในป่าแต่ละประเภท (internal variation)

Table 23 Bray-Curtis cluster analysis สำหรับไม้ยืนต้นในป่าสนเสื่อมโทรมและป่าสนผสมก่อ บริเวณ สวนสนภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว

	PF-1	PF-2	PF-3	O-PF-1	O-PF-2	O-PF-3
PF-1	*	58.182	54.167	11.656	9.137	14.286
PF-2	*	*	58.140	13.291	9.626	13.380
PF-3	*	*	*	9.934	6.936	12.593
O-PF-1	*	*	*	*	47.643	42.000
O-PF-2	*	*	*	*	*	37.736
O-PF-3	*	*	*	*	*	*

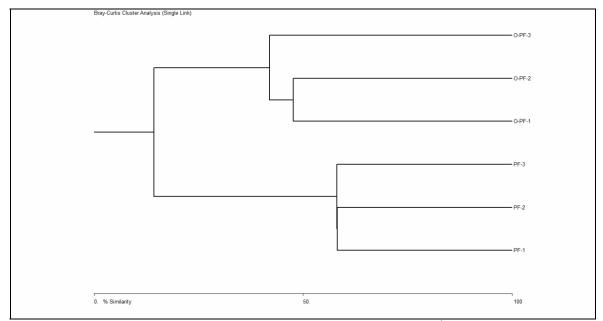


Figure 25 Bray-Curtis cluster analysis สำหรับไม้ยืนต้น (tree) ในป่าสนเสื่อมโทรมและป่าสนผสมก่อ บริเวณสวนสนภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว

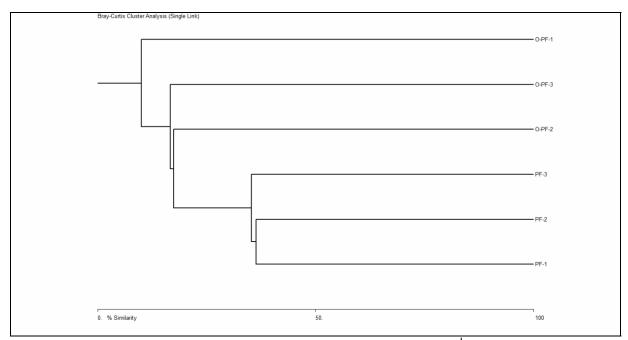


Figure 26 Bray-Curtis cluster analysis สำหรับไม้หนุ่ม (sapling) ในป่าสนเสื่อมโทรมและป่าสนผสม ก่อ บริเวณสวนสนภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว

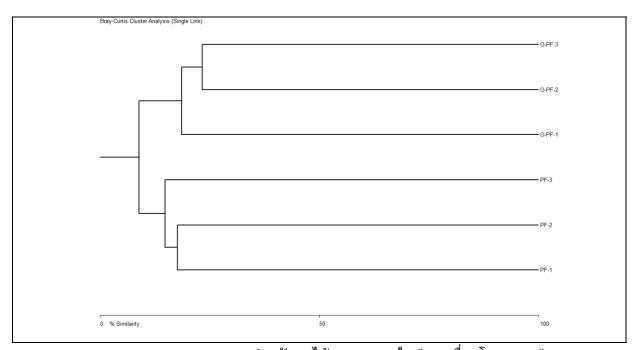


Figure 27 Bray-Curtis cluster analysis สำหรับลูกไม้ (seedling) ในป่าสนเสื่อมโทรมและป่าสนผสม ก่อ บริเวณสวนสนภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว

ผลกระทบของการเผาต่อลักษณะลักษณะโครงสร้างและองค์ประกอบของสังคมพืช

1. ผลกระทบของไฟต่อโครงสร้างและองค์ประกอบของพันธุ์ใม้ชั้นบน

1.1 การตายของต้นไม้

ภายหลังการเผา 1 ปี พบว่าต้นไม้ในป่าสนเสื่อมโทรมและป่าสนผสมก่อที่ศึกษามีอัตราการตาย ที่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (p= 0.024) ซึ่งป่าสนเสื่อมโทรมมีอัตราการตาย 4.59% ในขณะ ที่อัตราการตายของไม้ยืนต้นในป่าสนผสมก่อมีค่าเท่ากับ 1.15% (Figure 28) เมื่อพิจารณาถึงชนิดไม้ที่ ตายภายหลังการเผาในป่าสนผสมก่อ ได้แก่ ก่อแดง ยางเหียง คำมอกหลวง และสนสามใบ ในขณะที่ ชนิดไม้ที่ตายในป่าสนเสื่อมโทรม ได้แก่ ตาฉี่เคย ประดู่ป่า กางขึ้มอด ทะโล้ กระโดน และมะแฟน ซึ่ง เป็นที่น่าสังเกตุว่าต้นไม้ที่ตายบางชนิด เช่น สนสามใบ และยางเหียง จะเป็นตันที่มีขนาดเล็กกว่า ค่าเฉลี่ยขนาดเส้นผ่าศูนย์กลางของไม้ชนิดนั้น ๆ ในขณะที่ก่อแดงที่ตายนั้นมีทั้งต้นที่มีขนาด เส้นผ่าศูนย์กลางระดับอกมากกว่าและน้อยกว่าค่าเฉลี่ยเส้นผ่าศูนย์กลางของไม้ก่อแดง

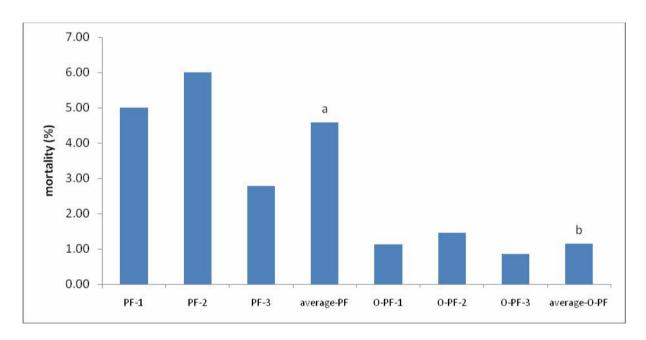


Figure 28. อัตราการตายของไม้ยืนต้นขนาดใหญ่ (dbh > 4.5 ซม.) ภายหลังการเผา 1 ปี

1.2 การเปลี่ยนแปลงความหนาแน่น ขนาดเส้นผ่านศูนย์กลาง และพื้นที่หน้าตัด

เนื่องจากการเผาทำให้ต้นไม้บางชนิดตายลงส่งผลกระทบต่อความหนาแน่นของต้นไม้ในพื้นที่ โดยเฉลี่ยพบว่าความหนาแน่นของไม้ยืนต้นในป่าสนเสื่อมโทรมลดลงจาก 48.7 ต้นต่อไร่ (304 ต้นต่อ เฮกแตร์) เป็น 46.3 ต้นต่อไร่ (290 ต้นต่อเฮกแตร์) ในขณะที่ความหนาแน่นของไม้ยืนต้นในป่าสนผสม ก่อลดลงจาก 212.3 ต้นต่อไร่ (1327 ต้นต่อเฮกแตร์) เป็น 210 ต้นต่อไร่ (1313 ต้นต่อเฮกแตร์) (Table 24.)

Table 24 การเปลี่ยนแปลงความหนาแน่นของไม้ยืนต้น (dbh > 4.5 ซม.) ภายหลังการเผา 1 ปี

	จำนวง	นต้นต่อไร่	จำนวนตั	นต่อเฮกแตร์
	ก่อนการเผา	ภายหลังการเผา	ก่อนการเผา	ภายหลังการเผา
PF-1	60	57	375	356.25
PF-2	50	47	312.5	293.75
PF-3	36	35	225	218.75
average-PF	48.7	46.3	304.2	289.6
O-PF-1	266	263	1662.5	1643.75
O-PF-2	137	135	856.25	843.75
O-PF-3	234	232	1462.5	1450
average-O-PF	212.3	210.0	1327.1	1312.5

สำหรับการเปลี่ยนแปลงขนาดเส้นผ่าศูนย์กลางในภาพรวม พบว่าภายหลังการเผา ค่าเฉลี่ย ขนาดเส้นผ่าศูนย์กลางที่ระดับอกของไม้ใหญ่ที่เพิ่มขึ้นในป่าสนเสื่อมโทรมและป่าสนผสมก่อมีค่าเท่ากับ 0.187 และ 0.127 ซม. ตามลำดับ ซึ่งการเพิ่มขึ้นของขนาดเส้นผ่านศูนย์กลางที่ระดับอกนั้นไม่มีความ แตกต่างกันอย่างมีนัยสำคัญทางสถิติระหว่างพื้นที่ป่าทั้งสองประเภท (Figure 29) เมื่อพิจารณาการ เปลี่ยนแปลงขนาดเส้นผ่านศูนย์กลางที่ระดับอกเฉพาะชนิดไม้ที่มีค่าดัชนีความสำคัญสูงสุด 5 อันดับแรก ในแต่ละแปลง ซึ่งรวมแล้วมีทั้งสิ้น 16 ชนิด (Table 25) โดยที่สำหรับแปลงป่าสนผสมก่อนั้น ก่อแดงมี การเพิ่มขึ้นของขนาดเส้นผ่านศูนย์กลางระดับอกน้อยที่สุด (0.04 ซม.) ส่วนสนสามใบมีการเพิ่มขึ้นของ ขนาดเส้นผ่านศูนย์กลางระดับอกมากที่สุด (0.29 ซม.) สำหรับป่าสนเสื่อมโทรมนั้น ตาฉี่เคยมีการ เพิ่มขึ้นของขนาดเส้นผ่านศูนย์กลางระดับอกมากที่สุด (0.74 ซม.)

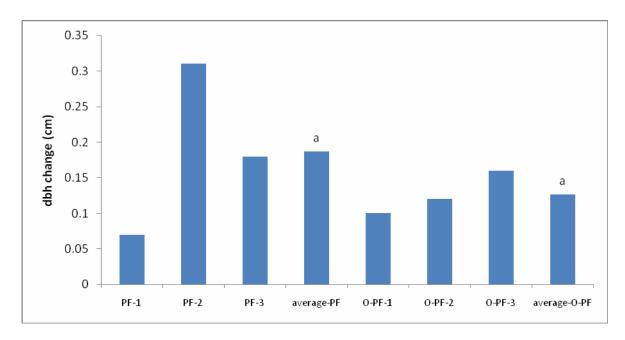


Figure 29. การเปลี่ยนแปลงขนาดเส้นผ่านศูนย์กลางที่ระดับอกของไม้ยืนต้นขนาดใหญ่ (dbh > 4.5 ซม.) ภายหลังการเผา 1 ปี

Table 25 การเปลี่ยนแปลงขนาดเส้นผ่านศูนย์กลางที่ระดับอกและพื้นที่หน้าตัดของไม้ยืนตันขนาดใหญ่ (dbh > 4.5 ซม.) ที่สำคัญบางชนิด ภายหลังการเผา 1 ปี

			การเปลี่ยนแปลงขน	าดเส้นผ่าศูนย์กลาง	
ชนิดไม้	การเปลี่ยนแปลง	พื้นที่หน้าตัด (cm²)	ที่ระดับอก (cm)		
	O-PF	PF	O-PF	PF	
ก่อแดง	82.73	-	0.04	-	
ก่อนก	77.45	-	0.19	-	
ก่อแพะ	6.50	-	0.09	-	
ก่อหม่น	41.05	-	0.17	-	
แคทราย	-	3.91	-	0.13	
ตับเต่าต้น	-	3.39	-	0.12	
ตาฉี่เคย	-	5.33	-	0.09	
สนสามใบ	95.34	149.81	0.29	0.74	
สมอไทย	4.13	10.48	0.05	0.40	
เหมือดโลด	51.64	-	0.23	-	
เหียง	92.38	-	0.11	-	
แหน	-	0.00	0.11	-	

2. ผลกระทบของไฟต่อโครงสร้างและองค์ประกอบของไม้รุ่นและลูกไม้

2.1 การเปลี่ยนแปลงของลักษณะโครงสร้าง (ความหนาแน่น ขนาดเส้นผ่าน ศูนย์กลาง ขนาดเรือนยอดและความสูง) ของไม้หนุ่มและกล้าไม้

ผลกระทบจากการเผาทำให้ไม้หนุ่มมีการเปลี่ยนแปลงความหนาแน่นโดยที่ไม้หนุ่มมีแนวโน้มที่ ลดลง (Figure 30) โดยที่ไม้หนุ่มในป่าสนเสื่อมโทรมมีแนวโน้มการลดลงมากกว่าในป่าสนผสมก่อ สำหรับไม้หนุ่มที่เหลืออยู่ภายหลังการเผานั้นพบว่าภายหลังการเผา 1 ปี นั้นความสูงและขนาดเส้นผ่าน ศูนย์กลางมีแนวโน้มที่จะมีขนาดใหญ่ขึ้น ซึ่งภายหลังการเผา 1 ปี นั้น ไม้หนุ่มมีขนาดเส้นผ่านศูนย์กลาง ระดับอกเฉลี่ยประมาณ 0.6-2.4 ซม. และความสูงเฉลี่ยประมาณ 1.5-2.4 ม. (Table 26) โดยที่มีอัตรา การเดิบโตทางด้านเส้นผ่าศูนย์กลางประมาณ 0.4-0.8 ซม./ปี และมีความสูงเพิ่มขึ้นเฉลี่ยประมาณ 0.2-0.4 ม/ปี (Figure 31 และ Figure 32) สำหรับขนาดพื้นที่หน้าตัดของไม้หนุ่มนั้น แม้ว่าขนาด เส้นผ่าศูนย์กลางของไม้หนุ่มมีแนวโน้มที่จะเพิ่มขึ้นจากก่อนการเผา แต่เนื่องจากความหนาแน่นต่อพื้นที่ ของไม้หนุ่มนั้นลดลง ทำให้ขนาดพื้นที่หน้าตัดในแปลงส่วนใหญ่จึงมีแนวโน้มการเปลี่ยนแปลงที่ไม่ซัดเจน โดยบางแปลงมีแนวโน้มการเปลี่ยนแปลงที่มากขึ้นในขณะที่บางแปลงมีแนวโน้มการเปลี่ยนแปลงที่ลดลง ดังนั้นในภาพรวมการเปลี่ยนแปลงของพื้นที่เรือนยอดและการปกคลุมเรือนยอดจึงมีแนวโน้มไม่ซัดเจน (Figure 34)

Table 26. ลักษณะโครงสร้างของไม้รุ่น (Sapling) สังคมพืชป่าสนเสื่อมโทรมและป่าสนผสมก่อบริเวณภู กุ่มข้าว อุทยานแห่งชาติน้ำหนาว ภายหลังการเผา 1 ปี

9 9	ป่า	ป่าสนเสื่อมโทรม			ป่าสนผสมก่อ		
	PF-1	PF-2	PF-3	O-PF-1	O-PF-2	O-PF-3	
ความหนาแน่น (ตัน/เฮกแตร์)	1875	3125	2500	5625	2500	2500	
D ₀ (ซม.)	2.40	1.20	3.10	4.00	1.60	3.40	
DBH (ชม.)	1.20	0.50	1.30	2.40	0.60	2.00	
Ht (រ.)	2.30	2.00	2.10	2.40	1.50	1.80	
พื้นที่หน้าตัด (ตร.ม./เฮกแตร์)	1.16	0.59	2.25	9.14	0.52	2.86	
พื้นที่เรือนยอด (ตร.ม./16 ตร.ม.)	6.79	3.13	3.79	9.37	1.24	4.61	
การปกคลุมเรือนยอด (%)	42.47	19.56	23.68	58.57	7.77	28.83	

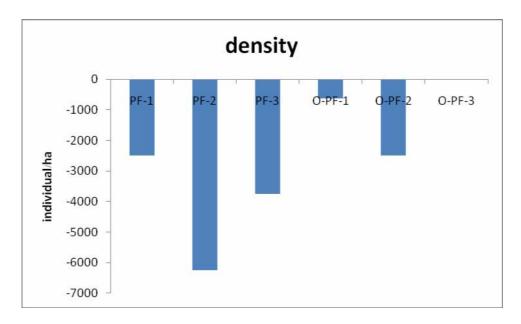


Figure 30. การเปลี่ยนแปลงความหนาแน่นของไม้หนุ่มภายหลังการเผา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

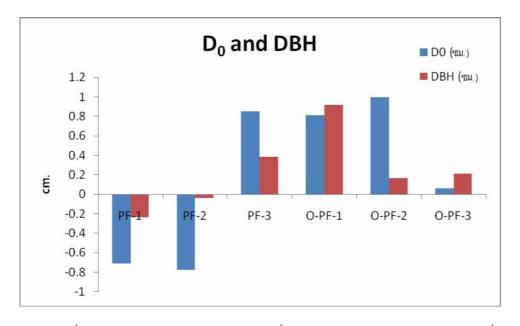


Figure 31. การเปลี่ยนแปลงขนาดเส้นผ่านศูนย์กลางที่โคนต้น (D₀) และเส้นผ่าศูนย์กลางที่ระดับความ สูงเพียงอก (DBH) ของไม้หนุ่มภายหลังการเผา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

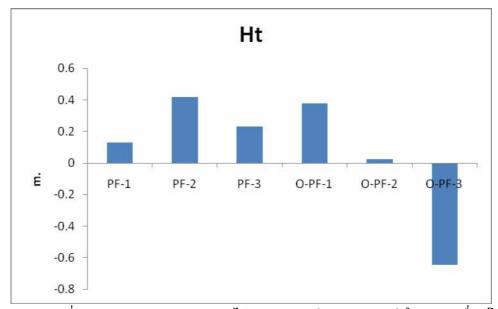


Figure 32. การเปลี่ยนแปลงขนาดความสูงของไม้หนุ่มภายหลังการเผา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

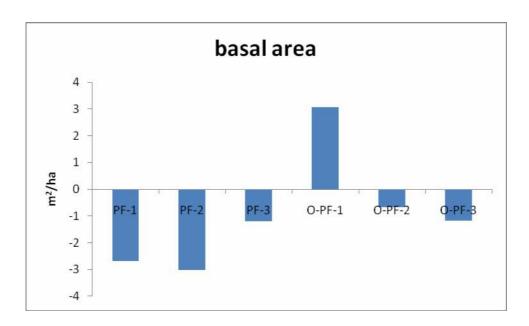


Figure 33. การเปลี่ยนแปลงขนาดพื้นที่หน้าตัดไม้หนุ่มภายหลังการเผา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

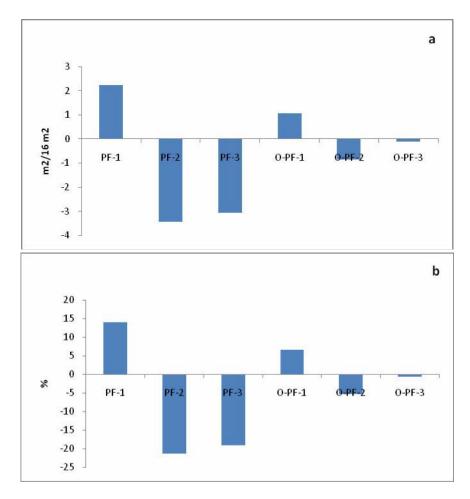


Figure 34. การเปลี่ยนแปลงขนาดพื้นที่เรือนยอด (a) และเปอร์เซนต์การปกคลุมพื้นที่ (b) ของไม้หนุ่ม ภายหลังการเผา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

ภายหลังการเผา ความหนาแน่นต่อพื้นที่และขนาดเส้นผ่านศูนย์กลางที่โคนต้นของลูกไม้มีการ เปลี่ยนแปลงทั้งในลักษณะที่เพิ่มขึ้น ลดลง และไม่เปลี่ยนแปลง ทั้งนี้เนื่องจากลูกไม้นั้นได้รับผลกระทบ โดยตรงจากอิทธิพลของความร้อนของไฟ ซึ่งไฟที่เกิดขึ้นมีความผันแปรทั้งระหว่างแปลงและภายในแต่ ละแปลง ดังนั้นแนวโน้มการเปลี่ยนแปลงของความหนาแน่นจึงไม่แน่นอน (Table 27, Figure 35 และ Figure 36) สำหรับความสูงของกล้าไม้นั้นชัดเจนว่าการเผาทำให้ความสูงโดยเฉลี่ยของลูกไม้ลดลง เนื่องจากไฟได้ทำลายลำต้นเดิมของลูกไม้ให้ตายไป แต่ภายหลังมีการแตกหน่อเกิดขึ้นมาใหม่ใน ภายหลัง ซึ่งหน่อที่เกิดขึ้นใหม่ยังมีความสูงน้อยกว่าลำต้นเดิม โดยความสูงของลูกไม้ภายหลังการเผา 1 ปี มีค่าประมาณ 20-39 ซม. ในขระที่ก่อนการเผานั้น ลูกไม้มีความสูงเฉลี่ยประมาณ 30 -60 ซม. (Figure 37) ในด้านของการปกคลุมพื้นที่และขนาดเรือนยอดนั้นพบว่าภายหลังการเผาทำให้ขนาดเรือน ยอดและการปกคลุมพื้นที่ของลูกไม้มีค่าสูงขึ้น โดยทั้งนี้น่าจะเนื่องมาจากการแตกหน่อใหม่ภายหลังการ เผาได้ส่งผลต่อขนาดของเรือนยอดอย่างชัดเจนโดยเฉพาะในป่าสนเสื่อมโทรมที่ขนาดเรือนยอดและการ ปกคลุมพื้นที่ของลูกไม้นั้นเพิ่มขึ้นสูงมากกว่าก่อนการเผา (Figure 38)

Table 27. ลักษณะโครงสร้างของลูกไม้ (Seedling) สังคมพืชป่าสนเสื่อมโทรมและป่าสนผสมก่อบริเวณ ภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว ภายหลังการเผา 1 ปี

	ป่าสนเสื่อมโทรม			ป่าสนผสมก่อ		
	PF-1	PF-2	PF-3	O-PF-1	O-PF-2	O-PF-3
ความหนาแน่น (ต้น/เฮกแตร์)	50000	115000	57500	52500	102500	82500
D ₀ (ชม.)	0.39	0.48	0.56	0.35	0.45	0.21
Ht (រ.)	0.36	0.39	0.39	0.36	0.28	0.20
พื้นที่เรือนยอด (ตร.ม./4 ตร.ม.)	1.38	4.15	3.13	1.61	2.84	1.47
การปกคลุมเรือนยอด (%)	34.57	103.69	78.29	40.23	71.02	36.70

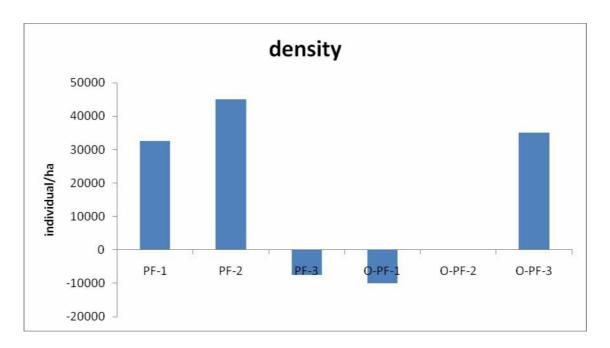


Figure 35. การเปลี่ยนแปลงความหนาแน่นของลูกไม้ ภายหลังการเผา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

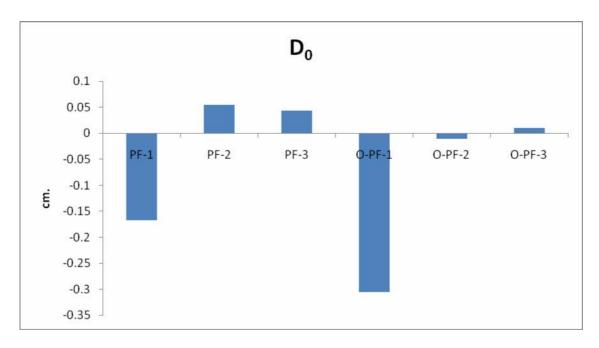


Figure 36. การเปลี่ยนแปลงขนาดเส้นผ่านศูนย์กลางที่โคนตัน (D_0) ของลูกไม้ ภายหลังการเผา 1 ปี ใน ป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

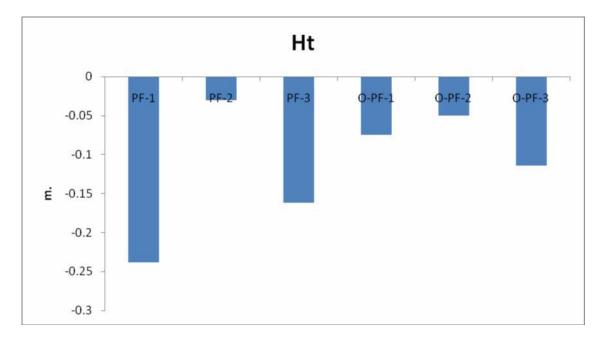


Figure 37. การเปลี่ยนแปลงขนาดความสูงของลูกไม้ ภายหลังการเผา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

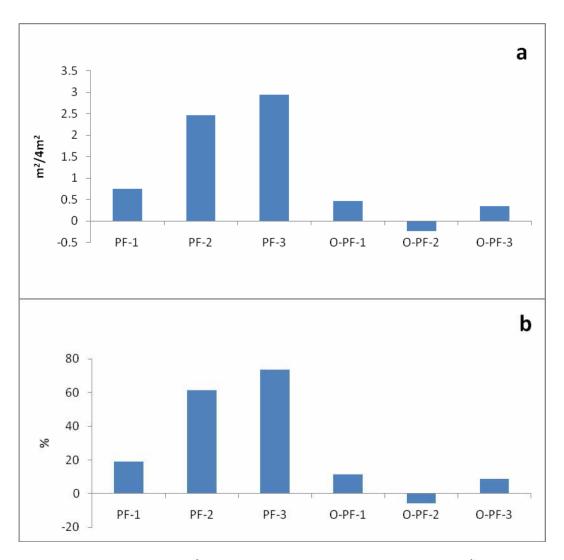


Figure 38. การเปลี่ยนแปลงขนาดพื้นที่เรือนยอด (a) และเปอร์เซนต์การปกคลุมพื้นที่ (b) ของลูกไม้ ภายหลังการเผา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

2.2 การเปลี่ยนแปลงของชั้นขนาดเส้นผ่านศูนย์กลาง

สำหรับป่าสนเสื่อมโทรมนั้น พบว่าจำนวนไม้รุ่นในแต่ละชั้นขนาดเส้นผ่านศูนย์กลางมี จำนวนลดลงจากก่อนเผา และไม่พบว่ามีไม้รุ่นที่มีขนาดใหญ่ปรากฏอยู่ในแปลง (Figure 39, a) แต่ สำหรับป่าสนผสมก่อนั้นพบว่า จำนวนไม้รุ่นในแต่ละชั้นขนาดเส้นผ่านศูนย์กลางมีการเปลี่ยนแปลงที่ไม่ แน่นอน โดยบางชั้นขนาดเส้นผ่านศูนย์กลางมีจำนวนลดลงภายหลังการเผาโดยเฉพาะในช่วงชั้นขนาด เล็ก (1.1-3.0 ซม.) ในขณะที่บางชั้นขนาดเส้นผ่านศูนย์กลางกลับมีปริมาณเพิ่มขึ้น โดยเฉพาะในช่วงชั้น ขนาดกลาง (3.1-7.0 ซม.) ทั้งนี้การเพิ่มขึ้นอาจเนื่องมาจากไฟที่เกิดขึ้นไม่รุนแรง เปลวไฟต่ำ จึงไม่ส่งผล ต่อการตายของไม้รุ่น อย่างไรก็ตามลักษณะการกระจายของขนาดเส้นผ่านศูนย์กลางในป่าสนเสื่อมโทรม

มีลักษณะเป็นปกติ กล่าวคือไม้รุ่นที่มีขนาดเล็กมีมากและมีจำนวนลดลงตามชั้นขนาดเส้นผ่านศูนย์กลาง ที่เพิ่มขึ้น (Figure 39, b)

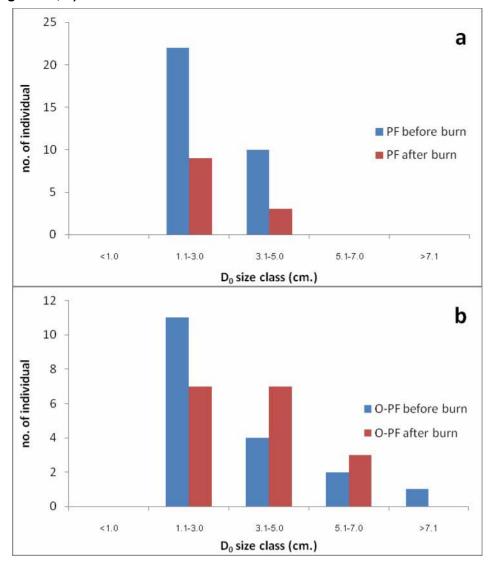


Figure 39. การกระจายตามชั้นขนาดเส้นผ่าศูนย์กลางที่โคนต้น (D_0) ของไม้หนุ่มก่อนการเผา และ 1 ปี ภายหลังการเผา ในป่าสนเสื่อมโทรม (PF: a) และป่าสนผสมก่อ (O-PF: b)

สำหรับการกระจายตามชั้นขนาดเส้นผ่านศูนย์กลางของลูกไม้พบว่าลูกไม้มีการกระจายใน ทุกชั้นขนาดเส้นผ่านศูนย์กลางโดยที่ในป่าสนผสมก่อนั้น ลูกไม้ในช่วงชั้นขนาดเล็กมีจำนวนมากและ ลดหลั่นลงตามขนาดช่วงชั้นที่เพิ่มขึ้นโดยที่แนวโน้มของจำนวนกล้าไม้ในแต่ละช่วงชั้นนั้นลดลงภายหลัง การเผายกเว้นในช่วงชั้นขนาดเส้นผ่านศูนย์กลาง 0.3-0.6 ซม. (Figure 40, b) สำหรับป่าสนเสื่อมโทรม นั้นแนวโน้มของจำนวนกล้าไม้ในช่วงชั้นขนาดเล็ก-กลาง มีแนวโน้มที่เพิ่มขึ้นภายหลังการเผา สาเหตุ หลักที่ทำให้จำนวนกล้าไม้ขนาดเล็กเพิ่มขึ้นนั้นน่าจะมาจากการเผาที่ทำลายหญ้าที่ขึ้นปกคลุมพื้นที่ ทำ ให้พื้นที่เปิดโล่งภายหลังการเผา ดังนั้น เมล็ดไม้จากพื้นที่ต่างๆ จึงสามารถปลิวมาตกสัมผัสดินได้

โดยตรงและเกิดการงอกขึ้นในที่สุด จึงทำให้จำนวนกล้าขนาดเล็กเพิ่มขึ้น 1 ปี หลังไฟไหม้ แต่อย่างไรก็ ตามหากไม่สามารถป้องกันไฟในปีต่อมาได้ กล้าไม้ที่งอกขึ้นมาใหม่ก็จะถูกไฟเผาทำลายได้

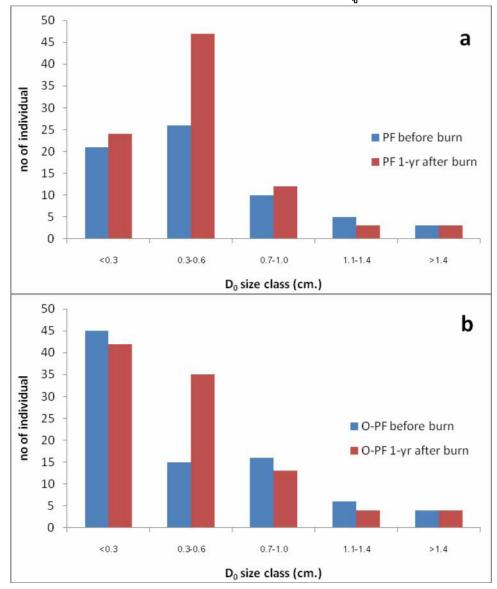


Figure 40. การกระจายตามชั้นขนาดเส้นผ่านศูนย์กลางที่โคนต้น (D_0) ของลูกไม้ก่อนการเผา และ 1 ปี ภายหลังการเผา ในป่าสนเสื่อมโทรม (PF: a) และป่าสนผสมก่อ (O-PF: b)

2.3 การแตกหน่อภายหลังการเผา

ความสามารถในการแตกหน่อเป็นลักษณะสำคัญประการหนึ่งของพันธุ์ไม้ที่จะสามารถ ปรับตัวให้อยู่ภายใต้สภาพแวดล้อมที่มีไฟได้ จากการวัดความสามารถของการแตกหน่อโดย เปรียบเทียบสัดส่วนของจำหนวนหน่อทั้งหมดต่อจำนวนลูกไม้ในแปลง (seedling ratio) ซึ่งค่าที่สูงแสดง ให้เห็นถึงความสามารถของต้นไม้ที่มีศักยภาพที่จะสามารถแตกหน่อได้มาก จากการศึกษาพบว่าก่อน การเผานั้นอัตราส่วนดังกล่าวสำหรับป่าสนเสื่อมโทรมและป่าสนผสมก่อ มีค่าเท่ากับ 1.1 และ 2.5 ตามลำดับ และเมื่อผ่านการเผาไป 1 ปี สัดส่วนของจำนวนหน่อต่อจำนวนลูกไม้นี้มีค่าเพิ่มขึ้นเล็กน้อยใน ป่าสนเสื่อมโทรม และมีแนวโน้มลดลงสำหรับป่าสนผสมก่อ (Figure 41.) ซึ่งสามารถอธิบายในเบื้องต้น ได้ว่าต้นไม้ในป่าสนผสมก่อมีความสามารถในการแตกหน่อได้ดีกว่าต้นไม้ในป่าสนเสื่อมโทรม ทั้งนี้สามา เหตุอาจเนื่องจากป่าสนเสื่อมโทรมนั้นเกิดไฟไหม้อยู่เป็นประจำ ทำให้ลูกไม้แตกหน่อใหม่ทุกปีและถูก ทำลายในปีถัดมา ซึ่งในการแตกหน่อนั้นต้นไม้ต้องใช้พลังงานที่สะสมอยู่มาใช้เพื่อการแตกหน่อซึ่งใน กรณีป่าสนเสื่อมโทรมนั้น อาจจะเป็นไปได้ว่าต้นไม้ได้ใช้พลังงานที่สะสมมาอย่างต่อเนื่องจนทำให้ ความสามารถในการแตกหน่อลดลงไปเรื่อยๆ และในท้ายที่สุดอาจะไม่สามารถแตกหน่อได้และตายไปใน ที่สุด ซึ่งเมื่อเปรียบเทียบกับป่าสนผสมก่อซึ่งไฟไหม้ไม่บ่อยเท่ากับป่าสนเสื่อมโทรมและไฟมีความ รุนแรงน้อยกว่า ดังนั้นต้นไม้จึงยังคงมีพลังในการแตกอยู่อยู่มากจึงยังสามารถแตกหน่อได้มาก (Wanthongchai 2008)

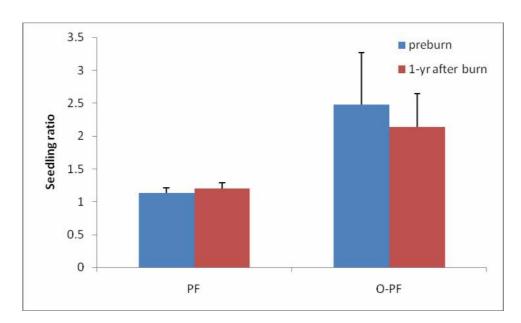


Figure 41. อัตราส่วนระหว่างจำนวนหน่อทั้งหมดต่อจำนวนต้นกล้าของลูกไม้ (Seedling ratio) ก่อน การเผาแปลงทดลอง และภายหลังการเผา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

ผลกระทบของการเผาป่าสนเสื่อมโทรมและป่าสนผสมก่อต่อการเก็บกักและ ปลดปล่อยคาร์บอนออกสู่บรรยากาศ

1. ความเข้มข้นของคาร์บอน (Carbon content)

ความเข้มข้นของคาร์บอนในส่วนของพืชที่อยู่เหนือพื้นดิน (aboveground part) ในพืชแต่ละกลุ่ม ได้แก่ หญ้า ไม้พุ่ม ไม้ล้มลุก ไม้ยืนต้น รวมทั้งเศษชากพืชและกิ่งไม้ขนาดเล็ก ในแต่ละช่วงเวลา (ก่อน เผา, หลังเผาทันที, 2, 4, 8 และ 12 เดือน หลังเผา) พบว่ามีความผันแปรเล็กน้อย ดังแสดงใน Table 28 โดยที่ความเข้มขันของคาร์บอนมีความผันแปรระหว่าง 50.16 (กิ่งไม้ขนาดเล็ก) และ 41.56 (เศษชาก พืช) โดยพบว่าในภาพรวมนั้นความเข้มขันของคาร์บอนมีค่าสูงที่สุดอย่างมีนัยสำคัญทางสถิติในกิ่งไม้ขนาดเล็กทั้งในป่าสนเสื่อมโทรม (49.11%) และป่าสนผสมก่อ (46.69 %) และความเข้มขันของคาร์บอน มีค่าต่ำที่สุดอย่างมีนัยสำคัญทางสถิติในเศษชากพืชทั้งในป่าสนเสื่อมโทรม (43.46%) และป่าสนผสมก่อ (44.19%) เช่นกัน (Figure 42)

เมื่อทำการทดลองเผาพื้นที่ส่วนต่าง ๆ ของพืชจะถูกเผาไหมัส่งผลให้เกิดการสูญเสียคาร์บอน ส่วนใหญ่ออกไปสู่บรรยากาศ โดยสิ่งที่หลงเหลือภายหลังไฟไหม้ (residues) ได้แก่ขึ้เถ้า (ash) ถ่าน (charcoal) และส่วนที่ไม่ไหม้ไฟหรือไหม้เพียงบางส่วน (partly unburned material) โดยจะพบว่าความ เข้มข้นของคาร์บอนในขึ้เถ้าจะมีค่าต่ำที่สุดเพียงประมาณ 8-17% ในขณะที่ความเข้มข้นของคาร์บอนใน ถ่านและส่วนที่ไม่ไหม้ไฟมีค่าระหว่าง 13-29% และ 42-44% ตามลำดับ (Table 29)

Table 28 ความเข้มขันของคาร์บอน (%) ในพืชกลุ่มต่างๆ ในแต่ละช่วงเวลา ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

ประเภทป่า	กล่มพืช	ก่อนเผา -		หลังการแ	มา (เดือน)	
ח זיירנו ווח ו	แต่ทุพภ	แถหเพา -	2	4	8	12
	หญ้า	45.13	47.24	45.07	45.11	45.28
	ไม้พุ่ม	46.77	46.64	44.11	47.07	47.11
PF	ไม้ล้มลุก	44.90	45.98	43.95	45.87	44.52
PF	ไม้ยืนต้น	47.13	44.21	46.21	46.52	45.53
	เศษซากพืช	40.92	50.54	43.90	41.56	45.49
	กิ่งขนาดเล็ก	50.16	48.96	49.17	48.45	46.72
	หญ้า	44.66	47.52	44.66	44.51	43.93
	ไม้พุ่ม	46.25	46.78	44.84	46.72	45.12
0.05	ไม้ล้มลุก	46.05	46.25	44.05	45.93	46.26
O-PF	ไม้ยืนต้น	46.51	44.05	46.90	46.57	48.48
	เศษซากพืช	45.98	42.21	40.09	42.68	46.39
	กิ่งขนาดเล็ก	45.21	49.06	47.41	47.48	47.22

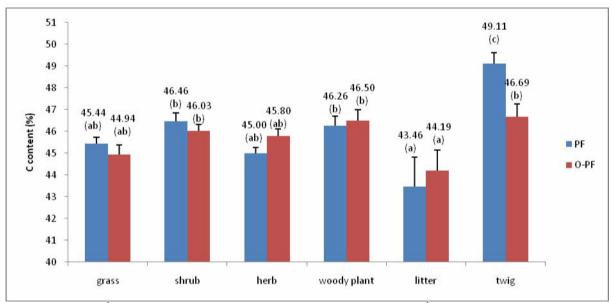


Figure 42 ค่าเฉลี่ยความเข้มข้นของคาร์บอนในพืชกลุ่มต่าง ๆ ในป่าสนเสื่อมโทรม (PF) และป่าสนผสม ก่อ (O-PF) ตัวอักษร a, b ในวงเล็บแสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (p<0.05) ของความ เข้มขันคาร์บอนในระหว่างกลุ่มพืชในป่าแต่ละประเภท

Table 29 ความเข้มขันของคาร์บอนในสิ่งที่หลงเหลือภายหลังการเผา (ขี้เถ้า ถ่าน และส่วนที่ไหม้ไฟ บางส่วน) ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

	คว	ามเข้มข้นขอ	องคาร์บอน (%)
แปลง	ขี้เถ้า	ถ่าน	ส่วนที่ไหม้ไฟ
	<u>መየፀ</u>	ผน	บางส่วน
PF-1	10.58	18.44	43.44
PF-2	10.79	26.78	42.36
PF-3	12.75	29.17	44.04
เฉลี่ย	11.37 ^a	24.80 ^a	43.28 ^a
เพตบ	(0.69)	(3.25)	(0.49)
O-PF-1	12.82	12.87	43.23
O-PF-2	7.95	16.28	44.29
O-PF-3	16.58	23.44	44.06
เฉลี่ย	12.45 ^a	17.53 ^a	43.86 ^a
	(2.49)	(3.11)	(0.32)

หมายเหตุ: ตัวอักษร ^{3, b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test*, *P*<0.05) ระหว่างพื้นที่ ในด้านความเข้มข้น ของคาร์บอนในสิ่งที่หลงเหลือภายหลังการเผาแต่ละประเภท

สำหรับความเข้มข้นของคาร์บอนในส่วนที่อยู่ใต้ดิน (belowground part) ซึ่งประกอบด้วย คาร์บอนในดินและในรากพืชขนาดเล็กที่ระดับความลึก 0-15 ซม. โดยความเข้มข้นของคาร์บอนในดิน โดยทั่วไปบริเวณผิวดิน (0-5 ซม.) มีค่าสูงกว่าในดินระดับลึก (5-15 ซม.) โดยมีค่าแตกต่างกันเกือบ 2 เท่า ทั้งนี้ความเข้มข้นของคาร์บอนในดินที่ระดับลึกไม่ค่อยมีการเปลี่ยนแปลงมากนักภายหลังการเผา ซึ่งแสดงให้เห็นถึงอิทธิพลของความร้อนที่ไม่ได้ส่งผลลงมาสู่ดินในระดับลึก สำหรับที่ระดับผิวดินนั้น ความเข้มข้นของคาร์บอนมีแนวโน้มการเปลี่ยนแปลงในลักษณะที่เพิ่มขึ้นเล็กน้อยทันทีภายหลังการเผา ในขณะที่เมื่อเวลาผ่านไปความเข้มขันของคาร์บอนในดินที่ระดับต่างๆ ในแต่ละช่วงเวลาไม่ได้มีความ แตกต่างกันอย่างมีนัยสำคัญทางสถิติ โดยความเข้มข้นของคาร์บอนของดินที่ระดับ 0-5 ซม. สำหรับป่า สนเสื่อมโทรมและป่าสนผสมก่อมีค่าอยู่ระหว่าง 2.12-3.11% และ 1.76-2.81% ตามลำดับ ในขณะที่ ความเข้มขันของคาร์บอนของดินที่ระดับ 5-15 ซม. สำหรับป่าสนเสื่อมโทรมและป่าสนผสมก่อมีค่าที่ผัน แปรในช่วงแคบๆ โดยมีค่าอยู่ระหว่าง 1.14-1.52% และ 1.03-1.47% ตามลำดับ (Table 30)

ความเข้มข้นของคาร์บอนในรากพืชขนาดเล็กที่อยู่ในดินที่ระดับ 0-15 ซม. นั้น ไม่มีความ แตกต่างกันอย่างมีนัยสำคัญทางสถิติระหว่างป่าสนเสื่อมโทรมและป่าสนผสมก่อ โดยมีค่าเฉลี่ยที่มีความ แปรผันในช่วงกว้างๆ ระหว่าง 29.5-43.0 % ขึ้นอยู่กับระยะเวลาภายหลังการเผา (Table 30)

Table 30 ความเข้มข้นของคาร์บอนในดินและรากพืชขนาดเล็กที่ระดับความลึก 0-15 ซม ในป่าสนเสื่อท โทรม (PF) และป่าสนผสมก่อ (O-PF)

	0.4	ความเข้มขันของคาร์บอน (%)						
ช่วงเวลา	ระดับความ [—] ลึก (ซม.) —	Ŕ	าิน	รากพืชขนาดเล็ก				
	พก (ขม.) —	PF	O-PF	PF	O-PF			
ก่องแผว	0-5	2.12	2.16	42.82	40.52			
ก่อนเผา	5-15	1.52	1.30	-	-			
หลังเผา ทันที	0-5	2.26	2.81	38.41	38.8			
	5-15	1.21	1.47	-	-			
2 เดือน	0-5	2.26	1.98	40.02	40.32			
หลังเผา	5-15	1.16	1.15	-	-			
4 เดือน	0-5	2.34	1.76	35.46	35.27			
หลังเผา	5-15	1.18	1.03	-	-			
8 เดือน	0-5	2.58	2.05	29.46	31.47			
หลังเผา	5-15	1.14	1.18	-	-			
12 เดือน	0-5	3.11	2.07	39.2	42.78			
หลังเผา	5-15	1.32	1.36	-	-			

ปริมาณคาร์บอน (Carbon pool) ก่อนการเผาพื้นที่ 2.1 ปริมาณคาร์บอนของเชื้อเพลิงในส่วนที่อยู่เหนือพื้นดิน

ปริมาณคาร์บอนในพื้นที่นั้นขึ้นอยู่กับปริมาณเชื้อเพลิงและความเข้มข้นของคาร์บอนในแต่ละ ประเภทเชื้อเพลิง ซึ่งมีความสัมพันธ์โดยตรงกับปริมาณเชื้อเพลิงโดยมีแนวโน้มเช่นเดียวกับปริมาณ เชื้อเพลิงเนื่องจากความเข้มข้นของคาร์บอนนั้นมีความผันแปรในช่วงแคบ ๆ ระหว่างเชื้อพลิงแต่ละ ประเภท จากการศึกษาพบว่าในป่าสนเสื่อมโทรมนั้นปริมาณคาร์บอนในหญ้ามีค่าสูงที่สุด (2.6 ตัน/เฮก แตร์) รองลงมาได้แก่เศษชากพืช (2.3 ตัน/เฮกแตร์) และปริมาณคาร์บอนมีน้อยที่สุดในไม้พุ่ม (0.02 ตัน/เฮกแตร์) โดยที่ปริมาณคาร์บอนรวมทั้งหมดในเชื้อเพลิงของส่วนที่อยู่เหนือพื้นดินของป่าสนเสื่อมโทรมมีค่าเท่ากับ 5.6 ตัน/เฮกแตร์ สำหรับปริมาณคาร์บอนในป่าสนผสมก่อนั้นเนื่องจากหญ้าไม่ได้มีปริมาณสูงที่สุด ดังนั้นปริมาณคาร์บอนในหญ้าจึงไม่ได้มีค่ามากที่สุด (0.6 ตัน/เฮกแตร์) โดยที่พบว่าปริมาณคาร์บอนในเศษชากพืชมีค่าสูงที่สุด (2.2 ตัน/เฮกแตร์) รองลงมาคือกิ่งไม้ (0.7ตัน/เฮกแตร์) โดย ปริมาณคาร์บอนในไม้ล้มลุกมีค่าน้อยที่สุด (0.05 ตัน/เฮกแตร์) (Table 31) เมื่อเปรียบเทียบปริมาณ

คาร์บอนรวมทั้งหมดในเชื้อเพลิงเหนือพื้นดินระหว่างป่าสนเสื่อมโทรมและป่าสนผสมก่อ พบว่าปริมาณ คาร์บอนรวมทั้งหมดไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ

Table 31 ปริมาณคาร์บอน (Carbon pool) ของส่วนที่อยู่เหนือพื้นดินในเชื้อเพลิงแต่ละกลุ่มก่อนการเผา แปลงทดลองในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

แปลง	ปริมาณคาร์บอน (ton/ha)							
เกม	หญ้า	ไม้พุ่ม	ไม้ล้มลุก	ไม้ยืนต้น	ซากพืช	กิ่งไม้	ทั้งหมด	
PF1	2.703	0.007	0.085	0.594	2.491	0.082	5.963	
PF2	2.746	0.039	0.078	0.287	2.257	0.584	5.992	
PF3	2.458	0.025	0.028	0.169	2.247	0.000	4.926	
	2.636 ^a	0.024 ^a	0.064 ^a	0.350 ^a	2.332 ^a	0.222 ^a	5.627 ^a	
เฉลี่ย PF	(0.090)	(0.009)	(0.018)	(0.127)	(0.080)	(0.182)	(0.351)	
O-PF1	0.697	0.276	0.076	0.319	2.792	1.185	5.344	
O-PF2	0.880	0.104	0.046	0.362	1.152	0.437	2.982	
O-PF3	0.347	0.047	0.039	0.122	2.640	0.408	3.603	
	0.641 ^b	0.142 ^a	0.054 ^a	0.268 ^a	2.195 ^a	0.677 ^a	3.976 ^a	
เฉลี่ย O-PF	(0.156)	(0.069)	(0.011)	(0.074)	(0.523)	(0.254)	(0.707)	

หมายเหตุ: ตัวอักษร ^{ล, b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test*, *P*<0.05) ระหว่างพื้นที่ ของปริมาณคาร์บอน ในเชื้อเพลิงแต่ละประเภท

2.2 ปริมาณคาร์บอนของส่วนที่อยู่ใต้ดิน (0-15 ซม.)

ปริมาณคาร์บอนของส่วนที่อยู่ใต้ดินประกอบด้วยคาร์บอนที่อยู่ในดินและในรากพืช โดยใน การศึกษาครั้งนี้กำหนดระดับความลึกของดินที่ 15 ซม. โดยในส่วนของรากได้ศึกษาเฉพาะส่วนของราก ขนาดเล็กเท่านั้น สำหรับคาร์บอนในดินพบว่าบริเวณดินชั้นบน (0-5 ซม.) จะมีปริมาณคาร์บอนที่ มากกว่าในดินชั้นล่าง แต่เนื่องจากชั้นความลึกของดินจะน้อยกว่าจึงทำให้มีคาร์บอนน้อย จากการศึกษา พบว่าคาร์บอนในดินที่ระดับความลึก 0-5 ซม. ทั้งในป่าสนเสื่อมโทรมและป่าสนผสมก่อมีค่าประมาณ 10 ตันต่อเฮกแตร์ ในขณะที่คาร์บอนในดินชั้นล่าง (5-15 ซม.) ในป่าสนเสื่อมโทรมและป่าสนผสมก่อมีค่า เพียงประมาณ 12 ตันต่อเฮกแตร์ เท่านั้น แม้ว่าชั้นความลึกจะมากกว่าดินชั้นบนถึง 10 ซม. เมื่อรวม ปริมาณคาร์บอนในดินพบว่าคาร์บอนในดินที่ความลึก 0-15 ซม. ของป่าสนเสื่อมโทรมและป่าสนผสมก่อ มีค่าเท่ากับ 22.83 และ 22.92 ตันต่อเฮกแตร์ ตามลำดับ สำหรับปริมาณคาร์บอนในรากขนาดเล็กเมื่อ เทียบกับคาร์บอนในดินแล้วพบว่ามีสัดส่วนที่น้อยมาก โดยมีปริมาณเพียงประมาณ 1-2 ตันต่อเฮกแตร์ เท่านั้น แนวโน้มการกระจายของปริมาณคาร์บอนในรากมีแนวโน้มเช่นเดียวกับคาร์บอนในดินกล่าวคือ

บริเวณดินชั้นบนมีปริมาณมากกว่าดินชั้นล่างเมื่อเปรียบเทียบต่อชั้นความลึกที่เท่ากัน เมื่อรวมปริมาณ คาร์บอนในดินและรากพืชที่ระดับความลึก 15 ซม. แล้ว พบว่าปริมาณคาร์บอนของส่วนที่อยู่ใต้ดิน สำหรับป่าสนเสื่อมโทรมและป่าสนผสมก่อมีค่าเท่ากับ 24.77 และ 26.35 ตันต่อเฮกแตร์ โดยที่ไม่มีความ แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (Table 32)

Table 32 ปริมาณคาร์บอน (Carbon pool) ของส่วนที่อยู่ใต้ดินที่ระดับความลึก 0-15 ซม. ก่อนการเผา แปลงทดลอง ปริมาณที่พบหลังการเผาทันที และการสูญเสียคาร์บอนจากการเผาในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

	ความ	ปริมาณคาร์บอน (ตันต่อเฮกแตร์)							
ช่วงเวลา	ลึก	ป่าสน			ป่าสนผสมก่อ				
	(ชม.)	ดิน	ราก	รวม	ดิน	ราก	รวม		
	0-5	10.03	0.98	11.01	10.52	1.50	12.02		
ก่อนเผา	5-15	12.80	0.96	13.76	12.40	1.93	14.32		
	รวม	22.83	1.94	24.77 ^{a,A}	22.92	3.43	26.35 ^{a,A}		
	0-5	9.99	0.88	10.87	12.05	0.91	12.96		
หลังเผาทันที	5-15	10.28	1.11	11.38	14.90	1.39	16.29		
	รวม	20.27	1.98	22.25 ^{a,A}	26.95	2.31	29.26 ^{a,A}		
การเปลี่ยนแปลง	0-5	-0.040	-0.102	-0.142	1.529	-0.590	0.939		
	5-15	-2.522	0.145	-2.377	2.502	-0.534	1.968		
	รวม	-2.562	0.042	-2.520	4.031	-1.124	2.907		

หมายเหตุ: ตัวอักษร ^{a, b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test, P*<0.05) ระหว่างพื้นที่ ของปริมาณคาร์บอน ในดินระหว่างป่าแต่ละประเภท

ตัวอักษร ^{AB} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test*, *P*<0.05) ระหว่างช่วงเวลา (ก่อนและหลังเผา) ของ ปริมาณคาร์บอนในดินของป่าแต่ละประเภท

3 ปริมาณคาร์บอนที่สูญเสียไป (Carbon loss) จากการเผา

3.1 ปริมาณคาร์บอนที่สูญเสียจากส่วนที่อยู่เหนือพื้นดิน

เมื่อพื้นที่ถูกเผา สิ่งที่หลงเหลืออยู่ภายหลังการเผาประกอบด้วย ขี้เถ้า ผงถ่าน และส่วนที่ไหม้ไฟ บางส่วน/ไม่ไหม้ไฟ ซึ่งหากส่วนต่าง ๆ ดังกล่าวเหลืออยู่เป็นปริมาณมากแสดงถึงการเผาไหม้ที่ไม่ สมบูรณ์ (ดูผลการศึกษาเรื่องพฤติกรรมไฟประกอบ) สำหรับป่าสนเสื่อมโทรม พบว่าเมื่อทำการเผาพื้นที่ ซึ่งส่วนใหญ่ประกอบด้วยหญ้าเป็นหลักนั้น คาร์บอนที่หลงเหลือในส่วนต่าง ๆ มีค่าเท่ากับ 0.872 ตัน/เฮก แตร์ โดยพบคาร์บอนที่หลงเหลืออยู่ในส่วนที่ไหม้ไฟบางส่วนมากที่สุด (0.431 ตัน/เฮกแตร์) ในขณะที่ป่า สนผสมก่อนั้นก็พบว่าคาร์บอนหลงเหลือในส่วนที่ไหม้ไฟบางส่วนมากที่สุดเช่นกัน (1.848 ตัน/เฮกแตร์) แต่เป็นสัดส่วนที่สูงกว่าเมื่อเปรียบเทียบกับส่วนอื่น ๆ และมีคาร์บอนเหลือในขี้เถ้าน้อยที่สุด (0.044 ตัน/เฮกแตร์) ทั้งนี้เนื่องจากการเผาไหม้ในป่าสนผสมก่อนั้นไม่สมบูรณ์เท่ากับป่าสนเสื่อมโทรม ดังนั้นจึงมี ส่วนที่ไมหม้ไฟเพียงบางส่วนหลงเหลืออยู่ในพื้นที่มากกว่าในป่าสนเสื่อมโทรม เมื่อคำนวนปริมาณ คาร์บอนในส่วนที่อยู่เหนือพื้นดินที่สูญหายไปจากการเผาพบว่าในป่าสนเสื่อมโทรมสูญเสียคาร์บอนไป 84.5% (4.755 ตัน/เฮกแตร์) ในขณะที่ป่าสนผสมก่อสูญเสียคาร์บอนใป 53.5% (2.129 ตัน/เฮกแตร์) โดยที่ปริมาณและสัดส่วนของการสูญเสียคาร์บอนจากการเผาระหว่างป่าทั้งสองประเภทนี้มีความ แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (Table 33)

3.2 ปริมาณคาร์บอนที่สูญเสียจากส่วนที่อยู่เหนือพื้นดิน

สำหรับการสูญเสียคาร์บอนจากส่วนที่อยู่ใต้ดิน (Table 32) พบว่าการเผาไม่ได้ส่งผลกระทบต่อ การสูญเสียคาร์บอนทั้งจากส่วนที่เป็นดินและรากขนาดเล็กอย่างมีนัยสำคัญ โดยที่การเปลี่ยนแปลงของ ปริมาณคาร์บอนในดินที่ระดับความลึกมีทั้งเพิ่มขึ้นและลดลงซึ่งมีสาเหตุหลักมาจากความผันแปรของ ความหนาแน่นรวมของดิน (soil bulk density) ทำให้คาร์บอนในดินมีความผันแปรไป นอกจากนี้ เนื่องจากดินนั้นมีคุณสมบัติที่เป็นฉนวนกันความร้อนที่ดี ประกอบกับไฟที่เกิดขึ้นมีความรุนแรงปากลางต่ำ ดังนั้นความร้อนที่ส่งผ่านลงสู่ดินจึงมีน้อย ผลกระทบต่อการเปลี่ยนแปลงคาร์บอนจึงน้อยลงไป ซึ่ง จากการศึกษาของ Wanthongchai et al.(2008) ที่ได้ศึกษาการสูญเสียธาตุอาหารในป่าเต็งรังบริเวณเขต รักษาพันธุ์สัตว์ป่าหัวยขาแข้ง จังหวัดอุทัยธานี ได้พบว่าพื้นที่ที่ไฟมีความรุนแรงไม่สูงมากนั้น ปริมาณ คาร์บอนที่อยู่ในดินที่ระดับความลึก 0-5 ซม. นั้นไม่ได้รับผลกระทบใดๆ เลย เช่นกัน ดังนั้นจึงอาจจก ล่าวได้ว่าการสูญเสียคาร์บอนจากการเผาในป่าสนเสื่อมโทรมและป่าสนผสมก่อที่ไฟมีความรุนแรงไม่สูง มาก คาร์บอนส่วนใหญ่จะเกิดการสูญเสียไปจากเชื้อเพลิงของส่วนที่อยู่เหนือพื้นดินเป็นหลัก โดยมีการ สูญเสียจากส่วนที่อยู่ใต้ดินน้อยมากหรือไม่เกิดการสูญเสียเลย ยกเว้นเพียงบริเวณผิวดินเท่านั้นที่อาจจะ มีการสูญเสียคาร์บอนจากดินไปบ้างเล็กน้อย

Table 33 ปริมาณคาร์บอนที่หลงเหลือในส่วนต่างๆ เหนือพื้นดินภายหลังการเผาและปริมาณคาร์บอนที่ สูญหายไปจากการเผาในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

	ปริมาณ	ปริมา	ณคาร์บอน	ปริมาณ			
	คาร์บอนใน	จ์	ากการเผา (คาร์บอนที่	คาร์บอน		
แปลง	เชื้อเพลิงก่อน เผาทั้งหมด (ตัน/แฮกแตร์)	ขี้เถ้า	ถ่าน	ส่วนที่ไม่ น ใหม้ไฟ		สูญหาย (ตัน/แฮก แตร์)	ที่หายไป (%)
PF-1	5.963	0.178	0.160	0.300	0.638	5.325	89.301
PF-2	5.992	0.174	0.252	0.805	1.230	4.762	79.468
PF-3	4.926	0.219	0.338	0.189	0.747	4.179	84.835
	5.627 ^a	0.190 ^a	0.250 ^a	0.431 ^a	0.872 ^a	4.755 ^a	84.508 ^a
เฉลี่ย PF	(0.351)	(0.014)	(0.051)	(0.189)	(0.182)	(0.331)	(2.842)
O-PF-1	5.344	0.222	0.183	1.379	1.784	3.561	66.627
O-PF-2	2.982	0.068	0.246	1.342	1.655	1.326	44.483
O-PF-3	3.603	0.151	0.420	1.533	2.104	1.499	41.609
	3.976 ^a	0.147 ^a	0.283 ^a	1.418 ^b	1.848 ^b	2.129 ^b	53.536 ^b
เฉลี่ย O-PF	(0.707)	(0.044)	(0.071)	(0.058)	(0.133)	(0.718)	(7.904)

หมายเหตุ: ตัวอักษร ^{a, b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (Independent *t-test, P*<0.05) ระหว่างพื้นที่ ของปริมาณคาร์บอน ในเชื้อเพลิงทั้งหมดก่อนเผา คาร์บอนในส่วนที่เหลือภายหลังการเผา และปริมาณคาร์บอนที่สูญหายไป

4 การเปลี่ยนแปลงของปริมาณคาร์บอน (Carbon recovery)ในระยะเวลา 1 ปี หลังการเผา

ดังที่ได้กล่าวไปแล้วว่าผลของการเผานั้นมีผลกระทบน้อยมากต่อการเปลี่ยนแปลงของปริมาณ คาร์บอนในดิน ดังนั้นการพิจารณาการเปลี่ยนแปลงและการพื้นคืนกลับมาของคาร์บอนจึงมุ่งในประเด็น ของส่วนที่อยู่เหนือพื้นดินเป็นหลัก เมื่อพิจารณาปริมาณคาร์บอนรวมทั้งหมดในเชื้อเพลิงเหนือดิน (Total aboveground C pool) จะพบว่าปริมาณการ์บอนในเชื้อเพลิงยังไม่สามารถพื้นคืนกลับมาสู่ระดับ เดิมได้ภายในระยะเวลา 1 ปี (Figure 43 และ Table 34) โดยมีปัจจัยหลักมาจากปริมาณของเศษชาก พืชเป็นสำคัญที่ยังมีปริมาณการสะสมกลับมาที่ยังน้อยกว่าปริมาณที่มีอยู่เดิมก่อนเผา (ดูหัวข้อเชื้อเพลิง และพฤติกรรมไฟประกอบ) ซึ่งอาจคาดการณ์จากปริมาณเชื้อเพลิงได้ว่าพื้นที่ป่าทั้ง 2 ประเภทต้องใช้ เวลามากกว่า 1 ปี จึงจะสามารถทำให้ปริมาณคาร์บอนในเชื้อเพลิงกลับมาอยู่ในระดับที่ใกล้เคียงกับ ปริมาณที่มีอยู่ก่อนเผา ซึ่งเมื่อทำการสร้างสมการเพื่อประมาณหาช่วงเวลาที่ปริมาณคาร์บอนใน เชื้อเพลิงจะกลับมาสู่ระดับก่อนที่จะทำการเผาโดยการหาความสัมพันธ์ของข้อมูลปริมาณคาร์บอนใน เชื้อเพลิงที่สะสมกลับมาในแต่ละช่วงเวลา (Figure 44) ซึ่งพบว่าสมการประมาณหาช่วงเวลาที่เชื้อเพลิง จะฟื้นกลับมาสู่ระดับก่อนการเผาสำหรับป่าสนเสื่อมโทรม ได้แก่ Y =1.6756ln(x) + 0.5476; r² =

0.9584 และป่าสนผสมก่อ ได้แก่ Y = 0.6808ln(x) + 1.5173 ; r² = 0.7833 เมื่อ Y คือปริมาณคาร์บอน ในเชื้อเพลิงที่ประมาณได้ (ตันต่อเฮกแตร์) และ X คือระยะเวลา (จำนวนเดือน) จากการใช้สมการข้างต้น ประมาณระยะเวลาการสะสมคาร์บอนในเชื้อเพลิงให้กลับมาสู่ระดับใกล้เคียงกับเมื่อก่าอนการเผา พบว่า ป่าสนเสื่อมโทรมต้องใช้ระยะเวลาประมาณ 20-21 เดือนที่ปริมาณเชื้อเพลิงจะสะสมกลับมาสู่ในระดับที่ ใกล้เคียงกับปริมาณที่มีอยู่ก่อนเผา ในขณะที่ป่าสนผสมก่อต้องใช้เวลาประมาณ 35-36 เดือน (ประมาณ 3 ปี) จึงจะทำให้ปริมาณคาร์บอนในเชื้อเพลิงกลับสู่ระดับที่ใกล้เคียงกับปริมาณที่มีอยู่ก่อนเผา (Table 35) อย่างไรก็ตามเนื่องจากค่าสัมประสิทธิ์สหสัมพันธ์ของสมการสำหรับป่าสนผสมก่อที่ได้รับมีค่าที่ต่ำ ซึ่งจะมีผลต่อความแม่นยำของการประเมินมากกว่าการประเมินในป่าสนเสื่อมโทรม

Table 34 การเปลี่ยนแปลงของปริมาณคาร์บอนในเชื้อเพลิงเหนือพื้นดิน ส่วนที่อยู่ใต้ดินและปริมาณ คาร์บอนรวมทั้งในส่วนเหนือพื้นดินและใต้ดิน (ดินและรากพืชขนาดเล็กที่ระดับความลึก15 cm) ใน ระยะเวลา 1 ปีภายหลังการเผา ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

	ปริมาณคาร์บอน (ton/ha) พื้นที่								
	Мин	ก่อนเผา	0	2	4	6	8	10	12
เชื้อเพลิงเหนือ	PF	5.627	0.872	1.303	2.213	2.803	3.393	3.642	3.892
พื้นดิน	O-PF	3.976	1.848	1.704	1.952	2.331	2.710	2.863	3.016
ใต้ดิน	PF	24.771	22.251	24.583	23.290	25.369	27.449	27.639	27.830
	O-PF	26.348	29.255	24.797	21.457	24.624	27.792	28.618	29.443
Total	PF	30.398	23.123	25.886	25.502	28.172	30.842	31.282	31.721
	O-PF	30.325	31.103	26.501	23.409	26.956	30.503	31.481	32.459

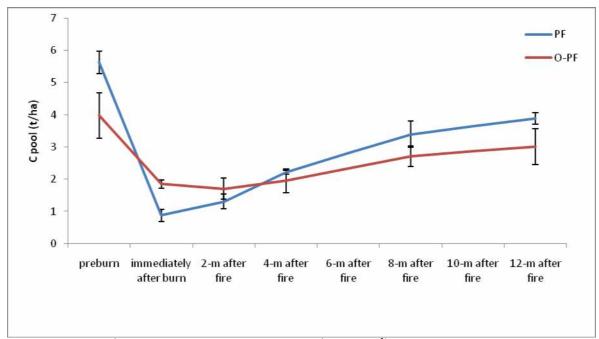


Figure 43. การเปลี่ยนแปลงปริมาณคาร์บอนของส่วนที่อยู่เหนือพื้นดินภายในระยะเวลา 12 เดือน ภายหลังการเผา

Table 35 ประมาณระยะเวลาและปริมาณการสะสมคาร์บอนในเชื้อเพลิงในป่าสนเสื่อมโทรม (PF) และ ป่าสนผสมก่อ (O-PF) จากการสร้างความสัมพันธ์ระหว่างระยะเวลากับปริมาณคาร์บอน

ประเภท	ปริมาณคาร์บอนในเชื้อเพลิง (ton/ha)								
ป่า	ก่อนเผา*	4 เดือน*	8 เดือน*	12 เดือน	18 เดือน	20 เดือน	22 เดือน	36 เดือน	
				*	**	**	**	**	
PF	5.627	2.213	3.393	3.892	5.391	5.567	5.727	-	
O-PF	3.976	1.952	2.710	3.016	3.485	3.557	3.622	3.957	

หมายเหตุ: * ข้อมูลจากการโดยตรงจากการวางแปลงสำรวจ, ** การประมาณการจากสมการ Y =1.6756ln(x) + 0.5476; r² = 0.9584 สำหรับป่าสนเสื่อมโทรม และ Y = 0.6808ln(x) + 1.5173 ; r² = 0.7833สำหรับป่าสนผสมก่อ

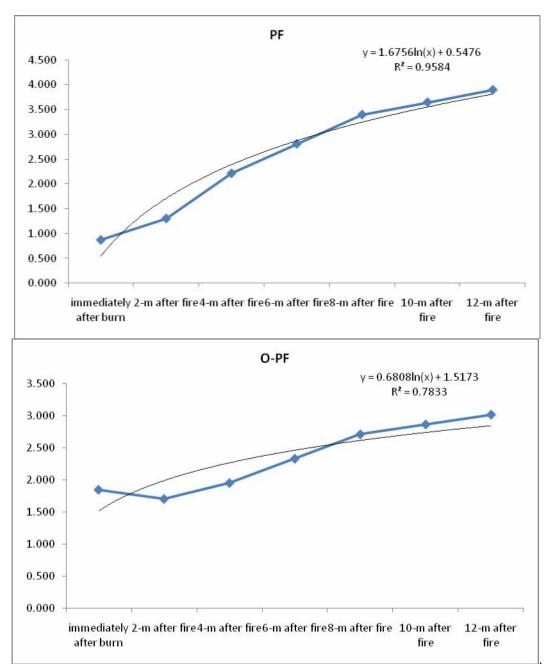


Figure 44. สมการความสัมพันธ์ระหว่างปริมาณคาร์บอนในเชื้อเพลิงเหนือพื้นดินกับระยะเวลาเพื่อใช้ใน การประมาณระยะเวลาการสะสมของคาร์บอนในเชื้อเพลิงที่จะสะสมกลับสู่ในระดับก่อนการเผาในป่าสน เสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

ผลกระทบของการเผาป่าสนเสื่อมโทรมและป่าสนผสมก่อต่อคุณสมบัติของดิน และพลวัตรของธาตุอาหาร

1. ผลกระทบต่อคุณสมบัติของดิน

1.1 ความหนาแน่นรวมของดิน (soil bulk density)

ผลกระทบของไฟต่อคุณสมบัติของดินในด้านของความหนาแน่นรวมของดินในการศึกษาครั้งนี้ พบว่าความหนาแน่นรวมของดินไม่ได้รับผลกระทบจากการเผา โดยพบว่าความหนาแน่นรวมของดินมี การเปลี่ยนแปลงเพียงเล็กน้อยทั้งเพิ่มขึ้น-ลดลง หรือไม่เปลี่ยนแปลง (Figure 45) ซึ่งเมื่อพิจารณาจาก ค่าส่วนเบี่ยงเบนมาตรฐาน จะพบว่ามีค่าสูงทั้งก่อนและหลังเผา จึงพอสรุปได้ในเบื้องต้นว่าอิทธิพลของ การเผาซึ่งมีความรุนแรงไม่สูงมากไม่ได้ส่งผลกระทบต่อความหนาแน่นรวมของดิน ซึ่งทั้งนี้น่าจะมี สาเหตุสำคัญมาจากอิทธิพลของไฟที่มีความรุนแรงไม่สูงมาก โดยที่ความรุนแรงของไฟในป่าสนผสมก่อ มีค่าเพียงประมาณ 48 kW/m ซึ่งเป็นค่าที่ต่ำมาก สำหรับป่าสนมีค่าความรุนแรงของไฟประมาณ 627 kW/m ซึ่งมีความรุนแรงปานกลางระบบการจำแนกของ Cheney (1994) ดังจะพบว่าความหนาแน่นรวม ของดินมีแนวโน้มเพิ่มขึ้นในหลายจุดสำหรับป่าสนเสื่อมโทรม

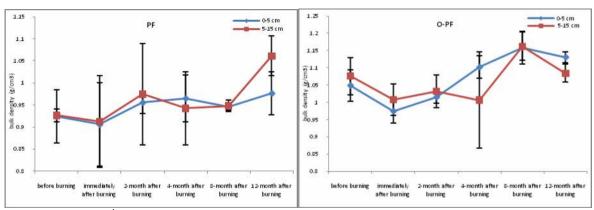


Figure 45 การเปลี่ยนแปลงความหนาแน่นรวมของดิน (soil bulk density) จากผลของการเผาในป่าสน เสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

1.2 ลักษณะของเนื้อดิน (soil texture)

ผลกระทบของไฟต่อลักษณะของเนื้อดินนั้นมีน้อยมากยกเว้นในกรณีที่เกิดไฟไหม้รุนแรงสูงมาก ซึ่งจะทำให้อนุภาคทรายเปลี่ยนแปลง ก่อให้เกิดการเปลี่ยนแปลงลักษณะของเนื้อดินไป อย่างไรก็ตามไฟ ที่เกิดขึ้นในป่าสนผสมก่อมีความรุนแรงต่ำมาก ส่วนความรุนแรงของไฟในป่าสนเสื่อมโทรมมีความ รุนแรงค่อนข้างต่ำ (ดูหัวข้อพฤติกรรมไฟประกอบ) จากการศึกษาในป่าสนเสื่อมโทรมและป่าสนผสมก่อ พบว่าลักษณะเนื้อดินส่วนใหญ่เป็นดิน sandy clay loam โดยที่มีบางบริเวณเท่านั้นที่มีเนื้อดินเป็นดิน sandy loam หรือ clay loam

1.3 ความเป็นกรด-ด่างของดิน

ไฟส่งผลกระทบต่อดินโดยทำให้ดินลดความเป็นกรดของดินลงชั่วคราว ทั้งนี้ขึ้นอยู่กับความ รุนแรงของไฟและสภาพความเป็นกรด-ด่างของดินก่อนการเผา (DeBano et al., 1998) จากการศึกษา ผลกระทบของไฟต่อความเป็นกรด-ด่างของดินพบว่าในป่าสนเสื่อมโทรมแปลงที่ 1 และ 2 (PF-1, PF-2) ค่าความเป็นกรด-ด่างบริเวณผิวดิน (0-5 ซม.) ของดินลดลงซึ่งสอดคล้องกับค่าความรุนแรงของไฟที่มีค่า สูงสำหรับ 2 แปลงนี้ (519 kW/m และ 885 kW/m สำหรับ PF-1, PF-2 ตามลำดับ) แต่สำหรับป่าสนผสม ก่อไฟไม่ได้ส่งผลกระทบต่อความเป็นกรด-ด่างของดินเนื่องจากไฟมีความรุนแรงต่ำมาก สำหรับที่ดินใน ระดับลึกลงไปอิทธิพลของความร้อนจากไฟในส่วนที่อยู่เหนือพื้นดินไม่สามารถส่งผลกระทบลงไปในดิน ที่ลึกลงไปทำให้ระดับความเป็นกรด-ด่างของดินไม่เปลี่ยนแปลงไปมากนัก เนื่องจากดินเป็นฉนวนกัน ความร้อนที่ดี (Figure 46) นอกจากนี้แม้ว่าการเปลี่ยนแปลงความเป็นกรด-ด่างในดินชั้นบนในป่าสน เสื่อมโทรมมีแนวโน้มที่เพิ่มขึ้น ในขณะที่ป่าสนผสมก่อมีแนวโน้มที่ลดลง (Figure 47) แต่เนื่องจากมี ความผันแปรค่อนข้างมากดังนั้นจากการวิเคราะห์ทางสถิติจึงไม่พบว่าอิทธิพลของไฟมีผลต่อการ เปลี่ยนแปลงความเป็นกรด-ด่างอย่างมีนัยสำคัญ (Table 36)

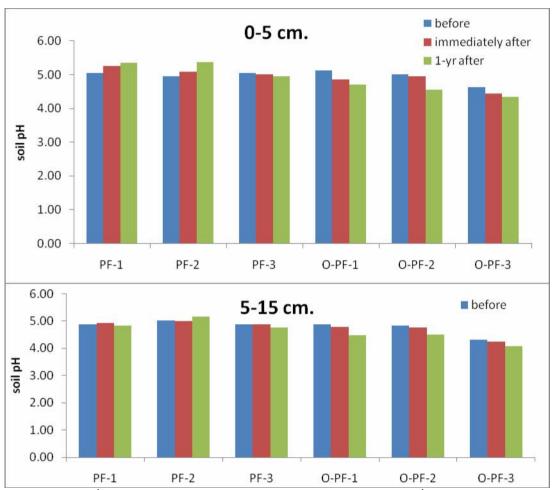


Figure 46 การเปลี่ยนแปลงความเป็นกรด-ด่างของดินจากการเผาป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ในแปลงต่างๆ ที่ระดับความลึก 0-5 และ 5-15 ซม.

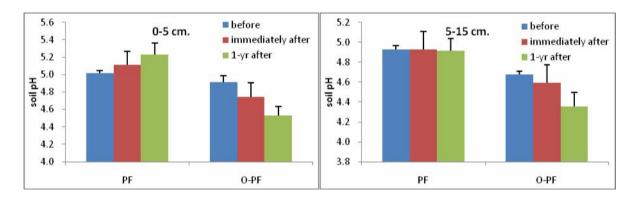


Figure 47. ค่าเฉลี่ยความเป็นกรด-ด่างของดินจากการเผาป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ในแปลงต่าง ๆ ที่ระดับความลึก 0-5 และ 5-15 ซม.

1.4 ปริมาณอินทรียวัตถุในดิน (soil organic matter)

ปริมาณอินทรียวัตถุในดินมีความผันแปรแตกต่างกันไปในแต่ละแปลงและแต่ละพื้นที่ ทั้งก่อน เผา ทันทีหลังการเผาและภายหลังเผา 1 ปี เช่นปริมาณอินทรียวัตถุในดินชั้นบนที่ระดับ 0-5 ซม. ที่พบ ในปาสนเสื่อมโทรมมีค่าที่ผันแปรสูงมากโดยมีค่าอยู่ระหว่าง 3.05-5.21 % ในขณะที่ปริมาณอินทรียวัตถุ ที่พบในป่าสนผสมก่อที่ระดับความลึกเท่ากันนี้มีความผันแปรระหว่างแปลงที่น้อยกว่าโดยมีค่าระหว่าง 3.19-4.12 % (Figure 48, Table 36) โดยที่ปริมาณอินทรียวัตถุก่อนเผาจะมีค่าสูงกว่าภายหลังการเผา และมักจะมีค่าสูงบริเวณดินชั้นบน (0-5 ซม.) และมีค่าต่ำกว่าในดินชั้นล่าง (5-15 ซม.) ทั้งในป่าสนเสื่อมโทรมและป่าสนผสมก่อ โดยก่อนการเผานั้นป่าสนเสื่อมโทรมและป่าสนผสมก่อมีปริมาณอินทรียวัตถุที่ ชั้นผิวดิน 0-5 ซม. 4.42 และ 3.76 % ตามลำดับ ในขณะที่ในดินชั่นล่างลงไปนั้นมีปริมาณอินทรียวัตถุที่ ดินเพียง 2.60 และ 2.27 % ตามลำดับ เท่านั้น (ดู Table 36) สำหรับผลกระทบของการเผาต่อปริมาณอินทรียวัตถุในดินสำหรับป่าสนเสื่อมโทรมนั้นพบว่าอิทธิพลของการเผาไม่ส่งผลกระทบต่อการ เปลี่ยนแปลงของอินทรียวัตถุในดินอย่างมีนัยสำคัญทั้งในดินชั้นบนและชั้นล่าง ในขณะที่ป่าสนผสมก่อน นั้นอิทธิพลของการเผาส่งผลต่อการเปลี่ยนแปลงของอินทรียวัตถุในดินอย่างมีนัยสำคัญ แต่ในดินชั้น บนนั้นไม่พบว่ามีการเปลี่ยนแปลงอย่างมีนัยสำคัญ แต่ในดินชั้น บนนั้นไม่พบว่ามีการเปลี่ยนแปลงอย่างมีนัยสำคัญ เช่นเดียวกับในป่าสนเสื่อมโทรม (Figure 49)

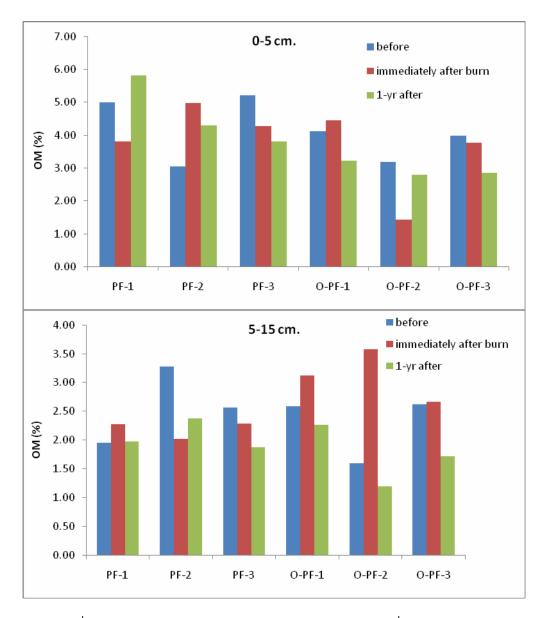


Figure 48 การเปลี่ยนแปลงปริมาณอินทรียวัตถุในดินจากการเผาป่าสนเสื่อมโทรม (PF) และป่าสนผสม ก่อ (O-PF) ในแปลงต่างๆ ที่ระดับความลึก 0-5 และ 5-15 ซม.

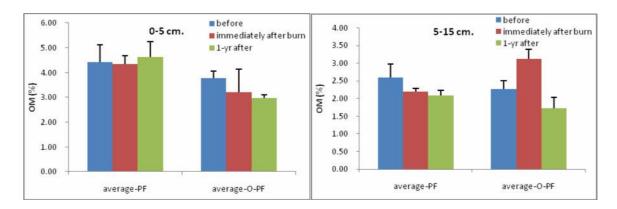


Figure 49 ค่าเฉลี่ยปริมาณอินทรียวัตถุในดินจากการเผาป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ในแปลงต่างๆ ที่ระดับความลึก 0-5 และ 5-15 ซม.

1.5 ปริมาณไนโตรเจนทั้งหมด (Total Nitrogen)

ปริมาณในโตรเจนทั้งหมดในดิน ได้ทำการศึกษาตั้งแต่ก่อนการเผา หลังเผาทันทีและตลอด ช่วงเวลาภายในระยะเวลา 1 ปี หลังการเผา โดยที่การเปลี่ยนแปลงของในโตรเจนนั้นมีความสัมพันธ์กับ พฤติกรรมของไฟโดยเฉพาะความรุนแรงของไฟโดยพบว่าในป่าสนเสื่อมโทรมที่ไฟมีความรุนแรงกว่าป่า สนผสมก่อนั้น จะพบว่าในโตรเจนจะเพิ่มขึ้นทันทีภายหลังการเผาในขณะที่ป่าสนผสมก่อนั้นในโตรเจน ทั้งหมดเปลี่ยนแปลงน้อยมากภายหลังการเผาทันที โดยที่ในโตรเจนทั้งหมดในดินชั้นบน (0-5 ซม.) ของ ป่าสนเสื่อมโทรมได้เพิ่มขึ้นจาก 0.10 % เป็น 0.26 % ภายหลังการเผาทันที และในดินชั้นล่าง (5-15 ซม.) เพิ่มจาก 0.07 % เป็น 0.20 % ภายหลังการเผา (Table 36) ทั้งนี้น่าจะมีสาเหตุมาจากไฟที่รุนแรง กว่านั้นทำให้ในโตรเจนบางส่วนระเหยและเปลี่ยนรูปจาก organic N เป็น inorganic N โดยเฉพาะ แอมโมเนียม (NH $_4$) ซึ่งโดยธรรมชาติแล้วแอมโมเนียมจะเพิ่มขึ้นสูงมากทันทีภายหลังไฟไหม้จากการ ระเหยและเปลี่ยนรูปของในโตรเจนทั้งหมดในดิน จึงส่งผลให้ในโตรเจนทั้งหมดมีค่าสูงขึ้น (organic N ลดลง แต่ inorganic N เพิ่มขึ้น โดยภาพรวม total N จึงเพิ่มขึ้น) ในขณะที่การเผาในป่าสนผสมก่อนั้น ไฟมีความรุนแรงต่ำมากจึงไม่ส่งผลต่อการระเหยและการเปลี่ยนรูปของในโตรเจนในดินมากนัก โดยที่ ในโตรเจนทั้งหมดในดินชั้นบนในป่าสนผสมก่อ ก่อนและทันทีภายหลังการเผายังคงมีค่าไม่เปลี่ยนแปลง (0.16 %) ดังนั้นไนโตรเจนทั้งหมดจึงมีแนวโน้มที่ไม่เปลี่ยนแปลงไปมาก

เมื่อผ่านการเผาไป 2 เดือน จะพบว่าในโตรเจนทั้งหมดมีแนวโน้มลดลงโดยเฉพาะในป่าสนเสื่อม โทรมทั้งในดินชั้นบนและดินชั้นล่าง โดยที่ในป่าสนผสมก่อมีแนวโน้มการลดลงที่ไม่มากนัก ทั้งนี้สาเหตุที่ ในโตรเจนทั้งหมดลดลงอย่างมากอาจจะเกิดจากขบวนการ nitrification ซึ่งเป็นขบวนการที่เปลี่ยนรูปของ แอมโมเนียมเป็น ในเตรท (NO₃²⁻) โดยในเตรทโดยธรรมชาติจะไม่เพิ่มขึ้นทันทีแต่จะค่อยๆ เพิ่มขึ้น หลังผ่านไฟใหม้ไปใด้สักระยะหนึ่ง แต่เนื่องจากในเตรทนั้นส่วนหนึ่งจะถูกพืชดูดไปใช้ แต่ส่วนที่เหลืออีก จำนวนมากจะลอยอยู่ในสารละลายดินในรูปไอออนซึ่งถูกชะล้างลงสู่ดินชั้นลึกและหลุดออกไปจากระบบ ได้ง่าย ดังนั้นเมื่อเวลาผ่านไปจึงพบว่าในโตรเจนทั้งหมดนั้นเริ่มลดลง แต่เมื่อพืชเริ่มมีการเจริญเติบโต และฟื้นคืนกลับมาดินก็จะเริ่มมีการสะสมในโตรเจนอีกครั้งทั้งจากพืชตระกูลถั่วและการผูพังเน่าเปื่อย

ของเศษชากพืชและจากขบวนการ precipitation ในรูปของฝน จึงทำให้ในโตรเจนทั้งหมดเริ่มฟื้นคืนกลับ สู่ระบบและมีค่าสูงขึ้นมาอีกครั้ง (Figure 50) จึงเป็นที่น่าสังเกตุว่าในโตรเจนทั้งหมดในดินภายหลังการ เผาไป 1 ปีนั้นมีค่าสูงกว่าในปีก่อนหน้าก่อนการเผา

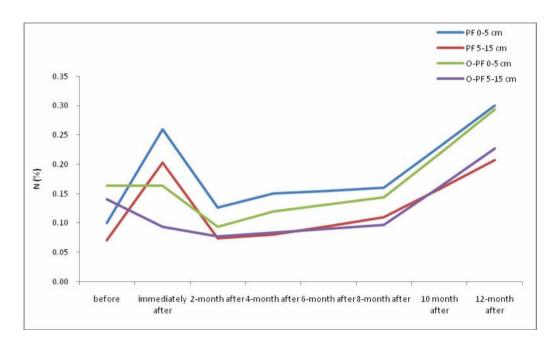


Figure 50. แนวโน้มการเปลี่ยนแปลงในโตรเจนทั้งหมดในดิน ก่อนการเผาและภายหลังการเผาใน ระยะเวลา 12 เดือน ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

1.6 ปริมาณฟอสฟอรัสที่เป็นประโยชน์ (Available Phosphorus)

โดยทั่วไปปริมาณฟอสฟอรัสที่เป็นประโยชน์ต่อพืชบริเวณดินชั้นบนจะมีค่าสูงกว่าในดินชั้นล่าง เมื่อพิจารณาในระดับแปลงย่อยจะพบว่าปริมาณฟอสฟอรัสที่เป็นประโยชน์ในป่าสนเสื่อมโทรมในดินชั้น บนและในดินชั้นล่างมีค่าอยู่ระหว่าง 2.63-4.12 mg/kg และ 1.53-2.40 mg/kg ตามลำดับ ในขณะที่ป่า สนผสมก่อมีปริมาณฟอสฟอรัสที่เป็นประโยชน์ในดินชั้นบนและดินชั้นล่างระหว่าง 5.03-6.35 mg/kg และ 2.14-2.70 mg/kg ตามลำดับ (ดู Table appendix 19 และ 20 ประกอบ) เมื่อเปรียบเทียบระหว่าง พื้นที่พบว่าปริมาณฟอสฟอรัสที่เป็นประโยชน์ในดินชั้นบนก่อนเผาในป่าสนผมก่อ (5.72 mg/kg) มีค่าสูง กว่าป่าสนเสื่อมโทรม (3.43 mg/kg) สำหรับในดินชั้นล่างพบว่ามีค่าใกล้เคียงกัน

จากการศึกษาครั้งนี้พบว่าอิทธิพลของการเผาไม่ได้ส่งผลให้ปริมาณฟอสฟอรัสที่เป็นประโยชน์ เปลี่ยนแปลงเพิ่มขึ้นอย่างมีนัยสำคัญทั้งในดินชั้นบนและชั้นล่างและทั้งในป่าสนเสื่อมโทรมหรือป่าสน ผสมก่อ (Table 36, figure 51) โดยแหล่งของฟอสฟอรัสภายหลังการเผานั้นอยู่ที่ส่วนของขี้เถ้าบนดิน ซึ่งภายหลังจะมีการชะแร่ธาตุต่างๆ รวมทั้งฟอสฟอรัสลงสู่ดิน ทำให้ธาตุอาหารต่างๆ รวมทั้งฟอสฟอรัส ในรูปที่เป็นประโยชน์มีมากขึ้นทั้งนี้โดยธรรมชาติปริมาณฟอสฟอรัสที่เป็นประโยชน์จะเพิ่มขึ้นภายหลัง การเผาพื้นที่แต่ขึ้นอยู่กับความหนัก-เบาของการเผา (fire severity) ซึ่งจะพบว่าในการศึกษาครั้งนี้พบว่า

ตัวบ่งชี้ทางด้านความหนัก-เบาของการเผา อันได้แก่ อุณหภูมิที่ผิวดินนั้นมีค่าสูงที่สุด ประมาณ 649 °C โดยระยะเวลาที่ดินมีอุณหภูมิสูงเกิน 100 °C มีเพียงประมาณ 3 นาที (ดูหัวข้อเรื่องอุณหภูมิดินประกอบ) นอกจากนี้อุณหภูมิดินที่ความลึกตั้งแต่ 2 ซม. ลงไปนั้นแทบไม่มีการเปลี่ยนแปลง ทั้งในป่าสนเสื่อมโทรม และป่าสนผสมก่อ ซึ่งลักษณะดังกล่าวมานี้อาจจำแนกได้ว่าการเผาครั้งนี้จัดเป็นการเผาแบบ low-severity burning ตามการจำแนกของ (DeBano and Neary 2005; Khanna and Raison 2006) เป็นที่ น่าสังเกตว่าภายหลังการเผาที่ระยะเวลาประมาณ 1 ปี พบว่าปริมาณฟอสฟอรัสที่เป็นประโยชน์กลับมี ค่าที่ต่ำกว่าก่อนที่จะทำการเผาซึ่งอาจจะมีสาเหตุมาจากการถูกชะลงสู่ดินชั้นลึกลงไปและหลุดออกไป จากระบบในที่สุดประกอบกับอัตราการทดแทนของฟอสฟอรัสในธรรมชาติมีน้อยมาก จึงทำให้การฟื้น คืนกลับมาของฟอสฟอรัสจึงยังคงมีค่าน้อยกว่าก่อนการเผา

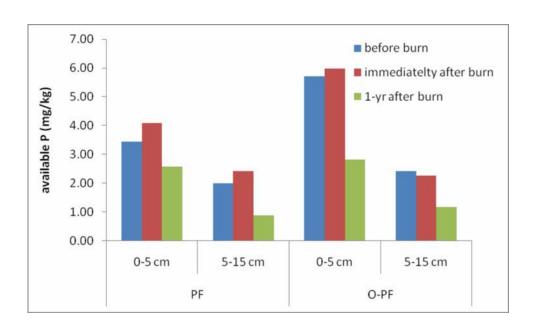


Figure 51. แนวโน้มการเปลี่ยนแปลงของฟอสฟอรัสในรูปที่เป็นประโยชน์ในดิน ก่อนการเผาภายหลัง การเผาทันที และภายหลังการเผา 12 เดือน ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

1.7 แคดไอออนที่แลกเปลี่ยนได้ (Exchangeable cations)

แคดใออนต่างๆ ที่ทำการตรวจวัด ได้แก่ โปแตสเซียม (K) แคลเซียม (Ca) แมกนีเซียม (Mg) และโซเดียม (Na) โดยทั่วไปมีแนวโน้มที่จะมีค่าสูงบริเวณดินชั้นบน (0-5 ซม.) มากกว่าในดินชั้นล่าง (5-15 ซม.) โดยที่ป่าสนเสื่อมโทรมมีแนวโน้มที่พบว่าจะมีแคลเซียมและโซเดียมที่แลกเปลี่ยนได้ในดินที่สูง กว่าในป่าสนผสมก่อ ทั้งในดินชั้นบนและดินที่ลึกลงไป ในทุกช่วงเวลาของการตรวจวัด เช่นที่ระยะเวลา ก่อนการเผาปริมาณแคลเซียมที่แลกเปลี่ยนได้ในดินชั้นบนและดินชั้นบนและดินชั้นอ่างของป่าสนเสื่อมโทรมมีค่า

เท่ากับ 839.87 และ 529.00 mg/kg ตามลำดับ ในขณะที่ป่าสนผสมก่อมีค่าเพียง 574.40 และ 209.05 mg/kg ตามลำดับ เท่านั้น (ดู Table 36 ประกอบ)

จากการทดลองเผาพบว่าอิทธิพลของไฟนั้นไม่ได้ส่งผลกระทบต่อการเปลี่ยนแปลงของแคด ไอออนที่แลกเปลี่ยนใด้อย่างมีนัยสำคัญทางสถิติ แต่อย่างไรก็ตามสำหรับแคลเซียมนั้นกลับดูเสมือนว่ามี แนวโน้มการเปลี่ยนแปลงในทางที่ลดลงภายหลังการเผาแม้ว่าการเปลี่ยนแปลงนั้นจะไม่มีนัยสำคัญก็ตาม (Figure 52) จากการศึกษาครั้งนี้ที่พบว่าไฟที่เกิดขึ้นไม่ได้ส่งผลต่อการเปลี่ยนแปลงของอุณภูมิดินมาก นัก อีกทั้งไฟมีความรุนแรงต่ำ-ปานกลาง เท่านั้น ดังนั้น อิทฑิพลของไฟจึงไม่ได้ส่งผลต่อการ เปลี่ยนแปลงคุณสมบัติทางเคมีในด้านของแคดไอออนที่แลกเปลี่ยนได้ในดินอย่างมีนัยสำคัญ

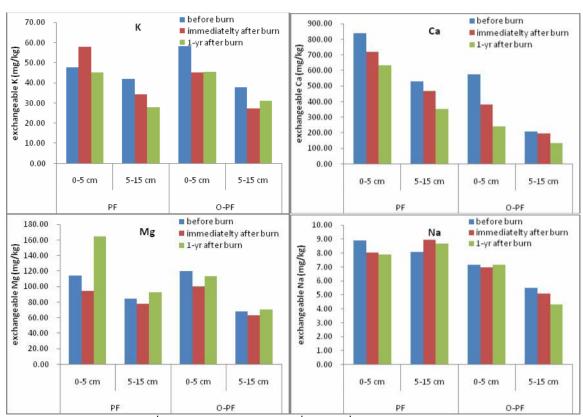
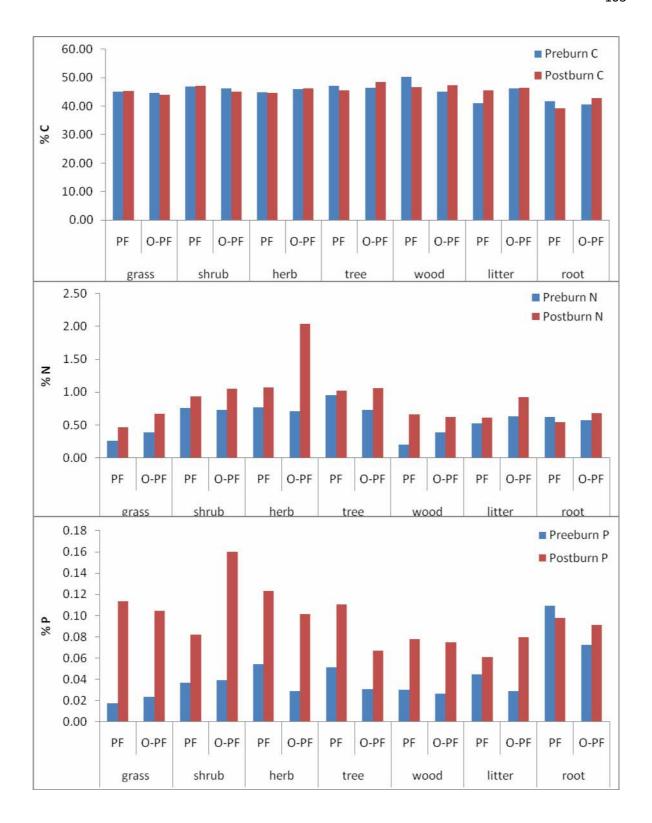


Figure 52 แนวโน้มการเปลี่ยนแปลงของแคดไออนที่แลกเปลี่ยนได้ (Exchangeable Cations: K, Ca, Mg, Na) ในดิน ก่อนการเผาภายหลังการเผาทันที และภายหลังการเผา 12 เดือน ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

โดยสรุปในภาพรวมอิทธิพลของไฟต่อคุณสมบัติทางเคมีและคุณสมบัติทางกายภาพของดินจาก การเผาป่าสนเสื่อมโทรมและป่าสนผสมก่อพบว่าไฟที่เกิดขึ้นนั้นส่งผลกระทบเพียงเล็กน้อยในคุณสมบัติ ของดินบางประการ อีกทั้งสำหรับดินที่อยู่ลึกลงไปนั้นคุณสมบัติของดินแทบจะไม่มีการเปลี่ยนแปลงไป โดยสาเหตุสำคัญเนื่องจากลักษณะของไฟที่เกิดขึ้น พฤติกรรมของไฟที่มีความรุนแรงต่ำและโดยเฉพาะ อย่างยิ่งและความหนักเบาของการเผาที่ไม่สูงมากจึงไม่ส่งผลต่อการเปลี่ยนแปลงคุณสมบัติของดินให้ เปลี่ยนแปลงไปมากนัก

Table 36 การเปลี่ยนแปลงของคณสมบัติทางเคมีของดินภายหลังการเผาป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ที่ระดับความลึก 0-15 ชม


ี เสมเร งงาน เล่นมหามยงานหมายงาน เล่นลายงทุกมายงทุกมายหมาย เหต่ะหยด เกาล์ (เา) เล่นอน เหต่อนที่ยา (ס-רו) หละทยทาย เล่นที่ยา เล่นที่ยา (ס-רו) หละทยที่ยามายงทุกมาย (ס-רו) หละทยที่ยามายงที่ยามายงาน เล่นมายายงาน	ระยบเรง บองชุ เพย		TIN DEVAIL	64 12 M M M M I I 464	4 ID IN MENDA 6	11 JON (LI) PPPNOT		۳-۱۱ (۲۱۹۰۷	1	שת טוי	
Period	Soil depth	Site	Hd	Organic	Total C (%)	Total N (%)	Available P	Exc	Exchangeable cations (mg/kg)	ıtions (mg/kg)
	(cm.)			matter (%)			(mg/kg)	У	Ca	Мв	Na
Before burning	0-5	PF	5.02 ^a	4.42 ^a	2.12 ^a	0.10 ^a	3.43 ^a	47.77 ^a	839.87	114.36ª	8.91
			(0.03)	(0.69)	(0.45)	(0.02)	(0.43)	(7.09)	(58.83)	(26.36)	(0.31)
		O-PF	4.92 ^a	3.76 ^a	2.16 ^a	0.16 ^a	5.72 ^b	_{28.06}	574.40 ^a	119.91 ^a	7.15 ^a
			(0.15)	(0.29)	(0.18)	(0.06)	(0.38)	(2.24)	(142.53)	(21.79)	(0.22)
	5-15	PF	4.93 ^a	2.60 ^a	1.52 ^a	0.07 ^a	1.99 ^b	41.91 ^a	529.00 ^a	84.29 ^a	8.07 ^a
			(0.04)	(0.38)	(0.15)	(0.01)	(0.25)	(17.08)	(100.12)	(16.67)	(0.44)
		O-PF	4.68 ^a	2.27 ^{ab}	1.30 ^a	0.14 ^a	2.41 ^b	37.81 ^a	209.05 ^a	67.54 ^a	5.50 a
			(0.18)	(0.34)	(0.25)	(0.05)	(0.16)	(8.15)	(70.31)	(16.97)	(0.19)
immediately after	9-0	PF	5.11 ^a	4.35 ^a	2.26 ^b	0.26ª	4.09 ^a	^e 26.79	720.20 ^a	94.46	8.01
burning			(0.07)	(0.34)	(0.25)	(0.01)	(0.45)	(2.54)	(31.12)	(26.15)	(0.35)
		O-PF	4.75 ^a	3.21 ^a	3.00 ^a	0.16ª	5.98 ^b	45.09 ^a	380.73 ^a	100.33 ª	6.95°
			(0.16)	(0.92)	(1.24)	(0.04)	(1.11)	(08.9)	(63.40)	(13.10)	(1.34)
	5-15	PF	4.93 ^a	2.19 ^a	1.21 ^a	0.20 ^b	2.42 ^b	34.26 ^a	469.00 ^a	^e 12.17	8.94 ^a
			(0.03)	(0.09)	(0.03)	(0.01)	(0.43)	(7.59)	(49.76)	(9.73)	(1.23)
		O-PF	4.59 ^a	3.12 ^b	1.47 ^a	0.09 ^a	2.26 ^b	27.30 ^a	194.36 ^a	62.77 ^a	5.09 ^a
			(0.18)	(0.26)	(0.28)	(0.02)	(0.27)	(1.86)	(85.91)	(21.67)	(0.26)
1-yr- after burning	0-5	PF	5.23 ª	4.63ª	3.11ª	0.30 ^b	2.58ª	45.22 ^a	632.53 ª	164.37 ^a	7.87 ^a
			(0.14)	(0.61)	(0.37)	(0.02)	(0.10)	(2.62)	(54.48)	(12.91)	(0.35)
		O-PF	4.53 ^a	2.96 ª	1.96ª	0.29ª	2.82ª	45.30 ^a	239.29ª	113.09ª	7.15 ^a
			(0.10)	(0.14)	(0.42)	(0.04)	(0.55)	(3.51)	(60.35)	(22.85)	(1.51)
	5-15	PF	4.92ª	2.08	1.32ª	0.21 ^b	0.88ª	28.01 ^a	352.20 ª	92.36ª	8.66
			(0.12)	(0.15)	(0.06)	(0.01)	(0.12)	(3.31)	(30.06)	(10.10)	(0.46)
		O-PF	4.36ª	1.72ª	1.47 ^a	0.23ª	1.16°	30.91 ^a	131.81ª	70.03ª	4.28 ^a
			(0.14)	(0.31)	(0.21)	(0.02)	(0.14)	(1.86)	(32.96)	(18.54)	(1.06)
9 9		6 0 -	0	Ç :: : : : : : : : : : : : : : : : : :	<u> </u>	9	9	9 - N	- 60	6	- •ेच -

หมายเหตุ : ตัวอักษร ^{* 5} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (ANOVA, P<0.05) โดยเปรียบเทียบระหว่างก่อนเผา หลังเผาทันที และ ภายหลังการเผาไปแล้ว 1 ปี ของคุณสมบัติทางเคมีของดินในแต่ละพื้นที่

ของแต่ละระดับความลึก

การเปลี่ยนแปลงความเข้มข้นของธาตุอาหารในส่วนต่าง ๆ ของเชื้อเพลิง

Figure 53. แสดงการเปลี่ยนแปลงของร้อยละของธาตุอาหาร (C, N, P, K, Ca, Mg) ใน เชื้อเพลิงเปรียบเทียบระหว่างก่อนการเผาและภายหลังการเผาไปแล้วเป็นเวลา 1 ปี โดยที่คาร์บอนมี ความเข้มขันโดยทั่วไประหว่าง 40-50 % (ดูเรื่องการสูญเสียคาร์บอนประกอบ) สำหรับในโตรเจน โปแตสเซียม แคลเซียม และแมกนีเซียม พบว่ามีค่าค่อนข้างต่ำในเชื้อเพลิงประเภทหญ้าในขณะที่ เชื้อเพลิงประเภทไม้ลัมลุก ไม้พุ่ม และไม้ยืนต้นมีค่าค่อนข้างสูงกว่า สำหรับอิทธิพลของการเผาต่อความ เข้มขันของธาตุอาหารในเชื้อเพลิงต่างๆ มีการเปลี่ยนแปลงที่ ไม่มีแนวโน้มชัดเจน โดยมีความผันแปรไปทั้งเพิ่มขึ้น คงที่ และลดลง แต่เป็นที่น่าสังเกตสำหรับ ในโตรเจนและฟอสฟอรัสที่จะพบว่าความเข้มขันของธาตุอาหารทั้งสองนี้มีค่าเพิ่มสูงขึ้นในเชื้อเพลิงทุก ประเภทภายหลังการเผา โดยเฉพาะอย่างยิ่งฟอสฟอรัสที่มีการเพิ่มขึ้นสูงกว่าก่อนการเผาประมาณ 2 เท่า ในเชื้อเพลิงหลายประเภท ทั้งนี้อาจเนื่องจากชิ้นส่วนของเชื้อเพลิงที่สุ่มในช่วง 1 ปีหลังการเผานั้น อยู่ในสภาพที่ยังมีความสดมากกว่าการสุ่มตัวอย่างในช่วงเวลาก่อนการเผา ซึ่งโดยทั่วไปชิ้นส่วนของพืช ที่มีความสดจะมีปริมาณธาตุในโดรเจนและฟอสฟอรัสสูงกว่าชิ้นส่วนของพืชที่แห้งกว่า แต่สำหรับธาตุ อาหารอื่นๆ จะไม่ค่อยมีความแตกต่างกันมากนักระหว่างชิ้นส่วนที่มีความสดแห้งที่แดกต่างกัน

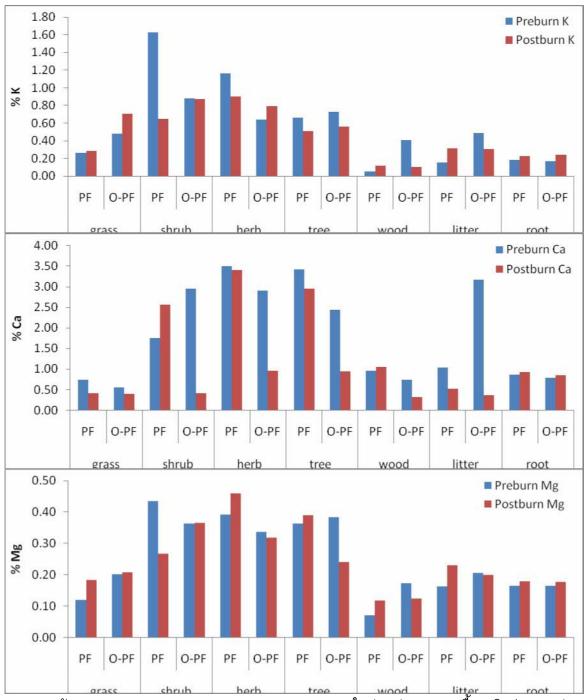


Figure 53 ร้อยละของชาตุอาหาร (total C, N, P. K, Ca, Mg) ในส่วนต่างๆ ของเชื้อเพลิงประเภทต่างๆ ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) เปรียบเทียบระหว่างก่อนการเผาและภายหลังการ เผาผ่านไป 1 ปี

2. พลวัตรการเปลี่ยนแปลงของปริมาณธาตุอาหารในระบบนิเวศจากอิทธิพลของการเผา 2.1 พลวัตรการเปลี่ยนแปลงปริมาณธาตุอาหารเหนือพื้นดินของเชื้อเพลิงในป่า

เชื้อเพลิงเหนือพื้นดินอันประกอบด้วยหญ้า ไม้พุ่ม ไม้ล้มลุก ลูกไม้กล้าไม้ เศษซากพืชรวมทั้งกิ่ง ไม้ขนาดเล็ก ที่อยู่ตามพื้นป่าซึ่งมีธาตุอาหารต่างๆ เป็นองค์ประกอบอยู่ภายใน เมื่อเชื้อเพลิงเหล่านี้ถูก เผาไหม้ทำให้ธาตุอาหารต่างๆ ที่อยู่ในเชื้อเพลิงถูกปลดปล่อยออกมา ทั้งนี้ขึ้นอยู่กับลักษณะของไฟ โดยเฉพาะความรุนแรงของไฟและความเสียหายที่พืชได้รับและลักษณะธรรมชาติของธาตุอาหารแต่ละ ชนิดโดยเฉพาะอุณหภูมิระเหย (volatilization temperature)

จากการศึกษาพบว่าก่อนการทดลองเผาแปลงทดลองเชื้อเพลิงในป่ามีปริมาณแคลเซียมอยู่ ค่อนข้างสูงโดยเฉพาะในเศษซากพืช โดยมีปริมาณอยู่ถึง 59.49 และ 152.03 กก.ต่อเฮกแตร์ ในป่าสน เสื่อมโทรมและป่าสนผสมก่อ ตามลำดับ สำหรับปริมาณในโตรเจนก็มีอยู่ค่อนข้างมากในเศษซากพืช เช่นกัน (ประมาณ 29 กก.ต่อเฮกแตร์ ทั้งในป่าสนเสื่อมโทรมและป่าสนผสมก่อ) ในขณะที่ปริมาณ ฟอสฟอรัสเป็นธาตุอาหารที่มีอยู่น้อยมากในเชื้อเพลิงซึ่งมีปริมาณรวมกันในเชื้อเพลิงทั้งหมดเพียง ประมาณ 2.47 และ 4.16 กก.ต่อเฮกแตร์ในป่าสนผสมก่อและป่าสนเสื่อมโทรม ตามลำดับ ภายหลังการ เผาที่ระยะเวลาประมาณ 1 ปี นั้น ปรากฏว่าแนวโน้มของปริมาณธาตุอาหารก็ยังมีลักษณะเช่นเดียวกับ เมื่อก่อนการเผา โดยที่ปริมาณแคลเซียมและในโตรเจนรวมในเชื้อเพลิงทั้งหมดยังคงมีมากเมื่อ เปรียบเทียบกับธาตุอาหารอื่นๆ แต่พบว่าปริมาณแคลเซียมและในโตรเจนที่มีมากที่สุดนั้นไม่ได้อยู่ใน ส่วนของเศษซากพืชแต่อยู่ในส่วนของหญ้าและลูกไม้กล้าไม้ (Table 37)

เมื่อเปรียบเทียบพลวัตรการเปลี่ยนแปลงของปริมาณธาตุอาหารในเชื้อเพลิงภายหลังการเผา พบว่าอิทธิพลของการเผาแม้จะได้ทำลายพืชพื้นล่างไปแต่เมื่อเวลาผ่านไป พืชพรรณต่างๆ ก็มีการ เจริญเติบโตฟื้นกลับมาอีกครั้งทำให้ธาตุอาหารในเชื้อเพลิงมีการสะสมกลับมาอีกครั้ง แต่อย่างไรก็ตาม จากการศึกษาพบว่าแม้สังคมพืชพื้นล่างจะมีการเจริญเติบโตกลับมาปกคลุมพื้นที่ได้ภายในเวลา 1 ปี แต่จะพบว่าปริมาณธาตุอาหารภายหลังการเผาโดยส่วนใหญ่ยังมีปริมาณต่ำกว่าก่อนการเผาโดยเฉพาะ แคลเซียม แต่สำหรับปริมาณฟอสฟอรัสกลับพบว่าเมื่อเวลาผ่านไป 1 ปี ธาตุอาหารดังกล่าวมีปริมาณ เพิ่มขึ้นโดยประมาณ 2 เท่า ซึ่งแหล่งของการเพิ่มขึ้นของฟอสฟอรัสมาจากเชื้อเพลิงประเภทหญ้าเป็น หลัก (Table 37, Figure 54.)

Table 37. ปริมาณชาตุอาหารในส่วนของเชื้อเพลิงประเภทต่างๆ ก่อนการเผา ภายหลังการเผา 1 ปี และการเปลี่ยนแปลงของชาตุอาหาร ในป่าสนผสมเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

ชาตุ		ก่อนเผา (kg/ha)						
อาหาร	พื้นที่	หญ้า	ไม้พุ่ม	ไม้ล้มลุก	ลูกไม้	เศษซากพืช	กิ่งไม้	รวมทั้งหมด
	PF	15.38	0.39	1.08	7.08	29.84	0.88	54.64
N	O-PF	5.60	2.25	0.83	4.22	29.97	5.80	48.66
	PF	1.00	0.02	0.08	0.38	2.55	0.13	4.16
Р	O-PF	0.34	0.12	0.03	0.18	1.40	0.40	2.47
	PF	15.55	0.83	1.65	4.92	8.57	0.22	31.74
K	O-PF	6.93	2.71	0.75	4.20	23.24	6.14	43.97
	PF	42.99	0.89	4.95	25.45	59.49	4.21	137.98
Ca	O-PF	7.93	9.09	3.40	14.08	152.03	11.06	197.59
	PF	7.04	0.22	0.56	2.70	9.30	0.31	20.13
Mg	O-PF	2.89	1.12	0.39	2.21	9.84	2.59	19.05
ชาตุ				1	ปีหลังการเผ	ો (kg/ha)		
อาหาร	พื้นที่	หญ้า	ไม้พุ่ม	ไม้ล้มลุก	ลูกไม้	เศษซากพืช	กิ่งไม้	รวมทั้งหมด
	PF	24.62	2.82	1.93	5.00	9.36	5.32	49.03
N	O-PF	11.74	3.37	3.48	4.42	21.55	9.63	54.20
	PF	5.95	0.25	0.22	0.54	0.93	0.63	8.52
Р	O-PF	1.83	0.51	0.17	0.28	1.87	1.16	5.82
	PF	14.98	1.96	1.63	2.49	4.81	0.93	26.80
K	O-PF	12.38	2.80	1.35	2.35	7.11	1.65	27.63
	PF	21.22	7.77	6.12	14.43	8.00	8.45	65.99
Ca	O-PF	6.93	1.31	1.63	3.96	8.67	4.88	27.38
	PF	9.65	0.81	0.83	1.91	3.52	0.95	17.67
Mg	O-PF	3.65	1.17	0.54	1.00	4.68	1.93	12.98
ชาตุ		การเปลี่ยนแปลง (kg/ha)						
อาหาร	พื้นที่	หญ้า	ไม้พุ่ม	ไม้ล้มลุก	ลูกไม้	เศษซากพืช	กิ่งไม้	รวมทั้งหมด
	PF	9.23	2.44	0.84	-2.08	-20.48	4.44	-5.61
N	O-PF	6.15	1.12	2.65	0.20	-8.42	3.84	5.54
	PF	4.95	0.23	0.14	0.16	-1.62	0.49	4.36
Р	O-PF	1.49	0.39	0.14	0.10	0.47	0.76	3.36
	PF	-0.57	1.13	-0.02	-2.43	-3.76	0.72	-4.93
K	O-PF	5.45	0.09	0.60	-1.86	-16.13	-4.49	-16.35
	PF	-21.77	6.88	1.17	-11.02	-51.49	4.24	-71.99
Ca	O-PF	-1.00	-7.78	-1.76	-10.12	-143.36	-6.19	-170.22
	PF	2.61	0.59	0.27	-0.79	-5.78	0.64	-2.46
Mg	O-PF	0.75	0.06	0.15	-1.21	-5.16	-0.66	-6.06

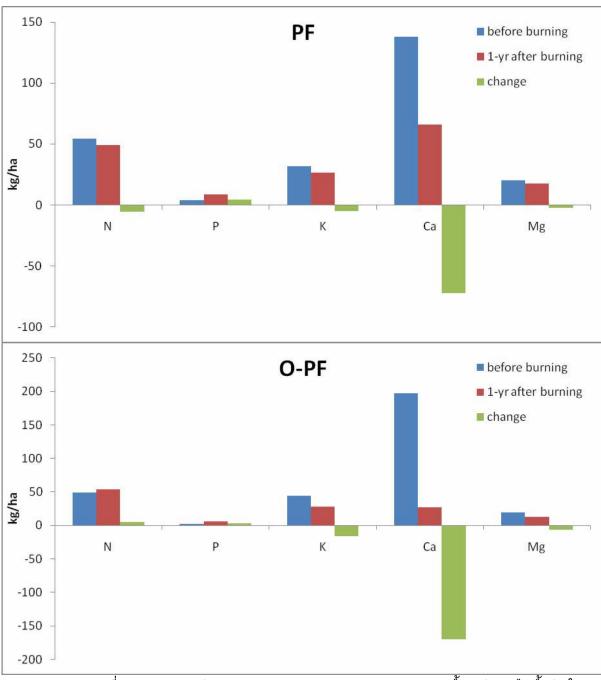


Figure 54. การเปลี่ยนแปลงของปริมาณชาตุอาหาร (N, P, K, Ca, Mg) ของเชื้อเพลิงเหนือพื้นดินในป่า สนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

2.2 พลวัตรการเปลี่ยนแปลงปริมาณธาตุอาหารใต้พื้นดินที่ระดับความลึก 15 ซม.

ปริมาณธาตุอาหารในดินที่ระดับความลึก 15 ซม. ในป่าสนเสื่อมโทรมและป่าสนผสมก่อ ก่อน การเผาแปลงทดลองและภายหลังการเผา 1 ปี ดังแสดงใน Table 38 และร้อยละของการเปลี่ยนแปลง ปริมาณธาตุอาหารดังแสดงใน Figure 55. จากการศึกษาพบว่าปริมาณในโตรเจนในดินนั้นมีปริมาณ มากที่สุด (1119 และ 2351 กก.ต่อเฮกแตร์ ในป่าสนเสื่อมโทรมและป่าสนผสมก่อ ตามลำดับ) รองลงมา ได้แก่ปริมาณแคลเซียมที่แลกเปลี่ยนได้ (881 และ 530 กก.ต่อเฮกแตร์ ในป่าสนเสื่อมโทรมและป่าสนผสมก่อ ตามลำดับ)ในขณะที่ปริมาณฟอสฟอรัสในรูปที่เป็นประโยชน์มีปริมาณต่ำที่สุด (3 และ 6 กก.ต่อ เฮกแตร์ ในป่าสนเสื่อมโทรมและป่าสนผสมก่อ ตามลำดับ) ทั้งในป่าสนเสื่อมโทรมและป่าสนผสมก่อ และ เมื่อพื้นที่ป่าผ่านการเผาไปเป็นระยะเวลา 1 ปี นั้นก็พบว่าแนวโน้มปริมาณธาตุอาหารยังคงเป็นไปใน ลักษณะเช่นเดียวกับก่อนการเผา Table 38

สำหรับภาพรวมของการเปลี่ยนแปลงของปริมาณธาตุอาหารในดินพบว่าปริมาณในโตรเจน ทั้งหมดและปริมาณแมกนีเซียมที่แลกเปลี่ยนได้มีแนวโน้มที่เพิ่มขึ้นภายหลังการเผาไปเป็นระยะเวลา 1 ปี (Figure 55.) แต่จากการวิเคราะห์ทางสถิติพบว่าอิทธิพลของการเผาในป่าสนเสื่อมโทรมนั้นได้ทำให้ ปริมาณไนโตรเจนทั้งหมดในดินที่ระดับความลึก 15 ซม. เพิ่มขึ้นจาก 1119.37 กก. ต่อเฮกแตร์ เป็น 3660.38 กก. ต่อเฮกแตร์ อย่างมีนัยสำคัญ (P=0.011) ในขณะที่ปริมาณฟอสฟอรัสในรูปที่เป็นประโยชน์ ในป่าสนผสมก่อได้ลดลงอย่างมีนัยสำคัญทางสถิติ (P=0.02) จาก 5.62 กก. ต่อเฮกแตร์ เป็น 2.86 กก. ต่อเฮกแตร์ สำหรับธาตุอาหารอื่นๆ นั้น แม้จะมีแนวโน้มว่าอิทธิพลของไฟได้ทำให้ธาตุอาหารอื่นๆ ใน ดินลดลงต่ำลงภายหลังการเผา แต่การลดลงนั้นไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติแต่อย่างใด

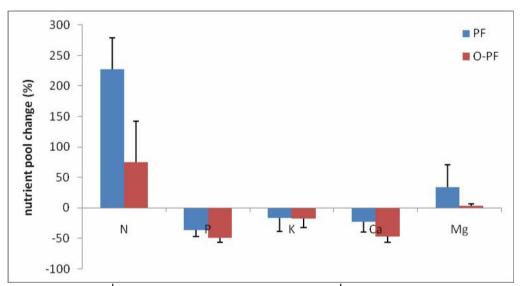


Figure 55. ร้อยละการเปลี่ยนแปลงของปริมาณชาตุอาหารในดินที่ระดับความลึก 0-15 ซม. ภายหลัง การเผา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

Table 38. ปริมาณธาตุอาหารในดินที่ระดับ 0-15 ซม.ใต้ดิน ก่อนการเผาแปลงทดลอง ภายหลังการเผา แปลงทดลองเป็นระยะเวลา 1 ปี และการเปลี่ยนแปลงของธาตุอาหาร ในป่าสนเสื่อมโทรม (PF) และป่า สนผสมก่อ (O-PF)

\$ 0,00005	แปลง	ปริมาณชา	ทุอาหาร (kg/ha) ที่ระดับความลึก 15 cm		
ธาตุอาหาร		ก่อนเผา	1 ปีหลังการเผา	การเปลี่ยนแปลง	
N	PF	1119.37 ^a	3660.38 ^b	2541.02	
IN	O-PF	2351.23 ^a	4116.44 ^a	1765.21	
Р	PF	3.46 ^a	2.18 ^a	-1.28	
F	O-PF	5.62 ^a	2.86 ^b	-2.76	
K	PF	61.82 ^a	51.75 ^a	-10.06	
r.	O-PF	71.51 ^a	59.24 ^a	-12.27	
Ca	PF	880.77 ^a	682.14 ^a	-198.64	
Ca	O-PF	530.15 ^a	280.86 ^a	-249.29	
Ma	PF	132.82 ^a	177.86 ^a	45.05	
Mg	O-PF	136.28 ^a	141.15 ^a	4.88	

หมายเหตุ: ตัวอักษร ^{a, b} แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ (*P*<0.05) ของความแตกต่างระหว่างปริมาณธาตุอาหารก่อนการ เผากับปริมาณธาตุอาหารภายหลังการเผา 1 ปี

วิจารณ์ผลการศึกษา

การศึกษานิเวศวิทยาของไฟในแสนเสื่อมโทรมและป่าสนผสมก่อที่บริเวณสวนสนภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว จังหวัดเพชรบูรณ์ พบว่าพฤติกรรมของไฟในป่าสนเสื่อมโทรมซึ่งมีหญ้าเป็น เชื้อเพลิงหลักนั้นมีไฟที่มีความรุนแรงสูงกว่าป่าสนผสมก่อที่มีเชื้อเพลิงที่หลากหลายประเภทมากกว่า โดยป่าสนเสื่อมโทรมต้องการระยะเวลาประมาณ 2 ปีในการที่เชื้อเพลิงจะมีการสะสมมาเท่ากับระดับเดิม ก่อนที่จะมีการเผาในขณะที่ป่าสนผสมก่อต้องการระยะเวลาที่ยาวนานกว่านั้น ผลกระทบของการเผาต่อ การสูญเสียคาร์บอนสู่บรรยากาศพบว่าไฟได้ส่งผลให้เกิดการปลดปล่อยคาร์บอนออกสู่บรรยากาศโดยที่ คาร์บอนที่สูญเสียออกไปนั้นมาจากเชื้อเพลิงในส่วนที่อยู่เหนือพื้นดินเป็นส่วนใหญ่ โดยที่คาร์บอนในดิน ไม่ได้รับผลกระทบอย่างมีนัยสำคัญ เมื่อประมาณการสะสมคาร์บอนจากเชื้อเพลิงภายหลังการเผาก็ พบว่าป่าสนเสื่อมโทรมต้องการระยะเวลาประมาณ 2 ปีในการสะสมคาร์บอนกลับมาสู่ระบบนิเวศใน ขณะที่ป่าสนผสมก่อต้องการระยะเวลาประมาณ 3 ปี สำหรับพลวัตรการเปลี่ยนแปลงของธาตุอาหารใน เชื้อเพลิงก็พบว่าภายลังการเผาไปแล้ว 1 ปี ปริมาณชาตุอาหารในเชื้อเพลิงยังมีปริมาณน้อยกว่าก่อนการ เผา เช่นกัน ในขณะที่การเปลี่ยนแปลงของธาตุอาหารในดินนั้นพบว่ามีเพียงในโตรเจนทั้งหมดที่เพิ่มขึ้น อย่างมีนัยสำคัญและฟอสฟอรัสในรูปที่เป็นประโยชน์ที่ลดลงอย่างมีนัยสำคัญ เมื่อเกิดไฟขึ้นทั้งในป่าสน เสื่อมโทรมและป่าสนผสมก่อนั้นไม่ได้ส่งผลกระทบอย่างรุนแรงต่อคุณสมบัติทางกายภาพบางประการ โดยเฉพาะความหนาแน่นรวมของดินและลักษณะเนื้อดิน อีกทั้งไม่ได้ส่งผลต่อคุณสมบัติทางเคมีของดิน เนื่องจากอุณหภูมิใต้ดินไม่มีการเปลี่ยนแปลงไปอย่างมีนัยสำคัญ สำหรับผลกระทบต่อลักษณะโครงสร้าง และองค์ประกอบของสังคมพืชนั้นพบว่าได้รับผลกระทบจากการเผาโดยเฉพาะลูกไม้ และไม้หนุ่มใน ขณะที่ไม้ใหญ่ไม่ได้รับผลกระทบมากนัก

ในการวิจารณ์ผลการศึกษาได้แบ่งหัวข้อในการวิจารณ์ออกเป็น 5 ประเด็นหลัก ได้แก่

- 1. ผลกระทบของไฟต่อโครงสร้างและองค์ประกอบของสังคมพืชป่าสน
- 2. ผลกระทบของไฟในป่าสนกับปัญหาการปลดปล่อยคาร์บอนสู่บรรยากาศ
- 3. ความหนักเบาของไฟ (Fire severity) ที่ส่งผลกระทบต่อระบบนิเวศ
- 4. แนวทางการจัดการไฟจากผลของลักษณะความรุนแรงของไฟ (Fire intensity implication)

1. ผลกระทบของไฟต่อโครงสร้างและองค์ประกอบสังคมพืชป่าสน

ป่าสนจัดเป็นระบบนิเวศที่สามารถคงอยู่ภายใต้สภาพแวดล้อมที่มีไฟได้ โดยปัจจัยทางด้านไฟที่ เกี่ยวข้องต่อการคงอยู่หรือการสูญหายของระบบนิเวศในมุมมองทางด้านองค์รวมของสังคมพืชนั้นได้แก่ ระบอบการเผา (fire regime) อันประกอบไปด้วยประเภทของไฟ (fire type) ความถี่ของไฟ (fire frequency) ความรุนแรงของไฟ (fire intensity) ฤดูกาลเกิดไฟ (fire season) และขนาดพื้นที่ที่ไฟไหม้ (burned area) (Chandler et al., 1983) ซึ่งปัจจัยต่างๆ ดังกล่าวนี้นจะมีผลต่อกระบวนการต่างๆ เช่น การเติบโต และโดยเฉพาะอย่างยิ่งการสืบพันธุ์ตามธรรมชาติ (natural regeneration) เมื่อพิจารณา ปัจจัยที่มีอิทธิพลต่อการตายของต้นไม้ในระดับต้น (individual tree) นั้น ปัจจัยสำคัญที่มีผลต่อการตาย ของต้นไม้ได้แก่ความรุนแรงของไฟและลักษณะของต้นไม้แต่ละชนิดและช่วงอายุของต้นไม้

ผลจากการศึกษาครั้งนี้แสดงให้เห็นว่าอิทธิพลของไฟทั้งในระดับระบอบการเผาและระดับความ รุนแรงของไฟที่เกิดขึ้นในแต่ละครั้งส่งผลต่อลักษณะโครงสร้างองค์ประกอบของสังคมพืชบริเวณป่าสน เสื่อมโทรมและป่าสนผสมก่อ การอภิปรายผลจึงขอกำหนดหัวข้อการอภิปรายออกเป็น 2 ประเด็น

1.1 อิทธิพลของไฟที่เกิดขึ้นในแต่ละครั้ง

ไฟที่เกิดขึ้นในพื้นที่แต่ละครั้งได้สร้างความเสียหายส่วนใหญ่กับลูกไม้กล้าไม้ มากกว่าไม้ขนาดใหญ่เนื่องจากไฟในป่าสนของประเทศไทยเป็นไฟผิวดินจึงมีความรุนแรงไม่มากเท่ากับ ไฟเรือนยอดที่เกิดในพื้นที่ป่าสนเขตอบอุ่น (สันต์ เกตุปราณีต, 2530) พันธุ์ไม้หลายชนิดในพื้นที่ศึกษา นั้นสามารถทนทานต่อการเกิดไฟได้โดยมักจะมีเปลือกหนา สามารถแตกหน่อได้ฯ แต่ลักษณะดังกล่าวนี้ ไม่ได้เกิดขึ้นทันทีตั้งแต่กล้าไม้งอกขึ้นมา ความสามารถในการทนทานต่อไฟนั้นมักจะเพิ่มขึ้นตามอายุ ของต้นไม้ที่มากขึ้น (Whelan, 1995) สำหรับความสามารถในการแตกหน่อซึ่งเป็นลักษณะสำคัญ ประการหนึ่งของพันธุ์ไม้ในระบบนิเวศที่มีไฟเกิดขึ้นเป็นระยะ พบว่าความสามารถในการแตกหน่อของ ต้นไม้ในป่าสนเสื่อมโทรมมีค่าน้อยกว่าป่าสนผสมก่อ ทั้งนี้อาจจะเนื่องจากไฟที่เกิดขึ้นบ่อยในป่าสนเสื่อมโทรมทำให้ต้นไม้แตกหน่อบ่อยซึ่งในการแตกหน่อแต่ละครั้งต้นไม้ต้องอาศัยพลังงานที่สะสมไว้มาใช้เพื่อ การแตกหน่อ ดังนั้นหากพลังงานที่สะสมนี้ถูกใช้มากก็จะทำให้พลังในการแตกหน่อค่อยๆ ลดลงไป เมื่อ เปรียบเทียบกับป่าสนผสมก่อซึ่งไฟใหม้ไม่บ่อย ดังนั้นพลังในการแตกหน่อจึงยังคงมีมาก จำหนวนหน่อ ที่เกิดขึ้นภายหลังการแตกหน่อในภาพรวมจึงมีค่าสูงกว่าป่าสนเสื่อมโทรม และเป็นที่น่าเป็นห่วงว่าหาก ไฟในป่าสนเสื่อมโทรมยังคงเกิดถี่เช่นนี้ ความสามารถในการแตกหน่อของต้นไม้หลายชนอดจะลดลงไป เรื่อยๆ จนในที่สุดอาจจะไม่สามารถแตกหน่อขึ้นมาได้และตายไปในที่สุด

ไฟที่เกิดขึ้นในแต่ละครั้งในการศึกษาครั้งนี้ทำให้ไม้ยืนตัน (tree, dbh>4.5 ซม.) ตายไปประมาณ 5% ในป่าสนสนเสื่อมโทรมในขณะที่อัตราการตายของไม้ยืนตันในป่าสนผสมก่อเท่ากับ 1% เท่านั้น ซึ่งการตายของตันไม้ย่อมส่งผลกระทบต่อความหนาแน่นของตันไม้ในแปลง จากการศึกษา พบว่าสนสามใบและยางเหียงในป่าสนผสมก่อมีการตายแม้ว่าจะเป็นพันธุ์ไม้ที่ทนทานต่อไฟก็ตาม ดังนั้น อาจจะเป็นไฟได้ว่าการตายที่เกิดขึ้นอาจจะมาจากการแก่งแย่งตามธรรมชาติ เนื่องจากความหนาแน่น ของตันไม้ในป่าสนผสมก่อมีค่าสูงมาก ดังนั้นต้นไม้อาจจะมีการแก่งแย่งปัจจัยเพื่อการเติบโตโดยเฉพาะ แสงสว่าง น้ำ ธาตุอาหารและพื้นที่เพื่อการเติบโต จึงทำให้มีการตายเกิดขึ้น แต่อย่างไรก็ตามใน การศึกษาครั้งนี้ไม่ได้วางแปลงศึกษาในแปลงควบคุมที่ไม่ได้ทำการเผา ดังนั้นจึงอาจจะยังไม่สามารถ สรุปได้ชัดเจน สำหรับการเติบโตทางขนาดเส้นผ่านศูนย์กลางของไม้ยืนตันภายหลังการเผานั้นเนื่องจาก ผู้วิจัยไม่ได้ทำการศึกษาในแปลงควบคุมที่ไม่ได้ทำการเผาจึงไม่สามารถสรุปได้ว่าอิทธิพลของการเผานั้น ได้ทำให้ต้นไม้ในแปลงมีอัตราการเติบโตที่มากหรือน้อย

ผลกระทบจากการเผาทำให้จำนวนไม้หนุ่มมีแนวโน้มที่ลดลง โดยที่ไม้หนุ่มในป่าสน เสื่อมโทรมมีแนวโน้มการลดลงมากกว่าในป่าสนผสมก่อ สำหรับความสูงของกล้าไม้นั้นเป็นที่ชัดเจนว่า การเผาทำให้ความสูงโดยเฉลี่ยของลูกไม้ลดลง เนื่องจากไฟได้ทำลายลำต้นเดิมของลูกไม้ให้ตายไป แต่ ภายหลังมีการแตกหน่อเกิดขึ้นมาใหม่ในภายหลังจึงอาจจะยังมีความสูงน้อยกว่าหน่อเดิมที่ถูกทำลายไป สำหรับการลดลงของไม้หนุ่มในป่าสนเสื่อมโทรมน่าจะมีสาเหตุสำคัญจากไฟที่มีความรุนแรงมาก เปลว

ไฟที่สูงจึงทำให้ไม้หนุ่มลดจำนวนลง นอกจากนี้จากข้อมูลการกระจายของไม้หนุ่มตามชั้นขนาด เส้นผ่าศูนย์กลาง (ดู Figure 39) ยังได้แสดงให้เห็นว่าจำนวนต้นไม้หนุ่มในป่าสนเสื่อมโทรมในทุกชั้น ขนาดเส้นผ่าศูนย์กลางมีแนวโน้มลดลงอย่างชัดเจนแต่ในป่าสนผสมก่อกลับพบว่าจำนวนไม้หนุ่มในแต่ ละชั้นขนาดเส้นผ่าศูนย์กลางโดยเฉพาะในชั้นขนาดกลาง-ใหญ่ (3.1-7.0 ซม.) นั้นมีจำนวนมากขึ้นซึ่ง น่าจะเนื่องมาจากการที่ไฟในป่าสนผสมก่อที่มีความรุนแรงน้อยและความสูงของเปลวไฟที่ต่ำจึงไม่ได้ทำ ให้ไม้หนุ่มขนาดใหญ่ตายแต่กลับช่วยกระตุ้นให้มีการเติบโตที่มากขึ้น แต่อย่างไรก็ตามไม้หนุ่มที่ลดลง ไม่ได้หมายความว่าไม้หนุ่มนั้นได้ตายลงแต่อาจเป็นการตายของลำต้นเดิมซึ่งภายหลังไฟใหม้อาจมีการ แตกหน่อขึ้นมาใหม่แต่หน่อที่เกิดขึ้นมาใหม่ยังไม่ใหญ่เพียงพอที่จะนับเป็นไม้หนุ่ม จึงทำให้ข้อมูลไม้หนุ่ม นั้นลดลงไป

สำหรับการกระจายตามชั้นขนาดเส้นผ่าศูนย์กลางและจำนวนกล้าไม้ที่เพิ่มขึ้นในป่า สนเสื่อมโทรมนั้นแนวโน้มของจำนวนกล้าไม้ในช่วงชั้นขนาดเล็ก-กลาง (< 0.7 ซม.) มีแนวโน้มที่เพิ่มขึ้น ภายหลังการเผา ซึ่งน่าจะมีสาเหตุสำคัญมาจากไฟได้ทำลายหญ้าที่ขึ้นปกคลุมพื้นที่ทำให้พื้นที่เปิดโล่ง ภายหลังการเผา จากนั้น เมล็ดไม้จากพื้นที่ต่างๆ ทั้งในพื้นที่และพื้นที่รอบๆ จึงสามารถปลิวมาตกสัมผัส ดินได้โดยตรงและเกิดการงอกขึ้นในที่สุด ดังนั้นจำนวนกล้าไม้ขนาดเล็กจึงเพิ่มขึ้น 1 ปี หลังไฟไหม้ (ดู Figure 40, a) แต่อย่างไรก็ตามหากไม่สามารถป้องกันไฟในปีต่อมาได้ กล้าไม้ที่งอกขึ้นมาใหม่ก็จะถูก ไฟเผาทำลายได้

1.2 อิทธิพลของระบอบการเผา

อิทธิพลของระบอบการเผาที่สำคัญได้แก่ความถี่ของการเกิดไฟในพื้นที่ซึ่งจะมีผล ้อย่างมากต่อลักษณะโครงสร้างและองค์ประกอบของสังคมพืช ซึ่งจะพบว่าสังคมพืชป่าสนเสื่อมโทรมซึ่ง มีประวัติการเกิดไฟที่บ่อยกว่าป่าสนผสมก่อที่อยู่ในบริเวณใกล้เคียงกันนั้น มีลักษณะโครงสร้างและ องค์ประกอบของพันธุ์ใม้ที่มีความใกล้เคียงกับพื้นที่ป่าเสื่อมโทรมเป็นอย่างมาก โดยเฉพาะมีหญ้าขึ้นปก คลุมหนาแน่น มีไม้ใหญ่ขึ้นอยู่กระจัดกระจายอยู่ห่างๆ ความหนาแน่ของลูกไม้กล้าไม้ที่น้อยกว่าและ เนื่องจากการมีหญ้าขึ้นปกคลุมสูงมากซึ่งขัดขวางกระบวนการงอกและพัฒนาของกล้าไม้ เมื่อ เปรียบเทียบกับป่าสนผสมก่อที่อยู่ใกล้เคียงกันจะพบว่าแม้จะมีหญ้าขึ้นปกคลุมแต่ต้นไม้ขนาดใหญ่ รวมทั้งลูกไม้ กล้าไม้ยังมีจำนวนมากกว่าอันเป็นผลมาจากการเกิดไฟที่ไม่บ่อยจึงทำให้ลูกไม้ กล้าไม้มี โอกาสในการพัฒนาขึ้นมาในช่วงที่ไม่มีไฟไหม้ ซึ่งเมื่อพิจารณาหญ้าที่ขึ้นในพื้นที่ป่าสนเสื่อมโทรมเมื่อ เข้าสู่ช่วงฤดูแล้งเรือนยอดไม้เปิดโล่งมาก ทำให้หญ้าแห้งได้รวดเร็ว เมื่อเกิดไฟไหม้ขึ้นไฟจะมีความ รุนแรงและส่งผลกระทบอย่างมากต่อความแข็งแรงและการตายของไม้ในพื้นที่และทำให้พื้นที่ภายหลังไฟ ใหม้มีความแห้งแล้งมากขึ้นดังนั้นหญ้าและวัชพืชรุกรานอื่นๆ ก็จะค่อยๆ ลุกล้ำเข้ามาในพื้นที่อย่าง ต่อเนื่องมากขึ้นและพืชที่ลุกรานเข้ามามักจะเป็นพืชที่ทนทานต่อความแห้งแล้ง (xerophytic species) และพืชที่ไม่ทนแล้งหรือทนไฟก็จะค่อยหายไปจากพื้นที่ ซึ่งเมื่อถึงฤดูไฟป่าก็จะทำให้ไฟรุนแรงขึ้นอีก ด้วยเช่นกันอันเป็นผลกระทบจากการมีหญ้าและพืชอื่นๆ (grass-fire cycle) ซึ่งจะยิ่งทำให้พื้นที่ค่อย เปลี่ยนสภาพจากการปกคลุมโดยไม้ยืนต้นไปสู่สังคมทุ่งหญ้า (savanna grassland) ได้ในที่สุด ลักษณะ ้ดังกล่าวนี้ได้เกิดขึ้นในป่าสนเสื่อมโทรมบริเวณป่าสนภูกุ่มข้าว นอกจากระบอบการเผาโดยเฉพาะความถึ่ และความรุนแรงของไฟจะส่งผลโดยตรงต่อต้นไม้ในพื้นที่ดังกล่าวแล้ว การที่พื้นที่เปิดโล่งโดยมีไม้ขนาด ใหญ่ที่ทนไฟได้หลงเหลือกระจัดกระจายนั้นทำให้ต้นไม้ที่หลงเหลืออยู่มีความเสี่ยงสูงมากต่อการถูก ฟ้าผ่า ซึ่งในการศึกษาครั้งนี้พบต้นสนขนาดใหญ่จำนวนมากที่ถูกฟ้าผ่าที่บริเวณยอดและบางต้นได้ตาย ลงไป

ผลกระทบของความถี่และความรุนแรงของไฟจากการเสื่อมโทรมของพื้นที่ต่อ กระบวนการสืบพันธุ์ตามธรรมชาติที่สำคัญอีกประการในป่าสนเสื่อมโทรมคือการที่ไม้สนสามใบในพื้นที่ ชึ่งเป็นไม้เด่นกำลังอยู่ในความเสี่ยงเนื่องจากการขาดช่วงสืบต่อพันธุ์ที่ต่อเนื่อง โดยไม้วัยรุ่นในพื้นที่ป่า สนเสื่อมโทรมมีจำนวนน้อยมาก นอกจากนี้กล้าไม้สนที่เกิดขึ้นภายหลังพื้นที่ถูกเผาก็ยังถูกทำลายโดย ไฟที่เกิดขึ้นในปีถัดมา ประกอบกับต้นไม้ใหญ่ที่ถูกฟ้าผ่าอย่างต่อเนื่อง จึงน่าเป็นห่วงเป็นอย่างยิ่งว่าหาก ไม้สนขนาดใหญ่ในพื้นที่ตายลงหมดแล้ว พื้นที่ป่าสนเสื่อมโทรมนี้อาจมีแนวโน้มที่จะเปลี่ยนสภาพเป็นทุ่ง หญ้าอย่างถาวรหากไม่มีมาตรการในการป้องกันไฟในพื้นที่ช่วยให้กระบวนการสืบพันธุ์ตามธรรมชาติ สามารถดำเนินไปได้ ไม้สนสามใบนั้นเป็นไม้ที่เมื่อโตขึ้นจะสามารถทนทานต่อไฟได้เนื่องจากเปลือกลำ ้ต้นที่หนา แต่เมื่อยังมีขนาดเล็กโดยเฉพาะในระยะกล้าไม้และไม้วัยรุ่นขนาดเล็กนั้นยังไม่สามารถทนไฟ ได้หากไฟเผาทำลายจะไม่สามารถทนทานและไม่สามารถแตกหน่อขึ้นมาใหม่ได้ ดังนั้นหากเปลวไฟที่ เกิดขึ้นสูงและเผายอดของไม้วัยรุ่นและกล้าไม้ก็จะทำให้สนสามใบตายได้ ซึ่งแตกต่างจากสนสองใบที่มี ความสามารถทนทานต่อไฟได้ดีกว่าเนื่องจากในระยะกล้าไม้ของสนสองใบจะมีระยะ grass stage ซึ่ง สามารถทนทานต่อการที่ยอดถูกทำลายและสามารถแตกหน่อขึ้นมาใหม่และมีการสะสมอาหารในรากใต้ ้ดิน โดยระยะ grass stage ของสนสองใบนั้นใช้เวลาประมาณ 10-15 ปี ขึ้นอยู่กับพื้นที่ จากนั้นต้นสน ้สองใบจะเจริญเติบโตขึ้นอย่างรวดเร็วจนรอดพันจากเปลวไฟได้ สนสองใบจึงสามารถทนทานในพื้นที่ที่มี ไฟเกิดขึ้นอยู่เป็นประจำได้ดีกว่าสนสามใบ ดังนั้นมาตรากรในการป้องกันไฟในพื้นที่ป่าสนเสื่อมโทรมจึง ความสำคัญอย่างยิ่งต่อการฟื้นฟูระบบนิเวศโดยการส่งเสริมกระบวนการสืบพันธุ์ตามธรรมชาติ แต่ อย่างไรก็ตามการป้องกันไฟเพียงลำพังอาจจะไม่เพียงพอต่อการส่งเสริมการสืบพันธุ์ตามธรรมชาติ เนื่องจากพื้นป่านั้นถูกปกคลุมไปด้วยหญ้าที่แน่นทึบทำให้เมล็ดไม้ไม่สามารถโปรยลงสัมผัสกับดินได้ โดยตรง ทำให้แม้จะป้องกันใผแล้วแต่ลูกไม้ก็ยังไม่สามารถเกิดขึ้นได้ ดังนั้นควรต้องมีการจัดการกับ วัชพืชโดยเฉพาะหญ้า เช่นทำการเผาพื้นที่เพื่อกำจัดหญ้าในครั้งแรก จากนั้นอาจจะต้องมการถางวัชพืช ในบริเวณที่พบการเกิดใหม่ของกล้าไม้สนโดยดูแลอย่างต่อเนื่องจนกลล้าไม้สามารถสูงพันหญ้าในพื้นที่ และเมื่อกล้าไม้สูงและมีขนาดใหญที่สามารถทนต่อไฟไดแล้วอาจจะพิจารณาทำการเผาพื้นที่อีกครั้งเพื่อ ส่งเสริมการงอกของกล้าไม้ในรุ่นถัดไป ดังนั้นการกำหนดความถี่ของการเผาในป่าสนเสื่อมโทรมและการ ควบคุมวัชพืชในช่วงแรกภายหลังการเผาจึงเป็นสิ่งสำคัญต่อการส่งเสริมให้เกิดกระบวนการสืบพันธุ์ตาม ธรรมชาติในพื้นที่ ซึ่งในประเด็นเรื่องความถี่ห่างของการเผาต่อการส่งเสริมการสืบพันธุ์ตามธรรมชาติ เพื่อการคงอยู่ของป่าสนจะต้องมีการศึกษาวิจัยต่อไป

2 ผลกระทบของไฟในป่าสนกับปัญหาการปลดปล่อยคาร์บอนสู่บรรยากาศ

ผลกระทบของไฟป่าต่อปัญหาการเปลี่ยนแปลงสภาพภูมิอากาศเกิดขึ้นเนื่องจากไฟป่าได้ทำลาย แหล่งดูดซับคาร์บอน (carbon sink) และในขณะเดียวกันได้ทำให้แหล่งที่เคยเป็นแหล่งดูดซับคาร์บอน กลายเป็นแหล่งปลดปล่อยคาร์บอน (carbon source) โดยการเผาทำลายสิ่งปกคลุมดินและปลดปล่อย ก๊าซต่างๆ ออกมารวมถึงคาร์บอนไดออกไซด์ซึ่งถูกปลดปล่อยอกมาเป็นสัดส่วนสูงที่สุดในบรรดาก๊าซ ต่างๆ ปลดปล่อยอกมา โดยคาร์บอนไดออกไซด์อาจมีสัดส่วนมากถึง 90 - 95 % หากการเผาไหม้ เกิดขึ้นอย่างสมบูรณ์มากขึ้น (Sandberg et al., 2002) ซึ่งงานวิจัยจำนวนมากได้ซี้ให้เห็นว่าป่านั้นเป็น แหล่งปลดปล่อยคาร์บอนในระหว่างการเกิดไฟ (Raison et al., 1985; Kauffman et al., 1993; Kauffman et al., 1994; Neary et al., 1999; Toda et al., 2007; Wanthongchai, 2008) และจะ กลายเป็นแหล่งดูดซับคาร์บอน ภายหลังจากนั้น ทั้งนี้ความเร็วในการกลับมาเป็นแหล่งดูดซับคาร์บอน ขึ้นอยู่กับกระบวนสำคัญ 3 ประการ ได้แก่ 1. กระบวนการที่คาร์บอนสูญหายจากการเผาใหม้โดยตรง โดยหายไปในรูปของก๊าซคาร์บอนไดออกไซด์เป็นส่วนใหญ่ (แต่ในรูปอื่น ๆ เช่น CO, CH4, hydrocarbon, particulate matter ก็มีเช่นกัน) 2. กระบวนการย่อยสลายเศษซากเชื้อเพลิงที่หลงเหลือ จากการเผาใหม้โดยสิ่งมีชีวิตในดินและปลดปล่อยก๊าซคาร์บอนไดออกไซด์ออกมา และ 3. พลวัตของ สังคมพืชที่ขึ้นทดแทนภายหลังการเกิดไฟ โดยเฉพาะพลวัตของสังคมพืชที่ขึ้นทดแทนภายหลังการเกิดไฟค่อนข้างมีความสำคัญมาก

ในการศึกษาครั้งนี้ได้ตรวจวัดคาร์บอนที่สูญเสียออกไปจากการเผาโดยการตรวจวัดปริมาณ คาร์บอนในเชื้อเพลิงก่อนการเผาเปรียบเทียบกับปริมารคาร์บอนที่หลงเหลืออยู่ในเถ้า ถ่าน และสิ่งที่ไม่ ใหม้ไฟหลังเผาจึงทำให้ทราบปริมาณคาร์บอนที่หายไปจากการเผา โดยที่ไฟนั้นเผาทำลายเพียง เชื้อเพลิงในป่าแต่ไม่ได้เผาทำลายไม้ใหญ่ดังนั้นในการศึกษาจึงไม่ได้คำนวณปริมาณคาร์บอนในไม้ยืน ต้นไว้ ซึ่งผลจากการศึกษานั้นอุณหภูมิของดินที่ได้รับผลกระทบเพียงเล็กน้อยบริเวณผิวดินเท่านั้นแม้ว่า อุณหภูมิจุดเดือดของคาร์บอนนั้นจะต่ำมากเพียงประมาณ 100 °C ก็สามารถสูญเสียออกไปได้แล้วก็ตาม ้ดังนั้นจึงพบว่าปริมาณคาร์บอนในดินโดยส่วนใหญ่ไม่ได้รับผลกระทบจากการเผาเลย ซึ่งสอดคล้องกับ การศึกษาของนักวิจัยหลายท่านที่พบว่าการที่เกิดไฟไหม้แล้วไม่ส่งผลต่อการเปลี่ยนแปลงของอุณหภูมิ ้ดินที่เด่นชัดนั้นจะไม่ส่งผลกระทบต่อคาร์บอนในดิน (Wanthongchai, 2008) ดังนั้นการเปลี่ยนแปลงของ คาร์บอนหรือการสูญเสียคาร์บอนจากการเผาในป่าสนเสื่อมโทรมและป่าสนผสมก่อจึงมาจากการเผาไหม้ ของเชื้อเพลิงเหนือพื้นดินเป็นหลัก โดยที่ปริมาณคาร์บอนในป่าสนเสื่อมโทรมนั้นสูญหายไปถึงประมาณ 84% ในขณะที่การสูญเสียคาร์บอนในป่าสนผสมก่อนั้นมีเพียงประมาณ 54% ซึ่งสอดคล้องกับลักษณะ พฤติกรรมของไฟ การเผาใหม้และปริมาณเชื้อเพลิงที่ถูกเผาใหม้และหลงเหลืออยู่ภายหลังการเผาของ ปาแต่ละประเภท โดยทั่วไปนั้น ปริมาณคาร์บอนที่ปลดปล่อยออกมานั้นจะมีค่าประมาณครึ่งหนึ่งของ มวลชีวภาพที่ถูกเผาไป **(Table 39)** เช่นจากการศึกษาของ Wanthongchai (2008) พบว่าคาร์บอนที่สูญ หายไปจากการเผาป่าเต็งรังนั้นมีค่าอยู่ระหว่างร้อยละ 70-90 ของปริมาณมวลชีวภาพเหนือพื้นดินที่ถูก เผา ซึ่งความมากน้อยของการสูญหายของคาร์บอนขึ้นอยู่กับปริมาณเชื้อเพลิงที่ถูกเผา ในขณะที่การ สูญเสียคาร์บอนในดินมีเพียงเล็กน้อย แต่ Houghton (1991) รายงานว่าคาร์บอนในดินนั้นอาจจะสูญเสีย

ไปได้ถึงร้อยละ 20-30 จากการทำการเกษตรแบบถางแล้วเผา (slash and burn) ในดินที่มีปริมาณ อินทรียวัตถุในดิน ร้อยละ 1 โดยที่ระดับความลึก 0-25 เซนติเมตรนั้นจะมีการสูญเสียคาร์บอนไปถึง ประมาณ 6-9 ตันต่อเฮกแตร์ ทั้งนี้เนื่องจากการทำการเกษตรแบบถางแล้วเผานั้นเมื่อทำการเผาจะทำให้ ดินมีอุณหภูมิสูงขึ้นมากจากกองเศษซากพืชที่ถางไว้จนแห้ง จึงส่งผลกระทบต่อธาตุอาหารรวมทั้ง คาร์บอนในดินในระดับลึกลงไปได้มาก

สำหรับแนวโน้มการฟื้นกลับของคาร์บอนนั้นเกิดขึ้นเมื่อต้นพืชเริ่มเจริญเติบโตกลับมาผ่าน กระบวนการสังเคราะห์แสงที่ดึงก๊าซคาร์บอนไดออกไซด์มาใช้ ซึ่งจากการคาดการณ์โดยการใช้สมการ พบว่าป่าสนเสื่อมโทรมต้องใช้เวลา ประมาณ 2 ปี ในขณะที่ป่าสนผสมก่อต้องใช้เวลาประมาณ 3 ปี จึงจะ สะสมคาร์บอนกลับมาสู่ระดับเดิมก่อนที่จะมีการเผา โดยที่การคาดการณ์ในครั้งนี้ไม่ได้นำค่าการดูดซับ คาร์บอนจากไม้ยืนต้นในพื้นที่มาคิดร่วมด้วย ดังนั้นมาตรการในการป้องกันไฟจึงมีบทบาทสำคัญในอันที่ จะช่วยให้ป่านั้นสามารถทำหน้าที่ดูดซับคาร์บอนกลับมาจากส่วนที่ได้ถูกปลดปล่อยออกไปจากการเผา โดยหากพิจารณาเฉพาะการเก็บกักคาร์บอนเฉพาะในเชื้อเพลิงเพื่อให้ได้ปริมาณเท่ากับก่อนที่จะทำการ เผา จะต้องป้องกันไฟในป่าสนเสื่อมโทรมและป่าสนผสมก่อเป็นเวลา 2 และ 3 ปี ตามลำดับ

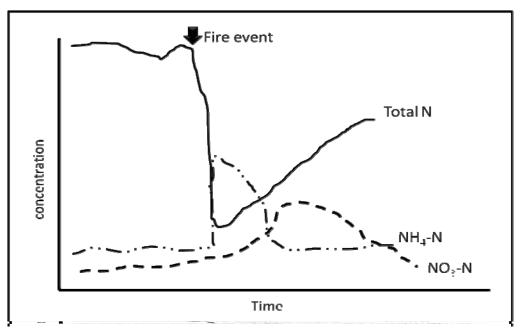
Table 39. ปริมาณคาร์บอนที่สูญหายไประหว่างการเกิดไฟในป่าบางประเภท

	નુ ચ	 เชื้อเพลิง	คาร์บอน	
ประเทศ	ชนิดป่า	ที่ถูกเผา	ที่สูญเสีย	ที่มา
		(ton/ha)	(ton/ha)	
ไทย	ป่าเต็งรัง	4.3-8.1	2.1-4.1	(Wanthongchai et al., 2008)
ไทย	ป่าเต็งรัง	4.7	2.3	(Toda et al., 2007)
บราซิล	Neotropical dry forest	57.3-69.7	24.6-30.9	(Kauffman et al., 1993)
บราซิล	ทุ่งหญ้าเขตร้อน	7.1	3.3	(Kauffman et al., 1994)
บราซิล	สะวันนา	6.4-7.1	2.6-3.3	(Kauffman et al., 1994)
บราซิล	ป่าดิบแล้ง	8.4	2.7	(Kauffman et al., 1994)
บราซิล	ป่าทุติยภูมิ	70	23-47	(Hughes et al., 2000)
บราซิล	ป่าทุติยภูมิรอบที่ 3	58.1	20-27	(Hughes et al., 2000)

3 ความหนักเบาของไฟ (Fire severity) ที่ส่งผลกระทบต่อระบบนิเวศ

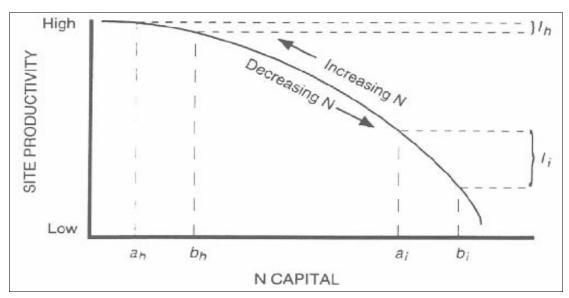
ความหนัก-เบา ของการเผา (Fire severity) เป็นตัวซี้วัดสำคัญในการศึกษาผลกระทบของไฟต่อ ระบบนิเวศ (DeBano et al., 1998) ซึ่งเป็นสิ่งที่ใช้วัดการตอบสนองของระบบนิเวศที่มีต่อไฟ ซึ่งตัวบ่งชี้ ที่ใช้ระบุความหนักเบาของการเผามีหลายประการ เช่น ความลึกของการเผา (depth of burn) การตาย ของต้นไม้ (tree mortality) อุณหภูมิของดิน และความยาวนานของความร้อนที่อยู่ในดิน (duration of heating) ในขณะที่ความรุนแรงของไฟ (fire intensity) นั้นมักจะไม่สามารถอธิบายผลกระทบของไฟต่อ ระบบนิเวศได้ดีเท่าที่ควร (Neary et al., 2005) สำหรับการศึกษาครั้งนี้ได้ศึกษาตัวบ่งชี้ทางด้านความ หนักเบาของการเผาในรูปของอุณหภูมิของดิน และอัตราการตายของต้นไม้เพื่อใช้ประกอบการอธิบาย ผลกระทบของไฟต่อระบบนิเวศป่าไม้ โดยผลสรุปในภาพรวมนั้นไฟที่เกิดขึ้นในป่าสนเสื่อมโทรมมีความ หนักเบาของการเผาในระดับต่ำถึงปานกลาง (low to medium-severity fire) ในขณะที่ไฟที่เกิดขึ้นในป่า สนผสมก่อมีความหนักเบาของการเผาในระดับต่ำ (low-severity fire) ตามการจำแนกของ Khanna and Raison (2006)

สำหรับการเปลี่ยนแปลงของอุณหภูมิของดินทั้งในป่าสนเสื่อมโทรมและป่าสนผสมก่อมีการ เปลี่ยนแปลงเฉพาะบริเวณผิวหน้าดินเท่านั้นในขณะที่ในดินชั้นที่ลึกลงไปนั้นอุณหภูมิไม่มีการ เปลี่ยนแปลง นอกจากนี้การที่ดินมีช่วงเวลาที่มีความร้อนถึงจุดวิกฤตที่จะทำให้คุณสมบัติด้านต่างๆ เปลี่ยนแปลง นั้นมีระยะเวลาที่เกดขึ้นเพียงเวลาสั้นๆ เท่านั้น โดยเฉพาะอุณหภูมิวิกฤตสำหรับสิ่งมีชีวิต ในดินที่ต่ำกว่าอุณหภูมิที่จะทำให้คุณสมบัติทางกายภาพและเคมีในดินเปลี่ยนแปลง (Table 40) ดังนั้น คุณสมบัติทางกายภาพและเคมีในดินเปลี่ยนแปลง (Table 40) ดังนั้น คุณสมบัติทางกายภาพและเคมีในดินเท่านั้น อีกทั้งเนื่องจากดินมี คุณสมบัติที่เป็นฉนวนกันความร้อนที่ดี ดังนั้นความร้อนจากผิวดินจึงไม่ส่งผลกระทบลงไปในดินชั้นล่าง เมื่อนำผลการเปลี่ยนแปลงคุณสมบัติของดินทางด้านกายภาพและเคมีที่ได้รับในการศึกษาครั้งนี้มา พิจารณาก็จะพบว่าคุณสมบัติข่างๆ ของดินนั้นแทบจะไม่ได้รับผลกระทบจากการเผาเช่นการไหลบ่าของน้ำ บริเวณผิวหน้าดินที่อาจเพิ่มขึ้นชึ่งจะชะล้างอาธาตุอาหารออกไปจากพื้นที่ได้ การพัดพาของลมที่นำเอา ขี้เถ้าปลิวออกนอกพื้นที่ การเปลี่ยนรูปของธาตุอาหารในดินจากรูปอินทรีย์ (organic form) เป็นรูปที่เป็น ประโยชน์ต่อพืช (available form) ซึ่งส่วนใหญ่จะอยู่ในรูปของไอออนที่อยู่ในสารละลายดิน ซึ่งไอออน เหล่านี้มักจะถูกชะล้างลงสู่ดินชั้นลึกได้ซึ่งอาจส่งผลต่อความอุดมสมบูรณ์ของพื้นที่ในระยะยาวได้


Table 40 อุณหภูมิวิกฤตสำหรับชาตุอาหารและสิ่งมีชีวิตในดิน

คุณสมบัติของดิน	อุณหภูมิวิกฤติ ([°] C)	ที่มา
Relatively Insensitive		
- Manganese	1962	Raison et al. 1985
- Calcium	1484	Raison et al. 1985
- Magnesium	1107	DeBano 1991
- Clay alteration	460-980	DeBano 1990
- Phosphorus and Potassium	774	Raison et al. 1985
Moderately Sensitive		
- Sulfur	375	Teidemann 1987
- Soil structure	300	DeBano 1990
- Soil wettability	250	DeBano and Krammes 1966
- Nitrogen	200	White et al. 1973
- Organic matter	100	Hosking 1938
Sensitive		
- Protein coagulation	60	Precht et al. 1973
- Bacteria-wet	100	Dunn and DeBano 1977
- Bacteria-dry	120	Dunn and DeBano 1977
- Nitrosomonas bacteria-wet	80	Dunn and DeBano 1977
- Nitrosomonas bacteria-dry	90	Dunn and DeBano 1977
- Fungi-wet	60	Dunn et al. 1985
- Fungi – dry	80	Dunn et al. 1985
- VAM	94	Klopatek et al. 1988
- Plant root	48-54	Hare 1961
- Seeds-wet	70	Martin et al. 1975
- Seeds-dry	90	Martin et al. 1975
- Small mammals	49-63	Lyon et al. 1978

ที่มา: DeBano *et al.* (1998)


สำหรับการเปลี่ยนแปลงของในโตรเจนในระบบนิเวศโดยเฉพาะในส่วนที่อยู่เหนือพื้นดินซึ่ง ในโตรเจนที่อยู่ในส่วนต่างๆ ของพืชถูกเผาระเหยออกสู่บรรยากาศในขณะที่ในโตรเจนในดินส่วนใหญ่ ถูกเปลี่ยนรูปไปเป็นรูปที่เป็นประโยชน์ต่อพืช ได้แก่ แอมโมเนียม ($\mathrm{NH_4}^{\scriptscriptstyle +}$) ซึ่งต่อมาภายหลังจะเกิด ขบวนการเปลี่ยนแปลงเป็นในเตรท (NO₃²-) โดยขบวนการ nitrification (**Figure 56)** โดยที่การ เปลี่ยนแปลงนี้เกิดขึ้นได้แม้อุณหภูมิของดินไม่สูงขึ้นมาก ทั้งนี้เพราะอุณหภูมิจุดเดือดของในโตรเจนนั้น ์ ต่ำ โดยอุณหภูมิประมาณ 200-300 °C ก็สามารถทำให้ในโตรเจนเริ่มเกิดการสูญเสียหรือเปลี่ยนรูปไปได้ แล้ว ซึ่งในเตรทที่เกิดขึ้นอยู่ในรูปของไอออนในสารละลายดินที่ง่ายต่อการถูกชะล้างลงสูดินชั้นลึกหาก พืชไม่สามารถดูดไปใช้ได้หมด ดังนั้นแนวโน้มของในโตรเจนในระบบนิเวศจึงมีแนวโน้มลดลงภายหลัง การเผาไป 2-3 เดือน แต่เมื่อพืชเริ่มมีการเจริญเติบโต แตกหน่อกลับมาในพื้นที่ระบบนิเวศก็จะเริ่มมีการ ตรึงในโตรเจนกลับเข้าสู่ระบบอีกครั้งผ่านกระบวนการตรึงในโตรเจนต่างๆ จึงทำให้แนวโน้มของ ในโตรเจนกลับเพิ่มขึ้นกลับมาอีกครั้ง โดยที่อัตราการทดแทนกลับของในโตรเจนมีค่าค่อนข้างสูงเพียง พอที่จะชดเชยการสูญหายไปจากการเผาได้ อย่างไรก็ตามการสูญเสียไนโตรเจนจากการเผานั้นอาจมี ความสำคัญต่อพื้นที่ซึ่งมีปัญหาการขาดแคลนในโตรเจน (N-deficient site) ซึ่งแม้การสูญเสียในโตรเจน เพียงเล็กน้อยก็อาจส่งผลกระทบต่อผลผลิต (productivity) ของพื้นที่ได้ (Figure 57) ฟอสฟอรัสนั้นจะพบว่าภายหลังการเผาทันทีจะมีปริมาณเพิ่มขึ้นในรูปที่เป็นประโยชน์ต่อพืช (available form) ในรูปของไอออนในสารละลายดิน เช่นกัน ซึ่งหากพืชดูดนำไปใช้ไม่หมดก็จะถูกชะลงสู่ดินชั้นลึก และหลุดออกไปจากระบบได้ นอกจากนี้อัตราการทดแทนกลับมาของฟอสฟอรัสนั้นต่ำมากโดยการ ทดแทนนั้นมาจากการผุพังของวัตถุต้นกำเนินดินโดยมีอัตราการทดแทนอยู่ที่ประมาณ < 1 ตันต่อเฮก แตร์ต่อปี ซึ่งถือว่าต่ำมาก ดังนั้นจึงพบว่าฟอสฟอรัสมีแนวโน้มที่จะลดลงภายหลังการเผาไปแล้ว 1 ปี ดังนั้นผลกระทบของการเผาต่อฟอสฟอรัสนั้นจึงน่าจะมีความสำคัญที่สูงกว่าในโตรเจนเนื่องจากการ สูญเสียที่เกิดขึ้นกับการทดแทนกลับมาในสัดส่วนที่ต่ำ ดังนั้นระบบนิเวศภายหลังไฟไหม้จึงมีแนวโน้มที่ จะขาดแคลนฟอสฟอรัสที่สง

สำหรับอัตราการตายของไม้ชั้นบนซึ่งเป็นดัชนีบ่งชี้ความหนักเบาของการเผาเช่นกันนั้นพบว่า การตายของไม้ในป่าสนเสื่อมโทรมมีค่าสูงกว่าป่าสนผสมก่อ ซึ่งการตายของต้นไม้จะส่งผลในระยะยาว ต่อลักษณะโครงสร้างและองค์ประกอบของสังคมพืชได้ สาเหตุสำคัญประการหนึ่งที่ทำให้ต้นไม้ในป่าสน เสื่อมโทรมมีการตายมากเนื่องมาจากไฟที่มีความรุนแรงสูงจากเชื้อเพลิงประเภทหญ้าที่ขึ้นปกคลุมพื้นที่ และพบว่าต้นไม้ขนาดเล็กมีแนวโน้มการตายที่มากกว่าไม้ขนาดใหญ่ ดังนั้นหากไฟที่เกิดขึ้นในแต่ละครั้ง ทำให้ต้นไม้มีการตาย ในระยะยาวพื้นที่ป่าสนเสื่อมโทรมนี้อาจจะยิ่งมีความเสื่อมโทรมไปมากกว่านี้จน กลายสภาพเป็นทุ่งหญ้าไปในที่สุด มาตรการการป้องกันไฟในบางช่วงเวลาจึงมีความจำเป็นอย่างยิ่งใน การรักษาและฟื้นฟูพื้นที่ป่าสนเสื่อมโทรมนี้ โดยมาตรการป้องกันไฟอาจจะต้องดำเนินการจนกระทั่ง กระบวนการสืบพันธุ์ตามธรรมชาติสามารถดำเนินต่อไปได้จนทำให้ขบวนการทดแทนตามธรรมชาติใน พื้นที่เป็นไปอย่างสมดุลทั้งในด้านการเกิด การพัฒนา และการตายของสังคมพืช

ที่มา: Neary et al. (2005)

Figure 56. แนวโน้มการเปลี่ยนแปลงในโตรเจนทั้งหมด (total N) และในโตรเจนในรูปที่เป็นประโยชน์ (NH₄-N, NO₃-N) ภายหลังการเผา

ที่มา: DeBano *et al.* (1998)

Figure 57 แนวโน้มการเปลี่ยนแปลงความอุดมสมบูรณ์ของพื้นที่จากการเปลี่ยนแปลงของในโตรเจน

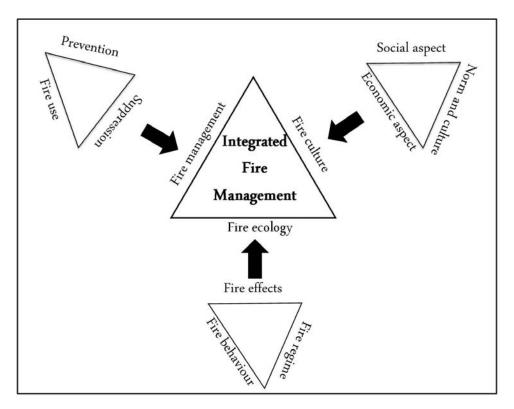
4 แนวทางการจัดการไฟจากผลของลักษณะความรุนแรงของไฟ (Fire intensity implication)

ผลการศึกษาครั้งนี้พบว่าไฟที่เกิดขึ้นในป่าสนเสื่อมโทรมมีความรุนแรงอยู่ในระดับปานกลางใน ขณะที่ป่าสนผสมก่อไฟมีความรุนแรงระดับต่ำ โดยที่ความรุนแรงของไฟจะเป็นตัวที่กำหนดมาตรการใน การรับมือกับไฟว่าจะต้องใช้กำลังคน เครื่องมือ ตลอดทั้งวิธีการในการเข้าควบคุมไฟอย่างไร จาก การศึกษาครั้งนี้จะพบว่าเมื่อเกิดไฟไหม้ในป่าสนเสื่อมโทรมซึ่งเชื้อเพลิงส่วนใหญ่ประกอบด้วยหญ้าซึ่ง ติดไฟได้ง่ายและมีความแห้งมาก ไฟที่เกิดขึ้นมักจะมีความรุนแรงมาก ดังนั้นการเตรียมการรับมือกับ สถานการณ์ไฟไหม้สำหรับป่าสนเสื่อมโทรมจึงต้องปฏิบัติอย่างเคร่งครัดและกระทำด้วยความระมัดระวัง รอบคอบ ในขณะที่ไฟในป่าสนผสมก่อนั้นแม้ว่าผลการศึกษาครั้งนี้จะพบว่าไฟมีความรุนแรงน้อย แต่เมื่อ พิจารณาถึงปริมาณเชื้อเพลิงที่ปรากฏอยู่ในพื้นที่ (ประมาณ 9 ตันต่อเฮกแตร์) ถือว่าเป็นปริมาณ ้เชื้อเพลิงที่ค่อนข้างมากสำหรับป่าในประเทศไทยเมื่อเปรียบเทียบกับปริมาณเชื้อเพลิงในป่าบางประเภท ในประเทศไทย เช่นป่าเต็งรัง ป่าผสมผลัดใบและป่าสนเขา (ดู Table 16 ประกอบ) อีกทั้งมีเชื้อเพลิง ประเภทเศษซากใบสน เศษกิ่งไม้และหญ้า เป็นเชื้อเพลิงหลักซึ่งล้วนแต่มีความสามารถในการติดไฟได้ หากสภาพปัจจัยสิ่งแวดล้อมเหมาะสมที่จะส่งผลต่อความแห้งของเชื้อเพลิงเหล่านี้ แต่เนื่องจากสภาพ ปัจจัยแวดล้อมในวันที่ทำการเผานั้นอาจจะไม่ส่งผลให้ไฟมีความรุนแรงมาก ดังนั้นเมื่อประเมินศักยภาพ ของพื้นที่ป่าสนผสมก่อ ทั้งปัจจัยด้านเชื้อเพลิงที่มีอยู่อย่างมากมาย ปัจจัยด้านสภาพพื้นที่และสภาพ ภูมิอากาศ ซึ่งหากปัจจัยทั้งสามประการนี้เหมาะสมก็จะทำให้พฤติกรรมไฟที่เกิดขึ้นในป่าสนผสมก่อนี้มี การเปลี่ยนแปลงไปอย่างมากได้ โดยจะมีปัจจัยทางด้านสภาพภูมิอากาศเป็นตัวแปรสำคัญ ซึ่งจาก การศึกษาและรวบรวมข้อมูลทางด้านพฤติกรรมไฟป่านั้นจะพบว่าพฤติกรรมไฟป่านั้นมีความผันแปรไป ตามพื้นที่และระยะเวลาจนอาจกล่าวว่าพฤติกรรมไฟนั้นมีความเฉพาะเจาะจงในแต่ละครั้งของการเกิดไฟ ดังนั้นในช่วงเวลาที่สภาพอากาสมีความแห้งแล้งเหมาะสมโอกาสของการเกิดไฟในป่าสนผสมก่อที่จะ พัฒนาจนไฟมีความรุนแรงสูงจึงความเป็นไปได้ ซึ่งเจ้าหน้าที่ผู้ปฏิบัติงานต้องพึงระวังไว้

สำหรับป่าสนเสื่อมโทรมนั้นเป็นที่ชัดเจนว่าเมื่อเกิดไฟใหม้ขึ้นมักจะมีความรุนแรงของไฟที่สูง เนื่องจากคุณสมบัติของเชื้อเพลิงที่เหมาะสมต่อการติดไฟ นอกจากนี้ความต่อเนื่องของเชื้อเพลิงเป็น พื้นที่กว้างใหญ่นั้นมีผลต่ออัตราการลุกลามซึ่งส่งผลถึงลักษณะความรุนแรงของไฟด้วย โดยที่หญ้าที่ เกิดขึ้นในป่าสนเสื่อมโทรมมักเกิดเป็นผืนใหญ่ต่อเนื่องดังนั้นเมื่อเกิดไฟใหม่ขึ้นไฟจึงสามารถพัฒนา ลุกลามได้อย่างต่อเนื่องรวดเร็วและเกิดเป็นไฟที่มีความรุนแรง มาตรการตัดทอนความต่อเนื่องของ เชื้อเพลิง เช่นการทำแนวกันไฟเพื่อแบ่งแยกพื้นที่ออกเป็นตอนๆ การตัดถนน แนวลำหัวยตามธรรมชาติ หรือแม้แต่ด่านทางเดินตามธรรมชาติของสัตว์ป่าขนาดใหญ่ เช่นช้างป่า จะช่วยให้การลุกลามของไฟไม่ ต่อเนื่อง พฤติกรรมของไฟก็จะไม่รุนแรงและมีอันตรายมากนัก อย่างไรก็ตามหากจะพิจารณาสร้างแนว ตัดทอนความต่อเนื่องของเชื้อเพลิงเพื่อยับยั้งการลุกลามของไฟนั้นจำเป็นที่จะต้องคำนึงถึงความยาว และความสูงของเปลวไฟในพื้นที่ด้วย ซึ่งจากการศึกษาครั้งนี้พบว่าความยาวของเปลวไฟสูงที่สุดที่พบ นั้นมีค่าประมาณ 2 เมตร ดังนั้นแนวกันไฟที่จะสร้างขึ้นโดยทั่วไปควรมีความกว้างมากกว่าความยาว เปลวไฟอย่างน้อย 3-5 เท่า (ศิริ อัคคอัคร, 2543) ทั้งนี้ขึ้นอยู่กับสภาพภูมิประเทศด้วยซึ่งหากเป็นพื้นที่มี ความลาดชัน พื้นที่เปิดโล่ง มีลมพัดรุนแรง เชื้อเพลิงมีความสูงมากและเชื้อเพลิงปลิวได้ง่ายแนวกันไฟท์

จะต้องกว้างกว่าปกติ ดังนั้น แนวกันไฟในป่าสนเสื่อมโทรมควรมีความกว้างตั้งแต่ 6-10 เมตร เพื่อที่จะ ได้สามารถสกัดการลุกลามของไฟได้ในระดับหนึ่ง

หากพิจารณาอัตราการสะสมเชื้อเพลิงซึ่งพบว่าทั้งป่าสนเสื่อมโทรมและป่าสนผสมก่อล้วนต้องใช้ เวลามากกว่า 2 ปี ในการที่เชื้อเพลิงจะสะสมกลับมาเท่ากับระดับก่อนการเผาอีกครั้ง ดังนั้นมาตรการ กำหนดความถี่-ห่างของการเผา (fire frequency หรือ fire-free interval) ควรจะต้องสอดคล้องกับ ปริมาณการสะสมของเชื้อเพลิง นอกจากนี้สิ่งสำคัญที่ต้องพิจารณาควบคู่กันไปด้วยคือการสืบพันธุ์ตาม ธรรมชาติโดยเฉพาะอัตราการเติบโตของลูกไม้ชนิดสำคัญในป่าสน ซึ่งจากการศึกษาของธีระ (2534) พบว่าอัตราการเติบโตทางด้านความสูงของไม้สนสามใบที่อายุ 1 และ 3 ปี ที่สวนสนโครงการพัฒนาป่า ไม้ที่สูง หน่วยที่ 1 (แม่ตะมาน) จังหวัดเชียงใหม่มีค่าประมาณ 0.43 และ 3.20 เมตร จึงอาจอนุมานได้ว่า อัตราการเติบโตทางความสูงของไม้สนอยู่ที่ประมาณ ปีละ 0.9 เมตร ซึ่งเมื่อพิจารณาร่วมกับความสูง ของเปลวไฟในพื้นที่ป่าสนเสื่อมโทรมซึ่งแม้ว่าจะมีความสูงเปลวไฟเฉลี่ยเพียงประมาณ 1.3 เมตร แต่ อย่างไรก็ตามความสูงของเปลวไฟในด้านหัวไฟนั้นสูงถึงประมาณ 2.3 เมตร ดังนั้นหากพิจารณาจาก ความสูงของเปลวไฟจากการลุกลามด้านหัวไฟเป็นหลักแล้วไม้สนสามใบในป่าสนเสื่อมโทรมอาจจะต้อง ใช้เวลาประมาณอย่างน้อย 3 ปี จึงจะสูงพันแนวเปลวไฟที่สูงที่สุดจากด้านหัวไฟซึ่งจะทำให้ต้นไม้นั้นไม่ ตายจากการถูไฟเผาทำลายส่วนยอด ดังนั้นจึงสมควรที่จะต้องป้องกันไฟประมาณ 3 ปี เป็นอย่างน้อย ในพื้นที่ป่าสนเสื่อมโทรมจนกว่ากล้าไม้สนสามใบจะสูงพ้นเปลวไฟ อย่างไรก็ตามมาตรการป้องกันเพียง อย่างเดียวอาจจะไม่เพียงพอที่จะทำให้กระบวนการสืบพันธุ์ตามธรรมชาติของไม้สนประสบความสำเร็จ ได้ แต่ต้องมีการดำเนินการกำจัดวัชพืชโดยเฉพาะการควบคุมหญ้าในพื้นที่เพื่อให้เมล็ดไม้สนสามารถ สัมผัสพื้นดินและสามารถงอกและเจริญเติบโตได้ในที่สุด ซึ่งการจัดการวัชพืชก็เป็นสิ่งสำคัญไม่ยิ่งหย่นไป กว่าการป้องกันไฟ เนื่องจากการจัดการวัชพืชย่อมส่งผลต่อการเกิด/ไม่เกิดไฟในพื้นที่ได้ เนื่องจากการ ปรากฏของวัชพืชย่อมทำให้พื้นที่มีวามเสี่ยงต่อการเกิดไฟได้มาก


5. ข้อเสนอแนะสำหรับงานวิจัยและแนวทางการบริหารจัดการไฟป่าในพื้นที่

ในอดีตที่ผ่านมาแนวนโยบายในการจัดการไฟป่าของประเทศไทยและในหลายประเทศ ได้ มุ่งเน้นที่การป้องกันและการดับไฟป่า (Fire prevention and suppression) โดยที่เป็นการดำเนินการ จากหน่วยงานภาครัฐแต่เพียงฝ่ายเดียว โดยมิได้คำนึงถึงลักษณะทางนิเวศวิทยาของระบบนิเวศนั้น ๆ อีกทั้งมิได้คำนึงถึงลักษณะทางสังคม วัฒนธรรมของราษฎรที่อยู่โดยรอบ/ในพื้นที่ป่าที่ดำรงชีพอยู่โดยมี วัฒนธรรมการใช้ไฟเข้ามาเกี่ยวข้อง ดังนั้นราษฎรในอดีตจึงถูกมองว่าเป็นผู้สร้างปัญหาไฟไหม้ป่ามาโดย ตลอด การจัดการไฟป่าในอดีตจึงพยายามแยกคนเหล่านี้ออกไปจากกระบวนการควบคุมไฟป่า โดยที่ ไม่ได้คำนึงถึงสภาพความเป็นจริงที่เกิดขึ้น นโยบายการป้องกันไฟป่า การดับไฟป่าที่ผ่านมาได้แสดงให้ เห็นว่านโยบายข้างตันยังไม่ประสบผลสำเร็จเท่าที่ควร ยังคงมีปัญหาไฟป่าเกิดขึ้นทุกปีและราษฎรเองก็ ยังมีความจำเป็นในการใช้ไฟเพื่อการดำรงชีพอยู่เช่นเดิม พื้นที่ป่าหลายแห่งยังคงประสบปัญหาไฟป่าที่ เกิดจากกิจกกรมของมนุษย์จำนวนมาก

การจัดการไฟป่าให้ประสบผลสำเร็จได้ต้องยึดหลักของการบูรณาการจัดการไฟป่า (Integrated fire management) ซึ่งเป็นสิ่งสำคัญยิ่งที่พื้นที่บริเวณอุทยานแห่งชาติน้ำหนาวควรจะได้พิจารณา ดำเนินการต่อยอดจากงานวิจัยในครั้งนี้ โดยที่การบูรณาการจัดการไฟป่าต้องอาศัยความรู้เทคโนโลยีใน การจัดการไฟป่าที่ต้องคำนึงถึงธรรมชาติของระบบนิเวศ ผลกระทบทั้งด้านนิเวศวิทยาและด้านสังคม วัฒนธรรมของชุมชนควบคู่ไปด้วย ซึ่งเป็นสิ่งสำคัญอย่างยิ่งต่อความสำเร็จของการจัดการระบบนิเวศป่า ไม้ การศึกษาการจัดการไฟป่าแบบบูรณาการจึงมีความจำเป็นอย่างยิ่งในอนาคตโดยจะต้องมีการศึกษา ผลกระทบของไฟป่าให้รอบด้านทั้งทางด้านนิเวศวิทยา ด้านเศรษฐกิจ สังคมและวัฒนธรรมและด้านการ จัดการไฟป่าเพื่อที่จะได้นำมาบูรณาการการจัดการให้เกิดผลกระทบในทุกด้านน้อยที่สุดในขณะที่ส่ง ผลกระทบในด้านบวกให้มากที่สุด อย่างไรก็ตามการดำเนินการต่างๆ จะไม่ประสบความสำเร็จได้ผล อย่างยั่งยืนหากขาดซึ่งการมีส่วนร่วมของชุมชนในพื้นที่นั้นในการที่จะมีส่วนร่วมในการคิด ตัดสินใจและ วางแผนการดำเนินการ ร่วมดำเนินการ และร่วมตรวจสอบผลการดำเนินการที่เกิดขึ้นและร่วมกัน ปรับปรุงแก้ไข ซึ่งหลักของการนำการจัดการไฟป่าแบบบูรณาการมาใช้โดยมีส่วนร่วมของชุมชนในการจัดการไฟป่า (Community-Based Fire Management: CBFiM) นั้นได้มีการดำเนินการและประสบ ผลสำเร็จในหลายประเทศโดยเฉพาะประเทศในแถบทวีปแอฟริกาแต่สำหรับประเทศไทยแนวคิดดังกล่าว ยังมีอยู่ค่อนข้างจำกัด

5.1 หลักการบูรณาการจัดการไฟป่า (Integrated fire management)

การจัดการไฟป่าแบบบูรณาการ เป็นการจัดการที่มองถึงผลกระทบทั้งด้านบวกและด้าน ลบของไฟที่เกิดขึ้นต่อระบบนิเวศ สังคม วัฒนธรรมและความเป็นอยู่ของชาวบ้านเพื่อให้เกิดสมดุล ระหว่างความเสี่ยงที่อาจเกิดขึ้นจากไฟป่ากับประโยชน์ที่จะได้รับทั้งทางด้านนิเวศวิทยาและทาง เศรษฐกิจ ซึ่งเมื่อเกิดไฟขึ้นการจัดการไฟป่าแบบบูรณาการนี้จะมีกรอบของการดำเนินการในการที่จะ ประเมินผลกระทบจากไฟนั้นว่าเป็นผลกระทบในด้านบวกหรือด้านลบ จากนั้นจะถ่วงน้ำหนักระหว่าง ผลประโยชน์กับความเสี่ยง และมีการตอบสนองในการดำเนินการอย่างเหมาะสมตามวัตถุประสงค์ของ แต่ละพื้นที่ การจัดการไฟป่าแบบบูรณาการประกอบด้วยการบูรณาการ 3 ส่วนสำคัญ ได้แก่ 1. การจัดการไฟ (การป้องกันไฟ การควบคุมไฟ และการใช้ประโยชน์จากไฟ) 2. ลักษณะระบอบการเผา (fire regime) ลักษณะทางนิเวศวิทยาของไฟและผลกระทบของไฟ และ 3 ลักษณะทางเศรษฐสังคมและ วัฒนธรรมของการใช้ไฟและผลกระทบทางลบที่ไฟมีต่อสังคม (Figure 58) (Myers, 2006) ดังนั้นใน การศึกษาการจัดการไฟป่าแบบบูรณาการจึงจำเป็นอย่างยิ่งที่จะต้องศึกษาในองค์ประกอบทั้ง 3 ประเด็น ให้ชัดเจน รอบด้าน เพื่อจะได้นำมาใช้ในการวางแผนจัดการไฟป่าในพื้นที่ได้อย่างมีประสิทธิภาพต่อไป

ท**ื่มา**: ดัดแปลงจาก Myers (2006)

Figure 58. สามแหลี่ยมองค์ประกอบของการบูรณาการจัดการไฟป่าที่ประกอบด้วย การจัดการไฟป่า ลักษณะทางนิเวศวิทยาไฟป่าและลักษณะทางเศรษฐกิจสังคมวัฒนธรรมที่เกี่ยวข้องกับไฟป่า

5.2 แนวทางการจัดการไฟป่าโดยชุมชนมีส่วนร่วม (Community-based fire management)

ปัญหาไฟป่าโดยภาพรวมของทั่วโลกพบว่ากว่า 90 % ของไฟป่าที่เกิดขึ้นล้วนมีสาเหตุ มาจากมนุษย์ทั้งสิ้น สำหรับประเทศไทยก็เช่นเดียวกันโดยที่สาเหตุของการเกิดไฟมาจากสาเหตุสำคัญ ได้แก่การเก็บหาของป่า ล่าสัตว์ การเผาเศษวัสดุทางการเกษตร ราษฎรที่อาศัยอยู่รายรอบพื้นที่ป่าจึงมัก ถูกมองจากเจ้าหน้าที่รัฐว่าเป็นผู้สร้างปัญหาไฟป่าอีกทั้งไม่ให้ความร่วมมือช่วยป้องกันไฟป่า ขาด จิตสำนึกในการป้องกันไฟป่า แต่อย่างไรก็ตามสิ่งที่ต้องคำนึงถึงคือการที่ราษฎรเหล่านั้นไม่ช่วยดูแล ป้องกันไฟป่านั้นมีสาเหตุที่แท้จริงมาจากการที่เขาเหล่านั้นขาดจิตสำนึกจริงหรือไม่หรือเกิดจากการที่ พวกเขาขาดแรงจูงใจในการช่วยป้องกันไฟป่า ซึ่งเป็นที่มาของหลักการจัดการไฟป่าแบบมีส่วนร่วม ซึ่ง เริ่มต้นครั้งแรกในช่วงปลายทศวรรษที่ 1990 ในประเทศกลุ่มเอเซียตะวันออกเฉียงใต้ การที่ราษฎรได้มี ส่วนร่วมในการจัดการไฟป่าทั้งในขั้นตอนของการวางแผน การดำเนินการป้องกันไฟป่าในรูปแบบต่างๆ (ลาดตระเวน การสร้างแนวกันไฟฯ) ควบคุมไฟป่าเมื่อเกิดขึ้น และได้มีโอกาสใช้ไฟเพื่อการดำรงชีวิต อย่างถูกต้องเหมาะสม จะทำให้ราษฎรได้รู้สึกถึงการได้รับประโยชน์จากการจัดการไฟป่ากิดขึ้นจากเพียง รู้สึกถึงความมีส่วนร่วมในการอนุรักษ์ทรัพยาป่าไม้มากขึ้น แต่หากการจัดการไฟป่าเกิดขึ้นจากเพียง

หน่วยงานภาครัฐเพียงฝ่ายเดียวแล้ว ความรู้สึกร่วมในการอนุรักษ์ทรัพยากรป่าไม้จากราษฎรก็จะไม่ เกิดขึ้นซึ่งจะทำให้การจัดการไฟป่าไม่ประสบผลสำเร็จ

ดังได้กล่าวไว้ข้างต้นแล้วว่าหลักการบูรณาการจัดการไฟประกอบด้วยองค์ประกอบที่ สำคัญยิ่ง 3 ประการ ได้แก่ 1.การจัดการไฟ (การควบคุม การป้องกัน การใช้ไฟ) 2.ลักษณะนิเวศวิทยา ของป่าและผลกระทบด้านต่างจากไฟป่า และ 3.ลักษณะทางเศรษฐกิจ สังคมและวัฒนธรรมของชุมชน (Myers, 2006) ซึ่งผลการศึกษาในครั้งนี้จะพบว่าทำให้ได้ข้อมูลทางด้านนิเวศวิทยาของไฟมาพอสมควร ในขณะที่ข้อมูลอีก 2 ด้านหลักยังต้องการการศึกษาวิจัยในอนาคต จากการวิเคราะห์สถานภาพของพื้นที่ พบว่าบริเวณอุทยานแห่งชาติน้ำหนาวนี้เป็นพื้นที่ที่มีศักยภาพในการเริ่มต้นดำเนินโครงการศึกษาจัดการไฟป่าแบบบูรณาการเนื่องจากมีองค์ประกอบที่สำคัญของการจัดการไฟป่าที่ค่อนข้างพร้อมได้แก่ 1. ได้เริ่มมีการศึกษาวิจัยและมีข้อมูลทางด้านนิเวศวิทยาของป่าและไฟป่าอยู่พอสมควร 2. มีหน่วยงานที่ รับผิดชอบด้านไฟป่าในพื้นที่โดยตรงได้แก่สถานีควบคุมไฟป่าเพชรบูรณ์ และ 3. มีชุมชนที่อยู่โดยรอบ ซึ่งมีลักษณะวิถีชีวิตและวัฒนธรรมการที่เกี่ยวข้องกับใช้ไฟในพื้นที่อย่างเข้มข้น โดยข้อมูลทางด้าน นิเวศวิทยาของป่าและนิเวศวิทยาของไฟมีข้อมูลอยู่พอสมควรซึ่งจะช่วยกระซับให้ระยะเวลาในการ ดำเนินโครงการวิจัยต่อเนื่องลงได้อย่างมาก โดยที่อาจจะมีการศึกษาวิจัยบางประเด็นเพิ่มเติมเพื่อให้เกิด ความสมบูรณ์ ในขณะข้อมูลการจัดการไฟป่าของหน่วยงานและข้อมูลเศรษฐกิจสังคมยังขาดการศึกษา และข้อมูลอีกมากที่ต้องศึกษาวิจัยในอนาคต ซึ่งเมื่อข้อมูลทั้งสามองค์ประกอบมีความสมบูรณ์เพียงพอ แล้ว ก็จะสามารถนำมาใช้ในการจัดการไฟป่าแบบบูรณาการได้อย่างมีประสิทธิภาพ

เอกสารอ้างอิง

- กรมป่าไม้, 2534. แผนแม่บทอุทยานแห่งชาติน้ำหนาว จ.เพชรบูรณ์ จ.ชัยภูมิ. กรมป่าไม้ กระทรวง เกษตรและสหกรณ์, กรุงเทพฯ.
- กรมอุตุนิยมวิทยา, 2553. ข้อมูลอุตุนิยมวิทยา. (ไฟล์ข้อมูล). กรมอุตุนิยมวิทยา (ผู้เผยแพร่).
- กรมอุทยานแห่งชาติ สัตว์ป่า และพันธุ์พืช, 2553. โครงการจัดทำฐานข้อมูลเพื่อการตัดสินใจ ในการ บริหารการจัดการอุทยานแห่งชาติ In. http://www.dnp.go.th,กรมอุทยานแห่งชาติ.
- กรีฑา คล้ายประสิทธิ์พร. 2540. รูปแบบและอัตราการลุกลามของไฟป่าในป่าเบญจพรรณ. สำนักป้องกัน และปราบปราม กรมป่าไม้, กรุงเทพฯ.
- กอบศักดิ์ วันธงไชย, วรพรรณ หิมพานต์ และ พูลสถิตย์ วงศ์วสัสดิ์, 2553. รายงานฉบับสมบูรณ์: ผลกระทบของการเผาไร่หมุนเวียนบนพื้นที่สูงทางภาคเหนือของประเทศต่อการเก็บกักและ ปลดปล่อยคาร์บอนสู่บรรยากาศ, กรุงเทพฯ.
- คนึ่งนิจ สุทธิชาติ, 2539. ผลกระทบของไฟต่อดินและพืช ณ อุทยานแห่งชาติภูกระดึง. วิทยานิพนธ์ ปริญญาโท, มหาวิทยาลัยเกษตรศาสตร์.
- จงรัก วัชรินรัตน์, 2550. ประเภทของป่าไม้. น. 16-49. ใน ลดาวัลย์ พวงจิตร, ผู้รวบรวม. วนวัฒนวิทยา พื้นฐานการปลูกป่า. ภาควิชาวนวัฒนวิทยา คณะวนศาสตร,มหาวิทยาลัยเกษตรศาสตร์ กรุงเทพฯ.
- ชัยรัตน์ จูจันทร์. 2546. ผลกระทบของไฟป่าต่อดินและพืชในป่าธรรมชาติ ณ อุทยานแห่งชาติ ดอย
- สุเทพ-ปุย จังหวัดเชียงใหม่. สำนักป้องกัน และควบคุมไฟป่า กรมอุทยานแห่งชาติ สัตว์ป่าและพันธุ์พืช, กรุงเทพฯ.
- ชาญชัย ยาวุฒิ, บุญวงศ์ ไทยอุตส่าห์, มานพ กำจรเจิด และสมศักดิ์ สุขวงศ์. 2519. การศึกษาเกี่ยวกับ อิทธิพลของไฟในป่าสักธรรมชาติ, น. 521-536 *ใน* รายงานการประชุมป่าไม้ประจำปี 2519. กรมป่าไม้, กรุงเทพฯ.
- ชัชวาลย์ คำแย้ม. 2548. สมบัติของแหล่งเชื้อเพลิง พฤติกรรมไฟ และผลกระทบไฟต่อการเติบโตในสวน ป่ายูคาลิปตัส คามาลดูเลนซิส. วิทยานิพนธ์ปริญญาโท, มหาวิทยาลัยเกษตรศาสตร์.
- ชมพูนุช โสดาจันทร์, ขนิษฐา มีเดช, 2547. การสำรวจทรัพยากรธรรมชาติในอุทยานแห่งชาติน้ำหนาว. สำนักจัดการและฟื้นฟูพื้นที่ป่าอนุรักษ์ กรมป่าไม้, กรุงเทพฯ.
- ธวัชชัย สันติสุข, 2550. ป่าของประเทศไทย. กรมอุทยานแห่งชาติ สัตว์ป่าและพันธุ์พืช, กรุงเทพฯ.

- ชีระ แก้วนพรัตน์, 2534. การเจริญเติบโตของไม้สนสามใบ อายุต่างๆ กัน โครงการพัฒนาป่าไม้ที่สูง หน่วยที่ 1 (แม่ตะมาน) อำเภอเชียงดาว จังหวัดเชียงใหม่. *ใน*, สวนป่าแม่ตะมาน. ภาควิชา วนวัฒนวิทยา คณะวนศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ กรุงเทพฯ, หน้า 200-225.
- บุญส่ง สมเพาะ. 2541. แหล่งเชื้อเพลิงในป่าเต็งรัง และป่าเบญจพรรณ ณ เขตรักษาพันธุ์สัตว์ป่าห้วยขา แข้ง จ.อุทัยธานี. วิทยานิพนธ์ ปริญญาโท, มหาวิทยาลัยเกษตรศาสตร์
- พงษ์ศักดิ์ ด้วงโยธา. 2549. การศึกษาพฤติกรรมของไฟในพื้นที่เป้าหมายแปลงปลูกป่า (FPT) โครงการ ปลูกป่าถาวรเฉลิมพระเกียรติพระบาทสมเด็จพระเจ้าอยู่หัว เนื่องในวโรกาสทรงครองราชย์ ปี ที่ 50 ท้องที่อำเภอพบพระ และอำเภออุ้มผาง จังหวัดตาก. สำนักบริหารพื้นที่อนุรักษ์ที่ 14 (ตาก) กรมอุทยานแห่งชาติสัตว์ป่าและพันธุ์พืช, กรุงเทพฯ.
- ฟองแก้ว บัวละพา. 2549. พฤติกรรมไฟและการควบคุมไฟป่าในสวนป่าลาดกระทิง อำเภอสนามชัยเขต จังหวัดฉะเชิงเทรา. วิทยานิพนธ์ปริญญาโท, มหาวิทยาลัยเกษตรศาสตร์.
- มนูญศักดิ์ สถิรศิลปิน. 2530. พฤติกรรมไฟในป่าเต็งรังสะแกราช อำเภอปักธงชัย จ.นครราชสีมา. วิทยานิพนธ์ปริญญาโท, มหาวิทยาลัยเกษตรศาสตร์.
- วีระพล กุลมาตย์. 2546. อิทธิพลของไฟป่าต่อการแตกยอดของผักหวานป่า (<u>Champereia</u> <u>manillana</u> (Bliume) Merr.) ในพื้นที่จังหวัดกาญจนบุรี. กรมอุทยานแห่งชาติ สัตว์ป่า และพันธุ์พืช, กรุงเทพฯ.
- ศิริ อัคคะอัคร. 2534. พฤติกรรมของไฟป่าในทุ่งหญ้า จังหวัดสระบุรี. กรมป่าไม้, กรุงเทพฯ.
- ศิริ อัคคะอัคร. 2539. การจัดระดับชั้นอันตรายจากไฟป่าในป่าเต็งรัง อุทยานแห่งชาติดอยสุเทพ-ปุย. กรมป่าไม้, กรุงเทพ.
- ศิริ อัคคอัคร, 2543. การควบคุมไฟป่าสำหรับประเทศไทย. ชุมนุมสหกรณ์การเกษตรแห่งประเทศไทย, กรุงเทพฯ.
- ศิริ อัคคะอัคร,ไกรสร วิริยะ และ ธนวัฒน์ ทองตัน. 2546. พฤติกรรมไฟในป่าเต็งรังเขตรักษาพันธ์สัตว์ ป่าห้วยขาแข้ง, กรมอุทยานแห่งชาติ สัตว์ป่าและพันธุ์พืช, กรุงเทพฯ.
- ศิริรัตน์ บุญเปลี่ยน. 2528. ผลกระทบของไฟป่าต่อดินและพืช ณ ท้องที่ดอยอ่างขาง: ผลในปีแรก. วิทยานิพนธ์ปริญญาโท, มหาวิทยาลัยเกษตรศาสตร์.
- ศูนย์วิจัยป่าไม้, 2553. รายงานข้อมูลพื้นฐาน โครงการจัดทำแผนแม่บทการจัดการพื้นที่กลุ่มป่าภูเขียว-น้ำหนาว. คณะวนศาสตร์ มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.
- สันต์ เกตุปราณีต, 2530. นิเวศวิทยาไฟป่า. คณะวนศาสตร์ มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพ.
- สันต์ เกตุปราณีต, นิพนธ์ ตั้งธรรม, สุวิทย์ แสงทองพราว, ปรีชา ธรรมานนท์, นริศ ภูมิภาคพันธ์ และ ศิริ อัคคอัคร. 2534. ไฟป่าและผลกระทบต่อระบบป่าไม้ในประเทศไทย. คณะวนศาสตร์ มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพ.

- สุนทร ฉายวัฒนะ. 2546. ผลของไฟป่าต่อกล้าไม้ไม้รุ่น และการใช้ประโยชน์ของสัตว์กินพืชบางชนิดใน ป่าเต็งรัง เขตรักษาพันธุ์สัตว์ป่าหัวยขาแข้ง จังหวัดอุทัยธานี. วิทยานิพนธ์ปริญญาโท , มหาวิทยาลัยเกษตรศาสตร์.
- สุรเด่น สัญญอาจ, 2532. ผลกระทบของไฟต่อพืชพรรณและดินในป่าเต็งรังสะแกราช นครราชสีมา. วิทยานิพนธ์ปริญญาโท, มหาวิทยาลัยเกษตรศาสตร์
- สมศักดิ์ ภู่เพ็ชร์. 2550. การศึกษาพฤติกรรมของไฟป่าที่เกิดขึ้นในทุ่งหญ้าในท้องที่อุทยานแห่งชาติทุ่ง แสลงหลวง ตำบลหนองแม่นา อำเภอเขาค้อ จ.เพชรบูรณ์. กรมอุทยานแห่งชาติ สัตว์ป่าและ พันธุ์พืช, กรุงเทพฯ.
- อาภรณ์ อุดมศิลป์, 2539. ผลกระทบของไฟป่าต่อสัตว์ที่มีขาเป็นปล้องในดิน บริเวณอุทยานแห่งชาติภู กระดึง. วิทยานิพนธ์ปริญญาโท, มหาวิทยาลัยเกษตรศาสตร์
- อุทิศ กุฎอินทร์, 2541. นิเวศวิทยา พื้นฐานเพื่อการป่าไม้. คณะวนศาสตร์, มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.
- อุทิศ กุฏอินทร์, 2008. ระบบการจำแนกสังคมพืชคลุมดินในประเทศไทย. J. Trop. Plants Res. 1, 1-21.
- อรรรพล เจริญชันษา. 2548. ลักษณะเชื้อเพลิงของไฟป่าในป่าดิบแล้ง เขตรักษาพันธุ์สัตว์ป่าเขาอ่างฤา ใน. กรมอุทยานแห่งชาติ สัตว์ป่า และพันธุ์พืช, กรุงเทพฯ.
- Agee, J.K., 1993. Fire ecology of Pacific Northwest forests. Island Press, Washington, D.C.
- Akaakara, S., Viriya, K., Tongtan, T., 2003. Fire behaviors in dry dipterocarp forest at Huai Kha Khaeng Wildlife Sanctuary. Research Report, Forest Fire Research Center, Uthai Thani. Forest Fire Control Office, National Park, Wildlife and Plant Conservation Department, Bangkok.
- Arno, S.F., Allison-Bunnell, S., 2002. Flames in our forest : disaster or renewal? Island Press, Washington, D.C.
- Arno, S.F., Fiedler, C.E., 2005. Mimicking Nature's fire: Restoring fire-prone forests in the West. Island Press, Washington, D.C.
- Arno, S.F., Scott, J., Hartwell, M., 1995. Age-class structure of old growth ponderosa pine/Douglas-fir stands and its relationship to fire history. USDA Forest Service, Intermountain Research Station, Gen.Tech.Rep. 294, Ogden, Utha.
- Arocena, J.M., Opio, C., 2003. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 113, 1-16.

- Bailey, J.D., Covington, W.W., 2002. Evaluating ponderosa pine regeneration rates following ecological restoration treatments in northern Arizona, USA. For. Ecol. Manage. 155, 271-278.
- Bauhus, J., Khanna, P.K., Raison, R.J., 1993. The effect of fire on carbon and nitrogen mineralization and nitrification in an Australian forest soil. Aust. J. Soil Res. 31, 621-639.
- Bhumpakphan, N. 1997. Ecological Characterristic and Habitat Utilization of Gaur in Different Climate Site . Ph.D. Thesis, Kasetsart University.
- Biswell, H., 1999. Prescribed Burning in California Wildlands Vegetation Management.

 University of California Press, Berkeley.
- Bonnicksen, T.M., 2000. America's ancient forests: from the ice age to the age of discovery. john Wiley & Sons, New York.
- Carter, M.C., Foster, C.D., 2004. Prescribed burning and productivity in southern pine forests: a review. For. Ecol. Manage. 191, 93-109.
- Certini, G., 2005. Effects of fire on properties of forest soils: a review. Oecologia 143, 1-10.
- Chandler, C., Cheney, P., Thomas, P., Trabaud, L., Williams, D., 1983. Fire in forestry, volume I. Forest fire behavior and effects. John Willey & Sons, Inc., New York.
- Cheney, P., 1994. The effectiveness of fuel reduction burning for fire management. In, Proceedings of fire and biodiversity: The effects and effectiveness of fire management. Dept. of the Environment, Sport and Territories, Canberra, Footscray, Melbourne, pp. 9-16.
- DeBano, L.F., Neary, D.G., 2005. Effects of fire on soil. In: Neary, D.G., Ryan, K.C., deBano, L.F. (Eds.), Wildland fire in ecosystems: effects of fire on soil and water. Gen. Tech. Rep. RMRS-GTR-42-vol.4. USDA Forest Service, Rocky Mountain Research Station, Ogden, UT, pp. 21-92.
- DeBano, L.F., Neary, D.G., Ffolliott, P.F., 1998. Fire's effects on ecosystems. John Wiley & Sons, New York.
- Edmonds, R.L., Agee, J.K., Gara, R.I., 2000. Forest health and protection. McGraw Hill Companies, Inc., Boston.
- Fisher, R.F., Binkley, D., 2000. Ecology and management of forest soils. John Wiley & Sons, New York.

- Fulé, P.Z., Cocke, A.E., Heinlein, T.A., Covington, W.W., 2004. Effects of an Intense Prescribed Forest Fire: Is It Ecological Restoration? Restor. Ecol. 12, 220-230.
- Fulé, P.Z., Covington, W.W., 1994. Fire-regime disruption and pine-oak forest structure in the Sierra Madre Occidental, Durango, Mexico. Restor. Ecol. 2, 261-272.
- Giardina, C.P., Sanford, R.L., Jr., Dockersmith, I.C., Jaramillo, V.J., 2000. The effects of slash burning on ecosystem nutrients during the land preparation phase of shifting cultivation. Plant and Soil 220, 247-260.
- Goldammer, J.G., 1993. Fire management. In: Pancel, L. (Ed.), Tropical forestry handbook vol. 1-2. Springer-Verlag, New York, pp. 1221-1268.
- Goldammer, J.G., 2002. International forest fire news: Asia and Oceania fire special. United Nations Economic Commission for Europe, Geneva.
- Hare, R.C., 1961. Heat efects on living plants. USDA Forest Service, Southern Forest Experimental Station, Occ. Pap. 183, New Orleans, LA.
- Himapan W., S. Boonyawat, S. Kaitpraneet. 2006. Behavior of Burning Fire In Dry Deciduous Dipterocarp Forest at Huay Kha Khaeng Wildlife Sanctury, Uthai Thani Province, Thai J. For. 25: 112-124.
- Houghton, R.A., 1991. Biomass burning from the perspective of the global carbon cycle. In: Levine, J.S. (Ed.), Global biomass burning: Atmospheric, climatic, and biospheric implications. MIT Press, Cambridge, pp. 321-325.
- Hughes, R.F., Kauffman, J.B., Cummings, D.L., 2000. Fire in the Brazilian Amazon 3. Dynamics of biomass, C, and nutrient pools in regenerating forests. Oecologia 124, 574-588.
- Jordan, C.F., 1985. Nutrient cycling in tropical forest ecosystems: principles and their application in management and conservation. John Wiley & Sons, Chichester, Great Britain.
- Kaitpraneet S. and B. Thaiutsa. 1987. Predicting Fire Behavior in Herbaceous Fuel Complex at Doi Angkhang Chiangmai Province, Thai J. For. 89-107
- Kauffman, J.B., Cummings, D.L., Ward, D.E., 1994. Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian Cerrado. J. Ecol. 82, 519-531.
- Kauffman, J.B., Sanford, R.L., Jr., Cummings, D.L., Salcedo, I.H., Sampaio, E.V.S.B., 1993.
 Biomass and nutrient dynamics associated with slash fires in neotropical dry forests.
 Ecology 74, 140-151.

- Khanna, P.K., Raison, R.J., 2006. Fire and soils. In: Lal, R. (Ed.), Encyclopedia of soil science. Taylor & Francis, Columbus, pp. 708-710.
- Khanna, P.K., Raison, R.J., Falkiner, R.A., 1994. Chemical properties of ash derived from eucalyptus litter and its effects on forest soils. For. Ecol. Manage. 66, 107-125.
- Macadam, A., 1989. Effects of prescribed fire on forest soils. A training manual prepared for the Protection Section, Prince Rupert Forest Region. Ministry of Forests, Smithers, B.C.
- Myers, R.I., 2006. forests and fires: towards an integrated approach to fire management in the Caribean. In: Weaver, P.L., Gonzales, K.A. (Eds.), Wildland fire management and restoration. USDA Forest Service International Institute of Tropical Forestry, Rio Piedras, Puerto Rico
- Neary, D.G., Klopatek, C.C., DeBano, L.F., Ffolliott, P.F., 1999. Fire effects on belowground sustainability: a review and synthesis. For. Ecol. Manage. 122, 51-71.
- Neary, D.G., Ryan, K.C., deBano, L.F. (Eds.), 2005. Wildland fire in ecosystems: effects of fire on soil and water. Gen. Tech. Rep. RMRS-GTR-42-vol.4. USDA Forest Service, Rocky Mountain Research Station, Ogden, UT.
- Peterson, D.L., Ryan, K.C., 1986. Modelling post-fire mortality for long-range planning. Environ.

 Manage. 10, 797-808.
- Pyne, S.J., 2001. Fire: A brief history. University of Washington Press, Seattle.
- Pyne, S.J., Andrews, P.L., Laven, R.D., 1996. Introduction to wildland fire. John Wiley and Sons, New York.
- Raison, R.J., 1979. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant and Soil 51, 73-108.
- Raison, R.J., Khanna, P.K., Woods, P.V., 1985a. Mechanisms of element transfer to the atmosphere during vegetation fires. Can. J. For. Res. 5, 132-140.
- Raison, R.J., Khanna, P.K., Woods, P.V., 1985b. Transfer of elements to the atmosphere during low-intensity prescribed fires in three Australian subalpine eucalypt forests.

 Can. J. For. Res. 15, 657–664.
- Sandberg, D.V., Ottmar, R., Perterson, J.L., Core, J., 2002. Wildland fire on ecosystems: effects of fire on air. Gen. Tech. Rep. RMRS-GTR-42-vol.5. U.S.D.A. Forest Service, Rocky mountain Research Station.

- Swanson, F.J., Jones, J.A., Wallin, D.O., Cissel, J.H., 1994. Natural variability-implications for ecosystem management. In: Jensen, M.E., Bourgeron, P.S. (Eds.), Ecosystem management: principles and applications, volume II. Gen. Tech. Rep. PNW-GTR-318. USDA Forest Service, Pacific Northwest Research Station, Portland, Oregon, pp. 80-94.
- Toda, T., Takeda, H., Tokuchi, N., Wacharinrat, C., Kaitpraneet, S., 2007. Effects of forest fire on the nitrogen cycle in a dry dipterocarp forest, Thailand. Tropics 16, 41-45.
- Visithipanit, S., Viriya, K., 2005. Fire behaviors in dry dipterocarp forest at Huai Kha Khaeng Wildlife Sanctuary. In. Forest Fire Control Office, National Park, Wildlife and Plant Conservation Department, Bangkok, Thailand.
- Waldrop, T.A., Van Lear, D.H., Lloyd, F.T., Harms, W.R., 1987. Long-term studies of prescribed burning in loblolly pine forests of the southeastern coastal plain USDA Forest Service.
- Wanthongchai, K., 2008. Effects of different burning frequencies on fire behaviour, nutrient dynamics, soil properties, and vegetation structure and composition in dry dipterocarp forest, Huay Kha Khaeng wildlife Sanctuary, Thailand. In, Ph.D. diss. Institute of Silviculture. The University of Freiburg, Freiburg, p. 190.
- Wanthongchai, K., Bauhus, J.r., Goldammer, J.G., 2008. Nutrient losses through prescribed burning of aboveground litter and understorey in dry dipterocarp forests of different fire history. Catena 74, 321-332.
- Wanthongchai, K., Goldammer, J.G., Bauhus, J., 2011. Effects of fire frequency on prescribed fire behaviour and soil temperatures in dry dipterocarp forests. International Journal of Wildland Fire 20, 35-45.
- Whelan, R.J., 1995. The ecology of fire. Cambridge University Press, Melbourne.
- White, A.S., 1986. Prescribed burning for oak savannas restoration in central Minnesota.

 Research Paper, North Central Forest Experiment Station, USDA Forest Service, 12pp.
- Williams, C.E., 1998. History and status of table mountain pine-pitch pine forests of the southern Apalachian mountains (USA). Nat. Areas J. 18, 81-90.

- Wiriya , K. 2009. Fuel Model and Fire Behavior Prediction in Dry Deciduous Dipterocarp Forest at Huai Kha Khaeng Wildlife Sancetuary, Uthai Thani Province. Ph.D. Thesis , Kasetsart University.
- Wright, H.A., Bailey, A.W., 1982. Fire ecology: United States and southern Canada. Wiley and Sons, New York.

ตารางภาคผนวก

(Table Appendix)

Table appendix 1. ลักษณะพฤติกรรมไฟป่าในแต่ละแกนที่ทำการสำรวจ

Fire behavior	Forest	Plot			Axe number	•	
characteristics	type		1	2	3	4	Average
Rate of spread	PF	1	2.76	1.67	1.08	0.81	1.58
(m/min)		2	9.67	0.74	0.65	1.21	3.07
		3	1.23	0.95	1.14	4.33	1.91
	O-PF	1	0.42	0.33	0.64	0.80	0.55
		2	0.34	0.53	0.21	0.37	0.36
		3	0.50	1.32	0.59	0.44	0.71
Flame height	PF	1	1.70	1.18	1.12	0.57	1.39
(m)		2	2.40	0.72	0.60	1.18	1.30
		3	0.50	0.98	0.92	1.86	1.33
	O-PF	1	0.12	0.20	0.60	0.62	0.38
		2	0.21	0.31	0.20	0.25	0.26
		3	0.37	0.26	0.40	0.35	0.44
Flame length	PF	1	1.84	1.45	1.19	1.05	1.42
(m)		2	3.08	0.94	0.89	1.18	1.81
		3	1.11	0.99	1.07	1.99	1.36
	O-PF	1	0.56	0.51	0.68	0.76	0.64
		2	0.25	0.31	0.20	0.26	0.26
		3	0.37	0.58	0.40	0.35	0.44
Fireline intensity	PF	1	907.39	547.05	353.47	267.36	518.82
(kW/m)		2	2792.13	212.84	187.03	348.73	885.18
		3	305.50	236.16	283.14	1078.92	475.93
	O-PF	1	69.07	55.43	106.32	133.56	91.09
		2	11.75	18.41	7.36	12.85	12.59
		3	27.82	74.22	33.08	24.55	39.92

Table appendix 2. ชนิดพันธุ์ใม้ที่พบในไม้ใหญ่ (tree) บริเวณพื้นที่ศึกษาป่าสนเสื่อมโทรมและป่าสนผสมก่อ อุทยานแห่งชาติน้ำหนาว

O	species	scientific name	family	PF-1	PF-2	PF-3	0-PF-1	0-PF-2	0-PF-3
_	ใคร์มด	Glochidion eriocarpum	Euphorbiaceae	>					
2	นางแย้มป่า	Clerodendrum viscosum Vent.	Labiatae		<i>^</i>				
3	ก่อดง	Quercus kingiana Craib.	Fagaceae	<i>></i>	<i>^</i>				
4	แข้งกวางดง	Wendlandia paniculata A. Dc.	Rubiaceae	<i>></i>					
7	unknown40							<i>^</i>	
8	สมอไทย	Terminalia chebula Retz. var. chebula	Combretaceae						>
6	ផងារេច	Cinnamomum verum	Lauraceae	<u> </u>					
11	กางขึ้มอด	Albizia odoratissima (L.f.) Benth.	Leguminosae	<u> </u>					
12	กระโดน	Careya sphaerica Roxb.	Lecythidaceae	\	>	>	>		
13	กระพื่น	Millettia brandisiana Kurz	Leguminosae						>
14	ก่อแดง	Quercus auricoma A. Camus	Fagaceae			<i>></i>	<i>></i>		
15	ก่อนก	Lithocarpus polystachyus (A.DC.) Rehder	Fagaceae		<i>></i>		<i>></i>	<i>></i>	>
16	ก่อใบหยัก				<i>></i>				
17	ก่อแป็น	Castanopsis echidnocarpa A.DC.	Fagaceae				<i>></i>		
18	ก่อแพะ	Quercus kerrii Craib var. kerrii	Fagaceae						>
19	ก่อหม่น	Lithocarpus grandifolius (D.Don) Bigwood	Fagaceae	^	<i>></i>		<i>></i>	<i>></i>	>
20	ก่อหิน	Castanopsis piriformis Hickel & A. Carmus	Fagaceae						<i>></i>
21	ทำยาน	Styrax apricus Fletcher	Styracaceae				<i>></i>		
22	แข้งกวาง	Wendlandia tinctoria (Roxb.) DC.	Rubiaceae			<i>></i>		<i>^</i>	
23	คำมอกหลวง	Gardenia sootepensis Hutch.	Rubiaceae					>	
24	แคทราย	Stereospermum neuranthum Kurz	Bignoniaceae	<u> </u>	>	>			

Table appendix 2. (ต่อ)

ON	species	scientific name	family	PF-1	PF-2	PF-3	0-PF-1	O-PF-2	0-PF-3
25	แคหางค่าง	Fernandoa adenophylla (Wall. Ex. G. Don) Steenis	Bignoniaceae	<i>></i>	>				
26	ตะโกดง				>				
27	หฺ๒เ๒ําแฺ๒	Diospyros ehretiodes Wall. Ex. G. Don.	Ebenaceae			<i>></i>			
28	ឧមាឌ្វ៤២	Craibiodendron stellatum (Pierre) W.W.Sm.	Ericaceae	\nearrow	<i>></i>	<i>></i>			>
29	ด้วเกลียง	Cratoxylum cochinchinense (Lour.) Blume	Guttiferae				>		
30	ทะโล้	Schima wallichii (DC.) Korth.	Theaceae		>		>		
31	լեն	Pterocarpus macrocarpus Kurz	Leguminosae	<i>^</i>	<i>></i>	<i>></i>			
32	เกาหเกา	Grewia eriocarpa Juss.	Tiliaceae	\nearrow	<i>></i>	<i>^</i>			
33	ឧកក្តីខេត្តទាខា	Eriolaena candollei Wall.	Sterculiaceae	\nearrow	>	<i>^</i>			
34	นอธิกากอกรม	Canarium subulatum Guillaumin	Burseraceae				<i>></i>		
35	มะขามป้อม	Phyllanthus emblica L.	Euphorbiaceae	>	>	>	~	>	
36	มะแฟน	Protium serratum Engl.	Burseraceae			>			
37	สมานใน	Pinus kesiya Royle ex. Gordon	Pinnaceae	\nearrow	<i>></i>	<i>^</i>	<i>></i>	<i>></i>	>
38	สนาู่ eหม	Terminalia chebula Retz. var. chebula	Combretaceae	\nearrow	<i>></i>	<i>^</i>			
39	ส้านหิ่ง	Dillenia parviflora Griff.	Dilleniaceae	>					
40	ผู้หนู	Dillenia obovata (Blume) Hoogland	Dilleniaceae						>
41	អធី្លអាធិ្លអ	Litsea glutinosa (Lour.) C.B. Rob. var. glutinosa	Lauraceae	\nearrow					>
42	หว้า	Syzygium cumini (L.) Skeels	Myrtaceae						>
43	หน	Knema sp.	Myristicaceae	\nearrow					
44	เหมือดโลด	Aporosa villosa (Wall. Ex Lindl.) Baill.	Euphorbiaceae	\nearrow			<i>></i>	^	>
45	เหมือดแอ	Memecylon scutellatum Naudin	Melastomataceae						>
46	เหียง	Dipterocarpus obtusifolius Teijsm. Ex Miq.	Dipterocarpaceae				~	>	>
47	นหม	Terminalia bellirica (Gaertn.) Roxb.	Combretaceae		>				

Table appendix 3. ค่าดัชนีความสำคัญของไม้ยืนต้นในป่าสนเสื่อมโทรมแปลงที่ 1 (PF-1)

ลำดับที่	species	RD (%)	RDO (%)	RF (%)	IVI
1	สนสามใบ	20.00	86.79	12.90	119.69
2	ตาฉี่เคย	15.00	1.21	6.45	22.66
3	กระโดน	10.00	0.76	6.45	17.21
4	ประดุ่	5.00	2.91	6.45	14.36
5	แคทราย	6.67	1.12	6.45	14.24
6	ใครัมด	6.67	0.74	9.68	17.08
7	สมอไทย	3.33	0.62	6.45	10.40
8	ก่อหม่น	3.33	0.15	6.45	9.94
9	แข้งกวางดง	5.00	0.98	3.23	9.21
10	เหมือดโลด	5.00	0.93	3.23	9.16
11	อบเชย	1.67	2.03	3.23	6.92
12	ปอแก่นเทา	3.33	0.23	3.23	6.79
13	มะขามป้อม	3.33	0.15	3.23	6.71
14	ปอเลียงฝ้าย	1.67	0.59	3.23	5.48
15	หมีเหม็น	1.67	0.19	3.23	5.08
16	ก่อดง	1.67	0.17	3.23	5.06
17	หัน	1.67	0.13	3.23	5.02
18	กงขึ้มอด	1.67	0.13	3.23	5.02
19	ส้านหิ่ง	1.67	0.12	3.23	5.01
20	แคหางค่าง	1.67	0.06	3.23	4.95
	sum	100.00	100.00	100.00	300.00

Table appendix 4. ค่าดัชนีความสำคัญของไม้ยืนต้นในป่าสนเสื่อมโทรมแปลงที่ 2 (PF-2)

ลำดับที่	species	RD (%)	RDO (%)	RF (%)	IVI
1	สนสามใบ	28.00	71.79	13.33	113.13
2	กระโดน	8.00	0.69	13.33	22.03
3	ทะโล้	10.00	1.80	10.00	21.80
4	แหน	2.00	13.31	3.33	18.64
5	สมอไทย	10.00	0.81	6.67	17.48
6	มะขามป้อม	4.00	4.15	6.67	14.82
7	ปอแก่นเทา	4.00	0.48	6.67	11.14
8	ตาฉี่เคย	4.00	0.18	6.67	10.85
9	แคทราย	6.00	0.66	3.33	9.99
10	ก่อนก	4.00	2.04	3.33	9.38
11	ก่อหม่น	4.00	0.87	3.33	8.20
12	ก่อดง	4.00	0.72	3.33	8.06
13	ก่อใบหยัก	2.00	0.90	3.33	6.24
14	แคหางค่าง	2.00	0.84	3.33	6.17
15	ตะโกดง	2.00	0.40	3.33	5.73
16	ปอเลียงฝ้าย	2.00	0.20	3.33	5.53
17	ประดู่	2.00	0.08	3.33	5.41
18	นางแย้มป่า	2.00	0.06	3.33	5.40
	sum	100.00	100.00	100.00	300.00

Table appendix 5. ค่าดัชนีความสำคัญของไม้ยืนต้นในป่าสนเสื่อมโทรมแปลงที่ 3 (PF-3)

ลำดับที่	species	RD (%)	RDO (%)	RF (%)	IVI
1	สนสามใบ	36.11	86.69	19.05	141.85
2	ตับเต่าต้น	13.89	0.79	14.29	28.97
3	กระโดน	8.33	1.37	14.29	23.99
4	ตาฉี่เคย	11.11	0.76	9.52	21.39
5	ประดู่	2.78	7.70	4.76	15.23
6	แคทราย	5.56	0.38	4.76	10.69
7	สมอไทย	5.56	0.30	4.76	10.62
8	แข้งกวาง	2.78	1.06	4.76	8.60
9	ปอเลียงฝ้าย	2.78	0.33	4.76	7.87
10	มะแฟน	2.78	0.28	4.76	7.82
11	มะขามป้อม	2.78	0.15	4.76	7.69
12	ปอแก่นเทา	2.78	0.11	4.76	7.65
13	ก่อแดง	2.78	0.08	4.76	7.62
	sum	100.00	100.00	100.00	300.00

Table appendix 6. ค่าดัชนีความสำคัญของไม้ยืนต้นในป่าสนผสมก่อแปลงที่ 1 (O-PF-1)

ลำดับที่ species RD (%) RDO (%) RF (%) IVI 1 ก่อแดง 39.47 25.92 13.79 79.19 2 เหียง 21.05 31.95 13.79 66.79 3 ก่อหม่น 14.29 10.31 13.79 38.39 4 สนสามใบ 4.51 20.63 10.34 35.49 5 เหมือดโลด 11.65 6.03 13.79 31.48 6 ก่อนก 5.26 3.21 10.34 18.82 7 กำยาน 0.75 1.02 3.45 5.22 8 ทะโล้ 1.13 0.18 3.45 4.75 9 มะกอกเกลื้อน 0.38 0.42 3.45 4.24 10 กระโดน 0.38 0.18 3.45 4.00 11 ก่อแป้น 0.38 0.06 3.45 3.88 12 มะขามป้อม 0.38 0.05 3.45 3.88	•	•	ຍ		`	,
2 เหียง 21.05 31.95 13.79 66.79 3 ก่อหม่น 14.29 10.31 13.79 38.39 4 สนสามใบ 4.51 20.63 10.34 35.49 5 เหมือดโลด 11.65 6.03 13.79 31.48 6 ก่อนก 5.26 3.21 10.34 18.82 7 กำยาน 0.75 1.02 3.45 5.22 8 ทะโล้ 1.13 0.18 3.45 4.75 9 มะกอกเกลื้อน 0.38 0.42 3.45 4.24 10 กระโดน 0.38 0.18 3.45 4.00 11 ก่อแป้น 0.38 0.06 3.45 3.88	ลำดับที่	species	RD (%)	RDO (%)	RF (%)	IVI
3 ก่อหม่น 14.29 10.31 13.79 38.39 4 สนสามใบ 4.51 20.63 10.34 35.49 5 เหมือดโลด 11.65 6.03 13.79 31.48 6 ก่อนก 5.26 3.21 10.34 18.82 7 กำยาน 0.75 1.02 3.45 5.22 8 ทะโลั 1.13 0.18 3.45 4.75 9 มะกอกเกลื้อน 0.38 0.42 3.45 4.24 10 กระโดน 0.38 0.18 3.45 4.00 11 ก่อแป้น 0.38 0.06 3.45 3.88	1	ก่อแดง	39.47	25.92	13.79	79.19
4 สนสามใบ 4.51 20.63 10.34 35.49 5 เหมือดโลด 11.65 6.03 13.79 31.48 6 ก่อนก 5.26 3.21 10.34 18.82 7 กำยาน 0.75 1.02 3.45 5.22 8 ทะโล้ 1.13 0.18 3.45 4.75 9 มะกอกเกลื้อน 0.38 0.42 3.45 4.24 10 กระโดน 0.38 0.18 3.45 4.00 11 ก่อแป้น 0.38 0.06 3.45 3.88	2	เหียง	21.05	31.95	13.79	66.79
5 เหมือดโลด 11.65 6.03 13.79 31.48 6 ก่อนก 5.26 3.21 10.34 18.82 7 กำยาน 0.75 1.02 3.45 5.22 8 ทะโล้ 1.13 0.18 3.45 4.75 9 มะกอกเกลื้อน 0.38 0.42 3.45 4.24 10 กระโดน 0.38 0.18 3.45 4.00 11 ก่อแป้น 0.38 0.06 3.45 3.88	3	ก่อหม่น	14.29	10.31	13.79	38.39
6 ก่อนก 5.26 3.21 10.34 18.82 7 กำยาน 0.75 1.02 3.45 5.22 8 ทะโล้ 1.13 0.18 3.45 4.75 9 มะกอกเกลื้อน 0.38 0.42 3.45 4.24 10 กระโดน 0.38 0.18 3.45 4.00 11 ก่อแป้น 0.38 0.06 3.45 3.88	4	สนสามใบ	4.51	20.63	10.34	35.49
7 กำยาน 0.75 1.02 3.45 5.22 8 ทะโล้ 1.13 0.18 3.45 4.75 9 มะกอกเกลื้อน 0.38 0.42 3.45 4.24 10 กระโดน 0.38 0.18 3.45 4.00 11 ก่อแป้น 0.38 0.06 3.45 3.88	5	เหมือดโลด	11.65	6.03	13.79	31.48
8 ทะโล้ 1.13 0.18 3.45 4.75 9 มะกอกเกลื้อน 0.38 0.42 3.45 4.24 10 กระโดน 0.38 0.18 3.45 4.00 11 ก่อแป้น 0.38 0.06 3.45 3.88	6	ก่อนก	5.26	3.21	10.34	18.82
9 มะกอกเกลื้อน 0.38 0.42 3.45 4.24 10 กระโดน 0.38 0.18 3.45 4.00 11 ก่อแป้น 0.38 0.06 3.45 3.88	7	กำยาน	0.75	1.02	3.45	5.22
10 กระโดน 0.38 0.18 3.45 4.00 11 ก่อแป็น 0.38 0.06 3.45 3.88	8	ทะโล้	1.13	0.18	3.45	4.75
11 ก่อแป้น 0.38 0.06 3.45 3.88	9	มะกอกเกลื้อน	0.38	0.42	3.45	4.24
	10	กระโดน	0.38	0.18	3.45	4.00
12 มะขามป้อม 0.38 0.05 3.45 3.88	11	ก่อแป้น	0.38	0.06	3.45	3.88
	12	มะขามป้อม	0.38	0.05	3.45	3.88
13 ติ้วเกลี้ยง 0.38 0.05 3.45 3.87	13	ติ้วเกลี้ยง	0.38	0.05	3.45	3.87
sum 100 100 100 300		sum	100	100	100	300

Table appendix 7. ค่าดัชนีความสำคัญของไม้ยืนต้นในป่าสนผสมก่อแปลงที่ 2 (O-PF-2)

ลำดับที่	species	RD (%)	RDO (%)	RF (%)	IVI
1	เหียง	42.34	21.05	16.67	80.05
2	ก่อนก	25.55	26.03	16.67	68.24
3	ก่อหม่น	13.87	14.22	16.67	44.76
4	สนสามใบ	2.92	26.90	8.33	38.15
5	แข้งกวาง	7.30	7.49	16.67	31.45
6	คำมอกหลวง	5.11	3.30	12.50	20.91
7	เหมือดโลด	1.46	0.25	4.17	5.88
8	มะขามป้อม	0.73	0.66	4.17	5.55
9	unknown40	0.73	0.10	4.17	4.99
	sum	100.00	100.00	100.00	300.00

Table appendix 8. ค่าดัชนีความสำคัญของไม้ยืนต้นในป่าสนผสมก่อแปลงที่ 3 (O-PF-3)

		•		,	- /
ลำดับที่	species	RD (%)	RDO (%)	RF (%)	IVI
1	เหียง	46.58	32.71	12.12	91.41
2	สนสามใบ	13.25	37.94	12.12	63.31
3	เหมือดโลด	17.09	10.95	12.12	40.16
4	สมอไทย	8.55	4.27	12.12	24.94
5	ก่อแพะ	2.99	3.96	9.09	16.04
6	ก่อหิน	3.85	4.32	6.06	14.23
7	ก่อนก	2.14	0.82	9.09	12.05
8	ตาฉี่เคย	1.71	0.82	6.06	8.59
9	ส้านใหญ่	0.85	0.21	6.06	7.12
10	ก่อหม่น	0.43	2.05	3.03	5.51
11	เหมือดแอ	1.28	0.50	3.03	4.81
12	หมีเหม็น	0.43	0.80	3.03	4.25
13	กระพิ้จั่น	0.43	0.39	3.03	3.85
14	หว้า	0.43	0.26	3.03	3.72
	sum	100.00	100.00	100.00	300.00

Table appendix 9. ชนิดพันฐ์ใม้ที่พบในใม้รุ่น (sapling) บริเวณพื้นที่ศึกษาป่าสนเสื่อมโทรมและป่าสนผสมก่อ อุทยานแห่งชาติน้ำหนาว

No.	species	scientific name	No. species scientific name family PF-1 PF-2 PF-3 O-PF-1 O-PF-2 O	PF-1	PF-2	PF-3	0-PF-1	0-PF-2	0-PF-3
_	unknown 37						<i>></i>		
2	ใคร์มด	Glochidion eriocarpum	Euphorbiaceae	>	^	<i>^</i>			
က	กล้วยฤๅษี	Diospyros villosa (Lindl.) Baill.	Ebenaceae		^				
4	หอแดง	Quercus auricoma A. Camus	Fagaceae				<u> </u>		
2	นอนก	Lithocarpus polystachyus (A.DC.) Rehder	Fagaceae					<i>^</i>	>
9	ก่อหม่น	Lithocarpus grandifolius (D.Don) Bigwood	Fagaceae		^			<i>^</i>	
7	กางขึ้มอด	Albizia odoratissima (L.f.) Benth.	Leguminosae		^				
8	ะเกราก	Wendlandia tinctoria (Roxb.) DC.	Rubiaceae					<i>^</i>	
6	ะเดหกอนาจ	Gardenia sootepensis Hutch.	Rubiaceae				<i>^</i>	<i>^</i>	
10	ละรูนษท	Stereospermum neuranthum Kurz	Bignoniaceae	<i>^</i>					
11	นูกูทนู	Callicarpa arborea Roxb.	Labiatae				<u> </u>		
12	สษาธิเคย	Craibiodendron stellatum (Pierre) W.W.Sm.	Ericaceae	<i>/</i>					
13	ติวเกลียง	Cratoxylum cochinchinense (Lour.) Blume	Guttiferae			<i>^</i>	<u> </u>		
		Cratoxylum formosum (Jack) Dyer spp. runiflorum			/				
14	ดิวขน	(Kurz) Gogel. (Lour.) Blume	Guttiferae		•				
15	ทะโล้	Schima wallichii (DC.) Korth.	Theaceae						>
16	มะขามป้อม	Phyllanthus emblica L.	Euphorbiaceae	~	\checkmark	~			
17	និងแង	Vaccinium sprengelii (G.Don)	Ericaceae						>
18	สนาูดหม	Terminalia chebula Retz. var. chebula	Combretaceae	<i>^</i>					
19	เสลา	Lagerstroemia tomentosa C. Presl	Lythraceae				<u> </u>		
20	หนามแท่ง	Catunaregam longispina (Roxb. Ex Link)	Rubiaceae			/			
21	เหมือดโลด	Aporosa villosa (Wall. Ex Lindl.) Baill.	Euphorbiaceae				~		
22	ង្រើยរ	Dipterocarpus obtusifolius Teijsm. Ex Miq.	Dipterocarpaceae				<i>^</i>		

Table appendix 10. ชนิดพันธ์ใม้ที่พบในลูกไม้ (seedling) บริเวณพื้นที่ศึกษาป่าสนเสื่อมโทรมและป่าสนผสมก่อ อุทยานแห่งชาติน้ำหนาว

		, n) - - -		,	
Š.	sbecies	scientific name	family	PF-1	PF-2	PF-3	0-PF-1	0-PF-2	0-PF-3
_	ใคร์มด	Glochidion eriocarpum	Euphorbiaceae	>	>	>			
3	ធណាធា	Cinnamomum verum	Lauraceae		>				
4	มะเม่าไข่ปลา	Antidesma ghaesembilla	Stilanaceae		>				
9	ปอเลียงฝ้าย	Eriolaena candollei Wall.	Sterculiaceae	>					
7	Unknow31						>		
∞	Unknow32						>		
ဝ	Unknow36						>		
10	เหมือดคนตัวผู้	Helicia nilagirica Bedd.	Proteaceae	>					
11	สมอไทย	Terminalia chebula Retz. var. chebula	Combretaceae						>
12	unknown48								>
13	สัมฟด	Rhus javanica L. var. javanica	Anacardiaceae		<i>></i>				
4	กระพีเขาควาย	Dalbergia cultrata Graham ex Benth.				<i>/</i>			
15	ก่อแดง	Quercus auricoma A. Camus	Fagaceae						
16	ก่อนก	Lithocarpus polystachyus (A.DC.) Rehder	Fagaceae				>	<i>></i>	\
17	ก่อใบหยัก				<i>></i>				
18	ก่อหม่น	Lithocarpus grandifolius (D.Don) Bigwood	Fagaceae		<i>></i>		~	<i>></i>	
19	กางขึ้มอด	Albizia odoratissima (L.f.) Benth.	Leguminosae		<i>></i>				
20	กำยาน	Styrax apricus Fletcher	Styracaceae				>		
21	แข้งกวาง	Wendlandia tinctoria (Roxb.) DC.	Rubiaceae					>	
22	คำมอกหลวง	Gardenia soofepensis Hutch.	Rubiaceae				>	>	>

Table appendix 10. (ଜାଥ)

No.	species	scientific name	family	PF-1	PF-2	PF-3	0-PF-1	0-PF-2	0-PF-3
23	สเรนษท	Stereospermum neuranthum Kurz	Bignoniaceae		^				
24	ะเคราหคม	Fernandoa adenophylla (Wall. Ex. G. Don) Steenis	Bignoniaceae		<i>></i>				
25	นกูแนู	Callicarpa arborea Roxb.	Labiatae				^		>
26	สษาลิเคย	Craibiodendron stellatum (Pierre) W.W.Sm.	Ericaceae			^			>
27	ตาลข้าว						^		>
28	និក្សានា	Cratoxylum cochinchinense (Lour.) Blume	Guttiferae			^	^		
	ð	Cratoxylum formosum (Jack) Dyer spp. pruniflorum (Kurz)							
29	ติวขน	Gogel. (Lour.) Blume	Guttiferae		•				
30	ทะโล้	Schima wallichii (DC.) Korth.	Theaceae						>
31	ગરજું	Pterocarpus macrocarpus Kurz	Leguminosae		^	~			
32	มะขามป้อม	Phyllanthus emblica L.	Euphorbiaceae	<u> </u>	<i>></i>	~			
33	มะเม่าสร้อย					~			
34	สหสามใบ	Pinus kesiya Royle ex. Gordon	Pinnaceae		^	~		<i>^</i>	
35	ส้านใหญ่	Dillenia obovata (Blume) Hoogland	Dilleniaceae					<i>></i>	>
36	หนามแท่ง	Catunaregam longispina (Roxb. Ex Link)	Rubiaceae			~			
37	หว้าเล็ก	Syzygium cumini (L.) Skeels	Myrtaceae			~			
38	เหมือดโลด	Aporosa villosa (Wall. Ex Lindl.) Baill.	Euphorbiaceae	<u> </u>			~		>
39	เห็ยง	Dipterocarpus obtusifolius Teijsm. Ex Miq.	Dipterocarpaceae				^	<i>></i>	

Table appendix 11 ความเข้มข้นของธาตุอาหารในเชื้อเพลิงประเภทหญ้า (grass) สำหรับป่าสนเสื่อม โทรม (PF) และป่าสนผสมก่อ (O-PF) ก่อนเผาแปลงทดลอง

plot	total C	total N	total P	total K	total Ca	total Mg
	(%)	(%)	(%)	(%)	(%)	(%)
PF-1	45.07	0.35	0.02	0.26	0.78	0.12
PF-2	45.09	0.28	0.02	0.27	0.69	0.11
PF-3	45.22	0.16	0.01	0.27	0.74	0.12
O-PF-1	44.36	0.39	0.02	0.48	0.58	0.21
O-PF-2	45.01	0.43	0.02	0.47	0.48	0.19
O-PF-3	44.62	0.35	0.03	0.49	0.60	0.21

Table appendix 12 ความเข้มข้นของธาตุอาหารในเชื้อเพลิงประเภทไม้พุ่ม (shrub) สำหรับป่าสน เสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ก่อนเผาแปลงทดลอง

	` '	`	,			
plot	total C	total N	total P	total K	total Ca	total Mg
plot	(%)	(%)	(%)	(%)	(%)	(%)
PF-1	46.64	0.79	0.03	1.87	1.86	0.47
PF-2	46.68	0.73	0.04	1.53	1.66	0.42
PF-3	47.00	0.76	0.04	1.47	1.73	0.41
O-PF-1	45.99	0.66	0.04	0.93	2.50	0.38
O-PF-2	46.56	0.77	0.05	0.93	3.92	0.35
O-PF-3	46.20	0.76	0.03	0.78	2.43	0.36

Table appendix 13 ความเข้มข้นของธาตุอาหารในเชื้อเพลิงประเภทไม้ล้มลุก (herb) สำหรับป่าสน เสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ก่อนเผาแปลงทดลอง

nlot	total C	total N	total P	total K	total Ca	total Mg
plot	(%)	(%)	(%)	(%)	(%)	(%)
PF-1	44.89	0.77	0.06	1.23	2.17	0.38
PF-2	45.04	0.76	0.04	1.13	3.99	0.39
PF-3	44.78	0.76	0.06	1.13	4.32	0.41
O-PF-1	45.74	0.73	0.04	0.73	2.65	0.34
O-PF-2	46.46	0.70	0.03	0.60	2.91	0.34
O-PF-3	45.94	0.70	0.02	0.59	3.16	0.33

Table appendix 14 ความเข้มข้นของธาตุอาหารในเชื้อเพลิงประเภทไม้ยืนต้น (woody plant) สำหรับ ป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ก่อนเผาแปลงทดลอง

plot	total C	total N	total P	total K	total Ca	total Mg
plot	(%)	(%)	(%)	(%)	(%)	(%)
PF-1	47.35	0.92	0.05	0.68	2.92	0.41
PF-2	46.36	0.89	0.05	0.67	3.55	0.37
PF-3	47.67	1.05	0.05	0.64	3.81	0.31
O-PF-1	46.36	0.65	0.03	0.71	2.19	0.37
O-PF-2	46.52	0.73	0.03	0.74	2.09	0.38
O-PF-3	46.64	0.82	0.03	0.73	3.05	0.40

Table appendix 15 ความเข้มข้นของธาตุอาหารในเชื้อเพลิงประเภทท่อนไม้ (woody debris) สำหรับ ป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ก่อนเผาแปลงทดลอง

plot	total C	total N	total P	total K	total Ca	total Mg
	(%)	(%)	(%)	(%)	(%)	(%)
PF-1	50.09	0.19	0.01	0.04	0.87	0.07
PF-2	50.86	0.20	0.05	0.07	0.83	0.06
PF-3	49.54	0.21	0.03	0.04	1.19	0.08
O-PF-1	45.03	0.39	0.03	0.38	0.59	0.16
O-PF-2	44.92	0.37	0.03	0.43	0.81	0.18
O-PF-3	45.06	0.40	0.03	0.42	0.81	0.18

Table appendix 16 ความเข้มข้นของชาตุอาหารในเชื้อเพลิงประเภทเศษชากพืช (litter) สำหรับป่าสน เสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF) ก่อนเผาแปลงทดลอง

plot	total C	total N	total P	total K	total Ca	total Mg
plot	(%)	(%)	(%)	(%)	(%)	(%)
PF-1	40.55	0.52	0.05	0.16	1.13	0.16
PF-2	40.47	0.55	0.03	0.16	1.18	0.17
PF-3	41.73	0.50	0.06	0.13	0.82	0.16
O-PF-1	46.51	0.67	0.03	0.46	5.44	0.20
O-PF-2	46.38	0.56	0.03	0.51	1.85	0.21
O-PF-3	45.68	0.65	0.03	0.49	2.24	0.21

Table appendix 17 ความเข้มข้นของธาตุอาหารในถ่านและผงถ่าน (charcoal) ที่หลงเหลือภายหลัง การเผา สำหรับป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

plot	total C	total N	total P	total K	total Ca	total Mg
μισι	(%)	(%)	(%)	(%)	(%)	(%)
PF-1	18.44	0.50	0.04	0.33	2.79	0.52
PF-2	26.78	0.80	0.07	0.33	2.54	0.35
PF-3	29.17	0.85	0.05	0.35	2.28	0.40
O-PF-1	12.87	0.61	0.06	0.24	0.72	0.37
O-PF-2	16.28	0.54	0.06	0.46	2.04	0.37
O-PF-3	23.44	0.83	0.06	0.34	0.95	0.31

Table appendix 18 ความเข้มข้นของธาตุอาหารในส่วนที่ไม่ไหม้ไฟ (unburned material) ที่หลงเหลือ ภายหลังการเผา สำหรับป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

					= =	
plot	total C	total N	total P	total K	total ca	total Mg
	(%)	(%)	(%)	(%)	(%)	(%)
PF-1	43.44	0.69	0.04	0.36	1.92	0.18
PF-2	42.36	0.71	0.04	0.28	2.07	0.16
PF-3	44.04	1.01	0.02	0.27	1.11	0.15
O-PF-1	43.23	0.71	0.04	0.43	0.99	0.18
O-PF-2	44.29	0.71	0.06	0.47	1.01	0.17
O-PF-3	44.06	0.83	0.04	0.49	0.90	0.17

Table appendix 19. คุณสมบัติทางเคมีของดินก่อนการเผา ทันทีหลังการเผา และหลังการเผา 1 ปี ในดินที่ระดับความลึก 0-5 ชม. และ 5-15 ชม. ในป่าสนเสื่อมโทรม

	87 P P P P P P P P P P P P P P P P P P P										
Soil depth		<u>.</u>	<u> </u>	Organic	Total C	Total N	Available P	Exc	Exchangeable cations (mg/g)	tions (mg/g)	
(cm)	period	DIO Di	E 0.	matter (%)	(%)	(%)	(mg/kg)	ㅗ	Ca	Mg	Na
		PF-1	5.04	4.99	2.05	0.10	4.12	51.54	952.20	149.20	8.30
	before	PF-2	4.96	3.05	1.37	0.07	2.63	34.04	814.00	62.68	9.16
		PF-3	5.05	5.21	2.93	0.13	3.55	57.72	753.40	131.20	9.28
0-5	. Totologam:	PF-1	5.25	3.80	2.05	0.24	4.09	62.56	658.00	47.54	7.32
	minediately office burn	PF-2	5.08	4.97	2.75	0.27	3.31	57.50	753.40	97.92	8.20
	מונפו מחווו	PF-3	5.01	4.27	1.97	0.27	4.86	53.78	749.20	137.92	8.50
		PF-1	5.36	5.81	3.10	0.29	2.39	48.14	566.40	189.92	7.38
	1-yr	PF-2	5.37	4.29	3.75	0.33	2.73	40.00	740.60	154.80	7.68
		PF-3	4.96	3.80	2.47	0.28	2.60	47.52	290.60	148.40	8.56
		PF-1	4.89	1.95	1.80	90'0	2.40	75.60	728.80	111.76	7.24
	before	PF-2	5.01	3.28	1.46	0.07	2.04	20.16	417.60	54.20	8.22
		PF-3	4.88	2.56	1.30	0.08	1.53	29.98	440.60	86.90	8.74
	Motorio come	PF-1	4.93	2.27	1.16	0.22	3.06	48.98	567.80	95.16	11.22
5-15	offor burn	PF-2	4.99	2.02	1.20	0.21	2.61	23.66	430.00	61.56	7.02
	מופו סמוו	PF-3	4.87	2.29	1.26	0.18	1.59	30.14	409.20	75.98	8.58
		PF-1	4.83	1.98	1.29	0.20	0.99	33.34	358.20	112.56	8.00
	1-yr	PF-2	5.15	2.38	1.44	0.22	0.99	21.94	401.00	82.56	8.44
		PF-3	4.77	1.88	1.23	0.20	0.64	28.74	297.40	81.96	9.54

Table appendix 20. คุณสมบัติทางเคมีของดินก่อนการเผา ทันทีหลังการเผา และหลังการเผา 1 ปี ในดินที่ระดับความลึก 0-5 ชม. และ 5-15 ชม. ในป่าสนผสมก่อ

Soil depth				Organic	Teto T	T et of D	Available D	П	Exchangeable cations (mg/a)	(0/00) 300	
(cm)	period	plot	Hd	matter (%)) (%)	(%)	(mg/kg)	\ \ \ \	Ca	Mg Mg	Na
		0-PF-1	5.12	4.12	2.31	0.11	5.79	59.50	780.00	159.54	7.00
	before	O-PF-2	5.01	3.19	1.80	0.10	6.35	61.02	642.60	115.80	7.58
		O-PF-3	4.62	3.98	2.36	0.28	5.03	53.66	300.60	84.40	6.88
	100000000000000000000000000000000000000	0-PF-1	4.85	4.45	5.14	0.24	4.03	32.34	497.40	123.94	4.98
0-2	Immediately	O-PF-2	4.95	1.42	0.85	0.12	7.88	55.58	365.40	98.36	9.50
	altel Dulli	O-PF-3	4.44	3.76	3.02	0.13	6.04	47.36	279.40	78.68	6.38
		0-PF-1	4.70	3.23	1.76	0.26	3.85	50.92	359.00	158.62	10.04
	1-yr	O-PF-2	4.55	2.79	2.76	0.37	2.66	46.12	192.82	93.68	6.42
		O-PF-3	4.34	2.86	1.35	0.25	1.96	38.86	166.04	86.98	4.98
		O-PF-1	4.87	2.59	1.45	0.07	2.39	28.06	336.00	100.42	5.14
	before	O-PF-2	4.84	1.60	0.80	0.12	2.14	31.36	197.92	58.38	5.78
		O-PF-3	4.32	2.62	1.64	0.23	2.70	54.00	93.22	43.82	5.58
	ylotoiloomai	0-PF-1	4.78	3.12	1.38	0.11	2.77	30.96	362.20	105.36	5.24
5-15	offer burn	O-PF-2	4.76	3.58	1.99	0.12	1.85	26.02	142.28	48.44	5.46
	מופו סמוו	O-PF-3	4.24	2.67	1.03	0.05	2.16	24.92	78.60	34.52	4.58
		0-PF-1	4.48	2.26	1.66	0.26	1.30	32.90	203.00	105.60	3.70
	1-yr	O-PF-2	4.51	1.19	1.06	0.19	0.89	32.64	105.14	61.32	2.80
		O-PF-3	4.08	1.72	1.69	0.23	1.29	27.20	87.30	43.18	6.34

Table appendix 21 ความหนาแน่นรวมของดินก่อนการเผาและภายหลังการเผาในช่วงเวลาต่าง ๆ ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

	hoford	poigning earlies	immediately	tely after	2-mon	2-month after	4-mon	4-month after	8-moni	8-month after	12-mor	12-month after
plot		ב ב ב ב	burr	burning	bur	burning	bur	burning	puri	burning	bur	burning
	0-5 cm	5-15 cm	0-5 cm	5-15 cm	0-5 cm	5-15 cm	0-5 cm	5-15 cm	0-5 cm	5-15 cm	0-5 cm	5-15 cm
PF1	0.956	0.954	0.974	0.873	0.959	1.073	0.959	1.073	0.943	0.938	0.958	1.030
PF2	0.808	0.903	0.720	0.756	0.911	0.746	1.072	1.078	0.962	0.974	1.068	1.003
PF3	1.008	0.922	1.024	1.109	966.0	1.104	0.912	0.793	0.934	0.931	0.902	1.150
	0.924	0.926	906.0	0.913	0.955	0.974	0.965	0.942	0.946	0.948	0.976	1.061
Average Pr	(0.060)	(0.015)	(0.094)	(0.140)	(0.025)	(0.115)	(0.053)	(0.083)	(0.008)	(0.013)	(0.049)	(0.045)
0-PF1	1.026	1.134	0.956	0.957	1.050	0.988	1.066	0.938	1.081	1.085	1.163	1.130
0-PF2	1.136	0.968	1.039	1.098	0.992	1.126	1.166	1.276	1.245	1.176	1.108	1.082
O-PF3	0.983	1.126	0.927	0.968	1.001	0.980	1.072	908.0	1.151	1.226	1.119	1.041
	1.048	1.076	0.974	1.008	1.015	1.031	1.101	1.006	1.159	1.162	1.130	1.084
AvelageO-II	(0.046)	(0.054)	(0.034)	(0.045)	(0.018)	(0.048)	(0.033)	(0.140)	(0.047)	(0.041)	(0.017)	(0.026)

Table appendix 22. ปริมาณในโตรเจนทั้งหมดในดิน (kg/ha) ที่ระดับความลึกต่างๆ ก่อนการเผาและ ภายหลังการเผาไปเป็นระยะเวลา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

		Total nitrog	en pool (kg	/ha)
plot	before	burning	1-yr afte	er burning
	0-5 cm	5-15 cm	0-5 cm	5-15 cm
PF1	478.0	572.4	1389.1	2059.8
PF2	282.8	632.1	1762.2	2206.7
PF3	655.2	737.6	1263.4	2299.9
average PF	472.0	647.4	1471.6	2188.8
O-PF1	564.3	793.8	1511.8	2938.7
O-PF2	568.0	1161.6	2050.3	2055.6
O-PF3	1376.2	2589.8	1399.2	2393.6
average O-	836.2	1515.1	1653.8	2462.6

Table appendix 23. ปริมาณฟอสฟอรัสในรูปที่เป็นประโยชน์ต่อพืชทั้งหมดในดิน (kg/ha) ที่ระดับ ความลึกต่างๆ ก่อนการเผาและภายหลังการเผาไปเป็นระยะเวลา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่า สนผสมก่อ (O-PF)

	Availa	ble Phosph	orus pool	rus pool (kg/ha)	
plot	before burning		1-yr after burning		
	0-5 cm	5-15 cm	0-5 cm	5-15 cm	
PF1	1.969	2.293	1.145	1.023	
PF2	1.063	1.843	1.460	0.997	
PF3	1.789	1.412	1.173	0.737	
average PF	1.607	1.849	1.259	0.919	
O-PF1	2.971	2.707	2.237	1.466	
O-PF2	3.605	2.072	1.475	0.960	
O-PF3	2.470	3.044	1.097	1.346	
average O-PF	3.015	2.608	1.603	1.257	

Table appendix 24. ปริมาณโปแตสเซียมในดิน (kg/ha) ที่ระดับความลึกต่างๆ ก่อนการเผาและ ภายหลังการเผาไปเป็นระยะเวลา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

	F	otassium	pool (kg/h	a)
plot	before burning		1-yr after burning	
	0-5 cm	5-15 cm	0-5 cm	5-15 cm
PF1	24.64	72.12	23.06	34.34
PF2	13.75	18.20	21.36	22.01
PF3	29.09	27.64	21.44	33.05
average PF	22.49	39.32	21.95	29.80
O-PF1	30.52	31.82	29.61	37.19
O-PF2	34.66	30.36	25.56	35.31
O-PF3	26.37	60.80	21.75	28.31
average O-PF	30.52	40.99	25.64	33.60

Table appendix 25. ปริมาณแคลเซียมในดิน (kg/ha) ที่ระดับความลึกต่างๆ ก่อนการเผาและภายหลัง การเผาไปเป็นระยะเวลา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

	Calcium pool (kg/ha)			
plot	before burning		1-yr after burning	
	0-5 cm	5-15 cm	0-5 cm	5-15 cm
PF1	455.15	695.28	271.31	368.91
PF2	328.86	377.09	395.48	402.22
PF3	379.71	406.23	266.49	342.00
average PF	387.91	492.87	311.09	371.04
O-PF1	400.14	381.02	208.75	229.44
O-PF2	365.00	191.59	106.85	113.75
O-PF3	147.74	104.97	92.93	90.85
average O-PF	304.29	225.86	136.18	144.68

Table appendix 26. ปริมาณแคลเซียมในดิน (kg/ha) ที่ระดับความลึกต่างๆ ก่อนการเผาและภายหลัง การเผาไปเป็นระยะเวลา 1 ปี ในป่าสนเสื่อมโทรม (PF) และป่าสนผสมก่อ (O-PF)

	٨	Magnesium pool (kg/ha)			
plot	before burning		1-yr after burning		
	0-5 cm	5-15 cm	0-5 cm	5-15 cm	
PF1	71.32	106.62	90.97	115.93	
PF2	25.32	48.94	82.66	82.81	
PF3	66.12	80.12	66.96	94.25	
average PF	54.26	78.56	80.20	97.66	
O-PF1	81.84	113.88	92.23	119.35	
O-PF2	65.77	56.51	51.91	66.34	
O-PF3	41.48	49.34	48.68	44.94	
average O-PF	63.03	73.24	64.28	76.88	

Figure appendix

ภาพกิจกรรมการดำเนินงานวิจัย

สภาพพื้นที่โดยทั่วไปของป่าสนผสมก่อ (2 ภาพด้านบน) และป่าสนเสื่อมโทรม (2 ภาพด้านล่าง)

การวางแปลงและศึกษาโครงสร้างและองค์ประกอบของไม้ชั้นบนในสังคมพืช

การวางแปลงและศึกษาโครงสร้างและองค์ประกอบของไม้หนุ่มและลูกไม้ในสังคมพืช

การสำรวจปริมาณเชื้อเพลิงก่อนการเผาแปลงทดลอง

การเก็บตัวอย่างดินก่อนการเผาแปลงทดลอง (2 ภาพบน) และทันทีหลังการเผาแปลงทดลอง (2 ภาพล่าง)

การถ่ายภาพเรือนยอดและตัวอย่างภาพถ่ายเรือนยอดที่ได้

ความเสียหายของแปลงทดลองจากการทำลายของช้างป่า

ลักษณะพฤติกรรมไฟในป่าสนเสื่อมโทรม

ลักษณะพฤติกรรมไฟในป่าสนผสมก่อ

การใช้แนวถนนเป็นแนวกันไฟสำหรับการทดลองเผาในแปลงป่าสนผสมก่อ (2 ภาพบน) และแนวกันไฟ ที่สร้างขึ้นในป่าสนเสื่อมโทรม (2 ภาพล่าง)

ต้นสนสามใบถูกไฟเผาที่บริเวณเรือนยอด ขณะทำการเผาแปลงทดลอง

การดำเนินการเผาและควบคุมให้การเผาอยู่ในขอบเขตไม่ลุกลามออกนอกแปลงและการดับไฟภายหลัง การเผาเสร็จสิ้น โดยเจ้าหน้าที่สถานีควบคุมไฟป่าเพชรบูรณ์

สภาพพื้นที่โดยทั่วไปภายหลังการเผาในป่าสนผสมก่อ (2 ภาพบน) และป่าสนเสื่อมโทรม (2 ภาพล่าง)

วิธีการเก็บสิ่งที่หลงเหลือภายหลังการทดลองเผาแปลงทดลอง

เครื่องตรวจวัดสภาพภูมิอากาศเคลื่อนที่ (Kestrel 4500) ที่ติดตั้งเพื่อตรวจสอบการเปลี่ยนแปลงของ อุณหภูมิ ความชื้นสัมพัทธ์ ทิศทางและความเร็วลม ระหว่างการเผาแปลงทดลอง

การติดตั้งเครื่องตรวจวัดอุณหภูมิดิน (thermocouple: TESTO-171) โดยการฝังดินก่อนทำการเผาแปลง (2 ภาพบน) และการเก็บอุปกรณ์และถ่ายโอนข้อมูลภายหลังการเผา (2 ภาพล่าง)

Output ที่ได้รับจากโครงการวิจัย

นิเวศวิทยาของไฟในป่าที่มีไม้สนและผลกระทบของไฟต่อสังคมพืชและพลวัตรของธาตุอาหาร บริเวณภูก่มข้าว อุทยานแห่งชาติน้ำหนาว

1. การนำเสนอผลงานวิจัยในการประชุมวิชาการนานาชาติ

โครงการวิจัย นิเวศวิทยาของไฟในป่าที่มีไม้สนและผลกระทบของไฟต่อสังคมพืชและพลวัตร ของชาตุอาหารบริเวณภูกุ่มข้าว อุทยานแห่งชาติน้ำหนาว ได้นำผลการวิจัย 2 จาก 4 เรื่องหลักไป นำเสนอในการประชุมนานาชาติ "International Meeting of Fire Effects on Soil Properties III" ซึ่งการ ประชุมดังกล่าวจัดขึ้นในระหว่างวันที่ 15-19 มีนาคม 2554 ณ เมือง Guimarães ประเทศโปรตุเกส โดย การเดินทางไปเข้าร่วมประชุมวิชาการนานาชาติดังกล่าว ทำให้เกิดการแลกเปลี่ยนประสบการณ์ ความรู้ กับนักวิจัยในสาขาวิทยาศาสตร์ไฟป่าที่เกี่ยวข้อง อีกทั้งยังมีโอกาสในการสร้างเครือข่ายความร่วมมือใน การศึกษาวิจัยในสาขาวิชาการทางด้านไฟป่าในอนาคต ซึ่งทำให้เกิดการพัฒนาศักยภาพในการวิจัยอัน จะนำมาซึ่งการพัฒนาและความเจริญก้าวหน้าต่อวิชาการด้านวนศาสตร์

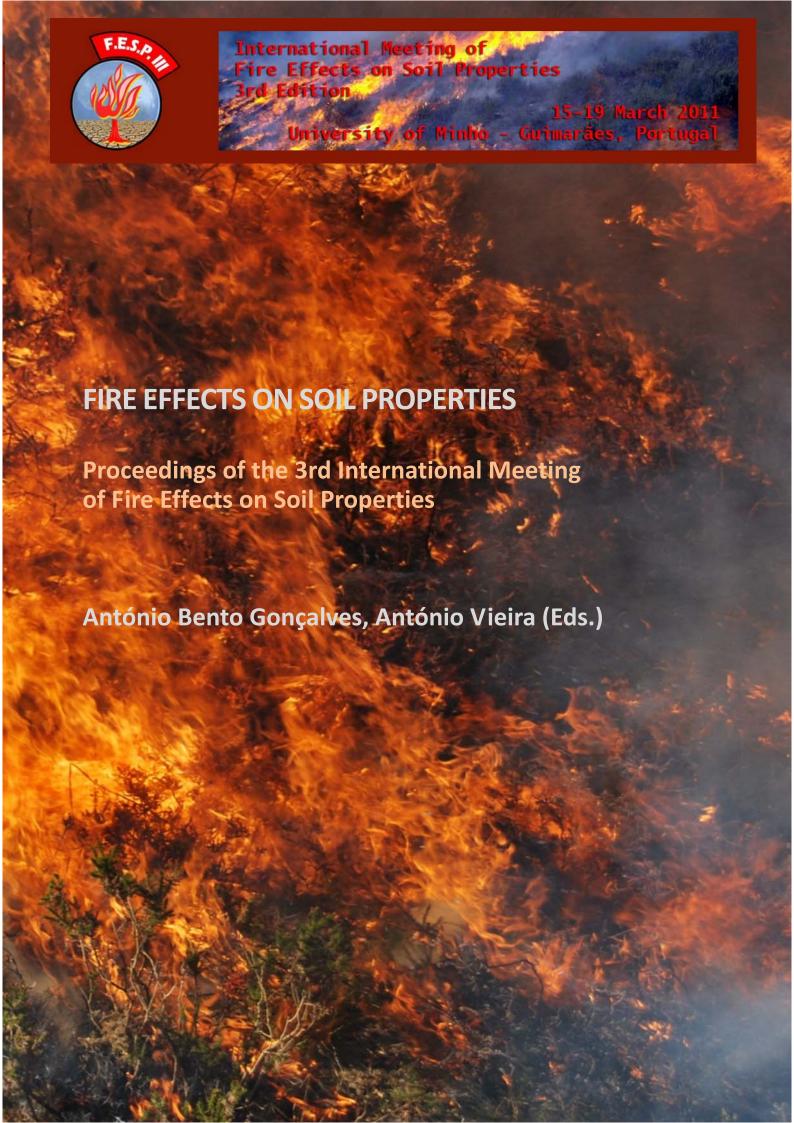
ในการประชุมดังกล่าวได้นำเสนอผลงานวิจัยแบบปากเปล่า (oral presentation) จำนวน 1 เรื่อง และนำเสนอผลงานภาคโปสเตอร์ 1 เรื่อง ดังนี้

- Quantifying the Intensity of Prescribed Fire in Degraded Pine Forest and Pine-Oak Forest, Nam Nao National Park, Thailand (oral presentation)
- Effects of Prescribed Fire on Carbon Storage and Loss in Degrade Pine Forest and Pine-Oak Forest at Nam Nao National Park, Thailand (Poster presentation)

โดยมีรายละเอียดเอกสารบทคัดย่อ ใน Proceedings of the 3rd International Meeting of fire Effects on Soil Properties (Antonio Bento Goncalves, Antonio Vieira (Eds.)) และโปสเตอร์ ดังแนบ

2. การตีพิมพุในวารสารวิชาการนานาชาติ

โครงการวิจัยนี้มีเป้าหมายที่จะตีพิมพ์ผลงานในวารสารวิชาการนานาชาติจำนวน 2 เรื่อง ได้แก่


- Quantifying the Intensity of Prescribed Fire in Degraded Pine Forest and Pine-Oak Forest, Nam Nao National Park, Thailand
- 2. Effects of Prescribed Fire on Carbon Storage and Loss in Degrade Pine Forest and Pine-Oak Forest at Nam Nao National Park, Thailand

ซึ่งขณะนี้หัวข้อเรื่องทั้งสองอยู่ในระหว่างการจัดเตรียมเอกสาร manuscript เพื่อเสนอตีพิมพ์ ซึ่ง เมื่อได้รับการตอบรับให้ตีพิมพ์แล้ว คณะผู้วิจัยจะได้ทำการจัดส่งให้ สกว. ในภายหลังต่อไป

3. การนำผลงานวิจัยไปใช้ประโยชน์ ในเชิงวิชาการ

โครงการวิจัยนิเวศวิทยาของไฟในป่าที่มีไม้สนและผลกระทบของไฟต่อสังคมพืชและพลวัตรของ ธาตุอาหารบริเวณภูก่มข้าว อุทยานแห่งชาติน้ำหนาว ได้ถูกนำมาใช้ประโยชน์ในเชิงวิชาการ 2 ด้าน ได้แก่

- 1. การนำผลการวิจัยมาใช้ในการเรียนการสอนโดยเฉพาะกับนิสิตระดับบัณฑิตศึกษา โดยได้ นำผลการวิจัยมาใช้ประกอบการเรียนการสอนในรายวิชา นิเวศวิทยาไฟป่า (Fire Ecology) รหัสวิชา 01306531
- 2. การสร้างนักวิจัยใหม่ในระดับปริญญาโท ซึ่งมีนิสิตที่กำลังศึกษาในระดับปริญญาโท 2 คนที่ กำลังทำวิทยานิพนธ์ภายใต้โครงการวิจัยนี้ ได้แก่
 - 1) นายวรเดช ตะรุสะดำรงเดช นิสิตภาควิชาวนวัฒนวิทยา คณะวนศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ทำโครงการวิทยานิพนธ์เรื่อง ลักษณะของเชื้อเพลิงและ พฤติกรรมของไฟในป่าสนเสื่อมโทรมและป่าสนผสมก่อ ณ อุทยานแห่งชาติน้ำ หนาว จังหวัดเพชรบูรณ์
 - 2) นายขวัญชัย ชินวงษ์ นิสิตภาควิชาวนวัฒนวิทยา คณะวนศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ทำโครงการวิจัยเรื่อง ผลกระทบของไฟต่อการ ปลดปล่อยและการกักเก็บคาร์บอน ในป่าสนและป่าสนผสมก่อ บริเวณอุทยาน แห่งชาติน้ำหนาว จังหวัดเพชรบูรณ์

FIRE EFFECTS ON SOIL PROPERTIES

Proceedings of the 3rd International Meeting of Fire Effects on Soil Properties

Guimarães, 15-19 March, 2011

António Bento Gonçalves, António Vieira (Eds.)

Editors: António Bento Gonçalves and António Vieira

Edition: NIGP-Univ. Minho and CEGOT

ISBN: 978-989-97214-0-1

Dep. Legal: 324599/11

Printing: Chapa5

Design and text formatting: António Vieira

Cover photo: Prescribed fire in Gerês Mountain (António Bento Gonçalves)

Organizing Committee: Coordinators António Bento Gonçalves António Vieira Secretary Flora Ferreira Leite Members Luciano Lourenço Xavier Úbeda Collaborators João Maia Mónica Santos **Organizing Institutions:** Núcleo de Investigação em Geografia e Planeamento (Universidade do Minho) Centro de Estudos de Geografia e Ordenamento do Território (Universidades de Coimbra, Porto e Minho) **Poster Jury:** Daniel Neary Flora Ferreira Leite Lea Wittenberg **Meeting Conclusions:**

Artemio Cerdà

Mike Kirkby Stefan Doerr

Jorge Mataix-Solera

Scientific Committee:

António Bento Gonçalves (Universidade do Minho - Portugal)

António Vieira (Universidade do Minho - Portugal)

Ana Cristina Meira (Instituto Politécnico do Porto - Portugal)

António Pedrosa (Universidade do Porto - Portugal)

Artemi Cerdá (Universitat de València - Spain)

Cagatay Tavsanoglu (Hacettepe University - Turkey)

Celeste Coelho (Universidade de Aveiro – Portugal)

Chris Chafer (Sydney Catchment Authority - Australia)

Deborah A. Martin (U.S. Geological Survey – United States of America)

Dennis Fox (Université de Nice Sophia Antipolis – France)

Fernando Rebelo (Universidade de Coimbra - Portugal)

Hermínio Botelho (Universidade de Trás-os-Montes e Alto Douro - Portugal)

John A. Moody (U.S. Geological Survey – United States of America)

Jorge Mataix-Solera (Universidad Miguel Hernández - Spain)

Luciano Lourenço (Universidade de Coimbra - Portugal)

Lúcio Cunha (Universidade de Coimbra - Portugal)

Maria José Roxo (Universidade Nova de Lisboa – Portugal)

Montserrat Diaz Raviña (IIAG-CSIC - Spain)

Richard Shakesby (Swansea University – United Kingdom)

Scott W. Woods (University of Montana – United States of America)

Stefan Doerr (Swansea University – United Kingdom)

Susana Bautista (Universidad de Alicante - Spain)

Xavier Úbeda (Universitat de Barcelona -Spain)

Supporting Institutions:

Associação de Estudantes de Geografia e Planeamento da Universidade do Minho

GOVERNO CIVIL DE BRAGA

CONTENTS

PREFACE	15
TRIBUTE TO MARIA SALA	17
PROGRAMME	19
KEY LECTURES	
PRESCRIBED FIRE - THE SPARK THAT LED TO A NEW PARADIGM IN PORTUGAL Paulo Mateus, Autoridade Florestal Nacional	27
CRITERIA TO DEVELOP PROTOCOLS FOR POST-WILDFIRE SOIL REHABILITATION: CURRENT EXPERIENCE IN GALICIA (NW SPAIN) José António Vega, Centro de Investigación Forestal de Lourizán	32
RESEARCH ON ASH FROM PRESCRIBED AND WILDLAND FIRES SINCE THE 1950'S: PAST APPROACHES AND FUTURE DIRECTIONS Deborah A. Martin, United States Geological Survey	33
THE CONTRIBUTION OF THE PHOENIX PROJECT CENTRE TO POST-FIRE RESEARCH IN EUROPE Francisco Moreira, CEABN	38
FOREST FIRES AS DRIVERS OF LAND DEGRADATION IN PORTUGAL Celeste Coelho, CESAM-University of Aveiro	39
COMMUNICATIONS	
FIRE-INDUCED CHANGES IN SOIL ORGANIC MATTER STABILITY ALONG A CATENA ON MT. ETNA, SICILY Giovanni Mastrolonardo, Ruedi Seiler, Giacomo Certini, Rolf Krebs, Michael Plotze, Markus Egli	43
THE EFFECTS OF HEATING A LATERITIC PODZOLIC SOIL ON SOIL PHOSPHATE AVAILABILITY, A GLASSHOUSE STUDY Robert Gilkes, Emielda Yusiharni	44
HOW DOES BIANNUAL BURNING ALTER THE QUALITY AND QUANTITY OF ORGANIC MATTER IN SOILS?- AN EXAMPLE FROM THE CAMPO IN THE HIGHLAND OF SOUTHERN BRAZIL	
Heike Knicker, Deborah P. Dick, Ricardo S.D. Dalmolin	45

DUE TO A BUSHFIRE IN THE DARLING RANGE, WESTERN AUSTRALIA	
Emielda Yusiharni, Robert Gilkes	49
FIRE SEVERITY EFFECTS ON ASH CHEMICAL COMPOSITIONS AND EXTRACTABLE ELEMENTS Paulo Pereira, Xavier Úbeda, Deborah Martin	50
QUANTIFYING THE INTENSITY OF PRESCRIBED FIRE IN DEGRADED PINE FOREST AND PINE-OAK FOREST, NAM NAO NATIONAL PARK, THAILAND Kobsak Wanthongchai, Singkhorn Rugsamanee, Phanpong Kongdetadisak,	
Voradet Tarusadamrongdet, Khwanchai Chinnawong	55
IMPACT OF UNPRECEDENTED FIRE INTENSITY ON SOIL PHYSICAL AND CHEMICAL PROPERTIES: THE CASE OF THE CATASTROPHIC VICTORIA FIRES OF 2009	
Stefan Doerr, Richard Shakesby, Bryant Rob, Smith G. Hugh, Gary Sheridan, Patrick Lane, Tina Bell, William Blake	59
POST-FIRE RILL AND GULLY FORMATION, SCHULTZ FIRE 2010, ARIZONA, US	60
Daniel George Neary, Karen A. Koestner, Ann Youberg, Peter E. Koestner	60
MEASUREMENT OF A PM10 EMISSIONS IN A POST-WILDFIRE ENVIRONMENT	
Natalie Wagenbrenner, Brian Lamb, Peter Robichaud, Mathew Germino	64
SOME REFLECTIONS ON ACQUISITION, PROCESSING AND ANALYSIS OF STATISTICAL DATA IN FOREST SOILS Ana Cristina Meira, J. P. Meixedo	68
USING PESERA TO MANAGE DESERTIFICATION PROCESSES FOLLOWING WILDFIRES IN GÓIS AND MAÇÃO, PORTUGAL	
Tanya Esteves, António Ferreira, J. A. Soares, Mike Kirkby, Rick Shakesby, Brian Irvine, C. S. Ferreira, Celeste Coelho, M. A. Carreiras	69
CHEMICAL CHARACTERIZATION OF TERRA PRETA DO ÍNDIO SOILS, PALEOSOILS AND A SOIL FROM THE NORTH OF GALICIA AFFECTED BY FOREST FIRES	
María Teresa García Ares, R. Pardo Lorenzo, Manuel Bao Iglesias, Felipe Macías Vázquez	75
RUNOFF RATES, WATER EROSION AND WATER QUALITY ON A SOIL COVERED WITH DIFFERENT TYPES OF ASH	
Merche B. Bodí, Francisco Javier León Miranda, Artemi Cerdà, Victoria Balfour, Jorge Mataix-Solera, Stefan Helmut Doerr	80

CHARACTERIZING THE HYDROLOGICAL PROPERTIES OF WILDFIRE ASH	0.5
Scott W. Woods, Victoria N. Balfour	83
DEPOSITIONAL CHARACTERISTICS OF POST-FIRE FLOODING FOLLOWING THE SCHULTZ FIRE, SAN FRANCISCO PEAKS, ARIZONA	
Karen Ann Koestner, Mike D. Carroll, Daniel G. Neary, Peter E. Koestner, Ann Youberg	90
HYDROLOGICAL RESPONSE OF A SMALL CATCHMENT BURNED BY EXPERIMENTAL FIRE	0.4
Cathelijne Stoof, Joost Iwema, António Ferreira, Rutger Willem Vervoort	94
SOIL WATER REPELLENCY PERSISTENCE AFTER RECURRENT FOREST FIRES, MT. CARMEL, ISRAEL	
Naama Tessler, Lea Wittenberg, Noam Greenbaum	99
IMPACTS OF WILDFIRE ON SOIL REPELLENCY WITHIN OBLIGATE RESPROUTER COMMUNITIES NEAR SYDNEY, AUSTRALIA Jessica Tamara Heath, Chris Chafer, Thomas Bishop	104
THE RELATIVE IMPORTANCE OF SOIL WATER REPELLENCY IN DETERMINING RUNOFF-INFILTRATION PROCESSES IN BURNED MEDITERRANEAN FOREST SOILS	
Lea Wittenberg, Dan Malkinson, Annelies Voogt, Danny Leska, Eli Argaman, Saskia Keestra	110
VARIABILITY OF THE SOIL THERMAL PROPERTIES AFTER PRESCRIBED FIRE	115
Carles M. Rubio, Luís Outeiro, Francesc Ferrer, Xavier Úbeda	115
DO STAKEHOLDERS KNOW WHAT HAPPENS TO SOIL AFTER FOREST FIRES? A CASE STUDY IN CENTRAL PORTUGAL	
Cristina Ribeiro, Celeste Coelho, Sandra Valente, Teresa Carvalho, Elisabete Figueiredo	119
COMPARISON OF THE EFFECTS OF POST-FIRE SOIL STABILIZATION TREATMENTS ON SOIL EROSION CONTROL AND THE EFFECTS OF POST-FIRE SOIL STABILIZATION TREATMENTS ON SOIL EROSION CONTROL AND THE EFFECTS OF POST-FIRE SOIL STABILIZATION TO SOIL PROPERTIES IN CALICIA ON SPAND	
IN SELECTED SOIL PROPERTIES IN GALICIA (NW SPAIN) María Teresa Fonturbel, Montserrat Diaz-Raviña, José António Vega, Serafín	
J. González-Prieto, Cristina Fernandez, Ángela Martín, Enrique Jiménez, Ana Barreiro, Tarsy Carballas	123
ROCK GABION, ROCK ARMORING, AND CULVERT TREATMENTS CONTRIBUTING TO AND REDUCING EROSION DURING POST-FIRE FLOODING - SCHULTZ FIRE 20102	
Daniel George Neary, Karen A. Koestner, Ann Youberg.	128

EFFECTIVENESS OF TWO MULCH TREATMENTS CONTROLLING SOIL EROSION AND WATER CONSERVATION	
Celeste Alves Coelho, Sérgio Prats, Alexandra Pinheiro, Teresa Carvalho, Anne-Karine Boulet, António Ferreira, João Soares	132
PRELIMIARY DATA OF SOIL PROPERTIES AND SOIL EROSION FOLLOWING A WILDFIRE AND DIFFERENT POST-FIRE SOIL STABILIZATION TREATMENTS IN LAZA (NW SPAIN)	
Montserrat Díaz Raviña, A Martín, A. Barreiro, A. Lombao, M. J. Goméz, A. Couto-Vázquez, L. Iglesias, F. Díaz-Fierros, T. Carballas	136
GEOMORPHIC ASPECTS OF POST-FIRE SOIL EROSION – SCHULTZ FIRE 2010	
Ann Youberg, Karen Ann Koestner, Daniel G. Neary, Peter E. Koestner	140
SOIL PROPERTIES IN BURND AND UNBURND MEDITERRANEAN SHRUBLANDS IN MONTESINHO NATURAL PARK, NORTHEAST PORTUGAL	
Felícia Fonseca, Micaela Leite, Tomás de Figueiredo	144
HOW COAL FIRES AFFECT THE CLAYS: AN INTERDISCIPLINARY APPROACH	1.10
Sorin - Corneliu Radan, Silviu Radan	148
CONTRASTING EFFECTS OF FIRE ON FOREST AND AGRICULTURAL SOILS	
Cornelia Rumpel, Bruno Mary, Yessica Rivas, Christian Valentin, C. Nocentini, G. Certini, Francisco Matus	153
RILL EROSION IN BURNED FORESTS Joseph W. Wagenbrenner, Peter R. Robichaud	156
FIRE IMPACT ON SOIL AND NUTRIENT LOSSES IN SCHIST MOUNTAIN AREAS: CENTRAL PORTUGAL STUDY	
Richard Shakesby, Carla Sofia Santos Ferreira, Rory Walsh, Célia Bento, António Ferreira, Cathelijne Stoof	160
SOIL MICROBIAL COMMUNITY STRUCTURE AS AFFECTED BY A WILDFIRE IN LAZA (NW SPAIN)	
Alba Lombao, A. Barreiro, A. Martín, M. Raviña	165
IMMEDIATE AND SHORT-TERM EFFECTS OFF A WILDFIRE ON SOIL BIOCHEMICAL PROPERTIES IN LAZA (NW SPAIN)	
Ana Barreiro, A. Lombao, A. Martín, M. Raviña	168

NEAR INFRARED SPECTROSCOPY TO ESTIMATE TEMPERATURES OF BURNED SOILS: IMPORTANCE OF SAMPLE VARIABILITY IN MODEL CONSTRUCTION	
Andrea Pérez-Bejarano, César Guerrero, Jorge Mataix-Solera, Victoria Arcenegui, Gema Bárcenas, Jose Martín Soriano-Disla, Jorge Mataix-Beneyto	171
ADAPTACLIMA - ADAPTATION TO THE EFFECTS FROM CLIMATE CHANGE IN THE AVE	
António Bento Gonçalves, António Vieira, Flora Ferreira Leite, José Martins, Domingos Silva, Vera Soares	175
THE IMPORTANCE OF PINE NEEDLES IN REDUCING SOIL EROSION FOLLOWING A LOW/MEDIUM INTENSITY WILDFIRE IN JUNCEDA (PORTUGAL) – AN EXPERIMENTAL DESIGN António Bento Gonçalves, António Vieira, Luciano Lourenço, José Salgado,	
Luís Mendes, Américo Castro, Flora Ferreira Leite	181
GEOGRAPHICAL INFORMATION TECHNOLOGY TO SUPPORT RESEARCH ON FOREST FIRES AND SOIL EROSION António Vieira, António Bento Gonçalves, Carla Martins, Flora Ferreira	
Leite, Luís Mendes	186
IMMEDIATE POST-FIRE SOIL INTERVENTIONS IN FORESTED AREAS	
Celeste Alves Coelho, Sérgio Prats, Alexandra Pinheiro, Teresa Carvalho, Anne-Karine Boulet, António Ferreira	192
EXPERIMENTAL DESIGN TO MODEL INFILTRATION INTO AWATER REPELLENT SOIL USING A CRUST-TYPE INFILTRATION EQUATION Dennis Fox, Cyriel Adnès, Jean Morschel, Frédéric Darboux	195
MODELING POST-FIRE RUNOFF AND EROSION AT THE MICRO- PLOT SCALE UNDER SIMULATED RAINFALL IN EUCALYPT PLANTATIONS IN NORTH-CENTRAL PORTUGAL Diana Catarina Vieira, Maruxa Malvar, João Pedro Nunes, Jan Jacob Keizer	196
INITIAL STAGE OF FUNGAL SUCCESSION IN DIFFERENTLY MANAGED POST-FIRE PINUS MUGO PLANTATIONS ON THE BALTIC SEA COAST	170
Ernestas Kutorga, Gražina Adamonytė, Reda Iršėnaitė, Sigitas Juzėnas, Jonas Kasparavičius, Svetlana Markovskaja, Jurga Motiejūnaitė, Aušra Treigienė	197
THE FREQUENCY OF FIRES AND LAND DEGRADATION - CABEÇO DA VESSADA DO MONTE, SERRA DA CABREIRA	100
Flora Ferreira Leite, António Bento Gonçalves, António Vieira, Luís da Vinha	198

RAINFALL SIMULATIONS AND FOREST FIRES IN THE CENTRAL SECTOR OF THE EBRO BASIN	
Francisco Javier Leon Miranda, C. Alvarez, D. Badia, M. Echeverria, C.	
Martí, P. Ibarra.	203
THE EFFECTS OF RECURRENT RAINFALL EVENTS ON THE	
HYDROLOGICAL CHANGES OF SOIL SURFACES COVERED BY ASH	
Francisco Javier Leon Miranda, M. B. Bodí, A. Cerdà, J. Mataix-Solera, M.	
Echeverría	208
AGING OF BLACK CARBON IN THE PROTECTED MARSHLAND OF	
THE GUADALQUIVIR DELTA, SOUTHERN SPAIN	
Heike Knicker, Francisco Javier Gonzaléz Vila, Luis Clemente Salas	213
Ticke Killeker, I fallerseo Javier Golizarez viia, Eurs Cielliente Salas	213
CATION'S WASHING IN BURNED SOIL: A RAINFALL SIMULATION	
STUDY	
José Javier Cancelo González, María Ermitas Rial Rivas, Francisco Díaz-	
Fierros Viqueira	214
FAST CHARACTERIZATION OF WILDFIRE EFFECTS ON SOIL	
ORGANIC MATTER BY ANALYTICAL PYROLYSIS	
Jose Maria de la Rosa, Maria Eufemia Varela, Silvia Regina Faria, Maria	
Fátima Araújo, Francisco Javier Gonzalez Vila, Heike Knicker, José António	210
González Pérez, Jan Jacob Keizer	218
EFFECTS OF PRESCRIBED FIRE ON CARBON STORAGE AND LOSS	
IN DEGRADED PINE FOREST AND PINE-OAK FOREST AT NAM NAO	
NATIONAL PARK, THAILAND	
Kwonchai Chinwong, Kobsak Wanthongchai, Vorrdesh Tarusadamrongdet,	
Singkuon Rugsamanee, Punpong Kongdetadisak	224
JOINT EFFECTS OF FIRE AND DROUGHT ON THE SEASONAL	
PATTERNS OF SOIL NUTRIENT AVAILABILITY AND MICROBIAL	
ACTIVITY	
M Belén Hinojosa, António Parra, David António Ramírez, José António	220
Carreira, Roberto García-Ruiz, José Manuel Moreno	228
CHORT TERM CHANCES IN SOIL DUVSICAL AND CHEMICAL	
SHORT-TERM CHANGES IN SOIL PHYSICAL AND CHEMICAL PROPERTIES AFTER WILDFIRES IN NW SPAIN	
María E. Varela, Elena Benito, María Rodríguez-Alleres, Jan Jacob Keizer	229
Widila E. Vareia, Elena Bellito, Waria Rodriguez Mileres, Jan Jacob Reizer	22)
EFFECTS OF WILDFIRE ON SOIL WATER REPELLENCY AND THEIR	
IMPLICATIONS FOR SOIL EROSION	
Maria Rodriguez Alleres, María Eufemia Varela Teijeiro, Elena Benito Rueda	230
WILDFIRE EFFECTS ON HIDROCHEMISTRY OF MARÃO RIVER	
WATERSHED	
Maria Rosario Costa, José Aranha	231

EVOLUTION OF SOIL ORGANIC MATTER AFTER FIRE: A 20-YEAR CHRONOSEQUENCE	
Marie A. ALEXIS, H. Knicker, C. Anquetil, C. Rumpel	237
OVERLAND FLOW AND SOIL EROSION AT MICRO-PLOT SCALE IN SIX RECENTLY BURNT EUCALYPT STANDS IN NORTH-CENTRAL PORTUGAL	
Maruxa Malvar Cortizo, J. P. Nunes, J. Jacob Keizer	240
POTENTIAL AND EFFECTIVE RESPONSE TO FIRE OF THE SEED BANK OF A MEDITERRANEAN HEATLAND	
Paula Maia, Isabel Fernandes, Ana Vasques, Domingos Viegas, Juli Pausas, J. Jacob Keizer	241
SOIL PROTECTION BY ASH AFTER A WILDFIRE	
Paulo Pereira, Artemi Cerdà, Xavier Úbeda, J. Mataix-Solera, Deborah Martin	242
IMPACT OF A FOREST REGENERATION METHOD USED AFTER FIRE ON SOME SOIL PROPERTIES	
Piotr Sewerniak, Slawomir S. GONET	247
BIOAVAILABLE METAL MICRONUTRIENT IN THE RHIZOSPHERE BURNED SOILS	
Pura Marcet, Saleta Gonzalez.	251
RECLAMATION OF A BURNED FOREST SOIL WITH FISH MANURE VERMICOMPOST	
Pura Marcet, Saleta Gonzalez, Beatriz Coleiro	254
APPLICABILITY OF THE CURVE NUMBER TO THE SOIL HYDROLOGICAL RESPONSE FOLLOWING PRESCRIBED BURNING IN A HEATHLAND ECOSYSTEM (TEMPERATE-HUMID NW SPAIN)	
Rosario Basanta, Francisco Díaz-Fierros	258
EFFECTIVENESS OF HYDRO-MULCHING TO REDUCE RUNOFF AND EROSION IN A RECENTLY BURNT AND LOGGED MARITIME PINE STAND IN NORTH-CENTRAL PORTUGAL	
Sérgio Alegre, Maruxa Cortizo, Sílvia Faria, Diana Vieira, Paula Maia, Ana Vasques, Alexandra Albuquerque, Max X. Shen, Hein Vermin, Jan J. Keizer	263
COAL PALAEOFIRES IN THE WESTERN DACIC BASIN: GEOPHYSICAL, MINERALOGICAL AND GEOCHEMICAL SIGNATURES RECOVERED FROM PORCELANITES AND CLINKERS; A CASE HISTORY	
Sorin - Corneliu Radan, Silviu Radan	266

271
272
273
275

PREFACE

The first edition of the International Meeting of Fire Effects on Soil Properties was held in Barcelona, Spain, in February 2007 by the Grup de Recerca Ambiental Mediterrània (GRAM) and the second in Marmaris, Turquey, in February 2009 by the research group on fire ecology (Hacettepe University).

This third edition will take place in Minho University (scheduled for March 15-19, 2011 in the city of *Guimarães*), is organized by the *Núcleo Investigação em Geografia e Planeamento da Universidade do Minho (NIGP)*, with the collaboration of the *Centro de Estudos de Geografia e Ordenamento do Território (CEGOT)*, brings together more than 80 researchers from countries like Australia, United States, Brazil, Israel, Thailand, Czech Republic, Poland, the Netherlands, France, Greece, Italy, Romania, Spain, United Kingdom, Germany and Portugal, who bring the experience of decades of scientific and technical work in areas affected by forest fires.

The main subjects of the meeting will be as followed:

- Fire effects on hydrology and soil physical properties;
- Fire effects on organic matter content and soil chemical properties;
- Methodologies to study fire effects on soil;
- Fire intensity, fire recurrence and fire severity measurements;
- Soil erosion and management strategy for recovery after forest fires.

The International Meeting, five days of duration, will consist in 5 Key Lectures given by senior scientific and managers from the United States, Spain and Portugal, 31 oral communications, 33 poster communications and a Tribute to Maria Sala (Departament de Geografia Física i AGR, Universitat de Barcelona, Spain).

Three oral communication sessions will be presented on the first day, with discussions after each session and three key lectures will be given (Paulo Mateus - Prescribed Fire - the spark that led to a new paradigm in Portugal; José Antonio Vega – Criteria to develop protocols for post-wildfire soil rehabilitation: current experience en Galicia (NW Spain); Deborah Martin – Research on ash from prescribed and wildland fires since the 1950's: past approaches and future directions).

The second day will have, in the afternoon, three oral communication sessions with discussions after each session and one key lecture (Francisco Moreira - The contribution of the PHOENIX project centre to post-fire research in Europe). In the morning we will have a workshop of the Thematic Network FUEGORED "Effects of Forest Fires on Soils".

The third day will be a field day devoted to visit burnt areas and discuss about forest fire effects on soil properties in mountainous areas in the northwest of Portugal.

The fourth day will have, in the morning, one oral communication session, one poster session with discussions after each session and one key lecture (Celeste Coelho - Forest fires as

drivers of land degradation in Portugal). In the afternoon, after announcing the winner of the poster award, FESP 2011 will pay a well-deserved Tribute to Maria Sala. The day will end with the main conclusions of the Meeting and with the presentation and vote for the host and the date of the next FESP.

The fifth day will be devoted to a Post-meeting tour: "Alto Douro Wine Region" - UNESCO World Heritage.

One social event is planned: the closing dinner of the FESP 2011 to be held on Friday 18 March. The same day is organized a cultural visit to Guimarães (World Heritage).

Finally, we want to express here our gratitude to all who will join us from 15 to 19 March, to all who have helped in organizing the conference and all institutions that, in one form or another, have helped us. Without participants and without the cooperation and assistance of the persons and institutions mentioned, this International Meeting would not be possible.

Guimarães 02 March 2011

The editors,

António Bento Gonçalves, António Vieira

TRIBUTE TO MARIA SALA

Maria Sala has worked in the effects of fires on soil erosion since the 80's. There were different sites: Prades Mountains, Collserola Massif, Les Gavarres and Cadiretes Massifs. Prades was an experimental plot where Maria's team studied the effects on soil and runoff and erosion increase after a prescribed experimental fire. Collserola (1993), Gavarres and Cadiretes (1994) were forest fires where the interesting thing was to study the role of the fire intensity in the effects and runoff and erosion generation.

Maria Sala at the beginning of the 90's also worked in the Arbúcies basin, monitoring the water quality and sediment transport, in 1994, a fire in part of the Arbúcies basin, was an opportunity to compare the results of the effect that that fire had in the quantity of sediment and even in changes in the discharge. The most used methodology to study the runoff and erosion generation was the installation of Gerlachs traps in the areas affected by fires and also in the control plot in order to do comparisons. Several projects, European and Spanish projects, were important in order to do all this research in the different sites. And different thesis of the Maria's students was elaborated in these sites. Some of the conclusions of these researches point that the slope and the fire intensity was a key factor to understand the runoff and erosion generation after fires (prescribed and wildfires) and how the first months and the rainfall after the fire determine the quantity of the material eroded.

It is also very important to study the vegetation recovery after forest fires because in the Mediterranean the fast regrowth of vegetation is essential to understand the erosion processes.

Xavier Úbeda (xubeda@gmail.com)

- Soler, M.& Sala, M. (1992): Effects of Fire and of Clearing in a Mediterranean Quercus ilex Woodland: An Experimental Approach. Catena, 19, 321-332.
- Sala, M. & Rubio, J. L. (EDS.) (1994): Soil Erosion and Degradation as a consequence of Forest Fires. Geoforma, Logroño, 275 pp.
- Sala, M., Soler, M. & Pradas, M. (1994): Temporal and spatial variations in runoff and erosion in burnt soils. Proc. 2nd Int. Conf. on Forest Fire Research, Coimbra, 21-24 November 1994. Vol. II, D.34, 1123-1134.
- Ubeda Cartaña, X. & Sala Sanjaume, M. (1994): Erosion as a consequence of rains immediately following a forest fire. Proc. 2nd Int. Conf. on Forest Fire Research., Coimbra, 21-24 November, 1994, Vol. II, D.37, 1139-1148.
- Soler, M. & Sala, M. (1995): Variabilidad longitudinal de la escorrentía y la erosión en una ladera quemada. Pirineos, 145-146, 81-89
- Batalla, R. & Sala. M. (1995): Fire impact on river load in a catchment: preliminary results. Proc. IGU Study Group on Mediterranean Erosion and Desertification in Regions of Mediterranean Climate, Aveiro, 14-18 June,
- Ubeda, X & Sala, M. (1996): Impact of forest fires on slope hydrology: four case studies. Fire Ecology and the European Biota: Research Carried out under the Auspices of the European Commission, Toledo
- Ubeda, X. & Sala, M. (2001): Chemical concentrations in overland flow from different forested areas in a Mediterranean environment: burned forest at different fire intensity and unpaved road. Zeitschrift für Geomorphologie, 45, 2, 225-238.

PROGRAMME

Tuesday, 15 March 2011

Morning: 9.00 – Registration

9.30 - Opening Ceremony

10.30 - Key Lecture 1 - Paulo Mateus

11.20 - Coffee break

11.35 - Key Lecture 2 - José Antonio Vega

12.25 – Lunch

Afternoon: 14.00 - OC 1- Moderator: Paulo Pereira

- 1 Giovanni Mastrolonardo, Ruedi Seiler, Giacomo Certini, rolf krebs, Michael Plotze, Markus Egli - FIRE-INDUCED CHANGES IN SOIL ORGANIC MATTER STABILITY ALONG A CATENA ON MT. ETNA, SICILY
- 2 Robert Gilkes, Emielda Yusiharni THE EFFECTS OF HEATING A LATERITIC PODZOLIC SOIL ON SOIL PHOSPHATE AVAILABILITY, A GLASSHOUSE STUDY
- 3 Heike Knicker, Deborah P. Dick, Ricardo S.D. Dalmolin HOW DOES BIANNUAL BURNING ALTER THE QUALITY AND QUANTITY OF ORGANIC MATTER IN SOILS?- AN EXAMPLE FROM THE CAMPO IN THE HIGHLAND OF SOUTHERN BRAZIL
- 4 Emielda Yusiharni, Robert Gilkes MINERALOGICAL AND CHEMICAL CHANGES IN A LATERITIC SOIL DUE TO A BUSHFIRE IN THE DARLING RANGE, WESTERN AUSTRALIA
- 15.30 Key Lecture 3 Deborah A. Martin
- 16.20 Coffee break
- 16.30 OC 2 Moderator: Jorge Mataix-Solera
 - 1 Paulo Pereira, Xavier Úbeda, Deborah Martin FIRE SEVERITY EFFECTS ON ASH CHEMICAL COMPOSITIONS AND EXTRACTABLE ELEMENTS

- 2 Kobsak Wanthongchai, Singkhorn Rugsamanee, Phanpong Kongdetadisak, Voradet Tarusadamrongdet, Khwanchai Chinnawong - QUANTIFYING THE INTENSITY OF PRESCRIBED FIRE IN DEGRADED PINE FOREST AND PINE-OAK FOREST, NAM NAO NATIONAL PARK, THAILAND
- 3 Stefan Doerr, Richard A Shakesby, Bryant Rob, Smith G Hugh, Gary J Sheridan, Patrick NJ Lane, Tina Bell, William H Blake - IMPACT OF UNPRECEDENTED FIRE INTENSITY ON SOIL PHYSICAL AND CHEMICAL PROPERTIES: THE CASE OF THE CATASTROPHIC VICTORIA FIRES OF 2009
- 4 Daniel George Neary, Karen A. Koestner, Ann Youberg, Peter E. Koestner POST-FIRE RILL AND GULLY FORMATION, SCHULTZ FIRE 2010, ARIZONA, US

18.00 - OC 3 - Moderator: Dennis Fox

- 1 Natalie Wagenbrenner DEVELOPMENT OF A PM10 EMISSIONS MODEL FOR POST-FIRE ENVIRONMENTS
- 2 Ana Cristina Meira, J Gois, J P Meixedo SOME REFLECTIONS ON ACQUISITION, PROCESSING AND ANALYSIS OF STATISTICAL DATA IN FOREST SOILS
- 3 Tanya Esteves, Antonio Ferreira, J A Soares, Mike Kirkby, Rick Shakesby, Brian Irvine, C S Ferreira, Celeste Coelho, M A Carreiras - USING PESERA TO MANAGE DESERTIFICATION PROCESSES FOLLOWING WILDFIRES IN GÓIS AND MAÇÃO, PORTUGAL
- 4 María Teresa García Ares, Manuel Bao Iglesias, Felipe Macías Vázquez - CHEMICAL CHARACTERIZATION OF TERRA PRETA DO ÍNDIO SOILS AND CHARCOAL SAMPLES IN PREHOLOCENIC SEDIMENTS FROM THE NORTH OF GALICIA

Wednesday, 16 March 2011

Afternoon: 14.00 - OC 4 - Moderator: Montserrat Diaz-Raviña

- 1 Merche B Bodí, Francisco Javier León Miranda, Artemi Cerdà, Stefan Helmut Doerr, Jorge Mataix-Solera - RUNOFF RATES, WATER EROSION AND WATER QUALITY ON A SOIL COVERED WITH ASH
- 2 Scott W. Woods, Victoria N Balfour CHARACTERIZING THE HYDROLOGICAL PROPERTIES OF WILDFIRE ASH
- 3 Karen Ann Koestner, Daniel G. Neary, Mike Carroll, Peter E. Koestner, Ann Youberg DEPOSITIONAL CHARACTERISTICS OF POST-FIRE FLOODING FOLLOWING THE SCHULTZ FIRE, SAN FRANCISCO PEAKS, ARIZONA

- 4 Cathelijne R Stoof, Joost Iwema, Antonio Dinis Ferreira, Rutger Willem Vervoort - HYDROLOGICAL RESPONSE OF A SMALL CATCHMENT BURNED BY EXPERIMENTAL FIRE
- 15.30 Key Lecture 4 Francisco Moreira
- 16.20 Coffee break
- 16.30 OC 5 Moderator: Cathelijne Stoof
 - 1 Naama Tessler, Lea Wittenberg, Noam Greenbaum UNDERSTANDING SOIL WATER REPELLENCY PERSISTENCE AFTER RECURRENT FOREST FIRE
 - 2 Jessica Tamara Heath, Chris Chafer, Thomas Bishop -IMPACTS OF WILDFIRE ON SOIL REPELLENCY WITHIN OBLIGATE RESPROUTER COMMUNITIES NEAR SYDNEY, AUSTRALIA
 - 3 Lea Wittenberg, Dan Malkinson, Annelies Voogt, Danny Leska, Eli Argaman, Saskia Keestra - THE RELATIVE IMPORTANCE OF SOIL WATER REPELLENCY IN DETERMINING RUNOFF-INFILTRATION PROCESSES IN BURNED MEDITERRANEAN FOREST SOILS
- 4 Carles M Rubio, Luís Outeiro, Francesc Ferrer, Xavier Úbeda
 VARIABILITY OF THE SOIL THERMAL PROPERTIES AFTER PRESCRIBED FIRE
- 5 Cristina Ribeiro, Celeste Coelho, Sandra Valente, Teresa Carvalho, Elisabete Figueiredo - DO STAKEHOLDERS KNOW WHAT HAPPENS TO SOIL AFTER FOREST FIRES? A CASE STUDY IN CENTRAL PORTUGAL

18.00 - OC 6 - Moderator: Ana Cristina Meira

- 1 María Teresa Fonturbel, Montserrat Diaz-Raviña, José Antonio Vega, Serafín J. González-Prieto, Cristina Fernandez, Ángela Martín, Enrique Jiménez, Ana Barreiro, Tarsy Carballas - COMPARISON OF THE EFFECTS OF POST-FIRE SOIL STABILIZATION TREATMENTS ON SOIL EROSION CONTROL AND IN SELECTED SOIL PROPERTIES IN GALICIA (NW SPAIN)
- 2 Daniel George Neary, Karen A. Koestner ROCK GABION, RIP-RAP, AND CULVERT TREATMENTS CONTRIBUTING TO AND REDUCING EROSION DURING POST-FIRE FLOODING - SCHULTZ FIRE 2010
- 3 Celeste Alves Coelho, Sérgio Prats, Alexandra Pinheiro, Teresa Carvalho, Anne-Karine Boulet, António Ferreira, João Soares - EFFECTIVENESS OF TWO MULCH TREATMENTS CONTROLLING SOIL EROSION AND WATER CONSERVATION

- 4 Montserrat Díaz Raviña, A Martín, A Barreiro, A Lombao, M J Goméz, A Couto-Vázquez, L Iglesias, F Díaz-Fierros, T Carballas - PRELIMIARY DATA OF SOIL PROPERTIES AND SOIL EROSION FOLLOWING A WILDFIRE AND DIFFERENT POST-FIRE SOIL STABILIZATION TREATMENTS IN LAZA (NW SPAIN)
- 5 Ann Youberg, Karen Ann Koestner, Daniel G. Neary, Peter E.
 Koestner GEOMORPHIC ASPECTS OF POST-FIRE SOIL
 EROSION SCHULTZ FIRE 2010

Thursday, 17 March 2011

Mid-conference field trip - Moderators: Antonio Bento, Antonio Vieira, Luciano Lourenço, Hermínio Botelho, Xavier Úbeda, Artemi Cerdà, Flora Leite

Serra da Cabreira

Visiting burnt areas and discussion about forest fire effects on soil properties in mountainous areas.

Friday, 18 March 2011

Morning: 9.30 - OC 7 - Moderator: Robert Gilkes

- 1 Felícia Fonseca, Micaela Leite, Tomás de Figueiredo SOIL PROPERTIES IN BURNT AND UNBURNT SHRUBLANDS IN MONTESINHO NATURAL PARK, NORTHEAST PORTUGAL
- 2 Sorin Corneliu Radan, Silviu Radan HOW COAL FIRES AFFECT THE CLAYS: AN INTERDISCIPLINARY APPROACH
- 3 Cornelia Rumpel, Bruno Mary, Yessica Rivas, Christian Valentin, Francisco Matus - CONTRASTING EFFECTS OF FIRE ON FOREST AND AGRICULTURAL SOILS
- 4 Joseph W Wagenbrenner, Peter R Robichaud RILL EROSION IN BURNED FORESTS
- 5 Richard A Shakesby, Carla Sofia Santos Ferreira, Rory PD Walsh, Célia Bento, António JD Ferreira, Chatelijne R Stoof - FIRE IMPACT ON SOIL AND NUTRIENT LOSSES IN SCHIST MOUNTAIN AREAS: CENTRAL PORTUGAL STUDY
- 11.00 Key Lecture 5 Celeste Coelho
- 11.50 Poster Session
- 12.30 Lunch

Afternoon: 14.15 - Poster award

14.30 - Tribute to Maria Sala

14.30 - Tribute: Xavier Úbeda

14.45 - Key Lecture - Maria Sala

15.30 - Coffee break

15.45 – Conclusions

16.10 - Presentation and voting for the host and the date of the next FESP

16.30 - Closing session

17.30 - Guimarães (World Heritage) tour

21.00 - Farewell dinner

Saturday, 19 March 2011

Post-meeting tour

Douro Vinhateiro (world heritage) – mini cruise

3rd International Meeting of Fire Effects on Soil Properties 15-19 March 2011 | University of Minho | Guimarães, Portugal

Prescribed Fire - the spark that led to a new paradigm in Portugal

Paulo Mateus

Autoridade Florestal Nacional paulomateus@afn.min-agricultura.pt

Key-words: prescribed fire in Portugal.

Abstract

This document is not intended to constitute itself as a course on Prescribed Fire, but is a reflection on the role that Prescribed Fire plays as a "starter" solution to the problem of wild fires. A solution born from inside of the problem.

The aim is to integrate theory and practical application, presenting a holistic and also reductionistic point of view. It is not intended to give any answers, but to confront the scientific community with a new kind of paradigmatic thinking and take her to wonder whether, somehow, fit in it.

Before

It is known that fire is part of the forest ecosystems in Portugal and has been used by man since time immemorial. Currently it is used by rural communities based on traditional know-how.

In terms of forestry, the first documentary reference in Portugal's use of fire with silvicultural purposes was in 1836, on the Manual Practice of Friderico Varnhagen. We can also remark, in this context, the notes and comments on the use of "current fire" by Tude de Sousa, in 1926, at "Mata do Gerês".

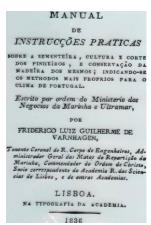


Figure 2

In the 40 years following fire was seen as something that should, definitely, be put out of forest landscape.

It was with the visit of American technicians to Portugal in 1976, Dr.Edwin Komarec and his wife Betty, of Tall Timbers Research Station, Florida, that was considered the possibility of reintroduction fire in forest ecosystems advocating health benefits and especially the reduction of forest fuel loads that lead to the reducing the fire risk. The visit of Komarec was a milestone, according to Moreira da Silva. So, were re-initiated the first experiments with Prescribed Fire as a forestry technique. These early experiences

3rd International Meeting of Fire Effects on Soil Properties 15-19 March 2011 | University of Minho | Guimarães, Portugal

were developed in Vila Real, Coimbra, Marinha Grande, Tapada Nacional de Mafra and Peneda Gerês National Park.

In 1982, extensive burning was made with the implementation of the Prescribed Fire Emergency Plan (Moreira da Silva) by the Forest Service in the north of Portugal, involving researchers at the University of Trás-os-Montes e Alto Douro (UTAD) and the Institute of Agronomy (Instituto Superior de Agronomia - ISA). Thousands of hectares have been burned with the use of the technique of Prescribed Fire.

Then, was followed a 15 years gap in use of Prescribed Fire. During this period, also on the land managed by the Forest Service, were being made ad hoc Prescribed Fire actions which kept the flame alive until the beginning of the XXI century.

In the last quarter of the XX Century Prescribed Fire was the starting point for a change of how foresters face forest. This new perspective was very upset by the foresters of the time. Moreira da Silva said - "there was much resistance from my colleagues. They had difficulty accepting fire inside the forest."

The idea of excluding fire from forest, and fire seen as a forest enemy in the mind of foresters since the 30s of last century, has been questioned. The old paradigm "Fire is an Enemy" began to fall because it did not respond to the increasing problems of wild fires so highly destructive.

But it was only after the terrible fire campaign of 2003 and 2005, highly destructive, with tens of deaths, 765.000 hectares burned, that emerge new ideas related to knowledge of fire behavior and began to take shape a new system. This new system took in account a comprehensive thought, broad spectrum, trying to identify the individual parts that build the new paradigm.

The spark

The new concept of fire is revealed in the Finnish proverb that says "fire is a bad boss but a good servant". It is assumed, increasingly, as an essential tool for restoring forest ecosystems in our country.

Prescribed Fire introduced topics such as "fire ecology", "landscape ecology" in the structure of thought of the new Foresters. Prescribed Fire combines theory and practical application and triggers a new paradigm in Portugal. It was assumed as anchor idea of the new paradigm that still takes the first steps in Portugal.

Known as "the application of a fire under specified environmental conditions, which allow the fire to be confined to a predeterminated area and to attain planned resource management objectives", Prescribed fire is the basis of a whole new design paradigm.

At this level a mention the project "Fire Paradox" need to be done, for his role in motivating a revolution that contributed to the establishment of the new paradigm, and also as a builder of after paradigmatic science, with many products and tools developed by the project, directly related to new paradigm "integrated fire management".

New paradigm

The new paradigm "of the integrated fire management" includes the use of different strategies and techniques of fire, including prescribed fire, the traditional use of fire and the use of fire suppression. This new paradigm that emerges, in Portugal, through the technique of Prescribed Fire, links the concepts of "fire management", "ecology" and "culture of fire", and emphasizes the importance of landscape heterogeneity on the development of resistance to disturbances, the recovery of disorders and the promotion of overall system stability, giving substance to the theory of landscape ecology.

3rd International Meeting of Fire Effects on Soil Properties 15-19 March 2011 | University of Minho | Guimarães, Portugal

As a result of this new paradigm, there are new answers to the questions: How to do forests?

How to organize the landscape? - Mosaics, as stated Moreira da Silva?

What models can be taken to ensure a fire resistant landscape?

What forest species to choose? - Specialize in the area?

What protection measures should be followed to avoid the large and destructive wild fires?

Which systems must be built to answer the questions above?

New solutions

Trying to conceive and apply this transformative strategies based on this new paradigm, with the synthesis of whole process thinking, were developed in Portugal two crucial Systems.

The **first system** to be built based on the new paradigm was the "National Forests Strategy, 2006" which fits a context of forest changing and emerge of new risks. The "National Forests Strategy" emphasizes this reality, and highlights the need to reduce the risks associated with forest.

This document distinguishes the <u>real risks</u>, like climate change and the possible change of dominant species or the areas of distribution of various forest types. The lack of forest management which stems directly from the abandonment of farming activities, desertification of rural areas and the changes that occurred in the Portuguese society in the second half of the twentieth century. The phenomenon of internationalization, also a real risk, with the evolution of international trade rules - the certification requirements is one example. And finally, another real risk is the recent appreciation of environmental services and the need to adapt to this reality, which highlights efforts to mitigate emissions of greenhouse gases, in particular following the commitment made in the Kyoto Protocol.

Moreover the "National Strategy for Forests" also highlights how necessary is the reduction of <u>perceived risks</u>, which are the visible consequences of the real risks - the phenomenon of forest fires essentially, but also the increasing sensitivity of forest to the attack of biotic (pests and diseases) and even the possibility of spread of invasive species into new areas.

The actions in each of these areas (mitigation of real risks or mitigation of perceived risks) are different but interdependent. A necessary change that will lead to forest rebalancing is needed. A change in the perspective of how the population, forest owners and technicians, face "Forest" is needed.

New thinking, new ideas, new paradigms and new solutions are needed to cope with this changing forestry world. The specialization of the territory in order to improve the landscape increased resistance to disturbance (eg wild fire) advocated in the National Forests Strategy reveals how the new paradigm "of the integrated fire management" influences this document.

Alongside the work to minimize the real risks, there is work that acts directly on the visible consequences of the problem, which are the perceived risks that have been outlined earlier. This work allows us to accelerate the process of change, with the aim of restoring confidence to the forest sector so that there are better conditions to attract investment into forest.

In this context, also influenced by the new paradigm was built a **second system**, the "National System of Forest Fire Defense" (SNDFCI) and the related "Forest Defense

Against Fire National Plan" (PNDFCI), that adds in a holistic system, the structural prevention, surveillance and law enforcement and fire fighting.

This system, although still very much conditioned by the previous paradigm that relies mainly on the need for "fire fighting" should, year after year, and taking advantage of the increasing knowledge of fire and its behavior, contribute to balance forest areas, and as a result will spend less energy in fight wild fires. This is however a slow process.

In Portugal, Prescribed Fire, as technical, economic and efficient process of reducing fuel load in forest areas, has already led to numerous success cases in fighting large fires, as shown below.

Figure 3

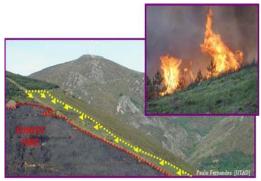


Figure 4

Prescribed Fire can provide the foundation of knowledge for a better and more effective combat as well as being the basis of practical use of fire suppression (the aplication of the fire to Accelerate or strengthen the suppression of wildfires).

The continued work of experts in the use of fire is essential for that the processes and systems described above do not end. Under the Law that regulate Use of Fire, already published, which clarifies the rules for using this tools in order to increase their effectiveness and efficiency, safeguarding the protection of persons, goods and forest assets, and with the advent of a National Fire Use Plan, Portugal can maintain the line that will consolidate the new paradigm that will allow to rebalance the forest and thereby increase its intrinsic wealth.

After

Although the technique of Prescribed Fire has been used several times throughout history, as we have already shown above, now retrieves the appropriate *modus faciendi* concerns our time, with methods adapted.

The current process of recovery the Prescribed Fire technique has parallels with the processes of recovery of ancestral knowledge of the other activities of modern society in the fields of medicine, health and welfare, for example. It is the recovery of ancient knowledge with new clothing, to solve problems that are not new, but are contemporary. Issues that emerge from time to time!

Forest ecosystems alternate from less equilibrium to new equilibrium state, according to the Laws of Thermodynamics. And fire, as destructive element but also as renewal, has a fundamental role in this process of recover the lost balance. Thus, fire must be consider as a kind of homeopathic element, which can be prescribed in appropriate doses for the restoration of forest, *lato sensu*.

The future? Knowledge and Time. The nature is itself economic, invariably choosing the simplest path. Fire is an easy way. "Everything should be made as simple as possible but no simpler than that" (Einstein).

References

- DGRF, 2006. Estratégia Nacional para as Florestas. Lisboa. Direcção Geral dos Recursos Florestais.
- Loureiro C., Fernandes P., Botelho H., Mateus P., 2006. A simulation-based test of a landscape fuel management project in the Marão range fo northern Portugal. Forest Ecology and Management 234S (2006) S245.
- Moreira da Silva J., 1981. O fogo na floresta: inimigo ou aliado do silvicultor? II encontro dos técnicos agrários de Galiza, Trás-os-Montes e Entre Douro e Minho. Braga
- Moreira da Silva J., 1983. Utilização de fogos controlados como factor de prevenção dos incêndios florestais. I Simpósio sobre ensino do meio natural, Santiago de Compostela, Espanha.
- Rego F., Rigolot E., Fernandes P., Montiel C., Sande Silva J., 2010. Towards Integrated Fire Management. EFI Policy Brief 4. European Forest Institute
- Project "Fire Paradox", 2010. Towards Integrated Fire Management. Outcomes of the European Project "Fire Paradox". Freiburg, Germany. GFMC, EFICENT, EFI
- Tude de Sousa, 1926. Mata do Gerês. Imprensa da Universidade. Coimbra Varnhagen F., 1836. Manual de instruções práticas. Lisboa

Criteria to develop protocols for post-wildfire soil rehabilitation: current experience in galicia (nw spain)

José A. Vega

Centro de Investigación Forestal de Lourizán PO Box 127. 36080. Pontevedra. Spain jose.antonio.vega.hidalgo@xunta.es

Key-words: post-wildfire soil rehabilitation, Galicia.

Abstract

Once wildfire is suppressed, forest managers have to face fire impact evaluation on affected ecosystems and decide post-fire activities. From this moment, these activities are conditioned by the ecosystem characteristics (soils, vegetation, topography and watersheds hydrology), climate, fire severity and socioeconomic and technical factors. In some cases, soil rehabilitation treatments are advisable and, then, the availability of clear criteria to decide when and where and which of these treatments need to be applied is necessary. A protocol setting up the main steps to be followed in the decision-making process can be useful. As an example of application, the protocol developed after summer forest fires in Galicia in 2010 is discussed. Basically, the main stages of this protocol are: 1) gathering of documentation (wildfire and site characteristics, fire recurrence and land use), 2) fire severity field evaluation, 3) runoff, flooding and erosion risk assessment and values at risk-vulnerability evaluation 4) prioritize areas to be treated, 5) selection and conduction of rehabilitation treatments and 6) monitoring treatments effectiveness.

The connection between research and management becomes crucial for the success of the protocol. Researchers can provide with a good knowledge of the state of the art and tools to evaluate fire severity, erosion and floods risk and to help to select the most appropriated rehabilitation techniques for a specific affected area. On their turn, managers need to filter this information to adequate it to the technical and socioeconomic conditions. A lot of questions are still unsolved, a deeper knowledge on hydrological processes involved, a better definition of fire severity, a higher availability of operational tools to evaluate it at landscape scale, as well as, an improvement of the linkage between fire severity indexes and changes in soil properties. From the management point of view, economic, logistical and safety issues need to be also improved.

Research on ash from prescribed and wildland fires since the 1950's: past approaches and future directions

Deborah A. Martin

U.S. Geological Survey, National Research Program, 3215 Marine Street, Suite E127, Boulder, Colorado, U.S.A.; damartin@usgs.gov.

Key-words: wildland fire, prescribed fire, ash, review.

Introduction

What is ash? Currently, it is well accepted that the residue from the combustion of organic material during prescribed and wildland fire is a complex mixture of partially burned organic matter, products within the black carbon continuum including charcoal and char (Hammes et al., 2007; Kuo et al., 2008), soil particles, phytoliths (Wattez and Courty, 1987; Morris et al., 2010) and the oxalates, carbonates, and silicates of elements whose volatilization temperatures are below the maximum temperatures reached during the fire (Canti 2003). This latter portion is termed mineral ash and is the fraction measured by standard techniques such as American Society for Testing and Materials (ASTM) D1102-84(2007) (ASTM, 2007a) and E1755-01(2007) (ASTM, 2007b). This review focuses on research concerned with the complex mixture of products formed during the combustion of organic matter or the mineral fraction created under standard conditions and explicitly excludes research where the charcoal fraction has been isolated for study (e.g. DeLuca et al., 2006) and studies on volcanic ash.

Previous work

Ancient texts have described the use of wood ash as a soil fertilizer (Virgil, 29 B.C.), insect repellent (Gowariker et al., 2009), and ingredient in the manufacture of soap (al-Hassan et al., 2002). During the early twentieth century research on ash first appears in the scientific literature. Before 1950 some notable research was conducted on the influence of ash on soil fertility (Alway and Rost, 1928; Sampson, 1944; Young and Golledge, 1948) and the effect of temperature on the retention of elements during heat treatments (St. John, 1941). Since the 1950's, the pace of research on ash and its effect on soil properties has accelerated and studies are being conducted worldwide, often as international collaborations (e. g. Cerdá and Doerr, 2008; Pereira et al., 2011). The acceleration in ash research is demonstrated by the number of articles published in each decade: 1950's 6; 1960's 12; 1970's 26; 1980's 47; 1990's 78; 2000's 140; 2010 to early 2011 11. These numbers do not include most of the research on wood ash targeted for land disposal (reviewed by Augusto et al., 2008).

The research on the ash from both prescribed and wildland fire can be broadly grouped into eight major, interrelated categories: 1. the chemical and physical properties of ash (e.g. Etiegni and Campbell, 1991; Hageman et al., 2008a,b; Úbeda et al., 2009), 2. effects of ash on infiltration and surface erosion, including debris flows (e.g. Burgy and Scott, 1952; Gabet and Sternberg, 2008; Stoof et al., 2010; Woods and Balfour, 2008, 2010), 3. effects of ash on soil properties and soil chemistry (e.g. Allen et al., 1969; Christensen and Muller, 1975), 4. effects of ash on plant germination and plant cover (e.g. Reyes and Casal, 2004; Izhaki et al., 2000), 5. effects of ash on the soil microbiota (e.g. Bauhus et al., 1993; Badía and Martí, 2003), 6. influence of ash on the chemistry of surface water runoff and aquatic ecosystems (e.g. Gerla and Galloway, 1998; Barber et al., 2003; Earl

and Blinn, 2003), 7. use of the spectral signature of ash as an indicator of burn intensity or fire severity (e. g. Roy and Landmann, 2005; Robichaud et al., 2007), and 8. potential effects of ash on the health of humans and aquatic organisms (e. g. Kelly et al., 2006; Plumlee, 2009).

Future work

Despite the extensive research on ash since the 1950's, gaps still exist in our knowledge about the chemical and physical characteristics of ash, its use as a predictor of post-fire biological and hydrological response, and its potential effects on downstream water quality. We lack comprehensive information about the extent to which the chemistry of ash is a function of the type of plant material, the underlying geology, and the legacy of atmospheric deposition of chemicals such as mercury (Biswas et al., 2008), lead (Rothwell et al., 2007), and PAH's (García-Falcon et al., 2006). Only limited research exists on the water holding capacity of ash (Woods and Balfour, 2008, 2010; Stoof et al., 2010) and its water repellency (Bodí et al., 2011) and hence its effect on runoff generation. We don't have a good understanding of the genesis of "fly ash" and its movement during fire (Smith and Bowes, 1974; Raison et al., 1985), when and how ash is moved from burned landscapes by wind (Whicker et al., 2006; Wagenbrenner et al., 2010) and runoff (Ferreira et al., 2005; Howell, 2006; Liu and Hu, 2007) and we have little knowledge of the fate and persistence of the material once it is transported elsewhere (Blake et al., 2006). Furthermore, we lack standardized techniques to compare ash across different ecosystems. We should adopt existing methods to allow this comparison; for example, 1. use a standard gray scale such as that described by Roy et al. (2010) to report the color of ash; 2. measure and report the pH of the ash slurry according to a standard protocol, e.g. Henig-Sever et al. (2001), or Goforth et al. (2005); and 3. routinely combust ash samples according to the methods summarized by Dimitrakopoulos and Panov (2001) for 1 hour) or Smith et al. (2005) (500°C for 18 hours) to measure the completeness of combustion for comparison among different fires and ecosystems. Finally, we should continue to hold international meetings to promote collaboration, communication, and progress on research related to fire, an issue of global importance.

References

- Al-Hassan, A.Y., Ahmad, M., Iskander, A.Z., 2002. Science and Technology in Islam in The Different Aspects of Islamic Culture. UNESCO. Available online at: http://www.unesco.org/culture/aic/html_eng/volume4.htm, accessed Feb. 10, 2011.
- Allen, S.E., Evans, C.C., Grimshaw, H.M., 1969. The distribution of mineral nutrients in soil after heather burning. Oikos 20, 16-25.
- Alway, F.J., Rost, C.O., 1928. Effect of Forest Fires on the Composition and Productivity of the Soil. Proceedings and Papers of the First International Congress of Soil Science. The American Organizing Committee of the First International Congress of Soil Science, Washington, D. C., pp. 546-576.
- ASTM, 2007a. ASTM D1102-84(2007) Standard Test Method for Ash in Wood. American Society for Testing and Materials, West Conshohocken, Pennsyvania.
- ASTM, 2007b. ASTM E1755-01(2007) Standard Test Method for Ash in Biomass. American Society for Testing and Materials, West Conshohocken, Pennsylvania.
- Augusto, L.L., Bakker, M.R., Meredieu, C.C., 2008. Wood ash applications to temperate forest ecosystems—potential benefits and drawbacks. Plant and Soil 306, 181-198.

- Badía, D., Martí, C., 2003. Effect of simulated fire on organic matter and selected microbiological properties of two contrasting soils. Arid Land Research and Management 17, 55-69.
- Barber, T.R., Lutes, C.C., Doorn, M.R. J., Fuchsman, P.C., Timmenga, H.J., Crouch, R.L., 2003. Aquatic ecological risks due to cyanide release from biomass burning. Chemosphere 50, 343-348.
- Bauhus, J., Khanna, P.K., Raison, R.J., 1993. The effect of fire on carbon and nitrogen mineralization and nitrification in an Australian forest soil. Australian Journal of Soil Research 31, 621-639
- Biswas, A., Blum, J.D., Keeler, G.J., 2008. Mercury storage in surface soils in a central Washington forest and estimated release during the 2001 Rex Creek Fire. Science of the Total Environment 404, 129-138.
- Blake, W.H., Wallbrink, P.J., Doerr, S.H., Shakesby, R.A., Humphreys, G.S., English, P., Wilkinson, S., 2006. Using geochemical stratigraphy to indicate post-fire sediment and nutrient fluxes into a water supply reservoir, Sydney, Australia. Sediment Dynamics and the Hydromorphology of Fluvial Systems (Dundee, UK, July 2006). IAHS Publ. 306, pp.. 363-370.
- Bodí, M.B., Mataix-Solera, J., Doerr, S.H., Cerdá, A., 2011. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma 160, 599-607.
- Burgy, R.H., Scott, V.H., 1952. Some effects of fire and ash on the infiltration capacity of soils. Transactions, American Geophysical Union. 33, 405-416.
- Canti, M.G., 2003. Aspects of the chemical and microscopic characteristics of plant ashes found in archaeological soils. Catena 54, 339–361.
- Cerdá, A., Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 74, 256-263.
- Christensen, N.L., Muller, C.H., 1975. Effects of fire on factors controlling plant growth in Adenostoma chaparral. Ecological Monographs 45, 29-55.
- DeLuca, T.H., MacKenzie, M.D., Gundale, M.J., Holben, W.E., 2006. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Science Society of America Journal 70, 448–453.
- Dimitrakopoulos, A.P., Panov, P.I., 2001. Pyric properties of some dominant Mediterranean vegetation species. International Journal of Wildland Fire 10, 23–27.
- Earl, S.R., Blinn, D.W., 2003. Effects of wildfire ash on water chemistry and biota in South-Western U.S.A. streams. Freshwater Biology 48, 1015-1030.
- Etiegni, L., Campbell, A.G., 1991. Physical and chemical characteristics of wood ash. Bioresource Technology 37, 173-178.
- Ferreira, A.J.D., Coelho, C.O.A., Boulet, A.K., Lopes, F.P., 2005. Temporal patterns of solute loss following wildfires in Central Portugal. International Journal of Wildland Fire 14, 401-412.
- Gabet, E.J., Sternberg, P., 2008. The effects of vegetative ash on infiltration capacity, sediment transport, and the generation of progressively bulked debris flows. Geomorphology 101, 666-673.
- García-Falcon, M.S., Soto-González, B., Simal-Gándara, J., 2006. Evolution of the concentrations of Polycyclic Aromatic Hydrocarbons in burnt woodland soils. Environmental Science and Technology 40, 759-763.
- Gerla, P.J., Galloway, J.M., 1998. Water quality of two streams near Yellowstone Park, Wyoming, following the 1988 Clover-Mist wildfire. Environmental Geology 36, 127-136.

- Goforth, B.R., Graham, R.C., Hubbert, K.R., Zanner, C.W., Minnich, R.A., 2005. Spatial distribution and properties of ash and thermally altered soils after high-severity forest fire southern California. International Journal of Wildland Fire 14, 343-354.
- Gowariker, V., Krishnamurthy, V. N., Gowariker, S., Dhanorkar, M., 2009. The Fertilizer Encyclopedia. John Wiley & Sons, Hoboken, New Jersey.
- Hageman, P.L., Plumlee, G.S., Martin, D.A., Hoefen, T.M., Adams, M., Lamothe, P.J., Todorov, T., Anthony, M.W., 2008a. Leachate Geochemical Results for Ash Samples from the June 2007 Angora Wildfire near Lake Tahoe in Northern California, 2008: U.S. Geological Survey Open-File Report 2008–1170. 14 p. Available at: http://pubs.usgs.gov/of/2008/1170/, accessed Feb. 10, 2011.
- Hageman, P.L., Plumlee, G.S., Martin, D.A., Hoefen, T.M., Meeker, G.P., Adams, M., Lamothe, P.J., Anthony, M.W., 2008b. Leachate Geochemical Results for Ash and Burned Soil Samples from the October 2007 Southern California Wildfires: U.S. Geological Survey Open-File Report 2008–1139, 14 p. Available at: http://pubs.usgs.gov/of/2008/1139/, accessed Feb. 10, 2011.
- Hammes, K. and others, 2007. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochemical Cycles 21, GB3016/1-GB3016/18.
- Henig-Sever, N., Podiakov, D., Broza, M., 2001. A novel method of estimation of wild fire intensity based on ash pH and soil microarthropod community. Pedobiologia, 45, 98-106.
- Howell, P.J., 2006. Effects of wildfire and subsequent hydrologic events on fish distribution and abundance in tributaries of North Fork John Day River. North American Journal of Fisheries Management 26, 983-994.
- Izhaki, I., Henig-Sever, N., Ne'eman, G., 2000. Soil seed banks in Mediterranean Aleppo pine forests: The effect of heat, cover and ash on seedling emergence. Journal of Ecology 88, 667-675.
- Kelly, E.N., Schindler. D. W., St. Louis, V.L., Donald, D.B., Vladicka, K.E., 2006. Forest fire increases mercury accumulation by fishes via food web restructuring and increased mercury inputs. Proceedings of the National Academy of Sciences 103, 19380-19385.
- Kuo, L.-J., Herbert, B.E., Louchouarn, P., 2008. Can levoglucosan be used to characterize and quantify char/charcoal black carbon in environmental media? Organic Geochemistry 39, 1466-1478.
- Liu, Y., Hu, H., 2007. Concentration variations of several ions in stream after a wildfire. Journal of Forestry Research 18, 319-321.
- Morris, L.R., Ryel, R.J., West, N.E., 2010. Can soil phytolith analysis and charcoal be used as indicators of historic fire in the pinyon-juniper and sagebrush steppe ecosystem types of the Great Basin Desert, USA? Holocene 20, 105-114.
- Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., César Guerrero, C., 2011. Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula. Environmental Research 111, 237-247.
- Plumlee, G., 2009, Report from Ground Zero: How geoscientists aid in the aftermath of environmental disasters. Earth 54, 38-47.
- Raison, R.J., Khanna, P.K., Woods, P.V., 1985. Mechanisms of element transfer to the atmosphere during vegetation fires. Canadian Journal of Forest Research 15:132-140.

- Reyes, O., Casal, M., 2004. Effects of forest fire ash on germination and early growth of four *Pinus* species. Plant Ecology 175, 81-89.
- Robichaud, P.R., Lewis, S.A., Laes, D.Y.M., Hudak, A.T., Kokaly, R.F., Zamudio, J.A., 2007. Postfire soil burn severity mapping with hyperspectral image unmixing. Remote Sensing of Environment 108, 467-480.
- Rothwell, J.J., Evans, M.G., Liddaman, L.C., Allott, T.H.E., 2007. The role of wildfire and gully erosion in particulate Pb export from contaminated peatland catchments in the southern Pennines, UK. Geomorphology 88, 276–284.
- Roy, D.P., Landmann, T., 2005. Characterizing the surface heterogeneity of fire effects using multi-temporal reflective wavelength data. International Journal of Remote Sensing 26, 4197-4218.
- Roy, D.P, Boschetti, L., Maier, S.W., Smith, A.M.S., 2010. Field estimation of ash and char colour-lightness using a standard grey scale. International Journal of Wildland Fire 19, 698–704.
- St. John, J.L., 1941. Report on ash: effect of ashing temperatures on percentage of mineral elements retained. Journal of the Association of Official Agricultural Chemists 24, 848-854.
- Sampson, A.W., 1944. Plant succession on burned chaparral lands in northern California. Bulletin of the California Agricultural Experiment Station 685, 144 pages.
- Smith, A.M.S., Wooster, M.J., Drake, N.A., Dipotso, F.M., Perry, G.L.W., 2005. Fire in African savanna: testing the impact of incomplete combustion on pyrogenic emissions estimates. Ecological Applications 15, 1074-1082.
- Smith, D.W., Bowes, G.C., 1974. Loss of some elements in fly ash during old-fields burns in southern Ontario. Canadian Journal of Soil Science 54, 215-224.
- Stoof, C.R., Wesseling, J.G., Ritsema, C.J., 2010. Effects of fire and ash on soil water retention. Geoderma 159, 276-285.
- Úbeda, X., Pereira, P., Outeiro, L., Martin, D.A., 2009. Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degradation & Development 20, 589-608.
- Virgil, 29 B.C. Georgics Book I, translated by A.S. Kline, 2002. Available at: http://www.poetryintranslation.com/PITBR/Latin/VirgilGeorgicsI.htm, accessed Feb. 10, 2011.
- Wagenbrenner, N.S., Lamb, B.K., Foltz, R.B., Robichaud, P.R., 2010. Modeling post-fire ash and dust emissions in complex terrain, Abstract, American Society of Agricultural and Biological Engineers, June 20-23, 2010, Pittsburgh, Pennsylvania.
- Wattez, J., Courty, M.A., 1987. Morphology of ash of some plant materials, *in* Fedoroff, N., Bresson, L.M., and Courty, M.A., editors, Soil Micromorphology, Proceedings of the VIIth International Working Meeting on Soil Micromorphology, Paris, France, p. 677-683.
- Whicker, J.J., Pinder, J.E. III, Breshears, D.D., 2006. Increased wind erosion from forest wildfire: Implications for contaminant-related risks. Journal of Environmental Quality 35, 468-478.
- Woods, S.W., Balfour, V.N., 2008. The effect of ash on runoff and erosion after a severe forest wildfire, Montana, USA. International Journal of Wildland Fire 17, 535–548.
- Woods, S.W., Balfour, V.N., 2010. The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils. Journal of Hydrology 393, 274-286
- Young, R.S., Golledge, A., 1948. Composition of woodland soils and wood ash in northern Rhodesia. Empire Journal of Experimental Agriculture 16:76-78.

The contribution of the PHOENIX project centre to post-fire research in Europe

Francisco Moreira

Phoenix PC Coordinator, Institute of Agronomy, Technical University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal; fmoreira@isa.utl.pt

Key-words: PHOENIX project centre; post-fire research; Europe.

Abstract

Every year, around 45,000 wildfires occur in Europe, burning an area of 500,000 hectares. Between 1995 and 2004, more than 4 million hectares were burned in the Mediterranean Region alone, corresponding to an area larger than the Netherlands.

The post-fire management of burned areas has been given much lesser attention than fire suppression and prevention in Europe. However, important questions raise the public concern and require scientifically-based knowledge: how to accurately evaluate fire damages in economical terms? What are the most suitable short-term intervention techniques to minimise soil erosion and runoff? What to do with burned trees? How to manage burned forests? How to approach the long-term planning for the rehabilitation of burned areas? How to manage fire-prone forests and landscapes to reduce potential fire hazard? On the other hand, wildfires can also be regarded as an opportunity to plan and establish less flammable and more resilient forests and landscapes in the recently burned areas. What information is available on these topics and how should administrations and stakeholders react after large fires? These questions are relevant not only in a southern European perspective, where wildfires are more frequent, but all over Europe. In fact, climate change and land-use trends are expected to increase fire frequency in Central and Northern Europe, and new geographical areas (and forest ecosystems) where wildfires were infrequent are becoming more fire-prone. Thus, further knowledge is needed on how to manage the millions of hectares burned in Europe, including the planning of post-fire management, the short-term intervention techniques to minimise soil erosion and runoff, and the longer-term ecosystem recovery and restoration.

Phoenix is a Project Centre of the European Forest Institute (EFI). It consists of a group of 25 institutions from Portugal, Spain, France, Italy, Greece, Morocco, Tunisia, Turkey and Lithuania, carrying out specific research on fire ecology and, in particular, post-fire management. I will present Phoenix rationale and activities.

Forest fires as drivers of land degradation in Portugal

Celeste Coelho

CESAM – Centro de Estudos do Ambiente e do Mar; Departamento de Ambiente e Ordenamento, Universidade de Aveiro, 3810-193 Aveiro; coelho@ua.pt

Key-words: Forest fires, Portugal.

Abstract

The RECOVER (Immediate soil management strategy for recovery after forest fires) project aims to develop mitigation techniques and strategies to reduce soil and water degradation immediately after forest fires.

Several research projects have been carried out at CESAM/UA to better understand how forest fires contribute to land degradation and to assess the impact of post-fire techniques on soil degradation mitigation. Another important issue is public involvement in the definition and implementation of sustainable forestry practices.

The main aim of this communication is to present some of the work performed in Portugal, not only the relation between fires and soil erosion, but particularly the potential of some mitigation and prevention approaches and technologies to mitigate soil and water erosion. The activities and results of stakeholders' involvement and the social perception on land degradation after fire will also be discussed.

Fire-induced changes in soil organic matter stability along a catena on mt. Etna, Sicily

Giovanni Mastrolonardo^{1*}, Ruedi Seiler², Giacomo Certini³, rolf krebs⁴, Michael Plotze⁵, Markus Egli⁶

¹ PhD student at Università degli Studi di Firenze Dipartimento di Scienza delle Produzioni Vegetali, del Suolo e dell'Ambiente Agroforestale (DIPSA). Piazzale delle Cascine 28, 50144 – Firenze;

Key-words: forest fires, soil organic matter, charcoal, Mt. Etna, soil catena.

Abstract

Forest fires are a not negligible factor of pedogenesis in the Mediterranean areas, where they occur frequently. Soil organic matter (SOM) is particularly prone to change due to forest fire, both in terms of quantity and quality. We investigated a soil catena on Mount Etna, north-eastern side of Sicily, Italy, comprising six soils having different types of climate, from subtropical (500 m asl) to subalpine (1800 m asl). Along this altitudinal and climatic gradient there are two main vegetation systems: maquis at the lower sites and coniferous forest at the upper sites. A previous study in the same area revealed an increasing aromaticity of soil organic matter with decreasing altitude, which is probably correlated to more frequent fires at the low elevations, where climate regime is warmer and drier. We hypothesised that fire frequency is increasing with decreasing altitude and that this substantially affects organic matter characteristics and abundance. We consequently focused our work on the fractionation of soil organic matter from different depth into a labile and a stable fraction, carried out by using an H2O2 oxidation treatment. The bulk SOM and the stable fraction of SOM were quantified and characterised by diffuse reflectance Fourier transform infrared (DRIFT). The stable SOM fraction was also radiocarbon dated, so providing indications about its turnover time. Additionally, charcoal in the soil was collected, quantified, the plant species identified using a stereomicroscope and C-14 dated. We found a clear correlation between the aromatic content in the soil and the decreasing altitude confirming the initial hypothesis. The C and N concentration in the bulk soil increased with decreasing altitude, as well as the C stored in charcoal in the topsoil. The relative content of stable SOM is similar in the various soils of the catena, although it slightly decreases with altitude. The mean age of the stable organic fraction varies much in the different soils. In general, an age of a few hundred years is found at low altitudes, whereas at higher altitudes ages up to 8000 years could be measured. Overall, these findings suggest that the high fire frequency at low altitudes is a powerful rejuvenating factor for soil organic matter, removing part of the SOM and promoting plant recolonization.

Suolo e den Ambiente Agroforestate (Dir SA). Hazzate dene Cascine 28, 30144 – Frienze,
 Master student at Department of Geography, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland;
 Università degli Studi di Firenze Dipartimento di Scienza delle Produzioni Vegetali, del Suolo e dell'Ambiente Agroforestale (DIPSA). Piazzale delle Cascine 28, 50144 – Firenze;

⁴ Zurich University of Applied Sciences, Institute of Natural Resource Sciences, Grüental, CH-8820 Wädenswil, Switzerland;

⁵ Institute for Geotechnical Engineering, 8093 Zurich, Switzerland, michael.ploetze@igt.baug.ethz.ch ⁶ Department of Geography, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. *giovanni.mastrolonardo@unifi.it

The effects of heating a lateritic podzolic soil on soil phosphate availability, a glasshouse study

Robert Gilkes^{1*}, Emielda Yusiharni²

¹ School of Earth and Environment, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009;

Key-words: soil heating, soil mineralogy, P availability, dehydroxylation, rehydroxylation.

Abstract

Soil heating during a bushfire may have significant impacts on soil mineralogical and chemical properties. The availability to plants of native and added P may be substantially affected. The effects of fire on soil characteristics will vary with the duration and intensity of fire, fuel and soil type and these topics deserve further investigation. The lateritic podzolic soil used in this research has a fine fraction dominated by three readily dehydroxylated minerals (kaolinite, gibbsite and goethite) and consequently is particularly sensitive to heating at temperatures that commonly occur in soils heated by bushfires. A glasshouse study was done on the impact on phosphate (P) availability of heating soil minerals in a lateritic podzolic soil. Soil from a forest site was heated at 250, 350 and 500°C which are temperatures that may be experienced by topsoil during bushfires. P-response of annual ryegrass (Lolium rigidum Gaud) to the application of several levels of P as monocalcium phosphate (MCP) was also determined. Soil heating caused kaolinite, gibbsite and goethite to dehydroxylate and to partly alter into metakaolinite, amorphous alumina and hematite respectively. Heating increased soil pH and EC due to combustion of soil organic matter, although EC then decreased for 350°C and 500°C heating as soluble salts reacted with soil constituents. Yield of ryegrass decreased with increasing temperature of heating for unfertilized soil and for heated soils supplied with P fertilizer. P concentration in ryegrass for each of three harvests ranged from 0.03% to 0.3% and decreased in the same sequence as for yield (i.e unheated soil>250°C>350°C>500°C heated soil). Heating the soil increased Bic-P and had little effect on the retention of added P as indicated by bicarbonate extraction. However prior heating of soil decreased the agronomic effectiveness of applied P with smaller reductions occurring for lower heating temperatures. Heating at 500°C greatly increased amounts of reactive Si and Al in the soil due to the formation of metakaolinite and amorphous alumina which are highly reactive compounds and are presumably responsible for the reduced effectiveness of the added P fertilizers. Clearly heating of soil by bushfires can reduce the availability to plants of native and added phosphate and forest managers should be aware of this process.

² School of Earth and Environment, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009.

* bob.gilkes@uwa.edu.au

How does biannual burning alter organic matter in soils of the highland of Southern Brazil?

Heike Knicker^{1*}, Deborah P. Dick², Riccardo S.D. Dalmolin³

Departamento de Geoecología, Biogeoquímica y Microbiología Ambiental, Instituto de Recursos Naturales y Agrobiologíade Sevilla (IRNAS-CSIC), Avda. Reina Mercedes, 10, 41080 Sevilla, Spain.
 Instituto de Quimica, UFRGS, Avenida Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, RS, Brazil
 Departamento de Solos, UFSM, Campus, Universitário, RS, CEP 97105-900, Brazil
 * knicker@irnase.csic.es,

Key-words: C-sequestration; prescribed fire; Pyrogenic organic C; Soil organic matter quality.

Introduction

Since the first arrival of European settlers in Brazil, in the highlands of Southern Brazil, burning of grassland after the winter season has been a common agricultural practice to control pests, to remove old grass biomass, to fertilize the soil with nutrient-rich ash and to increase the pH (liming effect) and the concentration of inorganic ions. This fertilizing effect is supported by biological and non-biological processes after and during low intensity burning that transform organic N forms into more available ammonium and nitrate N and increase the amount of dissolved organic matter (Prieto-Fernández et al., 2004). Thus, burning grassland soils often results in earlier grass growth at the beginning of the growing season and greater annual dry matter production (Ojima et al., 1994).

With respect to the size of the SOM pool contradicting effects of fire are reported. For sites in sub-tropical savannah of Zimbabwe (Bird et al., 2000), it was observed that 50 years of fire exclusion increased the soil organic carbon content by 40 to 50%, whereas in tropical savannahs of Northern Australia, exclusion of fire for 15 years or more significantly reduced soil organic carbon (Chen et al., 2005).

Abandoning fire results in a relatively fast change of the SOM nature (Golchin et al., 1997), possibly because of fast invasion of the grassland by forest and due to the lack of new pyrogenic organic matter (PyOM) input. The latter is expected to be a major source of the slow-cycling carbon pool in soils. However, there are indications that PyOM can be degraded at the decadal to centennial time-scale (Bird et al., 1999). Model studies revealed relatively short mean residence times of 14 to 19 years for charred grass residues and up to 56 years for pine wood char (Hilscher et al., 2009). Others showed that charred plant materials are metabolized at a much greater rate in the presence of an easily available C source (glucose) (Hamer et al., 2004). Thus, PyOM may not be as inert as commonly assumed, which leaves some uncertainties regarding its role in the global carbon cycle.

Objectives

In order to obtain some further insights on the impact of frequent burning on SOM properties, its stocks and its stability, a chronosequence of soils under frequently burnt grassland with increasing time after the last fire was selected from the Campo area of the Planalto in Southern Brazil. In order to identify possible translocation of PyOM within the soil column, the soils were sampled as a function of depths down to 40 cm and analyzed by means of elemental analysis and solid-state ¹³C and ¹⁵N NMR spectroscopy. Their PyOM contributions and stocks were quantified from the aromatic-C contents

remaining in the residue after chemical oxidation of the soils with acid dichromate (Knicker et al., 2007).

Material and methods

The sampled soils are located in the Planalto region, Rio Grande do Sul, Southern Brazil and developed on Basalt. According to the World Reference Base, they are assigned to Leptosols and Umbrisol (IUSS Working Group WRB and World Soil Resources Reports 103, 2006). The samples were taken from the A horizon in depth intervals from 0 to 5 cm, 5 to 10 cm, 10 to 15 cm, 15 to 30 and if possible from the AC and C horizon between 30 to 45 cm. In the Planalto region, biannual burning is practiced before the next growing season (here in August/September). The sampling took place in May 2006, approximately 0.75, 1.75, 4.75 and 21.75 years after the last burning. Correspondingly, the sites are termed C1 (0.75 years), C2 (1.75 years), C5 (4.75 years) and C22 (21.75 years). All soils were classified as clay loam and were under pasture (*Campo*), although some *Araucaria angustifolia* trees had already invaded into the field without burning for 22 years. After air-drying and manual removal of root and plant material, the samples were passed through a 2 mm sieve and the fine earth was dried for further analysis.

Total C, total N and total S were measured in duplicates by dry combustion (975°C) using an Elementar Vario EL microanalyzer and an Elementar VarioMAX macroanalyzer. As all samples were free of carbonate, the measured C concentrations represent the soil organic carbon (C_{tot}) concentration. C_{tot} , N_{tot} and S stocks in the different depths regions were calculated for one square meter.

After demineralization with 10% HF-solution (Gonçalves et al., 2003) all soil samples were analyzed by solid-state ¹³C cross polarization magic angle spinning (CPMAS) NMR spectroscopy with a Bruker DSX 200 NMR spectrometer operating at a resonance frequency of 50.32 MHz (Lehrstuhl für Bodenkunde, TU-München, Germany) applying the parameter set-up described by (Knicker et al., 2005).

To determine the content of PyOM, the HF-treated samples were oxidized with 40 ml of 0.1 M K₂Cr₂O₇/ 2 M H₂SO₄ solution at 60°C in an ultrasonic bath for 6 hours (Knicker et al., 2007). For quantification of the pyrogenic organic C (PyOC), the aromatic C content of the chemical oxidation resistant elemental C (COREC_{arom}) was determined by solid-state ¹³C NMR spectroscopy and multiplied with a correction factor *f* to account for PyOC losses induced by the chemical oxidation (Knicker et al., 2008). This correction factor was yielded by calculating the contribution of COREC_{arom} to the total C of charcoal produced from native vegetation at the study site.

Results and Conclusions

Exclusion of fire resulted in a considerable decrease of the organic C-stocks, whereas N and S stocks were only slightly affected. This leads to a decline of the C/N ratios (w/w) at all soil depth with increasing time after the last fire. However, with depth the C/N ratios (w/w) increased slightly for all soils.

All spectra of the top 5 cm are dominated by signals in the region of O-alkyl C deriving mostly from carbohydrates. Whereas within the first 5 years after ceasing burning no major alterations of the SOM composition are apparent, 22 years recovery time were sufficient to increase the alkyl C contribution at the expense of O-alkyl C. Because a vegetation change was not evident, this is best explained with declining input of fresh plant litter.

Calculating the aromatic C stocks in this soil region, an increase from 0.66 kg m⁻² in C22 to 0.96 kg m⁻² in C2 and 0.8 kg m⁻² in C1 was yielded. The aromatic C stocks, however,

can only account for less than half of the increase of the C-stocks in the top 5 cm due to fire application. Correspondingly, additional C-sources must have contributed to the observed C-accumulation. According to the NMR data these are O-alkyl C structures. From those observations, it can be concluded that the fire management affected the more stable C pool by the production of charred residues but at the same time enlarged the more labile SOM pool by enhancing the input of fresh and unburned litter.

With increasing soil depths the O-alkyl C contents decrease concomitantly with a slight increase of the carboxyl-C concentration, which evidences progressive degradation of SOM. At all sites, the aromatic-C stocks are slightly declining with soil depths. In the region between 10 and 30 cm, we found no indications for major fire-induced changes of the amounts of aromatic C.

Oxidation with acid dichromate of the top layer soils revealed unexpected low PyOC contributions of less than 9% of C_{tot} . A comparable observation was made for the layers down to 15 cm. With increasing time periods since the last fire, the contribution of PyOC to C_{tot} clearly decreased for the top 5 cm. In the deeper soil regions PyOC contributions increased from 8 to 19% of C_{tot} . Because it is unlikely that in the studied subsoil regions the temperature was high enough for char production, this is a clear indication that char residues were transported through the soil profile.

Calculating the decrease of PyOC stocks as a function of time since the last fire, it was revealed that comparable to fire-unaffected SOM, PyOM is composed of fractions with different stability against microbial degradation. Whereas the labile PyOM fraction showed C-losses similar to that of O-alkyl C, the more stable PyOM fraction was selectively preserved together with an alkyl fraction.

In summary, our study demonstrated that frequent burning of grassland can indeed lead to an increase of the C-sequestration potential of a soil. However, since most of the additional material derives from fresh plant litter, this additional SOM belongs to the labile C-pool with short turn-over times. In addition, our study confirmed that PyOM can contain fractions with turnover rates comparable to fire-unaffected SOM. Thus, charcoal input or prescribed burning of grasslands can increase the C stocks but does not necessarily enlarge the stable SOM fraction to a higher extent. This certainly has some important implication for C-cycling models.

The fact that charcoal can be attacked and oxidized by microorganisms can also explain the observation that PyOM can be translocated by the soil solution and accumulates in subsoils. In our soils this was indicated by an increase in the aromaticity with soil depth. Such increase has been observed in other Brazilian soils, too (Dick et al., 2005; Dieckow et al., 2005). Considering the frequent occurrence of fires in some regions and the fact that prescribed burning has always been a common land management practice, those aromatic structures may be relicts of former fires that leached into and accumulated in the subsoil.

Acknowledgements

The authors thank CAPES (Brazil) and the Deutscher Akademischer Austausch Dienst (DAAD) for the financial support granted to the PROBRAL PROGRAM, which financed the researchers' exchange and sample collection in Brazil. The laboratory work was mainly performed at the Lehrstuhl für Bodenkunde of the TU München.

References

- Bird, M.I., Veenedaal, E.M., Moyo, C., Llyod, J. and Frost, P., 2000. Effect of fire and soil texture on soil carbon in a sub-humid savanna (Matopos Zimbabwe). Geoderma, 94: 71-90.
- Bird, M.I., Veenendaal, E.M., Moyo, C., Lloyd, J. and Frost, P., 1999. Stability of elemental carbon in a savanna soil. Global Biogeochemical Cycles, 13: 923-932.
- Chen, X., Hutley, L.B. and Eamus, D., 2005. Soil organic carbon content at a range of north Australian tropical savannas with contrasting site histories. Plant and Soil, 268: 161-171.
- Dick, D.P. et al., 2005. Characteristics of soil organic matter in top- and subsoils of different Brazilian Ferralsols under native vegetation. Geoderma, 124: 319-333.
- Dieckow, J. et al., 2005. Composition of organic matter in a subtropical Acrisol as influenced by land use cropping and N fertilization, assessed by CPMAS ¹³C NMR spectroscopy. European Journal of Soil Science, 56: 705-715.
- Golchin, A. et al., 1997. The effects of vegetation and burning on the chemical composition of soil organic matter in a volcanic ash soil shown by ¹³C NMR spectroscopy. I. Whole soil and humic acid fraction. Geoderma, 76: 155-174.
- Gonçalves, C.N. et al., 2003. The effect of 10% HF treatment on the resolution of CPMAS 13C NMR spectra and the quality of organic matter in ferralsols. Geoderma, 116: 373-392.
- Hamer, U., Marschner, B., Brodowski, S. and Amelung, W., 2004. Interactive priming of black carbon and glucose mineralisation. Organic Geochemistry, 35: 823-830.
- Hilscher, A., Heister, K., Siewert, C. and Knicker, H., 2009. Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Organic Geochemistry, in press.
- IUSS Working Group WRB, W.r.b.f.s.r. and World Soil Resources Reports 103, F., Rome., 2006. World Reference Base for Soil Resources. World Soil Resources Reports 103. FAO, Rome.
- Knicker, H., Müller, P. and Hilscher, A., 2007. How useful is chemical oxidation with dichromate for the determination of "Black Carbon" in fire-affected soils? Geoderma, 142(1-2): 178-196.
- Knicker, H., Totsche, K.-U., Almendros, G. and González-Vila, F.J., 2005. Condensation degree of burnt peat and plant residues and the reliability of solid-state VACP MAS ¹³C NMR spectra obtained from pyrogenic humic material. Organic Geochemistry, 36: 1359-1377.
- Knicker, H., Wiesmeier, M. and Dick, D.P., 2008. A simplified method for the quantification of pyrogenic organic matter in grassland soils via chemical oxidation. Geoderma, 147: 69-74.
- Ojima, D., Schimel, D.S., Parton, W.J. and Owensby, C.E., 1994. Long and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry, 24: 67-84.
- Prieto-Fernández, A., Carballas, M. and Carballas, T., 2004. Inorganic and organic N pools in soils burned or heated: immediate alteration and evolution after forest wildfires. Geoderma, 121: 291-306.

Mineralogical and chemical changes in a lateritic soil due to a bushfire in the darling range, Western Australia

Emielda Yusiharni^{1*}, Robert Gilkes²

¹ School of Earth and Environment, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009;

* yusihb01@student.uwa.edu.au

Key-words: Synchrotron XRD, soil mineralogy, extractable, dehydroxylation.

Abstract

Heating of soil during a fire which burns litter and fallen timber can raise surface soil temperature to 500°C or more and may significantly impact on soil properties. Many soil minerals are affected by heating in natural and managed fires. The effects of soil heating on the mineralogy of soil have not been extensively studied although quite modest (250°C) temperatures affect minerals. Laboratory studies have shown that kaolinite decomposes at temperatures between 450°C and 700°C losing lattice water and formed metakaolinite. Gibbsite alters to an amorphous phase and boehmite on heating at ≈ 200 °C, and goethite is transformed to a disordered mineral known as hydro-hematite at ≈300°C. The possibility that these dehydroxylated compounds persist in soils heated in bush fires is unresearched and is the subject of this investigation. Samples were collected shortly after a bushfire at Wundowie in the Darling Range, Western Australia in early March 2009. Samples were removed as a 1cm thick soil layer from under burnt Eucalyptus and grass tree (Xanthorrhoea pressii) logs from up-slope and down slope sites in a lateritic colluvium catena. The soils are very gravelly and were sieved to obtain the <2mm fraction for analysis. Conventional and synchrotron XRD patterns of heated and unheated soil from the Wundowie bushfire site show the effect of fire on soil minerals. The main crystalline compounds of unheated soil are quartz, kaolinite, gibbsite and goethite. The XRD patterns of heated soil show that kaolinite dehydroxylated into metakaolinite, gibbsite altered into an amorphous phase, while goethite transformed into hematite (hydrohematite). Quartz was unaltered. The bushfire was added calcite in plant ash to the soil. The addition of ash during the fire has considerably increased the pH of all soil samples relative to the original. Soil EC values also increased substantially after the bushfire with values for the heated soil being considerably higher than for unburnt soil. The increases in EC simply reflect the addition to the soil of soluble salts in plant ash. Heating had increased amounts of extractable Al, Fe and Si due to crystalline minerals becoming amorphous. Clearly dehydroxylated minerals and possibly their rehydroxylated forms must be present in naturally heated soils and may exert significant effects on the chemical behaviour of the soil. This topic deserves further investigation as amorphous compounds are chemically reactive and may affect soil fertility.

² School of Earth and Environment, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009.

Fire severity effects on ash chemical composition and extractable elements

Paulo Pereira^{a*}, Xavier Úbeda^b, Deborah Martin^c

^a Department of Environmental Protection Department, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius (Lithuania);

^c USGS, 3215 Marine Street, Boulder, Colorado (USA). *pereiraub@gmail.com

Key-words: Ash colour; fire severity; chemical properties; Landscape recuperation after the fire.

Introduction

Fire severity was a term born from the necessity of describes the effects of fires, especially wildland fires in the landscape, where the information about fire intensity is not available (Keeley, 2009). Several methods have been developed to measure fire severity on the ecosystems as the diameter of the twigs and branches (Moreno and Oechel, 1989), loss of litter mass (Úbeda et al., 2009), crown consumption (Vega et al., 2008), plant mortality (Larson and Franklin, 2005), fine fuel consumption (Matt Davies et al., 2010), aerial fotos (Brais et al., 2000) and satellite images (Miller et al., 2009) and related with changes in soil properties (Keeley, 2009). Ash colour is a very useful and non expensive methodology to estimate fire severity as observed elsewhere (Pereira et al., 2010). Ash colour gives an indirect estimation of the degree of fire organic matter consumption. Is widely known that black ash is an evidence of a low fire severity and grey/white ash of high fire severity, and are indirect estimators of low and/or high temperature. However, ash colour variation according with the temperature is more complex as observed by Úbeda et al. (2009).

The effects of fire in ash properties (e.g colour) determine the amount and availability of nutrients content and leachable. However little is known about the effects of fire severity on ash chemical composition and soluble elements. This is of major importance because after the fire it is important to know the amount of nutrients available for ecosystem recuperation, especially in wildfires where, normally, fire severity is higher. The aim of this work is study the effects of fire severity on ash chemical composition and extractable elements.

Methodology

Ash was collected in three wildfires occurred in Lisbon region in forests dominated by *Pinus pinaster* and *Quercus suber*. Wildfires occurred in the end of July 2008 and total of 102 samples were collected between 2 and 5 days after the wildfire placed in plastic bags and taken to laboratory. Subsequently, samples were pulverized with Frich Pulverizate 23 for about 2 min in order to homogenize the sample to analyse the ash colour. To classify ash colour we used the Munsell color chart (Úbeda *et al.*, 2009). Ash colour was classified according the criteria: very dark brown ash was considered when 10 YR 2/2, black when 10 YR 2.1, very dark grey when 10 YR 3/1, dark grey when 10 YR 4/1 and light grey when 10 YR 6/1 and 10 YR 7/2. The fire severity follows the increasing order, very dark brown ash, black ash, very dark grey, dark grey and light grey. The

^b GRAM (Grup de Recerca Ambiental Mediterrànea), Departament de Geografía Física i Anàlisi Geogràfica Regional, Facultat de Geografía i Història, Universitat de Barcelona, C/ Montalegre, 6. 08001 Barcelona (Spain);

methodologies of laboratory work used in the analysis of Calcium carbonate (CaCO₃), pH, TN%, TC% and extractable elements Calcium (Ca), Magnesium (Mg), Sodium (Na), Potassium (K), Total Phosphorous (TP), Total Sulphur (TS) and Silica (Si) are described in Pereira et al. (2010).

Previous to data comparison we tested normality with the Kolomogorov-Smirnov test and homogeneity of the variances with the Brown-Forsythe Test. Data normality and homogeneity were considered at a p>0.05. The majority of the data did not respect the criteria of normality and homogeneity, and only after a box-cox transformation were achieved. After this step we applied the parametric ONE-WAY ANOVA test, considering ash colour as predictor and the remains as dependent variables. If significant differences were founded at a p<0.05 we applied the post-hoc Fisher LSD test to identify significant differences between ash colour in each element in study. Also, differences were considered significant at a p<0.05. Statistical analyses were carried out with Statistica 7.0 (Statsoft.).

Results and conclusions

The majority of the ash colour identified was dark grey (32.35%), followed by very dark grey (26.47%), black (22.55), light grey (13.73%) and very dark brown (4.90%) which means that were mainly produced at mean-high severity (Pereira et al., 2010). The results of the ash chemical composition and extractable elements are shown in the table 1. We identified in all cases significant differences among elements concentration and leached between ash colours. Ash CaCO₃% was higher light grey ash (32.47) and lower in very dark brown (1.54). The opposite dynamic was identified in ash TN% were the higher % was identified in very dark brown (1.67) and the lower in light grey ash (0.87). The same behaviour was identified TC% and C/N, where the major values were identified in the ash produced at lower temperatures, 46.04 for TC% and 32.64 for C/N and lower in the ash produced at higher temperatures, 17.82% for TC% and 19.47% for C/N. pH values are higher in light grey ash (8.18) and lower in very dark brown ash (7.34).

In relation to extractable elements, we did not observe a linear decrease or increase with fire severity (Table 1). It was extracted higher quantities of Ca from black ash (5553.32 mg/l) and lesser from dark grey ash (4014.85 mg/l). The same dynamic was observed in Mg, however the amount extracted was much less than the in the case of Ca. On average, black ash released in solution 1417.61 mg/l and dark grey 1075.39 mg/l. The monovalent cations showed a different behaviour. Na concentration was higher in the extracts from very dark grey ash (1920.62 mg/l) and lower in very dark brown ash (1226.76 mg/l) and K presented higher quantities on the solutions produces with black ash (3609.42 mg/l) and lower in the solutions from light grey and very dark brown ash, 2524.65 mg/l and 2521.45 respectively. Extractable TP was in higher concentrations in very dark brown ash (506.76 mg/l) and lower in light gray ash (86.24 mg/l). Extractable TP showed an opposite dynamic. The major concentrations of this element on solution were founded in light grey ash (1958.78 mg/l) and lower in very dark brown ash (979 mg/l). Si showed higher concentrations in the extracts from very dark grey ash (1375.96 mg/l) and lower in light grey ash (910.76 mg/l).

The findings in this study showed that there is a clear increase in the content of ash CaCO₃%, pH and extractable TS with the fire severity and a decrease in TC%, TN%, C/N, TP. In the remaining elements, we observed a major concentration of Ca, Mg and Na in the extracts of black ash and K and Si in the solutions produced from very dark grey ash. The results obtained in this work shown that the amount of elements in ash depends on the fire severity. The difference of nutrients release on soil surface by each

ash type will have heterogeneous impacts on soil properties. In addition the amount and type of nutrients available for landscape recuperation depend strongly of fire severity. From our results, the increasing fire severity had important implications on the amount of Carbon and Nitrogen budgets however increase organic matter mineralization which induces a major availability of the nutrients to be leached. This is one of the causes of the increase of the solubility of some nutrients in black and very dark grey ash (e.g Ca, Mg, K and Si). The reduction of TP in solution with the temperature is very likely because this element precipitate easily at high pH levels and bind in CaCO₃ surfaces. The reductions of the bivalent and monovalent cations are also triggered by the presence of CaCO₃ surfaces and pH that induce a complex dynamic in the amount and type f elements in solution (Pereira, 2010).

Table 1. Concentration of CaCO₃%, TN%, C/N ratio, pH and extractable Ca, Mg, Na, K, TP, TS and Si according ash colour Extractable elements in mg/l. p, significance level of the ANOVA one way test. Differences significant at a p < 0.05*, < 0.01** and < 0.001*. Different letters represent significant differences at a p > 0.05 (a= higher mean, b=lower mean) identified with the Fisher LSD test. N=102. n.d (not determined).

Element	P	Colour	Mean	Minimum	Maximum	S.D	CV%
CaCO3%		Very dark brown	1.54e	n.d	3.05	1.68	109.09
		Black	5.58d	1.27	10.99	2.65	47.49
	***	Very dark grey	11.08c	4.31	17.40	3.70	85.84
		Dark grey	19.29b	15.40	24.87	2.83	18.37
		Light grey	32.47a	26.67	10.99	6.03	22.60
		Very dark brown	1.67a	0.87	2.43	0.75	44.91
		Black	1.54a	0.68	2.64	0.62	40.25
TN%	***	Very dark grey	1.30ab	0.30	2.37	0.51	39.23
		Dark grey	1.16b	0.46	2.12	0.40	34.48
		Light grey	0.87c	0.44	1.31	0.30	34.48
		Very dark brown	46.04a	37.16	53.43	6.31	13.70
		Black	39.57a	17.77	57.52	13.56	34.26
TC%	***	Very dark grey	29.38b	9.92	64.87	12.81	43.60
		Dark grey	25.02b	7.27	46.53	10.24	40.92
		Light grey	17.82c	5.07	46.15	10.76	60.31
	***	Very dark brown	32.64a	18.91	54.43	15.25	46.72
		Black	27.19a	18.22	58.46	8.73	32.11
C/N		Very dark grey	23.46b	11.04	35.40	6.29	28.81
		Dark grey	21.36bc	13.74	31.32	4.85	22.71
		Light grey	19.47c	11.39	42.15	7.69	39.49
	***	Very dark brown	7.34d	6.93	7.61	0.26	3.54
рН		Black	7.44d	6.53	8.20	0.44	5.91
		Very dark grey	7.79c	7.04	8.30	0.31	3.97
		Dark grey	7.96b	7.52	8.28	0.19	2.38
		Light grey	8.18a	7.82	8.64	0.21	2.56
	**	Very dark brown	5063.54ab	2577.90	7308.19	1757.60	34.71
		Black	5553.32a	1295.81	12695.04	2931.95	52.79
Ca		Very dark grey	4760.31b	1969.23	11566.26	2177.51	45.75
		Dark grey	4014.85c	1813.05	7191.78	1355.55	33.76
		Light grey	4883.51b	25267.67	10270.21	2196.19	44.97

Table 1. (Continuation)

Element	p	Colour	Mean	Minimum	Maximum	S.D	CV%
		Very dark brown	1088.39b	517.96	1789.57	470.78	43.25
Mg		Black	1418.61a	347.60	4036.32	745.78	52.57
	**	Very dark grey	1165.54b	396.54	1978.68	443.94	38.08
		Dark grey	1075.39b	495.91	1811.38	396.99	36.91
		Light grey	1151.63b	605.75	1771.70	387.89	33.68
		Very dark brown	1226.76c	612.94	1995.47	501.43	40.87
		Black	1909.98a	572.32	3181.11	712.73	37.33
Na	**	Very dark grey	1920.62a	442.36	3985.95	786.42	40.94
		Dark grey	1747.07ab	426.99	3109.91	718.21	41.11
		Light grey	1714.98b	289.72	2815.30	730.77	42.61
		Very dark brown	2521.45b	768.48	4324.89	1406.93	55.80
		Black	3609.42a	639.04	10773.18	2180.84	60.42
K	*	Very dark grey	2655.42b	311.39	4965.42	1001.25	37.71
		Dark grey	3266.89a	397.93	13355.00	2715.01	83.10
		Light grey	2524.65b	575.98	7697.92	1876.99	74.34
	***	Very dark brown	506.76a	5.89	936.26	341.08	67.30
		Black	407.87a	6.19	850.42	281.54	69.03
TP		Very dark grey	239.99b	9.47	1073.55	270.51	112.71
		Dark grey	163.54b	5.57	958.22	215.67	131.87
		Light grey	86.24c	4.68	245.60	69.42	80.49
	**	Very dark brown	979.13d	744.32	1719.19	420.63	42.95
		Black	1370.37c	638.00	4430.08	733.02	53.49
TS		Very dark grey	1741.08b	728.65	6426.79	1311.84	75.34
		Dark grey	1666.71b	728.65	2573.78	545.65	32.73
		Light grey	1958.78a	1134.66	5832.47	1150.14	58.71
	*	Very dark brown	929.71bc	598.09	1491.13	345.35	37.14
		Black	1351.36a	473.02	5388.87	948.63	70.19
Si		Very dark grey	1375.96a	232.24	3460.39	881.32	64.05
		Dark grey	1165.40b	224.76	2305.09	469.50	40.28
		Light grey	910.76c	349.32	1412.76	273.72	30.05

References

- Keeley, J.E. (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage, *International Journal of Wildland Fire*, 18, 116–126.
- Larson A.J., Franklin, J.F. (2005) Patterns of conifer tree regeneration following an autumn wildfire event in the western Oregon Cascade Range, USA, *Forest Ecology and Management*, 218, 25–36.
- Matt Davies, G., Smith, A.A., MacDonald, A.J., Bakker, J.D., Legg, C.J. (2010) Fire intensity, Fire severity and ecosystem response in hethlands: factors affecting the regeneration of *Calluna vulgaris*, *Journal of Applied Ecology*, 47, 356–365.
- Miller, J.D., Safford, H.D., Crimmins, M., Thode, A.E. (2009) Quantitative evidence for increasing forest fire severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA, *Ecosystems*, 12, 16–32.

- Moreno, J.M., Oechel, W.C. (1989) A simple method for estimating fire intensity after a burn in California chaparral, *Acta Oecologica*, 10, 57–68.
- Pereira, P. (2010) Effects of fire intensity in ash chemical and physical characteristics of Mediterranean species and their impact in water quality, Phd thesis.
- Pereira, P., Bodi. M., Úbeda, X., Cerdà, A., Mataix-Solera, J., Balfour, V, Woods, S. (2010) Las cenizas y el ecosistema suelo, In: Cerdà, A. Jordan, A. (eds) Actualización en métodos y técnicas para el estudio de los suelos afectados por incendios forestales, 345-398. Càtedra de Divulgació de la Ciència. Universitat de Valencia.
- Úbeda, X., Pereira, P., Outeiro, L., Martin, D. (2009) Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber), *Land Degradation and Development*, 20(6), 589–608.
- Vega, J.A., Fernández, C., Pérez-Gorostiaga, P., Fonturbel, T. (2008) The influence of fire severity, serotiny, and post-fire management on *Pinus pinaster* Ait. Recruitment in three burnt areas in Galicia (NW Spain), *Forest Ecology and Management*, 256, 1596–1603.

Quantifying the intensity of prescribed fire in degraded pine forest and pine-oak forest, Nam Nao national park, Thailand

Wanthongchai, K.^{1*}, Rugsamanee, S.², Kongdetadisak, P.³, Tarusadamrongdet, V.⁴, Chinnawong, K.⁴

¹Department of Silviculture, Faculty of Forestry, Kasetsart University, Chatuchak Bangkok, Thailand 10900 ² National Park Office, Department of National Park, Wildlife and Plant Conservation, Bangkok, Thailand 10900

Key-words: Fire behavior, Degraded pine forest, Pine-oak forest, Fuel loads.

Introduction

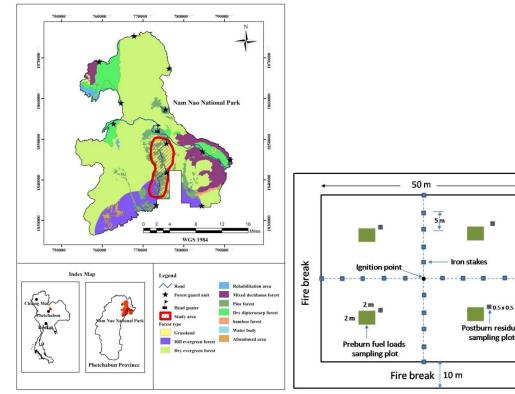
Fires have long been, and continue to be, the significant shaping force in many forest ecosystems of the world (Pyne, 1995). The fire-related changes associated with different frequencies and severities of burning produce diverse responses in the soil, water, flora and faunal components of ecosystems. Anthropogenic burning has become a common phenomenon throughout Thailand's forest including pine-related forest ecosystem (Akaakara, 2000). This ecosystem is usually found on poor, well-drained soils in the North and North-east of the country. Pine usually grows either in pure stand, so called "pine forest community", or grows together with xerophytic deciduous broadleaves tree species, so called "pine-dipterocarp forest community" and "pine-oak forest community". Although pine forest is fire-dependent ecosystem, the resistant ability depends largely on burning severity, burning intensity and burning frequency (Goldammer and Penafiel, 1990). An inappropriate burning regime, especially too much fires in this forest ecosystem, therefore, have long been affected plant species composition and nutrient dynamics, thereby resulting in ecosystem degradation. Therefore, numbers of degraded pine forests have observed, especially at Phu Kum Khao, Nam Nao national park. Efforts for forest fire prevention and control in this degraded forest have been launched by means of budget and equipments. Unfortunately, the fundamental knowledge necessity for forest fire management policy for this area, i.e. fuel dynamics, fire intensity and severity, have not been well investigated.

Objectives

This study aimed to investigate fuel properties, fire behavior characteristics as well as soil temperatures during prescribed fire in degraded pine forest (PF), and pine-oak forest (O-PF) at Phu Kum Khao, Nam Nao national park, Thailand.

Methodology

Three 50×50 m plots were set up for each sub-community. Prior to burning, fuel properties including fuel type, fuel loads, fuel arrangement and coverage were estimated from four 2×2 m subplots located systematically within the plot. Fire was ignited at the center of the plot to allow free burning. Fire behavior descriptors, i.e. fire intensity was calculated using Byram's (1959) formula. Fire and soil temperature were also recorded throughout the plot. Immediately after the fire, four 50×50 cm subplots were set up to determine the residues left after burning, including ash, charcoal and unburned material.


³ Office of Conservation Administration 11, Department of National Park, Wildlife and Plant Conservation, Bangkok, Thailand 10900

⁴ Graduate school, Faculty of Forestry, Kasetsart University, Chatuchak Bangkok, Thailand 10900 * kobsak.w@ku.ac.th

50 m

Figure 1. Location of Nam Nao National Park and plot layout for fuel and residue determination and burning pattern.

Results and conclusions

The study revealed that the main fuel proportion in PF stand was grass (45%) and litter (44%), whereas leaf litter was the most importance source of fuel in O-PF stand (55%), followed by twig (17%) and grass (16%), respectively. Frequent fire, as occur in PF site, favour the grasses, which are well adapted to the regular occurrence of fire. This study was consistent with the study of Wanthongchai (2008), who reported an increases of grass in the forest where annual fire occurs. Obviously, the aboveground fuel loads in PF (12.9 ton/ha) is higher than that of the O-PF (8.7 ton/ha). The relative fuel consumption from burning in the PF stand was significantly high (72%), compared to only 29% of pre-burn fuel load consumed by fire on the O-PF stand (**Table 1**). Fine fuel such as grass and litter ignite readily, and the abundance and homogeneity of the grass fuels allowed for more complete burned.

All fire descriptors, including the rate of spread, flame height, fire intensity, and fire and soil temperature were influenced by fuel loads, types and fuel arrangement, as reflected by fuel consumption. Obviously, fire behavior characteristics in the PF were significantly greater than that of the O-PF (**Table 2**). According to fire intensity classification by Cheney (1994) burning was classified as a low-intensity fire for the O-PF (47.9 kW.m⁻¹), while burning in PF was classified as medium-intensity fire (626.7 kW.m⁻¹). However, Sutthichart (1996) reported that fire intensity for prescribed burning at pine forest, Phu Kradaung national park was 3940 kW.m⁻¹, and flame length was 2.42 m. This contrasting result has demonstrated the influence of different fire environments, i.e. fuel, weather and topography on fire behavior (Chandler *et al.*, 1983). Fire behavior in this study, however, exhibited great spatial and temporal variation either within or between plots, depends on the burning spread direction and fuel properties. During burning experiment, the surface soil temperatures at all sites were higher than 100 °C. However, fire did not cause in

temperature changes at deeper soil layers, especially at 5 and 10 cm depths (**Figure 2**). Based on this study, fire intensity may be too low to create surface soil temperatures of sufficient duration to heat the lower soil layers. In addition, it could recommend that fire management tools and strategies should be well-prepared to cope with wildfire in degraded pine forest.

Table 1. Pre-burn fuel loads, post-burn residues and fuel consumption.

Site	Preburn fuel -	Postburn residues			Eval consumed	% Fuel	
	loading (t/ha)	Ash	Charcoal	Unburned material	Fuel consumed (t/ha)	consumed	
PF	12.92	1.67	0.99	1.01	9.25	71.54	
O-PF	8.72	1.16	1.57	3.23	2.75	28.53	

Table 2. Quantitative fire behavior characteristics recorded for experimental fires.

Fire characteristics	Sub-comm	unity ¹
Fire characteristics	PF	O-PF
Rate of spread (m.min ⁻¹)	2.19 ^a	0.54 ^b
Flame height (m)	1.34 ^a	0.39^{b}
Flame length (m)	1.42 ^a	$0.44^{\rm b}$
Fireline intensity (kW.m ⁻¹)	626.64 ^a	$47.87^{\rm b}$
Heat release per unit area (kJ.m ⁻²)	288.61 ^a	85.80 ^b

Remark: ¹ different letters (a, b) indicate significant differences (*t-test*) at the 95% confidence interval.

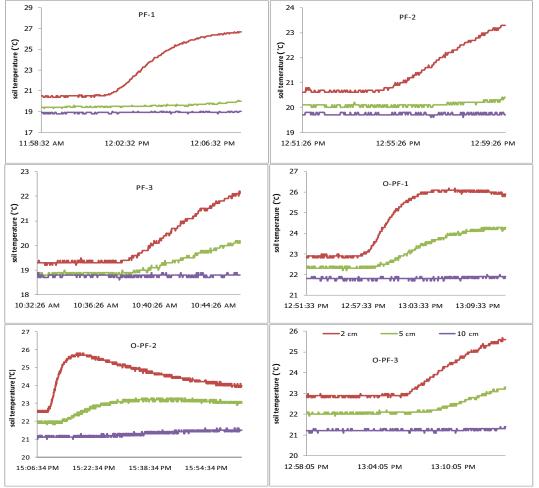


Figure 2. Soil temperatures recorded by thermocouple data loggers for each burning plot.

References

- Akaakara, S., 2000. Forest fire control in Thailand. Royal Forest Department, Bangkok.
- Byram, G.M., 1959. Combustion of forest fuels. In: Davis, K.P. (Ed.), Forest fire; control and use. McGraw-Hill, New York, pp. 61-89.
- Chandler, C., Cheney, P., Thomas, P., Trabaud, L., Williams, D., 1983. Fire in forestry, volume I. Forest fire behavior and effects. John Willey & Sons, Inc., New York.
- Cheney, P., 1994. The effectiveness of fuel reduction burning for fire management. In, Proceedings of fire and biodiversity: The effects and effectiveness of fire management. Dept. of the Environment, Sport and Territories, Canberra, Footscray, Melbourne, pp. 9-16.
- Goldammer, J.G., Penafiel, R.S., 1990. Fire in the pine-grassland biomes of tropical and subtropical Asia. In: Goldammer, J.G. (Ed.), Fire in the tropical biota: ecosystem processes and global challenges. Ecological Studies no. 84. Springer-Verlag, Berlin, pp. 45-62.
- Pyne, S.J., 1995. World fire: the culture of fire on earth. Holt, New York.
- Sutthichart, K., 1996. Impact of Fire on Soil and Plant at Phu Kradung National Park. In, Silviculture. Kasetsart University, Bangkok, p. 88.
- Wanthongchai, K., 2008. Effects of different burning frequencies on fire behaviour, nutrient dynamics, soil properties, and vegetation structure and composition in dry dipterocarp forest, Huay Kha Khaeng wildlife Sanctuary, Thailand. In, Ph.D. diss. Institute of Silviculture. The University of Freiburg, Freiburg, p. 190.

Impact of unprecedented fire intensity on soil physical and chemical properties: the case of the catastrophic Victoria fires of 2009

Stefan Doerr^{1*}, Richard A Shakesby¹, Bryant Rob¹, Smith G Hugh², Gary J Sheridan², Patrick NJ Lane², Tina Bell³, William H Blake⁴

Swansea University, United Kingdom;
 University of Melbourne, Australia;
 University of Sydney, Australia;
 University of Plymouth, United Kingdom.
 *s.doerr@swan.ac.uk

Key-words: soil heating, soil water repellency, fire intensity, burn severity, fire behaviour.

Abstract

The catastrophic wildfires near Melbourne in 2009 occurred during unprecedented extreme fire weather when dry northerly winds gusting up to 100 km/h coincided with the highest temperatures ever recorded in this region. These conditions, combined with the high fuel loads of mostly long-unburnt eucalypt forests, very low fuel moisture content and steep topography, led to unprecedented fire intensity. Here we report outcomes of a rapid response project, launched to determine the effects of this extreme event on selected physical and chemical properties. Three replicate sites each were sampled for extremely high burn severity and high burn severity (as determined by vegetation destruction), and four sites to represent long unburnt control terrain, within mature mixed-species eucalypt forests in April 2009 near Marysville, ~80 km NE of Melbourne. Additional exploratory sampling was carried out in 'rainforest'. Ash (where present) and surface soil (0-2.5 cm and 2.5-5 cm) were collected at 20 sample grid points at each replicate site. Long-unburnt sites were sampled for fuel load and control soil. Sample analysis included organic carbon and metal content, particle size, aggregate stability, water repellency and seed bank survival. Despite the apparent extreme intensity and severity of the fire, its impact on physical and chemical properties of the soils sampled was very limited. Field and laboratory data suggest that heat input to the soil was less than might be supposed given the extreme fireline intensity of >70,000 kW/m reported for this event. Our data indicate that soil temperatures at the surface and in the top 0-2.5 cm did not exceed ~200°C. The comparatively limited heating of the soil stands in stark contrast to the extreme fire intensity and degree of vegetation destruction. Whilst this fire event has been extreme in many respects, the heat input into the ground, and the associated impacts, appear to have been limited. We speculate that this is a result of an unusually fast-moving fire front associated with the extreme wind speeds, causing a particularly short fire-residence time. Here we (i) present some of the data collected, (ii) discuss the factors that may have contributed to the limited heat penetration into the ground, and (iii) briefly explore the implications of the findings for future fire events that are anticipated under future climatic and land management conditions. The samples collected in this project are available to the scientific community for further investigation.

Post-fire rill and gully formation, Schultz Fire 2010, Arizona, USA

Daniel G. Neary^{a*}, Karen A. Koestner^a, Ann Youberg^b, Peter E. Koestner^c

^a USDA Forest Service, Rocky Mountain Research Station, 2500 Pine Knoll Drive, Flagstaff, Arizona 86001 (USA);

^b Arizona Geological Survey, 416 Congress Street, Suite 100, Tucson, Arizona 85701 (USA); ^c USDA Forest Service, Rocky Mountain Research Station, Tonto National Forest, 2324 East McDowell Road, Phoenix, AZ 85006 (USA).

* dneary@fs.fed.us

Key-words: Wildfire; soil erosion; rills; gullies; Schultz Fire.

Introduction

The Schultz Fire burned 6,100 ha on the eastern slopes of the San Francisco Peaks, a dormant Middle Pliocene to Holocene aged stratovolcano in northern Arizona (Figure 1). The fire burned in the Coconino National Forest between June 20th and 30th, 2010, across moderate to very steep ponderosa pine and mixed conifer watersheds. About 40% of the fire area was classified as high-severity, mostly on mountain slopes greater than 30% and in places exceeding 100%. The upper slopes rise to over 3,300 m and are the source for high energy water, coarse sediments, and woody material. A steep gradient of nearly 1,000 m exists from the upper slopes to the base of the lower fans. Summer thunderstorms tend to develop over the mountain due to orographic lifting. Over the course of an active 2010 Monsoon, ranking the fourth highest in rainfall on record, the burned area received numerous precipitation events. The largest event occurred on July 20th and was characterized by a peak rainfall of 25 mm in fifteen minutes, resulting in numerous debris flows, historic floods and substantial hillslope erosion. Flood flows were one to two orders of magnitude larger than those produced by similar pre-fire rainfall events.

Figure 1. Schultz Fire burned area on the east flank of the San Francisco Peaks, July 2010.

Objectives

The upper slopes of the San Francisco Peak have gradients range from 60 to >100%. These areas developed unprecedented erosion after the intense July 20th storm. The objective of this study was to evaluate the extent and degree of new rill and gully formation, reactivation of old gullies, and how this network contributes to the substantially altered hydrologic response of the upper mountain slopes.

Methodology

New rill and gully formation were assessed along the Waterline Road using visual and photographic surveys. Long-term measurements are being done by on-the-ground measurements, terrestrial LIDAR, and repeat aerial photography. The first set of photos was taken on October, 27, 2010, at a scale of 1:12,000 by Kenney Aerial Mapping, Phoenix, Arizona. Repeat photography will be done in late September of each year to follow.

Results and Conclusions

Substantial amounts of soil were eroded out of a newly developed rill and gully system, removing the A horizon and much of the B horizon. Prior to the fire there was a minimal presence of rills or gullies as the soil was protected by a thick O horizon. This protective organic layer burned off during the fire leaving the soil exposed to raindrop impact and erosion. There was widespread occurrence of high severity fire, with some watersheds classified as 70% high severity wildfire. This left most of the soils with moderate to severe water repellency, so surface runoff was extensive. Peakflows from the July 20th storm contained high concentrations of ash and topsoil material. Mineral soil loss is estimated to be >10 cm on 2,000 ha of the upper watersheds.

The development of an extensive rill and gully network fundamentally changed the hydrologic response of the upper portions of every catchment (Figure 2). Rills are self-organizing erosion systems characterized by numerous and randomly occurring small channels of only several centimetres in depth and centimetres to tens of metres long.

Figure 2. Large rill systems developing on a steep slope (right) and small gully development beginning (left). Schultz Fire, 2010, above the Waterline Road, Coconino National Forest, USA.

Sediment yields increase with increasing slope, rill spacing decreases as slope angle increases, rill patterns show an increased elongation and parallelism on steeper slopes, and hillslope rills tend to be evenly spaced on bare, straight slopes (Favis-Mortlock et al. 2000). Rills on the upper slopes of the San Francisco Peaks within the Schultz Fire perimeter are now 10-20 cm deep into the B and C horizons running the entire length of

slopes. Parallel rills in the right photo of Figure 2 demonstrate the transition from sheet erosion to rill erosion. The rills are 30 to 40 cm apart crossing entire slopes. They are up to 5 cm deep and beginning to coalesce. The rills shown on the left are transitioning to small gullies 20 to 30 cm deep. They are cutting below the ponderosa pine surface root systems and into fragmented and weathered C horizon andesite and dacite.

Small lateral gullies that are 50–100 cm deep (Figure 3) merge into now deeply incised main drainage gullies (3–5 m deep) that occupy previous swales in the upper mountain slopes (Figure 4). Despite the elevation and precipitation regime there are no perennial stream channels.

Figure 3. Rapidly deepening gullies on the upper mountain slopes of the San Francisco Peaks within the high-severity portion of the Schultz Fire of 2010.

Flood flows in July and August of 2010 incised deeply into the slopes consisting of volcanic colluvial material and ash and tephra deposits. In many places the gullies have cut down to bedrock, thus allowing subsequent flood flows to scour out fresh, unweathered material. The pre-fire slope surface was about 1 m above the individual on the left in Figure 4. The deep incisions of these main drainage gullies has lowered the base level of the smaller lateral gullies, leading to additional headward cutting of the gully system.

Figure 4. Deeply incised (3 m) main drainage gully within the Schultz Fire along the Waterline Road, Coconino National Forest, Arizona.

Wildfires often produce severe watershed impacts, especially in steep terrain (DeBano et al. 1998, Neary et al. 2008). Interruption of watershed processes results in significantly increased runoff (Ice et al. 2004). The intense, short duration rainfall of the 2010 Monsoon in northern Arizona interacted with slope, water repellency and extensive areas of bare soil to produce flood flows orders of magnitude in excess of flows produced by similar pre-fire rainfall events. These events eroded significant amounts of soil and led to the development of large rill and gully networks. The networks now cover much of the upper mountain. Sediment delivery to the channels is likely to taper off after 3 -5 years, but could increase due and future slope failures.

Crown-replacing wildfires like the Schultz Fire of 2010 have major impacts on the forest ecosystem and hydrology of the Mogollon Rim and the people that inhabit the region. Research will continue on the Schultz Fire for many years to document changes in the landscape and post-fire ecosystem recovery.

References

DeBano, L.F.; Neary, D.G.; Ffolliott, P.F. 1998. Fire's effects on ecosystems. John Wiley & Sons, New York. 333 p.

Favis-Mortlock, D.T.; Boardman, J.; Parsons, A.J.; Lascelles, B. 2000. *Emergence and erosion: a model for rill initiation and development. Hydrological Processes* **14:** 2173–2205.

Ice, G.G.; Neary, D.G.; Adams, P.W. 2004. Effects of wildfire on soils and watershed processes. Journal of Forestry 102:16-20.

Neary, D.G.; Ryan, K.C.; DeBano, L.F. (Editors) 2005 (Revised 2008). *Fire effects on soil and water*. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-42, Volume 4: Fort Collins, CO. 250 p.

Measurement of PM₁₀ emissions in a post-wildfire environment

Natalie Wagenbrenner^{ab*}, Brian Lamb^b, Peter Robichaud^a, Matthew Germino^c

^a US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Moscow, Idaho (USA);
 ^b Washington State University, Laboratory for Atmospheric Research, Pullman, Washington (USA);
 ^c Idaho State University, Biological Sciences, Idaho Falls, Idaho (USA).
 * nwagenbrenner@fs.fed.us

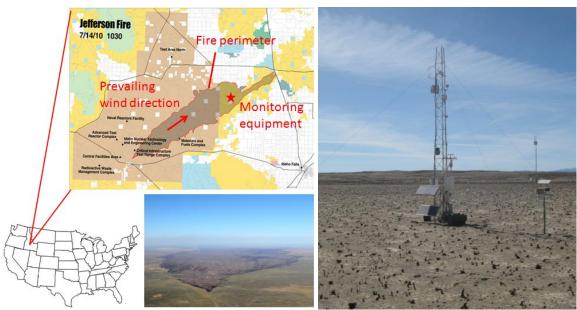
Key-words: PM10; ash; dust; post-fire; aeolian transport.

Introduction

Wind erosion and aeolian transport processes in post-wildfire environments have been less studied than rainfall-induced soil erosion and fluvial transport; however, recent investigations suggest that aeolian processes following a fire can also produce significant negative environmental effects. Burned soils are more susceptible to particle entrainment via wind because fire consumes protective ground cover, destroys naturally occurring soil crusts (Ford and Johnson 2006), induces soil water repellency (Ravi et al. 2006), and decreases aggregate stability (Varela et al. 2010), all of which increase wind erodibility. Blowing dust and ash from burned areas can impact visibility, air quality, soil productivity and nutrient transport. Deposition of wind-blown dust and ash can have implications for water quality and snowmelt processes. Few studies are available which investigate aeolian processes in burned environments; however the research that has been done, suggests that wind erosion can play a major role in burned landscapes. For example, Whicker et al. (2006) measured more than an order of magnitude increase in dust emissions after a high-severity wildfire in northern New Mexico, USA and elevated dust emissions two and three years following the fire due to continuing drought conditions. Blowing dust and ash from the 2007 Milford Flat Fire Complex in Utah, USA caused poor visibility on roadways and resulted in periodic closures of Interstate Highway 15, the major north-south transportation corridor in the state, for months following the fire. This area is still a source of emissions. Dust events in 2008 and 2009 were detectable in satellite imagery and associated with US Environmental Protection Agency (EPA) National Ambient Air Quality Standards (NAAQS) exceedances in a populated area over 100 km downwind (Miller et al. 2010).

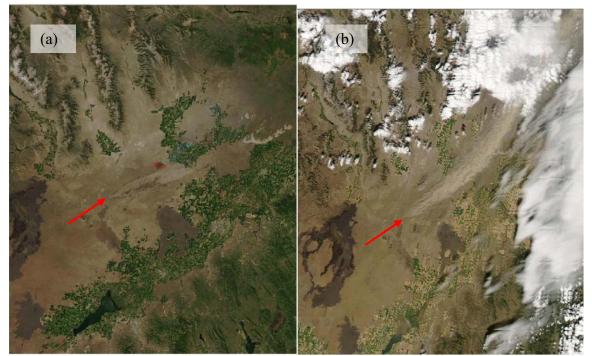
Current wind erosion models are not capable of predicting dust emissions in these burned areas because: 1) little is known about the erosion mechanisms that govern emissions from burned soil and ash; and 2) wind models have not been adapted to predict local terrain effects on winds in the mountainous regions where wildfires often occur. This paper describes initial field results related to a major post-fire dust event that occurred after a wildfire in southeastern Idaho, USA.

Objectives


The objectives of this research are: 1) to quantify the role of wind erosion and dust emissions in post-fire environments as well as the associated potential impacts on air quality; 2) facilitate a better understanding of the mechanics governing post-fire wind erosion and dust emissions; and 3) create a modeling framework capable of forecasting future post-fire wind events. The specific goal of this paper is to address the first objective by presenting some initial findings regarding dust emissions following a wildfire in southeastern Idaho, USA.

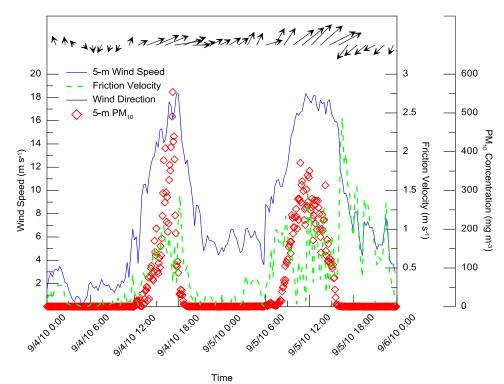
Methodology

The Jefferson Wildfire burned over 44,000 ha of sagebrush steppe in southeastern Idaho, USA in July 2010. We installed two air quality instrumentation towers in the downwind portion of the burned area in August 2010 (Fig. 1) and monitored the site for three months. Real-time concentrations of particulate matter with a diameter of less than or equal to $10 \mu m$ (PM₁₀) were monitored at 2 and 5-m heights at each tower location. Wind statistics were monitored with a sonic anemometer (CSAT3; operated at $10 \mu m$ Hz) at a height of 5 m. Air temperature, relative humidity, solar radiation, precipitation, and soil moisture were also monitored throughout the study period. We limit our discussion in this paper to one specific PM₁₀ event that occurred during 4-5 September 2010.


Figure 1. Left: the location and extent of the Jefferson Fire burned area; the star indicates the location of the site. Right: air quality instrumentation tower installed at the site.

Results

We measured elevated PM_{10} concentrations since the fire was contained, but the largest dust event to-date occurred over 4-5 September 2010 during the passage of a frontal system. A dust plume originating from the burned area on 4 September is visible in MODIS imagery and clearly extends 50 to 100 km downwind of the source (Fig. 2).


Figure 2. MODIS satellite imagery showing a) the Jefferson Fire burn scar on 19 July 2010 and b) a large dust plume originating from the burned area and extending downwind on 5 September 2010. The arrows indicate the ignition point of the wildfire.

The frontal system had sustained winds of 18 m s⁻¹ during mid-day and nighttime winds around 6 m s⁻¹ (Fig. 3). Early morning winds were from the northeast, with the stronger mid-day winds from the southwest. The dust plume visible in the MODIS imagery clearly followed the mid-day wind trajectory. The real-time PM₁₀ concentration tracked well with the observed wind speed and friction velocity data (Fig. 2). PM₁₀ concentrations were slightly higher on 4 September than on 5 September, although observed wind speed was not notably different between the two days. One potential difference was the slight shift in wind direction between days; winds were slightly more from the west on 4 September. The change in wind direction could explain some of the difference in PM₁₀ concentrations at the sampling towers if the area to the west was more erodible than the area to the southwest or if the microtopography was a significant factor.

To our knowledge, this is the first study to report PM₁₀ concentrations in a post-fire environment. The observed two-day dust event demonstrates that particulate emissions from burned areas can be large and potentially result in both local and downwind impacts. Satellite images depict the areal extent of the dust plume and ground-based PM₁₀ measurements provide a quantitative account of the dust event on-site. Based on these initial findings, additional research is warranted to better characterize and understand post-fire wind events including particulate emissions and transport and dispersion of post-fire ash and dust. Understanding these processes is crucial for development of a PM₁₀ model suitable for making predictions of post-fire dust impacts on air quality, nutrient transport, and deposition processes such as effects on snowmelt and chemistry.

Figure 3. Observed wind speed, wind direction, friction velocity, and PM₁₀ concentration for the 4-5 September 2010 event.

References

- Ford, P.L. and G.V. Johnson. 2006. Effects of dormant- vs. growing-season fire in shortgrass steppe: Biological soil crust and perennial grass responses. J. Arid Environ. 67: 1–14.
- Miller, M.E., R.L. Reynolds, H. Goldstein, M.C. Reheis, and J.C. Yount. 2010. Wildfire, land management, and Aeolian processes in dryland ecosystems—Lessons from the Milford Flat Fire. American Geophysical Union Fall Meeting Abstracts, Dec. 2010. No. B33B-0410.
- Ravi, S., P. D'Odorico, T.M. Zobeck, T.M. Over, and S.L. Collins. 2007. Feedbacks between fires and wind erosion in heterogeneous arid lands. J. Geophys. Res. 112.
- Varela, M.E., E. Benito, and J.J. Keizer. 2010. Effects of wildfire and laboratory heating on soil aggregate stability of pine forests in Galicia: The role of lithology, soil organic matter content and water repellency. Catena. 83: 127–134.
- Whicker, J.J., J.E. Pinder, and D.D. Breshears. 2006. Increased wind erosion from forest wildfire: Implications for contaminant-related risks. J. Environ. Qual. 35(2): 468–478.

Some reflections on acquisition, processing and analysis of statistical data in forest soils

Ana Cristina Meira^{1*}, J P Meixedo²

¹ Instituto Politécnico do Porto, Portugal ² CIGAR-FEUP, Portugal * ana.meira.castro@eu.ipp.pt

Key-words: data acquisition; statistical data analysis; multivariate statistics; forest soils.

Abstract

Beyond the classical statistical approaches (determination of basic statistics, regression analysis, ANOVA, etc.) a new set of applications of different statistical techniques has increasingly gained relevance in the analysis, processing and interpretation of data concerning the characteristics of forest soils. This is possible to be seen in some of the recent publications in the context of Multivariate Statistics. These new methods require additional care that is not always included or refered in some approaches. In the particular case of geostatistical data applications it is necessary, besides to geo-reference all the data acquisition, to collect the samples in regular grids and in sufficient quantity so that the variograms can reflect the spatial distribution of soil properties in a representative manner. In the case of the great majority of Multivariate Statistics techniques (Principal Component Analysis, Correspondence Analysis, Cluster Analysis, etc.) despite the fact they do not require in most cases the assumption of normal distribution, they however need a proper and rigorous strategy for its utilization. In this work, some reflections about these methodologies and, in particular, about the main constraints that often occur during the information collecting process and about the various linking possibilities of these different techniques will be presented. At the end, illustrations of some particular cases of the applications of these statistical methods will also be presented.

Using PESERA to manage desertification processes following wildfires in Góis and Mação, Portugal

Esteves, T.C.J.^{1*}; Ferreira, A.J.D.¹; Soares, J.A.A.²; Kirkby, M.J.³; Shakesby, R.A.⁴; Irvine B.J.³; Ferreira, C.S.S.¹; Coelho, C.O.A.²; Carreiras, M.A.¹

Dpt. of Environment, Escola Superior Agrária de Coimbra, Coimbra, 3040-316, Portugal;
 Dpt. of Environment and Planning, Universidade de Aveiro, Aveiro, 3810-193, Portugal;
 School of Geography, University of Leeds, Leeds, LS2 9JT, United Kingdom;
 Dpt. of Geography, University of Wales Swansea, SA2 8PP, United Kingdom.
 * tanya@esac.pt

Key-words: Modelling, Geographical Information System, PESERA, Land Use, Erosion, Forest fires

Introduction

Annually, around 50 000 wildfires ravage forests of the Mediterranean countries, affecting an average burnt area of 600 000 ha [1]. These sub-humid regions are particularly susceptible to the occurrence of wildfires, due to high vegetative growth during the wet season and the long, hot and dry summer periods, and are characterized by having ecosystems with a dense vegetative cover that allows for rapid fire propagation. Although fire is a natural agent and essential for the management of the dynamics of the vegetation and their fire-prone ecosystems, wildfires are also considered to be one of the main agents of soil erosion and degradation [2, 3].

The significant increase in the number of wildfires in the last decades [4] has turned this natural element into a problem of catastrophic proportions, due to changes in land use level and the practices associated with it which, in large degree, reflect socio-economic and demographic changes and consequent land use transformations. These changes have resulted in weaker control and greater accumulation of biomass, allowing changes in ecological natural processes, associated with a substantial increase in wildfire risk [5]. Wildfires have a very high environmental impacts, and contribute strongly to degradation and desertification over large areas in the country [5], altering soil hydrological response, reducing resistance to erosion and increasing overland flow production, during subsequent rainstorms [1].

Soil erosion

Soil erosion is a natural process of global importance, occurring over geological time, but its rate can be significantly increased by human activities, especially clearing of forests for cultivation; urbanization and infrastructural development; over-grazing; wildfires or controlled burning; and inappropriate land management, for example cultivation of steep slopes or collapse of terrace structures through poor maintenance [6,7]. Increased erosion leads to removal of the most fertile topsoil and organic matter, with a progressive and ultimately irreversible loss in soil productivity.

In southern Europe, climate change is expected to increase both soil erosion and wildfire risk, impacting ecosystems through a series of physical, chemical, mineralogical and biological changes [9]. The complex wildfire effects depend on: 1) Fire characteristics, 2) type of fuel, and its humidity, 3) nature of the terrain and 4) soil characteristics [3, 10]. This diversity makes it difficult to generalise, but wildfires are thought to significantly reduce the rates of interception, transpiration and infiltration, increasing storm runoff and damaging ecosystem sustainability. In burned forest environments, the runoff generation

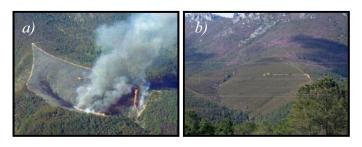
may also be increased by development and/or reinforcement of the hydrophobic layer [10], which prevents wetting of aggregates and so severely reduces infiltration capacity. After a wildfire, subsequent rain events may promote severe erosion [3, 13]. Initially, erosion rates are boosted due to the destruction of the vegetation layer and associated changes in soil physical and hydrological properties, leading to an increase in both runoff and shear stress at the soil surface, increasing the detachment and transportation of sediment [3]. Studies reveal that exposure to fire also reduces the structural stability of the soil aggregates, making it more erodible [10]. Fire also creates a weak surface layer of ash and disaggregated mineral particles; may burn some roots, further contributing to loss of soil cohesion and leads to loss of nutrients by volatilization and dissolution in overland flow in post-fire storms [9]. Increases in degradation generally persist for at least one year, depending on the weather, the severity of the fire and the post-fire ecosystem condition [10]. Much of the soil and runoff removed during a major storm accumulates below the eroded areas, with potentially damaging off-site effects. All these processes generate strong positive feedbacks between erosion and fires, and argue for control of damaging fires as one important protection of ecosystem services.

The Portuguese study areas: Mação and Góis

The DESIRE EU-funded project is designed to recommend alternative strategies for the use and protection of arid and semi-arid areas that are at risk of desertification. Within DESIRE, the Portuguese study sites have been chosen to investigate how sustainable land management strategies can best be applied within a fire prone environment. The DESIRE project, after promoting a meeting of local and external stakeholders in each study area, established two main conservation measures to be applied in the Portuguese study areas, namely preventive forestry and prescribed fire.

Mação and Góis are two municipalities located in Central Portugal, where forest fire risk is at its highest. The Mação study area in the lower Tagus river basin lies in a transition zone between the Atlantic and the Mediterranean climate types and is composed of forest, consisting dominantly of *Pinus pinaster*, with some *Eucalyptus globulus*. The soils are typically very shallow and stony Humic Cambisols on steep slopes (>20°), overlying metamorphic bedrocks. Mação annual rainfall grades from 1000 mm in the North to less than 700 mm in the south, with wet winters and dry summers. It was burned for the first time in 1998 and then in the catastrophic 2003 fires. After the first fire, the burned forest area only partially regenerated. After further fires in 2005, more than 70% of the Mação municipality had been burned. Natural degradation and regeneration, together with mitigation techniques are being assessed at this location (Fig. 1).

Figure 1. Land degradation in the Caratão catchment.


Soils in the Vale Torto catchment of Góis municipality are shallow lithosols on steep slopes (>20°) below a quartzite ridge crest, which is the NE part of Lousã Mountain ("Penedos de Góis"). Góis has an annual rainfall of about 1200 mm, mostly during the

winter. After several fires in the 1970s and early 1980s, prescribed fires were introduced for common land in the early 1990s to improve local grazing areas The area was burned again by prescribed fire in February 2009.

The Vale Torto study area is more focused on the use of prescribed fire as a wildfire prevention tool, since it is a shrubland area. A prescribed fire was carried out on February 20th 2009 (Fig. 2) as an experimental fire (broadly equivalent to a prescribed fire near the catchment boundaries but hotter towards the main drainage line), and the impacts will be assessed for at least 2 years after the fire. An unburnt catchment of similar size is being monitored for discharge and bedload sediment trapped behind the gauging station v-notch weir. Land use here consists of pasture and dense shrubland, subject to prescribed fire from time to time. Land abandonment and neglect are the main problems encountered in this area, although the area is also used for extensive grazing.

Figure 2. Vale Torto a) Prescribed fire and b) 4 months later.

The technology to be implemented by the Mação Municipality is Preventive Forestry. The monitoring sites and procedures to be adopted to assess the impacts of this management are not yet finally formulated. Preventive forestry covers a wide range of technologies, including terracing, the use of fire resistant species, understorey management, tree-to-tree distance, Primary Strip Network Systems for Fuel Management, and Prescribed Fire. These technologies are currently being developed by the Municipality.

For the Vale Torto catchment, prescribed fire was the selected conservation measure in the DESIRE project. The catchment was subject to prescribed fire on February 20th 2009. Continuous monitoring of hydrological processes was carried out before and after the fire. Repeated rainfall simulations were carried out, with regular measurements of infiltration capacity, water repellency and soil moisture.

The PESERA Model

The Pan European Erosion Risk Assessment (PESERA) was used to provide an objective coarse-scale assessment of erosion risk at a given location, taking account of both wildfires and prescribed burns. PESERA is a physically based, spatially distributed, with frequency distribution and continuous prediction model [8,14]. This model makes use of progress in process understanding, whilst retaining a simple structure with relatively modest data requirements. It simulates the interactions between land-use types, soil and topographic characteristics, estimating monthly water storage, erosion rate, vegetation and humus biomass, rainfall interception by plants and overland flow. It also calculates average soil erosion rates and the contribution of individual storms, bringing together the effects of topography, climate, soil and land-use into a single integrated forecast of runoff and soil erosion (Fig. 4) [14].

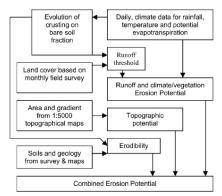


Figure 3. PESERA model elements

Using the PESERA modelling framework has several advantages, namely a description of the basic characteristics of the processes involved (runoff and sediment transport), allowing for a more realistic incorporation of effects of global change (land use and climate) and may be easier integrated in more general modelling frameworks. The model can be used to predict runoff and erosion with reasonable accuracy based on limited input data. However, proper calibration is a prerequisite when the model is run for different spatial resolutions: this is an inherent characteristic of spatially distributed models. The model results have been validated at catchment level and compared with results of other erosion risk assessment methods across Europe at country and pan-European scales.

Any process model, and particularly a coarse-scale model such as PESERA, has a number of inherent disadvantages compared with simpler models, including: 1 The need for input data, which may not be freely or readily available. 2 The need to rely on spatial soil data that were collected nationally, using criteria that differ from country to country, combined into soil types that are not completely uniform, and only partially harmonized. 3 A concentration on the relevant dominant processes that are more widespread, in this case Hortonian overland flow, so that erosion by saturation overland flow, for example, is poorly estimated. Nevertheless, there are a series of advantages for the use of these types of models, namely: 1 It applies the same objective criteria to all areas, and can be applied throughout a region, subject to the availability of suitable generic data. 2 It provides a quantitative estimation of erosion rate, which can be compared with long-term erosion rates averages. 3 The methodology can be re-applied with equal consistency as available data sources are improved, and for past and present scenarios of changed climate and land use. Overall, the PESERA model has a secure theoretical base, although the accuracy of forecasts is limited by the restriction, based on data quality and availability, to daily rainfall data, and to a greatly simplified analysis of topography. Within these constraints, the model responds both rationally and in accordance with established principles to variations in climate, land use and topography.

Initial application of the PESERA model shows its potential and some limitations. Modelling is able to simulate at least some of the major interactions between fire and erosion, but some important effects are not yet incorporated in to the model, in particular the effect of soil stripping with the potential irreversible soil loss, and the increases in Hydrophobicity immediately after major fires. One of the main effects that the model is able to emulate is the high sensitivity of the erosion response to the magnitude of events immediately after each fire, and before recovery of the vegetation. For the climatic and soil conditions of the study areas, the model suggests that the practice of prescribed burns reduces the total erosion and the number of major fires, but not necessarily the number of

small wildfires that occur. The application of PESERA modelling to wildfire management is still far from complete, requiring further model site-targeted model development and a fuller incorporation of existing field data into the model framework.

Conclusions

Wildfires are a menace to ecosystems sustainability, namely to the forest ones, not just because they eliminate the forest production, but also because they promote a continued and accelerated degradation of the forest soils. This way, and taking into consideration the risk of the increase of wildfires as a result of climate change, it is extremely important to understand the degradation processes at various scales. The degradation of the physical and chemical properties of the soil may limit the recovery capacity of the ecosystems, diminishing the options of management and sustainability of important areas of the territory. Tools such as PESERA are essential to optimise land use management and recovery.

The use of functional tools such as the PESERA modelling framework is of extreme importance, once it will allow to recognize areas in need of urgent intervention in what respects to soil conservation, as well as for the simulation of future scenarios, as to prevent said degradation.

Acknowledgment

The authors thank the DESIRE project – Desertification Mitigation and Remediation of Land: a global approach for local solutions, funded by the EU Sixth Framework Program.

References

- [1] M.C. Rulli, S. Bozzi, M. Spada, D. Bocchiola and R. Rosso, "Rainfall simulations on a fire disturbed Mediterranean area", Journal of Hydrology, Vol. 327, pp. 323-338, 2006.
- [2] L. Trabaud, "Post-fire vegetation recovery and dynamics in the Mediterranean area", in Fire, landscape and biodiversity: an appraisal of the effects and effectiveness, G. Pardini, and J. Pinto, Girona: Diversitas. UdG, 2002, pp. 39-55.
- [3] A.J.D. Ferreira, C.O.A. Coelho, C.J. Ritsema, A.K. Boulet and J.J. Keizer, "Soil and water degradation processes in burned areas: lessons learned from a nested approach", Catena, Vol. 74, pp. 273-285, 2008.
- [4] A.J.D. Ferreira, S.A. Prats, C.S.S. Ferreira, M.C. Malvar, C.O.A. Coelho, M. Carreiras and T. Esteves, "Los incendios florestales como gestores de los procesos hidrológicos y erosivos. Dos ejemplos clave en el avance científico", in Efectos de los incêndios flortestales sobre los suelos en España El estado de la cuestión visto por los científicos españoles, A. Cerdá and J. Mataix-Solera, Valencia: Cátedra Divulgación de La Ciencia. Universitat de València, 2009, pp. 79-103.
- [5] J.M. Moreno, A. Vázquez and R. Vélez, "Recent history of forest fires in Spain", in Large forest fires, J.M. Moreno, Leiden: Backhuys Publishers, 1998, 159-185.
- [6] C.O.A. Coelho, A.J.D. Ferreira, A.K. Boulet and J.J. Keizer, "Overland flow generation processes, erosion yields and solute loss following different intensity fires", Quarterly Journal of Engineering Geology & Hydrogeology, Vol. 37, pp. 233-240, 2004.
- [7] A.J.D. Ferreira, C.O.A. Coelho, A.K. Boulet, G. Leighton-Boyce, J.J. Keizer and C.J. Ritsema, "Influence of burning intensity on water repellence and hydrological processes at forest sites in Portugal", Australian Journal of Soil Research, Vol. 43 (3), pp. 327-336, 2005.

- [8] M.J. Kirkby, B.J. Irvine, R.J.A. Jones, G. Govers, M. Boer, O. Cerdan, J. Daroussin, A. Gobin, M. Grimm, Y. Le Bissonnais, C. Kosmas, S. Mantel, J. Puigdefabregas and G. van Lynden, "The PESERA coarse scale erosion model for Europe. I. Model rationale and implementation", European Journal of Soil Science, Vol. 59, pp. 1293–1306, 2008.
- [9] D.G. Neary, C.C. Klopatek, L.F. DeBano and P.F. Ffolliott, "Fire effects on belowground sustainability: a review and synthesis", Forest Ecology and Management, Vol. 122, pp. 51-71, 1999.
- [10] A.C. Imeson, J.M. Verstraten, E.J. van Mulligen and J. Sevink, "The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest", Catena, Vol.19, pp. 345-361, 1992.
- [11] S. Doerr, R.A. Shakesby and R.P.D. Walsh, "Soil hydrophobicity variations with depth and particle size fraction in burned and unburned Eucalyptus globulus and Pinus pinaster forest terrain in the Águeda Basin, Portugal", Catena, Vol. 27(1), pp. 25-48, 1996.
- [12] R.A. Shakesby and S.H. Doerr, "Wildfire as a hydrological and geomorphological agent", Earth-Science Reviews Vol. 74, pp. 269-307, 2006.
- [13] A.D. Thomas, R.P.D. Walsh and R.A. Shakesby, "Nutrient losses in eroded sediment after fire in eucalyptus and pine forests in the wet Mediterranean environment of northern Portugal", Catena, Vol. 36, pp. 283-302, 1999.
- [14] F. Licciardello, G. Govers, O. Cerdan, M.J. Kirkby, A. Vacca and F.J.P.M. Kwaad, "Evaluation of the PESERA model in two contrasting environments", Earth Surface Processes and Landforms, Vol. 34, pp. 629 640, 2009.

Chemical characterization of *Terra Preta do Índio* soils, paleosols and a soil from the north of Galicia affected by forest fires.

García Ares MT^a*, Pardo Lorenzo R^a, Bao Iglesias M^b, Macías Vázquez F^a

^a Departamento de Edafoloxía e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela-Spain.

* mariateresa.garcia.ares@usc.es

Key-words: Terra Preta do Índio, charcoal, elemental composition, organic carbon pools.

Introduction

The average temperature of the surface of the Earth is growing, especially since 1950, being 2005 and 1998 the warmest years since 1850. The linear warming trend over the 50 years from 1956 to 2005 (0.13 \pm 0.03 °C C per decade) is nearly twice that for the 100 years from 1906 to 2005 and there is a "high confidence" that the main reason is the increase of the concentration and emissions of greenhouse gases due to human activities. The atmospheric CO₂ concentration has grown since a preindustrial value of 280 ppm to 379 ppm in 2005, while in the previous 8000 years it grew just 20 ppm (1). The main CO₂ emissions come currently from the use of fossil fuels, gas flaring and cement production, so the responsibility of these sectors in reducing the consume of fuels and taking efficient measures can't be evaded. However, today, emissions of CO2 related to agriculture practices and the change of soil use account still for the 25% of global emissions (2). This gives an idea of the magnitude of the organic C losses from soils and manifests the urgent need to invert this trend and promote them to act as a C sink. Efforts in this sense are increasing, focusing on organic C stability and recalcitrant C pools (permanence of around 50% of carbon inputs for a period of 100 years). Currently, there are some models that represent this objective, in particular: 1) those soils with high charcoal content, due to fire events 2) some kind of soils of human origin with burning episodes, such as Terra Preta soils (3,4,5), 3) making of technosols and 4) biochar production (6). A deep insight into the mechanisms behind the C stability in some of these models was the aim of this work.

Objectives

The objective of this work was to compare the mechanisms of organic matter stabilization among two soils from Terra Preta (TP1 and TP2), in the Amazon Basin, two buried superimposed paleosols located in the cliffs from Arnela beach (A Coruña) (PaS1 and more aged PaS2) containing macroscopic charcoal particles and a soil from this place (S3), which is known to suffer continue fire episodes. Layers of sediments separate paleosols, and the most ancient sediment layer dates from preHolocene period of Wurm glaciation (7). For this purpose, chemical and thermal methods were used. Analysis included the quantifiying of different carbon pools and differential scanning calorimetry.

Methodology

Elemental analysis was done on a CHN analyzer (TrusPec, LECO Corp., St. Joseph, MI). The oxidability of soil organic C was determined with the warm dichromate acid method and back titrated against ferrous ammonium sulphate (8). Hot water extractable C (HWC, 80°C for 16 h) and water soluble carbon at 25°C (WSC) was determined following the

b Departamento de Enxeñería Química, Escola Técnica Superior de Enxeñaría, Universidade de Santiago de Compostela, 15782, Santiago de Compostela-Spain.

method of Ghani et al. (2003) by a extraction in a two sequential-step procedure (9). Dissolved organic carbon in both extracts was determined in an analyzer Shimadzu TOC-5000. Hydrolizable carbon (HC) was determined following Tan et al (2004) methodology(10). Samples were diggested with 6 N HCl at 100 °C for 18 h. The residue was analysed on a CHN analyzer. Basal respiration was measured using a Micro-Oxymax Respirometer (Columbus Instruments, Columbus, OH). Samples were at 60% water holding capacity. Finally, Differential Scanning Calorimetry (DSC) was performed in a DSC Q100 TA with a heating rate of 10°C/min from 50 to 600°C and an air flow of 100 ml/min.

Results and conclusions

Table 1 includes results of chemical analyses. TP1 and TP2 were analysed along the soil profile and they are ordered from *a* to *f* in growing deep. TP1-a has the highest levels of total organic carbon (TOC) with the exception of S3. TP1-a has a pH of 6.26, and a relation C/N of 12.08. C/N values for Terra Preta soils usually are in the range 12-40(11), what, in general, was confirmed in our samples, with the exception of TP2-c. The optimal C/N relation and the presence of labile organic compounds is probably the main reason why microbial activity is considerably higher in TP1-a than in the other samples, including S-3, despite having more TOC. Organic matter from S-3 will be probably dominated by organo-Al complexes, due to the low pH, what would make difficult microbial activity.

Water soluble carbon, indicated in Table 1 as HWC and WSC, generally is an index of readily bioavailable SOM, composed of small molecules to colloidal substances, generally associated to carbohidrates of microbial origin, with turnover times of weeks to months, but in soils with highly humified material or black carbon WSC is a bit more persistent (12). In our samples, this fraction accounts in a small proportion. In TP soils it diminishes along the profile and its value is smaller in the oldest PAS. The C determined as CO₂ evolved from respirometry is indicative of labile organic matter and it is also a small proportion with exception of the surface samples (TP1-a, TP2-a and S3).

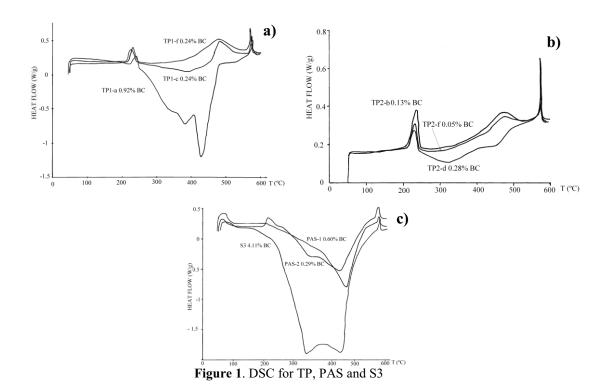
Table 1. Ph, C/N and main carbon forms in percentage (per mass of dry soil)

	Table 1. Pn, C/N and main carbon forms in percentage (per mass of dry soil)									
	pH H2O	pH KCl	% TOC	% C Cr ₂ O ₇ -	% НС	% HWC	% WSC	% C resp	C/N	
TP1-a	6.26	5.89	4.88	3.96	1.93	0.070	0.0195	1.71	12.08	
TP1-b	6.13	4.98	1.85	1.72	0.42	0.031	0.0081	0.13	29.73	
TP1-c	5.67	4.60	0.89	0.65	0.34	0.034	0.0116	0.18	20.45	
TP1-d	5.28	4.44	0.45	0.24	0.19	0.025	0.0167	n.d.	20.55	
ТР1-е	4.70	4.62	0.55	0.54	0.27	0.025	0.0070	n.d.	14.40	
TP1-f	5.29	4.64	0.30	0.19	0.15	0.021	<ld< th=""><th>n.d.</th><th>18.34</th></ld<>	n.d.	18.34	
TP2-a	3.69	3.26	1.56	1.55	0.72	0.078	0.0211	0.36	18.01	
TP2-b	4.73	4.17	0.78	0.65	0.34	0.029	0.0072	0.19	30.69	
ТР2-с	4.62	4.14	0.43	0.25	0.20	0.025	0.0059	n.d.	21.94	
TP2-d	4.76	4.17	0.36	0.19	0.14	0.026	0.0044	n.d.	>100	
ТР2-е	4.80	3.99	0.29	0.24	0.19	0.020	0.0030	n.d.	33.51	
TP2-f	4.91	3.95	0.28	0.25	0.19	0.019	0.0043	n.d.	20.64	
PAS-1	4.79	4.44	4.46	3.86	1.59	0.028	0.0071	0.10	24.01	
PAS-2	5.30	5.18	3.53	3.24	2.11	0.022	<ld< th=""><th>0.08</th><th>24.97</th></ld<>	0.08	24.97	
S3	4.50	3.72	12.4	8.29	4.84	0.127	0.0116	0.54	14.74	

Hydrolyzable carbon turns over faster than non hydrolizable carbon (13). The hydrolysis reaction, through the process of protonation and hydration, solubilizes compounds with O- and N- containing functional sides (14), removing carbohidrates and protein materials. So, fatty acids, proteins and polysaccarides are susceptible to acid hydrolysis, while long-chain alkyls, waxes, lignin and other aromatics are resistant to such treatment. Thus, the fraction of oxidable carbon by dichromate minus the fraction of hydrolyzable carbon refers to a fraction relatively persistent. Values for this pool are compiled in Table 2. Finally, the recalcitrant pool can be computed as all the organic carbon that resisted the dichromate treatment (15), also called Black Carbon (BC). Values for this pool are also reflected in Table 2.

Table 2. BC, and main carbon forms in % (per TOC)

	% BC	BC (g/kg soil)	BC (%TOC)	C Cr ₂ O ₇ ⁻ HC (% TOC)	HC (% TOC)	HWC (% TOC)	WSC (%TOC)	C resp (% TOC)
TP1-a	0.92	9.20	18.85	41.51	39.63	1.44	0.40	35.06
TP1-b	0.13	1.32	7.13	70.41	22.46	1.68	0.44	7.18
TP1-c	0.24	2.35	26.56	35.30	38.14	3.82	1.32	20.88
TP1-d	0.21	2.07	46.33	11.80	41.87	5.52	3.73	n.d.
TP1-e	0.01	0.05	0.99	48.74	50.27	4.64	1.28	n.d.
TP1-f	0.11	1.13	37.21	12.64	50.15	6.89	< L.D.	n.d.
TP2-a	0.01	0.1	0.64	53.03	46.33	4.97	1.35	22.96
TP2-b	0.13	1.32	16.86	39.52	43.62	3.69	0.92	24.78
TP2-c	0.18	1.84	42.41	12.50	45.09	5.76	1.37	n.d.
TP2-d	0.17	1.67	46.70	14.79	38.51	7.21	1.23	n.d.
ТР2-е	0.05	0.53	18.06	16.34	65.60	6.91	1.02	n.d.
TP2-f	0.03	0.33	11.60	20.65	67.75	6.89	1.52	n.d.
PAS-1	0.60	6.00	13.45	50.96	35.59	0.62	0.16	2.24
PAS-2	0.29	2.90	8.22	31.97	59.81	0.64	< L.D.	2.34
S3	4.11	41.10	33.15	27.83	39.02	1.03	0.09	4.35


The distribution of BC contents in Terra Preta soils along the profile is probably related with particular practices of Amerindian population and different conditions of burning, but in general, as deep increases there is an enrichment in the BC fraction with values such as 80.17% and 57.57% for the most deep samples. Enrichment of BC respect TOC in paleosols is less than TP soils, but values in g/kg of soil can be compared. S3 has most BC than paleosols, probably due to the oxidation of BC along time (16).

Results of thermal analysis through Differential Scanning Calorimetry are examined in Figure 1. In graph a) can be clearly distinguished the second exothermic peak at a temperature of 430.19 °C for TP-1. The others TP soils don't show this peak, as can be seen in graph 2, with exception of TP-2, but with less intensity (results for all TP soils are not shown). This peak is probably due to recalcitrant carbon forms (17), indicating more aromaticity than the other TP soils (18). In paleosols an exothermic peak can be seen around 469.65°C for PAS-1 and 450.30 for PAS-2. The heat flow associated to these exothermic peaks for TP1-a, PAS-1 and PAS-2 is respectively 781 J/g, 713.9 J/g and 634.7. Barros et al 2010 showed that there was a positive and approximate correlation between the integral of the DSC curve, given in Joules per g, and the total carbon content of the soils they studied. Also higher contents in carbon are related with higher exotermic peaks (19). Looking at graph 3, S3 can be distinguished with a very intense signal around 432.18°C, that is overlapped with a previous exothermic peak of 342.43 °C with a heat flow of 2593 J/g, higher than the other soils. The first exothermic peak is probably related

to labile compounds and the second exothermic peak would be due to refractary compounds, made in recent fires. The high intensity of peaks and the heat flow associated is indicative of more aromaticity and labile carbon than the others soils, as chemical analyses confirm.

In conclusion, chemical analyses give information of the different carbon pools and notes the presence of BC in most samples. DSC analyses show BC especially in paleosols and the surface soil subjected to frequent fires, but not in TP soils with the exception of TP-1. It could be because of the high levels of BC in this sample or because there are different mechanisms of stabilization among TP soils and soils subjected to forest fires.

References

- 1. IPCC,2007. Fourth assessment report (AR4).
- 2. Lal, R. 2001. SSSA special publication series number 57.
- **3.** Neves et al., 2003. Chapter In Amazonian Dark Earths: Origin, Properties, Management, pp. 29-50
- **4.** Sombroek, 1966. Amazon Soils. A Reconnaissance of the Soils of the Brazilian Amazon Region. Centre for Agricultural Publications and Documentations, Wageningen, pp. 12-283.
- **5.** Glaser et al., 2000. Org Geochem, Vol 31: 669-678.
- 6. Macías & Arbestain, 2010. Mitig Adapt Strateg Glob Change. Vol.15, 6: 511-529
- 7. Pérez Alberti, 2010. Not published.
- 8. Sauerlandt & Berwecke, 1952. H. Z. Pflanz. Dung. Bodenk.. Vol 56, 204-226.
- 9. Ghani et al., 2003. Soil Biol Biochem, vol 35: 1231-1243
- **10.** Tan et al., 2004. Soil Sci. Vol 169:423-433
- **11.** Lehmann et al., 2003. Chapter: In Amazonian Dark Earths: Origin, Properties, Management, pp. 105-124

FELL

3rd International Meeting of Fire Effects on Soil Properties 15-19 March 2011 | University of Minho | Guimarães, Portugal

- **12.** von Lutzow et al., 2007. Soil Biol Biochem. Vol 39:2183-2207
- 13. Six & Jastrow, Chapter In: Encyclopedia of Soil Science, pp.936-942
- 14. Barriuso et al. 1987. Can J Soil Sci. Vol. 67: 647-658
- 15. Hammes et al., 2007. Global Biogeochemical Cy. Vol 21:1-18
- **16.** Cheng et al., 2006. Org Geochem, Vol 37-11: 1477-1488
- 17. López-Capel et al., 2006. J Anal Appl Pyrolysis. Vol 75:82-89
- **18.** Dell abate et al., 2003. J Sep Sci Vol 26:433-440
- 19. Barros et al., 2010. J Therm Anal Calorim. DOI: 10.1007/s10973-010-1163-4

Runoff rates, water erosion and water quality from a soil covered with different types of ash

Bodí, M.B.^{1,3,4*}, Leon Miranda, F. J.², Cerdà, A.¹, Balfour, V.⁵, Mataix-Solera, J.³, Doerr, S.H.⁴

 Dpto. de Geografía, Universitat de València, Blasco Ibañez 28, 46010, Valencia, Spain;
 Dpto. Geografía y Ordenación del Territorio, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain;

³ Departamento de Agroquímica y Medio Ambiente, Universidad Miguel Hernández, Edificio Alcudia, Avda de la Universidad s/n. 03202 Elche, Spain;

⁴ Geography Department, Swansea University, Singleton Park, Swansea SA 8PP, UK; ⁵ College of Forestry, University of Montana, Missoula, MT, 59812, USA. * merche.bodi@uv.es

Key-words: White ash; black ash; rainfall simulation; water quality.

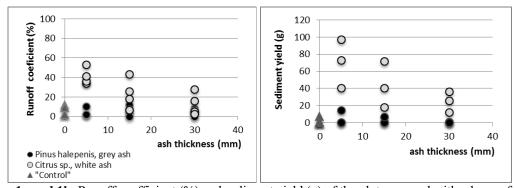
Introduction

The hydrological effects of an ash layer covering the soil after a fire are being explored. It is accepted that ash plays a role controlling post-fire runoff and erosion, but whether ash temporarily increases potential runoff and erosion by sealing the soil surface (Mallik, et al., 1984; Gabet and Sternberg, 2008; Onda et al., 2008) or reduces them by storing rainfall and protecting the underlying soil (Leighton-Boyce et al., 2007; Cerdà and Doerr, 2008; Woods and Balfour, 2008; Zavala et al., 2009) requires further investigation.

Recent studies clarify some of the reasons for these differences in observed ash effects on runoff and erosion. They are (i) the variable physical and mineralogical nature of ash depending on the temperature and condition of combustion and specie burned, e.g. size, porosity, calcium carbonate content, water repellency (Kinner and Moody, 2007; Larsen et al., 2009; Woods and Balfour, 2010; Bodí et al., 2011), (ii) changes in ash nature after interacting with the atmosphere or water (Etiegni and Campbell, 1991), (iii) the thickness of the ash layer (Woods and Balfour, 2010) and (iv) differences in geology and associated soil types of the sites (Larsen et al., 2009; Woods and Balfour, 2010). However more work is required to establish the link between ash characteristics and ash effects, particularly to enable predicting its behaviour for different ecosystems and wildfires.

In addition, differences in ash nature also can lead in differences in the chemical nature of runoff such as its nutrient content. The most common measurement method for nutrients in ash is the leaching test that involves extraction of an ash sample (Etiegni and Campbell, 1991; Pereira and Ubeda, 2010). However, this method quantifies the potential soluble nutrients in the ash, but not the actual nutrients dissolved during a rainfall event when the ash is covering the soil. Few experiments have been done on runoff quality, although the highest nutrient and suspended sediment contents in streams often occur during the first storms following a wildfire event (Hauer and Spencer, 1998; Lane et al., 2006).

To address this research gap, we quantified the effects of ash type and the thickness of the ash layer on (i) overland flow generation, and soil and ash losses, and (ii) on the chemical constituents of the overland flow generated, using a series rainfall simulations over ashtreated field plots. Differences in these parameters were also measured with time by examining the first storm after a fire and a second storm a week later.



Methods

A series of rainfall simulations were conducted in SE Spain, on an abandoned crop field with a 5° slope. We used a rainfall intensity of 50 mm h⁻¹ and a duration of 60 min. The plots (0.22 m²) were covered with two different ash types with three thicknesses: 5 mm, 15 mm and 30 mm. Control plots were also included with no ash cover. Two types of ash were used, one from *Pinus halepensis*, a grey ash collected from a low intensity wildfire, and the other a very white ash made from *Citrus sp.* litter and wood made in the laboratory at very high temperature. Ash physical and chemical characteristics (particle size, bulk density, porosity, sorptivity, particle density and total cation content) were analysed to characterise any differences between ashes. A second rainfall simulation was carried out after a week. Three replicates were made for all the treatments and a fourth replication was included to allow a destructive examination of the soil profile after the first simulation. The total number of simulations conducted was 70. Overland flow was collected at 1-min intervals and a sample retained every 10 min to allow determination of sediment concentrations, yield, erosion rates and water quality. Water samples were analysed for pH, electrical conductivity and cation content (Ca²⁺, Mg²⁺, K⁺, Na⁺).

Results and discussion

The ash from *Citrus sp.* produced at high temperature generated more runoff than the one from *Pinus halepensis* produced at lower temperatures. The effects also were different depending on the depth of the ash. A layer of 5 mm of *Citrus sp.* ash generated a runoff coefficient of 41 ± 8 %, while 15 mm produced 23 ± 15 % and 30 mm 12 ± 11 %. The runoff coefficient of the plot covered with *Pinus halepensis* ash at the same above depths was 12 ± 15 %, 5 ± 5 % and 5 ± 3 % respectively and the average of the control plots was 6 ± 5 % (Figure 1a). Sediment yield was also higher in the white *Citrus sp.* ash than in the *Pinus halepensis* ash (figure 1b). In all cases the sediment was composed almost entirely of ash.

Figure 1a and 1b. Runoff coefficient (%) and sediment yield (g) of the plots covered with a layer of *Pinus halepensis* ash produced at low temperature and *Citrus sp.* ash produced at high temperature for ash depths of 5, 15 and 30 mm, for the first rainfall simulation.

For the second rainfall simulation, runoff coefficient values were reduced to 10% for *Citrus sp.* ash for the three depths and to nearly to 0% for the *Pinus halepensis* ash covered plots. Sediment yield did not exceed 20 g for *Citrus sp.* ash and was zero for *Pinus halepensis* ash.

The reason for the differences between the ash types is suggested to be due to the nature of each one. It was observed that the *Citrus sp.* ash covering the plot was crusted after the first rainfall simulation. This may be due to the hydration of this ash produced at high temperature and its high contents of calcium carbonate (Balfour and Woods, 2006).

Respect the pore clogging phenomena, Larsen et al. (2009) and Woods and Balfour (2010), studied it by examining soil thin sections or determining the porosity of the soil. They explained that clogging would occur if the fine fraction of ash is enough to clog the soil pores (if there are). The only evidence we have up to now to refuse pore clogging for this experiment, is that percentage of sample finer than 2 μ m was only 5.624 \pm 1.32, 0.50 ± 0.05 for the Citrus sp. ash and the Pinus halepensis ash respectively, compared with the 23% clay fraction of the soil. However, this aspect should be better studied. In addition, the lower runoff rates for Pinus halepensis ash can be associated to the lower bulk density, higher porosity and hence a greater capacity to hold the water. This effect increases with the thickness of the ash layer, as there will be more capacity to hold and store the water, leading to lower runoff rates (Woods and Balfour, 2010). After the second rainfall simulation, the thickness of the ash layer did not make any different effect on the water storage capacity because it become cracked and apparently more permeable. The differences between replicates were due to variations between plots. The plots did not have the same rock fragment content and macropore distribution, and also in some of them the underlying soil exhibited slight water repellency. Nevertheless, the trends in overland flow and sediment yield within the ash types were consistent between plots. Concerning the water quality, the runoff collected from Citrus sp. ash had pH values of 12 and the electrical conductivity exceeded 1000 µS cm⁻¹, whereas pH of Pinus halepensis was 8 and electrical conductivity around 500 µS cm⁻¹. These values were similar for the three thicknesses. The most abundant cation type in both ashes was K⁺ followed by Ca²⁺, Na⁺ and Mg²⁺. Na⁺ and K⁺ were higher in *Citrus sp*. ash runoff and the levels of Ca²⁺ and Mg²⁺ were similar in runoff of both ashes. However, the quantities measured here were not as high as the reported in leaching tests. Quantities reported are of the order of thousand mg L⁻¹ (Etiegni and Campbell, 1991; Soto and Diaz-Fierros, 1993; Pereira and Úbeda, 2010), and here the highest value of K⁺ was no more than 500 mg L⁻¹. This may be due to not all cations being washed away in the overland flow. Some would be expected them to have been lixiviated or incorporated into the soil. Also, some of them may need more water to allow full dissolution, such as Ca²⁺ and Mg²⁺ (Khanna et al. 1994).

In the second rain the quantity of cations in solution were lower, in part because the sediment concentration was lower than in the first rain, but also due to most of the cations were already washed and probably soil and ash interaction occurred during a week.

Conclusion

In this study, the different types of ash (due to either specie or temperature of combustion) and their thickness when covering the soil led to markedly different responses in overland flow, quantity of sediment washed away and water quality.

As the thickness of the ash layer increased, the water storage capacity increased as well, reducing the total runoff produced. However, in the second rainfall event, thickness did not make any difference in the overland flow, which was reduced in both cases. Regarding the type of ash, some ash types, specially the porous one, may contribute to the infiltration of water into the soil, but more dense and packed ash will increase overland flow and at the same time lead to more ash being carried within the flow. In this case, more cations contained in ash will be entrained in the runoff from burned sites.

Because of the great variety of ash types in every ecosystem with different characteristics and different underlying soil type, care should be taken in predicting ash effects on runoff rates and nutrient losses following wildfires.

Acknowledgements

This research was supported financially by the project CGL2008-02879/BTE and by a research fellowship (AP2007-04602) from the Spanish Ministry of Science and Innovation.

References

- Balfour V. and Woods S. (2006). Causes of variability in the effects of vegetative ash on post-fire runoff and erosion. Paper presented at Eos Trans. AGU, Fall Meeting.
- Bodí, M. B., Mataix-Solera, J., Doerr, S. H., and Cerdà, A. (2011). The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. *Geoderma*, 160, 599-607.
- Cerdà, A., and Doerr, S. H. (2008). The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. *Catena*, 74, 256-263.
- Etiegni, L., and Campbell, A. G. (1991). Physical and chemical characteristics of wood ash. *Bioresource Technology*, *37*, 173-178.
- Gabet, E. J., and Sternberg, P. (2008). The effects of vegetative ash on infiltration capacity, sediment transport, and the generation of progressively bulked debris flows. *Geomorphology*, 101, 666-673.
- Hauer, F. R., and Spencer, C. N. (1998). Phosphorus and Nitrogen Dynamics in Streams Associated With Wildfire: a Study of Immediate and Longterm Effects. *International Journal of Wildland Fire*, 8(4), 183-198.
- Khanna, P. K., Raison, R. J., and Falkiner, R. A. (1994). Chemical properties of ash derived from *Eucalyptus* litter and its effects on forests soils. *Forest Ecology and Management*, 66, 107-125.
- Kinner, D. A., and Moody, J. A. (2007). *Infiltration and runoff measurements on steep burned hillslope using a rainfall simulator with variable rain intensities*: U.S. Department of the Interior U.S. Geological Survey.
- Lane, P. N. J., Sheridan, G. J., and Noske, P. J. (2006). Changes in sediment loads and discharge from small mountain catchments following wildfire in south eastern Australia. *Journal of Hydrology*, 331(3-4), 495-510.
- Larsen, I. J., MacDonald, L. H., Brown, E., Rough, D., Welsh, M. J., Pietraszek, J. H., et al. (2009). Causes of post-fire runoff and erosion: water repellency, cover, or soil sealing? *Soil Science Society American Journal* 73, 1393-1407.
- Leighton-Boyce, G., Doerr, S. H., Shakesby, R. A., and Walsh, R. P. D. (2007). Quantifying the impact of soil water repellency on overland flow generation and erosion: a new approach using rainfall simulation and wetting agents on in situ soils. *Hydrological Processes*, 21(17), 2337-2345.
- Mallik, A. U., Gimingham, C. H., and Rahman, A. A. (1984). Ecological effects of heater burning. I. Water infiltration, moisture retention and porosity of surface soil. *Journal of Ecology*, 72, 767-776.
- Onda, Y., Dietrich, W. E., and Booker, F. (2008). Evolution of overland flow after a severe forest fire, Point Reyes, California. *Catena*, 72, 13-20.
- Pereira, P., and Úbeda, X. (2010). Spatial distribution of heavy metals released from ash after a wildfire. *Journal of env. engineering and landscape man.*, 18(1), 13-22.
- Soto, B., and Diaz-Fierros, F. (1993). Interactions between plan ash leachates and soil. *International Journal of Wildland Fire, 3*(4), 207-216.
- Woods, S. W., and Balfour, V. (2008). The effect of ash on runoff and erosion after a forest wildfire, Montana, U.S.A. *International Journal of Wildland Fire*, 17(5), 535-548.

- Woods, S. W., and Balfour, V. N. (2010). The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils. *Journal of Hydrology*, 393, 274-286.
- Zavala, L. M., Jordán, A., Gil, J., Bellinfante, N., and Pain, C. (2009). Intact ash and charred litter reduces susceptibility to rain splash erosion post-wildfire. *Earth Surface Processes and Landforms*, 34, 1522-1532.

Characterizing the hydrological properties of wildfire ash

Scott W. Woods* and Victoria N. Balfour

The University of Montana, Dept. of Ecosystem and Conservation Sciences, Missoula MT 59812 USA.

* scott.woods@cfc.umt.edu

Key-words: wildfire, ash, hydrology, hydraulic conductivity, porosity.

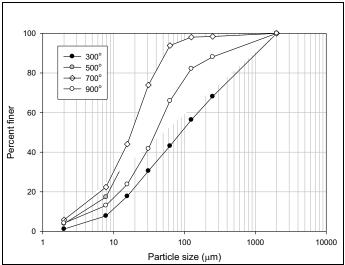
Introduction and objectives

The hyper-dessicated ash and soil layers making up the near surface profile in recently burned areas respond very differently to rainfall than the litter and unburned soil that existed prior to the fire. Limited knowledge regarding the hydrological properties of the ash-soil profile, and the ash layer in particular, currently limits efforts to model the infiltration process in burned areas and hence predict the location and magnitude of post fire runoff and erosion events. The objectives of the work presented here were to: 1) determine the fundamental hydrologic properties of ash: particle size, bulk density, particle density, porosity, hydraulic conductivity, intrinsic permeability, sorptivity and water retention characteristics, and 2) explain the observed hydrologic properties of ash in terms of factors such as the particle size and shape and particle packing relative to mineral soils.

Methodology

Particle size was determined using laser diffractometry and scanning electron microscopy for lab ash samples produced from Lodgepole pine (Pinus contorta), Ponderosa pine (Pinus Ponderosa) and Douglas fir (Pseudotsuga menziesii) at temperatures of 300, 500, 700 and 900 °C. Bulk density, particle density and porosity were measured in ash samples collected following two 2009 wildfires in Spain. Bulk density was measured in the field and in re-packed samples after transport to the lab. Particle density was measured using the pycnometer bottle method (Flint and Flint, 2002a). Porosity was calculated from the field bulk and particle densities and using the vacuum saturation method (Flint and Flint, 2002b). The water retention characteristics of the six wildfire ash samples were determined using the hanging column and pressure plate methods at 0.01, 0.02, 0.03, 0.04 and 0.05, 0.2, 0.3, 1.0, 2.0 and 5.0 bars. Hydraulic conductivity (K) was determined using the falling head method for both the lab ash and wildfire ash samples. Hydraulic conductivity, intrinsic permeability to air (kair), and sorptivity (S) were determined for the wildfire ash samples using the mini-disc infiltrometer (K, S), air permeametry (k_{air}, K) and sorptivity probe (S) methods. Falling-head K values were used to determine the intrinsic permeability to water (kwater) and the ratio kair:kwater. The same methods were used to determine the properties of a fine silica sand to validate the results of the analyses.

Results and Conclusions


Particle size and shape

Ash produced at 300° C had the coarsest particle size distribution, with a D_{50} of $\sim 90 \mu m$ (Figure 1). The particle size distribution shifted to the left for the 500 and 700° C samples, indicating an overall decrease in particle size. SEM analysis indicated that this decrease reflects increasing structural breakdown associated with more complete combustion and a transition from primarily organic fragments in the ash to primarily crystalline fragments

of calcite and other minerals in the higher temperature ash. In the 900° C samples there was a 5-fold increase in the proportion of sand sized particles and a doubling of the D_{50} relative to the 700° C samples. SEM analysis indicates that coarsening in the 700 to 900° C range was due to sintering.

Figure 4. Particle size distribution of lab ash samples produced at 300, 500, 700 and 900°C. Particle size decreases in the 300-700°C range and then increases for the 900°C samples.

Bulk density, particle density and porosity

Field bulk densities ranged from 0.10 to 0.38 g cm⁻³ (Table 1). These values are similar to those previously reported for wildfire ash (Bookter, 2006; Cerda and Doerr, 2008, Woods and Balfour, 2008, Zavala et al., 2009) but they are considerably lower than the typical range of values for mineral soils. Bulk densities for ash samples repacked in the lab were higher than those measured in the field, ranging from 0.33 to 0.53 g cm⁻³, indicating the difficulties associated with reproducing the delicate structural characteristics of ash in the laboratory.

Table 1. Median particle size (D_{50}) , bulk density (ρ_b) , particle density (ρ_p) , porosity (Φ) , hydraulic conductivity (K), intrinsic permeability (k) and sorptivity (S) of six ash samples and silica sand.

Sample	\mathbf{D}_{50}	Field ρ _b	Lab $ ho_{ m b}$	$ ho_{ ext{p}}$	Φ from ρ_b and ρ_P	Φ by saturation	K _{sat} falling head	\mathbf{K}_{sat} mini disc	$\mathbf{k}_{ ext{air}}$	K _{air} :K _{water}	S mini disc	S sorptivity probe
Units	μm	g cm ⁻³		-		cm s ⁻¹		m ²	- mm s ^{-0.5}		5	
REM-1	123	0.18	0.33	2.36	0.93	0.80	1.33E-03	ND	1.36 E- 12	5.35	0.75	1.97
REM-2	17	0.108	0.43	2.05	0.95	0.67	6.02E-04	ND	6.14 E- 13	6.44	0.87	1.63
REM-3	26	ND	0.35	2.27	ND	0.74	7.56E-04	ND	7.73 E- 13	4.86	0.71	1.08
SON-1	18	0.38	0.53	2.49	0.85	0.64	1.61E-03	ND	1.65 E- 12	4.79	ND	1.95
SON-2	23	0.30	0.38	2.41	0.88	0.71	1.83E-03	ND	1.87 E- 12	3.05	2.02	2.35
SON-3	134	ND	0.42	2.52	ND	0.77	1.33E-03	1.89 E- 03	1.36 E- 12	4.78	1.39	ND
Silica sand	ND	-	1.34	2.62	0.49	0.47	3.26 E-02	1.52 E -02	3.33 E- 11	0.53	1.14	2.23

Particle densities for the wildfire ash samples ranged from 2.05 to 2.40 g cm⁻³, or 9 to 23 percent less than the 2.65 g cm⁻³ value used to estimate total porosity in soils, and occasionally in ash (e.g Bookter, 2006). The reduced particle density reflects the fact that ash contains low-density char particles as well as mineral material.

Total porosity estimates based upon the field bulk density and measured particle density ranged from 85 to 95%, which is within the range previously reported for wildfire ash samples (Cerda and Doerr, 2008, Woods and Balfour, 2008) but more than twice the typical range for mineral soils of comparable texture. Porosity estimates obtained using the saturation method, which ranged from 64 to 89%, were consistently lower than those obtained using the bulk density method. This is to be expected, as the bulk density method estimates the total porosity whereas the saturation method measures the effective porosity. However, some of the difference between the two estimates may also reflect settling and internal densification during transport to the lab. Given the high effective porosity values seen in these samples, it is clear that ash has an exceptionally high saturated water holding capacity compared to mineral soils with a similar texture.

Water retention

The water retention curve developed for one of the six samples (SON3) using the hanging column and pressure plate methods in combination is shown in Figure 2. In general, the results obtained with the two methods are consistent, and indicate that the tested ash retains about half of its saturated water content at field capacity (0.3 bars). This is similar to a sandy loam mineral soil, which on average retains 46 percent of its saturation water content at field capacity.

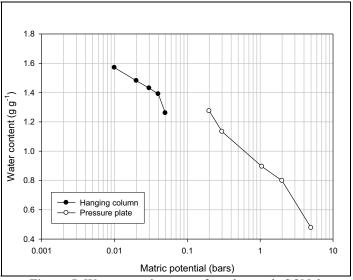


Figure 5. Water retention curve for ash sample SON-3

Hydraulic conductivity, intrinsic permeability and sorptivity

Falling head hydraulic conductivity values for lab ash samples decreased with increasing temperature in the $300\text{-}700^{\circ}\text{C}$ range but then increased in the 900°C ash (Figure 3); this is consistent with the observed variability in ash texture in these samples. K values for wildfire ash samples ranged from 6.0×10^{-4} to 1.8×10^{-3} cm s⁻¹, which is within the range seen in the $500\text{-}700^{\circ}\text{C}$ lab ash and within the range expected for mineral soils with the same silty to sandy texture (Table 1).

The ratio k_{air} : k_{water} was closest to 1.0 for silica sand, indicating that wetting had little or no effect on the internal structure and the hydraulic conductivity (Table 1). The fact that k_{air} : k_{water} was < 6 for all the ash samples indicates that structural changes associated with wetting were minimal; thus air permeametry may provide a relatively easy way to obtain order of magnitude estimates for K_{sat} for ash samples.

In five of the six ash samples tested using the mini-disc infiltrometer, the coefficient for the term representing the effect of K in the polynomial equation used to calculate K and S was negative, resulting in a physically unrealistic negative value for K. This was due to the fact that the sorptivity term was large relative to the hydraulic conductivity term, so that the best fit to the data was obtained with a linear model relating S to \sqrt{t} . Moody et al., (2009) noted a similar problem with this method when applied to burned soils and ash samples.

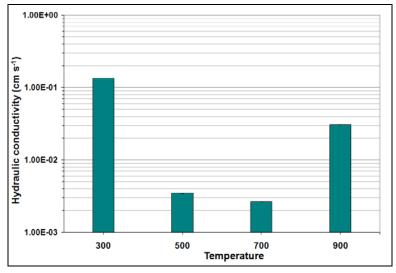


Figure 6. Hydraulic conductivity of lab ash samples produced at 300, 500, 700 and 900°C.

Ash sorptivity values obtained using the tension infiltrometer and sorptivity probe methods (Table 1) were within the range seen in mineral soils, which varies from 0.1 mm s^{-0.5} for fine textured soils to 4 mm s^{-0.5} for coarse textured soils (Leeds Harrison et al., 1994). Values obtained using the sorptivity probe method were up to 2.6 times higher than those obtained from the tension infiltrometer. This may reflect the fact that the tension infiltrometer method used here measured one dimensional infiltration whereas the sorptivity probe measured three dimensional infiltration. Three dimensional tension infiltrometer measurements require a much larger volume of ash material than was available for the samples tested here. The sorptivity probe offers a useful alternative method for determining the sorptivity of ash when only a limited sample volume is available.

References

Bookter, A., 2006. Erosional processes after wildfires: the impact of vegetative ash and the morphology of debris flows. M.S. Thesis, Department of Geology, University of Montana, Missoula, Montana. 69 p.

Cerda, A., Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. *Catena* 74, 256-263

- Flint A.L., Flint L.E., 2002a. Particle density, Ch. 2.2 In Dane J.H. and Topp G.C. (eds), 2002. Methods of Soil Analysis, Part 4 Physical Methods. Soil Science Society of America Inc., Madison, Wisconsin USA.
- Flint L.E., Flint A.L., 2002b. Porosity, Ch. 2.3 In Dane J.H. and Topp G.C. (eds), 2002. Methods of Soil Analysis, Part 4 Physical Methods. Soil Science Society of America Inc
- Moody J.A., Kinner D.A. and Úbeda X., 2009. Linking hydraulic properties of fire-affected soils to infiltration and water repellency. *Journal of Hydrology* 379, 291-303
- Woods, S.W., Balfour, V., 2008. Effect of ash on runoff and erosion after a severe forest wildfire. Montana, USA. *International Journal of Wildland Fire* 17, 1-14
- Zavala, L.M., Jordán, A., Gil, J., Bellinfante, N., Pain, C., 2009. Intact ash and charred litter reduces susceptibility to rainsplash erosion post-wildfire. *Earth Surface Processes and Landforms* 34, 1522-1532.

Depositional characteristics of post-fire flooding following the Schultz Fire, San Francisco Peaks, Arizona

Karen A. Koestner^{a*}, Mike D. Carroll^b, Daniel G. Neary^a, Peter E. Koestner^c, Ann Youberg^d

^a USDA Forest Service, Rocky Mountain Research Station, 2500 Pine Knoll Drive, Flagstaff, AZ 86001(USA);

^b USDA Forest Service, Okanogan-Wenatchee National Forest, Naches Ranger District, 10237 Hwy 12, Naches, WA 98937 (USA);

^c USDA Forest Service, Rocky Mountain Research Station, Tonto National Forest, Phoenix, AZ 85006 (USA);

^d Arizona Geological Survey, 416 W Congress Street, Suite 100, Tucson, AZ 85701 (USA). *kkoestner@fs.fed.us

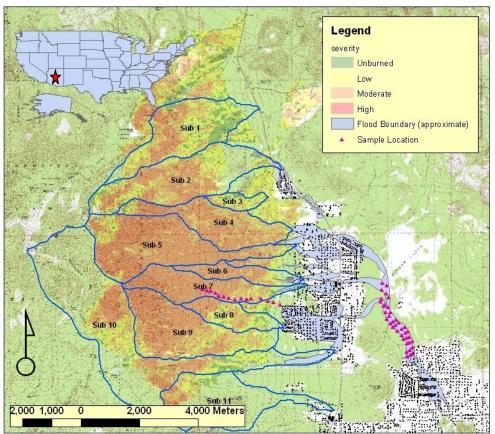
Key-words: Wildfire; erosion; sediment distribution; alluvial fan; infiltration.

Introduction

During the summer of 2010 the northern Arizona mountain town of Flagstaff experienced three fires all blazing the same week in late-June, the height of the fire season for this region. By July 1st, all three were extinguished, but that was only the first phase of disturbance. The largest and most detrimental of these fires was the Schultz Fire. From June 20th to July 30th 2010, the Schultz Fire burned 6,100 ha on the eastern slopes of the San Francisco Peaks, a dormant Middle Pliocene to Holocene aged stratovolcano (Figure 1). This was a wind driven fire, consuming approximately 60% of the total burn area in the first day. Ponderosa pine and mixed conifer forest on steep to moderate slopes of the mountain front and upper piedmont zone of 11 watersheds were impacted.

The US Forest Service Remote Sensing Application Center (RSAC) estimated the burn severity of the Schultz Fire using Burned Area Reflectance Classification (BARC). The BARC process combines Normalized Burn Ratio (NBR) data derived from Landsat satellite imagery with National Land Cover Database vegetation layers to accurately estimate burn severity across different vegetation types within the burn (Hudak et al. 2004). 70% of the Schultz Fire was classified as high to moderate severity, while 25% was classified as low severity, and another 8% was unburned. The high severity burned areas are concentrated on the steep mountain face with slopes greater than 30% and in places exceeding 100% (USDA Forest Service 2010).

Prior to the fire and subsequent flooding, the upper mountain had few defined channels consisting largely of ridge-swale topography with thick mixed-conifer forest cover and a well-developed O horizon (10-30 cm). These swales become more defined channels in the ponderosa pine-dominated piedmont zone. Prior to the fire they rarely carried flows. The slope varies from 60 to >100% on the upper mountain face to 30 to 60% in the piedmont zone and to 5 to 7% at the head of the alluvial fans. Scattered housing developments, most of which are less than 40 years old, occupy the fans.


The onset of summer monsoon precipitation in mid-July 2010, the 4th wettest on record, resulted in debris deposition on the alluvial fan with a series of discrete flood events over the following 6-weeks of summer precipitation. Over 1000 residents in this area were evacuated from their homes during the fire itself and several hundred experienced damages to property due to repeated flooding.

Post-fire debris flows scoured the swales on the upper slopes of most watersheds 1-4 m to expose bedrock channels. Well-defined channels in the piedmont zone were

simultaneously filled with coarse material from debris flows and flood-flow bedloads in less confined reaches, and incised over a meter beneath the previous channel surface in confined reaches. The piedmont channels coalesce and diverge on an alluvial fan surface that was constantly being reworked by multiple flood events. As defined channels emerge onto fan heads, flood flows fan out into sheet flows across the alluvial fans, passing through Coconino National Forest lands and several residential developments.

Figure 1. Schultz Fire boundaries with severity classification, watershed delineation, post-fire flood flow boundaries, and sediment sample locations.

Objectives

The intent of this study is to examine the hydrologic and depositional processes from the piedmont zone, across the alluvial fan, to the outwash plain by determining the variability in grain size. Data from the steep channels of the mountain front are excluded from this analysis because currently these steep channels are predominantly erosive supplying the material that is deposited below. The purpose of this research is to better inform land and civic mangers of long-term impacts from post-fire sedimentation and depositional processes, and to assist efforts managing post-fire flows and recovery.

Methodology

The depositional characteristics of post-Schultz Fire flooding were evaluated by sampling sediments across landscape features to capture variability in grain size of material transported by the flows. Sampling techniques were based on landscape position within two primary zones: the confined channels of the piedmont zone, and the outwash plain of the depositional fan where flood-impacted developments are situated. Though there were widespread debris flows resulting from two high-intensity rainfall events on the 20th of

July and the 16th of August, the sampling of grain size described herein is of material that was transported by hyperconcentrated flood flows and fluvial processes (Pierson and Costa 1987).

Study Area Selection: Due to the extensive coverage of post-fire flooding from eleven watersheds across the eastern slopes of the San Francisco Peaks, one watershed was selected for initial study. Basin 7 (Figure 1), was sampled to determine sediment characteristics and availability for future transport in the piedmont zone. This watershed was chosen because it had direct impact on the developments downstream of the burn area. It is one of the smaller basins within the burn area (4th of 11), facilitating comprehensive sampling coverage in limited time. The entire basin was surveyed but the focus of this analysis is from the piedmont zone downstream. Basin 7 also ranks high (2nd of 11) in the percentage of high-severity burn, and has had debris flows in every tributary, providing ample sediment source for fluvial transport. Basin selection was also based on the availability of post-fire precipitation data due to the placement of two emergency rain gauges in the watershed.

The second landscape zone sampled was the depositional fan across the flood area between several developments that were inundated (Figure 1). Sampling was restricted to public lands to limit disturbance of flood deposits from human activities (e.g. the removal or reorganization of material), and the ability to determine what was indeed a recent flood deposit.

Sampling & Analytical Procedures: Sediment samples within the piedmont channel of Basin 7 were taken at randomly selected cross-section locations. The data from ten cross-section locations presented here (Figure 1) consist of samples collected downstream of the 2316.5 m (7600ft) topographic contour line. This contour was selected as the piedmont threshold because the slope becomes gradual, grading into the depositional fan. At each cross-section location the depth of the recently disturbed layer (flood deposited material) was determined at the channel thalweg and a sediment sample was taken. The depth of the flood deposit and the associated sediment sample were determined by excavating the channel bed until small intact tree roots (<1mm diameter) were present, indicating the boundary of the flood deposit and the preexisting material. At each cross-section location 1-2 sediment samples were taken.

Sheet flow flood deposits on the fan were sampled along twelve randomly selected transects situated perpendicular to the direction of flow (Figure 1). On each transect 3-4 points across the flood deposit were sampled at undisturbed locations. The depth of the fresh deposit was measured down to the previous ground surface, as indicated by the presence of cinders and organic matter, and a sediment sample was taken.

Sediment samples from within the channel of the piedmont zone and from the sheet flood deposits on the fan were all analyzed for grain size using sieve analysis. Eleven sieves were used with screen sizes ranging from 50.8 to 0.074 mm. Samples were shaken for 15 min to sort grain sizes and the mass of residual sediment in each screen taken.

Results and conclusions

Grain size analysis of samples taken from post-fire flood deposits in the piedmont zone of Basin 7, and the alluvial surface and outwash plain between downstream housing developments indicate a reduction in particle diameter from coarse cobble and gravel to fine sands and clay. At the transition between the piedmont zone and the head of the alluvial fan the slope is 5 to 7%. On the alluvial fan the slope lessens to 2 to 4%, and

decreases further in the outwash plain to less than 2%. Channel confinement also decreases with slope. There are no channels extending from the alluvial fan to the outwash plain. The decrease in slope and lack of confinement caused flow velocity to drop off substantially driving differential deposition between landscape features. Extensive deposition of fine sediments on the toe of the fan and outwash plain created an impermeable layer on the alluvial surface easily observed before, during and after flood events. The scouring of channels on the mountain face and piedmont zone paired with fine grained deposition in the outwash plain has effectively reduced infiltration.

The burnt slopes of the San Francisco Peaks lost a substantial amount of material during the 2010 monsoon season following the Schultz Fire. Debris flows scoured material from the channel beds of several watersheds across the burn area supplying coarse sediments to the piedmont channels below. Hillslope erosion, facilitated by rill and gully formation across the landscape, supplied fine sediments and ash to form hyperconcentrated flows. Initial flood events of hyperconcentrated flow transported fine grained sediments and ash across the alluvial fan and outwash plain effectively sealing the previous surface of cinders. Surface flood deposits of fine sediments across the 750+ ha flood area of the alluvial fan and outwash plain, along with the scoured channels of the basins above caused secondary flood events to respond more quickly with increased sensitivity to precipitation.

The effects of fire on hydrologic response is well documented in DeBano et al. (1998) and Neary et al. (2008). The hydrologic impacts of the Schultz Fire will likely continue for several years, though it is unlikely flooding will be as extensive and detrimental as witnessed during the monsoon season of 2010. This is due to several actions taken by local land managers and civic planners to mitigate the effects of post-fire watershed response on the residents in the flood path. Continued research is needed to understand the efficacy of these mitigation efforts and the landscape changes during the post-fire recovery. Across the alluvial fan and outwash plain, research is needed on the depositional history of the basin by coring sample locations where surface properties have been described and dating samples when possible.

References

- DeBano, L.F.; Neary, D.G.; Ffolliott, P.F. 1998. *Fire's effects on ecosystems*. New York, NY: John Wiley and Sons. 333 p.
- Hudak, A.T.; Robichaud, P.R.; Evans, J.B.; Clark, J.; Lannom, K.; Morgan, P.; Stone, C. 2004. Field validation of Burned Area Reflectance Classification (BARC) products for post fire assessment. In: Remote Sensing for Field Users, Proceedings of the Tenth Forest Service Remote Sensing Applications Conference, Salt Lake City, Utah, April 5-9, 2004. 13 p.
- Neary, D.G.; Ryan, K.C.; DeBano, L.F. 2005. (Revised 2008). *Wildland Fire in Ecosystems: Fire effects on soil and water*. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-42, Volume 4: Fort Collins, CO.
- Pierson, T.C.; Costa, J.E. 1987. *A rheological classification of subaerial sediment-water flows*. In: J.E. Costa, J.E.; Wieczorek, G.F. Editors. Debris Flows/Avalanches: Process, Recognition, and Mitigation, Reviews in Engineering Geology **vol. VII**, Geological Society of America, Boulder, CO (1987), pp. 1–12.
- USDA Forest Service. 2010. Burned Area Emergency Response Report, July 8, 2010. Coconino National Forest, Flagstaff, Arizona. 167 p.

Hydrological response of a small catchment burned by experimental fire

Cathelijne R Stoof^{abc*}, Joost Iwema^d, Antonio Dinis Ferreira^b, Rutger Willem Vervoort^c

Key-words: catchment-scale; scale effects; hydrology; soil moisture; interception.

Introduction

Fire can considerably change hydrological processes, increasing the landscape's vulnerability to major flooding and erosion events (Shakesby and Doerr 2006). By removing vegetation cover, changing soil properties and inducing soil water repellency, fire can increase runoff which can lead to floods and erosion (Cerdà and Robichaud 2009). The impact of fire is however largely affected by scale. Despite this scaling challenge, which is universal across all hydrological problems (Blöschl and Sivapalan 1995), catchment-scale studies on the hydrological impact of fire are scarce. Even though controlled fire experiments can give valuable insight into the drivers of fire-induced hydrological changes and effects of scale, to date catchment-scale controlled fire experiments have not been performed and particularly nested approaches are rarely used (Ferreira et al. 2008). This paper presents a catchment-scale experimental fire study that assesses fire impact on hydrology using paired catchments and a nested approach.

Objective

The objective of this study was to evaluate the short-term (≤ 1 yr) impact of fire on hydrological processes and the causes of any changes different scales.

Methodology

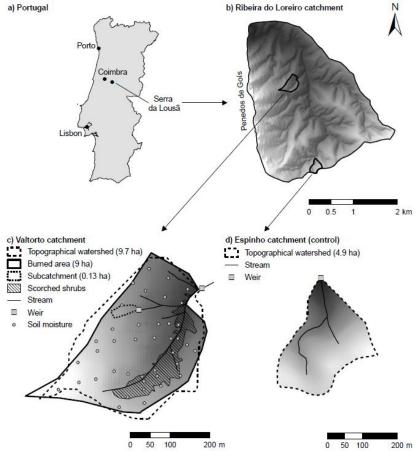
Research catchments and experimental fire

The paired catchments Valtorto (burned, 600-750 m a.s.l.) and Espinho (control, 695-800 m a.s.l.) are located on the northeastern slopes of the Serra da Lousã in north-central Portugal (Fig. 1). Climate is Mediterranean with an annual precipitation of 1050 mm, and soils and vegetation are typical for the region. Soils are shallow, developed from schist and quartzite, and covered by dense heathland dominated by *Erica* spp. and *Pterospartum tridentatum* regenerated after wildfire burned both catchments in the summer of 1990 and a prescribed fire burned the Valtorto catchment in April 1996.

The Valtorto catchment was burned by a high-intensity experimental fire on 20 Feb 2009 (Stoof et al. 2011). Despite the high fire intensity, shrubs were not completely consumed throughout the catchment (Fig. 1c), and soils remained below 100°C in the majority of the catchment. As a result, soil hydrologic properties such as saturated hydraulic conductivity and soil porosity did not change significantly. However, overland flow resistance and soil surface roughness decreased significantly because of the fire and the post-fire exposure of the soil (Stoof et al. 2011).

^a Land Degradation and Development Group, Wageningen University, Wageningen UR. P.O. Box 47, 6700 AA Wageningen (The Netherlands);

^b Sector de Tecnologias do Ambiente, Departamento de Ciências Exactas e do Ambiente, Escola Superior Agrária de Coimbra. Bencanta, 3040-316 Coimbra (Portugal);


^c Faculty of Agriculture, Food & Natural Resources, The University of Sydney, Sydney, 2006, NSW (Australia);

^d Hydrology and Quantitative Water Management Group, Wageningen University, Wageningen UR. P.O. Box 47, 6700 AA Wageningen (The Netherlands)

*cathelijne.stoof@gmail.com

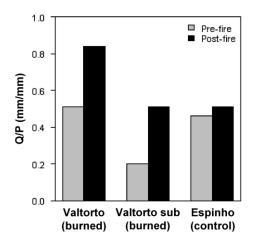
Fig. 1 Location of the Valtorto and Espinho catchments, showing the sampling design. Grey shading in graphs b, c and d represents elevation, enhanced using hillslope shading in ArcGIS.

Hydrological monitoring

Pre- and post-fire time series of rainfall and streamflow were collected in both the burned and the unburned control catchment. A nested approach was used, in which streamflow in the Valtorto catchment was monitored at the outlet of the main catchment and a small unbounded subcatchment halfway up the southeast slope (Fig. 1c). Additionally, soil moisture and canopy interception was monitored in the Valtorto catchment alone. Rainfall, streamflow and soil moisture data was managed through a MySQL database and analyses were done in R (R Development Core Team 2010). For details regarding the experimental design or data management, please refer to Stoof et al. (2011).

Fire effects were assessed by comparing pre- and post-fire rainfall, streamflow and moisture parameters. Streamflow changes were furthermore statistically analyzed using ANCOVA's, which evaluated the effects of fire while taking into account autocorrelation and changes in the rainfall distribution. Because of the effects of scale on the delay between rainfall and streamflow response, the catchment response was analyzed at a weekly basis, while the subcatchment response was analyzed at a daily basis.

Results and conclusions


Although pre- and post-fire daily rainfall amounts were not significantly different, there was an increased occurrence of large rain events (> 20 mm) after the fire. Moreover, the post-fire occurrence of streamflow (fraction of days with streamflow > 0) was higher for all three sites (Valtorto and Espinho catchments and Valtorto subcatchment), resulting in

almost year-round streamflow in the main Valtorto catchment after the fire. In addition, daily streamflow increased for all three sites, but the increase was only significant in the burned catchment.

Because of the pronounced effects on rainfall distribution on streamflow patterns (Beven 2001), attributing observed hydrological changes to the effects of fire must be treated with caution. Since the rainfall changes also affected streamflow in the control catchment, it is reasonable to assume that at least part of the observed changes in streamflow in the burned catchment should be attributed to the change in rainfall. However, the runoff coefficient (Fig. 2) changed more in the burned catchment than in the unburned control, clearly suggesting that fire did have a role in changing streamflow response in the burned catchment. Moreover, separation of rainfall and fire effects using ANCOVA (Fig. 3) showed that while fire did not appear to change the rainfall-streamflow relationship in the control Espinho catchment (p=0.955, based on weekly data), it did shift the rainfall-streamflow relationship in the burned Valtorto catchment (Fig. 3). Effects were greatest at the subcatchment-scale, where changes were also significant (p=0.048 vs p=0.323 for subcatchment and catchment-scale, respectively). Fire therefore changed the rainfall-streamflow relationship causing an increase in streamflow, and thus flooding risk, in the Valtorto subcatchment and possibly in the whole catchment.

Fig. 2 Runoff coefficient (Q/P) in the Valtorto catchment (1.7-fold increase), the Valtorto subcatchment (sub, 2.5-fold increase) and the Espinho catchment (1.1-fold increase), for the entire pre- and post-fire monitoring periods.

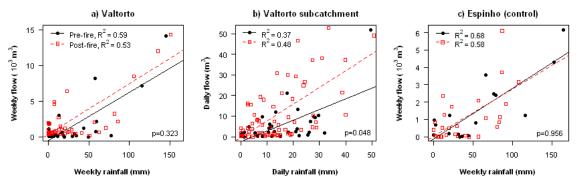
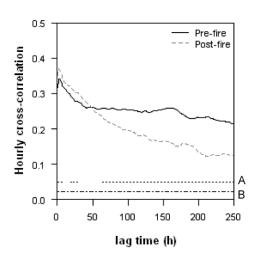


Fig. 3 Rainfall-streamflow relationships in Valtorto (burned) and Espinho (control). P-values indicate whether pre- and post-fire regression lines were significantly different


Increases in streamflow after fire have also been observed by others (Scott 1993; Seibert et al. 2010), and are often attributed to decreased plant transpiration and canopy

interception storage (e.g. Scott and Van Wyk 1990). Canopy throughfall in the winter before the fire averaged $51.3 \pm 17.8\%$ of total rainfall, resulting in an estimated canopy interception of $48.7 \pm 17.8\%$. This value is fairly high compared to the few data available on shrub interception (Dunkerley 2000), but can likely be attributed to the dense canopy cover ($80\pm18\%$) and the rapid drying of the upper canopy between rain events. Because of the high interception storage, removal of vegetation by fire nearly doubled the effective rainfall.

While reduced canopy interception was certainly a factor in this study, additional data suggest that there are more contributing factors. Reduced water storage at the soil surface also played a role (Stoof et al. 2011). Furthermore, while soil water repellency was abundant before the fire, the fire did increase the temporal dynamics of soil moisture content – an important driver of soil water repellency. Cross-correlation analysis between rainfall and soil moisture content (Fig. 4) illustrated after the fire, soil moisture responded more strongly to rainfall than before (higher peak at lag=0). However, for greater lag times, the correlation between rainfall and soil moisture decreased for all sites, resulting in a catchment average change depicted in Fig. 4. The initial increased response of soil moisture to rainfall was therefore followed by a long period of decreased response, suggesting that the burned soil dried out more quickly after rain events. This more rapid drying and wetting is in line with findings by Stoof et al. (2011) who observed more rapid development and elimination of soil water repellency after the Valtorto fire.

Fig. 4 Cross-correlation between hourly rainfall and catchment average soil moisture content in Valtorto, indicating the timing and the strength of the soil moisture response to the occurrence of rainfall. The dotted line (A) indicates for which lag times post-fire cross correlation is significantly different from the pre-fire value (p<0.05), while the dashed line (B) indicates the confidence interval.

Since soil physical changes due to fire were not apparent, we suggest that changes resulting from vegetation removal played an important role in increasing erosion (Shakesby et al. 2010) and streamflow (Fig. 3) after fire, namely: 1) increased effective rainfall and decreased transpiration – increasing the amount of water available for (sub)surface runoff, 2) more rapid development of soil water repellency and decreased surface water storage – increasing overland flow risk, 3) more rapid breakdown of post-fire soil water repellency – increasing infiltration during extended rain events. Results stress that fire impact on hydrology is largely affected by scale, and emphasize the risk of overestimating fire impact when upscaling plot-scale studies to the catchment-scale. Finally, they increase understanding of the processes contributing to post-fire flooding and erosion events.

References

- Beven, K. J. (2001). Rainfall-runoff modelling: the primer. Chichester, UK, Wiley.
- Blöschl, G. and M. Sivapalan (1995). *Scale issues in hydrological modelling: A review*. Hydrological Processes 9(3-4): 251-290.
- Cerdà, A. and P. Robichaud (2009). *Fire effects on soils and restoration strategies*. Enfield, NH, USA, Science Publishers.
- Dunkerley, D. (2000). Measuring interception loss and canopy storage in dryland vegetation: a brief review and evaluation of available research strategies. Hydrological Processes 14(4): 669-678.
- Ferreira, A. J. D., C. O. A. Coelho, C. J. Ritsema, A. K. Boulet and J. J. Keizer (2008). Soil and water degradation processes in burned areas: Lessons learned from a nested approach. Catena 74(3): 273-285.
- R Development Core Team (2010). R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing.
- Scott, D. F. (1993). The hydrological effects of fire in South African mountain catchments. Journal of Hydrology 150(2-4): 409-432.
- Scott, D. F. and D. B. Van Wyk (1990). *The effects of wildfire on soil wettability and hydrological behaviour of an afforested catchment*. Journal of Hydrology 121: 239-256.
- Seibert, J., J. McDonnell and R. D. Woodsmith (2010). Effects of wildfire on catchment runoff response: a modelling approach to detect changes in snow-dominated forested catchments. Hydrology Research 41(5): 378-390.
- Shakesby, R., C. Ferreira, R. Walsh, E. Urbanek, A. Ferreira and C. Stoof (2010). Temporal changes in sediment, organic matter and nutrient losses following an experimental fire in Atlantic-Mediterranean heath, central Portugal. *VI International Conference on Forest Fire Research*. D. X. Viegas. Coimbra, Portugal.
- Shakesby, R. A. and S. H. Doerr (2006). *Wildfire as a hydrological and geomorphological agent*. Earth-Science Reviews 74(3-4): 269-307.
- Stoof, C. R., A. J. D. Ferreira, W. Mol, J. Van den Berg, A. De Kort, S. Drooger, E. C. Slingerland, A. U. Mansholt, C. S. S. Ferreira, T. C. J. Esteves and C. J. Ritsema (2011). *Soil surface changes increase erosion risk after low-severity fire (in review)*. International Journal of Wildland Fire.
- Stoof, C. R., D. Moore, C. J. Ritsema and L. W. Dekker (2011). *Natural and fire-induced soil water repellency in a Portuguese shrubland (in review)*. Soil Science Society of America Journal.
- Stoof, C. R., R. W. Vervoort, J. Iwema, E. Van den Elsen, A. J. D. Ferreira and C. J. Ritsema (2011). *Hydrological response of a small catchment burned by experimental fire (accepted)*. Hydrology and Earth System Sciences Discussions.

Soil water repellency persistence after recurrent forest fires, Mt. Carmel, Israel

Naama Tessler*1, Lea Wittenberg1 and Noam Greenbaum1,2

¹ Department of Geography and Environmental Studies, University of Haifa, Haifa 31905, Israel. 972-4-8249609

*ntessler@geo.haifa.ac.il

Key-words: Forest fire, Long term, Mediterranean, Mt. Carmel, Water repellency.

Introduction

Changes in the fire regime may play a key role in affecting the natural rates and patterns of: (a) vegetation-community structure and revegetation rates, (b) soils - physical and chemical property changes, and consequently (c) geomorphic processes - runoff processes and sediment yield changes (Delitti et al., 2005; Eugenio, 2006; Herman, 2009).

Mt. Carmel in northwestern Israel (35°W, 32°N) is a prominent triangular mountain ridge, covering approximately 250 km². The climate is Mediterranean, with short, rainy, cool winters and long, dry, hot summers. The lithology is composed of Upper Cretaceous carbonate rocks, mainly limestone, dolomite, chalk, usually overtopped by nari crusts, marl, and local exposure of volcanic tuff (Wittenberg et al., 2007). The dominant soil taxa are mainly Rendolls, Haploxerolls and Rhodoxeralfs (Soil Survey Staff, 2006).

Fire on Mt. Carmel, as in other parts of the Mediterranean basin, is caused mainly by human activity, and has played an ecological role ever since the adoption of fire by Mankind (Naveh, 1990; Pausas and Vallejo 1999).

Repeated burnings can lead to long-term cumulative effects on some ecosystem properties, such as vegetation regeneration (Delitti et al., 2005) and soil resilience (Zedler et al., 1983; Herman, 2009). However, few studies have attempted to address the role of recurrent fires on forest ecosystems (e.g. Ferran et al., 2005; Eugenio et al., 2006; Herman, 2009). If cumulative effects are evident at plant community level, it is likely that they also occur in soils. The loss of plant productivity caused by a reduced availability of nutrients in mineral soils would result in reduced organic matter inputs to soil organic horizons (Eugenio et al., 2006). Moreover, the increasing area and frequency of fires nowadays in some Mediterranean areas create a new ecological situation that can enhance desertification processes (Vallejo and Alloza, 1998).

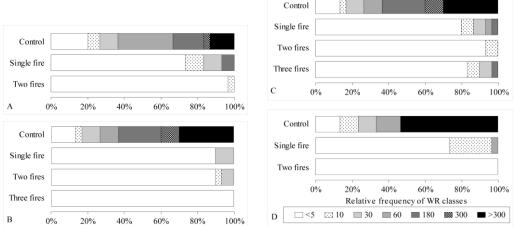
Among the fire-induced changes in the physical environment, soil water repellency (WR) is a property with major repercussions for plant growth, surface and subsurface hydrology, and for soil erosion. It is also a common property in fire-affected soils (Doerr et al., 2000). In semi-arid areas, where water supply is limited, even a slight WR may significantly affect infiltration rates, runoff and erosion (DeBano, 2000). Soil properties may experience short-term, long-term or permanent fire-induced changes, mainly depending on the type of property, severity and frequency of fires, and post-fire climatic conditions (Kutiel and Shaviv, 1992). The longevity of fire-induced WR depends on some of the factors that affect its formation. Water repellency produced by low-to-moderate severity fires is usually of shorter duration than that produced by high severity fires (DeBano 2000). Most studies indicate that the increase in soil WR due to burning

² Department of Natural Resources and Environmental Management, University of Haifa, Haifa 31905, Israel.

disappears within a few months to a couple of years (Tessler at al., 2008; Doerr et al., 2009; Malkinson and Wittenberg, 2010).

Objectives

The research aims at analyzing temporal and spatial changes in soil WR after recurrent forest fires. Methods included: 1) performing Water Drop Penetration Time (WDPT) tests in situ in field conditions on the soil surface, in various sites with different fire histories; 2) soil sampling from the soil surface (0-5 cm) at the same sites, to analyze the influence of recurrent fires on organic matter (OM); 3) laboratory analyses to estimate organic matter content and some other nutrients, and 4) statistical analysis with one way non-parametric ANOVA Kruskal-Wallis and Mann-Whitney tests to estimate the effect of recurrent fires on WR, and to see if there is a correlation between WR and organic matter.


Methodology

Recurrent fire effects were examined during the summers of 2009 and 2010. Measurements were taken in ten different sites that were burnt during 1989, 1999, 2005 and 2006, and in three control (unburnt) areas. Four categories were addressed: 'single-fire' sites, 'two-fire' sites, and 'three-fire' sites, in addition to the control areas. All samples were taken from open patches in the soil surface (without vegetation cover).

Results and conclusions

General water repellency, seasons 2009–2010:

Water repellency results from soil surface tests in all fire sites (1989, 1999, 2005, 2006) showed significant differences between the control site and the burnt sites (Kruskal-Wallis test, p<0.001). WR in the control areas that represent the 1999 and 2005 fires was much higher than the burnt samples, indicating natural strong water repellency (>300 s class). 30% of WR values in the control site had a strong repellency (>300 s class), 33% of WR values were in the 180 s - 300 s classes, and 13% were classified as wettable. At the second control site (representing the 1989 area), 13% of WR values observed had a strong repellency: >300 s class, 47% of results were in the 60 s - 180 s class, while 20% were wettable. The same tendency was demonstrated in the 2006 fire control area (Fig. 1).

Figure 1. Relative frequency of WR classes at 'single-fire' sites, 'two-fire' sites and 'three-fire' sites in four areas: A- last burnt in 1989, B- last burnt in 1999, C- last burnt in 2005, D- last burnt in 2006; n=30 per site.

Generally, soil WR is a natural phenomenon that can be intensified by soil heating during fires (Varela et al., 2005). A previous study in Mt. Carmel showed the development of WR after a 'single fire', when WR values were higher for several weeks immediately after the fire, and decreased rapidly a few months afterwards (Tessler et al., 2008). The present study shows that 4, 10 and 20 years after single and recurrent fires the WR values were lower than in the control sites. Although there are differences between the soil types that can cause different natural water repellencies, the general trend of WR was the same for a long period after the fires.

Long-term changes in water repellency

Data on long-term WR changes from the burnt and control sites were combined into three groups: a) 'single-fire' sites, b) 'two-fire' sites and c) 'three-fire' sites.

Two weeks after a 'single fire' more than 25% of measurements were classified in the >300 s class, while more than 22% were classified into the WR categories of 60 s and 180 s. Four years after a 'single fire', WR had decreased, and only 2% of the results were classified into the 60-180 s category. 77% of the samples were classified as wettable soil; other results showed lower values of WR (10-60 s). Ten years after the 'single-fire', 90% of the results were classified as wettable. Twenty years after the 'single-fire' WR started to increase: 7% of the results were classified with moderate repellency of 60-180 s, and 10% results show low WR (10-30 s).

In the 'two-fire' group, the results show very low WR values 4, 10 and 20 years after the recurrent fires. 3% of the results show low WR of 10-30 s in all sites. In the 'three-fire' group, after 4 years 83% were classified as wettable soil, while after 10 years 100% were classified as wettable soil. All results are lower than at the control sites (Fig. 2).

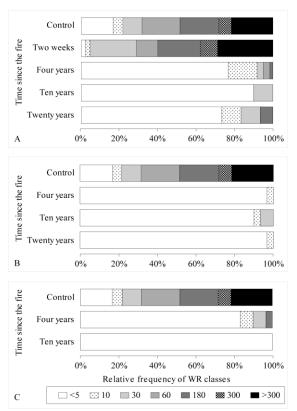


Figure 2. The influence of numbers of fires and time since the last fire on WR: A- 'single-fire' sites, B- 'two-fire' sites, C- 'three-fire' sites, n = 435.

The effects of fire on WR have been well studied (Doerr et al., 2000), but relatively little work has been done on long-term recovery. Comparing our results from the 'single-fire' sites and the control sites to the Tessler et al. (2008) data (two weeks after the 2005 fire) (Fig. 2A), showed the tendency of WR values in the last 20 years at the Carmel region: in the first few weeks after the fire the WR values increase; 4 and 10 years after the fire there is almost no WR on the soil surface, and 20 years after the 1989 'single-fire', WR starts to increase again, and WR is moderate. This tendency has been attributed to increased biological activity and the accumulation of organic matter (Malkinson and Wittenberg, 2010). After recurrent fires, WR values remain low for more than 20 years, and the recovery rate is probably controlled by vegetation and organic matter recovery.

Water repellency and its relationship to soil organic matter

The OM results showed recurrent fire effects on OM rehabilitation. OM content in the control sites (13%) is consistently higher than in the burnt areas. Moreover, OM in the recurrent fire sites is lower than in the 'single fire' sites. For example, in the 1999 'single-fire' site mean OM was 9.7%, whereas only 8.5% and 8.2% were recorded in the 'two-fire' and 'three-fire' sites, respectively. In Spain, Eugenio et al., (2006) showed a similar tendency, with recurring fires decreasing the amount of soil organic dry mass.

Correlation between soil organic matter (OM) content and WR from all burnt sites shows significant results: WR is higher when the OM content is higher ($r_s = 0.345$, n = 100, p < 0.001); this tendency increasing with the combination of the control data ($r_s = 0.561$, n = 130, p < 0.001). These significant results indicate that soil OM controls WR values: when OM values are higher than 10%, WR values increase, particularly in the control areas.

Previous studies indicated that after forest fires some soil properties, such as OM, P, pH, N, texture etc., could be used as indicators for recovery trends. This study supports this approach (Seybold et al., 1999).

The development and nature of fire-induced WR following forest fires in various environments has been widely investigated. Its long-term dynamics, however, are not well understood relative to evaluating hillslope response to fires. Natural WR in the Mediterranean maquis of Mt. Carmel is particularly common, in part due to the coarse-textured soils and the high content of organic matter.

Our results indicate that in the long term, WR in the burnt sites is generally low, and the soil maintains its wettability for more than a decade. After recurrent fires, the rehabilitation process is more complicated, and may take a long time (>30 years). Increase in WR is facilitated by the restoration of the organic matter. When OM is higher than 10% the WR value is also moderate to high. The recovery of natural WR may serve as an indicator for site rehabilitation. These processes may cause a delay in recovery of other soil properties such as carbon stock, pH, phosphorus content, electrical conductivity, etc, and can cause a decrease in the quality and productivity of the site for a long period.

References

DeBano, L.F. 2000. Water repellency in soils: a historical overview. Journal of Hydrology. 231-232: 4–32.

Delitti, W.A., Ferran, L., Trabud, L., and Vallejo, V.R., 2005. Effects of fire recurrence in *Quercus coccifera L.* shrublands of the Valencia region (Spain): I: plant composition and productivity. Plant Ecology 177: 50-70.

- Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews 51: 33-65.
- Doerr, S.H., Shakesby, R.A., and Huffman, E.L., 2009. Soil water repellency: A key factor in post-fire erosion? In Cerda, A. and Robichaud, P. (Editors) Fire Effects on Soils and Restoration Strategies: 197-224.
- Eugenio, M. G., 2006. Fire recurrence effects on *Pinus halepensis Mill*. communities of Catalonia. Thesis submitted for degree Doctor of Philosophy, University of Barcelona.
- Eugenio, M., Lloret, F., Alcaniz J.M., 2006. Regional patterns of fire recurrence effects on calcareous soils of Mediterranean *Pinus halepensis* communities. Forest Ecology and Management 221: 313–318
- Ferran, A., Delitti, W., and Vallejo V. R., 2005. Effects of fire recurrence in Quercus coccifera L. shrublands of the Valencia Region (Spain): II. plant and soil nutrients. Plant Ecology 177: 71-83.
- Herman, J., 2009. Fire recurrence effects on aboveground plant and soil carbon in Mediterranean shrublands with Aleppo pine (*Pinus halepensis*). MSc Thesis, forest ecology and forest management group. Final report.
- Kutiel, P., Shaviv, A., 1992. Effects of soil type, plant composition and leaching on soil nutrients following a simulated forest fire. Forest ecology and management, 53: 329-343.
- Malkinson, D., Wittenberg, L., 2010. Post fire induced soil water repellency modeling short and long-term processes. Geomorphology 125: 186-192.
- Naveh, Z., 1990. Fire in the Mediterranean A landscape ecological perspective, in: Goldammer, J.G., Jenkins, M.J. (Eds.), Fire in ecosystems dynamics: Mediterranean and Northern perspective, 1–20. SPB Academic Publication, The Hague.
- Pausas, J.G. Vallejo, V.R., 1999. The role of fire in European Mediterranean ecosystems. In: Chuvieco E. (Ed.), Remote sensing of large wildfire in the European Mediterranean basin, Springer-Verlag, pp 3-16.
- Seybold, C.A., Herrick, J.E., Brejda, J.J., 1999. Soil resilience: a fundamental component of soil quality. Soil Science 1644: 224-234.
- Soil Survey Staff, 2006. Keys to Soil Taxonomy, 10th ed. NRCS, Washington, DC.
- Tessler, N., Wittenberg, L., Malkinson D., Greenbaum, N., 2008. Fire effects and short-term changes in soil water repellency Mt. Carmel, Israel. Catena, Special Issue Fire Effects on Soil 74: 185-191.
- Vallejo R., and Alloza J.A., 1998. The restoration of burned lands: the case of eastern Spain. In: Moreno J.M. (ed.), Large Forest Fires. Backhuys Publishers, Leiden, The Netherlands: 91–108
- Varela, M.E., Benito, E., de Blas, E., 2005. Impact of wildfires on surface water repellency in soils of northwest Spain. Hydrological Processes 19: 3649–3657.
- Wittenberg, L., Malkinson, D., Beeri, O., Halutzy, A., Tessler, N. 2007. Spatial and temporal patterns of vegetation recovery following sequences of forest fire in a Mediterranean landscape Mt. Carmel, Israel. Catena 71: 76-83.
- Zedler, P.H., Gautier, C.R., McMaster, G.S., 1983. Vegetation change in response to extreme events: the effect of a short interval between fires in California chaparral and coastal scrub. Ecology 64: 809–818.

Impacts of wildfire on soil water repellency within obligate resprouter Eucalypt communities near Sydney, Australia

Jessica T. Heath^{1, 2}*, Chris J. Chafer³ and Thomas F.A. Bishop¹

¹ Faculty of Agriculture, Food and Natural Resources, The University of Sydney, Sydney, NSW, 2006, Australia

Bushfire CRC, East Melbourne, VIC, 3002, Australia
 Sydney Catchment Authority, Penrith, NSW, 2750, Australia
 * jhea2850@uni.sydney.edu.au

Key-words: Soil water repellency; Eucalyptus; wildfire; soil.

Introduction

Wildfire can either induce or enhance the amount of repellency within a soil body, depending on the temperature and wildfire intensity reached during the wildfire. (Keizer et al. 2008; Shakesby and Doerr 2006; Tessler et al. 2008; Zavala et al. 2009). Laboratory studies conducted by DeBano and Krammes (1966) found that little change occurs in water repellency when soils are heated to approximately less than 175 °C. Water repellency is induced when temperatures range between 175 and 200°C, whilst destruction of water repellency occurs at temperatures between 280 and 400 °C.

Similar studies were performed by Doerr et al (2004) and Zavala et al. (2010) which assessed soils under Eucalypt forests in Spain, Mexico and Australia. Results showed that soil water repellency did not change significantly with respect to unheated control samples between 100-150 °C. However, once temperature were increased to 250-300 °C, water repellency decreased and was completely destroyed when temperatures reached 400-450 °C.

Doerr et al. (2006) examined different effects of fire severity on soil water repellency in eucalypt forest catchments in the sandstone tablelands near Sydney, burnt in 2001 and 2003. All non-burnt soils were identified to be naturally repellent, whilst soils impacted by high severity levels witnessed destruction in their repellency levels within the soil surface (0-2.5 cm). Within 2 years post-wildfire, repellency levels had still not recovered to their pre-wildfire repellency levels.

The objective of this paper is to:

- i) assess the impact of different wildfire severities on soil water repellency within two study sites
 - near Sydney, Australia
- ii) assess the response of water repellency through time according to the different severity levels at two study sites near Sydney, Australia.

Methods

We selected two study sites situated within the outer Sydney basin, Australia (Figure 1) that were burnt by wildfire in 2009/10 fire season. Cranebrook, is located on a lowland floodplain. The geology consists of Quaternary alluvium derived from Wianamatta Group shales (Bringelly shale), with smaller areas overlaid with Tertiary alluvial sediments. The lithology of the region is dominated by fine sand. Cranebrook was impacted by wildfire during December 2009 and has no other recent history of wildfire. The second site, Wentworth Falls, is situated within mountainous terrain. The underlying geology of Wentworth Falls consists of ancient Triassic sandstone plateau (Hawkesbury and Narrabeen sandstones) with Narrabeen mudstone embedded throughout it. The soils

within the region are dominated by coarse sands. Wentworth Falls was affected by wildfire in November 2009 and was previously burnt in January 2002. Both sites are dominated by resprouting *Eucalyptus* sp. with a dense shrubby understorey.

Landsat 5 satellite imagery was collected for both pre- and post- wildfire for both study sites. At each site the differenced Normalised Burn Ratio (dNBR) was computed to determine the difference in images between pre- and post- wildfire across the study sites. The dNBR at each site was then classified into five classes to quantify the relative degree of fire severity that occurred across each study site. In this instance, 5 severity classes were used for each study site, ranging from unburnt to very high severity levels (see Chafer 2008).

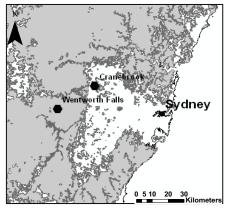


Figure 1. Location of study sites

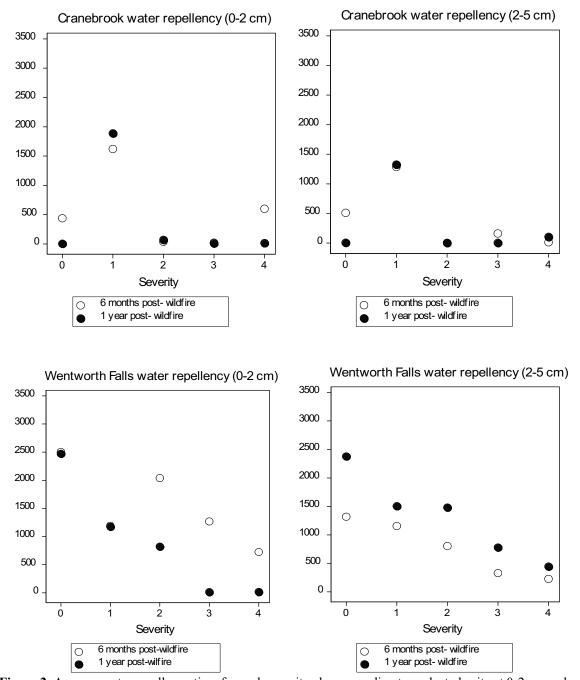
Field sampling was conducted at each site 6 months and 1 year post-wildfire. For each severity class, three sites were selected at random for each study site, except for the low severity class at Cranebrook due to restricted access allowing only 2 sites to be selected (n = 58). At each site a ten metre transect was marked out and soil samples were collected at one metre intervals along the transect. At each sample site, data was collected for 0-2 cm depth and 2-5cm depth (total n = 580). All sites were located at least 20 m from any human disturbance. Leaf litter and organic matter was removed from the top of each sample, gently using a brush. Unburnt sites were selected adjacent to the burnt areas and the same method was applied.

The soils were bulked over each transect and the particle size analysis was measured for each transect using the hydrometer method from Gee and Bauder (1986).

Water repellency was analysed in the laboratory through the Water Drop Penetration Time (WDPT) technique (Bisdom 1993). The 10 samples from each transect were analysed separately. All samples were left to air dry at 27 °C until dried. Samples were sieved through a 2 mm sieve to remove excess material such as litter and rocks. Each soil sample was then placed into a petri dish at least 1 cm high and then was slightly compacted using a weight. All samples were left to equilibrate over night in controlled atmospheric conditions (20 °C). Using a standard eye dropper, 3 drops of distilled water were placed on the surface of each soil sample and the time for each droplet to penetrate into the soil into the soil was recorded. Each recorded was able to then be compared to the WDPT time intervals used by Bisdom et al. (1993). Samples which infiltrated <5 seconds were classed as wettable, 5-60 seconds classed as slightly wettable, 60-600 seconds strong repellency, and 600-3600 seconds severe repellency. All sample recordings were terminated once the time reached 3600 seconds.

The average repellency time for each transect was recorded for each depth interval, the top 0-2 cm and bottom 2-5 cm. From this, the results for each transect were then categorised under the appropriate severity class and time period in which they were sampled (6 months or 1 year post-wildfire). Normality of data was assessed and if not normal it was transformed and logged, as seen in the case of Cranebrook. An analysis of variance (ANOVA) was used to determine if there was a significant difference (P < 0.05) between:

- a) the water repellency levels across the different burn severity classes;
- b) the two time periods that were sampled; and
- c) the interaction between burn severity and time.


Results and Conclusions

The particle size fractions at both study sites varied as a result of the local lithology. Cranebrook is dominated by fine sand at both 0-2 cm (31-63 %) and 2-5 cm (23-63 %) below the soil surface. Coarse sand occurs in the top 0-2 cm of soil (17-47 %), with a little more variation at 2-5 cm (18-58 %). Clay percentage at 0-2 cm of soil is 10-23 % and 2-5 cm of soil is 10-20 %. Silt ranges from 3-10% at 0-2 cm below soil surface and 6-10 % at 2-5 cm below soil surface. Wentworth Falls soil samples displayed a higher percentage of coarse sand ranging from 63-88 % at 0-2 cm and 62-89 % at 2-5 cm. Fine sand varies from 8-19 % at 0-2 cm and 4-23 % at 2-5 cm. Only 5-14 % of clay is present at 0-2 cm and 4-14 % at 2-5 cm. Silt attained the lowest percentage across the landscape ranging from only 1-8 % at 0-2 cm of soil and 2-6 % at 3-5 cm of soil.

At both time periods sampled for Cranbrook, a similar trend in the overall pattern of repellency levels at both 0-2 cm and 2-5 cm occurred (Fig. 2). Cranebrook experienced a sudden decline in repellency levels across unburnt sites between 6 months to 1 year postwildfire (Fig 2). Soils went from experiencing strong water repellency at both 0-2 cm and 2-5 cm 6 months post-wildfire, to becoming wettable 1 year post wild-fire. Heavy rainfall occurring in the weeks before sampling took place 1 year-post wildfire could have resulted in this fluctuation in repellency levels. Similar findings have previously been observed in north-central Portugal (Keizer et al. 2008) and Australia (Doerr and Thomas, 2000). Low severity affected areas experienced the highest repellency levels increasing from 1620 seconds at 0-2 cm 6 months post-wildfire to 1889 seconds 1 year post-wildfire. At 2-5 cm, water repellency was slightly lower but still severe at 1285 seconds 6 months post-wildfire and 1326 seconds 1 year post-wildfire. Very high severity areas changed the most, with repellency times of 600 seconds 6 months post-wildfire at 0-2 cm falling to only 16 seconds at 1 year post-wildfire. For 2-5 cm samples, the repellency increased from 13 seconds to 105 seconds. This trend in the data agrees with the Findings of DeBano and Krammes (1966), which acknowledges that low temperatures may enhance repellency levels, whilst an increase in temperature will destroy it. Although variation occurred, Cranebrook did not encounter a significant difference in its soil water repellency across the 5 severities for both 0-2 cm of soil (p = 0.232) and 2-5 cm of soil (p = 0.232) = 0.188). Cranbrook also showed no significant difference in the data recorded over the two time periods sampled or the interaction of burn severity and results for each time period sampling occurred.

Figure 2. Average water repellency time for each severity class according to each study site at 0-2 cm and 2-5 cm, for each sampling time.

Wentworth Falls experienced a declining trend in repellency levels as the burn severity levels increased (Fig 2.) Naturally Wentworth Falls is identified to obtain severely repellent soils at both 0-2 cm and 2-5 cm. Such a high repellence could be a result of vegetation species as previous Australian studies conducted by Doerr et al. (2006) and Howell et al. (2006) have established that soil repellence is common in pre-fire drought conditions in Australia. However, such results could also be a reflection of the coarse sandy soil particles found within Wentworth Falls. Water repellency in sandy soils is known to develop as a consequence of sand particles being coated with organic substances produced by fungal activity (Chan 1992). Sites impacted by the 2009 wildfire experienced an overall decline in water repellency at 0-2 cm as the degree of burn

severity increased for both 6 months and 1 year post-wildfire. Overall, high burn severity at 0-2 cm experienced the greatest difference in repellency levels decreasing from 1268 seconds to 15 seconds, causing the soil to become slightly wettable. At 2-5 cm, low and moderate severities experienced severe water repellency levels at 6 months and 1 year post-wildfire. High and very high severities were identified to encounter strong repellency both 6 months and 1 year post-wildfire at 2-5 cm. Overall, there was a significant difference in the water repellency across the 5 burn severities at Wentworth Falls within the top 0-2 cm (p = 0.043), whilst no significant difference occurred for the bottom 2-5 cm of soil (p = 0.057). There was no significant difference in the data recorded over the two time periods sampled or the interaction of burn severity and results for each time period sampling occurred.

In conclusion, it was observed that Wentworth Falls has a naturally repellent soil with coarse sand particles dominating the region, whilst Cranebrook has slight to strong repellent soil. Although variation in repellency occurred, no significant difference in water repellency levels across the different burn severity classes at 0-2 cm and 2-5 cm was found at Cranebrook. Wentworth Falls only obtained a significant difference in repellency across burn severities at 0-2 cm. Both sites encountered no significant difference in the repellency times recorded over the two periods sampled or the interaction between burn severity and time.

References

- Bisdom, E.B.A. 1993. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma 56, 105–118.
- Chafer, C.J. 2008. A comparison of fire severity measures: An Australian example and implications for predicting major areas of soil erosion. Catena 74, 235-245.
- Chan, K.Y. 1992. *Development of seasonal water repellence under direct drilling*. Soil Science Society of America Journal 56, 326–329.
- DeBano, L.F., Krammes, J.S. 1966. Water repellent soils and their relation to wildfire temperatures. Bulletin of the I.A.S.H., XI(2):14-19.
- Doerr, S.H., Blake, W.H., Shakesby, R.A., Stagnitti, F., Vuurens, S.H., Humphreys, G.S., Wallbrink, P. 2004. *Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures*. International Journal of Wildland Fire 13, 157-163.
- Doerr, S.H., Shakesby, R.A., Blake, W.H., Chafer, C.J., Humphreys, G.S. and Wallbrink, P.J. 2006. *Effects of differing wildfire severities on soil wettability and implications for hydrological response*. Journal of Hydrology 319, 295-311.
- Doerr, S.H., Shakesby, R.A., Walsh, R.P.D. 2000. Soil water repellency, its causes, characteristics, and hydro-geomorphological significance. Earth Science Reviews 51, 33-65.
- Gee, G.W., Bauder, J.W. 1986. Particle size analysis. In Methods of soil analysis: Physical and Mineralogical Methods. 2nd edn. Agronomy Monograph 9. Part 1. Ed. A Klute. pp 383-411. ASA-SSSA, Madison, WI.
- Howell, J., Humphreys. G., Mitchell, P.B. 2006. Changes in soil water repellence and its distribution in relation to surface microtopographic units after a low severity fire in eucalypt woodland, Sydney, Australia. Australian Journal of Soil Research 44, 205–217.
- Keizer, J.J., Doerr, S.H., Malvar, M.C., Prats, S.A., Ferreira, R.S.V., Oñate, W.G., Coelho, C.O.A., Ferreira, A.J.D. 2008. *Temporal variation in topsoil water*

- repellency in two recently burnt eucalypt 7stands in north-central Portugal. Catena 74, 192-24.
- Shakesby, R.A., Doerr, S.H. 2006. *Wildfire as a hydrological and geomorphological agent*. Earth-Science Reviews, 74, 269-307.
- Tessler, N., Wittenberg, L., Malkinson, D., Greenbaum, N. 2008. Fire effects and short-term changes in soil water repellency- Mt. Carmel, Israel. Catena 74, 185-191.
- Zavala, L.M., González, F.A., Jordán, A. 2009. Fire-induced soil water repellency under different vegetation types along the Atlantic dune coast-line in SW Spain. Catena 79, 153-162.
- Zavala, L.M., Grangedm A.J.P., Jordán, A., Bárcenas-Moreno, G., 2010. Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions. Geoderma 158, 366-374.

The relative importance of soil water repellency in determining runoff-infiltration processes in burned Mediterranean forest soils

Lea Wittenberg^{1*}, Dan Malkinson², Annelies Voogt³, Danny Leska¹, Eli Argaman⁴, Saskia Keesstra³

Department of geography and environmental sciences, University of Haifa, Haifa, Israel;
 The Golan Research Institute, University of Haifa, Katzrin, 12930;
 Land Degradation and Development Group, Department of Environmental Sciences, Wageningen University, the Netherlands;
 Soil Erosion Research Station (SERS) Ministry of Agriculture.
 * leaw@geo.haifa.ac.il

Key-words: Water repellency, forest fire, rainfall simulation.

Introduction

Ecosystem properties undergo considerable changes following wildfires, which include modifications to the vegetation (Keeley, 2009) and the soil structure/texture (Certini, 2005), and consequently soil infiltration and water storage capacities are reduced (Robichaud, 2000) facilitating a general increase in overland flows and sediment yields (Coelho et al., 2004). Fire induced water repellency (WR) has been suggested to be a process changing the hydrological response of burned sites (Doerr et al., 2000), although its role is somewhat controversial (Larsen et al., 2009), partially, as the direct effects of WR under field conditions have been difficult to isolate. The soil and vegetation respond in a complex manner to burning, and soil WR is only one of several processes affecting soil hydrology. Several factors, including fire severity, soil and vegetation type and soil moisture content affect the degree and the spatial distribution of WR.

Objectives

The objectives of this study were twofold. First we evaluated *in situ* the effects of burnt pine trees on generating spatial patterns of hydrophobicity. Second, we conducted a complementary controlled experiment in which we assessed the effects of burned pine needles on hydrophobicity and runoff generation.

Methodology

During July 2009 a 60 ha stand of *Pinus halepensis* located in the Byria forest in northern Israel was consumed by a forest fire. The forest, located in a mountainous region characterized by a Mediterranean climate, is dominated by afforested pine stands which were planted during the 1950s. The soils of the region are composed of reddish-brown clay loam forest soil, terra rossa on limestones and greyish light rendzina on the marl and chalk exposures.

In the field segment of the research we studied the spatio-temporal distribution of WR, generated by the fire event, in relation to tree stumps which burned during the fire. We measured in situ hydrophobicity one week, a month and five months following the fire event, using the WDPT test. Measurements were taken in two concentric circles around the burned trees (0.5 m, 1 m) at two soil depths, (surface and 5 cm depth), yielding 16 drop locations around each tree. At each drop locations, three drops were applied, and the measurements were carried out during three time periods after the fire (2, 15 and 28 weeks after the fire).

Additionally, we conducted a series of laboratory rainfall simulations in order to evaluate the effect of the fire in a controlled manner on the formation of WR. Four treatments were applied to 30x50 cm trays containing unburned soils collected from the Byria forest: (a) non-burned soil, (b) non-burned soil + pine needles, (c) burned soil without ash (300°C/15 min. after adding pine needles) and (d) burned soil with the residue ash (300°C/15 min. after adding pine needles). The trays were sub-divided with a 5x5 cm grid, and in the centre of each cell WR was assessed. The unsorted soil was dried at 60 °C for 24 h and sieved in portions of two aggregate sizes: 0-4 mm and 0-15 mm to estimate differences in hydrophobicity for coarse and finer aggregates.

To assess runoff response to the different treatments constant rainfall intensity of 32-33 mm/hr was simulated. The duration of the first run was 4.5 hours, and extended for the time period in order to achieve equilibrium in through flow. For the following runs simulation lasted only 2 hours, though the final infiltration rate was not attained. Following the first session the experimental trays were oven dried and the effects of a second rainstorm were studied.

Results

Soil hydrophobicity measurements are extremely variable over short distances. Additionally, time measurements are highly skewed due to the long infiltration time associated with the hydrophobicity. Therefore, in order stabilize the variance associated with the database we log-transformed the data and averaged the three WDPT measurements taken in each location. We conducted a 2X2X4 ANOVA to assess whether differences in WR can be attributed to the distance of measurement from the tree (0.5, 1m), the depth (soil surface, 5 cm below surface), the interaction between these two factors, and the time since the fire. The overall analysis yielded a significant model (F =4.48, p < 0.001, 239 d.f.). The distance from the tree in which measurements were applied was not found to be a significant explanatory variable, whereas the depth of the measurement was (F = 17.4, p < 0.001, 1 d.f.). Also, a significant that an interaction term exists between distance and depth, (F = 6.03, p = 0.015, 1 d.f.), indicating that WR responds differently to distance from the tree, in the two measured depths. At a distance of 0.5 m from the burned trees higher WR values were observed at a depth of 5 cm below soil surface while at a distance of 1 m higher WR values were observed at the surface (Table 1).

Table 1. mean WDPT 0.5 and 1 m from the burnt tress, at the soil surface and subsurface

	Depth	
Distance	surface	subsurface
0.5 meter	35.2	64.5
1 meter	25.2	17.5

Time since fire also appeared to be a significant factor affecting WR, although not monotonically. Two weeks after the fire highest WR values were observed (mean WDPT = 50.0 seconds) compared to a mean value of 11.7 in the control plots. WR values decreased 15 weeks after the fire event, but 28 weeks after the event mean WR values increased back almost to the 2-week post fire values (Table 2).

Table 2. mean WDPT 2, 15 and 28 weeks following the fire

weeks	after	Mean
fire		WDPT
2		50.05
15		21.68
28		47.26
control		11.74

WR- laboratory results

Following the combustion of app. 1 kg of pine needles, uniformly distributed over the soil surfaces of the experimental trays, between 11-16% of the tray's surface revealed slight-strong water repellency. Nonetheless, the spatial distribution of the hydrophobic patches appeared to be randomly distributed in the trays.

Runoff

For all treatments, burned and control, runoff starts in run 1 following accumulative amount of 13 to 16 mm of simulated precipitation. Three main clusters of hydrologic responses are evident (figures 1-2):

- A steady high level of runoff rates (25 28 mm h⁻¹) which was reached after 40 mm during which the runoff rate increased.
- Intermediate, runoff rates for all burned soils. After a period of very low runoff rates, the soils (at 35 mm) impeded drainage and runoff rates gradually increased.
- Low runoff rates for the samples with the needle cover, where on average runoff rates did not exceed 0.5 mm h⁻¹.

In the second run, transportation of water and sediments were observed following a lower amount (in comparison to the first run) of only 7 mm for all treatments. Nonetheless, for 4mm and 15mm *cover* (with ash) trays the runoff rates remained at the stable low level of 0.5 mm h-1, whilst runoff rates in the burned treatment increased to 20-25 mm h-1.

Infiltration

Non burnt soils exhibited the uppermost (bare soil) and the lowest (covered soils) fairly constant infiltration rates, whereas intermediate values were observed at the burnt samples no matter the aggregate size (4mm or 15mm) or the type cover of the soils. A decreasing trend was observed during the rainfall simulation as was also reflected in the complementary increase in runoff rates.

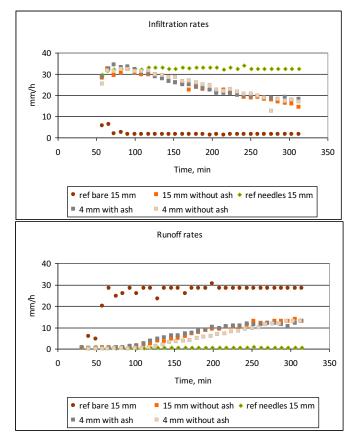


Figure 1-2. Infiltration and runoff rates of the various treatments, rainfall simulations RUN1

Conclusions

In the burnt *Pinus halepensis* forest, fire induced high water repellency values were found 6 months after the burning, even after several rainfall events. WhileWR is exceedingly spatially heterogeneous nonetheless, a complex but persistent pattern of hydrophobicity is observed. At a distance of 0.5 m from the trunks the higher WR values were observed at the subsurface, whereas at a distance of 1m higher degrees of WR developed at the surface. It has been established that maximum fire-generated hydrophobicity peaks at temperatures of approximately 170-200°C, and decreases at higher temperatures (Doerr et al. 2000). The large pine trees present in the study area provide an important fuel source for the fire, and most likely are consumed by higher temperature flames. A strong temperature gradient exists from the soil surface, which burns at temperatures of several hundred deg. Celsius, towards the deeper strata of the soil, resulting in the formation of WR layers in the subsurface. With increasing distances from the trees flame temperatures drop, leading to the migration of the hydrophobic soil layer upwards. Our study design may not have captured the maximum WR rates in the different location, but reflects the exiting patterns.

The attempt to create homogeneous hydrophobic layer under controlled laboratory conditions yielded a scattered pattern of repellency, similar to the patterns observed in the field. In contrast to expected, the bare soil and bare soil covered by needles exhibited the highest and lowest infiltration rates, respectively, while the burned soils demonstrated transitional intermediate rates. It is thus suggested that in some soils, WR might enhance infiltration capacity by creating a complex mosaic of runoff-generating and runoff-absorbing micro-patches. Rapid crusting of non-burned soil provided lateral connectivity

(=increased runoff) whilst the accumulation of litter and organic matter blanket the surface and enhance the vertical conductivity (=infiltration). Equilibrium runoff rates are independent of the degree of water repellency and converge to a constant runoff-infiltration ratio, presumably, due to the spatial structure of the connectivity among the WR patches. Repellency generating mechanisms may be fire-induced hydrophobicity coupled with physical soil sealing whereas the specific role of each of these components is utterly unpredictable.

References

- Certini, G., 2005. Effects of fire on properties of forest soils: a review. Oecologia 143, 1-1.
- Coelho C.O.A., Ferreira A.J.D., Boulet A.K. & Keizer J.J., 2004 Overland flow generation processes, erosion yields and solute loss following different intensity fires Quarterly. Journal of Engineering Geology and Hydrology, 37: 233-240.
- Doerr, S.H., Shakesby, R.S., Walsh, R.P.D., 2000. Soil water repellency: its characteristics, causes and hydro-geomorphological consequences. Earth Science Reviews, 51:33–65.
- Keeley, J.E., 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18(1): 116-126.
- Larsen, I.J. et al., 2009. Causes of Post-Fire Runoff and Erosion: Water Repellency, Cover, or Soil Sealing? Soil Sci Soc Am J, 73(4): 1393-1407.
- Robichaud, P.R., 2000. Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountain forests, USA. Journal of Hydrology, 231-232: 220-229.

Variability of the soil thermal properties after a prescribed fire

Carles M. Rubio^{a,b*}, Luís Outeiro^c, Francesc Ferrer^b, Xavier Úbeda^c

Key-words: thermal properties, water content, dual needle sensor, heat pulse, prescribed fire.

Introduction

Prescribed fires are used in Catalonia since 1999 as a tool, among others, for managing forested areas with large amounts of fuel in order to prevent high intensity fires. The Montgrí prescribed fire main objective was reduced the scrubland in an ancient and abandoned pine plantation. On the whole of the literature, many researchers have studied the variations on the chemical and physical properties on or above burnt soils, but there are other physical properties as are thermal properties that govern the heat flow transport inside the soil, and affect the aspects mentioned above. Thus, when biomass on or above a soil surface burns, a heat pulse penetrates the soil. The resulting high soil temperatures can alter soil properties and kill roots and soil microbes (Campbell et al., 1994)

Objectives

The purpose of this research is to explore the variability in the soil thermal properties (thermal conductivity $-\lambda$ -, thermal diffusivity $-\alpha$ - and volumetric specific heat $-\mathbf{C}\mathbf{v}$ -) after a prescribed fire for a natural and typical Mediterranean limestone soil.

Methodology

The study area is located in the north-western corner of the Iberian Peninsula in the coastal mountains of Catalonia, within the calcareous Montgrí massif. The vegetation of this area is typically Mediterranean, composed of Pinus plantation (*Pinus halepensis*) with shrubland of *Quercus coccifera*, *Cistus albidus*, *Rosmarinus officinalis* and *Pistacea lentiscus*. At the time of the fire, the temperature was 12.5°C with a air relative moisture about 60%. A set of 42 soil samples between surface and 5 cm depth was collected before and after the fire (UTM coordinates x: 514555 y: 4659552). The size of the plot is 18 x 4 meters, with a quadrangular structure (see Figure 1). Soil samples were taken, before, just after the fire and one year after the fire, from 42 points arranged in three transects and three crosses across the central transect.

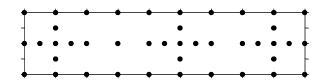


Figure 1. Sampling plot designed. Black points are sampling points.

^a Dpt. Agri-Food Engineering and Biotechnology, Technical University of Catalonia, 08860 Castelldefels (Spain);

^b LabFerrer. Environmental Biophysics and Soils Consulting Center, Ferran Catolic 3, 25200 Cervera (Spain);

^c Mediterranean Environmental Research Group (GRAM), Dept. of Physical Geography, Faculty of Geography, University of Barcelona, 08001 Barcelona (Spain).

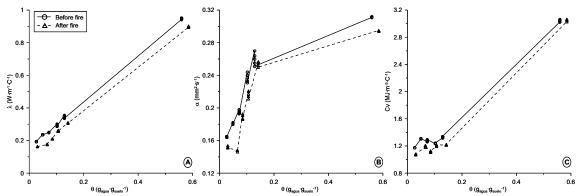
* carles.rubio@upc.edu

The fire temperature was measured with a laser thermometer. To characterize the soil chemical and physical variables were analyzed. Particle-size distribution was determined using the wetting sieve method for 2000 to 50 µm and a device by dispersion laser beams (Malvern Mastersizer/E) for particles smaller than 50 µm. Bulk density and porosity were determined from undisturbed sample volume. Calcium carbonate was determined based on Bernard calcimeter (Skiner et al., 1959), whereas the hygroscopic water content was determined by weight differences after drying the samples at 105°C during 24h. The pH and conductivity was analysed following extraction with pure water (1:2.5), and measured with a pH-meter and conductimeter (MAPA, 1986). The organic matter was measured according to the sulfochromic oxidation method (Walkley and Black, 1934). To determine the variability on the soil λ , α and Cv a dry-out (relationship between thermal properties and water content) curve was calculated (Rubio et al., 2008; 2009) using a compound sample on the whole of the set samples per moisture scenario (before and after fire). Dry-out curves on soil columns device were determined. Water content was calculated by dried sample in the oven. To determine the λ , α and Cv a SH-1 small dualneedle sensor was employed. The method is based on ASTM D-5334-08, which it is made using the method and analysis described by Shiozawa and Campbell (1990). The SH-1 thermal sensor combined with KD2-Pro reader-logger to obtain reliable and accuracy soil thermal values, allowing obtaining a continuous large soil thermal data-set.

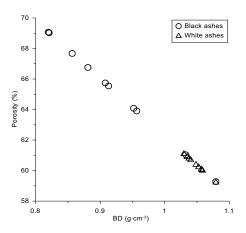
Results and conclusions

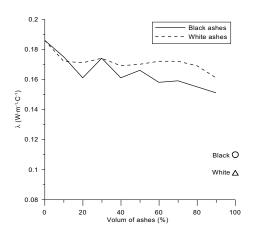
The soil from this plot in the Montgrí massif was classified according to USDA as loam textural class (SSS, 1998). Mean bulk density was around 1.1 g·cm⁻³. The chemical and physical properties values before and after prescribed fire were, respectively: mean total organic carbon content were about 14.7% and 17.2%. The mean electric conductivity increased. On the other hand, the pH of the media did not show any change, and hygroscopic water content was similar, as well.

Table 1. Physical and chemical characteristics of the studied soil before and after fire. OM = organic matter content; $CaCO_3 = calcium carbonate content$; EC = electrical conductivity and <math>Hw = hygroscopic water


	content.	
Variables	Before Fire	After Fire
Sand (%)	39.3	41.7
Silt (%)	35.1	32.4
Clay (%)	25.6	25.9
E.C. (μs·cm ⁻¹)	330	520
pН	7.0	7.1
O.M (%)	11.2	10.9
CaCO ₃ (%)	<3	<3
Hw (%)	1.8	1.9

Respect to soil thermal properties, all of them λ , α and Cv showed changes in their values. Indeed, in all cases the values of soil λ , α and Cv decreased after soil was burnt, especially the thermal conductivity values on the whole of the dry out curve. The critical point in the relationship $\theta(\lambda)$ always was stronger when soil samples were burnt than soil before prescribed fire, starting a critical reaction at 8% of water content for samples no fired, and 6% of water content for burnt samples. Probably, this situation could be explained by the incorporation of organic matter on the soil after of the prescribed fire, such that organic matter behaviour did not transmit well the heat pulse; among other


changes in the variables. Also, the mean temperature values for the soil samples before and after fire during the experiment were about 21.5°C and 18.5°C, respectively. The difference between both values did not affect the soil thermal properties measurements. Finally, a new experiment using the black and white ashes found out over the soil surface after fire was carried out. After the prescribed fire different quantity of ash patches were found out.


Figure 2. Dry-out curves of the relationship between **A**: thermal conductivity, **B**: thermal diffusivity, **C**: volumetric heat capacity and gravimetric water content.

Some of them were black ashes where the temperature of the fire was lower, and other patches were white ashes where the temperature of the fire was higher. The new test was used to find differences out between two types of ashes. The soil samples after fire was used to amend and to repack with different quantities of black ashes in volume percentage of soil (0, 10, 20, 30,..., 100 %), and maintaining a similar bulk density. The same test was performed with white ashes.

The relationship between bulk density and porosity using fired soil and different ashes (black and white) is showed in Figure 3. The linear relation between both variables means a well-compacted soil samples, and a decreasing pattern of the macro-porosity when bulk density increase, as well. In any case, two well-defined groups of samples were determined. The soil mixture with black ashes presented less bulk density values than soil with white ashes, which it presented a lower porosity.

Figure 3. Relationship between bulk density and porosity for a burnt soil mixture with two different types of ashes.

Figure 4. Effects of the different ashes on soil thermal conductivity for a burnt soil.

Figure 4, presents different volume percentages of two types of ashes mixture with soil after prescribed fire, where soil thermal conductivity was measured. The white ashes (dot line) always shown a higher thermal conductivity, meanwhile soil with black ashes was a lower λ . Probably, this fact would be attributed by the large organic matter content that was not burned during the prescribed fire (Abu-Hamdeh and Reeder, 2000), such that the organic matter content has a low thermal conductivity. Thus, when organic matter content increase exhibit a decrease of soil λ (Noborio and McInnes, 1993).

As a summary, we could say that thermal properties can present changes when the scenario changes, i.e. before and after a prescribed fire. Soil after fire always presented a less thermal conductivity, and therefore a less thermal diffusivity, and volumetric specific heat capacity. On the other hand, when the ashes provoked by the fire were incorporated to the soil, the white ashes, which are poorer in organic matter, provided a better heat flow transfer. Therefore, when soil is burned its thermal properties change, and a natural or antropic addition of ashes, especially black ashes, could make worse the conductance of the heat into the soil.

References

- Abu-Hamdeh, N.H.; Reeder, R.C. 2000. Soil thermal conductivity: *Effects of density, moisture, salt concentration and organic matter*. SSSA Jour., 64: 1285-1290
- Campbell, G.S.; Jungbauer, J.D.; Bidlake, W.R.; & Hungerford, R.D. 2000. *Predicting the efect of temperature on soil thermal conductivity*. Soil Science Vol. 158 n° 5: 307-313.
- Ministerio de Agricultura, Pesca y Alimentación 1986. *Métodos Oficiales de Análisis*. Tomo III. Ed. Secretaría General Técnica M.A.P.A., Madrid: 532 p.
- Noborio, K.; McInnes, K.J. 1993. *Thermal conductivity of salt affected soils*. SSSA Jour., 57:329-334
- Rubio, C.M.; Josa, R.; Villar, J.M.; Fonseca, F.; & Ferrer; F. 2008. *Development of laboratory analytical procedures to determine thermal properties in soils*. Proceed. of III International Meeting of the European Confederation of Soil Science Societies EUROSOIL, Vienna.
- Rubio, C.M.; Josa, R.; Cobos, D.R.; Campbell C.S.; & Ferrer, F. 2009. *Hysteretic behaviour of thermal properties on porous media*. Advances in Studies on Desertification, Editum Univ. Murcia: 603-606
- Shiozawa, S.; Campbell, G.S. 1990. *Soil thermal conductivity*. Remotes sensing Rev. 5: 301-310
- Skinner, S.I.M.; Halstead, R.L. & Brydon, J.E.; 1959. *Quantitative manometric determination of calcite and dolomite in soils and limestones*. Canadian J. Soil Science, no 39: 197-204
- Soil Survey Staff (1998): Keys to Soil Taxonomy. 8th Ed. US. Government Printing Office. Washington, DC, 541p.
- Walkley, A.; Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, no 37: 29-38

Do stakeholders know what happens to soil after forest fires? A case study in Central Portugal

Cristina Ribeiro^a, Celeste Coelho^a, Sandra Valente^{a*}, Teresa Carvalho^a, Elisabete Figueiredo^b

^a CESAM – Centro de Estudos do Ambiente e do Mar; Departamento de Ambiente e Ordenamento, Universidade de Aveiro, 3810-193 Aveiro;

^b GOVCOPP – Unidade de Investigação em Governança, Competitividade e Políticas Públicas, Secção Autónoma Ciências Sociais, Jurídicas e Políticas - Universidade de Aveiro, 3810-193 Aveiro * sandra.valente@ua.pt

Key-words: Forest fires.

Introduction

The integration of ecological and social aspects is essential to a successful post-fire management (Toman et al., 2008). Forest fires produce major impacts on soil, water and vegetation. Fires can produce on-site and off-site degradation impacts that result in property damage, ecosystems disruption and ultimately in loss of human life and injuries. If environmental impacts of fires are well known, the integration of this knowledge on forestry practices is far from being completely addressed. Ferreira et. al. (2008) demonstrate that fires affect negatively soil properties (infiltration rate, porosity, conductivity and storage capacity), organic matter and soil structure and also increase overland flow and erosion yields, mainly due to the destruction of ground cover and major changes in soil structure. The mitigation of these impacts demands a combined post-fire intervention including public authorities, forest owners and local stakeholders. Nevertheless there is a low public awareness about the importance of those interventions (Ribeiro et. al, 2010).

Fire management is a complex issue which comprises a set of different activities ranging from pre-fire up to post-fire interventions (Toman et. al, 2008). These interventions focus in three different stages of action, namely: i) prevention of large fires; ii) mitigation of fire impacts; and iii) burned areas rehabilitation. At all these stages, interventions require trust and confidence between all the stakeholders. This is even more necessary in post-fire intervention, where public opinion is affected by the occurrence of the event. Olsen and Schindler (2010) referred the need of establishing a long term commitment between organizations and citizens as an essential tool to promote post-fire management acceptance. The knowledge about the community where post-fire interventions takes place is also a very important aspect, since it can influence the decision-making process about management. Past experience showed that more active communities are better prepared to respond, plan and collaborate with agencies on post-fire intervention (Steelman et. al, 2004 in Ryan and Hamim, 2008).

Studies developed in burned forest areas demonstrated that the success of the implementation of post-fire techniques relies on the social capital and on the involvement of citizens in post-fire planning and management (Olsen and Schindler, 2010). Since post-fire intervention is a complex process, it should be integrated in the management process, including prevention actions, such as reduction of fuel to mitigate fire risk (Toman et. al, 2008). Financial and technical support to communities is also of paramount relevance to promote pos-fire interventions.

Sustainable Forest Management (SFM) demands the involvement of communities, forest agencies, forest entreprisis and public agencies (Leskinen, 2004; Dhubháin et. al, 2008) throughout the entire process. In fact, public participatory approaches can only be successful if a social learning process is embraced since the beginning (Leskinen, 2004). The participatory planning aims to improve decisions about forest management, reduce conflicts of interest and achieve consensus about the goals and fundamental actions to SFM (Ryan and Hamim, 2008). Another important aspect is, as mentioned, to develop trust between public entities, forest organizations and citizens (Olsen and Shindler, 2010). This is extremely important to change perceptions about the role and actions of each stakeholder as well as to develop partnerships and joint work towards SFM. Ryan and Hamim (2008) highlight that the public perception about the institutional framework of natural resources management depends on pre-existent confidence on the entities and on past collaboration experiences. However, other aspects such as socio demographic characteristics and individual and social perceptions about environment are also important variables influencing those perceptions.

Objectives

The main aim of this communication is to discuss forest owners and managers' social perceptions regarding the effects of fires on soil and the need of post-fire intervention to mitigate soil degradation. This study was carried out under the scope of RECOVER project which aims to develop immediate soil management strategies for recovery after forest fires. Under this project a social survey was undertaken in Pessegueiro do Vouga parish representing a typical forest landscape of Central Portugal. This area is integrated in the municipality of Sever do Vouga in which the main land use is forest, mostly occupied by *Pinus pinaster* and, more recently, *Eucalyptus globulus*. The area has been recurrently affected by intense fires. Forest is mainly composed by small-holdings and it is a complementary, even residual, activity regarding family income. Together with the above mentioned aspects, this circumstance is reflected in low levels of intervention on forest.

Methodology

The data collection, using a semi-structured interview, was developed in two phases. In the first phase, the interview was applied to the forest owners living at the study area. A sample of 28 respondents representing 15% of the total forest owners within the parish, was used considering their distribution by age groups, by size of the forest holdings and by the dominant forest species. In the second phase the interview was applied to local entities, such as the local authority of Pessegueiro do Vouga parish, the City Council of Sever do Vouga, the Technical Forest Office of Sever do Vouga, the Agricultural Cooperative of Sanfins, the head of Sever do Vouga Fire Brigade, and a forest enterprise - Portucel Soporcel. The aim of this methodology was to collect data on the possible different visions about forest fires and forest management, as well as to obtain information in order to compare intervention and decision making and management perspectives.

The respondents were asked questions on the environment impacts of forest fires, in particular soil changes. Questions related to post fire interventions to remediate fire effects on the soil, the techniques available, their knowledge on those recovery actions and their acceptance and the implementation of those techniques in their land, were also considered.

Results and conclusions

Despite the recognition of the relevance of social and institutional aspects regarding social and economic effects of forest fires, environmental damages of large fires are also very important and demand particular efforts from the forest owners producers. Several studies have demonstrated some environmental benefits of prescribed burning, namely to vegetation and biodiversity such as reducing organic matter accumulation and increasing landscape diversity (Ferreira et. al, 2009).

This communication aims to discuss whether local stakeholders related with forest management are aware of fire effects on soil. In fact, changes on soil structure and soil quality were mentioned both by forest owners and local entities. These changes are mostly linked with erosion, soil permeability and fertility. Respondents recognized that soil degradation after fire is observed in different ways: such as small rills, loss of topsoil and also the appearance of a drier horizon or a stony soil. Most respondents also perceived changes on soil infiltration after fire, by the increase of water runoff. However, two respondents mentioned the opposite effect. Finally, the increase of soil fertility after a fire was also perceived as a beneficial consequence due to the incorporation of ashes on the soil.

More than 50% of forest owners were affected by fires in their own properties. The forest owners' main interventions after fire are not directly related with the mitigation of fire effects on soil. These interventions are mainly linked with the removal of burned wood and litter and the planting of new trees (Ribeiro et. al, 2010). The forest owners absenteeism, lack of interest and low investment on forestry was also mentioned by the local entities as a constraint to forest management.

Concerning the implementation of specific post-fire management techniques, the results show that forest owners have no knowledge about their existence. However some respondents referred practices that can mitigate soil erosion, such as cutting the branches which cover the soil after fire. Mulching, application of barriers, channels cleaning and paths treatments are examples of post-fire techniques largely used in the USA, Canada and Australia burned areas to mitigate immediate soil erosion (Robichaud et. al, 2000; Robichaud and Brown, 2005). Some respondents from local entities recognized some of these techniques. The implementation of these techniques is almost inexistent, except some on-going research experiences (Coelho et. al, in this conference) and public interventions. In fact, individual intervention on forest is focused on production areas, aiming to have some economic profit from timber production. The implementation of these measures demands a long-term vision, which does not exist in the current Portuguese forest management framework.

This study also addressed the predisposition of forest owners to increase their knowledge about post-fire intervention. Most respondents demonstrated interest to obtain information through practical demonstrations and training on the field. In parallel, the entities interviewed demonstrated willingness to collaborate in these activities, as well as in promoting local partnerships to achieve such purpose.

The literature review highlights the relevance of trust and cooperation between entities, stakeholders and general citizens. The acceptance and implementation of post-fire techniques to reduce soil erosion can only be possible if this involvement is achieved. The empirical evidence shows the existence of interest and willingness to cooperate from both categories of respondents interviewed.

In brief, to the question present in the title - do stakeholders know what happens to soil after forest fires? – and considering the evidence provided by the study, a very accurate

answer would be: yes, they do. But due to lack of knowledge of mitigation techniques available and cooperation, this it is not reflected in their interventions.

Acknowledgment

The research described in this paper was developed under several projects, namely on the framework of RECOVER project (PTDC/AGR-AAM/73350/2006) funded by Fundação para a Ciência e para a Tecnologia (FCT), and RAA project, funded by the Permanent Forest Fund (IFADAP/INGA).

References

- Coelho, C., Prats, S., Carvalho, T., Pinheiro, A., Ferreira, A., Soares J. 2011. *Effectiveness of two mulch treatments controlling soil erosion and water conservation*. Proceedings book of the International Meeting of Fire Effects on Soil Properties (in prep.). 15-19 March of 2011 - Guimarães, Portugal
- Coelho, C., Valente, S., Ferreira, A., Soares, J., Carvalho, T., Ribeiro, C. 2010. *Forest Fire Versus desertification in Portugal*. International Conference on Combating Land Degradation in Agricultural Areas (LANDCON 1010). October 11-15, 2010. Xi'an, China.
- Dhubháin, Á.N., Fléchard, M.C., Moloney, R., O'Connor, D. 2008. *Stakeholders'* perceptions of forestry in rural areas—Two case studies in Ireland. Land Use Policy, 7, pp. 9.
- Ferreira A.J.D., Silva J.S., Coelho C.O.A., Boulet A.K., Keizer J.J., 2009 *The Portuguese Experience in Managing Fire Effects In: Fire Effects on soils and restoration strategies*. Cérda A. e Robichaud P. (eds) Land Reconstruction and Management. Vol 5. 401-424pp
- Ferreira, A., Ritsema, C., Coelho, C., Boulet, AK., Keizer, J. 2008. Soil and water degradation processes in burned areas: Lessons learned from a nested approach. Catena, 74, 273-285.
- Leskinen, L.A. 2004. Purposes and challenges of public participation in regional and local forestry in Finland. Forest Policy and Economics, 6, 605-618.
- Olsen, C.S, and Shindler, B.A. 2010. *Trust, acceptance, and citizen–agency interactions after large fires: influences on planning processes*. International Journal of Wildland Fire 19: 137-147.
- Ribeiro, C., Figueiredo, E., Coelho, C., Valente, S., Carvalho, T. 2010. *Uma árvore não faz a floresta? Análise da percepção dos proprietários florestais face aos incêndios e sua actuação*. Em: E. Figueiredo, E. Kastenholz, M.C. Eusébio, M.C. Gomes, M.J. Carneiro, P. Batista, S. Valente (Org.). IV Congresso de Estudos Rurais Mundos Rurais em Portugal: Múltiplos Olhares, Múltiplos Futuros. Universidade de Aveiro, Aveiro, 4 a 6 de Fevereiro, pp. 172-173.
- Robichaud, Peter R.; Beyers, Jan L.; Neary, Daniel G. (2000). *Evaluating the effectiveness of postfire rehabilitation treatments*. Gen. Tech. Rep. RMRS-GTR-63. Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 85 p.
- Robichaud, P. R.; Brown, R. E. (2005). *Postfire Rehabilitation Treatments: Are We Learning What Works?* Proceedings of the 2005 Watershed Management Conference. July 19-22, Williamsburg, VA. 13 p.
- Toman, E.L.; Shindler, B.; Absher, J.; McCaffrey, S. 2008. *Postfire Communications: The Influence of site visits on local Support.* Journal of forestry 25-30

Comparison of the effects of post-fire soil stabilization treatments for soil erosion control on selected soil properties in Galicia (NW Spain)

M.T. Fontúrbel^{a*}, M. Díaz-Raviña^b, J.A.Vega^a, S.J. González-Prieto^b, C. Fernández^a, A. Martín^b, E. Jiménez^a, A. Barreiro^b, T. Carballas^b

^aCentro de Investigación Forestal-Lourizán, Consellería de Medio Rural. Xunta de Galicia. Apdo 127, 36080 Pontevedra (Spain);

^bDepartamento de Bioquímica del Suelo, Instituto de Investigaciones Agrobiológicas de Galicia (CSIC), Apartado 122, 15780 Santiago de Compostela (Spain) * maria.teresa.fonturbel.lliteras@xunta.es

Key-words: Post-fire; Mulching; Seeding; Soil erosion; Soil properties.

Introduction

Wildfires are one of the main disturbance factors in Atlantic and Mediterranean forests from Spain. The first rainfall events after fires, especially if they are of high intensity, can cause an intense erosive action and/or important soil nutrient losses and changes in soil properties affecting the forest ecosystem recovery (Díaz-Fierros et al., 1990; Soto and Díaz-Fierros, 1998; Vega et al., 2005; Fernández et al., 2005). Soil degradation caused by fires can also affect negatively soil microorganisms (Certini, 2005; Carballas et al., 2009); thus, in burnt areas, there is the urgent need for post-fire land management practices in order to re-establish the microbial population and hence improve soil quality for forest restoration. However, despite of post-fire stabilization treatments (e.g. mulching, seeding, erosion barriers) applied to hill-slopes are recommended in order to minimize the fire effects (Bautista et al., 1996; Badía and Martí, 2000; Villar et al., 2004; Robichaud, 2009; Bautista et al., 2009), the impact of different post-fire rehabilitation techniques on soil microbial communities has not been evaluated in this temperate humid zone.

Objectives

This study has been conducted in an experimentally burned shrubland ecosystem in the N.W. of Spain, in order to evaluate the effect of experimental fires and two post-fire stabilization treatments (mulching and seeding) on: a) soil microorganisms (mass, activity, diversity); and b) to evaluate the efficacy of different biochemical properties as soil quality bioindicators.

Methodology

The study was conducted in an experimental field located at an altitude of 660 a.s.l., in Cabalar (A Estrada, 42° 38' 58'' N; 8° 29' 31" W; N.W. Spain) with temperate and rainy climate. The soil, developed over a parent material of granite and with a slope of 38-54%, has a vegetation representative of many oceanic climate shrublands in Galicia dominated by gorse *Ulex europaeus* L. and some *Pteridium aquilinum* (L.) Kuhn., *Ulex gallii* Planch., *Daboecia cantabrica* (Huds.) K. Koch and *Pseudoarrenhaterum longifolium* Rouy, with a height of 123 cm on average and 100% of ground cover.

Nineteen experimental plots (30 x 10 m each) were established and a fuel inventory was carried out. Fifteen of these plots were burned and four unburned plots were used as control unburned soils. In June 2009, the shrub was cut and laid down directly on the ground to favour litter and duff combustion. The fuel inventories were repeated just after burning. Just before burning, samples from different fuel portions and mineral soil were

randomly taken from ten points per plot to determine moisture content.

The fires were conducted with the backfire technique. The rates of fire spread and the flame length were recorded. Soil temperatures at soil mineral surface and 2 cm of depth during the fires were monitored with ten thermocouples K type per plot. The meteorological conditions (air temperature, relative humidity and wind direction and velocity) were recorded during the fires. The percentage of surface covered by litter and duff and bare soil were also measured along the same transect. The litter depth was measured using metal pins placed flush with the litter surface at 1 m intervals along the transect. The change in the litter thickness immediately after the fire was determined.

After the fire the following soil treatments were considered using 4 replicates by treatment: unburnt soil as a control; b) burnt soil; c) burnt soil with 232 g m⁻² of straw mulch; d) burnt soil with a mixture of seeds at a rate of 45 g m⁻² (*Lolium multiflorum*, 35%; *Trifolium repens*, 25%; *Dactylis glomerata*, 20%; *Festuca arundinacea*, 10%; *Festuca rubra*, 5%; *Agrotis tenuis*, 5%). To accurately evaluate the effectiveness of these techniques, the evolution of several biochemical and biological (microbial biomass, enzymatic activities of C, N and P cycles, and microbial potential substrate utilization capacity) properties were quantified in the different plots.

The microbial biomass C was determined using the fumigation-extraction method (Díaz-Raviña et al., 1992). The β -glucosidase, urease and phosphatase activities were assayed as reported by Eivazi and Tabatabai (1988), Kandeler and Geber (1988) and Trasar-Cepeda et al. (1985), respectively. The microbial community was characterized by the community-level carbon source utilization (Biolog Ecoplates) (Garland and Mills, 1991) by means of the average colour development (AWCD), based on C substrate utilization in each well of microplate, recorded as optical density (OD) at 590 nm at 24-h intervals and plate readings after 72 h of incubation. The microbial richness (MR) was expressed as the number of oxidized C substrates in the microplates. The Shannon-Weaver index (H), which determines the substrate diversity, was calculated as: $H = -\sum pi$ (In pi), where pi is the ratio of the activity on each substrate (ODi) to the sum of the activities on all substrates ($\sum ODi$).

In order to evaluate the effect of the different treatments on the biochemical and microbiological properties analyzed, the values of three field replicates with the same treatment were averaged (mean±SD). The data were analyzed by a two way analysis of variance to determine the percentage of the variation attributable to the treatment and time factors. For the same sampling time, the data were analyzed by a standard analysis of variance and, in the cases of significant F statistics, the Tukey's minimum significant difference test was used to separate the means.

Results and conclusions

The results show that the experimental fires progressed slowly, producing a high surface fuel consumption, while duff was irregularly consumed (Vega et al., 2010). The temperatures recorded in the mineral soil during the fire indicated a moderate soil heating on the soil surface, without heat penetration into the soil (Vega et al., 2010).

The evolution of the soil biochemical and microbiological properties in the 0-5 cm mineral soil layer (Table 1) shows that the experimental fires caused an initial significant decrease in microbial C and urease activity and increases of soil pH and in several microbial parameters measured by means of the community-level physiological profile (average colour development, microbial richness and Shannon-Weaver index). These

effects were aminorated with time; thus, after 6 months only a significant effect was still observed on the microbial C and phosphatase activity values.

In general, sampling time was the factor that explained most of the variance (35-60%) whereas the treatment explained only 9-22% of variance and the interaction between these factors explained a further 16-33% of the variance of glucosidase and AWCD data. The data clearly indicated that although the experimental fires combined or not with some rehabilitation technique (straw mulching and seeding) had an influence on soil microorganisms, this influence was lower than that showed by the sampling time, which seems to indicate that these fires were not of importance as disturbance agents for microorganisms of these ecosystems from the temperate humid zone. Likewise no significant changes were observed in most physico-chemical properties analyzed (Martin et al., 2010) as consequence of the same fires. These slight fire effects are probably associated to the low temperatures reached by soil during these fires (Vega et al., 2010).

Table 1. Evolution of soil biochemical and microbiological properties over six months in the different soil treatments. Treatments: C, unburnt soil; B, burnt soil; B+M, burnt soil plus straw addition; B+S, burnt soil plus seeding.

Soil property	Time			Treatme	ent				
	(days)	С		В		B+M		B+S	
Microbial biomass C	0	2158 ±206	a	1641 ±227	a	1709 ±318	a	1726 ±266	a
(mg kg ⁻¹)	1	1809 ± 313	a	1188 ± 176	c	1571 ±46	ab	1426 ± 204	bc
	90	1577 ± 186	a	1267 ± 326	ab	1076 ± 137	b	1175 ± 185	ab
	180	2251 ± 201	a	1874 ± 131	b	1967 ± 207	ab	1848 ± 155	b
Glucosidase	0	95.3 ± 7.8	ab	108.8 ± 6.0	ab	112.7 ± 14.4	a	89.2 ± 12.2	b
$(\mu g p - nitrophenol g^{-1} h^{-1})$	1	101.5 ± 13.7	a	90.3 ± 8.4	a	96.1 ± 9.3	a	80.8 ± 15.3	a
	90	149.6 ± 17.2	a	95.1 ± 18.5	b	100.4 ± 30.0	b	86.7 ± 28.0	b
	180	105.3 ± 8.9	a	104.4 ± 19.3	a	85.7 ± 21.3	a	110.2 ± 18.3	a
Urease	0	105.1 ± 14.7	a	84.7 ± 17.6	a	86.7 ± 14.4	a	91.7 ± 8.2	a
$(\mu g NH_4^+ g^{-1} h^{-1})$	1	93.7 ± 13.7	a	61.4 ± 8.2	b	63.6 ± 13.2	b	62 ± 10.3	b
	90	57.2 ± 9.8	a	39.1 ± 10.0	b	30.8 ± 3.2	b	38.4 ± 3.6	b
	180	96.7 ± 15.6	a	70.6 ± 12.6	a	70.5 ± 8.7	a	68.3 ± 19.2	a
Phosphatase	0	$1042\ \pm 184$	a	929 ± 120	a	795 ± 95	a	1015 ± 52	a
$(\mu g p - nitrophenol g^{-1} h^{-1})$	1	945 ±111	a	592 ±305	a	657 ± 181	a	851 ±221	a
	90	583 ±90	a	451 ±115	a	439 ±94	a	512 ±98	a
	180	1068 ± 96	a	800 ± 53	b	827 ± 43.5	b	857 ± 125	b
Average colour development (AWCD)	0	0.700 ± 0.026	a	0.744 ± 0.289	a	0.535 ± 0.24	a	0.742 ± 0.149	a
	1	0.680 ± 0.099	b	1.062 ± 0.207	a	0.923 ± 0.11	ab	0.936 ± 0.150	ab
	90	0.831 ± 0.046	b	1.028 ± 0.123	ab	1.230 ± 0.22	a	1.055 ± 0.184	ab
	180	0.834 ± 0.087	a	0.899 ± 0.089	a	0.962 ± 0.06	a	1.005 ± 0.135	a
Microbial richness (MR)	0	21.8 ± 1.9	a	20.3 ± 5.0	a	19.5 ± 3.4	a	21.8 ± 3.2	a
	1	20.8 ± 1.1	b	25.3 ± 1.5	a	24.3 ± 2.1	a	24.3 ± 2.1	a
	90	23.3 ± 0.9	b	26.8 ± 1.7	a	26.5 ± 1.3	a	26.3 ± 2.1	a
	180	23.0 ± 1.4	a	24.5 ± 1.7	a	24.8 ± 1.3	a	25.8 ± 2.1	a
Shannon-Weaver index (H)	0	2.91 ± 0.07	a	2.84 ± 0.21	a	2.83 ± 0.17	a	2.92 ± 0.17	a
	1	2.87 ± 0.04	b	3.03 ± 0.02	a	3.02 ± 0.05	a	3.03 ± 0.09	a
	90	2.97 ± 0.05	b	3.10 ± 0.09	a	3.15 ± 0.06	a	3.11 ± 0.07	a
	180	2.99 ± 0.06	a	3.06 ± 0.04	a	3.08 ± 0.07	a	3.11 ± 0.08	a

For same sampling time different letters denote significant differences (P < 0.05)

References

Badía, D., Martí, C. 2000. Seeding and mulching treatments as conservation measures of two burned soils in the central Ebro valley, NE Spain. *Arid Soil Research Rehabilitation* 13: 219-232.

Bautista, S., Bellot, J., Vallejo, V.R. 1996. Mulching treatment for postfire soil conservation in a semiarid ecosistem. *Arid Soil Research Rehabilitation* 10: 235-242.

- Bautista, S., Robichaud, P. R., Bladé, C. 2009. Post-fire mulching. In: *Fire effects on soils and restoration strategies* (A. Cerdá, P. Robichaud, eds.), Science Publishers, p. 353-372.
- Carballas, T., Martín, A., Díaz-Raviña, M. 2009. Efecto de los incendios forestales sobre los suelos de Galicia. In: *Efecto de los incendios forestales sobre los suelos en España* (Artemi Cerdá, Jorge Mataix-Solera, eds.). Cátedra Divulgación de la Ciencia. Universitat de València, Cap. 3.6, p. 269-301.
- Certini, G. 2005. Effects of fire on properties of forest soils: a review. *Oecologie* 143: 1-10.
- Díaz-Fierros, F., Benito, E., Vega, J.A., Castelao, A., Soto, B., Pérez, R., Taboada, T. 1990. Solute loss and soil erosion in burnt soil from Galicia (NW Spain). In: *Fire in ecosystems dynamics. Mediterranean and Northern Perspectives* (F.G. Goldammer, M.J. Jenkins, eds.), SPB Goldammer, The Hague, p. 103-106.
- Díaz-Raviña, M., Prieto, A., Acea, M.J., Carballas, T. 1992. Fumigation-extraction method to estimate microbial biomass in heated soils. *Soil Biology and Biochemistry* 24: 259-264.
- Eivazi, F., Tabatabai, M.A. 1988. Glucosidases and galactosidases in soils. *Soil Biology and Biochemistry* 20: 601-606.
- Fernández, C., Vega, J.A., Fonturbel, T., Pérez-Gorostiaga, P., Jiménez, E., Madrigal, J. 2007. Effects of wildfire, salvage lodding and slash treatments on soil degradation. *Land Degradation and Development* 16: 37-51.
- Garland, J.L., Mills, A.L. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. *Applied and Environmental Microbiology* 57: 2351–2359.
- Kandeler, E., Gerber, H. 1988. Short-term assay of urease activity using colorimetric determination of ammonium. *Biology and Fertility of Soils* 6: 68-72.
- Martín, A.; Díaz-Raviña, M.; Carballas, T.; Vega, J.A.; Jiménez, E.; Fonturbel, T. 2010. Caracterización físico-química de suelo quemado con diferentes tratamientos de rehabilitación. . Actas Jornadas Internacionales sobre Investigación y Gestión para la protección del suelo y restauración de los ecosistemas forestales afectados por incendios forestales. FUEGORED 2010.
- Robichaud, P.R. 2009. Post-fire stabilization and rehabilitation. In: *Fire effects on soils and restoration strategies. Vol. 5 Land reconstruction and management* (A. Cerdá, P.R. Robichaud, eds.). Science Publishers, Enfield, USA, p. 299-320.
- Soto, B., Díaz-Fierros, F. 1998. Runoff and soil erosion from areas of burnt scrub: comparison of experimental results with those predicted by WEPP model. *Catena* 31: 257-270.
- Trasar-Cepeda, M.C., Gil Sotres, F., Guitián Ojea, F. 1985. Determinación de la actividad de la fosfatasa en suelos gallegos. Precisiones al método de Saratchandra y Perrott. *Anales de Edafología y Agrobiología* 44: 987-991.
- Vega, J.A., Fernández, C., Fonturbel, T. 2005. Throughfall, runoff and soil erosion alter prescribed burning in gorse shrubland in Galicia (NW Spain). *Land Degradation and Development* 16: 37-51.
- Vega, J.A., Fernández, C., Fontúrbel, T., Jiménez, E., Díaz-Raviña, M., Martín, A., Carballas, T. 2010. Comparación de tratamientos de mulching y siembra de herbáceas para control de erosión tras fuego experimental en matorral de Galicia. Actas FUEGORED, Santiago de Compostela.

Villar, M.C., Petrikova, V., Díaz-Raviña, M., Carballas, T. 2004. Changes in soil microbial biomass and aggregate stability following burning and soil rehabilitation. *Geoderma* 122: 73-82.

Acknowledgements

This study was supported by the Consellería de Medio Rural de la Xunta de Galicia (08MRU002400PR).

Rock gabion, rock armoring, and culvert treatments contributing to and reducing erosion during post-fire flooding – Schultz Fire 2010

Daniel G. Neary^{a*}, Karen A. Koestner^a, Ann Youberg^b

^a USDA Forest Service, Rocky Mountain Research Station, 2500 Pine Knoll Drive, Flagstaff, Arizona 86001 (USA);

Key-words: Gabions; culverts; rock armoring; erosion; wildfire.

Introduction

The Schultz Fire burned 6,100 ha on the eastern slopes of the San Francisco Peaks of the Coconino National Forest in north-central Arizona. The fire burned between June 20th and 30th, 2010, across moderate to very steep ponderosa pine and mixed conifer watersheds. One of the Burned Area Emergency Response treatments on Coconino National Forest lands consisted of the placement of large rock armoring on targeted fill slopes of a high elevation road that carries a water pipeline supplying water to the city of Flagstaff, Arizona (Robichaud et al. 2000). Other Forest treatments consisted of culvert removal at 30 channel crossings on another Forest road that transects the Schultz Fire at a lower elevation. On urbanized private lands below the Fire, no road culverts were initially removed or upgraded. A major, unarmored drainage ditch was fitted with sixteen rock-filled wire cage gabions to reduce channel incision in unconsolidated alluvial fan sediments. Rainfall beginning in mid-July after the wildfire produced a typical series of floods that caused substantial soil erosion, debris flows, and channel incision (Neary et al. 2008).

Objectives

This paper examines the effectiveness of gabion, armoring, and culvert treatments for erosion control after the Schultz Fire and discusses the reasons for failure or success. An objective is to also make recommendations for future use of these erosion control techniques.

Methodology

Rock Armoring: This treatment was done on the Waterline Road after the fire at 17 drainage crossings (Figure 1A). It consisted of placing 294 m³ of large rocks (30-60 cm diameter) below the road on potential water flow paths. The downhill end of each rock armoring array was anchored to the ground by large logs.

Culvert Treatments: Culverts were removed at 30 locations along the Schultz Pass Road (Forest Road 420) on Coconino National Forest lands (Figure 2A.). Low water crossings were then graded to allow vehicle passage. A number of culverts (30) on private land were selected for comparison. They ranged in diameter from 30 to 100 cm and were left in place according to individual land owner dictates.

Rock Gabions: After the flood of July 20th, 18 rock-wire gabions were placed at roughly equal distances in an unlined ditch along Campbell Avenue in the Timberline

^b Arizona Geological Survey, 416 Congress Street, Suite 100, Tucson, Arizona 85701 (USA).

*dneary@fs.fed.us

neighborhood. The individual gabion cages were about 60 x 60 cm in cross-section and 2-3 m long. The drainage ditch was rated at a capacity of 14.2 m³ sec⁻¹. The ditch was constructed on a straight fall line down the alluvial fan with a gradient of 4%. Since utility lines were buried in soil on both sides of the ditch, the wing walls of the gabions were not adequately keyed into the ditch slopes. This limitation had a major impact on the performance of the gabions during a rainfall and flood flow event of July 30th. The functioning of the gabions was evaluated and photo-documented during the actual flood flow.

Results and Conclusions

Rock Armoring: The large rock armoring on the slopes below the upper elevation Waterline Road failed completely in the storm of July 20th (Figure 1B). All of it was washed away by the high water flows and deep gully incisions in that storm and subsequent storms. At most of the armored crossings, debris flows and runoff carrying much larger rocks than the armoring rocks (30 – 60 cm diameter) crossed the road and washed out the armored sections. The erosion control treatments were simply overwhelmed by the magnitude of the flood events. The size of the armoring pad rocks was too small to process high velocity flows coming off steep, 100%+ slopes. Flood flows lower on the mountain were powerful enough to knock over 13 Mg Jersey barriers. Larger rocks (1+ m in diameter) should have been used but there was probably not enough time to organize delivery of resources of that size. This erosion control technique contributed to the post-fire erosion and did nothing to reduce it. Therefore, this treatment is not recommended in steep terrain unless adequately sized rock material can be obtained.

Figure 1. Rock armoring along the Waterline Road before (A) and after (B) the July 20th flood.

Culvert Removal: The low-water channel crossings on Forest Road 420 where culverts were removed functioned satisfactorily (Table 1) and prevented addition of road fill and fill-breach surges to the stormflow (Figure 2A). Some minor maintenance is required to keep the crossings trafficable after floods. Road culverts in the urban area were grossly under capacity and most were either buried, breached, or bypassed, increasing in the amount of sediment transported to lower elevations (Table 1, Figure 2B). In some instances, home owners replaced storm-damaged or poorly functioning culverts with larger diameter culverts only to have the same failure rate. Of the two that were successful in the private ownership area, one was designed as a concrete surfaced low-

water crossing. The other had a set of four 1-m wide culverts located in a depression that followed the gradient of the alluvial fan. This set of culverts was actually installed by Coconino County on a county road. The majority of the roads in the Timberline residential area are private, thus culvert sizing has not been standardized. Culvert removal on National Forest lands facilitated passage of flood flows from the upper slopes of the San Francisco Peaks. This treatment did not contribute to increased erosion and actually reduced potential erosion and flooding by eliminating the risk of road fill breaches. The culvert removal and low-water channel crossings treatment is recommended as a relatively inexpensive and effective means of coping with post-fire flood flows. Culverts on some private land would have performed better had been larger in diameter. However, others would have failed regardless of size due to excessive rock and woody debris. The best approach in most cases is culvert removal and construction of low-water crossings. Maintenance needs to be carried out on an as-needed basis after stromflow.

Table 1. Comparison of failure rates for culvert treatments, Schultz Fire 2010, Coconino County, Arizona.

Ownership	Location	Treatment	# of Culverts	Failure Rate
National Forest	FR 420	Culvert Removal	30	0%
Private	Timberline	Left In Place	30	93%

Figure 2. An example of (A) successful culvert removal and construction of low-water crossings on National Forest lands; and (B) a bypassed and breached, undersized culvert on private property, Schultz Fire, Arizona.

Rock Gabions: The gabions in the drainage ditch functioned for a short time but were then bypassed by flood flows, causing significant channel widening and transport of additional sediment (Figure 3). All of the gabions accumulated sediment on their upstream sides early in the storm event and then failed. Left side failures accounted for 56% (10). Only 11% (2) of the gabion failures occurred on the right side of the channel where the construction machinery was located (Figure 3A). An additional 33% (6) of the failures involved both sides of the gabion. The single factor contributing to the gabion failure was incomplete extension of the gabion wings into the left and right banks of the drainage ditch. The presence of phone, electricity, gas, water, and cable TV lines on both sides of the ditch restricted placement of the gabions.

Figure 3. Gabion construction along Campbell Avenue prior to the July 30, 2010, storm (A); and results during the storm event showing gabion failure and channel widening (B).

Figure 3B shows a phone line (black pipe downstream of a junction box) that was exposed by lateral widening of the Campbell ditch at a gabion. All the gabions had to be removed after the July 20th storm to reduce further channel widening and to make room for channel armoring with concrete. One section of the channel surface that was armored with concrete functioned successfully during the July 20th event. Gabion wire baskets can be used to reduce erosion from post-fire flood flows, but they need to be constructed correctly. Proper construction must include adequate gabion wing walls securely tied in 2-3 m beyond the channel slope breaks to prevent water from working around the wings. The center of the gabion should be at mid-channel and the lowest part of the structure. Channel flow velocities must also be considered. The Campbell Avenue channel has a slope of 4% so the average flow velocity was over 1 m s⁻¹ with enough velocity to maintain hyperconcentrated streamflow. High flow velocities and the potential for structure failure were reasons why the Burned Area Emergency Response team (Robichaud et al. 2000) decided to not use channel structures like gabions above the Timberline area.

References

Neary, D.G.; Ryan, K.C.; DeBano, L.F. (Editors) 2005 (Revised 2008). *Fire effects on soil and water*. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-42, Volume 4: Fort Collins, CO. 250 p.

Robichaud, P.R.; Beyers, J.L.; Neary, D.G. 2000. Evaluating the effectiveness of post-fire rehabilitation treatments. USDA Forest Service General Technical Report RMRS-GTR-63. Fort Collins, CO. 85 p.

Schiechtl, H.M.; Stern, R. 1997. Water bioengineering techniques: for watercourse, bank and shoreline protection. John Wiley & Sons, New York. 193 p.

Effectiveness of two mulch treatments controlling soil erosion and water conservation

Celeste Coelho^{a*}, Sérgio Prats^a, Teresa Carvalho^a, Alexandra Pinheiro^a, António Ferreira^b, João Soares^a

* coelho@ua.pt

Key-words: Forest fires; Mulch; Soil Conservation.

Introduction

After a forest fire landscapes become altered and more susceptible to undesirable effects in ecosystems like the loss of sediments and surface runoff, but susceptibility will be greater following an intense rainfall event, especially if no vegetation is present (Cerdá, Doerr, 2008). In such cases, emergency interventions are needed to minimize fire impacts because they can offer some sort of protection.

If fire destroys the accumulated forest floor material and vegetation, expose soil to raindrop impact, and may originate water repellent conditions (Robichaud and Brown, 2005; Shakesby and Doerr, 2006).

Forest fires can affect hillslopes, channels and forest roads. Hillslope treatments are considered as the first line of defence against soil erosion allowing the reduction of surface runoff (Robichaud *et al.* 2000; Robichaud and Brown, 2005).

There are several techniques that may be used to this end but one of the most known is mulch. Mulch treatment consists in spreading organic material over the soil surface enabling interception raindrop; increasing roughness, which delays overland flow, and allows the infiltration of rain water during storms (Jordán *et al.* 2010). Mulch can also be provided naturally by the fall of leaves or needles, in case of conifer forests, but only if the severity of burn was low or moderate so the needles in canopy may fall covering the ground (Robichaud and Brown, 2005). When this happens there are less runoff and erosion than in areas affected by higher burned severity.

In newly burnt and unburnt pine and eucalyptus forest in Portugal, overland flow and soil losses were monitored to assess the impacts of the following post-fire treatments: application of different quantities of logging litter; rip-ploughing compared with minimum tillage prior to planting eucalyptus seedlings; and clearance of pine needles and vegetation. Eucalyptus logging litter reduced soil losses by up to 95 per cent. The impact of pine logging litter was equivocal, but removal of pine needles increased soil losses eleven fold (Shakesby *et al.* 1996).

Mulch treatments improved physical and chemical properties of Fluvisoils under semiarid conditions (Jordán *et al.*, 2010).

It is important to note that the performance of the treatment is dependent on time of application after fire and rainfall intensity, especially in the first year after fire, when erosion susceptibility is higher (Robichaud and Brown, 2005).

^a Centro de Estudos do Ambiente e do Mar, Departamento de Ambiente e Ordenamento, Universidade de Aveiro, 3810-193 Aveiro (Portugal);

^b Centro de Estudos de Recursos Naturais, Ambiente e Sociedade, Escola Superior Agrária de Coimbra, Bencanta, 3040-316 Coimbra (Portugal).

Objectives

The main goal was to assess the performance of two mulch treatments: chopped bark mulch and clear-cut material such as big stems, branches and corks as a mitigation technique of soil erosion and runoff, by evaluating the soil characteristics before and two years after the treatment application.

Methodology

The case study area is located in Pessegueiro do Vouga parish, Municipally of Sever do Vouga, Portugal. The main land use is forest, mostly occupied by *Pinus pinaster* and more recently, *Eucalyptus globulus*. This area burned in August of 2007 and treatments were applied in December 2007. To sites were selected for treatment: a Pine (*Pinus pinaster* Aiton) and an Eucalyptus (*Eucaliptus globulus* Labill).

12 bounded runoff plots (2x8m) were installed: 8 in Eucalyptus site and 4 in Pine site. Each one was equipped with one gerlach trap, one tipping bucket and three collecting tanks.

The treatment selection was made based on the characteristics of the burned study area: one intervention treatment for Pine site (Treatment 1) and one emergency treatment for the Eucalyptus site (Treatment 2). Treatment was made randomly in both sites. At the Pine site post-fire clearcutting debris as stems, barks and leafs was applied in two plots and the other two remained as control (no treatment). At the Eucalyptus site chopped bark eucalypt mulch was applied in four plots and another four were used as control.

Treatment 1 was implemented in a i) slope of 25°; ii) fire intensity was moderate and iii) ratio of application 1,75 Kg/m², corresponding to 80% cover in each plot. Treatment 2 was implemented in a i) slope of 30°; ii) fire intensity was high and iii) application ratio was 0,87 kg/m² corresponding to 70% cover for each plot.

Several parameters were measured in the field, in fortnightly or week intervals, such as i) runoff water ii) sediment loss and iii) soil surface cover. Organic matter content was estimated in the laboratory.

Results and conclusions

The main results related to i) overland flow; ii) soil erosion; iii) organic matter content and iv) soil cover are described below.

i) Overland Flow

At the Eucalyptus site all plots showed very similar runoff response to rainfall, before treatment, where overland flow increased with rainfall amount. After treatment, there was a significant reduction in overland flow in treated plots, two times less than in control plots.

At the Pine site no significant difference in overland flow response, between treated and control plots, before and after the treatment application.

ii) Soil Loss

Soil losses between plots groups, before treatment, were homogeneous, although slightly lower in Pine site comparing to Eucalyptus site.

After treatment in Eucalyptus site treated plots showed a reduction in sediment loss production compared with the control group.

For Pine site treatment did not interfere with sediment production. Soil losses remained very low both for treated and untreated plots.

iii) Organic Matter Content

In Eucalyptus site organic matter content both in control and treated plots is very close. Organic matter percentage in treated plots accounted for more than 50%, and even reached 70% of the total sediment loss. These values may be explained by the presence of ashes and death vegetal material on top of the plots. However treated plots showed higher organic matter amount than control plots.

In Pine site treated plots most of the organic matter content remained below 50% of sediment loss but in control plots organic matter percentage below and above 50% was very similar through time. This can be explained by a high percentage of litter present that difficult the sediment transport by water.

iv) Soil Cover

In Eucalyptus site the presence of stones was always high, ashes, shrubs and ground level vegetation had the lowest expression even two years after fire.

It became clear that when the presence of stones was higher all the other elements, like litter and ashes, in soil decreased. This may be explained by runoff that has a decisive role in dragging lighten loose material from soil surface. When litter increased stone amount decreased due to the protective ability of litter in minimizing entrainment.

In Pine site the amount of litter, ashes and stones was always higher than any other type of soil cover. There was some ash fluctuation in this site: increasing and decreasing along the monitoring period depending on transect location. Ashes are a very light and thin material that can either be transported by water or wind to downstream locations. For this reason there was some ash accumulation in small depressions along hillside length causing the increase or decrease in ash percentage manifested in the conducted transepts. Ground level vegetation and shrubs presence was very poor and bare soil percentage was also very low revealing that most of the burned area had some kind of cover most of the time. Bare soil increased when the other cover types (such as litter and stones) decreased, as expected. Vegetation did not develop leaving soil uncovered and susceptible to water erosion by runoff.

Main results indicate that:

- i) Chopped bark eucalypt mulch reduced soil loss as well as runoff generation;
- ii) Treatment with chopped bark reduced soil loss above 80%;
- iii) Organic matter loss increased with rainfall amount but chopped bark eucalypt had contributed to its reduction. In Pine site litter had that role, minimizing organic matter loss:
- iv) Two years after forest fire there is still low vegetation in place, with stones the more expressive cover in Eucalyptus site and litter, in the Pine site;
- v) Chopped bark showed clear advantage over stems, bark and leafs mulch.

Acknowledgment

The research described in this paper was developed under several projects, namely on the framework of RECOVER - "Estratégias de remediação de solos imediatamente após incêndios florestais" (PTDC/AGR-AAM/73350/2006), funded by the Foundation for Science and Technology (FCT) of Portugal, and RAA - "Recuparação de Áreas Ardidas" Project, founded by the Permanent Forest Fund (IFAP-FFP).

References

- Cerdá, A., Doerr, S.H. (2008) The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. *Catena* 74, 256-263.
- Jordán, A., Zavala, L.M., Gil, J. (2010) Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. *Catena* 81,77-85.
- Robichaud, P. R.; Brown, R. E. (2005) Postfire Rehabilitation Treatments: Are We Learning What Works? Proceedings of the 2005 Watershed Management Conference. July 19-22, Williamsburg, VA. 13 p.
- Robichaud, Peter R.; Beyers, Jan L.; Neary, Daniel G. (2000) Evaluating the effectiveness of postfire rehabilitation treatments. Gen. Tech. Rep. RMRS-GTR-63. Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 85 p.
- Shakesby, R.A. Boakes D. J., Coelho, C.O.A., Gonçalves, AJ.B., Walsh, R.P.D. (1996) Limiting the soil degradational impacts of wildfire in pine and eucalyptus forests in Portugal: A comparison of alternative post-fire management practices, *Applied Geography*, 16(4) 337-355.
- Shakesby, R.A. and Doerr, S.H. (2006) Wildfire as a hydrological and geomorphological agent. *Earth-Science Reviews* 74, 269-307.

Preliminary data of soil properties and soil erosion following a wildfire and different post-fire soil stabilization treatments in Laza (NW Spain)

M. Díaz-Raviña^{a*}, A. Martín^a, A. Barreiro^a, A. Lombao^a, M.J. Gómez^a, A. Couto-Vázquez^a, L. Iglesias^b, F. Díaz-Fierros^b, T. Carballas^a

* mdiazr@iiag.csic.es

Key-words: fire, physical and chemical properties, mulching, seeding, soil erosion.

Introduction

Forest fires are common events in Galicia (N.W. Spain) causing the destruction of vegetation and soil degradation (Carballas et al., 2009), which produce enormous irreversible losses of soil and nutrients due to runoff and erosion processes (Díaz-Fierros et al., 1990; Soto and Díaz-Fierros, 1998; Vega et al., 2005). It is well-known that post-fire stabilisation treatments applied to hillslopes can reduce erosion (Bautista et al., 1996; Badía and Martí, 2000; Robichaud, 2009); however, these techniques have not been implemented in this temperate humid zone.

Objective

The aim of the present study was to evaluate the impact of fire and different post-fire stabilisation treatments on soil quality of a shrubland ecosystem in the N.W. Spain as well as to determine their efficacy to control post-fire erosion.

Methodology

The study was performed in a shrubland ecosystem located in Laza (Ourense, NW Spain) affected by a wildfire on September 2010 (1700 ha of surface were burned) and highly susceptible to soil erosion after the fire event (slope 30-50%). Four treatments were stablished by triplicate (3 x 20 m plots): unburnt control soil (U), burnt soil (B), burnt soil with rye seeds at a rate of 10 g m⁻² (B+S), burnt soil with 250 g m⁻² of straw mulch (B+M). Soil samples were taken from the top layer (0-2 cm) immediately and 4 months after the wildfire. The following soil properties were monitored in the fraction < 2 mm: granulometric composition and texture, moisture content and water retention capacity, aggregate stability, soil water repellence, pH (in water and KCl), electric conductivity and organic matter content. The methods described by Guitián-Ojea and Carballas (1976) were utilized to determine most properties analyzed. Soil water repellence was assessed using the molarity of ethanol droplet (MED) test (Roy and McGill, 2002) and the aggregate stability following the procedure described by Kemper and Rosenau (1986). Soil erosion was measured in the burned plots at 3 sampling times (1, 2 and 3 months after the wildfire when important rain events occurred) using collectors for runoff (Soto and Díaz-Fierros, 1998).

Results

The physico-chemical and chemical properties obtained in the 0-2 cm layer of the different soil treatments immediately and 4 months after wildfire are showed in Table 1. The results showed that most parameters analysed experienced immediate fire induced

^a Departamento de Bioquímica del Suelo, Instituto de Investigaciones Agrobiológicas de Galicia (CSIC), Apartado 122, 15780 Santiago de Compostela (Spain);

^b Departamento de Edafología y Química Agrícola, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela (Spain).

changes, the comparison of values obtained for unburnt and burnt soils showing, among other changes, that immediately after fire pH increased 0.5 units and electric conductivity 6.4 times whereas organic matter and water field capacity were reduced considerably (35-66%). These effects were attenuated with time but for some properties they lasted for 4 months.

 $\textbf{Table 1}. \ Soil\ properties\ in\ the\ different\ soil\ treatments\ immediately\ and\ 4\ months\ after\ the\ wildfire\ (mean\ values\pm SD\ of\ three\ field\ replicates).\ Treatments:\ U,\ unburned\ soil;\ B,\ burnt\ soil;\ B+S,\ burnt\ soil\ plus\$

seeding; B+M, burnt soil plus straw addition.

Soil property	Time		Soil treatments			
	(months)	U	В	B+S	B+M	
Moisture (%)	0	22.5 ± 0.7	9.3 ± 2.1	7.7 ± 1.8	8.5 ± 1.1	
	4	44.9 ± 1.4	32.4 ± 0.7	34.4 ± 3.9	32.1 ± 2.3	
Sand (%)	0	18.1 ± 1.1	28.4 ± 0.6	27.9 ± 2.2	28.1 ± 0.3	
Lime (%)	0	60.7 ± 1.4	55.1 ± 0.4	55.0 ± 0.8	55.0 ± 0.1	
Clay (%)	0	21.2 ± 1.7	16.5 ± 1.1	17.2 ± 1.5	16.9 ± 0.5	
Aggregate stability (%)	0	94 ± 2.0	95 ± 2	96 ± 1	91 ± 1	
Water repelence	0	Very severe	Very severe	Very severe	Very severe	
Water field capacity (g water kg ⁻¹)	0	899 ± 6	603 ± 7	577 ± 5	590 ± 18	
	4	924 ± 3	612 ± 3	679 ± 9	623 ± 1	
pH_{water}	0	3.67 ± 0.05	4.15 ± 0.0	4.12 ± 0.01	4.13 ± 0.01	
	4	3.94 ± 0.01	4.48 ± 0.01	4.46 ± 0.01	4.55 ± 0.01	
pH_{KCl}	0	$2.81~\pm~0.01$	3.19 ± 0.00	3.18 ± 0.00	3.18 ± 0.01	
	4	2.80 ± 0.00	3.06 ± 0.00	3.07 ± 0.00	3.14 ± 0.00	
Electric conductivity (µS cm ⁻¹)	0	16 ± 1	102 ± 10	102 ± 12	102 ± 9	
	4	30 ± 5	28 ± 3	29 ± 0	38 ± 7	
Organic matter (g kg ⁻¹)	0	261 ± 12	93 ± 26	83 ± 19	88 ± 7	
	4	228 ± 9	176 ± 5	189 ± 14	184 ± 20	

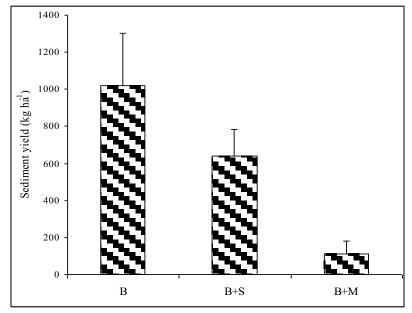

The soil losses due to wildfire are showed in Table 2 and Figure 1. Sediments data indicated that in the short-term mulching treatment was the most effective to control post-fire erosion since soil losses to respect to burnt control were reduced by 82% and 72% after the first and the second rain events, respectively, whereas seeding slightly reduced soil losses only after the second rain event. Over a 3-month period the mean sediment yield from the untreated plots was reduced by 37-89% when post-stabilisation treatments were applied, the highest effectiveness being observed for mulching (Fig. 1). The results also seem to indicate that the sediment composition was affected by mulching treatment (data not showed).

Table 2. Sediments yield during the first three months following wildfire and treatment application (mean values±SD of three field replicates). Treatments: U, unburned soil; B, burnt soil; B+S, burnt soil plus seeding; B+M, burnt soil plus straw addition.

Soil treatment	Sampling time	Sediment yield (kg ha ⁻¹)
В	1	54 ± 12
	2	234 ± 75
	3	731 ± 404
B+S	1	62 ± 29
	2	155 ± 90
	3	422 ± 133
B+M	1	10 ± 7
	2	62 ± 80
	3	40 ± 36

Figure 1. Cumulative sediments yield during the first three months following wildfire and treatment application (Mean values±SE of three field replicates). Treatments: U, unburned soil; B, burnt soil; B+S, burnt soil plus seeding; B+M, burnt soil plus straw addition.

Conclusions

The results clearly showed that: a) wildfire affected drastically most physico-chemical and chemical soil properties analyzed and b) mulching was the most effective treatment in reducing sediments yield over the whole three months period after the wildfire.

Acknowledgements. This study was supported by the Consellería de Medio Rural de la Xunta de Galicia (08MRU002400PR) and by the Ministerio de Ciencia e Innovación (AGL2008-02823), Spain.

References

Badía, D., Martí, C. 2000. Seeding and mulching treatments as conservation measures of two burned soils in the central Ebro valley, NE Spain. *Arid Soil Research Rehabilitation* 13: 219-232.

Bautista, S., Bellot, J., Vallejo, V.R. 1996. Mulching treatment for postfire soil conservation in a semiarid ecosistem. *Arid Soil Research Rehabilitation* 10: 235-242.

Carballas, T., Martín, A., Díaz-Raviña, M. 2009. Efecto de los incendios forestales sobre los suelos de Galicia. In: *Efecto de los incendios forestales sobre los suelos en España* (Artemi Cerdá, Jorge Mataix-Solera, eds.). Cátedra Divulgación de la Ciencia. Universitat de València, Cap. 3.6, p. 269-301.

Certini, G. 2005. Effects of fire on properties of forest soils: a review. *Oecologie* 143: 1-10.

Díaz-Fierros, F., Benito, E., Vega, J.A., Castelao, A., Soto, B., Pérez, R., Taboada, T. 1990. Solute loss and soil erosion in burnt soil from Galicia (NW Spain). In: *Fire in ecosystems dynamics. Mediterranean and Northern Perspectives* (F.G. Goldammer, M.J. Jenkins, eds.), SPB Goldammer, The Hague, p. 103-106.

Guitián-Ojea, F., Carballas, T. 1976. *Técnicas de Análisis de Suelos*. Editorial Pico Sacro, Santiago de Compostela, Spain.

- Kemper, W.D., Rosenau, R.C. 1986. Aggregate stability and size distribution. In: A.Klute (ed.), *Methods of Soil Analysis*. *Part 1. Physical and Mineralogical Methods*. ASA-SSSA, Madison, p. 425-442.
- Robichaud, P.R. 2009. Post-fire stabilization and rehabilitation. In: *Fire effects on soils and restoration strategies. Vol. 5 Land reconstruction and management* (A. Cerdá, P.R. Robichaud, eds.). Science Publishers, Enfield, USA, p. 299-320.
- Roy, J.L., McGill, W.B. 2002. Assessing soil water repellency using the molarity of ethanol droplet (MED) test. *Soil Science* 167: 83-97.
- Soto, B., Díaz-Fierros, F. 1998. Runoff and soil erosion from areas of burnt scrub: comparison of experimental results with those predicted by WEPP model. *Catena* 31: 257-270.
- Vega, J.A., Fernández, C., Fonturbel, T. 2005. Throughfall, runoff and soil erosion alter prescribed burning in gorse shrubland in Galicia (NW Spain). *Land Degradation and Development* 16: 37-51.

Geomorphic aspects of post-fire soil erosion – Schultz Fire 2010

Ann Youberg^{a*}, Karen A. Koestner^b, Daniel G. Neary^b, Peter E. Koestner^c

^a Arizona Geological Survey, 416 Congress Street, Suite 100, Tucson, Arizona 85701 (USA);
 ^b USDA Forest Service, Rocky Mountain Research Station, 2500 Pine Knoll Drive, Flagstaff, Arizona 86001 (USA);

^c USDA Forest Service, Rocky Mountain Research Station, Tonto National Forest, 2324 East McDowell Road, Phoenix, AZ 85006 (USA).

*ann.youberg@azgs.az.gov

Key-words: Wildfire; soil erosion; geomorphology; debris flows; Schultz Fire.

Introduction

The summer of 2010 brought wildfires and near record monsoon rains to northern Arizona, USA, which generated debris flows and floods that caused extensive damage. The human-caused Schultz Fire on the Coconino National Forest northeast of Flagstaff was the largest wildfire in Arizona during 2010, burning 6,100 ha between June 20th and 30th. Ignited by an abandoned campfire, high winds drove the fire over approximately 60% of the total area burned during the first 12 hours (U.S. Forest Service, 2010). The majority of the area burned at moderate (27%) or high (40%) severity across slopes of 30% to over 100%, through forests of ponderosa pine and mixed conifer. Nine of 11 watersheds were almost completely burned, with areas of high burn severity covering more than 50% in 3 watersheds and more than 70% in 2 others.

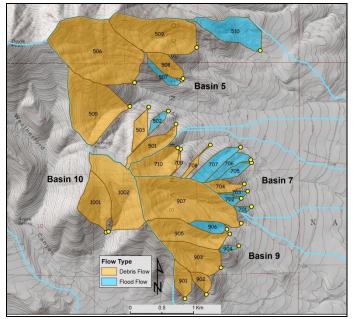
The San Francisco Peaks are a remnant stratovolcano that rises nearly 1,500 m above the alluvial fans that surround it. Within the burned area, geomorphic zones include eastfacing, steep, upper mountain slopes flanked by incised Pleistocene fan deposits of the upper piedmont. Immediately east of the burned area, unincised, coalescing Holocene alluvial fans have been heavily modified by residential developments. Prior to the fire, only a few well-defined defined channels existed on the steep mountain slopes and upper piedmont. Many drainages in these areas consisted of low swales located between thickly forested ridges or on broad Pleistocene fan heads. Gravel soils, derived from mixed igneous rocks and cinders, were quite permeable with high infiltration rates (51-152 mm hr-1) under pre-fire conditions (U.S. Forest Service, 2010). East of the fan heads, swales transitioned to channels confined several meters below the Pleistocene piedmont surface. Near the eastern forest boundary, flows from the channels emerge onto the unincised Holocene fans with residential developments. Upper mountain slopes are the source for high-energy water, coarse sediments, and woody material. Ephemeral swales and channels on the steep mountain basin have slopes that can exceed 30%, while welldefined ephemeral lower-piedmont channels slope up to 5-7%.

In this region, summer thunderstorms tend to develop preferentially over mountains due to orographic lifting. The Shultz Fire was followed by rains from the 4th wettest monsoon on record in Flagstaff. The largest storm occurred on 20 July and produced 45 mm of rain in 45 minutes, with a peak 10-minute intensity of 24 mm. This short duration, high-intensity precipitation event produced debris flows from numerous small, steep basins on the upper mountain slopes. Floods and debris flows eroded former swales into channels up to 4 m deep. Rills and gullies formed on the hillslopes removing the O horizon (10-30 cm). A second high-intensity storm on 16 August delivered 27 mm of rain in 46 minutes, with a peak 10-minute intensity of 15 mm, producing more debris flows. Numerous other storms from July through October produced sediment-laden flood flows. Erosion from

debris flows, floods, rills and gullies removed a substantial amount of soil from the burned area. While debris flows were confined to forest lands, multiple sediment and ashladen floods caused extensive damage to residential homes, property and infrastructure up to 10 km from the burn, east of the forest boundary.

Objectives

Wildfires can dramatically change infiltration and runoff responses in soils, especially on steep slopes (DeBano et al. 1998, Neary et al. 2008), significantly increasing runoff and erosion. Post-fire sediment-laden flood flows occur more frequently than debris flows, but debris flows can be significantly more destructive than floods. Evaluating the potential for debris flows following a fire is an important aspect of post-fire hazard assessments. Factors affecting the occurrence of debris flows include burn severity, geology, catchment size and gradient, storm characteristics, especially short-duration, high-intensity precipitation, and storm movement through the basin (Cannon et al., 2004; Cannon et al., 2000; Wohl and Pearthree, 1991). The objective of this study is to assess factors affecting the occurrence of post-fire debris flows in the small, steep upper basins of the burned watersheds in order to identify those factors more likely to influence debris-flow occurrence, thus providing better information for assessing post-fire geologic hazards in Arizona.


Methodology

There were two components to this work; a field study and a GIS analysis. The field study, focused on the southern half of the fire, consisted of four north-south transects across five burned watersheds and west-east traverses in the main channels of three of those watersheds. Deposit characteristics were used to determine the occurrence of debris flows or flood flows, and to document the downstream extent of debris flows.

Channel profiles and basin morphology were derived for 28 small, steep upper basins where debris flows and floods were generated using GIS software, tools and methods (Figure 1). Basin outlets were identified using channel profile gradient changes, field observations, location of deposits, and analysis of aerial photographs flown in October, 2010, at a scale of 1:12,000. Basins were classified based on evidence of the occurrence of debris flows or flood flows. All debris-flow basins (Figure 1, orange basins) also had flood flows, but basins classified as flood (Figure 1, blue basins) only experienced flood flows. Spatial analyses were conducted to determine proportional areas of burn severity in each basin, and to assess the influence of the different soils in each basin. Soils data were extracted from the **GIS-based** Terrestrial Ecosystem http://alic.arid.arizona.edu/tes/units.asp) mapped by the Coconino National Forest. TES map units are delineated based on soils, landscape position and vegetation.

Figure 1. Small, steep basins mapped according to flow types. Basins with evidence of debris flows, along with floods, are in orange. Basins with evidence of only flood flows are in blue. Yellow dots represent locations of basin outlets.

Results and Conclusions

Flows in 28 basins were classified as producing post-fire debris flows, debris flows in addition to floods, or flood flows only. Seventeen of 28 basins were completely burned (100%), while total burned areas in the other 11 basins ranged from 88% to 99%. The percent of the basins burned at high severity ranged from 37-100%; three basins were completely burned at high severity. The basin with the lowest percent area burned produced debris flows while one basin that was completely burned (100%) produced only flood flows.

Watershed area for flood-flow basins ranged from 0.02-0.34 km² with an average area of 0.08 km². Debris-flow basin areas ranged from 0.01-1.11 km² with an average area of 0.34 km². Mean basin slopes varied from 35-52% with an average of 45% for flood-flow basins, while debris-flow basins varied from 42-64% with an average of 57%. The average channel slope ranged from 25-44% with an average of 34% for flood-flow basins, and 26-48% with an average of 38% for debris-flow basins. Although there is substantial overlap in many of the morphologic characteristics of these basins, the debris-flow producing basins were generally larger and steeper than the flood-flow only basins.

Three TES map units (613, 785, and 790) composed the majority of the soils within the basins. The soils are well-graded gravels (GW) to silty, sandy gravels (GM) derived from mixed igneous rocks and cinders. These soils were quite permeable with high infiltration rates under pre-fire conditions. Erosion hazards for these three units are classified as severe. Mass wasting hazards are classified as moderate to severe. Soil losses due to sheet and rill erosion are estimated at 3 to 13 Mg ha-¹ yr-¹ under pre-fire conditions (http://alic.arid.arizona.edu/tes/units.asp). Under post-disturbance conditions these rates are expected to increase 8-19 times, with estimates ranging from 52 to 97 Mg ha-¹ yr-¹. TES unit 613 has the largest post-disturbance soil loss estimates of the 3 units. Soils from this unit covers the majority of mid to lower hillslopes for all basins, and entire hillslopes for 5 of 11 flood-flow basins and 3 of 17 debris-flow basins. TES units 785 and 790 are more limited in extent and compose soils in the headwaters and upper slopes of only a

few basins. Unit 785 is found in 3 flood-flow and 10 debris-flow basins, while unit 790 is found only in 3 debris-flow basins. Although the characteristics between these map units vary somewhat, and all are composed of highly erodible soils in a post-disturbance environment, post-fire debris flows tend to initiate high in channels and close to ridge tops. It is likely that TES units 785 and 790 played a larger role in debris-flow generation than TES unit 613, however additional analysis is required to understand this relationship. Changes to watershed soils and hydrologic characteristics can be quite dramatic following a wildfire. The Schultz Fire was a high impact fire dominated by moderate to high burn severity across steep densely forested slopes that were completely, or nearly completely, burned. In Arizona, the wildfire season is immediately followed by monsoon precipitation. Short-duration, high-intensity rainfall on severely burned basins can result in a dramatic amount of geomorphic work and landscape changes in a short period of time. A significant amount of soil was removed from the hillslopes and channels within the Schultz Fire burn area during the 2010 monsoon, and elevated sediment delivery and movement is likely to continue for several years. Research will continue on the Schulz Fire to document landscape changes and ecosystem recovery.

References

- Cannon, S.H. 2001. Debris-flow generation from recently burned watersheds. Environmental and Engineering Geoscience. 7: 321-341.
- Cannon, S.H.; Rea, A.; Parrett, C.; Pierce, K.L.; Gartner, J.E. 2004. *Tools and methodologies for the prediction of post-wildfire debris-flow activity and hazard delineation*: U. S. Geological Survey. Reston, VA, United States., 18 p.
- DeBano, L.F.; Neary, D.G.; Ffolliott, P.F. 1998. Fire's effects on ecosystems. John Wiley & Sons, New York. 333 p.
- Neary, D.G.; Ryan, K.C.; DeBano, L.F. (Editors) 2005 (Revised 2008). *Fire effects on soil and water*. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-42, Volume 4: Fort Collins, CO. 250 p.
- U.S. Forest Service. 2010. Burned Area Emergency Response Report, July 8, 2010. Coconino National Forest, Flagstaff, Arizona. 167 p.
- Wohl, E.E.; Pearthree, P.A. 1991. *Debris flows as geomorphic agents in the Huachuca Mountains of southeastern Arizona*. Geomorphology 4: 273-292.

Soil properties in burned and unburned Mediterranean shrublands of Montesinho Natural Park, Northeast Portugal

Felícia Fonseca^{a*}, Micaela Leite^b, Tomás de Figueiredo^a

^a Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança (ESAB/IPB), Apartado 1172, 5301-855 Bragança, Portugal.

^b Master degree student

* ffonseca@ipb.pt

Key-words: Fire; Shrubs areas; Soil properties.

Introduction

Large areas of shrubland are being destroyed by fire every year in the Mediterranean region, where this is a most relevant environmental problem. Anthropogenic fire in shrublands for obtain better pastures for cattle, is relatively common practice in the Montesinho Natural Park (PNM), Northeast Portugal. During burning, plant cover and litter layers are consumed, and the mineral soil is heated, resulting in changes to physical, chemical, mineralogical, and biological soil properties (Hubbert et al., 2006). The combination of combustion and heat transfer produces temperature gradients in soil (Certini, 2005). The extent and duration of the fire effects on soil properties depend on fire behavior, specially related to fire severity, as well as the climatic conditions, mainly to the characteristics of subsequent rainfall events (De Luís et al., 2001; Certini, 2005). A direct effect of fire on soil surface is the creation a continuous film water-repellent which reduces permeability and increase runoff (Imeson et al. 1992). In Mediterranean ecosystems, where the torrential rainfall events are frequent in autumn and winter (from October to March), this is a critical period, when the soil susceptibility to water erosion processes is increased after a fire (Andreu et al., 2001). The frequency increase of fires and intense rainfalls have a larger potential to reduce soil fertility by erosion and nutrient losses (Thomas et al., 1999).

The effect of fire on the organic matter content is deeply variable, and depends on several factors including fire type, intensity, duration and even slope (González-Pérez et al., 2004). Depending on fire severity, the organic matter can suffer slight distillation, charring, or complete oxidation (Certini, 2005). Fire induced changes to cycles of soil nutrients (Certini, 2005) and the majority of nutrient elements released from burned vegetation are in forms which are easily dissolved, with exception of soil phosphorus that increased the insolubility after fire. In sum, fires caused modifications on physical and chemical soil properties that, in turn, affect soil water permeability, capacity to absorb rainfall, support the various life forms and resistance to erosion and leaching processes.

Objectives

The aim of this study was to compare physical and chemical soil properties in burned and unburned shrubs areas under Mediterranean climate conditions, 6 months after the fire.

Methodology

The study site was selected on the basis of having adjacent burned and unburned shrubs areas on similar climatic, soil conditions and species composition in Montesinho Natural Park. The shrub vegetation consisted mainly of *Cytisus multiflorus* and *Ulex europeus*. Climate is Mediterranean, with 12° C mean annual temperature and 740 mm mean annual

rainfall, concentrated from October to March (INMG, 1991). The fire occurred in early October 2009 and the soil samples were collected in March 2010. During this period the precipitation was 1384 mm and in October was 151 mm (http://esa.ipb.pt/clima.php). Thus, the properties of ash and soil may have been strongly modified by erosion and leaching (Gimeno-García et al., 2007).

In burned and unburned areas, disturbed soil samples were collected at depths 0-5, 5-10, 10-15, 15-20 and 20-30cm (n = 8 in each case), to assess organic matter, nutrients concentration, soil pH and soil texture. Bulk density and permeability were determined in undisturbed samples, collected in 100 cm³ cylinders (bulk density in the same depths above referred and permeability in the 0-5 cm layer). Porosity was calculated from bulk density assuming a particle of 2.65 g cm⁻³ (Ekinci, 2006; Hubert et al., 2006). Burn severity was estimated qualitatively from post-fire fuel size diameter and degree of litter consumption (Hubbert et al., 2006; Are et al., 2009).

Results and Conclusions

After the fire, increases in average bulk density are observed, ranging from 5% to 10% for layers 20-30 cm and 0-5 cm respectively, with a corresponding decrease in porosity and permeability (Table 1). Similar results were obtained by Hubbert et al. (2006).

Table 1. Soil bulk density, total porosity and permeability (n = 8 in each case) before and after burning (mean \pm standard deviation)

Depth	Burned			Unburned			
(cm)	Bulk density	Total porosity	Permeability	Bulk density	Total porosity	Permeability	
	$(g cm^{-3})$	(%)	(cm h ⁻¹)	$(g cm^{-3})$	(%)	(cm h ⁻¹)	
0-5	1.30 ± 0.22^a	51.05 ± 8.19^{a}	47.12 ± 24.52^{a}	1.17 ± 0.22^{a}	55.76 ± 6.29^{a}	51.68 ± 34.87^{a}	
5-10	1.30 ± 0.27^a	50.80 ± 4.90^a		1.21 ± 0.13^a	54.29 ± 10.25^{a}		
10-15	1.41 ± 0.14^a	46.84 ± 7.02^a		1.29 ± 0.19^a	51.16 ± 5.12^a		
15-20	1.35 ± 0.11^a	49.03 ± 8.75^a		1.27 ± 0.23^a	52.23 ± 4.25^{a}		
20-30	1.42 ± 0.14^a	46.58 ± 4.20^a		1.35 ± 0.11^a	49.11 ± 5.12^{a}		

For each line and variable, different letters indicate significant differences between burned and unburned areas (P<0.05)

The soil textural classes were not affected by fire. However, there were slight changes in silt and clay contents, which in general, varied in opposite directions, with gains of silt and losses of clay in soil (Table 2). The decrease in clay content suggested that there was formation of stable aggregates of finer particles into larger silt-size particles, which resulted in an increase of silt after burning (Hubbert et al., 2006; Are et al. 2009). Also, González-Pérez et al. (2004) referred that soils tend to coarser textures after fire.

Table 2. Effects of burning on particle-size distribution (mean \pm standard deviation)

Depth	Depth Burned				Unburned			
(cm)	Sand	Silt	Clay	Textural	Sand	Silt	Clay	Textural
		(%)		classes		(%)		classes
0-5	44.0±3.4 ^a	34.8 ± 1.9^{b}	21.2±2.7 ^a	Loam	48.8 ± 2.8^{b}	30.5±2.3 ^a	20.7±2.3 ^a	Loam
5-20	$44.7{\pm}3.6^a$	$34.5{\pm}2.7^a$	$20.8{\pm}1.4^b$	Loam	45.4 ± 3.1^a	$31.9{\pm}2.5^a$	$22.7{\pm}2.0^a$	Loam
20-30	$40.6{\pm}2.5^a$	39.2 ± 3.5^{b}	$20.2{\pm}5.2^a$	Loam	47 ± 2.3^{b}	$30.6{\pm}1.8^a$	$21.9{\pm}2.3^a$	Loam

For each line and variable, different letters indicate significant differences between burned and unburned areas (P < 0.05)

Results concerning soil chemical properties as affected by fire are presented in Table 3. Burning leads to a decrease in sum exchange bases with reflexes in soil pH values. Soil

pH decreased in all layers after fire, but this decrease is more visible in 0-5 cm. Decreases in pH after the fire were also reported by others authors (Rashid, 1987; Franco-Vizcaíno and Sosa-Ramirez, 1997). The temperatures reached by fire were low, indicated by incomplete combustion of the fuel resulting in lower release of bases. Giovannini and Lucchesi (1997) observed that the soil pH decreased at temperatures up to 395°C, followed by a clear increase at higher temperatures. In deep layers the pH values remain similar to the unburned area meaning a progressive increase with time apparently due to the infiltration of dissolved salts (Rashid, 1987).

Soil organic matter (SOM) increased in the first 15 cm, decreasing in deeper layers. In field observations it was visible huge quantities of charred materials deposited on surface soil. After a moderate fire, an increase of SOM is usually observed suggesting a substantial inclusion of charred plant materials (González-Pérez et al., 2004) and the presence of residual ashes (Pardini et al., 2004). In soil layer 0-5 cm, a coupled increase in SOM and in total N content was found. Although, burning usually results in losses of N by volatilization (Wienhold and Klemmedson, 1992), the frequent entrance in the burnt areas of N-fixer species (Johnson and Curtis, 2001), can explain the high increase of total N in upper layer (0-5 cm).

Phosphorus extractable decreased in all layers after the fire, while potassium increased, with exception of the first layer (0-5 cm). Despite effect of fire in phosphorus solubility decrease (Rashid, 1987) this and other nutrients are generally deposited on the soil in ash, where they are susceptible to loss by erosion and leaching (Wienhold and Klemmedson, 1992). As heavy rains fell, summing a total of 1384 mm from the moment which fire occurred (October 2009) to the moment of soil sampling (March 2010), soil erosion and leaching can have been relevant and the accumulation of some elements can have occurred within the soil profile.

Table 3. Chemical soil properties in burned and unburned shrublands six months after burning (mean \pm standard deviation)

			Stalldald	deviation)		
Depth	pН	SOM	Total N	Extractable P	Extractable K	Sum exchange bases
(cm)	(H_2O)	(%)	(%)	(mg kg^{-1})	$(mg kg^{-1})$	(cmol (+) kg ⁻¹)
				Burned		
0-5	4.78 ± 0.32^{a}	7.55 ± 3.36^{b}	0.12 ± 0.14^{b}	14.25 ± 4.90^a	147.13 ± 39.49^a	$3.92{\pm}0.78^a$
5-10	4.69 ± 0.27^{a}	4.03 ± 0.84^{a}	0.06 ± 0.09^{a}	9.17 ± 7.39^{a}	118.88 ± 25.12^{a}	3.10 ± 0.42^{a}
10-15	4.69 ± 0.28^{a}	3.28 ± 0.46^{a}	0.02 ± 0.02^{a}	8.23 ± 7.12^{a}	112.63 ± 20.74^{a}	2.96 ± 0.26^{a}
15-20	4.74 ± 0.28^{a}	2.05 ± 0.79^{a}	0.01 ± 0.01^{a}	10.67±8.91 ^a	102.88 ± 17.99^a	3.03 ± 0.27^{b}
20-30	4.70 ± 0.23^{a}	1.25 ± 0.97^{a}	0.01 ± 0.01^{a}	8.03 ± 4.52^{a}	83.13 ± 8.34^a	$2.88{\pm}0.26^a$
				Unburned		
0-5	5.18 ± 0.38^{b}	$4.84{\pm}0.54^{a}$	0.03 ± 0.02^{a}	34.26 ± 25.18^{b}	164.88 ± 50.67^{a}	4.50 ± 0.59^{a}
5-10	4.85 ± 0.18^a	3.40 ± 0.62^{a}	0.14 ± 0.18^{b}	20.71 ± 24.12^{a}	105.75 ± 52.42^a	3.08 ± 0.31^a
10-15	4.87 ± 0.28^{a}	3.02 ± 0.66^{a}	0.03 ± 0.01^{a}	23.20 ± 22.90^a	92.75±54.16 ^a	$2.83{\pm}0.20^{a}$
15-20	4.84 ± 0.19^{a}	3.01 ± 0.92^{b}	0.02 ± 0.01^{a}	16.24 ± 17.04^{a}	87.75±51.98 ^a	2.70 ± 0.19^{a}
20-30	4.75 ± 0.09^{a}	2.87 ± 0.61^{b}	0.09 ± 0.09^{a}	11.98±9.44 ^a	84.63 ± 45.62^{a}	$2.82{\pm}0.30^{a}$

For each column of the same depth and variable, different letters indicate significant differences between burned and unburned areas (P<0.05)

The climatic conditions after fire (with high precipitation amounts, eventually leading high leaching rates and surface erosion) and low fire severity (indicated by the presence of incompletely burnt materials), and consequently lower ash deposition, may partly explain the changes in soil properties found among burned and unburned shrublands.

References

- Andreu, V., Imeson, A.C., Rubio, J.L., 2001. Temporal changes in soil aggregates and water erosion after a wildfire in a Mediterranean pine forest. Catena, 44: 69–84.
- Are, K.S., Oluwatosin, G.A., Adeyolanu, O.D., Oke, A.O., 2009. Slash and burn effect on soil quality of an Alfisol: Soil physical properties. Soil and Tillage Research, 103: 4-10.
- Certini, G., 2005. Effects of fire on properties of forest soils: a review. Oecologia, 143: 1-10.
- De Luís, M., García-Cano, M.F., Cortina, J., Raventós, J., González-Hidalgo, J.C., Sánchez, J.R., 2001. Climatic trends, disturbances and short-term vegetation Dynamics in a Mediterranean shrubland. Forest Ecology and Management, 147: 25-37.
- Ekinci, H., 2006. Effect of forest fire on soma physical, chemical and biological properties of soil in Çanakkale, Turkey. International Journal of Agriculture and Biology, 8 (1): 102-106.
- Franco-Vizcaíno, E., Sosa-Ramirez, J., 1997. Soil properties and nutrient relations in burned and unburned Mediterranean-climate shrublands of Baja California, Mexico. Acta Ecologica, 18 (4): 503-517.
- Giovannini, G., Lucchesi, S., 1997. Modifications induced in soil physico-chemical parameters by experimental fires at different intensities. Soil Science 162 (7): 479-486.
- González-Pérez, J.A., González-Vila, F.J., Almendros, G., Knicker, H., 2004. The effect of fire on soil organic matter a review. Environment International, 30: 855-870.
- Hubbert, K.R., Preisler, H.K., Wohlgemuth, P.M., Graham, R.C., Narog, M.G., 2006. Prescribed burning effects on soil physical properties and soil water repellency in a steep chaparral watershed, southern California, USA. Geoderma, 130: 284-298.
- Imeson, A.C., Verstraten, J.M., van Mulligen, E.J., Sevink, J., 1992. The effects of fire and water repellence on infiltration and runoff under Mediterranean type forest. Catena, 19: 345-361.
- INMG,1991. Normais Climatológicas da Região de "Trás-os-Montes e Alto Douro" e "Beira Interior" Correspondentes a 1951-1980. Fascículo XLIX, Volume 3, Lisboa.
- Johnson, D.W., Curtis, P.S., 2001. Effects of forest management on soil C and N storage: meta analysis. Forest Ecology and Management, 140: 227-238.
- Pardini, G., Gispert, M., Dunjó, G., 2004. Relative influence of wildfire on soil properties and erosion processes in different Mediterranean environments in NE Spain. Science of the Total Environment, 328: 237-246.
- Rashid, G.H., 1987. Effects of fire on soil carbon and nitrogen in a Mediterranean oak forest of Algeria. Plant and Soil, 103: 89-93.
- Thomas, A.D., Walsh, R.P.D., Shakesby, R.A., 1999. Nutrient losses in eroded sediment after fire in eucalyptus and pine forests in the Mediterranean environment of Northern Portugal. Catena, 36: 283-302.
- Wienhold, B.J., Klemmedson, J.O., 1992. Effect of prescribed fire on nitrogen and phosphorus in Arizona chaoarral soil-plant systems. Arid Soil Research and Rehabilitation, 6: 285-296.

How coal fires affect the clays: an interdisciplinary approach

Sorin - Corneliu Rădan^a* and Silviu Rădan^b

^a Geological Institute of Romania, 1 Caransebeş St., 012271 Bucharest, Romania;
^b National Institute of Marine Geology and Geoecology (GeoEcoMar), 23-25 Dimitrie Onciul St., 024053

Bucharest (Romania)

* sc.radan@yahoo.com

Key-words: coal fires; magnetic properties; clay mineralogy; baked clays; Romania.

Introduction

Spectacular changes in the magnetic properties of the clays inside "coal-bearing formations" have been achieved under natural conditions found in coal fires. Due to the presence of certain lignite seams capable of spontaneous ignition, changes comparable to thermal metamorphism occur, resulting in newly formed rocks: porcelanites and clinkers. These rocks represent the endproducts of this process, and at the same time, provide the mineralogical, petrological, geochemical, and magnetic evidence of the clay transformations as an effect of the coal fires. Consequently, an interdisciplinary approach of the subject is needed.

Objectives

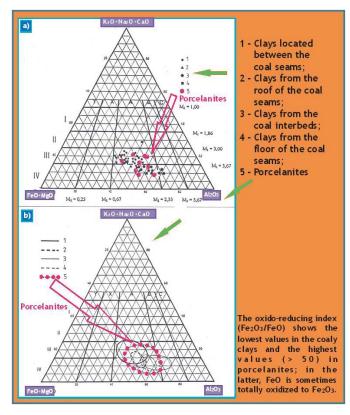
A series of sequences with Pliocene lignite-clay cyclic alternations from Lupoaia and Jilţ quarries, located in the western Dacic Basin (Romania), were investigated to show that the mineralogical and geochemical evolution of the argillaceous rocks — which underwent the influence of a strong thermal post-depositional perturbation — is clearly reflected by their (palaeo)magnetic properties. Such an integrated research is important for a correct detection of the Earth's magnetic field, as well as for giving information on the spontaneous burning process of certain coal deposits and on its palaeoenvironmental impact and economic consequences.

Methodologies

The interdisciplinary approach of the problem under attention is based on field works (*i.e.* rock sampling and magnetic mapping) and laboratory studies (*e.g.* measuring of petromagnetic and palaeomagnetic parameters, mineralogical and geochemical analyses). The oriented (single) specimens have originated in both "initial"/"original" state of the magnetic recording medium/m.r.m. (Rădan, 2003) — represented by coal bearing formations — and the "subsequently affected by heating"/"modified" state. Besides, several oriented monolith-blocks (of about 25 cm) were collected from some lignite-clay sequences, and from a "minisection" (of about 4.5 m stratigraphic thickness, shown by a blue rectangle in Fig. 3), located in the area with thermally affected clays. All the single samples and the monolith-blocks were finally cut into cubic specimens (2 cm side) in order to measure the rock magnetic and palaeomagnetic parameters.

The natural remanent magnetisation (NRM), the characteristic remanent magnetisation (ChRM), the magnetic susceptibility (MS) and its anisotropy (AMS) were measured in the palaeomagnetic laboratory. Stereograms with the NRM and ChRM directions and others with the spatial distribution of the principal susceptibilities (maximum, intermediate and minimum) were carried out. Numerous "anisotropy diagrams" (e.g. L vs F, L vs P, T vs P'), i.e. concerning the magnetic lineation (L), magnetic foliation (F), the

anisotropy degree (P), the corrected anisotropy degree (P') and the shape factor (T), were performed and discussed.

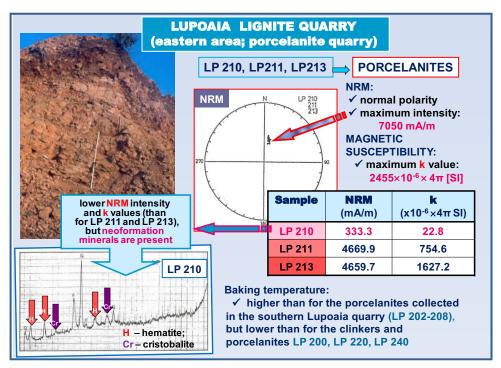

"Original" (not-affected by burning) clays, as well as "baked clays" (*i.e.* porcelanites and clinkers) were analysed by X-ray diffractometry and the thermo-mineralogical characteristics were identified; besides, thin sections were analysed. A geochemical investigation was performed, as well.

The thermo-mineralogical, geochemical and rock magnetic characteristics, which were achieved in the laboratory, explain the magnetic anomalies produced by porcelanites, recorded along several profiles measured with a (Geometrics) portable proton magnetometer.

Finally, the palaeomagnetic technique, which was applied for the magnetostratigraphic correlation/calibration of the Pliocene lignite-clay cyclic alternations from the western Dacic Basin (Rădan, 1998, Rădan and Rădan, 1998), was used for constraining the time of the coal seam burning in the investigated area.

Results and conclusions

On the basis of the analyses performed by X-ray diffractometry and thin sections, the "original" clays (not-affected by heating) were characterised by clay mineral assemblages (illite, smectite, kaolinite, chlorite) and non-clay minerals (angular quartz and quartzite grains, feldspars/plagioclases, calcite, dolomite). A progressive destruction of the clay minerals and the development of newly-formed minerals (*e.g.* hematite, cristobalite, tridymite, mullite, spinel, cordierite and possible magnetite), characteristic for high temperature conditions, were recorded within the heat-affected rocks (see some examples, in Figs. 2 and 3). A correlation with the increasing temperature in successive stages, from slight baking to more or less total fusion, is feasible (Rădan *et al.*, 2001).


Fig. 1. Geochemical data for clayey rocks and porcelanites sampled in the western Dacic Basin (Lupoaia lignite quarry); Englund-Jorgensen/1973 diagrams. a) Chemical composition; b) Geochemical classification.

The geochemical data, based on bulk sample analyses, Englund-Jorgensen classification diagrams (two examples, in Fig. 1), the oxido-reducing index (Fe₂O₃/FeO), point out changes comparable to thermal metamorphism, providing interesting information related to the mineralogical changes taking place within the sediments.

Both mineralogical and geochemical evolution are clearly reflected by the magnetic properties of the investigated argillaceous rocks. For instance, the initial magnetic susceptibility (MS; k_{in}) has considerably increased. High and very high MS amplitudes were recorded for porcelanites and porcelanite-like clays: the kin values range between $200 \times 10^{-6} \times 4\pi$ SI and $1500 \times 10^{-6} \times 4\pi$ SI, sometimes reaching $12800 \times 10^{-6} \times 4\pi$ SI. The MS values measured for the "baked" clays are one to three magnitude orders higher than those which characterise the "fresh"/"original" clays. With regard to the AMS, the enhancement of several magnetic anisotropy parameters was observed: e.g., the magnetic foliation (F) and the anisotropy degree (P) record values between 1.10 - 1.20, sometimes as high as the range 1.30 - 1.40. At the same time, due to the high and very high temperatures, often 250°-400°C, but even 1100°-1200°C (see Fig. 3), the Curie point of ferromagnetic (s.l.) minerals was exceeded. As a consequence, the remanent magnetisation acquired in rocks/clays during their formation was modified, as well. On cooling, coming after heating above the Curie point, the porcelanite-like clays and the porcelanites acquire an important thermoremanent magnetisation (TRM) (other details, in Rădan, 1998). The remanent magnetisation records high and very high intensity values (In), mostly between 1 - 7 A/m, occasionally reaching 7982 A/m (see in Fig. 2 porcelanites defined by In values of 7050 mA/m). The NRM direction was also modified, usually showing a normal polarity (an example, in Fig. 2), in a position that is close to the zone where the actual geomagnetic field direction is located.

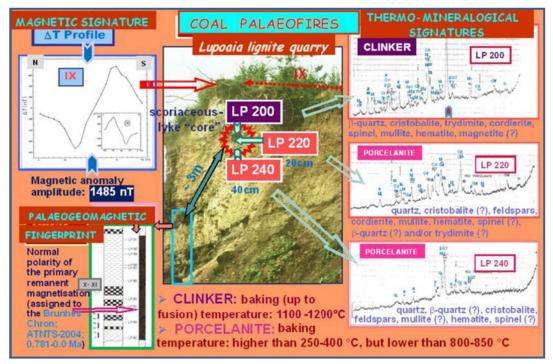


Fig. 2. An example with the effects of the coal fires on the clays: thermo-mineralogical and rock-magnetic signatures recovered from a "porcelanite quarry" in the western Dacic Basin [see Fig. 3, where the case of the highest temperature reached by the clinkers (sample LP200) is illustrated].

The palaeomagnetic signal shows the essential modifications suffered by the magnetic recording medium (in this case, the clays) due to the post-depositional perturbations as result of the natural coal paleofires; changes of the geomagnetic record that had been fixed in the "fresh"/"original" rocks are produced. So, the thermally un-affected clays, characterising the original ("initial") state of the m.r.m., have recorded a reversed polarity, whereas the "porcelanites", characterising the modified ("subsequent") state of the m.r.m., located in the vicinity of the "fresh" clays, have printed a normal polarity of the geomagnetic palaeofield (see Fig. 3). The former polarity zone is assigned to the Gilbert Chron, namely to the lower part of the C2Ar Subchron (ATNTS-2004; 4.187 – 3.596 Ma; Lourens *et al.*, 2004), whereas the latter is assigned to the Brunhes Chron (ATNTS-2004; 0.781 – 0.00 Ma).

Fig. 3. Integrated model which illustrates an example of interdisciplinary approach of the problem concerning the effects of the coal palaeofires on the clays: geomagnetic, thermo-mineralogical and palaeogeomagnetic signals received from clinkers and porcelanites.

The fact that important changes occurred within the "magnetic recording medium" represented by sedimentary rocks is expressed by strong magnetic anomalies detected in areas with coal deposits; in the Lupoaia – Motru area, amplitudes up to 1880 nT were measured (Rădan, 1998; Rădan and Rădan, 2011). An example is illustrated in Fig. 3, where the profile IX relieves a magnetic anomaly of 1485 nT.

Finally, we conclude that by this interdisciplinary approach various palaeo-/ rock-/ magnetic, thermo-mineralogical and geochemical markers were identified, and they explain how coal fires affect the clays, as result of a past natural autocombustion phenomenon taking place in the western Dacic Basin (Romania).

References (selected)

Rădan, S.C. 1998. Contributions to the study of magnetic properties of rocks in a geophysical and geological context (in Romanian). PhD Thesis, University of Bucharest, 332p.

- Rădan, S.C., Rădan S. 2011. Coal palaeofires in the western Dacic Basin (Romania): geophysical, mineralogical and geochemical signatures recovered from porcelanites and clinkers; a case history. Proceedings Book, FESP III "International Meeting of Fire Effects on Soil Properties", 15-19 March, 2011 (in press).
- Rădan, S.C., Rădan, S., Rădan, M. 2001. *Integrated rock-magnetic, thermo-mineralogical and geochemical study of some porcelanites in the Lupoaia zone (Dacic Basin, Romania)* (in Romanian, with an English abstract and summary). St. Cerc. Geologie, 46, București, 111-141.

Contrasting effects of fire on forest and agricultural soils

C. Rumpel^{a*}, B. Mary^b, Y. Rivas^c, Valentin, C.^d, Nocentini, C.^{a,e}, Certini, G^e, Matus, F.^f

^a Bioemco Laboratory, Centre INRA Versailles-Grignon, Thiverval-Grignon, FRANCE;

^b Agronomie, INRA, Mons, France;

^c Escuela de Graduados, Universidad Austral de Chile, Valdivia, Chile;

^e Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Università degli Studi di Firenze, Piazzale delle Cascine, Firenze, Italy

^f Departamento de Ciencias Químicas, Universidad de La Frontera, Temuco, Chile

* rumpel@grignon.inra.fr

Key-words: Charcoal; forest; agriculture.

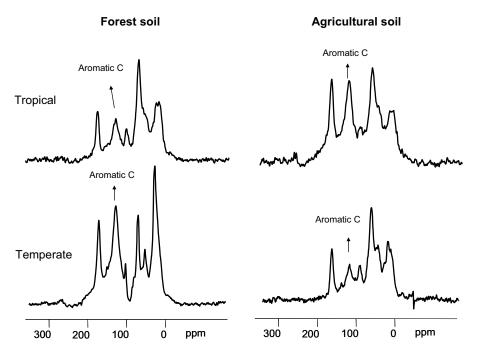
Introduction

Fire affects in the first place the organic matter components of soil. In general, more than 90% of carbon from the aboveground biomass is lost immediately after fire. Charcoal, a stable organic matter pool, formed through the condensation of labile plant litter compounds and the formation of stable aromatic molecules is usually added to soil by wildfires (Alexis et al., 2007). Charcoal consists of a continuum of slightly burned plant residues to completely charred material. The nature and reactivity of this fire derived organic matter component may depend on precursor material as well as particle size (Rumpel et al., 2007; Nocentini et al., 2010). Therefore, charcoal added to soil could be quite different in agricultural and forestry settings. Moreover, at forested sites, in some cases addition of dried aboveground biomass was observed after fire (Alexis et al., 2007).

Objectives

This study compiles data from burned sites under different management in contrasting climatic regions. We hypothesized that fire in different management systems affects differently the organic matter compartment of soil and that these differences would be similar in different climatic regions. The objective of this paper is to point out the contrasting effects that fire may have concerning SOM storage and composition in forest and agricultural soils.

Methodology


We sampled forest and agricultural soils from France, Italy, Chile and Laos to cover several soil types and climatic regions. The agricultural sites were subject to regular slash burning within the last few years. The forest sites were also subject to burning. They were classified to have undergone fire of low medium and high intensity. In addition charcoal added to soil in the two different management systems was sampled and characterized. We studied the elemental composition of charcoal as well as burnt and unburnt soils. The chemical composition of the charcoal fractions, burnt and unburnt soil was studied by solid-state ¹³C nuclear magnetic resonante (NMR) spectroscopy and Curiepoint pyrolysis coupled to gaschromatography and mass spectrometry (GC/MS). These two methods give an overview about the chemical composition of charcoal and soil samples. The lignin component of charcoal and soils was studied after CuO oxidation and analysis of the phenolic CuO oxidation products by gaschromatography. Fire-derived black carbon in soil was quantified alter acid dichromate oxidation.

Results and conclusions

Our results showed that soil carbon stocks were similar even after prolonged slash burning in temperate agricultural soils, whereas increased carbon stocks were noted for tropical agricultural soils (Rumpel et al., 2006). Forest fire of all three intensities led to a decrease of soil carbon stocks compared to the unburned sites and an increase of the aromatic black carbon contribution to SOM (Matus et al., 2011; Certini et al., 2011). This may be explained by the fact, that in forest soils a large part of SOM is stored aboveground in the litter layers, which are usually heavily affected by fire. Moreover, the nature of fire in temperate agricultural systems is very different from forest systems; In agricultural systems, fire usually goes quickly and does rarely affect organic matter stored in the mineral soil. During forest fires, burning is usually stronger and remains for a longer. This impacts the fire effect on SOM composition, as underlined by changes of the soil lignin component and high aromatic carbon contribution (Fig. 1). In contrast, we did not find an increase in the black carbon contribution in agricultural soil under temperate climate. In a tropical environment we found the opposite, i.e. increased black carbon contribution to agricultural soils under slash burning and few aromatic carbon in forest soils (Fig. 1). The high amount of aromatic carbon in tropical agricultural soils could be explained by the woody nature of the precursor material, as slash burning normally affects fallow sites, with shrubs and trees. Thus the black carbon input may (1) be quantitatively more important than in temperate agricultural systems and (2) contain more stable components as mainly coarse charcoal particles were added to soil.

Figure 1. Chemical composition of topsoil horizons from forest and agricultural soils subjected to regular burning under temperate and tropical climate as seen by solid-state NMR spectroscopy.

Fine and coarse charcoal fractions sampled from agricultural and forest sites in a tropical climate were similar with regards to chemical composition and reactivity. Both fractions were changed completely compared to the precursor vegetation (Rumpel et al., 2007). The fine fraction, which contained higher amounts of nitrogen compared to the coarse fraction. Therefore, it was more reactive towards chemical oxidation and acid hydrolysis

compared to the coarse charcoal fraction, and may be more prone to microbial degradation. Charcoal sampled from a temperate agricultural soil, managed for 30 years of wheat stubble burning showed decreased carbon content and C/N ratio compared with the precursor material. But considering only small changes in chemical composition, the small input may be rapidly diluted in the mineral soil, therefore not affecting the quantity and chemical composition of its SOM component.

In conclusion, these opposite results obtained for forest and agricultural soils may be explained by different factors influencing the production and fate of black carbon once deposited on soil. These may include (1) precursor material, (2) nature of fire, (3) horizontal and vertical translocation, (4) susceptibility to microbial degradation and (5) incorporation into soil by bioturbation. Moreover, management practices and given socioeconomic context in different environmental settings strongly determine the effect of fire on soil.

Acknowledgments

The study was funded by the Chilenean (FONDECYT project N° 1060421 and 1080065) the French (INSU, EC2CO project: QUANTICHAR) and Italian (PhD grant) government. We also thank the European commission for financial support under the 7th framework project "EUROCHAR". We acknowledge ECOSSUD-CONICYT C08U01 for supporting collaboration between French and Chilean research groups.

References

- Alexis, M.A., Rasse, D.P., Rumpel, C., Bardoux, G., Péchot, N., Schmalzer, P., Drake, B., Mariotti, A., 2007. *Fire impact on C and N losses and charcoal production in a scrub oak ecosystem.* Biogeochemistry, 82, 201-216.
- Certini G., Nocentini C., Knicker H., Rumpel C., 2011. *Effect of a wildfire on the quantity and quality of soil organic matter in two coastal fire-prone pine forests of Tuscany*. Geoderma, submitted.
- Matus, F., Rivas, Y., Rumpel, C., Knicker, H., Garrido, E., 2011. Comparison of black carbon contribution to Andisols under agriculture and forestry. Geoderma, submitted.
- Nocentini, C., Certini, G., Knicker, H., Francioso, O., Rumpel, C., 2010. *Nature and reactivity of charcoal produced and added to soil during wildfire are particle-size dependent*. Organic Geochemistry, 41, 682-689.
- Rumpel, C., Alexis, M., Chabbi, A., Chaplot, V., Rasse, D.P., Valentin, C., Mariotti, A., 2006. *Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture*. Geoderma, 130, 35-46.
- Rumpel, C., González-Pérez, J. A., Bardoux, G., Largeau, C., and Gonzalez-Vila, F.J., Valentin, C., 2007. *Composition and reactivity of morphologically distinct charred materials left after slash-and-burn practices in agricultural tropical soils*. Organic Geochemistry, 38, 911-920.

Rill erosion rates in burned forests

Joseph W. Wagenbrenner^{a,b*}, Peter R. Robichaud^a

^a U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Moscow, Idaho, U.S.A.

Key-words: Wildfire, burn severity, rill erosion, forest disturbance, sediment flux.

Introduction

Wildfires often produce large increases in runoff and erosion rates (e.g., Moody and Martin, 2009), and land managers need to predict the frequency and magnitude of post-fire erosion to determine the needs for hazard response and possible erosion mitigation to reduce the impacts of increased erosion on public safety and valued resources. The Water Erosion Prediction Project (WEPP) hillslope erosion model uses parameters based on field measurements to calculate the interrill and rill components of erosion (Nearing et al., 1989). Since rill erosion is the dominant hillslope erosion process in burned forests (Pietraszek, 2006), Robichaud et al. (2010) used simulated runoff experiments to compare rill erosion rates among unburned and burned forest plots in the western U.S. These experiments provided measurements of the magnitude of rill erosion in burned areas as compared to rates in unburned areas and also were used to calculate the rill erosion parameters needed for accurate prediction of post-fire erosion rates.

Rill flow, which occurs when sheet or interrill flow becomes concentrated, has more energy available for soil detachment than sheet wash because of the higher shear stresses resulting from the greater flow depths. Rill erosion can occur via several mechanisms, all analogous to stream channel erosion, including bed erosion, bank erosion, headcut formation, and sloughing. The rill erodibility parameter used in the WEPP model relates the sediment load of the flow to the hydraulic shear stress acting on the soil and, along with the hydraulic properties computed from the hydrologic model, is used to predict the rill erosion rates (Foster et al., 1995).

We recently reported some rill erodibility parameters for unburned and burned forests (Wagenbrenner et al., 2010), but it is unclear how much the parameter varies by location (e.g., climate, soil type, vegetation, etc.). Also, we do not know how quickly the rill erodibility parameter changes over time as the burned site recovers to its pre-burned hydrologic condition. Accurate predictions of post-fire erosion rates require that we address these questions.

Objectives

The goal of this study was to compare runoff rates, sediment flux rates, and rill erodibility parameters from simulated rill experiments among burned hillslopes in the western U.S. and Canada. The objectives were to: 1) Determine if the runoff rates or sediment flux rates varied by location or within 3 years of burning; 2) Determine if there are differences among rill erodibility parameters for burned areas based on location; and 3) Determine if the rill erodibility parameters for burned areas change within 3 years of burning.

Methodology

The seven study sites (North 25, Columbia Complex, Tripod, Terrace Mountain, Tower, School, and Red Eagle) (Figure 1) were in coniferous forests burned at high soil burn

^b Washington State University, Biological Systems Engineering, Pullman, Washington, U.S.A. * jwagenbrenner@fs.fed.us

severity and ranged in elevation from 1000 m to 1800 m. Soils and parent materials varied among the sites although the soil textures were all silt loams or sandy loams. Mean annual precipitation at the sites was between 600 and 1400 mm. Slopes ranged from 36 to 51%.

Hillslope plots, 9 m (4 m at the North 25 site) in the direction of the slope gradient, were established within either a few weeks (North 25, Columbia Complex, Tripod, and Terrace Mountain sites) or one year (Tower, School, and Red Eagle sites) of burning (Figure 1). The experiments consisted of controlled releases of water at 5 flow rates (nominally 7, 22, 30, 15, and 48 L min⁻¹) each for 12 min in succession. Runoff samples were collected approximately every 2 min during the 60 min experiments to calculate runoff and sediment flux rates (Robichaud et al., 2010). Runoff velocities and flow depths and widths were measured at each flow rate to calculate the rill erodibility parameters (Wagenbrenner et al., 2010). The experiments were repeated one year later at all sites except Tower and North 25, and two years later at all sites except Tower, North 25, and Terrace Mountain.

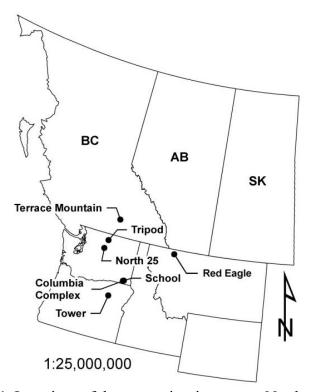


Figure 1. Locations of the seven sites in western North America

Results and conclusions

Runoff rates were highest in the year of the fire and averaged 17 L min⁻¹(n = 4) with values ranging from 12 to 20 L min⁻¹ (Table 1). The runoff rates were lower in the first post-fire year (n = 6), when the mean value was 12 L min⁻¹, but ranged from 4 to 18 L min⁻¹. The means continued to decrease in the second and third post-fire years to 8 and 5.6 L min⁻¹, but the ranges were also were relatively large (3 to 15 L min⁻¹ [n = 4] and 1 to 10 L min⁻¹ [n = 2], respectively) (Table 1). The mean runoff rates in the burned areas initially were 6 times greater than rate measured in unburned plots in the North 25 and Tower sites (2.7 L min⁻¹) (Robichaud et al., 2010) and by the third post-fire year the

burned runoff rates were still 2 times greater than the previously reported unburned rates (Table 1).

The sediment flux rates averaged 2.4 g s⁻¹ and ranged from 0.8 to 4.6 g s⁻¹ among the 4 sites in the year of the fire. In the first post-fire year, the mean sediment flux increased to 3.8 g s⁻¹, despite measured decreases in the 3 sites with data from the year of the fire and the first post-fire year (Table 1); the range also increased in the first post-fire year, and site values were between 0.3 and 9.2 g s⁻¹. The mean sediment flux decreased to 1.6 g s⁻¹ in the second post-fire year, and the 4 site values were between 0.2 and 6.6 g s⁻¹. There was no change in sediment flux in the third post-fire year, when the mean for the 2 sites was 1.7 g s⁻¹ (Table 1). As with the runoff rates, the sediment flux rates in the burned areas were initially 185 times greater than those reported in the unburned plots at the North 25 and Tower sites (0.013 g s⁻¹) (Robichaud et al., 2010). While this ratio decreased over time, the burned rates were still 130 times greater than the unburned plots in the third post-fire year.

Table 1. Mean runoff rates, sediment flux rates, and rill erodibility parameters by site and post-fire year.

PFY refers to post-fire year: PFY 0 is the year of the fire.

Site	PFY	Runoff	Sed. flux	Erodibility
		(L min ⁻¹)	$(g s^{-1})$	(s m ⁻¹)
North 25	0	20	1.7	++
Columbia Complex	0	17	4.6	1.1×10^{-5}
Tripod	0	20	2.7	7.0×10^{-6}
Terrace Mountain	0	12	0.76	8.8 x 10 ⁻⁶
Columbia Complex	1	9.5	3.1	1.0×10^{-3}
Tripod	1	17	2.1	6.3×10^{-6}
Terrace Mountain	1	8.7	0.29	1.1×10^{-5}
Tower	1	18	9.2	5.7×10^{-4}
School	1	16	7.2	4.7×10^{-5}
Red Eagle	1	4.3	0.54	4.3×10^{-5}
Columbia Complex	2	5.1	0.20	1.8 x 10 ⁻⁶
Tripod	2	15	1.6	2.0×10^{-4}
School	2	9.1	4.5	1.0×10^{-4}
Red Eagle	2	2.8	0.27	1.4 x 10 ⁻⁵
School	3	10	3.2	3.3×10^{-5}
Red Eagle	3	1.1	0.21	++

⁺⁺ The erodibility was negative for this site/year combination.

The rill erodibility parameters averaged $8.9 \times 10^{-6} \text{ s m}^{-1}$ for the 3 sites with available data in the year of the fire and there was surprisingly little variation among the sites, despite the wide range in the sediment flux rates (Table 1). The rill erodibility values increased substantially to $2.0 \times 10^{-4} \text{ s m}^{-1}$ in the first post-fire year because of the very large value in the Columbia Complex site (Table 1). The mean rill erodibility decreased to $7.9 \times 10^{-5} \text{ s m}^{-1}$ in the second post-fire year. Only one of the two rill erodibility values was physically realistic in the third post-fire year, and the value was $3.3 \times 10^{-5} \text{ s m}^{-1}$. As with the runoff and sediment flux data, the rill erodibility values from the burned sites were between 6 and 130 times greater than the $1.5 \times 10^{-6} \text{ s m}^{-1}$ reported for the North 25 and Tower unburned sites (Wagenbrenner et al., 2010).

There were large variations in runoff rates, sediment fluxes, and rill erodibility parameters among the seven burned sites in this study. The post-fire runoff and sediment flux rates within sites decreased as time passed, but because of the averaging across sites, the means did not always decrease over time. There was much variability in the rill erodibility

values, and so there was no clear trend over time in these data. It appears that the differences in site characteristics cause enough of a difference in the data that different parameters may be needed to model rill erosion at different burned sites. It is not clear whether each site will need its own set of parameters, or if parameters can be grouped by some physical attribute such as soil texture or some fire-induced effect such as residual organic matter and still accurately represent the physical setting. The model(s) should also account for the rapid changes in the measured runoff and sediment flux rates in the first few years after burning. These results will help focus future analysis and research, and also allow land management agencies to better predict the effects of wildfire, especially with respect to hydrologic recovery.

References

- Foster, G.R., D.C. Flanagan, M.A. Nearing, L.J. Lane, L.M. Risse, and S.C. Finkner. 1995. Hillslope erosion component USDA-Water Erosion Prediction Project: Hillslope profile and watershed model documentation, Report no. 10, National Soil Erosion Research Laboratory, West Lafayette, Indiana.
- Moody, J.A., and D.A. Martin. 2009. Synthesis of sediment yields after wildland fire in different rainfall regimes in the western U.S. Int. Journal of Wildland Fire, 18: 96-115.
- Nearing, M., G. Foster, L. Lane, and S. Finkner. 1989. A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Transactions of the American Society of Agricultural Engineering, 32(5): 1587-1593.
- Pietraszek, J.H. 2006. Controls on post-fire erosion at the hillslope scale, Colorado Front Range. M.S. thesis, Colorado State Univ., Fort Collins.
- Robichaud, P.R., J.W. Wagenbrenner, and R.E. Brown. 2010. Rill erosion in natural and disturbed forests: 1. Measurements. Water Resources Research, 46: W10506.
- Wagenbrenner, J.W., P.R. Robichaud, and W.J. Elliot. 2010. Rill erosion in natural and disturbed forests: 2. Modeling approaches. Water Resources Research, 46: W10507.

Fire impact on soil and nutrient losses in schist mountain areas: central Portugal study

Richard Shakesby^{a*}, Carla Ferreira^b, Rory Walsh^a, Célia Bento^b, António Ferreira^b, Cathelijne Stoof^c

Key-words: wildfire, experimental fire, soil erosion, nutrient losses.

Introduction

Every year wildfires affect large areas world-wide. The Mediterranean region has both indigenous and introduced vegetation (often highly flammable, quick-growing, quick-drying) and a climate (hot and dry summers) well suited to such fires. According to Rulli et al. (2006), the average annual number of wildfires in the Mediterranean had reached 50,000 by the mid-2000s, which is twice the number during the 1970s. In addition, the average annual cumulative burnt area had reached 600,000 ha. Although the climate is conducive to wildfires, the increase in wildfire activity since the 1970s has been largely caused by socio-economic and demographic changes, which have brought about land use changes, notably the widespread abandonment of marginal agricultural areas, resulting in neglect of the vegetation and resulting accumulation of fuel load leading to increased risk of wildfires (Pausas et al., 2008). Despite an ingrained fear of all types of fire in the region, the dramatic increase in fire activity over recent years has led to increased interest in, and acceptance of, the application of prescribed fire as a method of reducing fuel load, thereby reducing the likelihood of severe wildfires and their spread.

The environmental impacts of the fire are not limited to vegetation destruction. Soil structure, organic matter content, aggregate stability and soil water repellency can all be affected, with implications for hydrological and erosion processes as well as for nutrient export (e.g. Shakesby *et al.*, 1993; Coelho *et al.*, 2004). However, despite widespread recognition of the significance of increased losses of soil and nutrients after wildfire, only a few studies have quantified the degradational effects of prescribed fire (e.g. Úbeda *et al.*, 2005). Instead, it has been the benefits of preventing wildfire destruction that have tended to overshadow any concerns about the impacts of prescribed fire on long-term soil degradation.

Objectives

This paper aims to compare the impact of wildfire and prescribed fire on soil degradation, through the monitoring of sediment and nutrient losses following burning in neighbouring, relatively wet Mediterranean locations in north-central Portugal. To achieve this, a wildfire area has been monitored since it was burnt in July 2008 and an experimental fire was performed in a small catchment in February 2009 with similar geology, soils and vegetation. During the experimental fire, parts of the catchment were effectively burnt in a similar fashion to that experienced in a prescribed fire. Hillslope-scale measurements of sediment loss together with organic matter content, selected

^a Department of Geography, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP (UK);

^b Centro de Estudos de Recursos Naturais, Ambiente e Sociedade (CERNAS), Escola Superior Agrária de Coimbra, 3040-316 Bencanta (Portugal);

^c Land Degradation and Development Group, Wageningen University, Wageningen UR. P.O. Box 47, 6700 AA Wageningen (Netherlands).

^{*} R.A.Shakesby@swansea.ac.uk

nutrients (total nitrogen, available phosphorous and potassium, exchange calcium and magnesium) and pH were monitored for eroded sediments collected at different times after fire.

Methodology

The wildfire-affected study area (3.3 ha) is located near Camelo in Castanheira de Pêra municipality (40°02'32" N, 08°09'19" W), and has been monitored since the fire on July 3rd 2008. An experimental fire was carried out on February 20th 2009 in a nearby 9-ha catchment located in Vale Torto (40°06'19" N, 08°07'00.72" W), Góis municipality (Figure 1). Despite variation in fire behaviour within Vale Torto catchment, near-surface average soil temperatures reached during the fire did not exceed 100 °C, and much of the hillslopes where erosion was monitored was burnt in a similar fashion to that of a prescribed fire.

Figure 1. Location of the Camelo and Vale Torto study sites.

Both sites have similarly steep slopes (>20° on long rectilinear sections) and the soils (lithosols) overlying schist bedrock are thin and stony (up to 70% by weight of rock fragments). The climate is relatively wet (mean annual rainfall, 1200mm) but has typical Mediterranean characteristics, rainfall occurring mainly during winter depressional storms, and summers being relatively dry and warm. The vegetation is 'Atlantic-Mediterranean heath', which is dominated by *Pterospartum tridentatum* and *Erica spp*. with sporadic *Pinus pinaster* encroachment. Despite similar vegetation at both sites, the estimated fuel load (averaged from a series of plots) at the Camelo site (65 t/ha) was almost three times higher than at Vale Torto (23 t/ha).

Soil erosion was assessed at the hillslope scale using sediment fences (or 'silt fences'; Robichaud and Brown 2002) installed in topographic concavities near the base of hillslopes. They were constructed from permeable geotextile fabric supported on frameworks of steel stakes. In Camelo, there was a single sediment fence installed immediately after the wildfire, which had a contributing area of 589 m². In Vale Torto catchment, four sediment fences were installed 9 months prior to the fire, removed immediately prior to the fire and reinstalled after it. These fences had a range of contributing areas (498 to 4238 m²). The sediments trapped in all the fences have been collected at varying intervals. Long-term soil losses could be assessed from a weir-pool at Vale Torto and 16 m² erosion plot installed some 10 years before the experimental burn. They showed very low erosion rates.

The collected sediments were dried at 38°C, sieved manually (with mesh sizes ranging from 2 to 50mm) and weighed. Sediment samples from the fine fraction (<2mm) were then subjected to detailed analysis of pH (H₂O) (electrometrically 1:2.5 - L.Q.A.R.S., 1977), organic matter content (infra-red absorption spectrophotometry – LECO, 1997), total nitrogen (Kjeldahl method: Bremner, 1979), available phosphorus and potassium (Egner-Riehm method: LQARS, 1977), and calcium and magnesium (ammonium acetate method at pH7: Chapman, 1979). In addition, *in situ* soil samples were collected at depths of 0-2cm and 2-5cm from burned and unburned areas (in Camelo the unburned samples were collected immediately beyond the burnt area, while in Vale Torto the soil samples were collected before and after the experimental fire) to assess any changes in the same chemical parameters as analyzed for the eroded sediments.

In order to assess ground cover changes, several repeat-photographic plots 0.25 m² in size (five in Camelo and ten in Vale Torto) were set up at representative locations around the catchment. The photographs were taken through time to assess changes in vegetation and stone cover.

Results and conclusions

At the wildfire site, eroded soil was collected during sixteen monitoring periods, between July 2008 (immediately after the wildfire) and May 2010. At the experimentally burnt catchment, there were six pre-fire periods covering nine months, and fourteen post-fire periods, March 2009 to June 2010.

At Vale Torto, erosion increased after the experimental fire, but the peak was delayed. During the first four months after fire (up to June 2009), erosion was 2-5 times higher (0.0008 and 0.0108 t/ha) than before the fire (up to 0.0030 t/ha). During July 2009 - May 2010, however, erosion was up to 15 times higher, with 0.33 t/ha recorded up to a year after fire declining to no more than 0.05 t/ha after March 2010. Despite much higher soil erosion in the post-fire compared with pre-fire measurement period, soil losses overall were relatively modest. The autumn-winter period 2009-10 was particularly wet in Portugal. Rain fell in high amounts but it was probably the high intensities (up to 62.2 mm daily) in the later wet period that caused the higher soil erosion amounts.

As regards soil erosion at the wildfire site, it was on average 1-2 orders of magnitude higher (0.02-0.40 t/ha during the first year after the fire rising to 0.05 to 1.37 t/ha during the second year) than erosion rates measured at Vale Torto. It is difficult to demonstrate unequivocally that this difference in erosion was caused by differences in fire behaviour, but in most respects (geology, soil characteristics, slope gradient) Camelo and Vale Torto appear similar. The main differences are the size of the fuel load (65 vs 23 t/ha, respectively) and the nature of the fire (high severity wildfire *versus* the mostly low-moderate severity experimental fire). Erosion at both study sites shows an overall decline in the quantities of soil collected after winter 2009-10 despite large quantities of rainfall and some high intensities. This is thought to result from sediment 'exhaustion', development of a stone armour and vegetation recovery.

There is clear evidence of preferential removal of organic matter and nutrients after fire at both sites. For example, bulked 0-2cm depth *in-situ* soil <2mm in size sampled from unburned and immediately post-burn soils shows respectively average organic matter contents of 11.0% and 29.2%, compared with averages of 24.0% and 58.0% in post-fire eroded sediment. At Vale Torto, the organic matter content in burned soil ranged between 20.0% immediately after the fire and one year later, and decreased to 11.9% two years after the fire. Sediments eroded before the fire had organic matter contents in the range 15.2-49.9%, whereas after the fire contents rose to 26.4-100%. As regards nutrients,

there were increases in the burned top soil layer and raised values in eroded sediments at both sites. Nutrient concentration in eroded sediments tended to be slightly higher at the wildfire site compared with the average values at the experimentally-burnt catchment, but the latter showed considerable spatial variability. Although ash and charred organic matter doubtless released some nutrients for plant growth, the soil's thin, stony and compacted character probably promoted much of this material being transported downslope.

Post-fire nutrient concentrations in eroded sediment changed with time, but still remained at comparatively high levels one year after fire at both study sites. Despite the rapid appearance of new shoots from resprouting vegetation in particular, the thin degraded nature of the soil was in large part responsible for a slow recovery of other vegetation vital for protecting the soil. As a result, the vegetation did not produce a very effective ground cover for at least two years after the fire.

Our results suggest that progressive degradation of the thin stony soils could result from regular application of prescribed fire. Clearly, this would have serious repercussions for soil degradation and thus forest management. These possible impacts need to be taken into account in future prescribed fire planning.

References

- Bremner, J.M. 1979. Total Nitrogen. *In*: Black, A.; Evans, D.D., White, J.L., Ensmingert, L.E. and Clark, F.E. (eds) *Methods of Soil Analyses. Part 2*. American Society of Agronomy, USA.
- Chapman, H.D. 1979. Total Exchangeable Bases. *In*: Black, A.; Evans, D.D.; White, J.L.; Ensmingert, L.E.; Clark, F.E. (eds) *Methods of Soil Analyses. Part 2*. American Society of Agronomy, USA.
- LECO 1997. Instruction Manual SC-144DR Dual Range Sulfur and Carbon Analysis System. LECO Corporation, St. Joseph.
- Laboratório Químico Agrícola Rebelo da Silva (LQARS) 1977. Sector de Fertilidade do solo. DGSA Ministério da Agricultura, Lisboa.
- Pausas, J.G., Llovet, J., Rodrigo, A. and Vallejo, V.R. 2008. Are wildfires a disaster in the Mediterranean basin? A review. *International Journal of Wildland Fire* 17, 713-723.
- Robichaud, P.R. and Brown, R.E. 2002. *Silt fences: an economic technique for measuring hillslope erosion*. USDA Forest Service General Technical Report RMRS-GTR-95, Rocky Mountain Research Station, Ft. Collins, CO.
- Shakesby, R.A., Coelho, C.O.A., Ferreira, A.D., Terry, J.P. and Walsh, R.P.D. 1993. Wildfire impacts on soil erosion and hydrology in wet Mediterranean forest, Portugal. *International Journal of Wildland Fire* 3, 95-110.
- Úbeda, X., Lorca, M., Outeiro, L.R., Bernia, S. and Castellnou, M. 2005. Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, northeast Spain). *International Journal of Wildland Fire* 14, 379-384.

Soil microbial community structure as affected by a wildfire in laza (NW Spain)

A. Lombao*, A. Barreiro, A. Martín, M. Díaz-Raviña

Departamento de Bioquímica del Suelo, Instituto de Investigaciones Agrobiológicas de Galicia (CSIC), Apartado 122, 15780 Santiago de Compostela (Spain) * alba.lombao@yahoo.es

Key-words: Fire, microorganisms, PLFA pattern, post-fire stabilisation treatments.

Introduction

Microorganisms are the main agents responsible for long-term sustainability of soil ecosystems since they control the breakdown of organic matter and, hence, the net fluxes and amounts of soil carbon and nutrients through decomposition, mineralization and immobilization processes (Nannipieri et al., 2003); there is, therefore, concern about the effect of wildfires on soil microbial communities. Studies concerning the characterization of microbial communities in burnt soils are scarce and have focused on soil biochemical properties (Carballas et al., 2009); however, despite its interest, there is no information on microbial diversity or microbial community structure of soils affected by wildfires.

Nowadays molecular biology techniques, such as the analysis of phospholipid fatty acid patterns, allow us to study the microbial community structure of soil ecosystems. Thus, by phospholipid fatty acid analysis it is possible to examine broad scale patterns in microbial composition and generally, after the application of multivariate statistical analyses, the whole community fatty acids profiles indicate which communities are similar or different (Frostegård et al., 2011). Characterization of soil microbial communities by this technique gives results that very closely represent the *in situ* soil conditions and hence it is currently used for monitoring soil quality changes under wide ranges of soil types, management practices, climatic origins and different perturbations (Frostegård et al., 1993a,b; Zelles, 1999; Díaz-Raviña et al., 2006; Barreiro et al., 2010).

Objective

The present work is the first attempt to characterize, by means of the analysis of phospholipid fatty acid (PLFA) patterns, soil microbial population in a forest ecosystem from temperate humid zone (Laza, NW Spain) affected by a high severity wildfire.

Methodology

The study was performed in a shrubland ecosystem located in Laza (Ourense, NW Spain) affected by a wildfire on September 2010 (1700 ha of surface were burned) and highly susceptible to soil erosion after the fire event (slope 30-50%). Four treatments were stablished by triplicate (3 x 20 m plots): unburnt control soil (U), burnt soil (B), burnt soil with rye seeds at a rate of 10 g m⁻² (B+S), burnt soil with 250 g m⁻² of straw mulch (B+M). Initially the unburnt soil showed a silt loam texture, pH of 3.7 and high organic matter content of 261 g kg⁻¹) and burnt soil had a slightly higher pH (4.2) and lower organic matter content (93 g kg⁻¹). Measurements of these biochemical and microbiological properties were made on burnt soil samples collected from the top layer (0-2 cm) immediately and 4 months after the wildfire as well as on unburnt soil samples in an adjacent plot used as control.

The microbial community structure was determined by the PLFA analysis using the procedure and nomenclature described by Frostegård et al. (1993b). The PLFAs were designated in terms of total number of carbon atoms, double bonding and position of the double bonds. The prefixes a, i, cy and Me refer to anteiso, iso, cyclopropyl and methyl branching, respectively. Non-specific branching was designed by br whereas cis and trans configurations were indicated by c and t, respectively. The total microbial biomass (totPLFAs) was estimated as the sum of all the extracted PLFAs. The sum of the PLFAs, considered to be predominantly of bacterial origin (i15:0, a15:0, i16:0, 16:1\omega9, 16:1\omega7c, i17:0, a17.0, cy17:0, 18:1ω7 and cy19:0), was used as an index of the bacterial biomass (bactPLFAs), and the quantity of the 18:2\omega6, 18:\omega19, 18:3\omega3 and 16:1\omega5 PLFA were used as an indicator of the fungal biomass (fungPLFAs) (Frostegård and Bååth, 1996; Kaiser et al., 2010). The i14:0, i15:0, i16:0 and 10Me18:0 PLFAs are predominantly found in gram-positive (G⁺) bacteria, and the cy17:0, cy19:0, 16:1ω7c and 18:1ω7 PLFAs characterise gram-negative (G) bacteria (Basanta et al., 2006). They were used to calculate the G⁻/G⁺ bacteria ratio. The data corresponding to the concentrations of all the individual PLFAs, expressed in mole percent and logarithmically transformed, were subjected to a principal component analysis (PCA) to elucidate the main differences in the PLFA patterns.

Results and conclusions

The total microbial biomass and the biomass of specific groups obtained in the 0-2 cm layer of the different soil treatments immediately after wildfire are showed in Table 1.

Table 1. Total (TotPLFA), fungal (FungPLFA) and bacterial (BactPLFA) biomass, expressed as phospholipids fatty acids (PLFAs) content; Gram-negative and Gram-positive bacteria; and FungPLFA/BactPLFA and G⁻/G⁺ ratios in different soil treatments (mean values±SD of three field replicates) immediately after the wildland fire. Treatments: Treatments: U, unburned soil; B, burnt soil; B+S, burnt soil plus seeding: B+M, burnt soil plus straw addition.

		Soil treatments		
	U	В	B+S	B+M
Total PLFA (nmol g ⁻¹)	358 ± 46	189 ± 24	256 ± 80	223 ± 47
FungPLFA (nmol g ⁻¹)	84.2 ± 12.1	38.8 ± 4.8	50.7 ± 19.0	44.7 ± 8.4
BactPLFA (nmol g ⁻¹)	123 ± 15	64.8 ± 8.9	87.6 ± 26.8	76.2 ± 16.1
Gram bactPLFA (nmol g ⁻¹)	70.6 ± 9.4	35.6 ± 4.7	45.3 ± 14.5	40.5 ± 6.8
Gram ⁺ bactPLFA (nmol g ⁻¹)	33.4 ± 3.0	18.4 ± 2.7	26.3 ± 8.4	22.4 ± 5.6
FungPLFA/BactPLFA	0.68 ± 0.02	0.60 ± 0.01	0.57 ± 0.04	0.59 ± 0.02
Gram ⁻ /Gram ⁺	2.11 ± 0.09	1.93 ± 0.02	1.74 ± 0.16	1.83 ± 0.14

The phospolipid fatty acid analysis indicated that the totPLFAs in the burnt soils were 30-50% of those in the corresponding unburnt samples. Specific groups of microorganisms were also affected by fire in the same way as totPLFA; the extent of these changes was similar for different microbial groups although fungPLFA/bacPLFA and Gram⁺/Gram⁺ ratios seem to decrease slightly after fire. A similar initial microbial biomass reduction, estimated by means of PLFA analysis, was also observed for several burnt soils in Atlantic and Mediterranean forests (Basanta el al., 2006; Barreiro et al., 2010; Barcenas-Moreno et al., 2011). These effects diminished over time but they still persist after 4 months; thus, the principal component analysis performed with the whole data set (samples collected immediately and 4 months after the fire) showed that PLFA pattern

allow us to differentiate between unburnt and burnt samples (data not shown). The data indicated the usefulness of the PLFA analysis to detect the immediate and short-term impact of wildfire and soil stabilization treatments on the soil microbial communities and hence on the soil quality of these soils from NW Spain.

Acknowledgements

This study was supported by the Ministerio de Ciencia e Innovación (AGL2008-02823), Spain and by the Consellería de Medio Rural de la Xunta de Galicia (08MRU002400PR).

References

- Barcenas-Moreno, G., García-Orenes, F., Mataix-Solera, J., Mataix-Beneyto, J., Bååth, E. 2011. Soil microbial recolonisation after a fire in a Mediterranean forest. *Biology and Fertility of Soils* (in press. DOI: 10.1007/s00374-010-0532-2).
- Barreiro, A., Martín, A., Carballas, T., Díaz-Raviña, M. 2010. Response of soil microbial communities to fire and fire fighting chemicals. *Science of the Total Environment* 408: 6176-7178.
- Carballas, T., Martín, A., Díaz-Raviña, M. 2009. Efecto de los incendios forestales sobre los suelos de Galicia. In: *Efecto de los incendios forestales sobre los suelos en España* (Artemi Cerdá, Jorge Mataix-Solera, eds.). Cátedra Divulgación de la Ciencia. Universitat de València, Cap. 3.6, p. 269-301.
- Díaz-Raviña, M., Bååth E., Martín, A., Carballas, T. 2006. Microbial community structure in forest soils treated with a fire retardant. *Biology and Fertility Soils* 42: 465-471.
- Frostegård, A., Bååth, E. 1996. The use of phospolipid fatty acid analysis to estimate bacterial and fungal biomass in soil. *Biology and Fertility of soils* 22:59-65.
- Frostegård, A., Tunlid, A., Bååth, E. 1993a. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. *Applied and Environmental Microbiology* 59: 3605–3617.
- Frostegård, A., Tunlid, A., Bååth, E. 1993b. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. *Soil Biology and Biochemistry* 25:723-730.
- Frostegård, A., Tunlid, A., Bååth, E. 2011. Use and misuse of PLFA measurements in soils. *Soil Biology and Biochemistry* (in press. DOI:10.1016/jsoilbio.2010.11.021).
- Kaiser, C., Frank, A., Wild, B., Koranda, M., Richter, A. 2010. Negigible contribution from roots to soil-borne phospholipid fatty acid fungal biomarkers 18:2ω6,9 and 18:1ω9. *Soil Biology and Biochemistry* 42:1650-1652.
- Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L, Pietramellara, G., Renella, G. 2003. Microbial diversity and soil functions. *European Journal Soil Science* 54: 655-670.
- Zelles, L. 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. *Biology Fertility Soils* 29: 111-129.

Immediate and short-term effects of a wildfire on soil biochemical properties in Laza (NW Spain)

A. Barreiro*, A. Lombao, A. Martín, M. Díaz-Raviña

Departamento de Bioquímica del Suelo, Instituto de Investigaciones Agrobiológicas de Galicia (CSIC), Apartado 122, 15780 Santiago de Compostela (Spain)

* anabarreiro@iiag.csic.es

Key-words: Fire, microbial biomass, enzymatic activities, soil respiration, [3H]-leucine incorporation.

Introduction

Soil microorganisms play a very important role in soil fertility not only because of their ability to carry out biochemical transformation but also due to their importance as a source and sink for mineral nutrients (Nannipieri et al., 2003). Therefore, the soil microbial communities response to fire is of crucial importance to evaluate soil quality changes induced by this perturbation as well as to study the recovery of these fire affected soils.

Objective

The aim of the present study was to examine the immediate and short-term impact of a high severity wildfire on soil microbial communities in a forest ecosystem from temperate humid zone (Laza, NW Spain).

Methodology

The study was performed in a shrubland ecosystem located in Laza (Ourense, NW Spain) affected by a wildfire on September 2010 (1700 ha of surface were burned) and highly susceptible to soil erosion after the fire event (slope 30-50%). Four treatments were stablished by triplicate (3 x 20 m plots): unburnt control soil (U), burnt soil (B), burnt soil with rye seeds at a rate of 10 g m⁻² (B+S), burnt soil with 250 g m⁻² of straw mulch (B+M). Initially the unburnt soil showed a silt loam texture, pH of 3.7 and high organic matter content of 261 g kg⁻¹) and burnt soil had a slightly higher pH (4.2) and lower organic matter content (93 g kg⁻¹). The response of microbial communities was analyzed measuring microbial biomass C and several properties related with the activity of soil microorganisms such as soil respiration, an index of overall microbial activity, specific enzymatic activities related with the C and N cycles. The microbial biomass C was determined using the fumigation-extraction method (Díaz-Raviña et al., 1992) and soil respiration by measurement of the CO₂ evolved during 10 days (Díaz-Raviña et al., 1988). The β-glucosidase, and urease activities were assayed as reported by Eivazi and Tabatabai (1988) and Kandeler and Geber (1988). The bacterial activity was also determined by means of the incorporation of labelled leucine into bacteria extracted after homogenization-centrifugation (Bååth et al., 2001). Measurements of these biochemical and microbiological properties were made on burnt soil samples collected from the top layer (0-2 cm) immediately and 4 months after the wildfire as well as on unburnt soil samples in an adjacent plot used as control.

Results

The biochemical properties obtained in the 0-2 cm layer of the different soil treatments immediately and 4 months after wildfire are showed in Table 1. The data showed that

wildfire initially reduced mass and activity, particularly the later, of soil microorganisms, but results varied depending on the microbial property analyzed; thus, for example, while β -glucosidase activity was slightly modified as consequence of high burn severity, microbial C was decreased by 55% and reductions for urease and leucine incorporation rates reached values of 85-90%. In contrast, soil respiration values increased notably following wildfire.

Table 1. Soil properties in the different soil treatments immediately and 4 months after the wildfire (mean values±SD of three field replicates). Treatments: U, unburned soil; B, burnt soil; B+S, burnt soil plus

seeding; B+M, burnt soil plus straw addition.

Soil property	Time		nents		
	(months)	U	В	B+S	B+M
Microbial biomass C (mg kg ⁻¹)	0	803 ± 71	351 ± 49	355 ± 15	358 ± 70
	4	1135 ± 108	508 ± 74	520 ± 99	553 ± 130
Glucosidase (µg p-nitrophenol g ⁻¹ h ⁻¹)	0	49.0 ± 2.8	51.7 ± 22.6	50.5 ± 3.7	49.3 ± 20.6
((0))	4	37.7 ± 0.6	83.2 ± 13.8	80.6 ± 31.8	96.6 ± 11.4
Urease (µg NH ₄ ⁺ g ⁻¹ h ⁻¹)	0	16.9 ± 2.1	2.7 ± 0.9	2.5 ± 0.3	2.4 ± 1.2
	4	21.8 ± 1.3	6.8 ± 0.4	8.3 ± 2	7.8 ± 0.8
Bacterial activity (x 10 ⁻¹⁷ mol Leu ml ⁻¹ h ⁻¹)	0	3.78 ± 1.02	0.66 ± 0.06	0.37 ± 0.10	0.07 ± 0.01
,	4	6.44 ± 1.66	4.54 ± 0.86	7.38 ± 2.63	4.68 ± 1.32
Soil respiration (mg kg ⁻¹)	0	958 ± 38	1518 ± 376	1681 ± 94	1600 ± 115

Thereafter the microbial biomass and activity recovered, but three months after the fire the values were still lower than those in the corresponding unburnt soil. This is consistent with previous studies performed in the same temperate humid zone showing changes in several biochemical and microbiological properties as consequence of the impact of prescribed fires and wildland fires, the effect being highly dependent on soil temperature reached during the fire (Díaz-Raviña et al., 1992; 1996; Basanta et al., 2002, 2004; Villar et al., 2004; Carballas et al., 2009). The data also indicated that the biomass C induced changes are more persistent that those observed on microbial activity indices.

Conclusion

The data clearly showed that high severity wildfire modified drastically mass and activity of microorganisms of these soils from temperate humid zone, although microbial parameters showed a different sensitivity to detect the impact of fire.

Acknowledgements

This study was supported by the Ministerio de Ciencia e Innovación (AGL2008-02823), Spain and by the Consellería de Medio Rural de la Xunta de Galicia (08MRU002400PR).

References

Bååth, E., Petersson, M., Söderberg, K.H. 2001. Adaptation of a rapid and economical microcentrifugation method to measure thymidine and leucine incorporation by soil bacterial. *Soil Biology and Biochemistry* 33: 1571-1574.

Basanta, M.R., Díaz-Raviña, M., Cuiñas P., Carballas, T., 2004. Field data of microbial response to a fire retardant. *Agrochimica* 48: 51-60.

Basanta, M.R., Díaz-Raviña, M., González-Prieto, S.J., Carballas, T., 2002. Biochemical properties of forest soils as affected by a fire retardant. *Biology and Fertility of Soils* 36: 377-383.

- Carballas, T., Martín, A., Díaz-Raviña, M. 2009. Efecto de los incendios forestales sobre los suelos de Galicia. En: *Efecto de los incendios forestales sobre los suelos en España* (Artemi Cerdá y Jorge Mataix-Solera, eds.). Cátedra Divulgación de la Ciencia. Universitat de València, Cap. 3.6, p. 269-301.
- Díaz-Raviña, M., Acea, M.J., Carballas, T. 1988. Microbial biomass and metabolic activity in four acid soils. *Soil Biology and Biochemistry* 20: 817-823.
- Díaz-Raviña, M., Prieto, A., Acea, M.J., Carballas, T. 1992. Fumigation-extraction method to estimate microbial biomass in heated soils. *Soil Biology and Biochemistry* 24:259-264.
- Díaz-Raviña, M., Prieto, A., Bååth, E. 1996. Bacterial activity in a forest after soil heating and organic amendments measured by the thymidine and leucine incorporation techniques. *Soil Biology and Biochemistry* 28: 419-426.
- Eivazi, F., Tabatabai, M.A., 1988. Glucosidases and galactosidases in soils. *Soil Biology and Biochemistry* 20: 601-606.
- Kandeler, E., Gerber, H., 1988. Short-term assay of urease activity using colorimetric determination of ammonium. *Biology and Fertility of Soils* 6: 68-72.
- Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L, Pietramellara, G., Renella, G. 2003. Microbial diversity and soil functions. *European Journal Soil Science* 54: 655-670.
- Villar, M.C., Petrikova, V., Díaz-Raviña, M., Carballas, T. 2004. Changes in soil microbiol biomass and aggregate stability following burning and soil rehabilitation. *Geoderma* 122: 73-82.

Near infrared spectroscopy to estimate temperatures of burned soils: importance of sample variability in model construction

Andrea Pérez-Bejarano^{a*}, César Guerrero^a, Jorge Mataix-Solera^a, Victoria Arcenegui^a, Gema Bárcenas^b, Jose Martín Soriano-Disla^a, Jorge Mataix-Beneyto^a

^a Environmental Soil Science Group (GEA). Departmet of Agrochemistry and Environment. Miguel Hernández University of Elche, Avd. De la Universidad, s/n, 03202 Elche, Alicante (Spain);
 ^b MED_Soil Research Group. Department of Crystallography and Agrochemistry. University of Sevilla.
 *andrea.perez@umh.es

Key-words: burned soils, fire severity, fire intensity, wildfires.

Introduction

Near infrared spectroscopy (NIR) has been used to develop models to estimate the Maximum Temperature Reached (MTR) in burned soils (Guerrero et al., 2007; Arcenegui et al., 2008; Arcenegui et al., 2010). NIR spectroscopy obtains the reflectance spectra of a sample in the range of the NIR region (780-2500 nm). In this region, different chemical bonds of organic molecules absorb the radiation. The radiation is absorbed in accordance with the concentration of these compounds. Therefore, NIR spectra contain information about the organic composition of the soil, which can be modified by the effect of fire (Guerrero et al., 2007).

To obtain models with high accuracy, the samples used to construct them have to be representative of those that we want to predict. For this reason, to estimate the MTR in samples burned in wildfires -where there is high spatial heterogeneity- the models constructed should include this variability.

Objectives

The main objective of this study is to assess the prediction capacity of NIR models as a function of the variability included in them by comparing models constructed from a heated 'pooled sample' (obtained by mixing different samples), with others constructed from heated non-mixed samples (which it is thought that they will include more variability in the model than one pooled sample).

Methodology

Soils from three different sites in the province of Alicante (SE Spain) were sampled (the main soils characteristics are given in table 1). In each site, six samples were collected. One sample was obtained by pooling different subsamples which were taken from different points (named pooled sample), and the other five were taken as individual samples (named from A to E), one sample per point. Once in laboratory, all samples were air-dried and sieved to <2mm.

Table 1. main characteristics of soils (0-5cm depth)

Site ^a	Tm ^b (°C)	Pm ^b (mm)	Soil type (SSS, 2006)	Texture ^c (% sand, silt, clay)	OM ^d (%)	рН	CaCO ₃ (%)
PI	15.8	277	Xerorthent	31, 56, 13 SL	7.7	8.0	7.0
M	18.2	302	Xerorthent	57, 22, 21 CSL	6.2	7.9	57.6
A	13.8	706	Haploxeroll	33, 32, 35 CL	12.6	7.5	46.9

^a PI: Sierra de Pinoso; M: Sierra del Maigmó; A: Sierra de Aitana.

^d OM: organic matter content.

^bTm: Mean annual temperature; Pm: Mean annual precipitation.

^c Sand: 2-0.05 mm; silt: 0.05-0.002 mm; clay: <0.002 mm.; SL: silty loam; CSL: clay sandy loam; CL: clay loam.

To construct the models, the six samples per site were split into aliquots which were heated in a muffle-furnace at different temperatures (70°, 100°, 200°, 300°, 400°, 500°, 600° and 700°C) and times (between 5'and 60 minutes with a 5 minutes interval), obtaining 96 heated aliquots per sample. The soil temperature was recorded every 30 seconds with a thermocouple.

Model construction

After cooling, the NIR spectrum of each aliquot was obtained using a Fourier-Transform near-infrared spectrophotometer which scanned the samples on reflectance mode from 12.000 to 3800cm⁻¹. Then the spectra were related with the MTR using PLS (Partial Least Squares) regressions.

To assess the differences in the prediction capacity, different groups of models for each soil were constructed:

1- Models of non mixed samples:

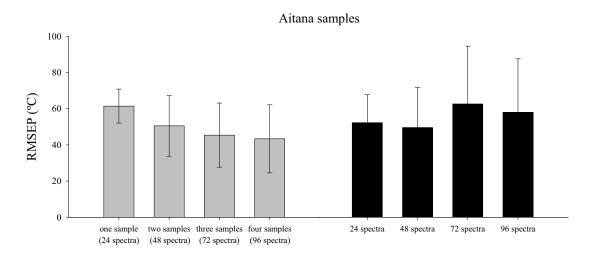
These models were constructed with the spectra of the heated aliquots of the non mixed samples. They were constructed with each of the individual samples and making pairs, sets of three and sets of four samples, with all possible combinations between them. These models were applied to estimated the MTR of the individual samples which did not belong to the model applied (table 2).

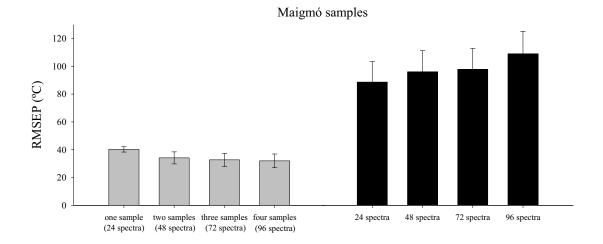
2- Models of the pooled sample:

These models were constructed with the heated aliquots of the pooled sample. With the aim to compare these models with those constructed with the non mixed samples, four models with different number of spectra (24, 48, 72 and 96) were constructed. These models were applied to estimated the MTR of the heated individual samples (table 2).

Table 2. scheme of the samples used for each model construction, and the predictions realized with each model.

	model.							
	Models constructed with one sample (n=24)		Models constructed with two samples (n=48)		ructed with es (n=72)	Models constructed with four samples (n=96)		
Sample used in the model construction	Predicted samples	Samples used in the model construction	Predicted samples	Samples used in the model construction	Predicted samples	Samples used in the model construction	Predicted samples	
a	b, c, d, e	a+b	c, d, e	a+b+c	d, e	b+c+d+ e	a	
b	a, c, d, e	a+c	b, d, e	a+b+d	c, e	a+c+d+e	ь	
c	a, b, d, e	a+d	b, c, e	a+b+e	c, d	a+b+d+e	С	
d	a, b, c, e	a+e	b, c, d	a+c+d	b, e	a+b+c+e	d	
e	a, b, c, d	b+c	a, d, e	a+c+e	b, d	a+b+c+d	e	
		b+d	a, c, e	a+d+e	b, c			
		b+e	a, c, d	b+c+d	a, e			
-		c+d	a, b, e	b+c+e	a, d	-		
		c+e	a, b, d	b+d+e	a, c			
		d+e	a, b, c	c+d+e	a, b			
Pooled sample with 24 spectra	All individual samples	Pooled sample with 48 spectra	All individual samples	Pooled sample with 72 spectra	All individual samples	Pooled sample with 96 spectra	All individual samples	


All of the models were constructed using the same conditions and procedures, ie: the rank of temperatures was the same in all the models, they were constructed using the entire spectral region, the same preprocessing of the spectra, and the same rank (number of PLS included in the model).


To assess differences between the two groups of models (models of pooled sample and models of non-mixed samples), a comparison among the mean error of prediction (RMSEP) was done. To do this, an average of the prediction results of models of non-mixed samples for each category (24, 48, 72 and 96 samples) was done. A description of statistics used follows:

$$RMSEP = \sqrt{\frac{1}{n}} \cdot \sum_{i=1}^{n} (Differ_i)^2$$
 where $Differ_i = (Y_i^{measured}) - (Y_i^{predicted})$

Results and conclusions

As it is shown in figure 1, generally the lower values of RMSEP were obtained with the models of non-mixed samples. The reason seems to be because these models contain more information about the soil variability and can adequately describe the diversity found in the samples to predict.

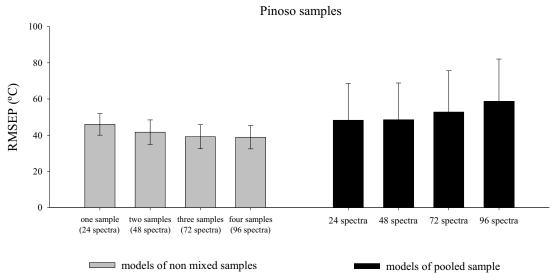


Figure 1. mean error of prediction of the different groups of models for each soil.

On the other hand, the models of non-mixed samples show better results while increasing the number of samples, being the opposite for models of pooled sample. These could be because in the models of non-mixed samples we are adding spectra of individual samples which provides new information to the model, but in the models of pooled sample we are always adding the same information.

In conclusion, the results show that the lower values of RMSEP were obtained with the models constructed with the highest number of non-mixed samples. Our results demonstrate that including variability in NIR models is of a great importance to obtain highly accurate predictions.

References

Arcenegui, V., Guerrero, C., Mataix-Solera, J., Mataix-Beneyto, J., Zornoza, R., Morales, J., Mayoral, A.M. 2008. The presence of ash as an interference factor in the estimation of the maximum temperature reached in burned soils using near-infrared spectroscopy (NIR). Catena 74: 177–184.

Arcenegui, V., Mataix-Solera, J., Zornoza, R., Pérez-Bejarano, A., Mataix-Beneyto, J., Gómez, I. 2010. Estimation of the maximum temperatures reached on burned soils using near-infrared spectroscopy: effects of soil sample pre-treatment. Geoderma 158: 85-92.

Guerrero, C., Mataix-Solera, J., Arcenegui, V., Mataix-Beneyto, J., Gómez, I. 2007. Near-infrared spectroscopy to estimate the maximum temperatures reached on burned soils. Soil Science Society of America Journal 71: 1029-1037.

Soil Survey Staff. 2006. Keys to Soil Taxonomy. 10th ed. NRCS, Washington, DC.

ADAPTACLIMA - Adaptation to the effects from climate change in the AVE

António Bento Gonçalves^a*, António Vieira^a, Flora Leite^b, José Martins^c, Domingos Silva^c, Vera Soares^c

^a Centro de Estudos em Geografia e Ordenamento do Território (CEGOT), Núcleo de Investigação em Geografia e Planeamento (NIGP), Departamento de Geografia, Minho University, Campus de Azurém, 4800-058 Guimarães (Portugal);

^b Centro de Estudos em Geografia e Ordenamento do Território (CEGOT), Núcleo de Investigação em Geografia e Planeamento (NIGP), Departamento de Geografia (Ph.D. Student), Minho University, Campus de Azurém, 4800-058 Guimarães (Portugal);

c AMAVE Associação de Municípios do Vale do Ave. * bento@geografia.uminho.pt

Key-words: Ave, Forest fires, climate change, temperature, rain.

Introduction and objectives

There is a wide array of studies and evidence that climate is changing and these changes will manifest themselves very differently in different areas of the planet.

The project "ADAPTACLIMA - Adaptation to the effects from climate change" (InterReg Sudoe) is based on the preparation of a series of studies on forecasting and analysing the vulnerabilities and potentialities in Southeast European territories, with the aim of creating a collaborative network of stable institutions permitting both the transmission of knowledge and exchange of experiences among members of the partnership as well as mutual learning and co-generation of new knowledge. The fundamental task of the network will be the preparation of a Plan for Adaptation to Climate Change in Space SUDOE, that can be implemented in the participating areas. Among the challenges facing SUDOE to combat climate change, two of them represent the strategic objectives of the project ADAPTACLIMA: on the one hand, the alert the populations of the SUDOE space to the real consequences of climate change; and, secondly, to promote and develop measures which will help adapt society to future scenarios derived from these changes.

In the northwest of Portugal and in particular in AVE region, one of the main impacts expected from climate change is an increase in number and size of fires and their recurrence.

As a consequence, an increase of the erosion of the top soil layer, where the only nutrients available are located in most Portuguese soils, is expected (Bento Gonçalves et al., 2008).

Methodology

Under the project ADAPTACLIMA, we proceeded assess the magnitude of climate change on various regions of South-western Europe, including the AVE and use the results of project PRUDENCE (http://prudence.dmi.dk) containing a series of climate change projections for Europe with a horizontal resolution of about 50 km.

These projections were made by different institutions using different meteorological European regional climate models based on global model HadAM3H, which is one of the global models used in IPCC (Intergovernmental Panel on Climate Change) and one that offers better results for the current climate.

Thus, for each of the regional model we obtained a projection for the period 2071-2100 and a control simulation for the period 1961-1990, which served as the basis for the simulation.

Following this preliminary analysis, a more detailed analysis for the region of AVE was carried out, taking into account the meteorological stations deployed in the north-western Portuguese territory.

With no weather stations in AVE, we chose the three closest: Porto (Pedras Rubras), Braga and Montalegre, having analyzed the series of maximum, minimum and average temperature, and precipitation (total) of the three stations mentioned above, located in Northwest Portugal (figure 1, TABLE I, II), during a 39 year period (1970-2009), in order to identify and quantify the major trends.

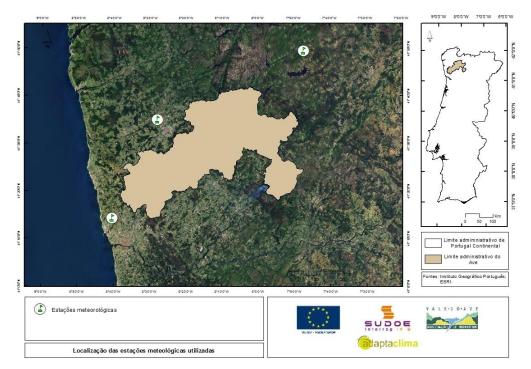
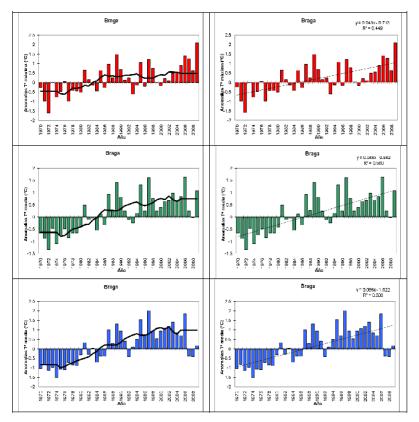


Figure 1. Weather stations

Table I. Weather stations used for temperature

	Station	Inicial year	Final year	Type of station
1	Braga (Posto Agrário)	1970	2006	Manual
1	Braga (Merelim)	2007	2009	Automatic
2	Montalegre	1970	1999	Manual
2	Montalegre	2000	2009	Automatic
3	Porto/Pedras Rubras	1970	1998	Manual
3	Pedras Rubras	1999	2009	Automática

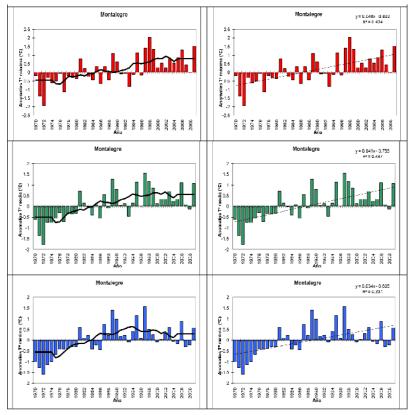
Source: Consellería de Medio Ambiente Territorio e Infraestruturas. MeteoGalicia.

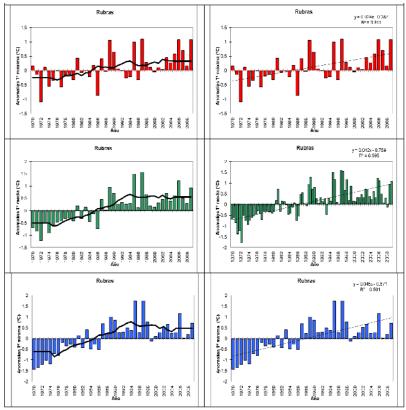

Table II. Weather stations used for rainfall

	Station	Inicial year	Final year	Type of station
1	Braga (Posto Agrário)	1970	2006	Manual
1	Braga (Merelim)	2007	2009	Automatic
2	Montalegre	1970	2009	Manual
3	Porto/Pedras Rubras	1970	2009	Manual

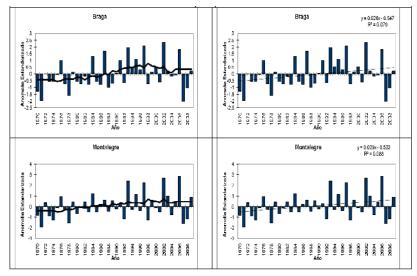
Source: Consellería de Medio Ambiente Territorio e Infraestruturas. MeteoGalicia.

Results and conclusions


Annually, an increase of maximum temperature, minimum and average of around 0.5 ° C/decade is observed for the series of Braga and Montalegre (Figure 2, 3). For the series of P. Rubras, there is an increase of 0.5° C/decade in average and minimum temperature, and 0.2°C/decade for the maximum temperature (Figure 4).


Source: Consellería de Medio Ambiente Territorio e Infraestruturas. MeteoGalicia. **Figure 2.** Temperature annual trend (Braga weather station)

Source: Consellería de Medio Ambiente Territorio e Infraestruturas. MeteoGalicia. **Figure 3.** Temperature annual trend (Montalegre weather station).


Source: Consellería de Medio Ambiente Territorio e Infraestruturas. MeteoGalicia. **Figure 4.** Temperature annual trend (P. Rubras weather station).

The increase in temperature is more significant from the mid 1970's as seen in the sharp change of outstanding temperature anomalies (Figure 2, 3. 4). The highest increase (0.7°C/decade) is observed in the spring series and for all temperatures considered. On a monthly bases we highlight the month of March, with an increase of close to 1°C/decade for the series of Braga and Montalegre and 0.6 °C/decade for P. Rubras. There is also a decrease in the frequency of cold days and nights, especially in the spring and summer. In general, it is possible to identify a significant increase in the number of hot days in the spring and summer seasons (about 1.5 days per decade in spring and 2.5 days per decade in summer). In the analysis of the frequency of warm nights, there is also an increase in October for the series of Braga and in all seasons for the series of P. Rubras.

Regarding the results of the trends observed for rain, it is possible to observe an increase in the rainfall in autumn (1.58%/decade for Braga, 1.97%/decade for Montalegre) (Figure 5).

Source: Consellería de Medio Ambiente Territorio e Infraestruturas. MeteoGalicia. **Figure 5.** Rainfall annual trend (Braga and Montalegre weather station)

The weather conditions that occur in Portugal, especially during the summer, are favourable to fires. However, the ignition and spread of a fire depends on the interaction of several factors besides the weather, including the presence of fuel and the rugged terrain.

It is expected that the fire regimes immediately respond to climate change, and may even outweigh the direct effects of global warming in the patterns of specie distribution and productivity.

In terms of plant life, those better adapted to fire will dominate, generating monospecific formations or small variations at the same age

Climate change may cause a substantial increase in risk fire. In addition, in any of the scenarios described, the period of fire occurrence will extend throughout the year, implying a larger fire-fighting organizational structure, which will maintain higher levels of alert for longer periods each year.

References

- Agência para a Prevenção de Incêndios Florestais/Instituto Superior de Agronomia, Plano Nacional Defesa da Floresta Contra Incêndios. Estudo Técnico I Diagnóstico, Visão e Objectivos Estratégicos, 2005.
- Bento Gonçalves, A. J., Vieira, António A., Ferreira, António D. e Coelho, Celeste, "Caracterização geomorfológica e implementação de um sistema integrado de informação, em ambiente SIG, no âmbito do projecto RECOVER (Estratégias de remediação de solos imediatamente após incêndios florestais". Revista Geografía Ensino & Pesquisa, V. 12, nº 1, Santa Maria, Rio Grande do Sul, Brasil, 2008, p.3721-3735.
- F. D. Santos, K. Forbes, R. Moita (editores), Mudança Climática em Portugal. Cenário, Impactes e Medidas de Adaptação SIAM, Sumário Executivo e Conclusões, Gradiva, Lisboa, 2001.
- Instituto do Ambiente, Programa Nacional para as Alterações Climáticas. Anexo Técnico, Floresta, 2006.
- MeteoGalicia, Informe sobre impactos en el Val do Ave Portugal. Relatório Interno. Consellería de Medio Ambiente Territorio e Infraestruturas, Galicia, 2010.
- MeteoGalicia, Informe sobre evidências em Portugal. Relatório Interno. Consellería de Medio Ambiente Territorio e Infraestruturas, Galicia, 2010.

The importance of pine needles in reducing soil erosion following a low/medium intensity wildfire in Junceda (Portugal) – an experimental design

António Bento Gonçalves^{a*}, António Vieira^a, Luciano Lourenço^b, José Salgado^c, Luís Mendes^c, Américo Castro^c, Flora Ferreira Leite^d

^a Centro de Estudos em Geografia e Ordenamento do Território (CEGOT), Núcleo de Investigação em Geografia e Planeamento (NIGP), Departamento de Geografia, Minho University, Campus de Azurém, 4800-058 Guimarães (Portugal);

^b Centro de Estudos em Geografía e Ordenamento do Território (CEGOT), Núcleo de Investigação Científica de Incêndios Florestais (NICIF), Departamento de Geografía da Faculdade de Letras, Coimbra University, 3004-530 Coimbra (Portugal);

^c Departamento de Geografia (M.Sc. Student), Minho University, Campus de Azurém, 4800-058 Guimarães (Portugal);

^d Centro de Estudos em Geografia e Ordenamento do Território (CEGOT), Núcleo de Investigação em Geografia e Planeamento (NIGP), Departamento de Geografia (Pd.D. Student), Minho University, Campus de Azurém, 4800-058 Guimarães (Portugal).

* bento@geografia.uminho.pt

Key-words: Forest fires, low/médium intensity, pine needles, soil erosion, low cost treatments

Introduction

Portugal is traversed each year by fires, showing a positive trend for an annual increase in their number and in the area scorched, as well as an increase in the recurrence of fires (Ferreira-Leite et *al.*, 2011) and occurrence of large fires (Ferreira-Leite, 2010).

As a consequence, the erosion of the top layer of soil occurs. In most Portuguese soils, it is in these layers that the only nutrients are available (Burch *et al.* 1989; Imeson *et al.* 1992; Shakesby *et al.* 1993; Scott & Schulze 1992; Scott 1993; Andreu et al. 1994; Coelho *et al.* 1995a, b; Pierson *et al.* 2002; Coelho *et al.* 2004; Cerdà & Lasanta 2005; Benavides-Solorio & MacDonald 2005, Bento-Gonçalves *et al.*, 2008).

In a climate of Mediterranean characteristics, the export of sediments and nutrients usually occurs within the first 4 / 6 months after the fire, so it is essential to study and implement a set of solutions that reduce the loss of materials (Shakesby *et al.*, 1993, Bento-Gonçalves e Coelho, 1995, Shakesby *et al.*, 1996, Walsh, 1998; Ruiz and Luque, 2010, Bento-Gonçalves e Lourenço, 2010, Vega *et al.*, 2010).

However, this process is highly dependent on the recurrence of fires, their intensity and severity, spatial variability of soil hydrophobicity (Jungerius e DeJong 1989; Ritsema e Dekker 1994; Coelho *et al.* 2004) as well as on the local characteristics (altitude, slope, exposure, climate, geology, ...), so it is necessary to adapt the different soil strategies to each situation, as was demonstrated in early research in Central Portugal (Lourenço, 1989; Lourenço and Bento-Gonçalves, 1990; Lourenço, Bento-Gonçalves and Monteiro, 1991).

Objectives

Most of the soil protection measures after fire are expensive and difficult to implement. Thus, the Soil Protec¹ (Emergency measures to protect soils after forest fires) project aims to test low cost treatments to reduce soil erosion immediately after low/medium intensity forest fires in *Pinus pinaster* stands in the northwest of Portugal.

¹ Funded by CEGOT – Centro de Estudos em Geografía e Ordenamento do Território.

We aim to test the role of pine needles available at the actual site of the fire - which are partly due to them falling after the fire of low/medium intensity - as a protective agent against soil erosion (photos 1 and 2) and, also, compared with the role of straw.

Photo 1 and 2. Pine needles

Methodology

Following the great fire (1479.68 ha) which occurred in Geres, in the municipality of Terras de Bouro ('freguesias' of Covide, Rio Caldo and Vilar da Veiga), in August 2011, six plots were installed in a low to medium intensity scorched area of Pinus pinaster. Each plot was 10 meters long by 2,5 meters wide (Fig. 1).

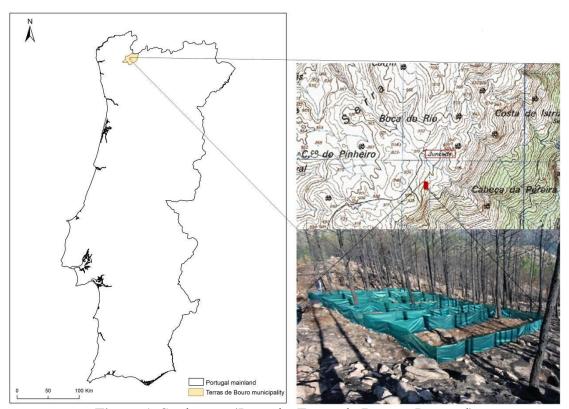


Figure 1. Study area (Junceda, Terras do Bouro - Portugal)

Each plot (photo 3) was mapped using a total station (photo 4), thus allowing not only to identify the exact area of each plot, but also to trace 3 cross sections (at the top, in the middle and at the base) in each one, which we repeated systematically.

Photo 4. Survey of the plots and the study area with a total station

Were subsequently applied straw (2, 4 and 8 kg) and pine needles (2 and 4 kg) in five plots and one was left as a control sample (Fig. 2).

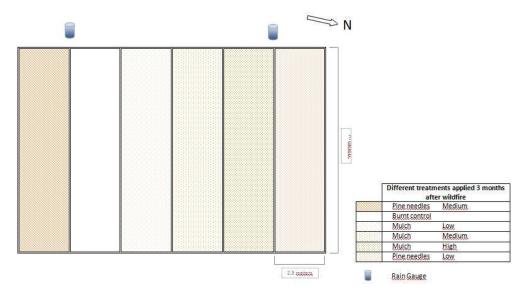


Figure 2. Research design for testing post-wildfire urgent mitigation measures

At the same time a topographic survey was conducted, also using a total station, of the slope where the plots were installed.

Conclusions

The geomorphologic Modeling we are implementing through the "Soil Protec" project will help us to understand the processes acting on the slopes and their response to the proposed remediation mechanisms, enabling the production of relevant information for the development of inexpensive strategies for soil protection.

The ultimate goal is to recommend measures that will allow those responsible for the management of the scorched areas, after a swift identification of the critical areas in which the interventions should occur, to obtain the best conservation results at the lowest possible price and without introducing external elements to the forest environment of the

mountain. This procedure will have a significant impact on the conservation of soil, on vegetation recovery, and therefore on the functioning of the ecosystem.

References

- Andreu, V., Forteza, J., Rubio, J. L., Cerni, R. (1994) "Nutrient losses in relation to vegetation cover on automated field plots". *In* Rickson, R. J. (Ed.) *Conserving Soil Resources*. Cambridge Univ. Press, 116-126.
- Benavides-Solorio, J., MacDonald, L. H. (2005) "Measurement and prediction of post-fire erosion at the hillslope scale, Colorado Front Range". *International Journal of Wildland Fire*, 14, 457-474.
- Bento-Gonçalves, A. J. e Coelho, C. de O. A. (1995) "Wildfire impacts on soil loss and runoff in dry mediterranean forest, Tejo basin, Portugal: preliminary results". *Proceedings of Course on Desertification in a European Context*. Physical and Socio-Economic Aspects; Bruxelles, p. 361-369.
- Bento-Gonçalves, A. J., Vieira, A., Ferreira, A. D. e Coelho, C. (2008) "Caracterização geomorfológica e implementação de um sistema integrado de informação, em ambiente SIG, no âmbito do projecto RECOVER (Estratégias de remediação de solos imediatamente após incêndios florestais)". *Revista Geografia Ensino & Pesquisa*, V. 12, nº 1, Santa Maria, Rio Grande do Sul, Brasil, p.3721-3735.
- Bento-Gonçalves, A. J. e Lourenço, L. (2010) "The study and measurement of overland flow and soil erosion on slopes affected by forest fires in Lousã mountain main results". *Actas das Jornadas Internacionales* Investigación y gestión para la proteccion del suelo y restauración de los ecossistemas forestales affectados por incêndios forestales 6 a 8 de Outubro de 2010 Santiago de Compostela., p. 107-110.
- Burch, G. J., Moore, I. D., Burns, J. (1989) "Soil hydrophobic effects on infiltration and catchment runoff". *Hydrological Processes*, 3, 211-222.
- Cerdà, A., Lasanta, T. (2005) "Long-term erosional responses after fire in the Central Spanish Pyrenees". 1. Water and sediment yield. *Catena*, 60, 59-80.
- Coelho, C. O. A., Shakesby, R. A., Walsh, R. P. D. (1995) "Effects of forest fires and post-fire land management practice on soil erosion and stream dynamics, Águeda basin, Portugal". *Soil and groundwater research report V*, European Commission, 91p.
- Coelho, C. O. A., Shakesby, R. A., González, M., Ternan, L., Walsh, R. P. D., Williams, A. G. (1995) "IBERLIM: Land management and erosion limitation in the Iberian Peninsula". Final Report to the EC in fulfilment of Project EV5V-0041 Land management practice and erosion limitation in contrasting wildfire and gullied locations in the Iberian Peninsula (unpublished), 246 pp.
- Coelho, C. O. A., Ferreira, A. J. D., Boulet, A. K., Keizer, J. J. (2004) "Overland flow generation processes, erosion yields and solute loss following different intensity fires". *Quarterly Journal of Engineering Geology and Hydrogeology*, 37, 3, 233-240
- Ferreira-Leite, F. (2010) "Caracterização dendrocaustológica do Noroeste Português o caso dos grandes incêndios florestais". Tese de Mestrado, Universidade do Minho, Gumarães, 94 pp. + anexos.
- Ferreira-Leite, F.; Bento Gonçalves, A. J.; Vieira, A. (2011) "The recurrence interval of forest fires in Cabeço da Vaca (Cabreira Mountain Northwest of Portugal)". *Environmental Research 111* (2011) 215-221, doi:10.1016/j.envres.2010.05.007.
- Imeson, A. C., Verstraten, J. M., Van Mullingen, E. J., Sevink, .J (1992) "The effects of

- fire and water repellency on infiltration and runoff under Mediterranean type forests". *Catena* 19, 345-361.
- Jungerius, P. D., DeJong, J. H. (1989) "Variability of water repellency in the dunes along the Dutch coast". *Catena*, 16, 491-497.
- Lourenço, L. (1989) "Erosion of agro-forester soil in mountains affected by fire in Central Portugal". *Pirineos. A journal on mountain ecology*, Jaca, 133, p. 55-76.
- Lourenço, L. and Bento-Gonçalves, A. (1990) "The study and measurement of surface flow and soil erosion on slopes affected by forest fires in the Serra da Lousã". *Proceedings*, International Conference on Forest Fire Research, Coimbra, p. C.05–1 a 13;
- Lourenço, L., Bento-Gonçalves, A. and MONTEIRO, R. (1991) "Avaliação da erosão dos solos produzida na sequência de incêndios florestais". *Comunicações*, II Congresso Florestal Nacional, Porto, II vol, p. 834-844;
- Pierson, F. B., Carlson, D. H., Spaeth, K. E. (2002) "Impacts of wildfire on soil hydrological properties of steep sagebrush-steppe rangeland". *International Journal of Wildland Fire*, 11, 145-151
- Ritsema, C. J., Dekker, L. W. (1994) "How water moves in a water-repellent sandy soil". 2. Dynamics of fingered flow. *Water Resources Research*, 30, 2519-2531.
- Ruiz, J., Luque, I. (2010) "Actuaciones de emergencia para la defense del suelo tras un gran incendio forestall em Andalucia". *Actas das Jornadas Internacionales* Investigación y gestión para la proteccion del suelo y restauración de los ecossistemas forestales affectados por incêndios forestales 6 a 8 de Outubro de 2010 Santiago de Compostela., p. 49-64.
- Scott, D. F., Schulze, R. E. (1992) "The hydrological effects of a wildfire in a eucalypt afforested catchment". S.A. Forestry Journal, 160, 67-74.
- Scott, D. F. (1993) "The hydrological effects of fire in South African mountain catchments". *Journal of Hydrology*, 150, 409-432.
- Shakesby, R. A., Boakes, D. J., Coelho, C. de O. A., Bento Gonçalves, A. J., Walsh, R. P. D. (1993) "Limiting the erosional effect of forest fires: background to the IBERLIM research programme in Águeda and Tejo basins, Portugal". *Swansea Geographer*, 30; Swansea, p. 132 154.
- Shakesby, R. A., Boakes, D. J., Coelho, C. de O. A., Bento Gonçalves, A. J. and Walsh, R. P. D. (1996) "Limiting the soil degradation impacts of wildfire in pine and eucalyptus forests, Portugal: comparison of alternative post-fire management practices". *Applied Geography*, Vol. 16, No. 4, Elsevier Science, Ltd, p. 337-355.
- Shakesby, R., Ferreira, A., Ferreira, C., Stoof, C. R., Urbanek, E., Walsh, R. P. D. (2009) "Wildfires in Portugal: characteristics, soil degradational impacts and mitigation measures". *Desire*. (http://www.slideshare.net/medesdesire/wildfire-2009)
- Vega, J. A., Serradab, R., Hernandoc, C., Rincónd, A., Ocañae, L., Madrigalc, J., Fontúrbela, M. T., Pueyo, J., Aguilar, V., Guijarroc, M., Carrillo, A., Fernándeza, C., Marinoc, E. (2010) "Actuaciones técnicas post-incendio y severidad del fuego:Proyecto Rodenal". Actas das Jornadas Internacionales Investigación y gestión para la proteccion del suelo y restauración de los ecossistemas forestales affectados por incêndios forestales 6 a 8 de Outubro de 2010 Santiago de Compostela., p. 305-308.
- Walsh, R. P. D., Coelho, C. de O. A., Elmes, A., Ferreira, A. J. D., Bento Gonçalves, A. J., Shakesby, R. A., Ternan, J. L. and Williams, A. G. (1998) "Rainfall simulation plot experiments as a tool in overland flow and soil erosion assessment, North-Central Portugal". *Geookodynamik*, Band XIX, 3-4, Bensheim, p. 139-152.

Geographical Information Technology to support research on forest fires and soil erosion

A. Vieira¹*, A. Bento Gonçalves², C. Martins³, F. Leite⁴, Luis Mendes⁵

¹ Centro de Estudos em Geografia e Ordenamento do Território (CEGOT)/Núcleo de Investigação em Geografia e Planeamento (NIGP), Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.

² Centro de Estudos em Geografia e Ordenamento do Território (CEGOT)/Núcleo de Investigação em Geografia e Planeamento (NIGP), Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.

³ Núcleo de Investigação em Geografia e Planeamento (NIGP), Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.

⁴ Núcleo de Investigação em Geografia e Planeamento (NIGP), Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.

⁵ Master Student in Geography, Department of Geography, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.

* vieira@geografia.uminho.pt

Key-words: Forest fires, soil degradation and recovery, SDI, GIS database, GIS modeling

Introduction

The RECOVER (Immediate Soil Management Strategy for Recovery after Forest Fires) project aims to develop mitigation techniques and strategies to reduce soil and water degradation immediately after forest fires. Forest fires are becoming increasingly frequent as a result of climate variability, socio-economic change, and unsuitable forest planning, with adverse impacts on soil fertility and structure. One of the most important is the erosion of the top soil layers, where the 'nutrient pool' of the majority of Portuguese soils is located (Bento Gonçalves *et al.*, 2008). This nutrient mobilization happens during the first autumn rainfall events, and therefore sediment and nutrient exportation typically occurs in the first 4/6 months after a fire. The speed at which nutrient loss occurs and the extension of forest fires, tend to limit, in terms of costs and logistics, the solutions that can be taken to reduce soil and water degradation.

RECOVER presents an innovative approach based on field surveys of soil and vegetation properties following forest fires, which will be used to create a GIS database from which the critical spots will be identified.

The implementation of an integrated information system (integrating a spatial database, a map server and GIS software) will allow us to store the data collected in the field as well as the information produced through the spatial analysis. This information will be available in a web-GIS portal, accompanied by information for producers and all other agents involved in forest management.

Objectives

The aim of this work is to present the methodology applied in the implementation of an integrated information system (a Spatial Data Infrastructure) with GIS technology which can support the research on soil erosion mitigation techniques after forest fires.

The main objective is to produce a tool, based on Geographical Information Technology that is able to store all the data gathered throughout the project which is necessary to develop and implement spatial analysis processes that allow us to identify the critical spots where erosion mitigation techniques should be applied. The ultimate goal is to allow those with responsibilities in managing scorched areas to identify the critical areas where

interventions must be made to obtain the best conservation results at the lowest price. This will have a significant impact on soil conservation, vegetation recover, and, therefore, on the functioning of the ecosystem.

Methodology

Since the start of the project (2007) and during the years of 2007 and 2008, there were no large or high intensity forest fires in central Portugal. These were a necessary condition for the normal development of this project. To overcome this problem, the solution was to choose an area monitorized for a long time: Vale Torto catchment (Penedos de Góis) in Açor Mountain. It's a small (8,9 ha) schist and quartzite catchment, covered by shrubs and located in the municipality of Góis, Coimbra.

The project includes an initial phase of collecting and processing information related to the variables identified for the study and defining the data model to implement and organize the spatial database.

The survey of the study area (Fig. 1) allowed for the three-dimensional modeling of the area and the establishment of a surface runoff/flow modeling.

Also the characterization of land use and soil components (structure, texture, moisture, porosity, etc.), at the slope scale, as well as the analysis of the forest fires factors (intensity, recurrence...), will be used and integrated in the geographic database, allowing for the definition of the variables required in an erosion risk model.

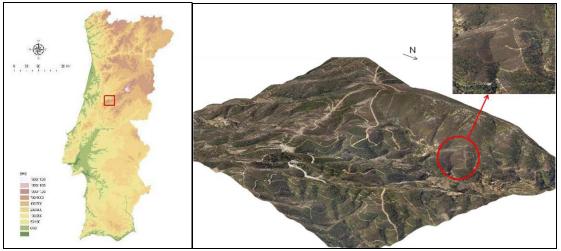


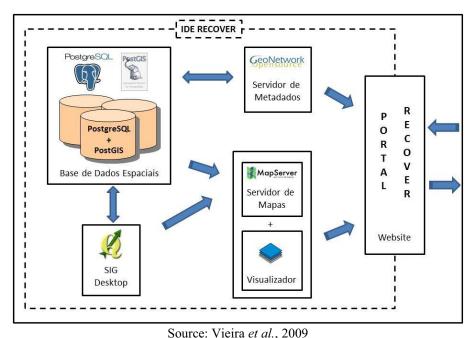
Figure 1. Study area – Vale Torto (Penedos de Góis) in Açor Mountain

Results

The modeling process of the environmental variables has been developed following the need to make explicit its spatial component. Thus, the integration of GIS technology was preferred due to its ability to integrate such models, as well as its efficiency in managing and analyzing large amounts of information and, above all, for its capacity to relate the information based on their spatial expression.

Given the intimate relationship between geomorphological processes and the area in which they are triggered, we consider it appropriate to apply the methodologies of modeling provided by GIS spatial analysis of erosion processes operated in the aftermath of forest fires.

Thus, following the installation and monitoring of erosion plots in various sectors of the slope in the mountain areas occupied with production forest in central Portugal, a wide



range of information concerning several parameters which combine to the genesis of the erosive geomorphological dynamic was produced.

The organization and analysis of the collected data was made based on the implementation of an SDI.

The implementation of an SDI (fig. 2) on such a subject implies the involvement of several components of GIT (Geographic Information Technologies). First of all, it is fundamental to integrate a Spatial Database that allows the storage of a large volume of the spatial data and the alphanumeric data gathered in the field or information acquired from official institutions. This spatial database allows us to implement spatial analysis tools (within the GIS) and integrate and disseminate the outputs through Web GIS solutions. This SDI makes the delivery of project results and its dissemination to the general public easy.

Figure 2. Structure of the SDI-RECOVER

Although complex, the structurating of the specific data collected in the spatial database (fig. 3) was essential for the adequate functioning and access by the GIS software. The need for correct integration of the several GIS technologies forced us to establish some SDI principles and components, based on international and national regulations and patterns, namely institutional and normative structure, technology, data policy, data and metadata structure, and web-services.

To implement these web-services the integration of a map server, that will make available the outputs produced through the project, was fundamental.

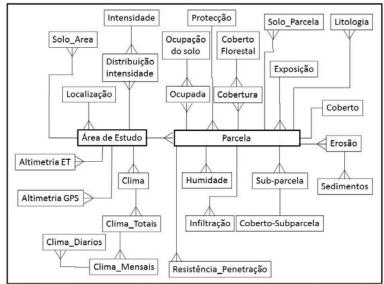


Figure 3. Database model (EAR)

But the key-feature of this SDI and the fundamental tool for the project success is the GIS software, in which we will integrate the modeling process to identify the critical areas for intervention.

In this sense, the development process of modeling the variables will allow for the measurement of possible interrelationships between them and the definition of behavior standards that can lead us to predict those processes in order to determine the validity and effectiveness of the mitigating techniques implemented during the project.

The implementation of the modeling process, conducted with the use of geographic information systems (GIS) technology, will be based on the information gathered, its validity, and reliability, which is stored and structured in a database integrated in the GIS. The results will be available through a web-GIS portal with available web-services (WMS, WFS, WCS, 'Gazetteer Service', CSW).

Conclusions

The information included in the geographic database will develop a variety of modeling operations, initially directed at the study plots, leading afterwards to the development of predictive scenarios. The modeling results will then be generalized to the shed in order to ascertain the validity of extrapolating data and the ability to produce useful indicators of general trends for the decisions on the proper techniques to mitigate erosion of scorched areas.

This spatial database will be a key component of the Integrated Information System, which, at a later stage, will be complemented with a component of spatial analysis (GIS desktop, to develop the processes of data modeling) and a spatial data server, allowing for the implementation of a Web-GIS that will provide the results obtained on the Internet.

Thus, one can draw a reliable structure to store, analyze, and disseminate spatial and alphanumeric data, which is available project RECOVER the web portal, and which integrates GIS technologies for the effective presentation of the spatial information produced.

IDE are valuable tools to numerous public and private institutions worldwide, allowing access to various and valuable information, and providing assistance in the decision-making process.

Aknowledgment

This research was funded by FCT – Fundação para a Ciência e Tecnologia (PTDC/AGR-AAM/73350/2006). The authors thank the LASSICS project (NIGP, ICS, University of Minho) for its support.

References

- Afonso, C. S. P. V. 2008. Infra-estruturas de Dados Espaciais nos Municípios Contributo para a definição de um modelo de implementação. Dissertação de Mestrado em Ciência e Sistemas de Informação Geográfica, Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa, 125 p.
- Benavides-Solorio J, Macdonald LH, 2005. Measurement and prediction of post-fire erosion at the hillslope scale, Colorado Front Range. International Journal of Wildland Fire, 14, 457-474.
- Bento Gonçalves, A. J., Vieira, António A., Ferreira, A. D. e Coelho, C., 2008. Caracterização geomorfológica e implementação de um sistema integrado de informação, em ambiente SIG, no âmbito do projecto RECOVER (Estratégias de remediação de solos imediatamente após incêndios florestais". Revista Geografía Ensino & Pesquisa, V. 12, nº 1, Santa Maria, Rio Grande do Sul, Brasil, p.3721-3735.
- Bento Gonçalves, A. J. e Vieira, A. e Ferreira Leite, F. Mitigation of erosion after forest fires: a geomorphological approach based in GIS modeling. "Actas das Jornadas Internacionales Investigación y gestión para la proteccion del suelo y restauración de los ecossistemas forestales affectados por incêndios forestales", 6 a 8 de Outubro de 2010, Santiago de Compostela, 2010, p. 111-114.
- Coelho COA, Ferreira AJD, Boulet AK, Keizer JJ, 2004. Overland flow generation processes, erosion yields and solute loss following different intensity fires. Quarterly Journal of Engineering Geology and Hydrogeology, 37, 3, 233-240.
- Goodchild M.F. et al. (Ed.), 1996. GIS and environment modeling. John Wiley & Sons, England. 504 p.
- Loenen, B. 2006. Developing geographic information infrastructures. The role of information policies. DUP Science, Delft University Press, 390 p.
- Longley, P., Goodchild, M., Maguire, D., Rhind, D. 2004. Geographic Information Systems and Science. Wiley, 519 p.
- Longley P, Batty M (Ed.), 1997. Spatial analysis: modeling in a GIS environment. John Wiley & Sons, England. 392 p.
- Moffet, Correy et al., 2007. Modeling soil erosion on steep sagebrush rangeland before and after prescribed fire. Catena, 71, 218-228.
- Shakesby R., Ferreira A.J.D., Ferreira C.S.S., Stoof C.R., Urbanek E., Walsh R.P.D.. Wildfires in Portugal: characteristics, soil degradational impacts and mitigation measures. Desire.
- Shekhar S & Chawla S, 2003. Spatial databases. A tour. Prentice Hall. 262 p.
- Thomas AD, Walsh RPD, Shakesby RA, 2000. Post-fire forestry management and nutrient losses in eucalyptus and pine plantations, northern Portugal. Land Degradation & Development, 11, 257-271.
- Vieira, A. A. B., Gonçalves, A. J. B., Martins, C. O., Loureiro, E. 2009. Sistema integrado de informação, em ambiente SIG, aplicado à erosão de solos na sequência de incêndios florestais. Geo-Working Paper, Série de Investigação 2009/20, Núcleo de Investigação em Geografia e Planeamento, Universidade do Minho.

Vieira, A., Bento Gonçalves, A. J., Martins, C e Ferreira Leite, F. – An integrated information system to support research on soil erosion mitigation techniques after forest fire. "Actas do V Congresso Nacional de Geomorfologia", 8 a 11 de Dezembro de 2010, Apgeom, Porto, 2010,. CD-Rom.

IMMEDIATE POST-FIRE SOIL INTERVENTIONS IN FORESTED AREAS

Celeste Coelho^{a*}, Sérgio Prats^a, Teresa Carvalho^a, Alexandra Pinheiro^a, Anne-Karine Boulet^a, António Ferreira^b

* coelho@ua.pt

Key-words: Forest fires; Soil erosion; Water conservation; Treatments.

Introduction

The Burned Areas Restoration Project (RAA)², funded by the Permanent Forest Fund, has highlighted the i) state of the art on the characteristics of fires, forest types and tree species; ii) characterization of the relationship between fire and forest and iii) definition of the potential and limitations of the technical intervention options for the management of burned areas.

This project arose from the urgent need to intervene in the recovery of burned areas as a result of the fires of 2003 and 2004 in Portugal.

The recovery of burnt areas in Portugal traditionally involves three distinct phases: the intervention, rehabilitation and restoration/reforestation (Pinho, J. *et al.*, 2005).

The intervention phase follows immediately after the fires and aims to i) control erosion, ii) protect hydrologic network and iii) defense of infrastructure and sensitive habitats.

The rehabilitation phase is developed in the two following years after fire and involves the i) damage assessment and ecosystem response and ii) biophysical recovery actions which may include reforestation of sensitive areas.

The last phase corresponds to the planning and implementation of projects identified for restoration/reforestation, usually three years after the fire occurred.

In this sense, the University of Aveiro had contributed in this project, giving an important emphasis to the different techniques, or treatments, which may be included in the intervention phase. These treatments can be applied immediately after forest fires, to reduce soil erosion and, at the same time, contributing to water conservation.

The erosive processes are particularly concerning, especially during the first rainfall events after fires. These processes may lead to runoff and can initiate rills, sediment loss to water drainages, loss of soil fertility in the long term, and also, erosion of forest roads.

Treatments are applied in an attempt to minimize the constraints caused by fire in the ecosystems. Mitigation measures are essential to reduce ongoing degradation, which means, that the main goal is to reduce further degradation and to improve resources and their functions. The impacts caused by these interventions should become perceptible in short to medium term (WOCAT, 2007).

^a Centro de Estudos do Ambiente e do Mar, Departamento de Ambiente e Ordenamento, Universidade de Aveiro, 3810-193 Aveiro (Portugal);

^b Centro de Estudos de Recursos Naturais, Ambiente e Sociedade, Escola Superior Agrária de Coimbra, Bencanta, 3040-316 Coimbra (Portugal).

² Project 2004 09 002629 7 - Burned Areas Restoration - funded by the Specific Actions for the Applied Research, Experimentation and Demonstration under the Permanent Forest Fund. This project is coordinated by the Centro de Ecologia Aplicada "Prof. Baeta Neves" do Instituto Superior de Agronomia, in partnership with the University of Aveiro and the University of Trás-os-Montes e Alto Douro.

Objectives

The central objective is to create and disseminate scientific and technical intervention in the management of burned areas. Although post-fire treatment techniques are available, they are not so often known by the landowners or forest producers, so they cannot be put in practice. The specific objectives of this paper are: i) identify the techniques that can be used in a post-fire context; ii) their potentials and limitations; iii) cost/effectiveness of each technique and iv) distribute and disseminate the collected information.

Methodology

An extensive review of several techniques, which are applied worldwide, to minimize the effects of erosion, was conducted. Therefore, the selection and data collection was done based on research from i) entities that have vast experience in this subject such as the U.S. Forest Services, ii) projects of international scope such as the WOCAT Project - World Overview of Conservation Approaches and Technologies - and iii) the input from several international and national investigations.

The RAA Project also made very good progress using the available information from the synergies arising from several parallel research projects³ underway as a complement to the literature review. For selected treatments, a set of leaflets was produced describing i) the advantages and disadvantages, ii) the method of application, iii) the period of application, iv) the effectiveness and application ratio and v) the estimated cost for each treatment. A total of 26 techniques were selected to be applied on hillslopes (12), channels (4) and forest roads (10) (see Table 1).

The information was put together in leaflets, corresponding each one to one technique. A workshop to discuss the work done and to integrate suggestions from the participants: forest managers and researchers was realized during the RAA project. This workshop worked as an attempt to integrate the participant's views and an effort to disseminate the work done.

Table 1. Description of the selected techniques according to their location.

Hillso	pes	Channels Ro		S	
Mulch	Contour-	Straw Bale Check	Gravel on the	Rubber Deflector	
1,10,10,11	Felled Log	Dams	running surface	reader Deficetor	
Hydro-Mulch	Straw Wattles	Log Check Dams	Outsloped/Insloped	Open Top culvert	
Cords of Mulch	Tillage	Rock Check Dams	Broad Based Dips	Ditch	
Seeding	Terraces	Sand, Soil or Gravel Bags	Rolling Dips	Culvert	
Hydro-Seeding	Revegetation		Waterbars		
Vegetative Strips	Sediment Fences		Water turnouts		

Results and conclusions

Most of the techniques suitable for application after fire are not very well documented in Portugal. For this reason it was difficult to gather information about their effectiveness and costs. Nevertheless, the expertise of the participants in the mentioned workshop, and the parallel on-going projects, gave an important inside look of what is being done in the country. Most of the techniques are not known and put into practice by landowners (Ribeiro *et al.*, 2011 in this conference). It is interesting to note that even in countries, like U.S.A., most emergency post-fire efforts have been evaluated qualitatively, and in fact,

³ RECOVER Project - "Immediate soil management strategy for recovery after forest fires". Funded by FCT from 2007 to 2010.

only a few quantitative data have been collected (Robichaud *et al.*, 2000). This made it more difficult to obtain information regarding the two most important aspects of the techniques and specific goals purposed: their effectiveness and costs. Also, the existing literature on treatment effectiveness is limited, making treatment comparisons very difficult (Robichaud *et al.*, 2000). For this reason it was not possible to find information on effectiveness for some of the techniques, especially those concerning road mitigation problems. It was even harder to find data on costs for the most of them, even using the Commission for Monitoring of Forest Operations (CAOF) reference in Portugal, because most of the procedures needed for the techniques implementation were not described there. Even though, it was possible to collect a considerable amount of information into a manual with all the selected techniques to be published and made available on-line⁴ to all the key interested parties. 500 printed copies were distributed nationally to the i) National Forest Authority; ii) Municipalities; ii) forestry associations and iii) researchers.

The knowledge of the different available treatments is highly important to assist landowners and forest managers in the decision-making process: to treat or not to treat the burnt area and what type of treatment to apply? This was clearly perceptible by the positive reaction to the release of this manual from the entities who received them.

It is important to mention that all the post-fire rehabilitation efforts will not stop erosion from occurring, but they can reduce some of the undesirable effects such as the amount of runoff and soil loss (Robichaud and Brown, 2005). This is of a major relevance because this mitigation treatments, or techniques, may be used by the ones managing in forest.

Acknowledgment

The research described in this paper was developed under Recuparação de Áreas Ardidas Project, founded by the Permanent Forest Fund (IFAP-FFP) and RECOVER Project - "Estratégias de remediação de solos imediatamente após incêndios florestais" (PTDC/AGR-AAM/73350/2006), funded by the Foundation for Science and Technology (FCT) of Portugal.

References

Pinho, J., Louro, G., Paulo, S. (2005). Recuperação das áreas ardidas em 2003. Orientações estratégicas. Actas das Comunicações do 5º Congresso Florestal Nacional, 16-19 de Maio, Viseu.

Ribeiro, C., Coelho, C., Valente, S., Carvalho, T., Figueiredo, E. (2011). Do stakeholders know what happens to soil after forest fires? A case study in Central Portugal. Proceedings book of the International Meeting of Fire Effects on Soil Properties (*in prep.*). 15-19 March of 2011 - Guimarães, Portugal.

Robichaud, Peter R.; Beyers, Jan L.; Neary, Daniel G. (2000). Evaluating the effectiveness of postfire rehabilitation treatments. Gen. Tech. Rep. RMRS-GTR-63. Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 85 p.

Robichaud, P. R.; Brown, R. E. (2005). Postfire Rehabilitation Treatments: Are We Learning What Works? Proceedings of the 2005 Watershed Management Conference. July 19-22, Williamsburg, VA. 13 p.

WOCAT 2007: where the land is greener - case studies and analysis of soil and water conservation initiatives worldwide. Editors: Hanspeter Liniger and William Critchley.

-

⁴ http://www.phoenixefi.org/uploads/tecnicas_rel.pdf

Experimental design to model infiltration into awater repellent soil using a crust-type infiltration equation

Dennis Fox*, Cyriel Adnès, Jean Morschel, Frédéric Darboux

Faculty of Geographical Sciences, University of Nice Sophia Antipolis, France * fox@unice.fr

Key-words: water repellency; hydrophobicity; layered soils; infiltration.

Introduction

The combustion of vegetation during forest fires can lead to the condensation of hydrophobic compounds on mineral matter near the soil surface. The resulting water repellent layer then inhibits water infiltration by altering soil hydraulic conductivity and the water content-soil matric suction relationship. This situation resembles that of a crust or seal capped soil, where a thin layer of reduced hydraulic conductivity overlays a more permeable soil. Although the physical processes leading to a surface seal or crusted layer are different from those of a water repellent layer, the infiltration modelling approach can theoretically be the same, as would be the case for all layered soils. The objective of this study was to test the use of a crust type infiltration equation (IR= $K_{wl}[(h_0-\psi+Z_{wl})/Z_{wl}]$; where IR=Infiltration rate (cm h⁻¹, K_{wl}=hydraulic conductivity of the water repellent layer (cm h^{-1}), h_0 =depth of ponded water at surface (cm), ψ =sub-layer matric suction (-cm), Z_{wl}=thickness of the water repellent layer (cm)) for water repellent conditions. The study was carried out by applying simulated rainfall on a column of soil with the following dimensions: column diameter=13 cm, soil depth within the column=10 cm, and an underlying coarse sand layer for drainage=10 cm. Runoff from the surface of the column was collected in a beaker that was weighed continuously at 30 s intervals. Instantaneous infiltration was considered equal to the difference between the applied rainfall (about 40 mm h⁻¹) and runoff rates. The soil column was equipped with a tensiometer located near the centre of the column at a depth of 3 cm below the soil surface, and it measured soil matric suction at 30 s intervals. Before each simulation, a mass of oven dried pine needles was applied to the surface and burned in-situ. Different levels of water repellency were generated by varying the amount of pine needles burnt, and water drop penetration time (WDPT) measurements were carried out on all samples before rainfall application. Hence, a range of water repellent conditions was tested for which instantaneous infiltration and matric suction values were recorded. Water repellent layer depth was estimated using WDPT measurements at different depths on separate samples. These samples also served for aggregate stability samples. The infiltration model was then compared to measured values.

Modeling post-fire runoff and erosion at the micro-plot scale under simulated rainfall in eucalypt plantations in north-central portugal

Diana Catarina Vieira*, Maruxa Malvar, João Pedro Nunes, Jan Jacob Keizer

Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de Ambiente e Ordenamento, Portugal * dianac.s.vieira@ua.pt

Key-words: wildfire, eucalypt, rainfall simulation experiments, erosion, modeling.

Introduction

Wildfires, through their effects on soil properties as well as on vegetation and litter cover, can lead to considerable changes in geomorphological and hydrological processes. Over the past decades, wildfires in Portugal have devastated on average around 100.000 ha each year, with dramatically higher figures for dry years like 2003 and 2005. The need for a model-based tool for assessing erosion risk following wildfire and, ultimately, guiding post-fire land management, like ERMiT for the Western U.S.A., is evident in the case of Portugal. Following the summer 2003, the EROSFIRE project set out to develop such an erosion prediction tool tailored to the specificities of post-fire conditions in Portugal's forests. Field rainfall simulation experiments (RSE's) were selected as principal method for gathering the data required for testing the suitability of especially the process-based model MEFIDIS for field-scale erosion predictions after wildfire and post-fire land management. In spite of the well-known limitations of RSE's, they have been widely used for studying hydrological and erosion processes in recently burnt woodland areas, especially at spatial scales of 1 m2 and less. For as far Portugal is concerned, surprisingly few field RSE studies have been carried out in recently burnt eucalypt plantations. The proposed work will assess how well MEFIDIS can predict the overland flow and associated sediment losses that were produced by repeated RSE's. In total, some 125 RSE's were carried out in six intensive field campaigns during the first two years following wildfire. This was done in six eucalypt plantations on steep slopes that differed in pre-fire ground operations (unploughed, ploughed in downslope direction and along contour lines, terraced). All six study sites were burnt by moderate-severity wildfires, four during the summer of 2005 and the remaining two during the summer of 2006. The six sites were located at relatively close distance (< 10 km) in the municipalities of Albergaria-a-Velha, Águeda and Sever do Vouga, north-central Portugal. Initial MEFIDIS results were encouraging. For example, the marked seasonal variation in overland flow at two of the study sites could be reproduced in a satisfactory manner by calibrating MEFIDIS for severity of topsoil water repellency. This was done by mimicking the infiltration-reducing effect of water repellency, using the Ksat and Psi parameters of MEFIDIS' infiltration equation.

Initial stage of fungal succession in differently managed post-fire pinus mugo plantations on the baltic sea coast

Ernestas Kutorga^{ab}*, Gražina Adamonytė^a, Reda Iršėnaitė^a, Sigitas Juzėnas^b, Jonas Kasparavičius^a, Svetlana Markovskaja^a, Jurga Motiejūnaitė^a, Aušra Treigienė^a

Key-words: Fungi; Pinus mugo; crown-fire; management.

Introduction

High-intensity and severity forest fires strongly affect physical, chemical and biological environment. Post-fire fungal communities play an important ecological role in a recovery of devastated forest ecosystems, particularly in soil stabilization and formation. However, the patterns of fungal dynamics and functioning in variously shaped post-fire habitats of different geographical regions remain poorly documented. The aim of the present study was to investigate the initial stage of fungal succession in differently managed burnt and non-burnt sites of Mountain pine (Pinus mugo) plantations on the Baltic Sea coast in western part of Lithuania. The plantations of P. mugo, a non-native species in Lithuania, were established during the end of 19th century to minimize the erosion of sand dunes along Baltic Sea coast in the Curronian Spit. The devastating crown-fire in dense and almost pathless stands occurred in 2006 resulting in death of all trees and significant burn of rather thick litter cover on sandy soil in the territory of over 230 ha.

We studied the succession and functional community structure of fungi which inhabited burnt stands in the following 3 years (2007–2009). Anamorphic and teleomorphic ascomycetes, including lichens, as well as basidiomycetes, zygomycetes and myxomycetes were recorded in permanent study plots (500 m2 in size), 9 of which were located in burnt and 3 on non-burnt (control) sites. Since forest management of the burnt sites was different, 3 study plots were established in each management variant (without clear-cutting and reforestation; clear-cutting without reforestation; clear-cutting with reforestation by Scots pine (Pinus sylvestris)).

Investigation results demonstrate the significant decrease of fungal species richness in the burnt sites and the rapid colonization during subsequent years after the wildfire. Nevertheless, in the third year after wildfire the species composition of different taxonomical fungal groups in burnt sites was still poorer than that of non-burnt sites. Different forest management methods influenced the species composition. In general, the higher species diversity was registered in uncut charred stands than in clear-cuts, probably because the removal of burned woody material diminished the quantity and quality of suitable substrates and microhabitats, especially for wood-rotting fungi. Reforestation by tree seedlings determined the establishment of some specific parasitic species. The phenomenon of abundant fruiting of several pyrophilic and wood-inhabiting species was observed during first two years after the fire. In all study plots saprotrophic species diversity was higher than that for parasitic, symbiotrophic mycorrhizal and lichenized species.

^a Nature Research Centre, Institute of Botany, Laboratory of Mycology, Žaliųjų Ežerų Str. 49, LT-08406 Vilnius, Lithuania

^b Vilnius University, Department of Botany and Genetics, M. K. Čiurlionio Str. 21/27, LT-03101 Vilnius, Lithuania

^{*} ernestas.kutorga@gf.vu.lt

The frequency of fires and land degradation - Cabeço da Vessada do Monte, Serra da Cabreira

Flora Ferreira Leite^a*, António Bento Gonçalves^b, António Vieira^b, Luís da Vinha^c

Key-words: Cabreira mountain, forest fires, recurrence interval, soil degradation

Introduction

The mapping on the spatial distribution of scorched areas in the municipality of Vieira do Minho, in the period 1990-2007, unequivocally confirms the high vulnerability of this territory to forest fires (Bento-Gonçalves, A., 2006, Ferreira-Leite et al., 2010), especially in the area of the Serra da Cabreira.

The maximum recurrence of fires in this area, recorded over a period of 18 years (1970-2007) shows that in some situations certain areas were scorched by fire five times, as is the case of Cabeço da Vessada do Monte, which is located in the northern sector of Serra da Cabreira, in the Cabeço da Vaca (Ferreira-Leite, F. and Bento-Gonçalves, A., 2008) (Fig. 1).

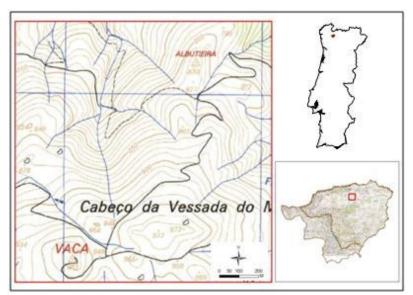
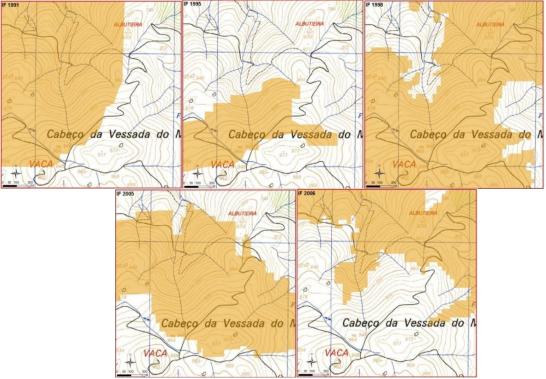


Figure 1. Location of the Cabeço da Vessada do Monte study area

^a Centro de Estudos em Geografia e Ordenamento do Território (CEGOT), Núcleo de Investigação em Geografia e Planeamento (NIGP), Departamento de Geografia (Pd.D. Student), Minho University, Campus de Azurém, 4800-058 Guimarães (Portugal),


^b Centro de Estudos em Geografia e Ordenamento do Território (CEGOT), Núcleo de Investigação em Geografia e Planeamento (NIGP), Departamento de Geografia, Minho University, Campus de Azurém, 4800-058 Guimarães (Portugal);

^c Núcleo de Investigação em Geografia e Planeamento (NIGP), Minho University, Campus de Azurém, 4800-058 Guimarães (Portugal)

^{*} floraferreiraleite@gmail.com

Figure. 3. Burnt areas in 1991, 1995, 1998, 2005 e 2006 - Cabeço da Vessada do Monte study area.

Similarly to what happened in much of the mountain, the area of Cabeço da Vessada do Monte was scorched by the great fires of 1975 and 1981. These scorched almost all the decades old forest (Bento Gonçalves, 2006), which accounted, as already mentioned, for the replacement of the woodlands by thickets.

Subsequently, many reforestation plans have been approved throughout the years, corresponding to the reflorestation several dozen hectares. However, most plans did not make it off the paper. In the cases when they did, most of the times the young stands were scorched before they could ever develop into true forest areas.

This area has been particularly affected by the more recent forest fires, having been scorched by fire, between 1990 and 2007. It was scorched a maximum of 5 times (Fig. 2), in the years 1991, 1995, 1998, 2005 and 2006 (Fig. 3).

In the medium term, there seems to be a tendency for the time required for these same areas to be scorched again to be lessened, revealing that some portions of this territory are subject to frequent and sometimes large demonstrations of forest fire risk (Ferreira-Leite, F. et al., 2010).

Unlike the fires of the 1970s and early 1980s that were of high intensity due to the presence of adult forest tree populations, the fires more recent fires have occurred essentially in scrublands meaning that the fires are of medium and low intensity.

In this area, where soil is still present, weeds can reach 50 cm in height in about 2 years (photo 1), which makes for a high level of combustibility that allows fires to occur every two years. This is due, in large part, to the high levels of precipitation (Table I).

TABLE I. Udometeric Post located in the Cabreira Mountain, Municipality of Vieira do Minho (1961-1990).

Udometeric Post	Average Annual Precipitation (mm)	Altitude (m)	
Guilhofrei	2705,7	350	
Salamonde	2281,9	550	
Zebral	3071,1	775	

Source: INMG, 1961-1990

In effect, the precipitation concentrated in the autumn and winter months could help to dramatically accelerate the erosion process. However, despite this concentration, it occurs throughout the whole year, contributing primarily to a very fast recovery rate of vegetation, allowing for a high productivity of biomass that will be crucial in protecting the soil against physical erosion (fot. 2).

Photo 1 and 2. Scrublands in serra da Cabreira, municipality of Vieira do Minho.

In fact, the scrublands are the dominant trait in the regional landscape, mainly due to the fact that it represents about 50% of the total occupied area of the mountain (Smith, 2000, p. 46).

Inside the scrubland unit there are several types of species, namely the *Cytisus striatus*, *Genista cinerea*, *Erica arborea L*. There are also areas where other species, such as *Ulex* and various types of heathers, are predominant.

These species have pyrophytic characteristics, with flammability and calorific values of medium to high level (Table II), which can influence fire behaviour and facilitate the ignition and consequent spread of fires.

Table II. Inflammability and Calorific power - shrub species.

	Inflammab	ility	Calorific power
Erica			
Genista falcata			
Ulex parviflorus			
Cytisus multiflorus			
low	medium	high	unknown

Source: Adapted from Vallette, 1990; Martin and Lara, 1989 in Silva e Páscoa, 2002.

Rather than consider the different species in isolation, it is especially important to characterize the vegetation formed by these species. Therefore, we are also interested in the combustibility of scrubland (Table III), since this landscape unit is the dominant type in the study area.

Table III – Combustibility of scrubland.

Underdeveloped	low
Height <30 cm	
Intermediate	medium
Height 30-50 cm	
Developed	high
Height >50 cm	_

Source: Adapted from Ronde in Silva and Páscoa, 2002

By destroying or reducing, even if temporarily, the vegetation coverage and taking into account the dominant presence of steep slopes (Ferreira-Leite, F., 2008) and the high values of precipitation, the fire contribute significantly to degrading the soil and accelerating erosion. However, the severity of this degradation is a function of the frequency and the intensity patterns of the fires.

The low intensity of recent fires⁵, due to a high recurrence rate, can be verified in the field immediately after their occurrence. Also, the severity of the effect of the recurrence of the fires was evaluated using the vegetation as a bioindicator of the soil status (Calvo, 1996), and it was found that, on average, where there was soil (cambisols - 10-20 cm) it was dense to less dense and the roots were covered, thus indicating a low degree of physical erosion, a fact corroborated by the presence of small incisions and marks on the ground.

Concluding Remarks

In the international literature there are many studies on the effects of different intensities of fires on soil properties (Smith, A. et al. 2010; Jordán, A. et al. 2010; Lawrence, L., 2010). However, the frequency has been relatively under studied, which calls for promoting this kind of study.

This study, albeit in a very early stage, plans to launch the discussion on the relationship between the frequency of fires and physical erosion, showing that in particular situations, a high frequency does not always correspond to an accelerating loss of soil.

Indeed, in our sample area, which has a recurrence of up to 5 fires, the recovery rate of vegetation seems to go against the physical loss of soil. This is due to the high volume of precipitation, which contributes decisively to the high rate of vegetation growth which avoids that the soil is not unprotected for too long and subject to an accelerated erosion process.

References

.

Bento Gonçalves, A. J. (2006) – Geografia dos incêndios em espaços Silvestres de Montanha – o caso da serra da Cabreira, Tese de Doutoramento, Instituto de Ciências Sociais da Universidade do Minho, Braga, 438 pp.

Bento Gonçalves, A. J. (2006) – "A "construção" e a "desconstrução" do património florestal português no séc. XX – breve abordagem ao caso do concelho de Vieira do

⁵ Fires with an area of less than 10ha, maintenance of some green branches, partially or totally burned shrubs (Lampin et al., 2003).

- Minho". GEO-Working Papers, Série de Investigação 2006/8, NIGP Universidade do Minho, Guimarães.
- Calvo, D. A. (2002) *Ciencias de la tierra y del médio ambiente*, 2.º Bachillerato, McGraw-Hill, Madrid, 333pp.
- Ferreira Leite, F. e Bento Gonçalves, A. J. (2008) "Alterações no ciclo de fogo na serra da Cabreira", *Actas XI Colóquio Ibérico de Geografia*, Universidad de Alcalá de Henares, Espanha.
- Ferreira Leite, F.; Bento Gonçalves, A.J.; Vieira, A. e Martins, C. (2010) "A recorrência dos incêndios na serra da Cabreira como manifestação do risco de incêndio florestal", Territorium 17, 2010, p. 93-98.
- Ferreiro, A., Fontúrbel, T., Fernandéz, C, Merino, A., Veja, J. A. (2010) "Indicadores visuales de severidad del fuego y relaciones com câmbios en parâmetros químicos y microbiológicos después de incêndio", Jornadas Internacionales, Diaz Raviña, M., Benito, E., Carballas, T., Fontúrbel, M. T., Veja, J. A. (eds.) Investigación y Gestión para la Protección del Suelo y Restauración de los Ecosistemas Forestales Afectados por Incendios Forestales, FUEGORED 2010, Santiago de Compostela.
- Jordán, A., Zavala, L. M., Mataix-Solera, J. (2010) "Impact of fire severity on soil structure and water repellency in the neo-volcanic axis range (Central Mexico)", Jornadas Internacionales, Diaz Raviña, M., Benito, E., Carballas, T., Fontúrbel, M. T., Veja, J. A. (eds.) Investigación y Gestión para la Protección del Suelo y Restauración de los Ecosistemas Forestales Afectados por Incendios Forestales, FUEGORED 2010, Santiago de Compostela.
- Lampin-Cabaret C., Jappiot, M., Alibert, N. e Manlay, R. (2003) "Une échelle d'intensité pour le phénomène Incendie de forêts", SIRNAT JPRN Orléans.
- Lourenço, L., Bento Gonçalves, A. (2010) "Erosión violenta post-incendios forestales en Portugal", Jornadas Internacionales, Diaz Raviña, M., Benito, E., Carballas, T., Fontúrbel, M. T., Veja, J. A. (eds.) Investigación y Gestión para la Protección del Suelo y Restauración de los Ecosistemas Forestales Afectados por Incendios Forestales, FUEGORED 2010, Santiago de Compostela.
- Pyne, S. J. *et al.* (1996) *Introduction to Wildland Fire*, New York. John Wiley & Sons. Soares, A. (coord.) (2000) Atlas da fauna e flora da serra da Cabreira, CIASC, p. 219.

Rainfall simulations and forest fires in the central sector of the Ebro basin

León, F.J.^{1*}, Álvarez, C.², Badía, D.³, Echeverría, M.¹, Martí, C.³ e Ibarra, P.¹

¹ Departamento de Geografía y Ordenación del Territorio. Universidad de Zaragoza. Pedro Cerbuna, 12, 50009 Zaragoza. España;

Department of Environmental Sciences. Wageningen University. The Neetherlands;
 Departamento de Agricultura y Economía Agraria. Escuela Politécnica Superior de Huesca. Universidad de Zaragoza. Ca de Zaragoza, s/n, 22071-Huesca. España.
 * fcojleon@unizar.es

Key-words: Rainfall simulation, runoff and sediment production, mulching.

Introduction

Wildfire can be an important cause of hydrological and geomorphological change in fireprone landscape because wildfires usually burn in mosaic patterns with portions of the area burned in low, moderate, and high severity conditions as defined by Ryan and Noste (1983) and DeBano et al. (1998). The loss of vegetation and litter cover represents the obvious changes in the burned landscape. Litter and plant canopies reduce the final drop impact energy, and the root system can act as a preferential flow path for infiltration. On the other hand, due to soil heating caused by fires of soils tend to alter their properties (Badía and Martí, 2003a, 2003b, 2008) including soil aggregate stability, infiltration, and water repellency (DeBano, 2000; Cerdà and Doerr, 2005; Doerr et al., 2006). These changes often result in enhanced soil erosion and overland flow on sloping landscapes. The magnitude of these effects depends on an often complex interplay of factors including climate, plant, litter, terrain, post-fire rainfall patterns, type of cover (stones or ash) and, soil and fire characteristics (Cerdà and Doerr, 2005; Badía and Martí, 2008). Generally, fire-enhances water repellency and increases runoff and soil erosion (Shakersby et al., 2007), but in some cases burned soils covered by ashes, are protected from soil erosion during the first year after being burned (Leighton-Boice et al., 2007; Woods and Balfour, 2008; Cerdà and Doerr, 2008).

On the other hand, some practices proposed to improve soil physical characteristics and reduce soil erosion in semiarid land include herb or shrub sowing management (Vallejo et al., 1993; Bautista and Bellot, 1994; Badía and Martí, 2000). Also in post-fire rehabilitation, mulches are intended to reduce rain impact and overland flow and keep the soil in place. Mulches are considered emergency hillslope measures, which are the first line of defence against post-fire erosion and off-site impacts of sediments and floods (Robichaud et al., 2006; Bautista et al., 2009). These rainfall simulation experiments give the opportunity to compare the soil erodibility in selected micro-plots with specific fire, terrain, and rainfall characteristics.

Objectives

A rainfall simulator was used to analyze the hydrogeomorphological behaviour of the soil after two fires. Those fires occurred in August 2008 and 2009 in the central sector of the Ebro Basin. Different spatial scenarios have been selected both in burnt (forest, shrub) and unburnt areas, on two different substrates, gypsum and limestone. In addition, rainfall simulation tests were conducted on plots covered with woodchip-mulching.

The objectives of the rainfall simulations were: (i) to quantify the different behaviour of post-fire erosion and runoff based on lithology and the type of burnt vegetation, and (ii) to

monitor the effectiveness of applying mulch on top of the plots of the simulation plots after the fire.

Material and methods

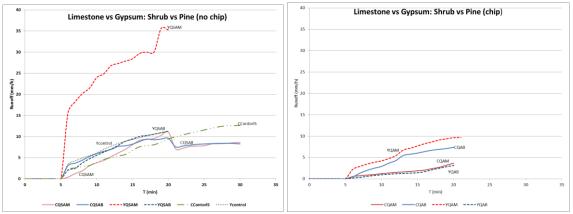
Study area:

The first area of study (Zuera) was affected by the fire of August 2008 that burned some 2,800 ha and is located in the Montes de Castejon (UTM 30N; 668427W, 4646689N), left bank of the Ebro River, about 50 km Northwest of the city of Zaragoza. The burnt vegetation is represented by irregular mosaics of Aleppo pine (*Pinus halepensis Mill*), Kermes oak (*Quercus coccifera*), and associations of Cervo-thymus-gorse on soils classified as *Haploxeroll pachic* at the top and bottom *Calcixeroll pachic* (NCRS: Soil Taxonomy System, 2006).

The second study area (Remolinos) is located close to the first one (UTM 658881W, 4638913N). This fire took place in August 2009, during some military manoeuvres, and affected 6,700 ha of scrub - gorse (*Genistascorpius*), broom (*Retamasphaerocarpa L.*), rosemary (*Rosmarinus officinalis*) as well as small forests of Aleppo pine (*Pinushalepensis Mill*) and Kermes oak (*Quercus coccifera*). This region has a semarid Mediterranean climate, with an average annual rainfall ca 560 mm and a mean annual temperature of 12.5°C. The potential annual evaporative demand, estimated by Thornthwaite method is ca 950 mm. The relief consists of stepped slopes (200-748 masl) and the lithological substrate consists of limestones and gypsierous marls, dated from the middle Miocene.

Rainfall simulation experiment:

The rainfall simulations were carried out, with a two stroke motor-pump (Matabi) and a cone-atomizing nozzle (Lechler) were used on a series of 12%-average-slope plots applying a rainfall intensity of about 60 mm/h for half an hour on a 0.21-m²-wide and ca 2.2-metre-high plot. The rainfall simulator was calibrated with a Laser Disdrometer (Thies) with the collaboration of Iserloh of Trier University. Rainfall characteristics were 97.8% of Christiansen Coefficient for the rainfall distribution at 52.5 mm h $^{-1}$, with a mean drop-size of 0.5·1 mm (D_{50}), and a Kinetic energy of 4.16 J m $^{-2}$ mm $^{-1}$. The plots' compositions were, shrub or tree. Also, the effect of mulching with Aleppo pinewoodchips was analyzed using the same plots, to see how it affected runoff. Finally the runoff was collected and the concentration of sediment yield determined the rate of erosion and water quality. The sediment samples were analyzed to determine pH, Electrical Conductivity and the concentration of Ca^{2+} , Mg^{2+} , K^+ and Na^+ . In total 66 rainfall simulations were made (three replicates per treatment were carried out).


Results and conclusions

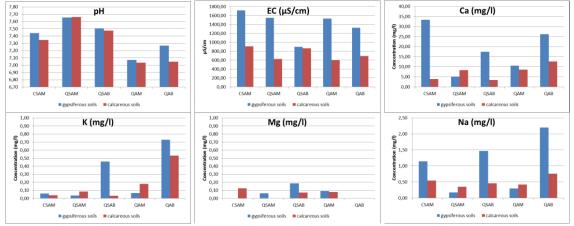
Runoff was different when comparing limestone and gypsum affected by wildfire (Fig. 1, Table 1 and 2), on limestone it was half as seen on other studies such as Badía and Martí (2000). On the other hand, runoff was lower in burnt limestone compared with unburnt, it was coverted by ash, this has also been observed by other autors (Leighton-Boice et al., 2007; Woods and Balfour, 2008; Cerdà and Doerr, 2008). The role of vegetation type was important, as it affected the runoff. Runoff was lower for calcareous soil than for gypsiferous soil, but it changed drastically according to the different vegetation types. On calcareous soils, runoff with shrubland was lower than with pine forest, as found by Cerdà (1998) in a Mediterranean shrubland. On gypsiferous soil it was the opposite, runoff on shrubland was higher than under pine forest. Finally the role of the wood chip-

mulching was more important for small amounts of runoff both on limestone and gypsum soils. Different types of mulching application have been seeing in studies of revegetation and post-fire rehabilitation (Vallejo et al., 1993; Bautista and Bellot, 1994; Badía and Martí, 2000; Robichaud et al., 2006; Bautista et al., 2009).

Figure 1. Mean runoff curves for the limestone and gypsum. (C)Limestone; (Y) Gypsum; (Q) burnt; (SA) no chip; (A) chip; (M) shrub; (B) pine.

Table 1. Field values. (T) type: (C) unburnt; (Q) burnt; (Ttm) treatment: (SA) no chip; (A) chip; (Tveg) vegetation type: (M) shrub; (B) pine.

L	LIMESTONE		Ponding time	Runoff Coef	Runoff Ratio	Sediment	Infiltration Coef
T	Ttm	Tveg	(min)	(%)	$(mm/h) \qquad (gm^{-2}h^{-1})$		(%)
C	SA	M	$3,28 \pm 0,3$	$25,24 \pm 22,5$	$12,62 \pm 11,3$	113,06 ±124,3	$74,76 \pm 22,5$
Q	SA	M	$6,31 \pm 2,7$	$24,42 \pm 15,3$	$12,21 \pm 7,69$	$51,75 \pm 59,1$	$75,58 \pm 15,3$
Q	SA	В	$3,77 \pm 1,3$	$19,55 \pm 3,7$	$9,78 \pm 1,8$	$131,27 \pm 112,4$	$80,45 \pm 3,7$
Q	A	M	$5,83 \pm 3,4$	$7,28 \pm 3,5$	$3,64 \pm 1,7$	$31,81 \pm 15,1$	$92,72 \pm 3,5$
Q	A	В	$5,18\pm1,6$	$14,76 \pm 12,2$	$7,38 \pm 6,1$	$70,60 \pm 40,7$	$85,24 \pm 12,2$


Table 2. Field values. (T) type: (C) unburnt; (Q) burnt; (Ttm) treatment: (SA) no chip; (A) chip; (Tveg) vegetation type: (M) shrub; (B) pine.

	GYPSUM		Ponding time Runoff Co		Runoff Ratio	Sediment	Infiltration Coef	
T	Γ Ttm Tveg		(min)	(%) (mm/h)		$(gm^{-2}h^{-1})$	(%)	
C	SA	M	$3,87 \pm 0,6$	$21,77 \pm 6,1$	$10,89 \pm 3,0$	149,22 ±284,9	$78,23 \pm 6,1$	
Q	SA	M	$3,31 \pm 1,0$	$59,73 \pm 18,6$	$29,87 \pm 9,3$	$911,72 \pm 394,6$	$40,27 \pm 18,6$	
Q	SA	В	$4,62 \pm 1,6$	$21,16 \pm 5,2$	$10,58 \pm 2,6$	$137,69 \pm 21,3$	$78,84 \pm 5,2$	
Q	A	M	$5,65\pm1,1$	$19,49 \pm 13,5$	$9,75 \pm 6,7$	$128,89 \pm 116,3$	$80,51 \pm 13,5$	
Q	A	В	$6,36\pm1,6$	$6,24 \pm 0,8$	$3,12 \pm 0,4$	$51,02 \pm 4,8$	$93,76 \pm 0,8$	

The laboratory analyses are shown on the Fig. 2 and Table 3 and 4. The pH was higher for calcareous and gypsiferous burnt soils, than for unburnt. And the EC was lower for calcareous and gypsiferous burnt soils than for unburnt. The amount of Ca^{2+} , decreases with the effect of fire, this is higher on gypsiferous soils than on limestone. But the amount of K^{+} increases with the effect of fire, finding higher concentrations on gypsiferous soils.

Figure 2. Laboratory parameters measure on runoff. (C) unburnt; (Q) burnt; (SA) no chip; (A) chip; (M) shrub; (B) pine.

The concentrations of Mg^{2^+} have no significant changes when comparing the gypsyferous and limestone soils. These results show a similar pattern showed in calcareous soils in the work of Outeiro et al. (2008). On burned areas when the wood-chips mulching were used, the concentration of Na^+ , K^+ , Mg^{2^+} are lower than when no wood-chips were used.

Table 3. Laboratory values. (T) type: (C) unburnt; (Q) burnt; (Ttm) treatment: (SA) no chip; (A)

chip;(Tveg) vegetation type: (M) shrub; (B) pine.

L	MEST	ONE	pН	Ce	Na ⁺	Mg^{2+}	\mathbf{K}^{+}	Ca ²⁺
T	Ttm	Tveg		(µS/cm)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
C	SA	M	$7,35 \pm 0,15$	907,61 ±639,5	$0,55 \pm 0,7$	$0,13 \pm 0,18$	$0,04 \pm 0,06$	$3,88 \pm 5,4$
Q	SA	M	$7,66 \pm 0,43$	624,83 ±26,1	$0,35 \pm 0,6$	$0,00 \pm 0,00$	$0,08 \pm 0,15$	8,33 ±14,4
Q	SA	В	$7,47 \pm 0,44$	$864,94 \pm 278,2$	$0,46 \pm 0,9$	$0,07 \pm 0,15$	$0,03 \pm 0,07$	$3,45 \pm 6,9$
Q	A	M	$7,03 \pm 0,03$	595,22 ±59,5	$0,42 \pm 0,3$	$0,08 \pm 0,14$	$0,18 \pm 0,16$	$8,53 \pm 7,4$
Q	\mathbf{A}	В	$7,05 \pm 0,03$	$690,39 \pm 24,1$	$0,76 \pm 1,0$	$0,00 \pm 0,00$	$0,53 \pm 0,75$	$12,65\pm17,8$

Table 4. Laboratory values. (T) type: (C) unburnt; (Q) burnt; (Ttm) treatment: (SA) no chip; (A) chip; (Tveg) vegetation type: (M) shrub; (B) pine.

	GYPSU	JM	pН	Ce	Na ⁺	Mg ²⁺	\mathbf{K}^{+}	Ca ²⁺
T	Ttm	Tveg		(µS/cm)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
C	SA	M	$7,44 \pm 0,26$	$1713,49 \pm 228,7$	$1,15 \pm 1,9$	$0,00\pm0,0$	$0,06 \pm 0,1$	$33,34 \pm 57,7$
Q	SA	\mathbf{M}	$7,65 \pm 0,06$	$1544,58 \pm 182,5$	$0,17 \pm 0,3$	$0,06 \pm 0,1$	$0,03 \pm 0,06$	$5,08 \pm 8,7$
Q	SA	В	$7,51 \pm 0,11$	$899,15 \pm 129,8$	$1,47 \pm 1,2$	$0,19 \pm 0,3$	$0,46 \pm 0,5$	$17,46 \pm 13,5$
Q	A	\mathbf{M}	$7,07 \pm 0,15$	$1528,88 \pm 110,6$	$0,30 \pm 0,5$	$0,09 \pm 0,1$	$0,07 \pm 0,1$	$10,54 \pm 18,2$
Q	A	В	$7,27 \pm 0,05$	$1323,50\pm195,8$	$2,20 \pm 3,1$	$0,00\pm0,0$	$0,73 \pm 1,0$	$26,15 \pm 36,9$

The results show that the infiltration rates and the runoff and sediment production are strongly affected by the lithology substrate and the remains of vegetation cover after the fire. Higher infiltration rates were obtained on burned forest areas compared to burned shrub ones, and on limestone compared to gypsum areas. The application of mulching is an effective measure to reduce runoff.

References

Badía, D., Martí, C., 2000. Seeding and mulching treatments as conservation measures of two burned soils in the Central Ebro Valley, NE Spain. Arid Soil Research and Rehabilitation 13, 219-232.

Badía, D., Martí, C., 2003a. Plant and heat intensity effects on chemical and physical properties of two contrasting soils. Arid Land Research and Management 17, 23-44.

- Badía, D., Martí, C., 2003b. Effect of simulated fire on organic matter and selected microbiological properties of two contrasting soils. Arid Land Research and Management 17, 55-69.
- Badía, D., Martí, C., 2008. Fire and rainfall Energy effects on soil erosion and runoff generation in semi-arid forested lands. Arid Land Research and Management 22, 93-108.
- Bautista, S., Bellot, J., 1994. Evaluación de la siembra de herbáceas como tratamiento de control de los procesos erosivos post-incendio en una zona semiárida. Studia Oecologica 10-11, 129-136.
- Bautista, S. et al. (2009): "Post-fire mulching". Land Reconstruction and Management, Vol. 5, Oxford, 353-371 pp.
- Cerda, A. (1998a). Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes 12, 1031-1042.
- Cerda, A. (1998b). Post-fire dynamics of erosional processes under Mediterranean climatic conditions. Zeitschrift für Geomorphologie 42, 373-398.
- Cerdá, A., Doerr, S.H., 2005. Influence of vegetation recovery on soil hydrology and erodibility following fire: An 11-any investigation. International Journal of Wildland Fire 14, 423-437.
- Cerda, A., Doerr, S.H. (2008). The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 74, 256-263.
- DeBano, L.F. (2000). The role of fire and soil heating on water repellence in wildland environments: a review. Journal of Hydrology 231, 195-206.
- Doerr, S.H., Shakesby, R.A., Walsh, R.P.D. (2000). Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Scince Reviews 51, 33-65.
- Doerr, S.H., Shakesby, R.A., Deker, L.W., Ritttsema, C.J., (2006b). Ocurrence, predition and hydrological effects of water repellency amongst major soil and land-use types in a humid temperature climate. European Journal of Soil Science 57, 741-754.
- Horton, R. I. (1938). The interpretation and application of runoff plot experiments with reference to soil erosion problems. Soil Science Society of America Proceedings 3: 340-349.
- Mishra, S.K., Tyagi, J.V., Singh, V.P. (2003). Comparison of infiltration models. Hydrological processes. 17, 2629-2652.
- Moriasi, D.N., Arnold, J.G., Van Liew, Bingner, R.L., Harmel, R.D., Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, volume 50 (3): 885-900.
- Outeiro L., Asperó F., Úbeda X. (2008). Geostatistical methods to study spatial variability of soil cations after a prescribed fire and rainfall. Catena 74, 310-320.
- Shakesby, R.A., Doerr, S.H. (2006). Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews 74, 269-307
- Vallejo, V.R., Bellot, J., Ferran, A. (Eds), 1993. Revegetación de áreas quemadas en la Comunidad Valenciana. Ecosistemas 4, 41-43.
- Woods, S.W., Balfour, V.N. (2008). The effect of ash on runoff and erosion after a severe forest wildfire, Montana, USA. International Journal of Wildland Fire 17(5), 535–548.

The effect of recurrent rainfall events on the hydrological changes of soil surfaces covered by ash.

León, F. J. 1*, Bodí, M.B. 2,3, Cerdà, A. 2, Mataix-Solera, J. 3, Echeverría, M. 1

¹ Dpto. de Geografía y Ordenación del Territorio, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.

* fcoileon@unizar.es

Key-words: White ash, black ash, rainfall simulation, water quality.

Introduction

The magnitude of the post-fire hydrogeomorphic response depends of the loss of surface litter, duff and other organic ground cover (Cerda, 1998a; Woods et al., 2008), the soil water repellency (DeBano, 2000; Doerr et al., 2000, 2006; Shakesby et al. 2000) and the effects of heating on the soil structure (Mataix-Solera and Doerr, 2004). Some factors affecting hillslope responses, however, can change substantially within the first days or weeks following burning (Cerdà and Doerr, 2008).

The scientific community is being aware that ash is a key factor has critical importance in determining rates of overland flow and soil erosion (Woods and Balfour, 2008; Cerdà and Doerr, 2008). The highest levels of nutrients and suspended sediments in the streams have been measured during after the wildfire and during the first storms. One of the main responsible of this increase in the sediment and solute yield from slopes to channels and then to the watercourses is a new rich-nutrient material product that we can find after fire. The ash however, it has been reported a variability in its effects, from increasing runoff rates and soil erosion to reduce them. This variability is due to the ash physical characteristics (porosity, particle size or hydraulic conductivity) depending on the temperature of combustion and plant (Ulery et al., 1993; Neary et al., 2005; Woods and Balfour, 2008).

Ash is considered to increase post-fire erosion rates, because they are erodible fine material (Shakesby and Doerr, 2006). But in recent studies have been demostrated that ash can reduce the runoff rate and protecting the soil surface from rainsplash impacts (Leighton-Boyce et al., 2007; Cerda and Doerr, 2008; Woods and Balfour, 2008). Then, if ash temporarily reduces runoff and erosion from burned areas, then the highest risk of damaging runoff and erosion events may be delayed until after the ash layer is removed by dissolution or erosion (Cerda and Doerr, 2008; Woods and Balfour, 2008).

The chemical composition of the ash has been mostly studied using a leaching test, which informs about the potential nutrients that can be dissolved. However, the effects of ash characteristics on the chemical constituents of overland flow from burned areas are not quantified as well as its effects on soil water quality (Smith et al., 2009; Pereira et al., 2009).

Objectives

This experiment shows the hydrological and erosional changes of ash affected by different rainfall events. Because for logistical reasons, it has often not been possible to follow the evolution of burnt terrain from immediately following a wildfire and data collection has typically begun some weeks or months after a burn (DeBano, 2000;

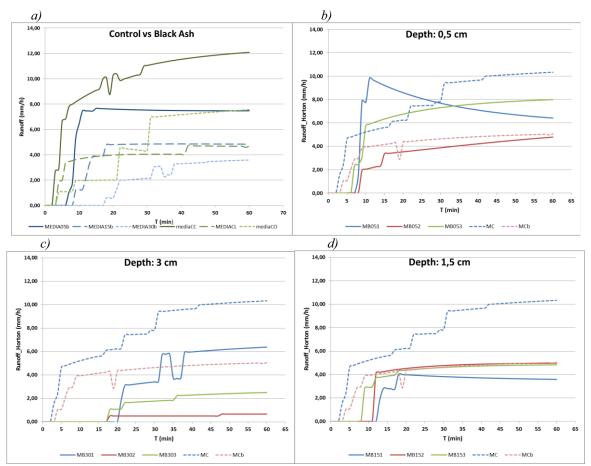
 ² Departamento de Geografia, Universitat de València, BlascoIbañez, 28, 46010, Valencia, Spain.
 ³ Departamento de agroquímica y MedioAmbiente, Universidad Miguel Hernández, EdificioAlcudia, Avda de la Universidad s/n. 03202 Elche, Spain.

Shakesby and Doerr, 2006; Cerdà and Doerr, 2008). This paper is focused on the immediately post-fire period. The objective of this experiment is twofold: (i) to quantify the effects of ash characteristics and the thickness of the ash layer on overland flow and soil erosion and (ii) assess the effects of ash characteristics on the chemical constituents of overland flow.

Material and methods

Study area

A 30-yr abandoned rainfed orchard located in the Sierra de Enguera (38°50'N; 0°42'W) was selected as representative of mountainous rangeland of eastern Spain for the installation of the El Teularet Soil Erosion Experimental Station (TESEES), in Valencia province (east of Spain). The parent material is Cretaceous Marls, the soil is a Typic Xerorthent (Soil Survey Staff, 1998), the agricultural terrace had a slope gradient of 5 to 8% and the previous land management was almond and wheat crop farming. Intense ploughing has been applied at the site for centuries. Climate is typical Mediterranean with 3 - 5 months of summer drought, usually from late June–September. Mean annual rainfall at the study area range from 479 mm at the Enguera - Las Arenas meteorological station to 590 mm at the Enguera Confederación Hidrográfica del Jucar (CHJ) meteorological station. The mean annual days of rainfall at the study area is 37.9 (Las Arenas meteorological station) and 40.7 (CHJ meteorological station). Rainfall is distributed homogenously amongst spring, autumn and winter, while the summer is extremely dry due to high temperatures and lack of rainfall. Mean annual temperature ranges from 12.7°C to 14.2°C within the La Matea and Las Arenas meteorological stations. The hottest month is August with an average monthly temperature of 23 °C, while the coldest is January with an average monthly temperature of 7.3 °C.


Rainfall simulation experiments

Forty one rainfall simulation experiments were carried out in July-August 2010 under dry conditions in order to determine the soil and water losses. Thirty experiments with black ash (three depth of ash: 0.5 - 1.5 - 3 cm \times 3 repetitions) and eleven experiments in control plots, were conducted during the summer drought period when soil moisture is low. The black ash from *Pinus halepensis* were collected of a fire in Teruel (Spain) in august 2009, of low intensity. The rainfall simulation runs were carried out after the ash was carefully deposited on the plot, and fifteen days later. Deionised water was applied from a height of two meters onto a 1 m² sub-plot, and runoff was collected from a bordered circular 0,24 m² area in the center of the sub-plot. Simulated rainfall duration was 1 h at a rate of 55 mm h⁻¹, simulating the rainfall from a thunderstorm, which in these study areas would occur once every 5 years. Rainfall characteristics were 93,24% of Christiansen Coefficient for the rainfall distribution at 55 mm h⁻¹, with a mean drop-size of 2,53 mm (D₅₀), mean drop velocity of 3,4 m s⁻¹, and a Kinetic energy of 7,1 J m⁻² mm⁻¹. Detailed information on the distribution of those parameters can be found in Cerdà' et al. (1997). Overland flow from the circular collection area was measured at 1-min intervals. Every tenth 1-min runoff sample was collected for laboratory analysis in order to determine sediment concentration. Runoff rates and sediment concentration were used to calculate the sediment yield, total runoff, runoff coefficient, infiltration, and erosion rates (Cerdà, 1999). Water samples were analysed for pH, EC, Ca²⁺, Mg²⁺, K⁺, Na⁺ and Cl⁻. Vegetation, litter and rock fragment cover were measured in the field as % of the soil surface covered by plants.

For the presentation of data was used adjusting curves using the equation of Horton (1938), where f_c is the steady state value of f, f_o is the value of f at t=0, and k is the infiltration decay factor. Equation is derived from the simple assumption that the reduction in the infiltration capacity during rain is directly proportional to the rate of infiltration and is applicable only when the effective rainfall intensity is greater than f_c . This model is considered a good election for semiarid lands (Kumar et al., 2003). To evaluate the values obtained with Horton equation and compare them to corresponding measured values, we selected the following three statistical parameters, RMSD (the root mean squared deviation, it gives the mean difference between measured and calculated values), NSE (the Nash Sutcliffe efficiency was also used (Moriasi, 2007) to compared measured and calculated values), and RSR (ratio of the mean squared error to the standard deviation of measured data). The parameters measured on the field are shown in Table 1 (means by treatament):

Figure 1. (a) Mean runoff curves for the control and black ash (mean of runoff); Black ash to 0.5 cm (b), 1.5 cm (d) and 3 cm (c) of depth by event. Curves fitted to the Horton model.

Table 1. Parameters measured in rainfall simulation. (BA) Black ash; (C) Control; (05, 15, 30) Ash depth in mm; (a, b, c) 1st, 2nd, and 3rd rainfall event.

	Ponding time	Runoff	Coef Runoff	Coef Infiltration	k	f_o	f _c
	(min)	(mm/h)	(%)	(%)	(min^-1)	(mm/h)	(mm/h)
BA 05 a	$4,00 \pm 2,8$	$5,58 \pm 9,3$	$11,16 \pm 18,6$	$63,84 \pm 45,8$	$0,05 \pm 0,03$	$12,38 \pm 11,4$	$5,69 \pm 8,0$
BA 05 b	$7,43 \pm 7,0$	$2,19 \pm 3,2$	$4,38 \pm 6,5$	$62,28 \pm 54,2$	$0,02 \pm 0,03$	$2,00 \pm 1,8$	$4,08 \pm 6,8$
BA 05 c	$5,89 \pm 4,1$	$6,51 \pm 6,8$	$13,02 \pm 13,7$	$61,98 \pm 42,6$	$0,04 \pm 0,04$	$3,67 \pm 3,6$	$6,17 \pm 9,8$
BA 15 a	$7,33 \pm 1,4$	$2,72 \pm 3,3$	$5,45 \pm 6,7$	$61,22 \pm 6,7$	$0,02 \pm 0,02$	$5,75 \pm 0,7$	2,25 ±2,4
BA 15 b	5,71	1,98	3,95	46,05	$0,04 \pm 0,05$	$1,46 \pm 2,0$	$2,50 \pm 3,5$
BA 15 c	$9,22 \pm 4,3$	$2,91 \pm 4,7$	$5,82 \pm 9,3$	$69,18 \pm 9,3$	$0,05 \pm 0,04$	$2,32 \pm 2,7$	$3,65 \pm 4$
BA 30 a	$13,67 \pm 0,7$	$2,37 \pm 0,8$	$4,73 \pm 1,7$	$61,93 \pm 1,7$	$0,14 \pm 0,20$	$2,58 \pm 0,1$	$7,00 \pm 0,9$
BA 30 b	$21,33 \pm 21,2$	$0,41 \pm 0,7$	$0,83 \pm 1,4$	$65,84 \pm 1,4$	$0,03 \pm 0,03$	$0,67 \pm 0,7$	$0,67 \pm 0,7$
BA 30 c	$18,35 \pm 9,3$	$1,11 \pm 1,3$	$2,22 \pm 2,6$	$72,78 \pm 2,6$	$0,02 \pm 0,03$	$0,98 \pm 0,7$	$2,0\pm 2,6$
Са	15,97 ±14,6	$10,26 \pm 11,4$	20,52 ±22,8	$79,48 \pm 22,8$	$0,04 \pm 0,05$	$7,18 \pm 6,6$	11,40 ±9,4
C b	$5,25 \pm 2,2$	$4,05 \pm 1,6$	$8,09 \pm 3,3$	$91,91 \pm 3,3$	$0,03 \pm 0,01$	$3,92 \pm 0,1$	$4,25 \pm 2,8$

Results and conclusions

On the *Figure 1a* show the behaviour of the runoff under different treatments. Runoff decreased when increases the depth of ash. The runoff in the control plots was higher than the runoff with black ash. This is due to effect of the hydrophilic black on a hydrophobic soil. On *Figure 1 b,c,d* control is the mean of the three. In the plot with an ash layer with a depth of 0.5 cm can be seen that the runoff was high during the first minutes of runoff, decrease with the second storm and increase after the last storm. This was similar to the behavior of the plot with 3 cm of ash layer. The plots with an ash layer depth 1.5 cm did not contribute with runoff yields. Then, when decreased the ashes depth increased the runoff. And, that the runoff is lower when the ashes cover the soil, which was the case of the first thunderstorm.

Table 2. Laboratory parameters measure on runoff. (BA) Black ash; (C) Control; (05, 15, 30) Ash depth in mm; (a, b, c) 1st, 2nd, and 3rd rainfall event.

	PH	CE(µS/cm)	Ca^{2+} (mg/l)	Mg^{2+} (mg/l)	K^{+} (mg/l)	Na ⁺ (mg/l)	Cl- (mg/l)
BA 05 a 5	,95 ±3,9	357,81 ±256,2	$33,28 \pm 29,7$	$8,34 \pm 5,8$	$10,21 \pm 6,9$	$2,22 \pm 1,4$	$40,09 \pm 27,0$
BA 05 b 4	$+,14 \pm 5,8$	$91,81 \pm 129,8$	$2,94 \pm 4,1$	$0,21 \pm 0,2$	$0,19 \pm 0,2$	$0,55 \pm 0,7$	$8,37 \pm 11,8$
BA 05 c 6	$5,37 \pm 4,2$	$96,84 \pm 80,6$	$1,81 \pm 1,3$	$0,32 \pm 0,3$	$0,43 \pm 0,6$	$0,52 \pm 0,4$	$10,78 \pm 9,3$
BA 15 a 5	,40 ±0,1	204,15 ±119,3	$16,89 \pm 17,4$	5,77 ±2,5	$4,27 \pm 2,8$	$2,02 \pm 0,8$	$27,78 \pm 0,5$
BA 15 b 5	$,19\pm0,4$	$137,07 \pm 115,2$	$6,63 \pm 7,6$	$2,86 \pm 5,6$	$3,34 \pm 6,6$	$1,42 \pm 1,5$	$32,36 \pm 48,0$
BA 15 c 6	$5,21 \pm 0,2$	$97,89 \pm 40,1$	$3,30 \pm 1,3$	$0,23 \pm 0,07$	$0,29 \pm 0,3$	$0,41 \pm 0,3$	$16,31 \pm 21,5$
BA 30 a 5	,27 ±0,2	280,04 ±271,0	20,11 ±15,3	$6,23 \pm 6,3$	$12,03 \pm 18,2$	$1,48 \pm 0,2$	42,79 ±29,8
BA 30 b 5	$,26\pm0,1$	$130,38 \pm 89,7$	$8,20 \pm 9,5$	$5,09 \pm 6,9$	$4,56 \pm 6,8$	$2,37 \pm 0,2$	$26,59 \pm 23,9$
BA 30 c 5	$,97 \pm 0,3$	$101,51 \pm 11,6$	$3,13 \pm 2,5$	$0,22 \pm 0,04$	$0,19 \pm 0,03$	$0,57 \pm 0,3$	$16,02 \pm 12,8$
C a 7	$7,78 \pm 0,5$	$150,24 \pm 58,79$	$8,00 \pm 5,7$	$2,66 \pm 1,6$	$8,92 \pm 11,1$	$2,00 \pm 1,2$	40,52 ±24,0
C b 7	$1,12 \pm 0,2$	$148,35 \pm 31,60$	$6,28 \pm 1,1$	$3,14 \pm 0,5$	$9,20 \pm 2,9$	$3,85 \pm 0,3$	$61,95 \pm 19,1$

The pH values (*Table 2*) show lower values than on the ash covered than on the control plots. Then the electric conductivity was higher on the ash than control plots, and the EC values decreased when the ash depth increased. Furthermore, the EC decreased with following runs and on the last storm the values were similar. The K⁺ and Na⁺ were found to be lower on the ash covered plots than on the control ones, and they were also lower on the ash covered plots with the lower ash doses. Meanwhile K⁺, Na⁺ and Cl⁻, show greater values in the control plots were than on the ash covered plots. The K⁺, Na⁺ and Cl⁻ values decreased when the ash depth. Then the changes on the ash depth are relevant to understand the changes in water quality after forest fires.~

3rd International Meeting of Fire Effects on Soil Properties 15-19 March 2011 | University of Minho | Guimarães, Portugal

References

- Cerda, A. (1998a). Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes 12, 1031-1042.
- Cerda, A. (1998b). Post-fire dynamics of erosional processes under Mediterranean climatic conditions. Zeitschrift für Geomorphologie 42, 373-398.
- Cerda, A., Doerr, S.H. (2008). The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 74, 256-263.
- DeBano, L.F. (2000). The role of fire and soil heating on water repellence in wildland environments: a review. Journal of Hydrology 231, 195-206.
- Doerr, S.H., Shakesby, R.A., Walsh, R.P.D. (2000). Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Scince Reviews 51, 33-65.
- Horton, R. I. (1938). The interpretation and application of runoff plot experiments with reference to soil erosion problems. Soil Science Society of America Proceedings 3: 340-349
- Leighton-Boyce, G., Doerr, S.H., Shakesby, R. A., Walsh, R.P.D. (2007). Quantifying the impact of soil water repellency on overland flow generation and erosion: a new approach using rainfall simulation and wetting agent on in situ soil. Hydrological Process 21, 2337-2345.
- Mataix-Solera, J., Doerr, S.H. (2004). Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in south-eastern Spain. Geoderma 118, 77-88.
- Mishra, S.K., Tyagi, J.V., Singh, V.P. (2003). Comparison of infiltration models. Hydrological processes. 17, 2629-2652.
- Moriasi, D.N., Arnold, J.G., Van Liew, Bingner, R.L., Harmel, R.D., Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, volume 50 (3): 885-900
- Neary, D.G., Ryan, K.C., DeBano, L.F. (Eds) (2005). Widland fire in ecosystems: effets of fire on soil and water. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-42-Volume 4. (Ogden, UT).
- Pereira, P., Úbeda, X., Outeiro, L., Martin, D.A. (2009). Factor analysis applied to fire temperature effects on water quality, In: E. Gomez and K. Alvarez (Eds) Forest Fires: Detection, Suppression and Prevention.
- Shakesby, R.A., Doerr, S.H. (2006). Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews 74, 269-307
- Smith, H.G.; Sheridan, G.J.; Lane, P.N.J.; Nyman, P.; Haydon, S. (2009). Wildfire effects on water quality in forest catchments: A review with implications for water supply. Journal of Hydrology, v. 396, iss. 1-2, p. 170-192.
- Ulery, A..L, Graham, R.C., Amrhein, C. (1993). Wood-ash composition and soil pH following intense burning. Soil Science 156, 358-364.
- Woods, S.W., Balfour, V.N. (2008). The effect of ash on runoff and erosion after a severe forest wildfire, Montana, USA. International Journal of Wildland Fire 17(5), 535–548.

Aging of black carbon in the protected marshland of the Guadalquivir delta, Southern Spain

Heike Knicker*, Francisco Javier Gonzaléz Vila, Luis Clemente Salas

CSIC-IRNAS
* knicker@irnase.csic.es

Key-words: Donana National Park; C-cycling; charcoal stabillity.

Abstract

The Doñana Naional Park is located at the mouth of the river Guadalquivir in Southern Spain and represents one of the largest marshlands reserves of Europe. Although vegetation fires are now prevented as far as possible, some of the areas were formerly subjected to frequent prescribed fires since 1628 (approximately every 25-30 years). The so formed pyrogenic organic matter (PyOM) is supposed to compose a major proportion of the slow-cycling carbon pools in soils and as such it is expected to affect quality and quantity of the soil organic matter (SOM) in the present reclaimed soils. In order to test this, the SOM of three profiles (Humaquepts) within the protected center region were analyzed by solid state 13C NMR spectroscopy. The respective pyrogenic organic carbon (PyOC) content was elucidated, using the chemical oxidation method. Two of the selected profiles had experienced no fire since installation of the park in 1969. Here, no major quantities of PyOC were recovered in the O layer, but an increase of aromaticity correlating with PyOC contents was revealed with soil depth. At both sites, PyOC accounted for more than 15% of the Ctot in the A/C horizon (> 50 cm). This clearly evidences a downward translocation of charcoal within the soil profile. The third profile suffered a severe fire in 1985. The fire combusted all of the O layer (0-20 cm), but after 19 years, it recovered to approximately 15 cm, although only minor contributions of PyOC were revealed. Whereas directly after the fire, the soil at a depths of 55 cm contained only 3 mg g-1 organic C without any evidence of PyOC, i16 and 19 years a clear increase of Ctot (10-15 mg g-1) with a considerable contribution of PyOC (12% of Ctot) was revealed. Although the absolute concentration of PyOC did not decrease in the lower depths, its relative contribution to Ctot declined. This may be explained by the constant input of fresh litter, which on a long term masks the presence of char. Alternatively, a more efficient downwards transport and subsequent stabilization of PyOC may have occurred. In summary, the studied profiles clearly indicate that limiting the quantification of charcoal to the upper horizon is likely to result in its underestimation. With respect to modern agriculture, the possible transport and stabilization of PyOC residues has also to be considered if one intends to apply artificially produced biochars as possible soil amendments.

Cation's washing in burned soil: a rainfall simulation study

Javier Cancelo-González^{a*}, María E. Rial-Rivas^b, Francisco Díaz-Fierros^a

a Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Campus Vida, CP. 15782 Santiago de Compostela-A Coruña (Spain);
 b CESAM, Centro de Estudos do Ambiente e do Mar, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)
 * javier.cancelo@usc.es

Key-words: Thermal shock, unaltered soil samples, rainfall simulator, washing of cations, laboratory test.

Introduction

Cation content of water in burnt catchments is one of the key factors controlling the pH in water. Obviously, anions have influence in the ionic balance but as, in many cases, its concentration depends on atmospheric inputs (Martin and Lavabre, 2000) its relationship with the effect of fire in the pH is lower. Hydrochemical balances at catchment scale, allows to determine the cations export and are also a good indicator of losses of soil fertility experimented in the burnt areas (Tiedmemann et al. 1978).

These studies can be done in natural conditions at two levels: *in situ*, determining changes in the content and status of soil cations after fire or *ex situ* analyzing the exportation by drainage water. Other types of studies can be conducted under different experimental conditions: a) experimental plots using rainfall simulations (Cerdà et al. 2010), b) with field lysimeters to determine the runoff water (Martin and Lavabre, 2000) and c) in the laboratory by subjecting the soil to thermal shock simulating fire conditions and then monitoring the changes in the composition of the soil water (Soto and Díaz-Fierros, 1993).

This study used an experimental device of 45x20x12cm lysimeter boxes under rainfall simulations to determine the composition of surface water and subsurface water, as well as the changes in the soil composition after being subjected to temperatures of 200 and 400°C during time periods similar to forest fires.

Objectives

Study the changes experimented by surface and subsurface runoff from soils subjected to thermal shocks and laboratory rainfall simulations.

Methodology

The studied soil is a regosol umbric, rich in organic matter (10%). The soil was directly sampled in the field with the lysimeter boxes (45 long, 20 wide and 12 high), respecting its natural structure. A total of 6 samples were taken, two of them as control samples, two were exposed to a moderate intensity fire (200°C at 1 cm depth) and two exposed to a fire with more intensity (400°C at 1 cm depth). The heat shock simulations were carried out with eight Philips infrared lamps IR375CH with 375 Watts each, located at 10cm height from the samples. Once the soil reached the target temperature was move out and left to cool, resulting in heating curves to close to those observed during a forest fire (De Bano et al 1998).

Lysimeter boxes, arranged with an inclination of 20% were subjected to simulated rain with a swinging nozzle (water jet system) generating a fan-shaped rainfall with a mean intensity of 45mm.h⁻¹. Two consecutive rainfall simulations were made, with 90 mm of rain each, separated by an interval of 15 days.

The composition from the surface runoff water and the infiltrated water from each soil sample during the rainfall simulation was analyzed each time that the water sample reach 375 ml, and the soils were analyzed before and after the heating and after each rainfall simulation. All results are expressed as means of replicates of each experience.

Results and conclusions

The concentrations measured in the water at the end of the first rainfall simulation shown minimal differences with the in initial concentrations in the second rainfall simulation, so the two can represent a single washing process and as such will be discussed (Figure 1). In comparison with the control samples, the soil samples heated at 200°C have higher exportation ratios of calcium and magnesium, but there are no changes in sodium and potassium that even in the surface runoff present lower values than the control samples. All the soil samples heated at 400°C increased the washing for all the cations, and this washing process is always greater in subsurface runoff than in surface runoff. The analyzed parameters in surface and subsurface runoff, experiment an exponential decrease with the time of the rainfall simulation, considering that, at the end of the washing process (180mm), the cation losses, due the heating, are complete.

Table I. Exchangeable basic cations, sum of exchangeable cations (S), cation exchangeable capacity (CEC), % base saturation (V).

	Na ⁺	\mathbf{K}^{+}	Ca ²⁺	$\mathrm{Mg}^{2^{+}}$	S	CEC	V
	(cmol(+)/Kg)	(cmol(+)/Kg)	(cmol(+)/Kg)	(cmol(+)/Kg)	(cmol(+)/Kg)	(cmol(+)/Kg)	%
Control	0.37	0.79	2.07	0.74	3.97	25.50	15.24
200°C	0.26	0.68	1.78	0.55	3.27	17.50	18.80
400°C	0.20	0.65	1.55	0.37	2.76	14.00	20.69

The soil warming causes a decrease in the CEC generating an increase in the base saturation (V) of exchangeable basic cations (Table I). Anyway, the final balance of cations in the soil results in losses of Na, K, Ca and Mg as can be seen in the table II. In the samples heated at 200°C, the monovalent cations decreased, this can be considered as an anomalous behaviour, in comparison with literature results. Anyway similar results were reported by Soto and Díaz-Fierros (1993) explaining this behaviour due to interlayer processes that happen in illites in which the interlayer water was replaced by the monovalent cations at high temperatures.

The cation washing in the burnt soils is an important process in relation to water quality due it is the first responsible for the changes in the pH of these waters and nutritive value.

Table II. Cation losses from soil.

	Runoff	Na	K	Ca	Mg
		(Kg/Ha)	(Kg/Ha)	(Kg/Ha)	(Kg/Ha)
Control	Surface	5.97	7.33	1.22	0.95
	Subsurface	6.30	7.88	0.90	0.89
200°C	Surface	12.04	10.06	19.76	5.15
	Subsurface	5.36	7.56	5.60	1.77
400°C	Surface	8.34	12.45	31.60	5.32
	Subsurface	8.72	13.44	15.11	3.94

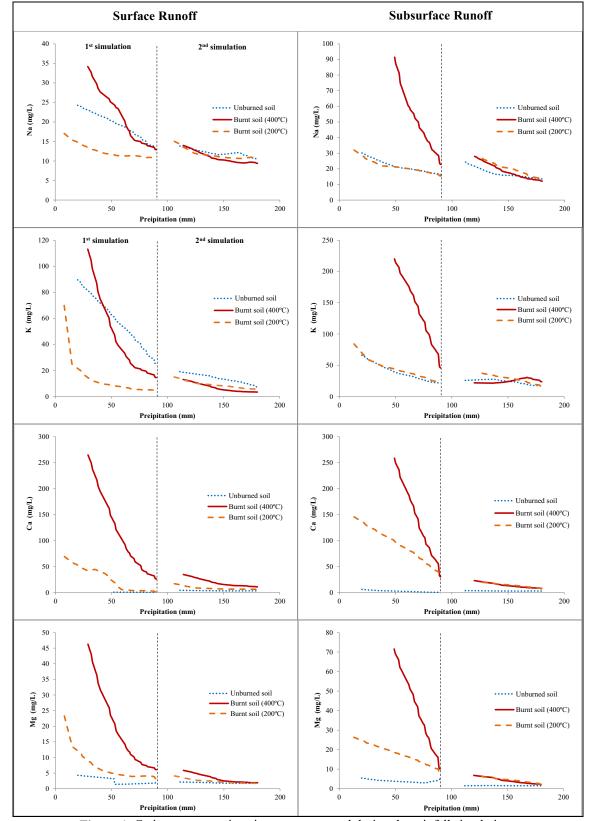


Figure 1. Cation concentrations in water measured during the rainfall simulations

3rd International Meeting of Fire Effects on Soil Properties 15-19 March 2011 | University of Minho | Guimarães, Portugal

References

- Cerdà, A., Marcos, E., Llovet, J., Benito, E., Pérez-Cabello, F., Úbeda, X., Jordán, A., Zavala, L.M., Ruiz-Sinoga, J.D. (2010). La lluvia simulada como herramienta para la investigación del efecto de los incendios forestales sobre los suelos. In A. Cerdà, Jordán, A. (Ed.) Actualización en métodos y técnicas para el estudio de los suelos afectados por incendios forestales (pp. 45-83) Valencia: 978-84-370-7887-8.
- De Bano, L. F., Neary, D.G., Ffolliott, P.F. (1998). Fire's effects on ecosystems. New York, NY: John Wiley and Sons.
- Martin, C., Lavabre, J. (2000). In Conséquences d'un incendie de forêt daus le bassins versant du Rimbaut.
- Soto, B., Díaz-Fierros, F. (1993). Interactions between plants ash leachates and soil. *International Journal of Wildland Fire*, **3**, 207-216.
- Tiedemann, A. R., Conrad, C.E., Dieterich, J.H., Hornbeck, J.W., Megahan, W.F., Viereck, L.A., Wade, D.D. (1979). Effects of fire on water. (p. 28) Washington: USDA Forest Service.

Fast characterization of wildfire effects on soil organic matter by analytical pyrolysis

José María de la Rosa^a*, María Eufemia Varela^b, Silvia R. Faria^b, Francisco Javier Gonzalez-Vila^c, Heike Knicker^c, M. Fátima Araújo^a, José Antonio González-Pérez^c, J. Jakob Keizer^b

^a Instituto Tecnologico e Nuclear (ITN), Estrada Nacional 10, 2686-953, Sacavém, Portugal; ^b Centro de Estudos do Ambiente e do Mar (CESAM), Dept. Ambiente, U. de Aveiro, 3810-193 Aveiro, Portugal;

Key-words: Wildfires; central Portugal; soil organic matter; C-sequestration.

Introduction

Forest fires are a frequent phenomenon in Mediterranean ecosystems, and are widely considered to be the main factor of disturbance in the Mediterranean basin. The Iberian Peninsula has the highest risk of wildfire occurrence of Europe. During the period 1980-2003 approximately 29% of continental Portugal was affected by wildfires.

Wildfires can affect wide range of physical, chemical, mineralogical and biological soil properties (e.g. González Pérez et al., 2004). The extent of these changes depends to a large degree on the temperature ranges reached at different soil depths (severity) and on the degree of heating that the different soil components can withstand before being altered (resilience).

Therefore, the present work aims a fast characterization of the chemical changes in the topsoil of two distinct forest types on Leptosols-Cambisols in the Colmeal area (central Portugal), where a wildfire occurred in August 2008. The fire effects on the organic matter quality of these soilss are studied through analytical pyrolysis (Py-GC/MS). The Py-GC/MS results for neighboring burnt and unburnt sites are compared to identify typical patterns of fire-induced alterations and, thereby, improve the knowledge basis for soil restoration efforts.

Analytical pyrolysis is a fast technique, which provides information concerning the structure of organic molecules, including N species, which cannot be released by hydrolysis. Pyrolysis involves thermolytic degradation of macromolecules into small fragments that are analyzed by gas chromatography-mass spectrometry (GC/MS). It is assumed that the fragments are representative of the original larger macromolecules. The interpretation of pyrolysis data, however, requires a detailed knowledge of the pyrolysis behaviour of the compounds under study. It has been recently used for the characterization of fire effects on different soils (De la Rosa et al., 2008; Tinoco et al., 2006; Knicker et al., 2005).

For this study, a double-shot pyrolysis programme has been used, carrying out a GC-MS analysis of gases evolved at 300 °C and 500 °C. The double-shot pyrolyzer allows thermal desorption of samples (at sub-pyrolysis temperature) prior to pyrolysis, and so allows the sequential examination of the products released by thermal desorption and by thermal cracking from the same sample. This permits observing the alterations caused by fire in the molecular composition of the SOM for two different compartments in terms of thermal stability. A desorption step is applied to look specifically for molecular markers of fire-induced changes in the thermolabile OM. Previous studies employing thermal

^c Instituto de Recursos Naturales y Agrobiología de Sevilla, Av. Reina Mercedes 10, 41012, Sevilla, Spain. * jmrosa@itn.pt

3rd International Meeting of Fire Effects on Soil Properties 15-19 March 2011 | University of Minho | Guimarães, Portugal

analysis have shown a loss of thermolabile organic constituents in fire-affected soils (Knicker et al., 2005). Analysis at sub-pyrolysis temperatures (up to 350 °C) permits to discern changes in thermolabile units, whilst analysis at pyrolysis temperatures addresses changes in compounds with higher thermal stability (Quenéa et al., 2005).

Objectives

The main objective heree is to assess the suitability of pyrolysis—gas chromatography/mass spectrometry (Py–GC/MS) as a rapid analytical technique for discerning changes and molecular alterations in the soil organic matter of Mediterranean forests.

Methodology

Area of Study and soil sampling

The area of study is located in the Lousã Mountains in central Portugal, and was burned by a wildfire in August 2008. Within the burnt area of about 70 ha, two slopes were selected with a Maritime Pine (*Pinus pinaster*) and a eucalypt (*Eucalyptus globulus*) plantation. In addition, two comparable, unburnt slopes in the immediate surroundings were selected as control sites. Soil samples were mechanically de-ashed, dried and sieved (< 2mm) before analysis.

Analytical pyrolysis (Py-GC/MS)

Py-GC/MS was performed in a double-shot pyrolyzer (model 2020, Frontier Laboratories) directly connected to an Agilent 6890 GC-MS system. Between 0.5 to 1 mg of soil sample was placed in small platinum capsules. A thermal desorption step at 300 °C (first shot) was achieved before the pyrolysis at 500 °C (second shot). During desorption the sample capsule was introduced in the furnace preheated at 100 °C and the temperature was raised to 300 °C at a rate of 20 °C min⁻¹ and held at 300 °C for 1 min. Subsequent pyrolysis was carried out at 500 °C. The GC/MS conditions were the same for all samples; oven temperature was held at 40 °C for 1 min and then increased up to 100 °C at 30 °C min⁻¹, from 100 to 500 °C at 20 °C min-1 and isothermal at 500 °C for 2 min. The identification of individual compounds was achieved by single ion monitoring for different homologous series, low-resolution mass spectrometry and comparison with published and stored data (NIST and Wiley libraries).

Results and conclusions

The analysis of the released compounds of the pyrolysates showed conspicuous differences in the composition between the first and the second shot.

First Shot (300 °C)

Thermal desorption of the samples at 300 °C was dominated by furfural, furan-methanol and other compounds with carbohydrate origin. They are considerate thermally labile OM, which agreed with their greater relative abundance in the unburnt soils. In addition, a series of n-alkane/enes (C_{10} - C_{29}), aromatic compounds derived from methyl-benzene and naphthalene and N-containing products from peptides were also detected in most samples. On the other hand, long chain n-alkanes, substituted-naphthalenes and some of peptides-derived products (mainly indoles and indenes) were detected in the unburnt samples but not in the fire-affected samples. This clearly suggested a heat-induced alteration of the SOM composition.

3rd International Meeting of Fire Effects on Soil Properties 15-19 March 2011 | University of Minho | Guimarães, Portugal

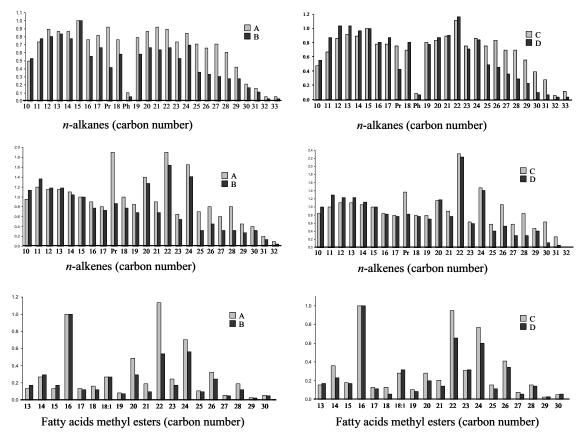
Second Shot (500 °C)

Pyrolysis at 500 °C presented minor differences between the burtn and unburnt soils. The TIC of the samples was characterized by the presence of a complex mixture of *n*-alkanes/enes (pattern C₁₀-C₃₃), aromatic structures; mainly benzenes and naphthalenes, polysaccharides-derived compounds; mostly furanes, and some N-containing products from peptides. All these compounds are typical pyrolytic products of SOM. In addition, fatty acids methyl esters (FAMEs), *n*-alkyl ketones, *n*-alkane nitriles, lignin derived products, and some triterpenoids and sterols were present, albeit with a limited contribution. Due to the unique and known source of most of these compounds, they can be used as "fingerprints" for detecting differences in SOM composition (Almendros et al., 1997). *n*-alkanes, *n*-alkenes, and FAs have been used as molecular markers for detecting environmental changes in soils and sediments, including by fire, and will be discussed in detail underneath.

Phenol and methyl-phenols were amongst the most abundant compounds in all the programs. They are often recognized in pyrolysates of lignin-containing tissues as indicating demethylated units formed from microbial degradation of lignin or representing secondary reaction products in thermal degradation during lignin pyrolysis (Saiz-Jimenez and de Leeuw, 1986). Lignin-derived compounds were also detected in all pyrograms. Polysaccharides, ubiquitous in pyrolysis of plant material or SOM, are labile compounds easily altered thermally or biodegraded during the initial phases of diagenesis. The presence of both lignin compounds and polysaccharides in the pyrolysates of all samples, including the burnt ones, suggested the incorporation of fresh OM and/or a low-to-moderate fire intensity.

The burnt samples presented a slightly higher relative abundance of highly condensed aromatic structures. They are usually released in incomplete combustion processes as occur commonly in wildfires, and indicate the presence of black carbon or thermally altered refractory OM (Tinoco et al., 2006).

The N-containing compounds were dominated by indanes and *n*-alkanenitriles. Indanes probably have protein origin (microbial input) but indole and methyl-pyridine can also be present in fresh plant material. *n*-alkanenitriles could have resulted from the reaction of carboxylic acids and ammonia liberated from minerals during the pyrolysis process.


The *n*-alkanones were also present in the pyrolysates. They are usually present in plant material but they may also derive from thermal alteration processes and bacterial degradation of alcohols and aldehydes.

Steroids are difficult to identify by pyrolysis. Nonetheless, the triterpenoid compound Neoursa-3,12-diene was identified in all pyrograms. Triterpenes are major biomarker components of gums and mucilages from angiosperms and gramineae, and are also typical marker of ryegrass wax. β-Sitosterol and substituted sterols, were identified in all samples, with a greater relative abundance in the un-bunrt samples soils. They are constituents of plant lipid membranes and waxes, and are also significant components of OM from vascular plants., However, they can also originate from soil algae and fungi.

Fig. 1 shows the distributions of the series of n-alkanes, n-alkenes and n-fatty acids. N-alkanes series ranged C_{10} - C_{33} , having a bimodal distribution with maximums at C_{13} and C_{21} , and C_{15} and C_{22} in the case of the eucalypt and pine forest, respectively. Odd/even carbon number predominance was not observed (CPI= 0.7). A series of n-alkenes primarily as terminal olefins (n-alk-1-enes) were present in the TIC of the soils, and showed a C range C_{10} - C_{32} with maximum at C_{22} .

Figure 1. Relative abundance (vertical) vs. carbon distribution (horizontal) of n-alkanes, n-alkenes and fatty acids (as methyl esters) after pyrolysis at 500 °C of bulk soils. Abundances of n-alkanes and n-alkenes are normalized to C_{15} . Abundances of fatty acids are normalized to Palmitic acid (C_{16}). Axis numeral indicates the carbon number). Pr, pristane; Ph, phytane

n-fatty acids were also identified in the range C_{13} - C_{30} . Analytical pyrolysis presents major limitations in the detection of FAs, (Dignac et al., 2006). It is therefore hardly surprising that n-fatty acids occurred with markedly lower relative abundance than n-alkanes/enes. FAs with an even number of C were more profuse, with palmitic acid (C_{16}) and behenic acid (C_{22}) being the most abundant. Table 1 shows several parameters regarding the distributions of n-alkanes, n-alkenes and n-fatty acids. Previously studies have used these parameters to detect fire-induced changes in SOM and as markers of post-fire soil recovery (Almendros et al., 1988).

A decrease in the average chain length (ACL) of *n*-alkanes and *n*-alkenes in burnt soils (samples B and D; Table 1), has been identified as resulting from heat-induced breakdown (Almendros et al., 1988). In the case of the eucalypt forest, the ratio of short/long n-alkanes was 2.6 for the unburnt sample and 3.7 for the burnt sample; in the case of the pine forest, the respective values were 2.2 and 4.3. Furthermore, the ratio of short/total *n*-alkanes and *n*-alkenes was 0.3 for the unburnt soils *vs.* 0.4 for the burnt soils. This accumulation of low molecular weight homologues suggested the cracking of long chain components, and agreed with the difference in the ratio of long/total *n*-alkanes and *n*-alkenes (0.3 *vs.* 0.2). Similar trends were observed for n-alkenes and fatty acids. In addition, the relative abundance of pristane and phytane was significantly reduced in the burnt sampless. They correspond to isoprenoid hydrocarbons that are diagenetic products of the phytyl side chain of chlorophyll. Pristane/phytane ratios have been used as a measure of the sediment oxicity. In this case, the greater abundance of pristane could

suggest that the diagenesis occurred in oxic depositional environments. The fatty acid (FA) distribution has been also employed as indicator of soil status and post-fire recovery (Gonzalez Vila et al., 2001). Fig. 1. shows a decrease in the relative abundance of FA in the burnt (B and D) compared to unburnt soils (A and C). Furthermore, the observed differences in the ratio of short-/long-chain FAMEs between burnt and control soils (Table 1) confirmed the occurrence of oxidative scission of long chain homologues in the fire-affected.

The results presented here are preliminary, and other analytical tools are currently being explored for a better characterization of the fire-induced changes in the SOM at the study sites

The main conclusions obtained so far may be summarized as follows:

- the distribution and relative abundances of homologous compound series as determined by analytical pyrolysis provided a good indicator of the occurrence of the wildfire o and its intensity;
- the desorption step revealed that the wildfire produced a significant reduction of the thermally labile molecular structures of the SOM, , whereas pyrolysis at 500 °C evidenced an accumulation of low molecular weight homologues, suggesting the occurrence of thermal breakdown and cracking of long chain components;
- various markers like polysaccharides, lignin-derived compounds and triterpenes pointed to a fast recovery of SOM following the wildfire and/or a moderate fire intensity

Table 1. Comparison of parameters calculated from n-alkyl biomarkers released by analytical Pyrolysis at 500 $^{\circ}$ C

	<i>n</i> -all	<u>kanes</u>						<i>n</i> -al	kenes				n-fatty a	<u>icids</u>	
Samp le	AC L	$\begin{array}{c} \Sigma C_{10}\text{-}\\ C_{23}/\\ \Sigma C_{24}\text{-}\\ C_{33}\\ \text{short/lo}\\ \text{ng} \end{array}$	$\begin{array}{c} \Sigma C_{10}\text{-}\\ C_{15}/\\ \Sigma C_{10}\text{-}\\ C_{33}\\ \text{short/to}\\ \text{tal} \end{array}$	$\begin{array}{c} \Sigma C_{24}\text{-}\\ C_{33}/\\ \Sigma C_{10}\text{-}\\ C_{33}\\ \text{long/to}\\ \text{tal} \end{array}$	Pr/C	Ph/C	Pr/ Ph	AC L	$\begin{array}{c} \Sigma C_{10}\text{-}\\ C_{23}/\\ \Sigma C_{24}\text{-}\\ C_{33}\\ \text{short/lo}\\ \text{ng} \end{array}$	$\begin{array}{c} \Sigma C_{10}\text{-}\\ C_{15}/\\ \Sigma C_{10}\text{-}\\ C_{33}\\ \text{short/to}\\ \text{tal} \end{array}$	$\begin{array}{c} \Sigma C_{24}\text{-}\\ C_{33}/\\ \Sigma C_{10}\text{-}\\ C_{33}\\ \text{long/to}\\ \text{tal} \end{array}$	Pr/C	$\begin{array}{c} \Sigma C_{13}\text{-}\\ C_{18}/\\ \Sigma C_{19}\text{-}\\ C_{30}\\ \text{short/lo}\\ \text{ng} \end{array}$	$\begin{array}{c} \Sigma C_{10}\text{-}\\ C_{18}/\\ \Sigma C_{13}\text{-}\\ C_{30}\\ \text{short/to}\\ \text{tal} \end{array}$	$\begin{array}{c} \Sigma C_{19}\text{-}\\ C_{30}/\\ \Sigma C_{13}\text{-}\\ C_{30}\\ \text{long/to}\\ \text{tal} \end{array}$
A (contr ol)	19. 5	2.6	0.3	0.3	1.1	0.14	8.8	19. 3	2.6	0.3	0.3	2.4	0.6	0.4	0.6
B (burnt	18. 4	3.7	0.4	0.2	0.6	0.10	7.5	18. 2	3.9	0.4	0.2	1.2	0.9	0.5	0.5
C (contr ol)	20. 0	2.2	0.3	0.3	1.0	0.12	9.0	19. 7	2.4	0.3	0.3	1.7	0.6	0.3	0.6
D (burnt	18. 4	4.3	0.4	0.2	0.5	0.08	6.5	18. 3	4.2	0.4	0.2	1.1	0.8	0.4	0.5

ACL; Average chain length is the weighted average number of C atoms. Pr; Pristane/ene. Ph; Phytane. Values were calculated from normalized abundances shown in Fig 1..

References

Almendros, G., González-Vila, F.J., Martín, F. Sanz, C, Álvarez-Ramis, C. 1998. Appraisal of pyrolytic techniques on different forms of organic matter from a Cretaceous basement in Central Spain. Org. Geochem. 28: 613-623.

De la Rosa, J.M., González-Pérez, J.A., González-Vázquez, R., Knicker, H., López-Capel, E., Manning, D.A.C., González-Vila, F.J. 2008. *Usefulness of thermal analysis to monitor fire induced changes in forest soils*. CATENA, 74: 296-303.

3rd International Meeting of Fire Effects on Soil Properties 15-19 March 2011 | University of Minho | Guimarães, Portugal

- Dignac, M.F., Houot, S., Derenne, S., 2006. How the polarity of the separation column may influence the characterization of compost organic matter by pyrolysis-GC/MS. J. of Anal. and Appl. Pyrol. 75: 128-139.
- González-Pérez, J.A., González-Vila, F.J. Almendros, G., Knicker, H. 2004. *The effect of fire on soil organic matter—a review*. Env. Int. 30: 855-870.
- González-Vila, F.J., Tinoco, P., Almendros, G., Martin, F. 2001. *Pyrolysis-GC-MS analysis of the formation and degradation stages of charred residues from lignocellulosic biomass*. J. Agr. & Food Chem. 49: 1128-1131.
- Knicker, H, Gonzalez-Vila, F.J, Polvillo, O., Gonzalez, J.A., Almendros, G. 2005. Fire-induced transformation of C- and N-forms in different organic soil fractions from a Dystric Cambisol under a Mediterranean pine forest (Pinus pinaster). Soil Biol. Biochem. 37: 701-718.
- Quénéa, K., S. Derenne, C. Largeau, C. Rumpel and A. Mariotti. 2005. *Spectroscopic and pyrolytic features and abundance of the macromolecular refractory fraction in a sandy acid forest soil (Landes de Gascogne, France)*. Org. Geochem. 36: 349-362.
- Saiz-Jimenez, C., de Leeuw, J.W., 1986. Chemical characterization of soil organic matter fractions by analytical pyrolysis-gas chromatography-mass spectrometry. J. of Anal. and Appl. Pyrol. 9: 99-119.
- Tinoco, P., Almendros, G., Sanz, J., González-Vázquez, R., González-Vila, F., 2006. Molecular descriptors of the effect of fire on soils under pine forest in two continental Mediterranean soils. Org. Geochem. 37: 1995-2018.

Effects of prescribed fire on carbon storage and loss in degraded pine forest and pine-oak forest at nam nao national park, Thailand

Chinnawong, K.¹, Wanthongchai, K.^{2*}, Tarusadamrongdet, V.¹, Rugsamanee, S.³, Kongdetadisak, P.⁴

¹Graduate school, Faculty of Forestry, Kasetsart University, Chatuchak Bangkok 10900
 ²Department of Silviculture, Faculty of Forestry, Kasetsart University, Chatuchak Bangkok 10900
 ³ National Park Office, Department of National Park, Wildlife and Plant Conservation, Bangkok 10900
 ⁴ Office of Conservation Administration 11, Department of National Park, Wildlife and Plant Conservation, Bangkok 10900
 * fforksw@ku.ac.th

Introduction

Wildfires play an important role in the carbon cycle in forest ecosystems and environmental impacts. Biomass burning is a significant global source of atmospheric gases such as carbon dioxide (CO₂) and methane (CH₄), which are green-house gases contributing to global warming. During wildfires large amounts of CO₂ are released to the atmosphere (Flannigan et al., 2000). After the fire, forest ecosystems become a carbon sink, which atmospheric CO₂ is again absorpted from photosynthesis and incorporated into the new vegetative growth. Therefore, ecosystem recovery to pre-fire levels of carbon storage and fuel loading are carbon balance in forest ecosystem (Conard and Solomon, 2009). However, fire regime (frequency, size, seasonality, and fire severity) and characteristics of forest ecosystem are an important factor in the recovery of carbon in ecosystem. The high fire severity, which typically kills all or most of the living vegetation, releases a great deal of carbon, and ecosystem recovery to pre-fire levels is generally slow. By Contrast, low fire severity may burn only surface fuels and understory vegetation. These surface fires release relatively small amounts of carbon but, they are likely to occur more frequently, with the result that cumulative carbon release over time may be similar to that where fires are less frequent (Johnson et al., 2009).

Pine forest in Thailand, consists of three sub-communities, including pine forest, pine-oak forest and pine-dipterocarp forest (Marod and Kutintara, 2009). Although pine forests are a fire-dependent ecosystem, but too frequent fires may lead to forest ecosystem and nutrient depletion, and may affect long term ecosystem carbon dynamic. Pine forests will become a carbon source during each fire event, while the ability of this forest to be a carbon sink will be eventually reduced. Therefore, numbers of degraded pine forest have been observed, especially at Phu Kum Khao, Nam Nao national park. Therefore, the fundamental knowledge about carbon storage and loss in the fire event in this forest ecosystem is a very important for the mitigation strategy on climate change and the recommendation for forest fire management to reduce carbon loss from the fire in this ecosystem.

Objective

This study aimed to investigate effects of prescribed fire on aboveground and belowground carbon storage and loss in degraded pine forest (PF) and pine-oak forest (O-PF) at Nam Nao National Park, Thailand.

Methodology

The study was conducted in the pine forest, which consists of two sub-communities, including pine forest (PF) and pine-oak forest (O-PF), located at Nam Nao National Park, Thailand (Fig. 1). Prior to burning three 50×50 m plots were set up for each sub-community, thereafter fuel loads (including seedling, litter, herb, shrub, grass and twig) and its pre-fire aboveground carbon (AGC) were estimated from four 2×2 m subplots located systematically within the plot (Fig. 1). Post-fire belowground carbon (BGC) at 0-15 cm soil depth, including carbon stored in the soil and fine root biomass, was also estimated at the center of each fuel subplot. An experimental fire was ignited at the center of the plot to allow free burning. Immediately after the fire, four 50×50 cm subplots were set up to determine post-fire BGC and AGC residues (i.e. ash, charcoal and unburned material). The AGC, BGC and total carbon loss from wildfire were calculated as the differences between pre- and post-fire carbon.

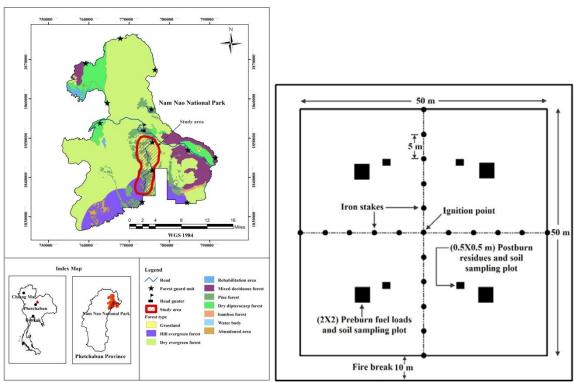


Figure 1. Location of Nam Nao National Park and plot layout for fuel, residue and soil determination.

Results and conclusions

Aboveground fuel load, C stock and C loss

The study revealed that pre-fire aboveground fuel load for PF and O-PF were 12.9 and 8.7 t/ha, respectively, whereas pre-fire AGC pool in PF and O-PF were 5.96 t C/ha and 3.98 t C/ha, respectively (Table 1). Post-fire AGC pool in residues for PF and O-PF were 0.87 t C/ha and 1.85 t C/ha, respectively. Therefore, total AGC loss from vegetation fire in PF and O-PF represented 85% (5.09 t C/ha), and 54% (2.13 t C/ha), respectively (Table 2). According to Cheney (1994), the burn was classified as a low-intensity fire for the O-PF (47.9 kW/m), while burning in PF was classified as medium-intensity fire (626.7 kW/m). The greater AGC loss at PF may come from the abundance and homogeneity of the grass fuel that allow for more complete burning. In addition, fire behavior, in particular fire intensity may also influence the loss of AGC.

Table 1. Pre-fire aboveground carbon in each fine fuel type

C:4-		Pre-fire Aboveground Carbon (t/ha)									
Site -	grass	shrub	herb	seedling	litter	twig	total				
PF	2.64 ^a	0.02 ^a	0.06^{a}	0.35 ^a	2.33 ^a	0.22 ^a	5.63 ^a				
O-PF	0.64^{b}	0.14^{a}	0.05^{a}	0.27^{a}	2.19 ^a	0.68^{a}	3.98^{b}				

Remark: Different small letters in column denote a significant difference (P<0.05) in pre-fire AGC in each fine fuel type between PF and O-PF

Table 2. Post-fire aboveground carbon in residues and carbon loss

	Pre-fire AGC	1	Post-fire carbo	on in residues (1	t/ha)	- Total carbon	% Carbon
Site	(t/ha)	Ash	Charcoal	Unburned material	Total	loss (t/ha)	consumed
PF	5.63 ^a	0.19 ^a	0.25 ^a	0.43 ^a	0.87 ^a	4.76 ^a	85
O-PF	3.98^{b}	0.15^{a}	0.28^{a}	1.42 ^b	1.85 ^b	2.13 ^b	54

Remark: Different small letters in column denote a significant difference (P<0.05) in post-fire AGC and total carbon loss between PF and O-PF.

Belowground C stock and C loss

The pre-fire BGC pool at 0-5 cm soil depth for PF and O-PF were 9.99 t C/ha and 11.05 t C/ha, respectively, while post-fire BGC in PF and O-PF were 9.78 t C/ha and 10.47 t C/ha, respectively (Table 3). These changes in BGC were not significant (*P*>0.05). Likewise, BGC between 5-15 cm soil depth for all sites were not significantly (*P*>0.05) affected by fire, because heat did not penetrate to the deeper soil layer. The changing in soil temperature and hence soil carbon losses depends on other factors such as the magnitude and duration of energy transferred from the fire to the soil, soil composition (e.g. moisture), structure (porosity), etc (De Bano *et al.*, 1998).

Table 3. Pre-and Post-burning belowground carbon in each site

Soil depth		Belowground Carbon pool (t/ha)				
(cm)	_	PF	O-PF			
0.5	pre-burning	9.99ª	11.05 ^a			
0-5	post-burning	9.78^{a}	10.47 ^a			
<i>E</i> 1 <i>E</i>	pre-burning	12.25 ^a	13.45 ^a			
5-15	post-burning	11.75 ^a	13.35 ^a			

Remark: Different small letters in column denote a significant difference (P<0.05) in belowground Carbon pool between Pre-and Post-burning at each site.

Total C loss in PF and O-PF

Total carbon loss to the atmosphere as a result of fire in PF and O-PF represented 21% (5.47 t C/ha) and 10% (2.81 t C/ha) of pre-fire C pool (Fig. 2), that stored in above-and below-ground, respectively. These results may indicate that C losses are mainly from AGC, whereas BGC does not contribute significantly to C loss from forest fire in these forest types. As long as fire-free interval for these forest types is appropriated, the AGC may recover back to the pre-fire levels before the next successive fire begins.

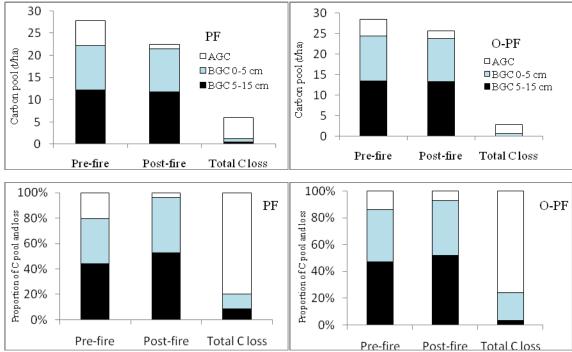


Figure 2. Proportion of C pool and loss in pine forest (PF) and pine-oak forest (O-PF).

References

Conard, S.G. and A.M. Soloman. 2009. Effects of wildland fire on reginal and global carbon stock in a changing environment, pp. 109-138. In A. Bytnerowicz, M.J. Arbaugh, A.R. Riebau and C. Anderson, eds. Wildland Fires And Air Pollution. Elsevier, Hungary

DeBano, L.F., D.G. Neary and P.F. Ffolliott. 1998. Fire, s Effect on Ecosystem. John Wiley and Son, New York.

Flannigan, M.D., B.J. Stock and B.M. Wotton. 2000. Climate change and forest fire. The Science of the Total Environmental 262: 221-229.

Johnson, D.W., M.E. Fenn, W.W. Miller and C.F. Hunsaker. 2009. Fire effect on carbon and nitrogen cycling in forests of The Sierra Nevada, pp. 405-423. In A. Bytnerowicz, M.J. Arbaugh, A.R. Riebau and C. Anderson, eds. Wildland Fires And Air Pollution. Elsevier, Hungary

Marod, D. and U. Kutintara. 2009. Forest Ecology. Forest Biology Department, Faculty of Forestry, Kasetsart University, Thailand

Cheney, P., 1994. The effectiveness of fuel reduction burning for fire management, pp. 9-16. In, Proceedings of fire and biodiversity: The effect and effectiveness of the management. Dept. of the Environment, Sport and Territiries, Canberra, Footscray, Melbourne

Joint effects of fire and drought on the seasonal patterns of soil nutrient availability and microbial activity

M Belén Hinojosa, Antonio Parra, David Antonio Ramírez, José Antonio Carreira, Roberto García-Ruiz, José Manuel Moreno

Centro de Investigaciones del Fuego, Spain.
* MariaBelen.Hinojosa@uclm.es

Key-words: fire; drought; soil nutrients availability; mineralization rates; enzyme activities.

Introduction

Less rainfall projected for some Mediterranean regions, as a consequence of climate change, are likely to exacerbate drought conditions, and therefore fire frequency and extent. However, in spite of the importance of soil resource on plant community regeneration after fire, there is still much to be learned and understood in terms of soil nutrient availability and microbial activity of burned soils under a climate change scenario.

Although there are many studies about the effect of fire on soil N and P availability, C and N mineralization rates and enzyme activities, in our knowledge they never has been studied in burned soils under different drought treatments.

The aim of this study was to assess the effect of fire on seasonal patterns of soil N and P availability and their mineralization rates in a Mediterranean shrubland subjected to different drought scenarios.

The study was carried out on a natural Mediterranean Cistus-Erica shrubland located in Montes de Toledo (Spain). In April 2009, an automated manipulative experiment was setup with the implementation of plots (6×6 m2) with four different treatments where annual precipitation was controlled by changing spring-summer rainfall, resulting in: environmental control (EC), long-term historical average precipitation (HC), 25% reduction of HC (D1) and 50% reduction of HC (D2). In September 2009, the plots were burned to evaluate the joint effects of drought and fire. In order to compare burned and non burned scenarios a set of non burned plots was kept without rainfall manipulation (EC-). Finally, each treatment (EC-, EC+, HC+, D1+ and D2+) was replicated four times in the experimental setup.

Soil samples were collected after fire on sprint, summer, autumn and winter in order to evaluate seasonal pattern of the assayed variables. Field-moist soil samples were analysed for soil N and P labile fractions, potential C mineralization rate, net potential nitrification rate and enzyme activities (phosphatase activity, β -glucosidase activity and arylsulfatase activity).

Our results show that, in general, the effects of drought on burned soils were expressed in a slower nutrient turn-over (potential mineralization rates and enzyme activities). However, although drought caused a decrease on inorganic P soil, an accumulation of inorganic N forms was observed after rainfall exclusion.

Short-term changes in soil physical and chemical properties after wildfires in NW Spain

María Eufemia Varela^a*, Elena Benito^b, María Rodríguez-Alleres^b, Jan Jacob Keizer^a

^a Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de Ambiente e Ordenamento, Universidade de Aveiro, 3810-193 Aveiro, Portugal

Key-words: wildfires; post-fire evolution; aggregate stability; water repellency; organic carbon.

Introduction

The passage of a fire does not only affect soil properties directly, through heating, but also indirectly, through the fire-induced changes in vegetation and litter cover as well as in the soil properties themselves. For example, the removal of vegetation cover increases the exposition of the soil surface to fluctuations in weather conditions, and will lead to changes in the topsoil's temperature and moisture regimes. In spite the importance of the indirect wildfire effects is widely recognized, they have received less research attention than the immediate effects.

The present study addresses both the direct and indirect wildfire effects on the properties of several forest soils in Galicia, north-west Spain. At a total of nine sites, neighboring burnt and unburnt soils were compared immediately after fire and then monitored at regular intervals during the subsequent two years. The focus of this study is on the fire-induced changes in soil aggregation (size distribution and stability) and soil water repellency but also organic carbon content and microbial biomass were compared. The evolution of the soil properties during the first two years after fire varied markedly between the different study sites. This seemed to reflect to a large extent the magnitude of the direct fire-induced changes. When changes immediately after the passage of the fire were minor, pre-fire values were generally restored during the first few months afterwards. Marked direct changes, however, required recovery periods longer than the two year of this study. The carbon content seemed to be a critical factor in the recovery of the other soil properties.

b Departamento de Biología Vegetal y Ciencias del Suelo. Facultad de Biología. Universidad de Vigo. Campus Lagoas-Marcosende, 36310 Vigo, Spain * eteijeiro@gmail.com

Effects of wildfire on soil water repellency and their implications for soil erosion

Maria Rodriguez Alleres^a*, María Eufemia Varela Teijeiro^b, Elena Benito Rueda^a

Key-words: wildfire, water repellency, surface runoff, soil erosion.

Introduction

Soil water repellency is a naturally occurring phenomenon that can be strengthened by heating. Soil water repellency induced or enhanced by fire, in combination with reduced vegetation and litter cover, is widely regarded as one of the main causes of increased surface runoff and accelerated soil erosion in burnt areas.

In Galicia (NW Spain), forest soils usually exhibit water repellency that is ascribed to the regional climate and, specifically, to its warm, dry summers, the prevalence of soils with coarse textures and high organic matter contents, and the high incidence of forest fires over the past decades.

In this work, we examined the effects of a wildfire of medium-high intensity on soil water repellency and its consequences on surface runoff and soil erosion. To this end, the water repellency of the burnt area was compared, immediately after the fire, with that of a nearby unburnt area using the water drop penetration time (WDPT) test. The unburnt soil exhibited extreme water repellency (WDPT > 6 h) down to 10 cm, strong repellency (WDPT 60-600 s) from 10 to 20 cm and no repellency below 20 cm. On the other hand, the burnt soil exhibited considerably decreased water repellency in its surface layer (0–2 cm); its repellency, however, increased with increasing depth in relation to the unburnt soil and was extreme in the 2–20 cm layer but slight (WDPT 5–60 s) in the 20–40 cm layer.

Such strong repellency reduced water infiltration in the burnt area an resulted in runoff coefficients of 50% as determined by simulating rainfall in 1 m2 plots. At this scale, however, runoff resulted in modest soil erosion only. At the slope scale, the strong precipitation in the area two months after the fire, the loss of the protective plant cover and the extreme water repellency to subsurface water, facilitated strong erosion that was studied in terms of changes in soil texture and colour, as well as by morphological analysis of the soil surface.

^a Departamento de Biología Vegetal y Ciencias del Suelo. Facultad de Biología. Universidad de Vigo. Campus Lagoas-Marcosende, 36310 Vigo, Spain

b Centro de Estudios do Ambiente e do Mar (CESAM), Departamento de Ambiente e Ordenamento, Universidade de Aveiro, 3810-193 Aveiro, Portugal * malleres@uvigo.es

Wildfire effects on hydrogeochemistry of Marão river watershed

Maria Rosário Costa^{a*}, José Aranha^b

^a Centro de Investigação da Universidade de Aveiro (GeoBioTec); Departamento de Geologia da UTAD, 5001-801 Vila Real (Portugal);

Departamento de Engenharia Florestal da UTAD, 5001-801 Vila Real (Portugal).
 * rosario.costa@utad.pt

Key-words: Wildfire, ashes, soils, surface water, hidrochemistry.

Introduction

The conditions offered after a wildfire increases the transport of sediment and ash into the watercourses, with direct influence on their quality. Published studies on the effects of forest fires on water quality of rivers indicate that variations may occur at the level of pH, turbidity and nutrient loading (nitrate, sulfate, calcium, magnesium, heavy metals and others), dissolved or in suspension (Raison e McGarity, 1980; Binkley e Brown, 1993; Ranalli, 2004; Wallbrink et al., 2004).

A wildfire, triggered by a fallen aircraft, in June 2006 burnt about 255 hectares in the Marão River watershed (approximately 16% of the basin area), which has humic cambisols soils with a underlying bedrock of schists, greywacks and some granites. The area was dominated by *Pinus pinaster* and various shrubs such as brume and genista. The fire incinerated the thin layer of organic matter in soil, the vegetation and the trees, killing all vegetation in its length. The study site is located in the Marão Mountain (centroide: 41° 15' 16''; 7° 53' 40'', NE Portugal) with altitude varying between 1344m and 400m. The region has a sub-atlantic clima with mean annual temperatures between 10°C and 12.5°C and a mean precipitation ranging 1400 to 2000mm/year. Samples of ash, soil and water, from within and outside the burnt area, were collected about 5 months and one year after the fire for chemical analysis. All sampling sites were located using a Differential Global Positioning System.

Objectives

The purpose of this study was to assess changes in quality of river water by comparing post-wildfire hydrogeochemical data with pre-fire data and to analize the recovery capacity of water composition trough time.

Methodology

Samples of ash, soil and groundwater were colected at locations, inside and outside the burnt area at different periods of time in order to perform chemical analysis.

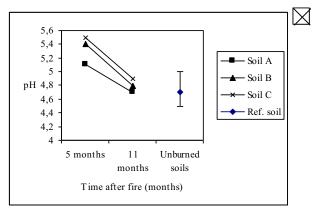
Three samples of ash and the soil underlying the ashes were collected, as well as 9 soil samples, outside the burnt area, to serve as reference of soil characteristics prior to the fire. The collection of ashes was made in November 2006 (5 months after fire) and the soils were collected also in November 2006 and in May 2007 (11 months after the fire). The methodology for the collection of ash and soil was to devise a square with 30cm side, and with the help of a plastic spoon, remove the ash and then the soil, which were placed in separate plastic bags previously identified. Laboratory analysis was performed at the Soils Laboratory of UTAD. Deteminations of pH was made by potentiometry, carbon by combustion at 1100 °C and detection by infra-red in an elemental analyzer, the concentration in organic matter (OM) by calculation (OM = C * 1.724), P₂O₅ and K₂O

were measured by the Egner-Riehm method, cations (Ca, Mg, K, Na) with ammonia acetate, metals (Zn, Cu, Mn and Fe) by the method of Lakanen, the total nitrogen by sulfuric digestion and determination by spectrophotometry of molecular absorption in segmented flow analyzer, the nitrate-nitrogen and Ammonia by extraction with saline solution (KCl-2M) and determination by spectrophotometry of molecular absorption in segmented flow analyzer.

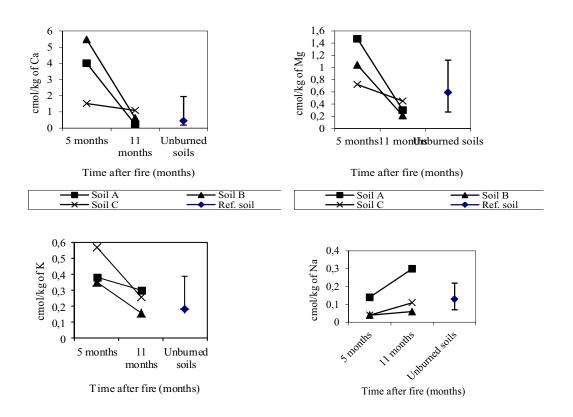
The collection of water samples was carried out in three campaigns and was held in November 2006 and February and July 2007. There were still available hydrochemical data of water samples collected in the region in July 2002, which allowed to characterize pre-fire water quality. The methodology for water sampling was to collect a bottle of 200ml (acidified with nitric acid 1%) for determination of cations and trace elements and a 500ml bottle for determination of alkalinity and anions. Determinations of some physical and chemical parameters including pH, electrical conductivity, total dissolved solids and temperature were performed in the field. Chemical analysis of water samples were performed at the Laboratory of Chemistry of UTAD where determinations of Iron and Silica were made by Molecular Absorption Spectrometry, Na and K by Atomic Emission Spectrometry, Ca, Mg and Zn by Atomic Absorption Spectrometry (AAS), Mn and Cu by AAS (Graphite Furnace).

Results and conclusions

The results of the chemical analysis of ash and underlying soils samples, harvested 5 months after the fire presented in Table 1 put on evidence that the pH of the ashes is always higher than the underlying soil, which may be associated with increased concentrations of carbonates and oxides and hydroxides in the ash resulting from burning of vegetation (Soto and Diaz-Fierroz, 1993 and Khanna et al., 1994). The percentage of carbon is also higher in the ash which reflects the conversion of OM in ash caused by burning. The organic phosphorus is combusted resulting in ashes with very high concentrations of phosphate. For base cations there is a general increase in concentration in the ash, which is highlighted in particular by the highest concentration of Ca and Mg. For metal ions there is a high concentration of Mn in the ash, that reaches up to 5 times the content of the underlying soil (as is the case of sample B). In other studies, were found high concentrations of Mn in pine needles (Kabata-Pendias and Pendias, 1984) and the resulting ash (Someshwar, 1996). In the study region it could be seen that the pine needles were burnt, but the arms were largely intact, suggesting that the needles were the main source of ash.


Table 1. Chemical analysis of ash and underlying soils, 5 months after the fire.

						arj bro				1118 001)					
	рН	С	O.M.	P_2O_5	K ₂ O	Ca	Mg	K	Na	Zn	Cu	Mn	Fe		Nitroger	1
Sample	H ₂ O	%	%	E.R.(r	ng/kg)	A	Ammonia Acetate (cmol+/kg)			Lakanen (mg/kg)			g)	Total (g/kg)	Nítr. (mg/kg)	Amon. (mg/kg)
Ash_A	6	35.4	61	305	180	13.2	4.67	1.44	0.53	52.8	3.2	248.6	190.3	19.8	50.2	343.3
Soil_A	5.1	17.4	29.9	38	64	4	1.47	0.38	0.14	17.6	1.3	57.2	448.8	9.3	19.4	179
Ash_B	6.1	17.2	29.6	573	144	21.36	5.73	0.85	0.24	68.2	4.3	418	121	15.7	82.4	74.4
Soil_B	5.4	8.2	14.1	171	136	5.47	1.04	0.35	0.04	6.2	2.8	82.5	188.1	6.8	70.8	265.2
Ash_C	6.1	29.9	51.5	190	156	7.79	3.2	0.95	0.22	31.9	3.1	291.5	106.7	19.1	13.3	225.9
Soil_C	5.5	15.5	26.8	113	140	1.52	0.72	0.57	0.04	5.9	0.9	106.7	171.6	10.1	24.1	231.5



Results of the soils composition about one year after the wildfire show a recovery of pH values (Fig. 1), close to the reference value (obtained from soil samples collected outside the burnt area, which is consistent with the decrease in content of base cations, that approached the reference values (Fig. 2). The loss of base cations, especially Ca and Mg is due to transport of particles by rain. Sodium tends to increase slightly, which may be related to their attachment to the soil through ion exchange. For the metal ions examined (Fig. 3), there is a tendency to increase the content of Fe and Cu and a decrease in Zn and Mn. While Fe and Cu tend to linger in the soil in the form of oxides and hydroxides, Zn and Mn elements are more soluble and are easily leached by rain water.

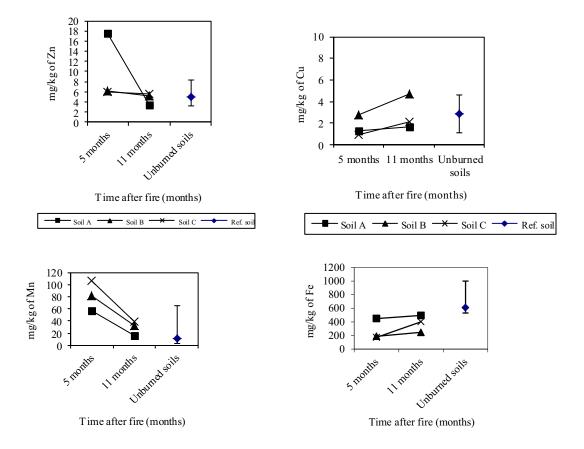

Figure 1. Temporal variation of pH in soil samples of the burnt area and comparison with pH of unburnt soils.

Figure 2. Temporal variation of cations (Ca, Mg, K and Na) in soil samples of the burnt area and comparison with values of unburnt soils.

Figure 3. Temporal variation of metal ions (Zn, Mn, Cu and Fe) in soil samples of the burnt area and comparison with values of unburnt soils.

The wildfire effects on the Marão River water quality resulted in an increase in the total mineralization of water. Water electrical conductivity (EC) was about twice pre-fire values 5 months after the wildfire (EC increased from 15 to $37\mu\text{S/cm}$) and 1.5 times higher one year after the wildfire.

Cations of Ca, Na, Mg and Mn showed the greatest increase. This increase was probably triggered by the movement of ash to the watercourses which was found to be especially rich in Ca, Mg and Mn. This increase had already attenuated one year after wildfire to values closer to pre-fire data except for manganese (Fig. 4).

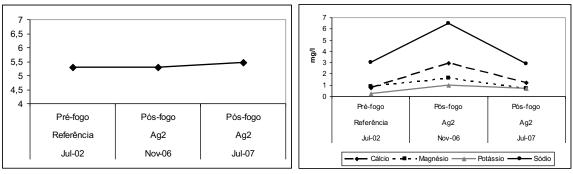


Figure 4. Variation on pH and cations concentration in water river samples in the burnt area.

Manganese had anomalous concentration in the water within the burnt area (Fig. 5). The concentration of manganese in ash samples reached values up to 5 times more than values found in underlying soils. This result probably stemmed from the combustion of pine needles, which was transported as part of the ash to the stream and thus may explain the high concentration in stream water. Another aspect that may explain why the Mn concentration in water was higher and remain in solution more time than the other cations is related to the occurrence of a little rainy spring and summer with an unusually abundant rainfall in 2007, what may have delay the ash transport to the river. There was also a substantial increase in the concentration of dissolved silica and values of pH in the river water downstream from the wildfire between 5 months and 1 year after the wildfire. This seems to indicate an increase in the rate of dissolution of the silicate minerals from the bedrock (mainly granites and metassedimentary rocks) caused by the removal of the overlying ash and soil.

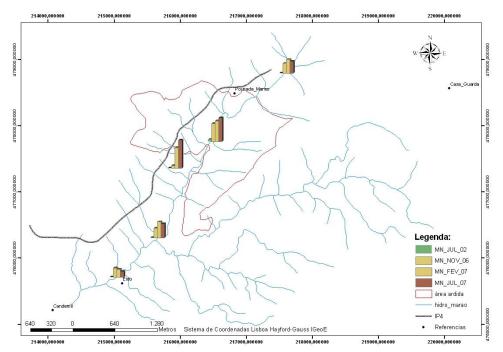


Figure 5. Variation on Mn concentration in the water along the Marão river.

References

Binkley, D. and Brown. T.C. 1993. Management impacts on water quality of forests and rangelands. USDA Forest Service General Technical Report RM.

Kabata-Pendias, A. Pendias H. 1984. Trace elements in soils and plants. CRC Press. Florida.

Raison, R.J. & McGarity, J.W. 1980. Effects of ash, heat and the ash-heat interaction on biological activities in two contrasting soils. I. Respiration rate. Plant and Soil. 55:363–376.

Ranalli, A.J. 2004. A Summary of the Scientific Literature on the Effects of Fire on the Concentration of Nutrients in Surface Waters. U.S. Geological Survey. Reston. Virginia.

Someshwar, A.V. (1996). Wood and combination wood-fired boiler ash characterization. Journal of Environmental Quality. 25: 962–972.

- Soto, B. & Diaz-Fierros, F. 1993. Interactions between plant ash leachates and soil. International Journal of Wildfland Fire, v.3. 4:207-216.
- Wallbrink P.. English P.. Chafer C.. Humphreys G.. Shakesby R.. Blake W. and Doerr S. 2004. Impacts on water quality by sediments and nutrients released during extreme bushfires. Sydney Catchment Authority CSIRO Land & Water Collaborative Research Project.

Evolution of soil organic matter after prescribed fire: a 20-year chronosequence

M. A. Alexis*¹, H. Knicker², C. Anquetil¹, C. Rumpel³

Bioemco Laboratory, 4 place Jussieu -75252 PARIS Cedex 05, FRANCE
 Lehrstuhl für Bodenkunde, Technische Universität München, D85350-Weihenstephan, GERMANY
 Bioemco Laboratory, Centre INRA Versailles-Grignon, 78850 Thiverval-Grignon, FRANCE
 * marie.alexis@upmc.fr

Key-words: soil chronosequence, prescribed fire, chemical composition, solid-state 13C NMR, carbon stock

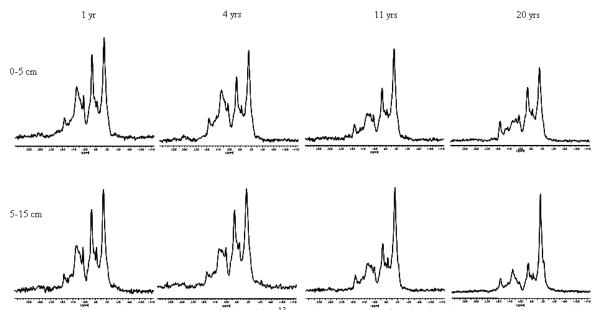
Introduction

Numerous studies highlighted the strong instantaneous effect of fire on soil organic matter quality: colour, hydrophobicity, aromaticity and stability are modified (Certini, 2005 and references therein; Eckmeier et al., 2010; Malkinson and Wittenberg, 2011). As charred OM is considered slowly degraded not to say inert, the impact of fire on the soil properties is supposed to be long-lasting. However charcoal degradation studies did not necessarily reflect high stability of pyrogenic carbon (Ascough et al., 2011). The objective of this work was to assess the influence of charcoal produced by moderate-intensity fire on the medium-term evolution of total soil organic carbon quality and quantity.

Methodology

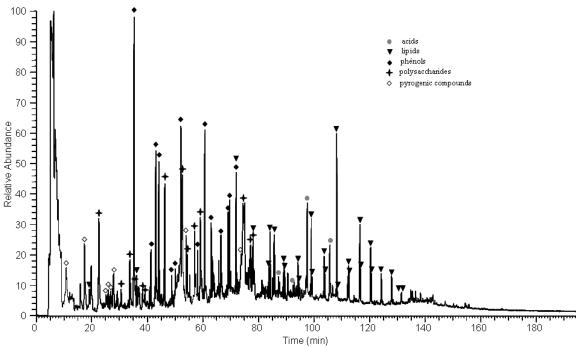
The study site was in Florida, on the *Merritt Island Wildlife Refuge*. Ecosystem is an oak shrub managed by prescribed fires (moderate intensity). We used a chronosequence of soils collected in plots protected from fire for 1, 4, 11 and 20 years. Climate is subtropical and soil highly sandy, potentially favouring C decomposition. Three soil depths were sampled: 0-5 cm, 5-15 cm and 15-25 cm. C and N contents were measured and the soil organic matter stocks calculated. After the demineralisation of samples, solid-state ¹³C nuclear magnetic resonance (¹³C-CP/MAS-NMR) was used to characterize the organic matter from depth 0-5 cm and 5-15 cm. Moreover the characterization of surface samples were supplemented by the application of the Curie Point pyrolysis coupled to mass spectrometry (CuPy-GC-MS) and the quantification of oxidation (K₂Cr₂O₇/H₂SO₄, 80°C) resistant elemental carbon (OREC).

Results and conclusion


The C stock proved to decrease from 38 to 26 mg OC cm⁻³ soil in the 0-5 cm depth after the first year. In contrary it remained stable in the 5-15 cm and the 15-25 cm depths with mean values of 13±4 mg OC cm⁻³ soil and 7±2 mg OC cm⁻³ soil, respectively. The C/N ratio was between 38 and 44 for the different depths 1 year after the fire. This ratio decreased with time, ranging between 22 and 26, 20 years after the fire.

One year after the fire in the 0-5 cm depth sample (Fig.1), the NMR spectrum was dominated by the alkyl C (30 ppm) that might be assigned to the lipid compound. In the O-alkyl C region, a high peak at 72 ppm was detected, as well as a lower peak at 105 ppm, probably reflecting the contribution of carbohydrates and ligno-cellulosic compounds. The aromatic-C chemical region (110-160 ppm) presented a main peak at 130 ppm that may be related to a lignin and/or charcoal origin of C. A small contribution in the carbonyl-C region (172 ppm) was also observed. In the 0-5 cm depth, a relative

decrease of the O-alkyl C occurred between 1 and 4 years after the fire, followed by the decrease of the aromatic-C contribution between 4 and 11 years after the fire. 20 years after the fire, the alkyl-C contribution became lower. In the 5-15 cm depth, no change occurred between 1 and 4 years, whereas all compounds decreased compared to alkyl-C between 4 and 20 years.


Figure 1. soil organic matter spectra obtained by ¹³C-CP/MAS-NMR for the depths 0-5 cm and 5-15 cm in the plots sampled 1, 4, 11 and 20 years after the last fire.

The spectra obtained by Cu-Py-GC-MS reflected the contribution of mainly three classes of compounds: phenols, polysaccharides and lipids (Fig.2). Pyrochromatograms obtained at different dates did not reflect different organic matter quality, but the evolution was consistent with results obtained by ¹³C-CP/MAS-NMR. The detected aromatic molecules were scarce and this can be related to the low content of OREC measured in the samples. These results showed that the aromatic carbon degraded between 4 and 11 years most likely originated from lignin and not from charcoal.

The evolution of the organic matter might be divided into three steps: at first, the degradation affected a labile C pool, which probably originated from the high input of uncharred organic matter during the fire; secondly, the phenolic part of lignins appeared the most affected by the degradation, and thirdly, the degradation seemed to affect the alkyl-C. The soils of this 20-year chronosequence contained only small quantity of pyrogenic carbon. These data illustrate that after moderate-intensity fires, the degradation of the pyrogenic material can be relatively fast once added to soil. These results have consequence for the long-term C storage potential of charcoal and for the duration of soil property modification.

Figure 2. Pyrochromatogram obtained by CuPy-GC-MS for the depth 0-5 cm in the plot sampled 1 year after the fire.

References:

Ascough PL, Bird MI, Francis SM, Lebl T (2011) Alkali extraction of archaeological and geological charcoal: evidence for diagenetic degradation and formation of humic acids. Journal of Archaeological Science, 38 (1)

Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia, 143 (1) Eckmeier E, Egli m, Schmidt MWI, Schlumpf N, Notzli M, Minikus-Stary N, Hagedorn F (2010) Preservation of fire-derived carbon compounds and sorptive stabilisation promote the accumulation of organic matter in black soils of the Southern Alps. Geoderma, 159 (1-2)

Malkinson D, Wittenberg L (2011) Post fire induced soil water repellency-Modeling short and long-term processes. Geomorphology, 125 (1)

Overland flow and soil erosion at micro-plot scale in six recently burnt eucalypt stands in North-central Portugal

Maruxa Malvar Cortizo*

CESAM-Universidade de Aveiro, Portugal * maruxa@ua.pt

Key-words: runoff; erosion; micro-plot; eucalypt; wildfire.

Abstract

In the EROSFIRE project, micro-scale runoff plots were employed to assess how representative the results of field rainfall simulation experiments (RSE's) were for runoff and erosion response under natural rainfall conditions. This was done at six sites where RSEs were carried out at several occasions during the first one or two years following fire. The six study sites are located in the Vouga River basin in north-central Portugal and the six sites are Eucalyptus globulus plantations. The sites were selected for their contrasting pre-fire land management. Three slopes show no evidence of mechanical operations while the other three were subject to different types of ground operations prior to the plantation of the eucalypt trees, namely contour and down-slope ploughing and terracing. Within a month after fire, the sites were equipped with two pairs of micro-plots located on the slopes' lower and upper halves. The runoff of the plots was measured and sampled at 1-2 weekly intervals, and the sediment concentration of the runoff samples was analyzed in the laboratory using standard methods. Rainfall was measured using totaliser as well as automatic rainfall gauges. Selected soil conditions (e.g. water repellency, moisture content,) were monitored at mostly two-weekly intervals. The RSE's produce more runoff than natural rainfall plots which could be attributed to the highest intensity of the simulated rainfall. For both techniques the overall runoff generation by site shows minor differences between sites with the natural rainfall micro-plots having values ranking from 20-15%. The results suggested a temporal pattern of runoff generation that could be explained by soil water repellence. The initial monitoring period immediately following the fire is characterized by high runoff coefficients as well as pronounced soil water repellency. Both runoff generation and water repellency are basically non-existent during the ensuing wet winter and spring periods but reappear with the onset of the dry season of the second monitoring year. Sediment losses are lower than those reported in literature for similar studies. This could be attributed to the moderatelow intensity of the wildfire and/or sediment-limited erosion. In evaluating these losses, however, the shallowness of the soils must not be overlooked.

Potential and effective response to fire of the seed bank of a mediterranean heatland

Paula Maia*, Isabel Fernandes, Ana Vasques, Domingos Viegas, Juli Pausas, Jacob Keizer

CESAM-Universidade de Aveiro, Portugal * paula.maia@ua.pt

Key-words: experimental fire; seed bank; Erica spp.; Pterospartum tridentatum.

Abstract

In recent years, prescribed burning is increasingly being used as a management tool of standing biomass and, thus, of wildfire hazard. This has raised the need to provide further insight into the consequences of prescribed fire in terms of environmental factors and processes like, for example, atmospheric emissions and soil erosion. The present study addresses this need by investigating the impact of an experimental burning on the seed bank of a Mediterranean heathland in central Portugal. The study area is located in Coentral, in the municipality of Castanheira de Pêra and involves a series of plots that are being managed by the Centre for Research on Forest Fires (CEIF) for experimental burning purposes. In the present case, the burning took place in May 2008. The soil seed bank was sampled immediately before and after the fire, using a metal cylinder of 6cm diameter, at a depth of 6 cm. Sampling was done at two locations within each plot, i.e. roughly halfway the plot's lower and upper halve, and under the nearest specimen of Pterospartum tridentatum and Erica umbellata., The collected soil samples were placed in a greenhouse to germinate, and seedling emergence was recorded for 1 year. Also, the germination in the field has been recorded for the same period of time to evaluate not only the potential germination response but also the effective establishment of the seedlings. To obtain supplementary insight into the role of fire in the germination of Pterospartum tridentatum and Erica umbellata, controlled heating experiments were carried out. This was done with seeds collected from the neighbouring areas in the summer 2009. This complementary experiment also included Erica australis seeds, since it was the third dominant species in the experimental plots and it was also found in the seed bank. The overall results from the seed bank germination under laboratory conditions showed similar seedling densities for the pre-fire and post-fire soil samples. Average densities of viable seed were 3362 and 3662 seeds per m² before and after the burning, respectively. The higger germination density was recorded on the soil samples collected under Erica umbellata shrubs, as opposite to samples collected under Pterospartum tridentatum. In addition, the most abundant taxon found in the seed bank was Erica spp. Further data analysis will integrate the results from germination in the greenhouse as well as the in the field with those from the controlled heating experiments.

Soil protection by ash after a wildfire

Paulo Pereira^{a*}, Artemi Cerdà^b, Xavier Úbeda^c, Jorge Mataix-Solera^d, Deborah Martin^e

- ^a Department of Environmental Protection Department, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius (Lithuania);
- ^b Departament de Geografia, Universitat de València, Blasco Ibañez, 28, 46010, València (Spain); ^c GRAM (Grup de Recerca Ambiental Mediterrànea), Departament de Geografia Física i Anàlisi Geogràfica Regional, Facultat de Geografia i Història, Universitat de Barcelona, C/ Montalegre, 6. 08001 Barcelona (Spain);
 - ^d GEA (Grupo de Edafología Ambiental) Departamento de Agroquímica y Medio Ambiente, Universidad Miguel Hernández, Elche, Alicante (Spain);

^eUSGS, 3215 Marine Street, Boulder, Colorado (USA). * pereiraub@gmail.com

Key-words: White ash, black ash, rainfall simulation, water quality.

Introduction

Fires induce important reductions of soil cover, exposing it to erosion agents. This reduction depends essentially of fire severity. In the immediate period after the fire, soil is critically exposed to erosion process and the ash layer remained after the fire is the unique and valuable protection (Pereira et al., 2010a; Cerdà and Doerr, 2008). Despite of the importance of ash layer in soil protection after the fire few studies have been carried out about ash layer thickness after fire (Pereira et al., 2010a,b; Woods and Balfour, 2010), perhaps because it is ephemeral. High severity wildland fires have important impacts on soil cover and due the temperatures reached and convection mechanisms occurred during the fire soil protection is coercively reduced and the ash produced, especially the small particulates are (re)distributed. Thus, it is very likely that some areas can be without ash cover and directly exposed to erosion agents, especially in slope areas where they are more active. The aim of this work is work is assess the probability soil no cover by ash one day after a high severity wildland fire.

Methodology

Wildfire occurred in July, 26 of 2010 and affected an area of 100 ha near the urban area of Quinta do Conde, at 38° 57' N and 09° 05' W and 27 m a.s.l.. The geological substrate of study area is mainly composed by Plio- Pleistocene dunes with low cementation and soils are classified as *podzols* (FAO, 2006). Mean annual temperature is 14.8 °C and the precipitation of 639.2 mm. The forest was mainly composed by *Pinus pinaster* species. One day after the fire we designed a grid with 20x4 m in a south faced slope with 27% of inclination. Ash thickness measurements were carried out with an iron bar (Pereira et al., 2010b) every 50 cm in a total of 200 measurements over the entire grid.

Omnidirectional semi-variogram of ash thickness was performed in order to observe the spatial structure of the variable. Spatial dependence was observed calculating the nugget/sill ratio. If the ratio is greater than 75%, the variable shows weak spatial dependence, between 75% and 25%, the variable shows moderate spatial variability and nugget/sill ratio less than 25% shows that the variable had strong spatial dependency (Chien et al., 1997).

In order to observe soil with no cover we calculated the probability of ash thickness being 0. These analyses were carried out with probability maps according Kriging methods. To identify the most accurate probability map, we tested several Kriging methods, Ordinary

Kriging (OK), Simple Kriging (SK), Universal Kriging (UK), Indicative Kriging (IK), Probability Kriging (PK) and Disjunctive Kriging (DK). Details about these probability methods can be founded in Smith et al. (2009). Methods accuracy assessment was carried out with the cross-validation method and the analysis of the mean error (ME) and Root Mean Square Error (RMSE) of each method. For more explanations of these indexes see Pereira and Úbeda (2010). The probability method with the lower RMSE is the most appropriate to interpolate the variable. Accuracy of the probability methods was also assessed with a Pearson correlation coefficient, significant at a p<0.05. Statistical analyses were carried out with Statistica 7.0 and spatial analysis with Surfer 9.0 and ArcGis 9.3 for windows.

Results and conclusions

The fire was of high severity according the ash colour observed (Figure 1a) and clearly illustrated in the figure 1b. The majority of the ash colour observed was light grey (30%), followed by dark grey (23.50%), white (16%) and black (0.5%). In some points we identified that no ash cover (30%) that is very likely to be due the inexistence of fuel previous to fire or high severity combustion that consume all the existent biomass. On average, ash thickness was of 4.97 mm (±6.13mm), ranging from a minimum of 0 mm and a maximum of 26 mm. The CV% is extremely high (124.14%), which means that the ash thickness and soil protection was highly variable across the studied plot. This is very likely to be a consequence of fuel type, distribution and conditions (moisture) previous to fire, degree of combustion, meteorological conditions, and smoke and air convection during the fire that can (re)distribute ash across the plot. Overall, the soil had little protection against erosion agents, especially because the light gray and white as is composed by small particles and easily removed by wind and water as observed elsewhere in the field (Pereira et al., 2010b) and in laboratory studies (Úbeda et al., 2009).

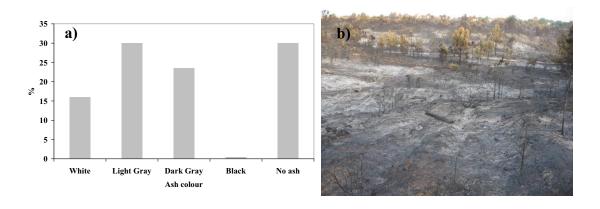
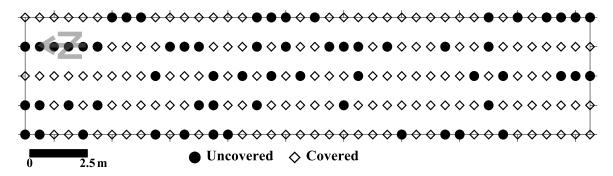
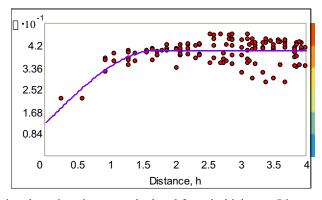


Figure 1. a) % of the identified ash colour (N = 200) and b) foto taken 1 day after the fire (26-07-2010).


Table 1. Descriptive statistics of ash thickness. S.D (Standard deviation), Min (Minimum), Max (Maximum) and CV (Coefficient of variation in %). Data in mm. (N=200).

	Mean	Median	S.D	Min	Max	CV%
Ash cover	4.94	3.00	6.13	0	26	124.14



The figure 2 shown the punctual distribution of ash uncovered and covered points. We observed that one day after the fire the soil protection in the studied area did not showed any spatial pattern and is very heterogeneous and confirms the high CV% observed. From this punctual map it is visible that ash covered and uncovered areas are intercalated which means that soil protection is highly variable in very short distances. These differences are attributed to soil microtopography (Figure 1b). Ash accumulates in the lower areas and it is where it is thicker. In addition, during the fire is very likely that the convective air circulations contribute to the redistribution of ash across the plot. These small distance variation in ash accumulation will also produce variation in the impacts of ash on soil properties, during the period that ash remains in that place. Previous studies pointed out that ash is easily transportable in slope areas, especially after torrential rainfalls, distributing their impacts in the areas where they were not produced (Pereira et al., 2010a,b).

Figure 2. Spatial localization of not covered and non covered soil areas. (*N*=200).

Figure 3. Omnidirectional semi-variogram calculated for ash thickness. Line represents the best fitted model. Range =1.45; sill =4.18 m; nugget effect= 1.22; nugget/Sill ratio = 26.84%. Distance, h in meters.

The calculated omnidirectional semi-variogram shows that ash thickness in the studied plot has a range of 1.6 m, a sill of 4.18 m, a nugget effect of 1.22 and a nugget/sill ratio of 26.84%, which means that the variable has a moderate spatial dependency. The omnidirectional semi-variogram shown a good structure and among all tested theoretical models, the gaussian model is the best fitted and shows that the variability of the variable increases in the first 1.6 m, reducing thereafter. The nugget effect is reduced, indicating that the spatial density of sampling points is sufficient to identify spatial structures. In addition the range (1.6 m) identified is larger than the sampling interval (0.5 m) which means that the grid designed is appropriated for this study. However, the range was considered small (1.6 m) and this suggests that the variation of the variable increase only

in until this distance. Beyond 1.6 m there is no spatial correlation that could be due some small scale variability observed in ash thickness. This small scale variation it is observed in the interpolated map (Figure 4).

Considering all methods, ME was in general unbiased (close to 0) and ranged from -0.305 to 0.1766. The RMSE varied between 0.4638 and 0.5523 (Table 2). Among all tested methods, the most accurate to interpolate the probability of ash thickness be 0 was SK and the less accurate IK. The correlation between observed and estimated values was higher in the high in the most accurate method and lower in the less precise interpolation method, which reflects the proximity between observed and estimated values (Table 2). The probability of ash being 0 varies between 0 and 77% and in the major part of the plot the probability of ash being 0 is higher than 50% (Figure 3). This means that this plot is very much vulnerable to soil erosion, until vegetation recover. We observed that there is no clear pattern of ash distribution after the fire and as we observed in the field this depends very much of plot topography. However some larger areas of thicker ash are evident in the map of the figure 4, and are located in the North and Southwest of the plot that are related with the plot large depressions.

Table 2. Summary statistics of the probability method accuracy. In bold the most precise. Minimum (Min) and Maximum (Max). *r* Correlation between observed and estimated values, significant at ***<0.001 and not significant (n.s) at a *p*<0.05.

Method	Min	Max	ME	RMSE	r
OK	-0.485	0.996	0.09282	0.4696	0.45***
SK	-0.567	0.983	0.09292	0.4638	0.49***
UK	-0.403	0.991	0.1365	0.4739	0.46***
IK	-0.400	0.822	-0.305	0.5523	$0.04^{\rm n.s}$
PK	-0.403	0.802	0.005665	0.5007	$0.05^{\rm n.s}$
DK	-0.336	1.000	0.1766	0.4863	0.37***

Figure 4. Probability map of ash being 0 calculated with the most accurate method (N=200).

References

Cerdà, A.; Doerr, S. H. 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period, *Catena* 74(3): 256–263,

Chien, Y.L., Lee, D.Y., Guo, H.Y., Houng, K.H. (1997) Geostatistical analysis of soil properties of mid-west Taiwan soils. *Soil Science*, 162, 291–297.

FAO (2006) World reference base for soil resources 2006. *A framework for interna-tional classification and communication* 103 p.

Pereira, P., Bodi. M., Úbeda, X., Cerdà, A., Mataix-Solera, J., Balfour, V, Woods, S. (2010a) Las cenizas y el ecosistema suelo, In: Cerdà, A. Jordan, A. (eds) Actualización en métodos y técnicas para el estudio de los suelos afectados por

3rd International Meeting of Fire Effects on Soil Properties 15-19 March 2011 | University of Minho | Guimarães, Portugal

- incendios forestales, 345-398. Càtedra de Divulgació de la Ciència. Universitat de Valencia.
- Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Martin, D.A. (2010b) Effects of fire in ash thickness in a Lithuanian grassland. Part I, Transect análisis. In: Diaz-Ravina, M., Benito, E., Carballas, T., Fontúrbel, M.T., Vega, J.A (Eds) Reaserch and PostfireManagement: Soil protection and rehabilitation techniques for burnt forest ecosystems, 265–268.
- Pereira, P., Úbeda, X. (2010) Spatial variation of heavy metals released from ashes after a wildfire, Journal of Environmental Engineering and Landscape Management, 18(1), 13-22.
- Smith, M. J., Goodchild, M. F., Longley, P. A. (2009) Geospatial Analysis. A comprehensive guide to principles techniques and software tools. Troubador Publishing. Leicister. 394 p.
- Úbeda, X., Pereira, P., Outeiro, L., Martin, D. (2009) Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber), *Land Degradation and Development*, 20(6), 589-608.
- Woods, S.W., Balfour, V. N. (2010) The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils. *Journal of Hydrology*, (*In press*) doi:10.1016/j.jhydrol.2010.08.025

Impact of a forest regeneration method used after fire on some soil properties

Piotr Sewerniak^a*, Sławomir S. Gonet^a, Marta Bożejewicz^a

^a Department of Soil Science, Nicolaus Copernicus University, 87-100 Toruń (Poland) * sewern@umk.pl

Key-words: Forest fire; Forest management; Soil properties; Cambic Arenosol.

Introduction

Fire is a natural element that strongly influences plant associations so this agent is of a great importance for silviculture and forest management. In timber woods one of the most important purposes of foresters after fire is to restore forest stands in burnt areas. The methods of forest regeneration used in this exertion can be divided into two general groups: (i) with usage of natural succession and (ii) planting trees. Both main forest regeneration methods influence soil properties that result in e.g. differences in plant or seedling overcrowding. Moreover mentioned two main groups of forest regeneration are usually different as intensity of soil scarification is taking into account, that also effect soil properties.

The main tree species of Polish forests (about 70% of cover) is Scots pine (*Pinus sylvestris* L.). Although the species commonly seeds in burnt areas after forest fires (Obmiński 1970, Hille et al. 2004, Marozas et al. 2007) natural succession was not wide used in restoring such areas in the 20th century in Poland and planting method prevailed. In conformity with 'close to nature' forest management in last decade the natural method of forest regeneration in Polish silviculture has clearly increased. Yet, differences of regeneration method in aspect of effect on soil properties have not been well recognized. The aim of the research was to evaluate the impact of forest regeneration method used after fire on some soil properties in Central Poland. As the subject is connected to forest management the study was analysed in aspect of silviculture.

Methodology

The study was conducted in the Cierpiszewo fire area (52°57'N, 18°27'E; 50 m a.s.l.) in Central Poland (fig. 1), where almost 30 km² of pine forest was burnt in 1992. The fire has been one of the biggest of all forest fires in Poland in last hundred years. The mean yearly precipitation in the investigated area is 523 mm and the mean air temperature is 7,9°C (Wójcik, Marciniak 2006).

We investigated soil properties almost 20 years after fire in 3 study plots of different forest regeneration method used after fire: A. the pine thicket of a natural seeding origin, B. the two generation pine stand: the parent pine stand (burnt by surface fire of low severity only) of loose crown density (ca 30%) with underwood of young (post-fire) pine thicket of a natural seeding origin, C. the pine thicket of a planting origin. In the plot A and B soil was not intensive cultivated after fire, it was only partially surface scarified during removing burnt trees. In the plot C soil was prepared by a plough after fire and before tree planting. All the analyzed plots are characterized by the soil of Brunic Arenosol (IUSS Working Group WRB 2007).

In each investigated plot soil samples were collected for laboratory analysis. In the plot C samples were collected both from rows and interrows of post-ploughing micro-relief. Six samples of each O subhorizons (Oi and Obu – "old" litter, burned during the fire (Gonet

et al. 2007, Gonet 2010)) and the AE horizon were randomly collected in every pine stand. For these horizons the mean values of soil parameters are given in the paper. From each of deeper soil horizons (BwoBs, Bwo) one sample was collected from a soil pit dug in every plot. In soil horizon descriptions of the C plot, where soil was scarified by a plough, "au" index was added to autochthonous and "al" index to allochthonous soil horizons. The other horizon descriptions were given according to WRB (IUSS Working Group WRB 2007).

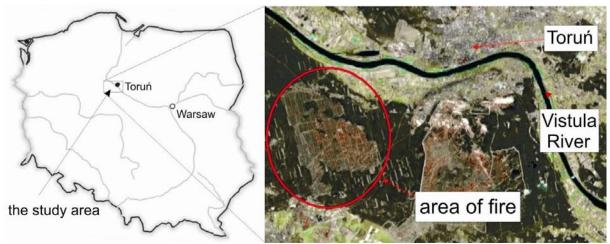


Figure 1. The location of the investigated area

In every collected soil sample the following parameters were determined (Bednarek et al. 2004):

- organic matter (OM) content by the ignition method (3h in 550°C),
- organic carbon (OC) content by sample oxidation in the mixture of $K_2Cr_2O_7$ and H_2SO_4 ,
- total nitrogen (Nt) content by the Kjeldahl method.

Results and conclusions

The thickness of the forming after fire Oi subhorizon was significantly higher in both investigated thickets of a natural origin than in both analyzed positions (rows and interrows) in the greenwood of a planting origin (plot C, tab. 1). The main reason for the differences is probably dissimilar density of young pines in the investigated plots that is an important factor shaping organic biomass supply onto soil surface. The density was much more in the plot A (206 pines in 100 m^{-1}) and B ($216 \cdot 100 \text{ m}^{-1}$) than in the plot C (75 · 100 m^{-1} , Sewerniak 2010). In the plot C the thickness of the Oi subhorizon was related to the location in a post-ploughing micro-relief. It was much higher in rows than in interrows (tab. 1).

In the investigated thickets of natural origin (plot A and B) the total soil organic matter stock was similar as in interrows in the plot C and significant higher than in rows of the planted thicket (plot A: $9.2 \text{ kg} \cdot \text{m}^{-2}$; plot B: $10.1 \text{ kg} \cdot \text{m}^{-2}$; plot C: rows $-5.6 \text{ kg} \cdot \text{m}^{-2}$, interrows $-9.1 \text{ kg} \cdot \text{m}^{-2}$). The differences between plots, concerning the total stocks of OC and Nt were similar to dissimilarities concerning OM stock. As it can be seen from table 1 the differences in total stocks result from altered stocks in surface soil horizons (O and AE) mainly. Particular distinct difference concerned total nitrogen stock in the Oi subhorizon. In the plot C it was clearly lower (rows $-11.4 \text{ g} \cdot \text{m}^{-2}$, interrows $-2.77 \text{ g} \cdot \text{m}^{-2}$) than in plot A (27.2 g · m⁻²) and B (22.1 g · m⁻²). The obtained C:N ratio values

proved distinct higher biological activity in the Oi subhorizon in thickets of natural origin than in the plot C (tab. 1).

Table 1. Properties of the investigated soils

	1		e 1. Proper				1	1
Horizon	Thick	OM [%]	OC [%]	Nt [%]	C:N	OM stock	OC stock	Nt stock
	-ness					[kg·m ⁻²]	[kg·m ⁻²]	[g·m ⁻²]
	[cm]							
				Plot A				
Oi	3,8	64,8	35,1	1,06	33	1,48	0,94	27,2
Obu	2,0	28,7	15,9	0,93	17	1,98	1,09	63,8
AE	3,0	3,1	1,9	0,08	24	0,80	0,55	22,3
AE2	8	2,3	1,2	0,05	24	2,37	1,28	51,6
BwoBs	6	0,8	0,40	0,02	20	0,73	0,36	18,0
Bwo	21	0,6	0,19	0,01	19	1,81	0,57	30,2
				Plot B				
Oi	2,7	60,0	31,9	0,93	34	1,45	0,76	22,1
Obu	2,5	11,0	6,2	0,36	17	1,42	0,80	48,0
AE	2,2	3,1	1,7	0,07	24	0,71	0,41	17,7
AE2	8	2,3	1,37	0,05	27	2,22	1,19	48,2
BwoBs	7	1,5	0,69	0,03	23	1,44	0,66	28,8
Bwo	30	0,7	0,22	0,02	11	2,91	0,97	88,2
			I	Plot C – ro	WS			
Oi _{au}	2,1	69,4	37,7	0,91	41	0,85	0,47	11,4
AE _{au}	3,1	3,0	1,4	0,06	23	0,99	0,48	22,2
ABwoBs _{au}	13	1,9	0,83	0,04	21	3,20	1,40	67,5
Bwo _{au}	24	0,2	0,16	0,01	16	0,58	0,54	33,8
			Pl	ot C- interi	rows			
Oi _{au}	0,7	57,6	34,7	0,75	46	0,15	0,12	2,77
AE _{al}	5,3	6,0	3,3	0,12	27	3,16	1,75	62,2
Obu _{al + au}	3,5	20,2	11,4	0,42	27	3,00	1,68	63,6
AE _{au}	3,9	3,7	2,4	0,09	27	1,24	0,74	29,4
ABwoBs _{au}	4	1,8	0,79	0,04	20	0,94	0,41	21,0
Bwo _{au}	24	0,2	0,16	0,01	16	0,58	0,54	33,8

Except differ pine density in the investigated plots an important reason for the obtained differences of soil properties is dissimilar soil scarification intensity after fire. Ploughing usually increases the rate of organic matter mineralization, so intensive soil preparation in the plot C after fire and before planting can in part explain the results.

Fire results in serious losses of soil nutrients (Lewis 1974, Pritchett 1979, Brais et al. 2000). In restoring of fire areas should be used methods that do not increase the losses. In fresh sandy soils content of organic matter is a decisive factor that determines soil fertility and its moisture properties. Our results show that natural seeding should be more often use in forest regeneration in burned areas. In the Cierpiszewo fire area the pine thickets of the natural seeding origin are only about 5% of all greenwoods. The results suggest also that in regeneration of fire areas intensive method of soil preparation (e.g. plouging) is not an advisible method, that it can increase organic matter mineralization. The method of only surface soil scarification in regeneration of fire areas should be rather applied.

References

Bednarek R., Dziadowiec H., Pokojska U., Prusinkiewicz Z. 2004. *Ecopedological studies*. Polish Scientific Publisher, Warsaw (in Polish).

- Brais S., David P., Ouimer R. 2000. *Impacts of wild fire severity and salvage harvesting on the nutrient balance of jack pine and black spruce boreal stands.* For. Ecol. a. Manage. 137: 231-243.
- Gonet S.,S., Dziadowiec H., Bućko M., Kwiatkowska A. 2007. *Changes in morphology, organic matter stock and properties in pine forest soil after fire* [in:] Úbeda X., Outerio L. (eds.) Abstracts of the International Meeting of Fire Effects on Soil Properties, Barcelona 31.01-3.02.2007. Universitat de Barcelona.
- Gonet S.S. 2010. *Impact of forest fire on soil organic matter properties* [in:] Sewerniak P., Gonet S.S. (eds.) Environmental results of forest fire. Polish Humic Substances Society, Wrocław: 51-81 (in Polish).
- Hille M., Ouden J. 2004. *Improved recruitment and early growth of Scots pine (Pinus sylvestris L.) seedlings after fire and soil scarification*. Eur. J. Forest Res. 123: 213-218
- IUSS Working Group WRB (2007) World Reference Base for soil resources 2006. World Soil Resources Reports, No 103, FAO, Rome. Electronic update 2007: http://www.fao.org/ag/agl/agll/wrb/.
- Lewis W.M. 1974. *Effects of fire on nutrient movement in a south Carolina pine forest*. Ecology 55: 1120-1127.
- Marozas V., Racinskas J., Bartkevicius E. 2007. Dynamics of ground vegetation after surface fires in hemiboreal Pinus sylvestris forests. Forest Ecology and Management, 250: 47-55.
- Obmński Z. 1970. *Ecology* [in:] Białobok S. (eds.) Our forest trees. Scots pine. National Scientific Publisher, Warsaw-Poznań: 152-231.
- Pritchett W.L. 1979. *Properties and management of forest soils*. J. Wiley&Sons, New York, Chichester, Brisbane, Toronto.
- Sewerniak P. 2010. *Impact of fire on some properties of pine phytocenosis in aspect of silviculture* [in:] Sewerniak P., Gonet S.S. (eds.) Environmental results of forest fire. Polish Humic Substances Society, Wrocław: 83-107 (in Polish).
- Wójcik G., Marciniak K. 2006. *Climate* [in:] Andrzejewski L., Weckwerth P., Burak S. (eds.) Toruń and its vicinity. Nicolaus Copernicus University in Toruń Publisher, Toruń: 99-128.

Bioavailable metal micronutrient in the rhizosphere burned soils

Marcet Miramontes, P.*; González Pimentel, S.

Departamento de Biología Vegetal y Ciencia del Suelo. Área de Edafología. Escuela de Ingeniería Forestal.

Universidad de Vigo. Campus a Xunqueira s/n 36005 Pontevedra. España

*marcet@uvigo.es

Key-words: metal micronutrients, rhizosphere, pH, organic matter.

Introduction

The rhizosphere has been recognized as a distinct microenvironment in which the properties and the intensity of soil processes differ from those of bulk soil (Legrand P. et al, 2005). The specific physicochemical and biological characteristics of the rhizosphere, such as the pH, the OM content and the exudation of organic substances by roots, mycorrhizae and microorganims, all contribute to the establishment of distinct trace metal species and metal pool covering a range of bioavailability levels (Assadian and Fenn 2001).

Most metals are essential nutrients to plant growth, thus of practical relevance to productivity of agricultural and forest ecosystems. It is well established in the literature that pH and organic matter content are two key factors influencing the concentrations of metals. Because of its generally higher acidity combined to a large organic matter content, the rhizosphere should differ in metal concentrations and speciation compared to other soil component (Marschner and Romheld, 1996). The rhizosphere is mostly presented as an environment that is impoverished in metals (Wang et al., 2002), although not all metals have the same behaviour (Youssef and Chino, 1989).

The objectives of this work were to compare the Cl₂Ca extractable metal micronutrient concentrations of the solid phase between the rhizosphere and the bulk burned soils under two different tree species.

Material and methods

Burn soil was sampling from Cuspedriños- Pontevedra (Spain), a site which was completely burned by a wildfire in August 2006. Burn soil sample was collected from the top 30 cm. under *Eucaliptus globulus* Labill. (BE) and *Pinus pinaster* Ait. (BP). At each of the sampling sites, three trees were carefully uprooted. A separation between rhizosphere and bulk materials was performed at the sampling site. The roots sampled were hand-shaken and the soil adhering to the roots was considered as rhizosphere material. The soil falling from the roots and the remainder of the soil collected were regarded as bulk soil (Rollwagen and Zasoski, 1988).

The physicochemical properties of the air-dried soils were carried out in triplicate. Soil pH (1:2,5 soil:water) was measured, TOC and TN by elemental analysis (Leco CN-2000). Extraction with Cl₂Ba, were used to determine CEC and concentrations of Ca, Na, Mg, K and Al (Hendershot and Duquette, 1986). Cation concentrations were measured with an AAS- Varian AA-1475. The NH⁺₄, NO₃ and PO₄ were extracted using acidified calcium chloride solution (0.1 M), according to the method developed by Houba et al. (2000), and analyzing with a segmented-flow auto analyzer (Bran Luebbe-AA3). Extraction with Cl₂Ca, were used to determine Fe, Mn, Cu and Zn bioavailable in bulk and rhizosphere materials and concentrations of extractable metals were determined by

inductively coupled plasma-mass spectrometry (Perkin Elmer Optima 4300 DV). Statistical analyses were carried on the software SPSS.

Results and discussion

The bulk soils studied have proportion of sand very high (>85%), low pH, low CEC and low base saturation, typical of soils located in a high-leaching environment. The pH values of the rhizosphere soils were always lower than those of bulk soils, with a difference of one pH unit under *Pinus pinaster* (Fig. 1). The acidification is considered to be mainly induced by the response of roots to ionic charge imbalances in the soil solution. In general, metal solubility and desorption increase at lower soil pH values (Lindsay, 1979)

The proximity of roots has a direct influence on the organic matter content (Hinsinger, 1998). The levels of organic carbon, in rhizosphere soils are significantly greater than in bulk soils, higher than 20% in two rhizospheric soils (Fig. 1). Soil N content is also higher in rhizospheric soils.

Cation exchange capacity values are very low, although an increase in rhizospheric soils is observed, principally under *Pinus pinaster* Ait.(Fig. 1).

Availability of metals in the rhizosphere is influenced by its ionic species and contents, which depend on the pH and chemical compositions of root exudates (Chiu et al 2002).

For Cu, Zn and Mn bioavailable found a higher content in the rhizosphere of *Eucaliptus globulus* Labill... than in the bulk soil, , suggesting the existence of a higher bioavailable metal pool close to roots and to the sites of elemental uptake by plants. For Fe content, there is no significant difference between rhizospheric and bulk soil. For Zn a Fe bioavailable found a higher content in the rhizosphere of *Pinus pinaster* Ait. (Fig. 2)

The lower pH of the rhizosphere can also increase the solubility of metals and nutrients. For example, the increased extractability of mobile Zn in the rhizosphere has been attributed to the acidification of this environment (McGrath et al 1997).

Nevertheless, higher content can be observed for Mn and Cu in *Pinus pinaster* Ait. bulk soil (Fig. 2), suggesting that elemental uptake by plants was an important factor contributing to the depletion of elements near the roots.

The concentrations of metals and nutrients in the rhizosphere depend on both soil and plant properties.

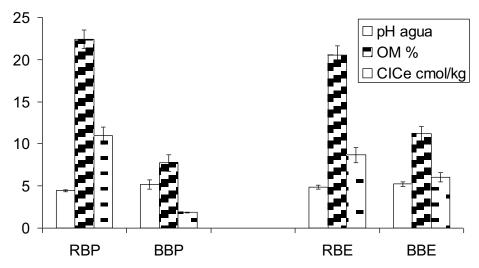



Figure 1. Chemical properties (pH, OM and CECe) of the bulk and rhizospheric soil.

Figure 2. Concentrations of bioavailable Zn, Cu, Mn and Fe in the rhizospheric and bulk soil under *Pinus pinaster* Ait. and *Eucaliptus globulus* Labill..

Conclusions

The rhizosphere is enriched in organic carbon and has a lower pH than the bulk soil. Available Cu, Zn, Mn content increases close to roots under *Eucaliptus globulus* Labill., and Zn and Fe under *Pinus pinaster* Ait..

References

Carter M R 1993. Soil sampling and methods of analysis. Lewis Publishers. Boca Raton, USA.

Chiu C, Wang M K, Hwong J, King H B.2002 Physical and chemical properties in rhizosphere and bulk soils of Tsuga and Yushania in a temperate rain forest. Commun. Soil Sci. Plant Anal. 33, 1723-1735.

Hinsinger P. 1998 How do the plant roots acquire mineral nutrients? Chemical processe involved in the rhizosphere. Adv. Agron. 24, 225-265

Houba, V., Temminghoff, E., Gaikhorst, G., Van Vark, W. (2000): Soil analysis procedures using 0,01M calcium chlorhide as extraction reagent. Soil Sci. Anal. 31(9/10),1299-1396

Lindsay WL 1979. Chemical equilibria in soils. Wiley, New York.

Marschner H., Römheld V, Horst W, Martin P. 1986. Root induced changes in the rhizosphere: importance for the mineral nutrition of plants. Z. Pflanzenern Bodenk. 149, 441-416.

Rollwagen B A, Zasoski R J 1988. Nitrogen source effects on rhizosphere pH and nutrients accumulation by Pacific Northwest conifers. Plant Soil 105 79-86.

Wang Z W, Shan X Q, Zhang S Z, 2002. Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils. Chemosphere 46, 1163-1171.

Youssef R, Chino M 1989. Root-induced changes in the rhizosphere of plants. II. Distribution of heavy metals across the rhizosphere in soils. Soil Sci. Plant Nutr. 35, 609-621.

Reclamation of a burned forest soil with fish manure vermicompost

Marcet Miramontes, P.*; González Pimentel, S.; Coleiro, B

Departamento de Biología Vegetal y Ciencia del Suelo. Área de Edafología. Escuela de Ingeniería Forestal. Universidad de Vigo. Campus a Xunqueira s/n 36005 Pontevedra. España.

* marcet@uvigo.es

Key-words: fish manure vermicompost, soil restoration, organic matter.

Introduction

Fire may affect different chemical and physical properties of the soil, increasing runoff and promoting erosion processes. The loss of organic matter through fire, as well as the effect of fire on microbiota and diminution in vegetation and soil cover (Guerrero et al 2001).

The addition of organic materials with a high macro and micronutrient content and a diverse microbial population can help in the restablishment of a burned soil characteristics, favouring plant development and reducing the time needed to reach suitable levels of soil protection.

It is well known that the fish wastes have been used as organic fertilizer and nutrients for both agricultural purposes and for rehabilitation of degraded areas (Alfaro et al 2004, Mazzarino et al 1998). Fish sludge contains macro and micro nutrients, especially high levels of nitrogen and phosphorus. Sewage sludge mixed with different organic waste materials is now usual in composting experiments (Li et al., 2001; Mupondi et al., 2006, Roca-Pérez et al 2009). Composting is a generally accepted as a beneficial method of stabilizing the organic matter container in these wastes. The composting process kills the pathogens due to the heat generated during the thermophilic phase; the organic compositions in waste will be converted into stabilized humic substances through mineralization and humification with a significant reduction in volume. An odourless innocuous and stable organic amendment can be obtained by composting, and its use for improving soil structure and soil organic matter has been reported worldwide (Laos et al.2002).

Compost and vermicompost made from fish manure or sludge from biofilter could provide an effective source of nutrient-rich organic matter. Instead of creating a disposal problem, composting these organic materials with a suitable carbon source creates a useful and potentially marketable product (Shelton et al 1998). Considerable information is available about composting of biosolids, animal manures, and municipal solid wastes, but it is limited in the case of highly decomposable materials such as fish wastes.

Our main objectives were to evaluate the influence of addition of a fish manure vermicompost in burned forest soils properties and the influence on the vegetation.

Methodology

Sludge sampling was carried from commercial turbot farm located in O Grove, Ria of Arousa (Insuiña S.L.), which is the oldest one that produces this specie in Galicia. It generates 150t per year and a effluent volume between 1,000 and 1,500 m³/h, of which around 60 m³/h are prefiltered (with a rotary filter <200 microns). Sampling was carried out with the sludge which was sown in the pool and others were collected from the rotary filter. Six samples of sludge were taken during 2008-2009. The samples were stored in plastic containers and refrigerated until they reached the laboratory (<4°C) Sludge was analyzer for pH, OM, macronutrients, micronutrients, heavy metals, pathogens, and

electrical conductivity. Outside composting experiments were conducted at Ponteareas (Pontevedra) during 2008-2009. The local climate is humid oceanic type, mean annual maximum temperature is 19,7°C and minimum 9,1°C, precipitation concentrated mainly in winter, with dry summers. Two different processes were employed composting and vermicomposting. The turning pile system was used for the composting process, using piles of 1m³ and were placed in an open site to facilitate turnings. Temperatures were measured twice a day, at 0.50 m depth with a compost thermometer. The plastic box systems (30L) were used for vermicomposting. The boxs were placed in an open site.

Burn soil was sampling from Cuspedriños- Pontevedra (Spain), a site which was completely burned by a wildfire in August 2006. Burn soil sample was collected from the top 30 cm. Composting requires bulking agents in order to facilitate aeration and provide carbon sources for microorganisms. Selected waste mixtures – pine sawdust + fish manure (C1, compost 1), pine sawdust + fruit waste + fish manure (C2, compost 2) were composted during four months. At the end of this process Eisenia andrei and Eisenia fetida, were added to C1 and C2 and the aerobic treated compost were vermicomposted for two month (VC1 and VC2).

Soil samples were collected under field-moist conditions, sieved to 2 mm, and thoroughly mixed with the vermicompost, which were previously ground to pass a 2-mm sieve. Vermicomposted fish manure was applied at a rate of 90 and 120 Mg.ha-1. Samples of the mixtures were placed in 3kg plastic pots and incubated aerobically at 25°C, 20% soil moisture (equivalent to the water content at 0.01 MPa) for 90 days. At each sampling date (0, 15, 30, 45, 60, 90 days), three replicates of control and amended soils were randomly selected for organic matter, inorganic N and P analysis. The net N mineralized was calculated according to Sims (1990).

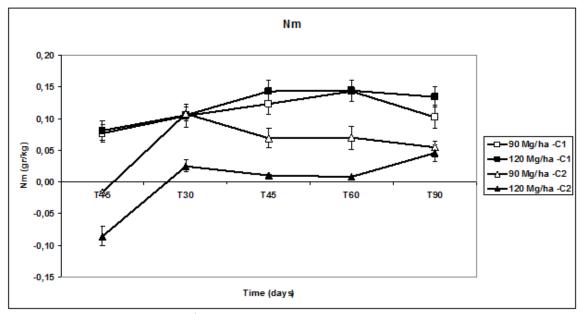
Soil pH and CE was measured in water extract, TOC and TN by elemental analysis (Leco CN-2000). The NH⁺₄, NO₃ and PO₄ were extracted using acidified calcium chloride solution (0.1 M), according to the method developed by Houba et al. (2000), and analyzing with a segmented-flow auto analyzer (Bran Luebbe-AA3). Statistical analyses were carried on the software SPSS.

Other experiment was installed using young plant of *Eucalyptus nitens*, grown in pots (burned soil +vermiculite+ VC1; burned soil+vermiculite + VC2; burned soil + vermiculite). Biomass, water transpired by the leaves, chlorophyll, chlorophyll fluorescence, leaves number were evaluated.

The plant material was sampled from Norton tree nursery (Pontevedra), plants in early phase of growth (10-15 cm). The plants were placed in circular pots (15 x 15cm) with soil-vermiculite (1Kg:50g) substrate and 50g of vermicompost (VC1 or VC2). Twuelve pots (one plant per pot) for each vermicompost (soil+ vermiculite + VC) and twelve for control (soil + vermiculite), were submitted to concrete conditions of lighting (120 photon mol/ms), temperature (20°C), humidity and aeration. The plants were previously conditioned in the laboratory (15 days). At each sampling date (15, 30, 45, 60, 74 days), biomass, water transpired by the leaves, chlorophyll, chlorophyll fluorescence, leaves number were evaluated.

Results and Conclusions

Sludge from turbot farm was analyzer for pH, OM, macronutrients, micronutrients, heavy metals, pathogens, and electrical conductivity. Results showed a very high water content in fresh fish manure (86%), an organic matter content around 33.8 %, and a neutral pH (7.5), total N content with values around 3% of which >90% was in the organic form. Heavy metal content was much lower than the upper pollutant limits set by the European



legislation. Electrical conductivity was very high (50.55 mS/cm), the salt concentration being about 3.25%. The C:N ratio was very low (6.3).

The results showed an important electrical conductivity decrease after composting and the vermicomposting process, VC1 and VC2 showed EC values about 4,5 and 5,6 mS/cm.At the end of the compost and vermicompost processes, VC1 presents a pH value slightly lower (6. 62), it could be caused by nitrogen mineralization process; VC1 had the highest NO₃ ⁻ content and C/N slightly high (34,4). The virtual absence of ammonium nitrogen in the final compost is a good indicator of their maturity (Roca-Pérez et al 2009). In this study the NH₄ ⁺ content, in the finals vermicompost and compost, was around 101 and 186mg.kg⁻¹ VC1, VC2, respectively.

In the laboratory incubation assay with similar rates of vermicompost, values of Nm were >100 mg.kg⁻¹ in the case of VC1 (pine sawdust + fish manure). For VC2 (pine sawdust + fruit waste + fish manure) with 120Mg.ha⁻¹ rate, the Nm values were very low (<45 mg.kg⁻¹), and low (<53 mg.kg⁻¹) with 90Mg.ha⁻¹ rate (Figure 1), probably this low values were due to the fruit waste is a source of C that immobilise N.

Figure 1. Net mineralized N (g.kg-¹). (C1-vermicompost 1– pine sawdust + fish manure; C2-vermicompost 2- pine sawdust + fruit waste + fish manure).

NH₄⁺-N was the predominant form of inorganic N at the incubation start (T0). Nitrification increased gradually and at the end of the incubation (T90), NO₃⁻-N represented the predominant form. Samples with 90 and 120Mg.ha⁻¹ rate of C2 vermicompost showed a slight N immobilization during the incubation period

P added with the vermicompost was retained in the soil; the retention was high in the C1 treatment, coincided with a higher N min, probably indicating an increase in P consumption by the microorganisms.

The results obtained in the first plant sampling (to 15 days) do not present significant differences in any of the measured parameters. The dates obtained in the next sampling (to 30 days) reveals significant differences in the height (CV1>CV2, Control), chlorophyll (CV1>CV2) and transpiration (control>CV1). Chlorophyll showed significant differences between CV2 and CV1 in the last sampling (75 days). Biomass

results were not significant with any treatment. Eucaliptus nitens plants did not present stress for the application of the vermicompost.

Conclusions

Fish manure vermicompost application increase the organic matter content and inorganic-N of burn soils. Rates of N mineralization depended on bulking agents. Net mineralized N was about twice as hight with VC1 as with VC2 vermicompost, at similar rates of application. Bioavailable P content was higher than control in all case.

The results suggest that fish manure vermicompost have a potential use as fertilizers in soils, which could reduce the direct risks of water pollution from the fish farming industry.

The two vermicompost used did not produce any negative effect on the development Eucaliptus nitens. There were no significant differences between CV1 and CV2 effect on the plants.

References

- Alfaro M, Salazar F, Valdebenito A 2004. In: Hatch, D., Chadwick, D.R., Jarvis, S., Roker, A. (Edts), Proceedings 12th Nitrogen Workshop: Controlling N flows and losses. UK 136-137.
- Guerrrero C, Gómez I, Moral R, Mataix –Solera J, Mataix-Beneyto J, Hernández T. 2001. Reclamation of burned forest soil with municipal waste compost: macronutrient dynamic and improved vegetation cover recovery. Bioresorurce Technology 76(2001) 221-227
- Houba V, Temminghoff E, Gaikhorst, G., Van Vark W 2000. Soil analysis procedures using 0,01M calcium chlorhide as extraction reagent. Soil Sci. Anal. 31(9/10): 1299-1396
- Laos F, Mazzarino M, Walter I, Roselli L, Satti P, Moyano S. 2002. Composting of fish and biosolids in northwestern Patagonia. Bioresource Technology 81: 179-186.
- Li G, Zhang F, Sun Y, Wong J, Fang M 2001. Chemical evaluation of sewage sludge composting as a mature indicator for composting process. Water Air Soil Poll. 132: 333-345.
- Mazzarino M, Laos F, Satti P, Moyano S 1998. Agronomic and environmental aspects of utilisation of organic residues in soils of the Andean-Patagonian region. Soil Science and Plant Nutrition 44: 105-113.
- Mupondi L, Mnkeni P, Brutsch M 2006. The effects of goat manure, sewage sludge and EM on the composting of pine bark. Compost Sci. Utilization 14: 201 210
- Roca-Pérez L,Martínez C, Marcilla P, Boluda R 2009.Composting rice traw sewage sludge and compost effects on the soil-plant system. Chemosphere75:781-787.
- Shelton E, Hinshaw J, Thompson S. 1998 An evaluation of composted fish wastes. 2nd International conference on recirculating aquaculture.
- Sims J. 1990. Nitrogen Mineralization and Elemental Availability in Soils Amended with Cocomposted Sewage Sludge. J Environ Qual. 1990; 19: 669-675

Applicability of the curve number to the soil hydrological response following prescribed burning in a heathland ecosystem (temperate-humid NW Spain)

Basanta, R.1* and Díaz-Fierros, F.2

^{1*} UIQA. Instituto Superior de Agronomia, TULisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
 ² Departamento de Edafoloxía e Química Agrícola. Facultade de Farmacia. Universidade de Santiago de Compostela (A Coruña) Spain.
 * rosariobasan@isa.utl.pt

Key-words: Slash-and-burn; Hillslope plots; Natural rainfall; Runoff; SCS CN method; NW Spain.

Introduction

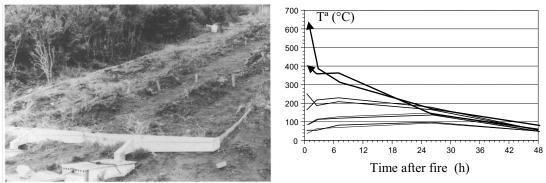
In the context of burnt soil studies, rainfall erosivity, water repellency, and runoff response have severe implications in soil fertility. Moreover, an accurate runoff prediction is important for estimating the transfer of dissolved substances into surface water bodies (Huang et al., 2006). The most used methodology for predicting direct runoff from rainfall is the curve number (CN) method developed by USDA-Soil Conservation Service (SCS, 1972) which is widely accepted in the world. It is an easy-touse method applied extensively in hydrologic, erosion and water-quality models, as CREAMS, EPIC, SWRRB and others (Mintegui and López, 1990; Auerswald and Haider, 1996). CN values have been obtained experimentally from rainfall and runoff measurements over a wide range of geographic, soil and land management conditions. Nevertheless, data do not exist from the temperate-humid hilly ecosystems in NW Spain subjected to conventional prescribed fires. Traditional slash-and-burn management for the conversion of heathland to cropland and pasture was historically used in this area and can be considered as medium-intensive agricultural practice (Soto et al., 1995). The soil response on runoff and soil erosion for this kind of prescribed fire can be increased in hill-slopes because slope is an important factor determining water movement within the landscape. Thus, the concurrence of the effects of slope and fire is a controversial issue in soil erosion studies. We processed rainfall-runoff relationship from slash-and-burn applied in this temperate-humid clime were there are scarcely studies for different soil uses and the necessary CNs had never been verified for fire management.

Objectives

The main aim of this study was to assess the applicability of the CN method for estimating direct runoff compared with field data obtained from two hillslope experimental plots subjected to slash-and-burn practice for the conversion of heathland to cropland and grassland. To verify CNs and to suggest modifications would be considered necessary.

Methodology

The soil was an Umbric Leptosol (FAO, 1988) developed over granite. Mean slope was 30% and altitude 350m. The srubland vegetation consisted of mainly *Ulex europaeus* and Ericaceae. Surface runoff was collected in two tanks located at the down-slope end of the burned plots as well as the undisturbed plot. We encountered the common difficulty in adequately estimating the total capacity of collection system that will be required for the variety of the storms, therefore, four runoff events indeed exceeded the capacity of the



tanks and they were excluded from the estimates of runoff and from the comparison of observed values with CN-estimated values. Finally, 48 available runoff events were registered. The burning of vegetation and of the organic-matter-rich layer of the soil in piles (as part of the traditional slash-and-burn) Fig. 1, led to higher temperatures below the surface of the soil than those reached during prescribed light fires or moderate fires (Soto *et al.*, 1995). Soil use and cover were as follow:

- 1- First year included a fallow period following slash-and-burn practice, the rye crop sowing and the transition from fallow to rye crop. A second fallow period was present during clearance of rye crop remains, liming, mineral fertilization and seeding with a pasture mixture; 33 whole rainfall-runoff events were registered during this period.
- 2- Second year included the transition from fallow to developing pasture and mature pasture, 15 whole rainfall-runoff events were registered.

Rainfall was recorded by two gauges close to the plots. The remaining climatic data were obtained from an automated weather station located 6 km from the study area. Site properties, as well as the consecutive soil management and cover are showing in Table 1.

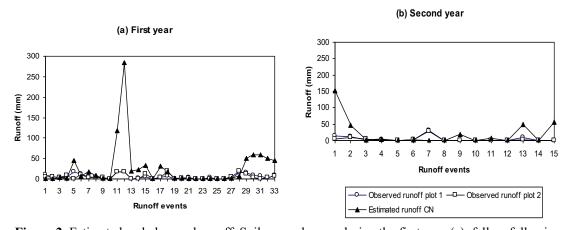
Figure 1. Burning of vegetation and the organic-matter-rich layer of the soil in piles during slash-and-burn. In the two experimental plots, temperatures were registered in the piles (with arrow), in the soil surface and both 2 and 5 cm in soil depth.

Table 1. Physicochemical characteristics of the soil at the study site. Values showing standard deviation are means of six determinations. Soil use, plant cover, rainfall and number of runoff events during the study.

Parameter	
Sand (%)	65.2 (2.05)
Silt (%)	19.5 (0.51)
Clay (%)	15.3 (0.78)
C (%)	6.74 (0.55)
Soil depth (cm)	45-65
Slope (%)	30
Height (m)	350
Plots size (m ²)	80

	Rainfall	Runoff
Soil use and plant cover	(mm)	events
Fallow following slash-and-burn and the transition from fallow to rye crop	1551.1	27
Fallow during the clearance of rye crop remains and seeding with a pasture mixture	422.9	7
Transition from fallow to developed pasture, 20-30 % plant cover	461.8	2
Developed pasture, 50-60 % plant cover	252.6	2
Mature pasture, 60-70 % plant cover	581.6	11

CNs values were determined from land cover and management, and from the hydrologic soil group using the equation and the table from the SCS methodology (1972):


$$Q = \frac{\left(P - 0.2S\right)^2}{P + 0.8S}$$

Q = direct runoff (mm); P = rainfall (mm); S = 254 (100/CN - 1) (mm).

As runoff is affected by the soil moisture before a precipitation event, the antecedent moisture condition (AMC) was adjusted based on 5-day prior rainfall depth that depends on whether the crop is in the dormant or growing season. We used condition II (average) for AMC and P0= 0.2S. The SCS methodology permits to correct CNs values for AMC condition I (dry) or condition III (wet).

Results and conclusions

Experimental data collected in the field showed a weak correlation (r= 0.44; n= 48) with those calculated with the CN method as it can be observed in Fig. 2 (a, b) showing data estimated with CN having slight adjustment during the first year only for some observed runoff events. In general, the CN method overestimated runoff discharge. In a first approach, we are suggesting some modifications in the method related with qualitative characteristics of the climatic, hydrologic and soil conditions of the study area. As a result, we implemented an adapted table of the runoff CN for hydrologic soil-cover complexes assuming condition II and P0= 0.2S (Table 2). We recalculated estimated runoff using this modified CN method. The new correlation analysis showed good adjustment between the observed and the estimated values defined by the equation: $y = -0.129 + 0.813 \times (r = 0.79; p < 0.001)$.

Figure 2. Estimated and observed runoff. Soil use and cover during the first year (a): fallow following slash-and-burn and the transition from fallow to rye crop (from 1 to 27 runoff event). Fallow between 28 and 33 runoff event during the clearance of rye crop remains and seeding with a pasture mixture. Second year (b): transition from fallow to developed pasture, 20-30% cover (1 and 2 runoff event); developed pasture, 50-60% cover (3 and 4 runoff event) and mature pasture, 60-70% cover (from 5 to 15 runoff event).

Table 2. Modified runoff curve number for hydrologic soil-cover complexes assuming condition II and P0=0.2S

		10 0.25					
					Hydrol	ogical	soil
Soil use and cover	Method or				g	roup	
	treatment	Cover (%)	Hydrofobicity	A	В	C	D
Fallow after fire			+++				95
management		0	++			90	
(slash-and-burn)	Straight rows		+	50	70		
Transition fallow-	Straight rows	Initial	+++	70			
cropland	•	Intermediate	++	60			
-		Final	+	55			
Transition fallow-		<20-20%	+	40			
pasture		30-60%	+	35			
		>60%	+++				100
			++			95	
			+	30	55		

The adjusted method decreases CNs for hydrological soil groups with low potential runoff and increases CNs for hydrological soil groups with moderated and elevated potential runoff. Thus, CNs for the hydrological soil group A, B and C during the fallow after fire management (slash-and-burn), were adjusted from 77, 86 and 91 respectively to 50, 70 and 90. But D group with elevated hydrofobicity was larger in the adjusted CNs changing from 94 to 95. For the transition fallow to cropland was considered only the hydrological soil group A (low potential runoff) and three different cover and hydrofobicity levels. As well as, only the soil group A was considered until 60% cover in the case of transition fallow to pasture. For mature pasture (>60% cover) CNs for soils groups A (30) and B (55) were smaller than the original CNs for pasture (39 and 61 respectively). On the contrary, CNs for soil groups C and D were adjusted from 79 to 95 for C and from 89 to 100 for D.

Our adjusted method allowed us to complete the not whole runoff events to be included for future analysis in this particulate case and it is a first approach to adjust the CN method for heathland ecosystems in NW Spain in the case of 30% maximum slope, soil-vegetation combination as those scrubland developed over granite and land use as fallow, transition fallow-crop and transition fallow-pasture, all related with slash-and-burn practice for the conversion of heathland soils to cropland and pasture.

We are considering that the modified CN method appears to be most appropriate for runoff estimation in these hilly soils subjected to medium-intensive agricultural practice with fire, but it needs to be validated and improved for other vegetative covers, land uses and number of runoff events. Furthermore, due the huge significance of the erosion processes in cultivation on land with slopes above 30%, it would be appropriate to incorporate a slope factor into the CN method, as was suggested by Huang *et al.*, 2006.

References

Auerswald, K., Haider, J. 1996. Runoff Curve Numbers for Small Grain Under German Cropping Conditions. *Journal of Environmental Management*, 47: 223–228.

FAO, 1988. Mapa de suelos del mundo. Revised lengend. Versión española.

Huang, M., Galiichand, J., Wang, Z., Goulet, M. 2006. A modification to the Soil Conservation Service curve number method for steep slopes in the Loess Plateau of China. *Hidrologycal Processes*, 20:579-589.

- Mintegui Aguirre, J. A., López Unzu, F. 1990. *La ordenación agrohidrológica en la planificación*. Servicio Central de Publicaciones del Gobierno Vasco. Madrid. 308 p.
- SCS, Soil Conservation Service, ed. (1972). *National engineering handbook, Section 4,* "*Hydrology*". Washington, D.C.: SCS.
- Soto, B.; Basanta, R.; Pérez, R.; Díaz-Fierros, F. 1995. An experimental study of the influence of traditional slash-and-burn practices on soil erosion. *Catena*, 24:13-23.

Effectiveness of hydro-mulching to reduce runoff and erosion in a recently burnt and logged Maritime Pine stand in north-central Portugal

Sérgio Prats Alegre*, Maruxa Malvar Cortizo, Sílvia Regina Faria, Diana Catarina Simões Vieira, Paula Alexandra Aquino Maia, Ana Vasques, Alexandra Albuquerque, Max Xufeng Shen, Hein Vermin, Jan Jacob Keizer

Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de Ambiente e Ordenamento, Universidade de Aveiro, 3810-193 Aveiro, Portugal, * sergio.alegre@ua.pt

Key-words: wildfire; pine; hydro-mulching; runoff; erosion.

Introduction

It is well-established that wildfires can produce marked changes in geomorphological and hydrological processes. Whilst the removal of vegetation and litter cover by burning plays an important role in these changes, mulching - the application of an artificial litter cover - is a widely accepted technique to reduce the risk of post-fire soil erosion (Bautista et al 1996, Wagenbrenner et al., 2006). Hydro-mulching - a more recent variant of mulching in which besides (in-)organic fibers also water, nutrients, green colorant and seeds are applied to the soil surface (Naveh, 1974)- is less commonly applied in recently burnt areas . This is perhaps especially due its more elevated costs but, at the same time, its effectiveness remains to be fully clarified.

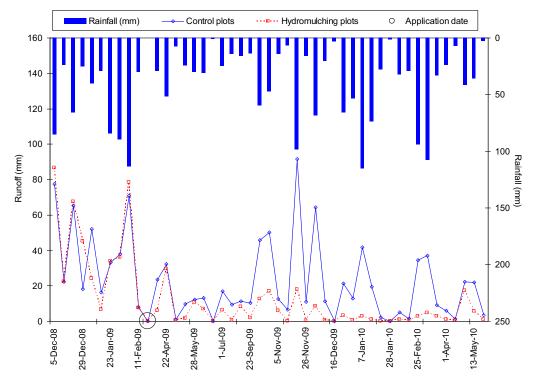
In Portugal, few studies have assessed the effectiveness of mulching following wildfires (Shakesby et al.,1996) but, to the best of our knowledge, no field trial with hydromulching was carried out so far. This research gap was addressed by the EROSFIRE-II project, in collaboration with the company Serraic - Create And Innovate, Lda, which provided and applied the hydro-mulch, and with the support of the National Forestry Authority and the fire brigade from Arganil.

Objectives

This work aims to assess the effectiveness of the hydromulching as a technique to reduce soil erosion and runoff generation in burnt areas. Additionally, it was assessed the differences that the hydromulching will induce on the key parameters for runoff generation (soil moisture, soil water repellence) and soil erosion processes (vegetation cover and soil resistance).

Methodology

This study was carried out in the municipality of Arganil in a Maritime Pine stand on common grounds ("baldio") that burnt during August 2008 and that was logged during the winter of 2008/2009 (mainly because of the nematode plague risk). The experimental set up involved 6 bounded plots of roughly 10 m² and 8 bounded plots of 0.25-0.50 m². The former plots involved the measurements of erosion rates only, using a sediment fence-type construction at the basis of the plots. The latter plots also involved the measurement of runoff amounts, by connecting the plot outlets to tanks. In addition, an automatic and a totaliser rainfall gauge were installed close to the plots. Half of the larger and half of the smaller plots were treated with hydro-mulch on March 31 2009. To this end, the plots were divided into neighboring pairs and, for each pair, the plot to be treated



was selected randomly. Furthermore, a strip of some 50 m² was delineated and on half of it hydro-mulch was also applied. The monitoring of the field equipment was carried out till august 2010, and involved: (i) 1- to 2-weekly measurement of rainfall and runoff, and gathering of runoff samples; (ii) monthly measurement and sampling of the sediments accumulated in the 10 m² plots; (iii) monthly measurement of selected soil properties (shear stress, soil moisture and soil water repellency) in the treated and untreated parts of the above-mentioned strip. At the end of the monitoring period, a detailed vegetation description was made.

Results and conclusions

Total rainfall from 31 March 2009 to 20 May 2010 was 1327 mm. The untreated bounded plots showed an overall runoff coefficient of 47% while the treated plots produced 14%, which means a reduction of 70% (Figure 1). This is possibly linked to the effect that the green cover of organic fibers of the hydromulching will induce over the black and burned soil: surface water storage capacity was promoted by the hydromulching layer over the soil surface, soil water repellency decreased, since it was present more often in the control than in the hydro-mulched strip (38% against 20% of the observations respectively), and soil water content increased slightly on the treated area (14.7% versus 13.8% on average) during the 15 months of the experience.

Figure 1. Runoff production and rainfall amount measured on the hydromulching and control plots at week intervals.

The overall soil erosion was 506 g m⁻² for the control plots, and 99 g m⁻² for the hydromulched plots, which means a reduction of 80% (Figure 2). This is attributed to the greater runoff and percent bare soil presented on the untreated plots, but also the soil resistance was slightly different on the hydromulch area (2,8 versus 2,5 Kg cm⁻²). Nonetheless, also at the end of the monitoring period, the vegetation cover was lower in

the control (20.8%) than hydro-mulched plots (28%), and there was still more plant individuals on the treated than on the control plots (164 indiv. m⁻² versus 65 indiv. m⁻²).

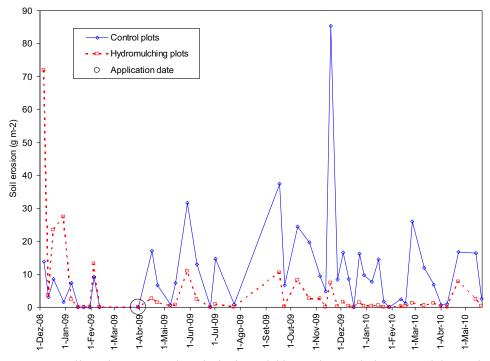


Figure 2. Soil erosion measured on the hydromulching and control plots at week intervals.

The results indicate an excellent effectiveness during the first year after the treatment with hydromulching. It was checked that mulching affects some of the most important key factors involved on the processes that generates overland flow in a recently burnt area. Soil cover, soil water repellence, soil moisture, soil resistance, vegetation species and cover were affected by the treatment in order to decrease the soil erosion.

References

Bautista S, Bellot J, Vallejo VR. 1996. *Mulching treatment for postfire soil conservation in a semiarid ecosystem*. Arid Soil Research and Rehabilitation 10: 235–242.

Naveh Z. 1975. Degradation and rehabilitation of Mediterranean land-scapes: Neotechnological degradation of Mediterranean landscapes and their restoration with drought resistant plants. Landscape Planning Volume 2, 1975, Pages 133-146.

Shakesby R.A., Boakes J.D., Coelho C.O.A., Bento Gonçalves J.A., Walsh R.P.D. 1996. Limiting the soil degradational impacts of wildfire in pine and eucalyptus forests in Portugal. Applied Geography. Vol. 16. No. 4. pp. 337-3.5.5. 1996

Wagenbrenner JW, MacDonald LH, and Rough D. 2006. *Effectiveness of three post-fire rehabilitation treatments in the Colorado Front Range*. Hydrological Processes 20, 2989-3006.

Coal palaeofires in the western Dacic Basin (Romania): geophysical, mineralogical and geochemical signatures recovered from porcelanites and clinkers; a case history

Sorin - Corneliu Rădan^{a*} and Silviu Rădan^b

^aGeological Institute of Romania (GIR), 1 Caransebeş St., 012271 Bucharest (Romania); ^bNational Institute of Marine Geology and Geoecology (GeoEcoMar), 23-25 Dimitrie Onciul St., 024053 Bucharest (Romania) * sc.radan@yahoo.com

Key-words: coal palaeofires, clays, porcelanites, magnetism, Romania.

Introduction

The paper presents the case history of the various signatures (*i.e.* geophysical, geological and geochemical) which were discovered in the southwestern Romania, and which provide evidence of past coal-bed fires (Rădan and Rădan, 2010a,b).

A geophysical signal sent by the products of the underground coal fires was detected for the first time in 1969, during the field works for the regional magnetic measurements carried out to draw up the ΔZ and ΔZ a (i.e. geomagnetic field vertical component and its anomaly) maps of Romania (scale 1:200,000). Particularly, on the occasion of the magnetic survey performed by one of the authors, a magnetic anomaly was revealed (Rosca et al., 1973) in a zone where important lignite quarries have later entered into exploitation. Moreover, the location is close to the area where the maximum thickness of the coal seam X was estimated (Ticleanu and Andreescu, 1988), i.e. the lignite bed proved to be mainly responsible for the "baked clays" occurrences in the western Dacic Basin. The magnetic field works were carried out more than forty years ago in a zone which was not uncovered at the time, where the porcelanites could be observed in rare outcrops only. The Δ Za anomaly was produced by a horizon of "baked clays", formed as a result of the autocombustion of a coal bed. The thermo-mineralogical signatures recovered by X-ray diffractometry from the rocks affected by underground coal palaeofires show temperatures of about 1000°C having been reached within the initial clays (Rosca et al., 1973).

The research gained momentum when the magnetostratigraphic studies have been initiated (in 1984) in order to correlate the coal beds in a series of lignite quarries. Their location was close to the previously mentioned zone, where the effects of the past underground coal-fires on the clays was firstly detected. In fact, in the Upper Pliocene coal deposits of the western Dacic Basin, numerous occurrences of baked and/or fused sedimentary rocks generated by natural spontaneous burning of lignite seams are present (Rădan and Rădan, 2011a). Usually, these rocks consist of hardened red clays and sands with brick-like appearance ("porcelanites"/"porcellanites"; according to the *Dictionary of geological terms, American Geological Institute, 1976, 1984*). Yet, sometimes they show a slaggy or vitreous texture with marked vesicularity and dark colour ("clinkers").

Objectives

The "baked clays", which actually prove the existence of the coal palaeofires at one time during the geological evolution of the lignite-clay sequences (well exposed now in the coal quarries), are able to produce significant magnetic anomalies. Apart from these geomagnetic markers, the paper is focused on the rock-magnetic, palaeomagnetic,

thermo-mineralogical and geochemical signatures recovered from porcelanites, porcelanite-like clays and clinkers, which were sampled on the occasion of carrying out field works for magnetostratigraphic studies (Rădan and Rădan, 1998).

Methodology

The approach of the paper's subject is based on field and laboratory works. Oriented samples of "original"/"fresh" clays (non-affected by heating), as well as of "baked clays" (*i.e.* porcelanites, porcelanite-like clays) were collected from the western Dacic Basin (particularly, from Lupoaia and Jilţ-Sud lignite quarries). In addition, partially oriented (up/down) cores of "fresh" clays and unoriented fragments of porcelanites were collected from two exploration boreholes located southward of Lupoaia quarry. Rock magnetic and palaeomagnetic methods were used to detect the "signal" sent by the rocks. The intensity and the direction of the natural remanent magnetisation (NRM) were achieved. The magnetic susceptibility (MS) and its anisotropy were measured and the directions of the principal susceptibilities and several anisotropy parameters were determined. To isolate the characteristic remanent magnetisation (ChRM), the stepwise thermal demagnetisation technique was applied.

Mineralogical and geochemical analyses were used in order to clear up certain aspects regarding the transformation process of the clays into porcelanites.

Results and conclusions

The rock-magnetic signal sent by the "baked clays" is changed in comparison with the "original" ("initial"/"thermally non-affected") clays. For instance, the magnetic susceptibility increased considerably, *i.e.* one to three magnitude orders higher for porcelanites and porcelanite-like clays. At the same time, due to the high and very high temperatures (often 250°-400°C, but also 1000°C), the Curie point of the ferromagnetic (s.l.) minerals was exceeded, the other component of the rock-magnetic signature – the remanent magnetisation – being modified as well (Rădan and Rădan, 2011b). On cooling from above the Curie temperature, the porcelanites, newly formed at the expense of initial/original clays, acquire an important thermoremanent magnetisation (TRM). Its intensity records high and very high values, three magnitude orders higher as compared with the clays that were not affected by palaeofires, and which acquired a detrital remanent magnetisation (DRM) at the deposition time.

As regards the thermo-mineralogical signature, the heat-affected clays show modified mineral assemblages or even newly-formed minerals (*e.g.* hematite, cristobalite, tridymite, mullite, spinel, cordierite and possibly, magnetite), characteristic for high temperature conditions. These are playing the role of a geothermometer, leading to an attempt to place the clays affected by coal fires on a 6 steps temperature scale, with possible limits of 250°-1200°C.

The geochemical signature points out changes comparable to the thermal contact metamorphism. These newly-formed rocks are also known as "combustion-metamorphic rocks" or "pyrometamorphic rocks". The oxido-reducing index (Fe₂O₃/FeO) shows the lowest values in the coaly clays, and the highest values (> 50) in porcelanites; in the latter, FeO is sometimes totally oxidized to Fe₂O₃. Thus, regarding the chemical constituents (Table 1), the porcelanites show higher Fe₂O₃ contents as compared with the "original"/"fresh" clays, while the FeO, CO₂, $S_{tot.}$ and H_2O^+ contents are higher in the latter.

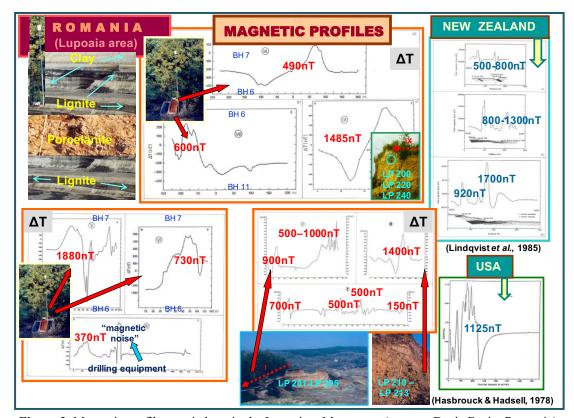
Table 1. Chemical composition of the clays and porcelanites sampled in the Lupoaia lignite quarry (western Dacic Basin, Romania).

Legend: red – higher contents; blue – lower contents.

	Chemical constituents (%)													
SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	Fe ₂ O ₃ total	MnO	MgO	CaO	K ₂ O	Na ₂ O	P ₂ O ₅	CO ₂	S _{total}	H ₂ O
	Clays													
39.54	0.39	11.7	0.00	0.14	4.37	0.00	1.18	0.85	1.13	0.00	0.04	0.0	0.00	3.92
_	_	_	_		-	_	_	_	_	_	_	_	-	
68.32	1.05	26.4	8.80	7.63	10.08	0.38	4.36	11.85	2.95	2.08	0.23	9.24	0.86	22.68
	Porcelanites													
45.80	0.69	17.0	6.05	0.00	6.69	0.02	1.11	1.31	0.81	0.00	0.10	0.0	0.00	0.39
62.54	0.94	28.4	10.46	0.57	- 10.70	0.17	2.85	6.73	2.88	0.68	0.80	3.41	0.09	13.08

The palaeogeomagnetic signature and the evolution conditions of the sedimentary basin constrain the time of the coal seam burning in the investigated area to the Middle-Upper Pleistocene. The geomagnetic palaeofield polarity recovered from porcelanites is normal and it is assigned to the Brunhes Chron (0.781 - 0.00 Ma; ATNTS-2004).

To present some geophysical and mineralogical features determined for porcelanite deposits, an example from the southern area of the Lupoaia lignite quarry is given in Fig. 1.


Figure 1. Model showing some rock magnetic, palaeomagnetic and mineralogical signatures recovered from porcelanites and porcelanite-like clays (Lupoaia quarry, western Dacic Basin).

The paper ends with a conclusion which integrates the thermo-mineralogical, geochemical and rock-magnetic signatures recovered from both the porcelanites and the unbaked clays: there is a strong contrast of magnetic properties between the two categories of rocks, so that magnetic anomalies are easily measured with portable

magnetometers. The examples coming from the western Dacic Basin reveal amplitudes up to 1880 nT (Fig. 2).

Figure 2. Magnetic profiles carried out in the Lupoaia – Motru area (western Dacic Basin, Romania), showing the anomalies caused by the porcelanites and clinkers.

Note: examples from New Zealand and USA are presented on the right side.

In addition, it is known now that some Pliocene clays, assigned to the Gilbert Chron, C2Ar Subchron (4.187-3.596 Ma; ATNTS-2004), according to the recovered palaeogeomagnetic signature, were burned after about 3.5 Ma by the fires that had been caused by the natural autocombustion of certain coal seams with petrographic-mineralogical availability for autoignition. These processes have taken place near surface, usually when lignite beds are to be exposed to erosion. The shallow burial position of the porcelanite horizons is confirmed by three boreholes carried out southward of Lupoaia quarry, which have shown a depth ranging between 9-34 m.

Among the applications and implications of the study of the burnt rock deposits, the palaeoenvironmental impact and some economic consequences should be taken into consideration.

References

Rădan, S.C., Rădan, M. 1998. Study of the geomagnetic field structure in Tertiary in the context of magnetostratigraphic scale elaboration. I - The Pliocene. An. Inst. Geol. al României, 70, Bucuresti, 215-231.

Rădan, S.-C., Rădan, S. 2010a. Coal Palaeofires in the Western Dacic Basin: Geophysical, Mineralogical and Geochemical Signatures Recovered from Porcelanites and Clinkers; a Case History. In: C. Drebenstedt, C. Fischer, U. Meyer, W. Jianjun, K. Bing (Eds.) – Latest Developments in Coal Fire Research,

- Bridging the Science, Economics, and Politics of a Global Disaster, Proceedings of ICCFR2 Second International Conference on Coal Fire Research, 19 21 May 2010, dbb forum Berlin, Germany TU Bergakademie Freiberg, Germany, 2010, ISBN 978-3-86012-397-3, 400-401.
- Rădan, S.C., Rădan, S. 2010b. Coal Palaeofires in the Western Dacic Basin: Geophysical, Mineralogical and Geochemical Signatures Recovered from Porcelanites and Clinkers; a Case History, Travaux Géophysiques, XXXIX, Abstracts of the 12th "Castle Meeting" New Trends in Geomagnetism. Palaeo, Rock and Environmental Magnetism, Castle of Nové Hrady, Czech Republic, August 29 September 4, 2010, 66-67.
- Rădan, S.C., Rădan, S. 2011a. Changes induced by coal paleofires in the magnetic recording medium constituted by cyclic lignite clay sequences, as inferred from porcellanites and clinkers (Western Dacic Basin, Romania); a synopsis. In: G. B. Stracher, A. Prakash and E. V. Sokol (Eds.). Coal and peat fires: A global perspective, vol. 2 Photographs and Multimedia Tours, Elsevier (in press).
- Rădan, S.C., Rădan, S. 2011b. Remagnetisation as evidence of a natural thermal event in the history of the lignite-clay sequences: magnetic signals from porcelanites (Dacian Basin, Romania). In: G. B. Stracher, A. Prakash and E. V. Sokol (Eds.). Coal and peat fires: A global perspective, vol. 2 Photographs and Multimedia Tours, Elsevier (in press).
- Roșca, Vl., Rădan, S.C., Rădan, S. 1973. *Thermoremanent magnetization of some Neogene clays from NW Oltenia*. St. Cerc. Geol. Geofiz. Geogr. Geofizică, 11, 2, București, 303-313 (in Romanian with an English abstract).
- Ticleanu, N., Andreescu, I. 1988. Considerations on the development of Pliocene coaly complexes in the Jiu Motru sector (Oltenia). D. S. Inst. Geol. Geofiz., 72-73/2 (1985-1986), Bucuresti, 227-244.

Importance of dtm accuracy, precision and acquisition technique for estimating contributing areas of post-fire erosion at the slope and catchment scale

S. Cambra, L. Pereira, Jacob J. Keizer*

Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro (Portugal). * jjkeizer@ua.pt

Key-words: DTM; post-fire erosion.

Abstract

Wildfires are a frequent phenomenon in Portugal, affecting over 300.000 ha in dry years like 2003 and 2005. Directly and/or indirectly, wildfires can strongly enhance the hydrological response and associated sediment losses and, thereby, negatively affect landuse sustainability as well as ecosystem functioning of downstream aquatic habitats. Therefore, the EROSFIRE projects aim at developing a GIS-tool for predicting soil erosion hazard following wildfire and post-fire land management practices. Assessment and modeling of runoff and soil erosion rates critically depends on accurate estimates of the contributing areas. In the case of catchments as well as unbounded erosion plots (arguably, the only practical solution for slope-scale measurements), delineation of contributing area requires a Digital Terrain Model (DTM) with an adequate resolution and accuracy. The DTM that was available for the Colmeal study area (Gois municipality, central Portugal) was that of the 1:25.000 topographic map produced by the Military Geographic Institute. Since this study area involves a rather small experimental catchment of roughly 10 ha and relatively short study slopes of less than 100 m long, two different data acquisition techniques were used to produce high-resolution and high-accuracy DTM. One is aerial photogrammetry, whilst the other is terrestrial laser scanning. To produce a DTM by photogrammetric means, a dedicated digital aerial photography mission was carried out. The images had a pixel size of 10 cm. Manual measurements permitted to measure breaklines and were complemented by automatic measurements. In this way, a DTM in a TIN format was produced. This was further converted to grid format using the ArcGIS software system. Signalized control points allowed obtaining the DTM in the same global reference system as that employed for terrestrial laser scanning. The terrestrial laser scanning was done using a Riegl LMS Z360I, stationed in 8 points within the area to provide a complete coverage. The resulting dense cloud of points was filtered – by the company carrying out the scanning mission - to remove the non-terrain points (in particular vegetation). Several grids of different sizes were produced (0.10 x 0.10, 0.20 x 0.20, 0.50 x 0.50, 1 x 1 and 2 x 2 m²). The proposed work will compare and analyze estimates of contribution areas that were obtained with the two above-mentioned data acquisition techniques and for different spatial resolutions. This will be done for selected slope-scale sediment fences as well as for the outlet of the experimental catchment. In addition, different algorithms available in ArcGIS for TIN-to-grid conversion will be compared, since preliminary results have suggested that these procedures produce markedly different results.

Soil nutrients and organic matter stocks and their losses by runoff following wildfire in north-central Portugal

J.J. Keizer*, N.J. Abrantes, I.M.A.N. Campos, M.M.A. Cerqueira, G. Erny, V.I. Esteves, S.R. Faria, R.S.V. Ferreira, M.C Malvar, J.P. Nunes, M.I.S. Nunes, S.A. Prats, M.E.T. Varela, S. Van den Heuvel, M. Xufeng Shen

Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro (Portugal). * jjkeizer@ua.pt

Key-words: Wildfires, soil stocks, runoff losses, nutrients, organic matter, carbon, PAHs.

Abstract

It is well documented that wildfire - through its direct effects on vegetation cover and soil properties can lead to considerable changes in geo-morphological and hydrological processes. Studies in various parts of the world have shown strong to extreme responses in runoff generation and associated soil losses following wildfire, especially during the earlier stages of the so-called "window-of-disturbance". Nonetheless, it has been argued that these wildfire effects are: (i) much better known at small spatial scales (especially erosion plots) than at the scale of catchments; (ii) much better studied with respect to overland flow and streamflow (and, then, especially peak discharges) than to soil erosion and, to a markedly greater extent still, organic matter and nutrient exports.

The above-mentioned research gaps certainly apply to the case of Portugal. Therefore, the FIRECNUTS project (PTDC/AGR-CFL/104559/2008) has recently started to study the losses of organic matter, carbon and nutrients (N and P especially) by runoff in a recently burnt area, also in relation to the stocks in the topsoil. Furthermore, a PhD study in collaboration with IPIMAR is giving special attention to the stocks and export of polycyclic aromatic hydrocarbons (PAHs) and selected metals.

The FIRECNUTS study area is situated in the municipality of Sever do Vouga, north-central Portugal. It was burnt by a wildfire towards the end of July 2010. Within the burnt area, five burnt hillslopes were instrumented with micro- to slope-scale runoff plots as well as slope-scale sediment fences. Four of these slopes were eucalypt plantations and one a Maritime Pine plantation. The installation of the various plots was completed before the occurrence of any significant rainfall and, since then, monitoring is being done at regular, 1-to-2 weekly intervals, depending on rainfall.

The soil stocks were sampled at all 5 burnt slopes in august 2010. At two of these slopes sampling was repeated at monthly intervals, whereas at the remaining three slopes sampling will be done at 3-monthly intervals. In addition to the burnt slopes, also two unburnt slopes just outside the burnt area are being studied. One was equipped with slope-scale runoff plots and is being soil sampled at monthly intervals, whereas the other is being soil sampled at 3-monthly intervals.

The proposed presentation will give an overview of the ongoing work at the FIRECNUTS study area in Sever do Vouga.

POST-FIRE NUTRIENT LOSSES BY RUNOFF FROM PLOT SCALE IN NORTH-CENTRAL PORTUGAL

R.S.V. Ferreira*, M.M.A. Cerqueira, J.J. Keizer

Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro (Portugal).

* raquelferreira@ua.pt

Key-words: Wildfires, runoff, nutrient losses, nitrogen, phosphorus.

Abstract

Post-fire erosion is a major concern following forest fires. The consumption of vegetation and litter cover together with the commonly-observed enhancement of water-repellent soil conditions can lead to a marked increase in runoff generation and associated soil losses. Also the risk of enhanced nutrient losses following wildfire is generally recognized but this has received considerably less research attention than post-fire runoff sediment The and losses. **FIRECNUTS** project (PTDC/AGR-CFL/104559/2008) addresses this knowledge gap by investigating the losses of nitrate, total nitrogen, orthophosphate and total phosphorus by runoff from micro-plot to catchment-scale. The proposed presentation, however, will focus on the smallest spatial scale.

The study area of the FIRECNUTS project is located near to the village of Ermida, in the municipality of Sever do Vouga, north-central Portugal. It was burnt by a wildfire towards the end of July 2010. Within the burnt area, five burnt hillslopes were each instrumented with three or four bounded micro-plots (0.28 m2), four unbounded slope-scale plots (0.50 m wide) and one unbounded slope-scale sediment fences (2-3 m wide). Four of these slopes were eucalypt plantations and one a Maritime Pine plantation, which by and large reflects the frequency of occurrence of these two land covers in the burnt area. In addition, various automatic and totalizer raingauges were installed in the area. The instrumentation was completed before the occurrence of any significant rainfall and, since then, monitoring is being done at regular, 1-to-2 weekly intervals, depending on rainfall.

The runoff samples are collected in 0.5 L polyethylene containers pre rinsed with hydrochloric acid (pH < 2.0), distilled and deionised water. After collection, all samples are stored in thermal boxes and transported to the laboratory. Aliquots of these samples are immediately filtered through a 0.45 μm pore size Milipore© HA membrane filter for the analysis of nitrate and orthophosphate. For the analysis of total nitrogen and total phosphorus, aliquots are collected without any filtration step. These four parameters are determined using a FOSS-Tecator FIAstar 5000. Electrical conductivity and pH are measured in the lab using a pre-calibrated portable meter HI 991300 (HANNA® Instruments). Finally, total suspended solids are quantified gravimetrically after filtration of an adequate volume through a glass fibre filter and following drying to a constant weight at 105 °C.

The presentation will concern the runoff generation and associated nutrient transport during the first five to six months after the wildfire.

AUTHOR INDEX

	126 165 160
Alba Lombao	136, 165, 168
Alexandra Pinheiro	132, 192, 263
Américo Castro	181
Ana Barreiro	123, 136
Ana Cristina Meira	68, 165, 168
Ana Vasques	241, 263
Andrea Pérez-Bejarano	171
Ángela Martín	123, 136, 165, 168
Ann Youberg	60, 90, 128, 140
Anne-Karine Boulet	132, 192
Annelies Voogt	110
António Bento Gonçalves	175, 181, 186, 198
António Ferreira	69, 94, 132, 160, 192
António Parra	228
António Vieira	175, 181, 186, 198
Artemi Cerdà	80, 208, 242
Aušra Treigienė	197
A. Couto-Vázquez	136
Beatriz Coleiro	254
Brian Irvine	69
Brian Lamb	64
Bruno Mary	153
Bryant Rob	59
Carla Martins	186
Carla Sofia Santos Ferreira	69, 160
Carles M. Rubio	115
Cathelijne Stoof	94, 160
Celeste Coelho	39, 69, 119, 132, 192
Célia Bento	160
César Guerrero	171
Chris Chafer	104
Christian Valentin	153
Cornelia Rumpel	153, 237
Cristina Fernandez	123
Cristina Ribeiro	119
Cyriel Adnès	195
C. Alvarez	203
C. Anquetil	237
C. Martí	203
C. Nocentini	153
Dan Malkinson	110
Daniel George Neary	60, 90, 128, 140
Danny Leska	110
David António Ramírez	228
Deborah A. Martin	33, 50, 242
Deborah P. Dick	45
Devotati I . Diek	

Danie Fee	105
Dennis Fox Diana Catagina Visina	195
Diana Catarina Vieira	196, 263
Domingos Silva	175
Domingos Viegas	241
D. Badia	203
Elena Benito Rueda	229, 230
Eli Argaman	110
Elisabete Figueiredo	119
Emielda Yusiharni	44, 49
Enrique Jiménez	123
Ernestas Kutorga	197
Felícia Fonseca	144
Felipe Macías Vázquez	75
Flora Ferreira Leite	175, 181, 186, 198
Francesc Ferrer	115
Francisco Díaz-Fierros	136, 214, 258
Francisco Javier Gonzaléz Vila	213, 218
Francisco Javier León Miranda	80, 203, 208
Francisco Matus	153
Francisco Moreira	38
Frédéric Darboux	195
Gary Sheridan	59
Gema Bárcenas	171
Giovanni Mastrolonardo	43, 153
Gražina Adamonytė	43
G. Certini	197
G. Erny	272
Heike Knicker	45, 213, 218, 237
Hein Vermin	263
Isabel Fernandes	241
I. Campos	272
Jan Jacob Keizer	196, 218, 229, 240, 241, 263, 271, 272, 273
Jean Morschel	195
Jessica Tamara Heath	104
João Pedro Nunes	196, 240, 272
Jonas Kasparavičius	197
Joost Iwema	94
Jorge Mataix-Beneyto	171
Jorge Mataix-Solera	80, 171, 208, 242
José António Carreira	228
José António González Pérez	218
José António Vega	32, 123
José Aranha	231
José Javier Cancelo González	214
José Manuel Moreno	228
Jose Maria de la Rosa	218
Jose Martín Soriano-Disla	171
José Salgado	181
José Martins	175

I 1 XV XV 1	156
Joseph W. Wagenbrenner	156
Juli Pausas	241
Jurga Motiejūnaitė	197
J. A. Soares	69, 132
J. P. Meixedo	68
Karen A. Koestner	60, 90, 128, 140
Kwonchai Chinwong	55, 224
Kobsak Wanthongchai	55, 224
Lea Wittenberg	99, 110
Luciano Lourenço	181
Luis Clemente Salas	213
Luís Mendes	181, 186
Luís Outeiro	115
Luís da Vinha	198
L. Iglesias	136
L. Pereira	271
Maite Echeverria	203, 208
Manuel Bao Iglesias	75
María Ermitas Rial Rivas	214
Maria Eufemia Varela Teijeiro	218, 229, 230, 272
Maria Fátima Araújo	218
María Rodríguez-Alleres	229, 230
Maria Rosario Basanta	258
Maria Rosario Costa	231
María Teresa Fonturbel	123
María Teresa García Ares	75
Marie A. Alexis	237
Markus Egli	43
Maruxa Malvar Cortizo	196, 263, 272
Mathew Germino	64
Max X. Shen	263, 272
Merche B. Bodí	80, 208
Micaela Leite	144
Michael Plotze	43
Mike D. Carroll	90
Mike Kirkby	69
Montserrat Diaz-Raviña	123, 136, 165, 168
M. A. Carreiras	69
M Belén Hinojosa	228
M. Cerqueira	272, 273
M. J. Goméz	136
M. Nunes	272
Naama Tessler	99
Natalie Wagenbrenner	64
Noam Greenbaum	99
N.J. Abrantes	272
Paula Maia	241, 263
Paulo Mateus	27
Paulo Pereira	50, 242
1 auto 1 viviiu	50, 212

D. C. L. T.	5 0
Patrick Lane	59
Peter E. Koestner	60, 90, 140
Peter R. Robichaud	64, 156
Phanpong Kongdetadisak	55, 224
Piotr Sewerniak	247
Pura Marcet	251, 254
P. Ibarra	203
Reda Iršėnaitė	197
Ricardo S.D. Dalmolin	45
Richard Shakesby	59, 69, 160
Robert Gilkes	44, 49
Roberto García-Ruiz	228
Rolf Krebs	43
Rory Walsh	160
Ruedi Seiler	43
Rutger Willem Vervoort	94
R. Pardo Lorenzo	75
R. Ferreira	272, 273
Saleta Gonzalez	251, 254
Sandra Valente	119
Saskia Keestra	110
Scott W. Woods	85
Serafín J. González-Prieto	123
Sérgio Prats Alegre	132, 192, 263, 272
Sigitas Juzėnas	197
Silvia Regina Faria	218, 263, 272
Silviu Radan	148, 266
Singkhorn Rugsamanee	55, 224
Slawomir S. GONET	247
Smith G. Hugh	59
Sorin - Corneliu Radan	148, 266
Stefan Helmut Doerr	59, 80
Svetlana Markovskaja	197
S. Cambra	271
S. Van den Heuvel	272
Tanya Esteves	69
Tarsy Carballas	123, 136
Teresa Carvalho	119, 132, 192
Thomas Bishop	104
Tina Bell	59
Tomás de Figueiredo	144
Vera Soares	175
Victoria Arcenegui	171
Victoria N. Balfour	80, 85
Voradet Tarusadamrongdet	55, 224
V. Esteves	272
William Blake	59
Xavier Úbeda	50, 115, 242
Yessica Rivas	153
	-

