บทคัดย่อ

รหัสโครงการ:MRG5280215

ชื่อโครงการ:การเกิดโครงสร้างเกรนก้อนกลมในระยะเริ่มต้นในกระบวนการผลิตโลหะกึ่งของแข็ง แบบรีโอแคสติง

ชื่อนักวิจัย:ผศ.ดร. เจษฎา วรรณสิหธุ์

หน่วยงาน:ภาควิชาวิศวกรรมเหมืองแร่และวัสดุคณะวิศวกรรมศาสตร์

มหาวิทยาลัยสงขลานครินทร์

อีเมล์:jessada.w@psu.ac.th

ระยะเวลาโครงการ: มีหาคม2552ถึง สิงหาคม 2554

ในปัจจุบันกระบวนการผลิตโลหะกึ่งของแข็งมีการนำมาใช้ในอุตสาหกรรมอย่างกว้างขวาง เพื่อให้มี ประสิทธิภาพในการขึ้นรูป การเข้าใจถึงการเกิดโครงสร้างเกรนก้อนกลมจึงมีความสำคัญมาก จากงานวิจัย ที่ผ่านมาได้มีการนำเสนอกลไกการเกิดเกรนก้อนกลมในกระบวนการผลิตโลหะกึ่งของแข็งออกมามากมาย ้คือ เกิดจากการนิวคลีเอชั้นจากเนื้อที่แตกต่างกันและการแตกหักของกิ่งเดนไดรต์ดังนั้นโครงการวิจัยนี้จึง ศึกษากลไกการเกิดเกรนก้อนกลมในกระบวนการผลิตโลหะกึ่งของแข็งด้วยกระบวนการ Rapid Quenching Methodโดยทำการจุ่มแท่งแกรไฟต์เป็นเวลา 1 5 10 12 15 20 30 35 40 และ 45 วินาทีพบว่า ที่เวลาใน การปล่อยฟองแก๊สเป็นเวลา 5 – 10 วินาที จะเกิดอนุภาคขนาดเล็กกระจายอยู่ในน้ำโลหะ เนื่องจากบาง บริเวณในน้ำโลหะมีอุณหภูมิสูงกว่าจุดหลอมเหลว จึงเกิดการหลอมของอนุภาคไปบางส่วนเมื่อปล่อยฟอง แก๊สเป็นเวลา 10 – 15 วินาที จะมีจำนวนของอนุภาคของแข็งเพิ่มสูงขึ้น และมีขนาดอนุภาคเล็กลง เนื่องจากกลไกการการแตกหักของกิ่งเดนไดรต์ จากกลไกการหลอมบริเวณโคน และเมื่อเวลาในการปล่อย ฟองแก๊สเพิ่มสูงขึ้น อนุภาคจะเกิดการเชื่อมกัน ทำให้จำนวนเกรนก้อนกลมลดน้อยลงอีกทั้งยังได้ศึกษาถึง อิทธิพลของตัวแปรต่าง ๆ คืออุณหภูมิของแท่งแกรไฟต์ 100 200 300 และ 400°C ก่อนการจุ่มเพื่อปล่อย ฟองแก๊ส พบว่า ที่อุณหภูมิแท่งแกรไฟต์ 100°C จะทำให้เกิดอนุภาคของแข็งสูงเนื่องเมื่ออุณหภูมิแท่ง แกรไฟต์สูงจะเกิดการสร้างเกรนน้อยและมีการหลอมกลับของเกรนของแข็งมากขึ้น การเพิ่ม Coolingและ ความดันในการปล่อยแก๊สจะทำให้เกิดอนุภาคของแข็งเพิ่มขึ้นการเติม TiB₂จะทำให้อนุภาคของแข็งมีขนาด เล็กลงและมีลักษณะกลมมากขึ้น เนื่องจากกระบวนการนิวคลีเอชันจากเนื้อที่แตกต่างกัน และกระจายอยู่ใน น้ำโลหะด้วยกระบวนการพา

คำหลัก: โลหะกึ่งของแข็งของเหลว; รีโอแคสติง;กระบวนการปล่อยฟองแก๊ส;วิวัฒนาการโครงสร้างจุลภาค; สัดส่วนของแข็ง

Abstract

Project Code :MRG5280215

Project Title: Early Stages of Globular Grain Formation in a Rheocasting Process

Investigator : Assistant Professor Dr. JessadaWannasin

Department of Mining and Materials Engineering, Faculty of Engineering

Prince of SongklaUniversity

E-mail Address :jessada.w@psu.ac.th

Project Period :March 2009 - August 2011

Semi-solid metal processing has been applied widely in the industry for many years. To obtain the most of its potential, it is important to have a more efficient and effective semi-solid metal formation process. Two theories are often proposed by many researchers: copious nucleation and fragmentation. In order to understand of the formation mechanism, it is important to study the microstructure evolution at the early stages. This research has developed an experimental apparatus that can capture the grain structure at different times at the early stages to understand how the semi-solid structure evolves. In this technique, semi-solid slurry is produced by injecting fine gas bubbles into the melt through a graphite diffuser during solidification. Then, a copper quenching mold is used to draw some semi-solid slurry into a thin channel. The semi-solid slurry is then rapidly frozen in the channel giving the microstructure of the slurry at the desired time. Samples of semi-solid A356 aluminum alloy are taken at different gas injection times of 1, 5, 10, 12, 15, 20, 30, 35, 40 and 45 seconds. Analysis of the microstructure suggests that the fragmentation by remelting mechanism may be responsible for the formation of globular structure in this rheocasting process. A studywas conducted at different graphite temperatures of 100, 200, 300 and 400°C. It was shown that with the graphite temperature of 100°C,the number of solid particles increases. This is because with high graphite temperatures the grain formation rate was low and the formed solid grains may be remelted more. The increase of gas pressure and cooling level also increased the number of solid particles. TiB2 additions resulted in the formation of smaller particles and nearly spherical particles by increasing heterogeneous nucleation in the melt.

Keywords: semi-solid metal, rheocasting, rapid quenching method, microstructure evolution, solid fraction