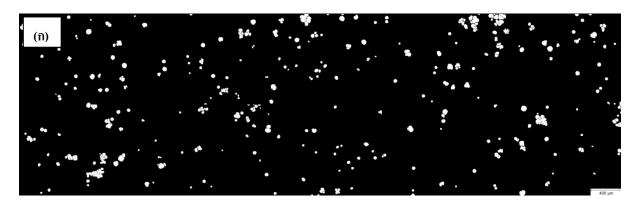
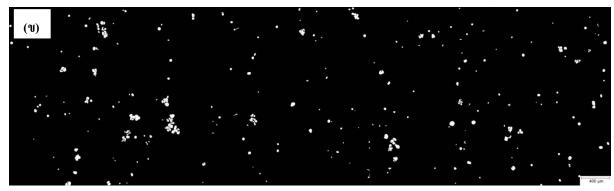
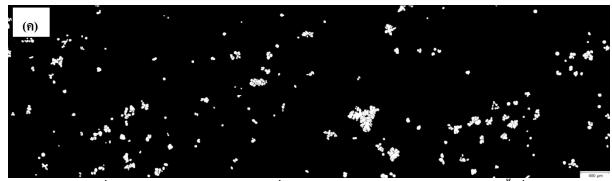


รูปที่ 3 -37แสดงโครงสร้างจุลภาคที่การจุ่มแท่งแกรไฟต์เป็นเวลา 20วินาทีครั้งที่ 1 (ก) ส่วนบน (ข) ส่วนกลาง และ (ค) ส่วนล่าง

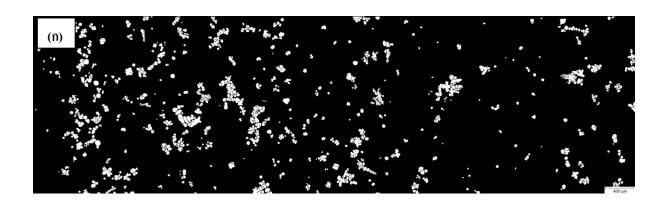


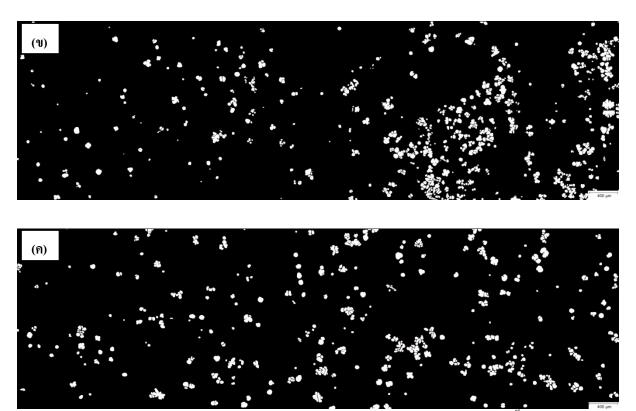


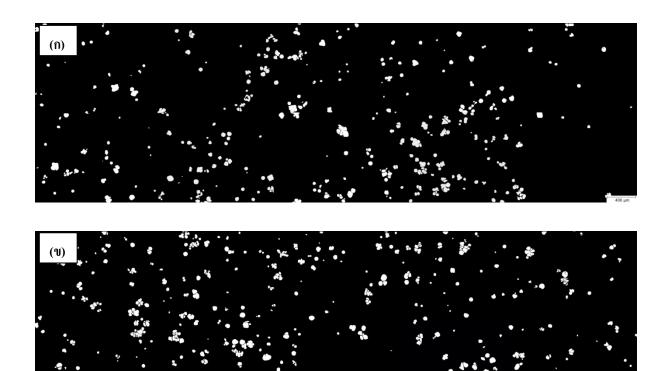


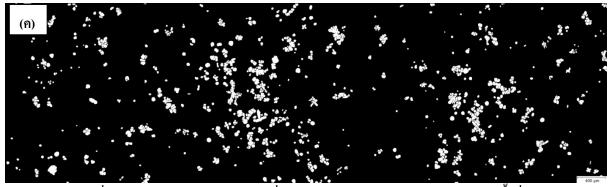
รูปที่ 3 -38แสคงโครงสร้างจุลภาคที่การจุ่มแท่งแกรไฟต์เป็นเวลา 20วินาทีครั้งที่ 2

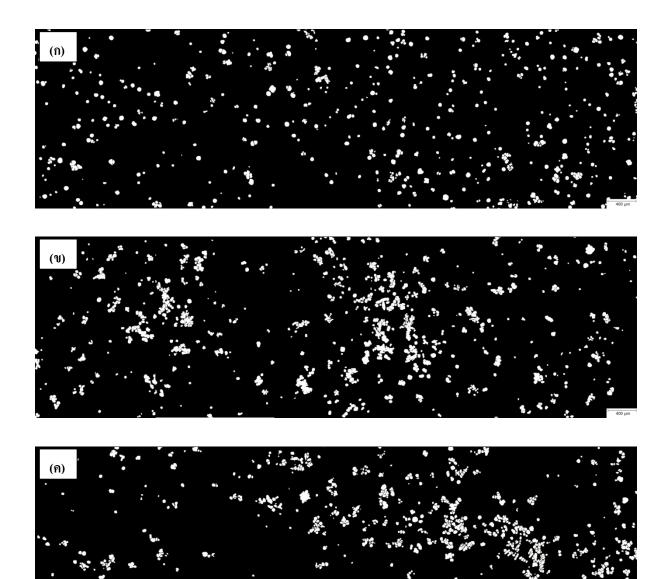
(ก) ส่วนบน (ข) ส่วนกลาง และ (ค) ส่วนล่าง

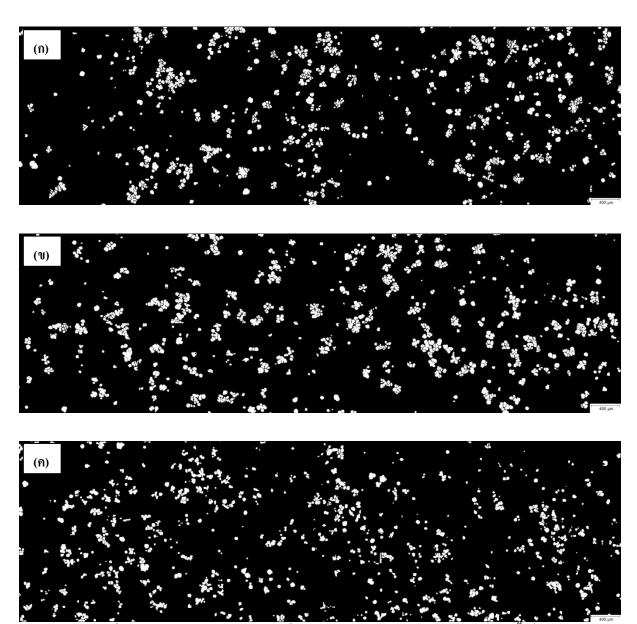




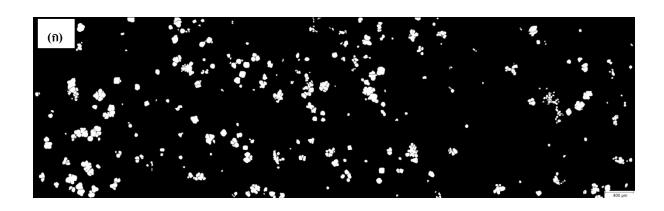

รูปที่ 3 -39แสคงโครงสร้างจุลภาคที่การจุ่มแท่งแกรไฟต์เป็นเวลา 20วินาทีครั้งที่ 3

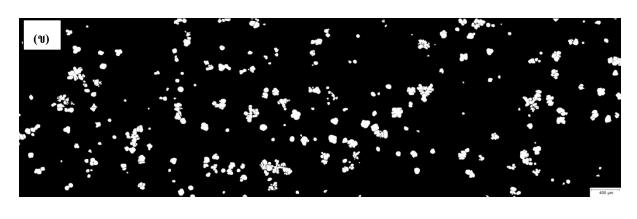

(ก) ส่วนบน (ข) ส่วนกลาง และ (ค) ส่วนล่าง

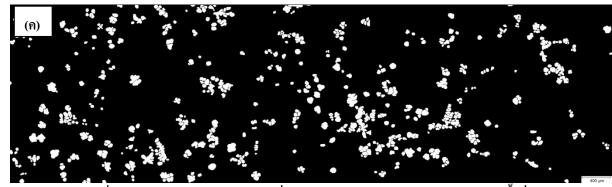

รูปที่ 3 -40แสดง โครงสร้างจุลภาคที่การจุ่มแท่งแกร ไฟต์เป็นเวลา 30วินาทีครั้งที่ 1 (ก) ส่วนบน (ข) ส่วนกลาง และ (ค) ส่วนล่าง


รูปที่ 3 -41แสดงโครงสร้างจุลภาคที่การจุ่มแท่งแกรไฟต์เป็นเวลา 30วินาทีครั้งที่ 2

(ก) ส่วนบน (ข) ส่วนกลาง และ (ค) ส่วนล่าง

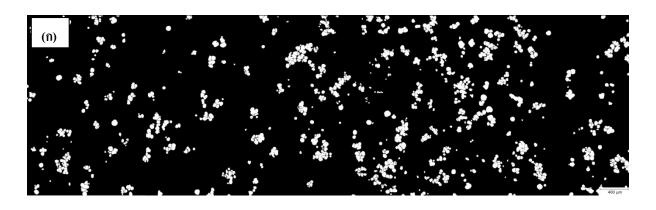

รูปที่ 3 -42แสดงโครงสร้างจุลภาคที่การจุ่มแท่งแกรไฟต์เป็นเวลา 30วินาทีครั้งที่ 3

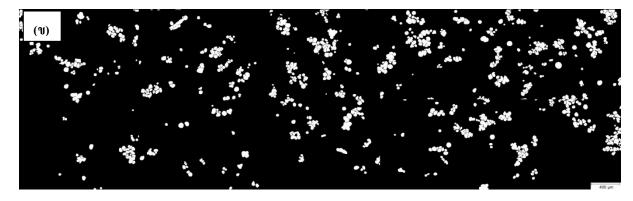

(ก) ส่วนบน (ข) ส่วนกลาง และ (ค) ส่วนล่าง

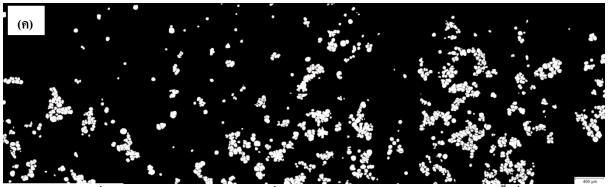


รูปที่ 3 -43แสดงโครงสร้างจุลภาคที่การจุ่มแท่งแกรไฟต์เป็นเวลา 35วินาทีครั้งที่ 1

(ก) ส่วนบน (ข) ส่วนกลาง และ (ค) ส่วนล่าง

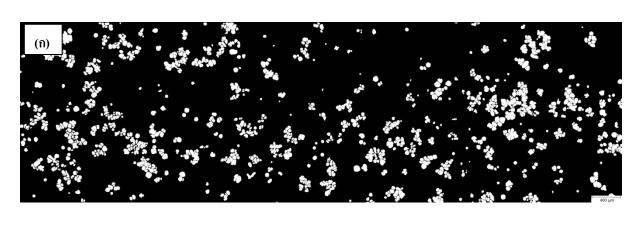


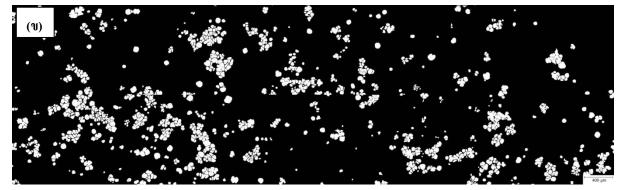


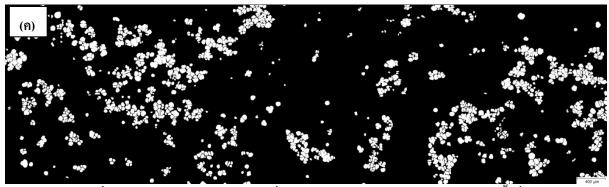


รูปที่ 3 -44แสดงโครงสร้างจุลภาคที่การจุ่มแท่งแกรไฟต์เป็นเวลา 35วินาทีครั้งที่ 2

(ก) ส่วนบน (ข) ส่วนกลาง และ (ค) ส่วนล่าง

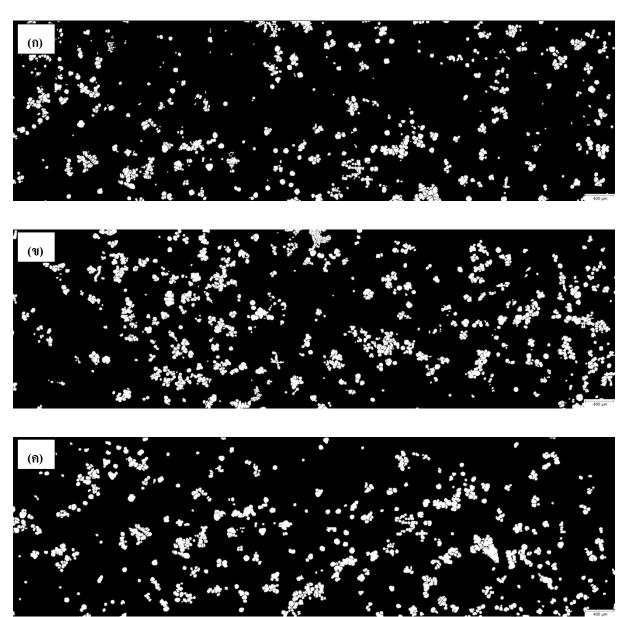


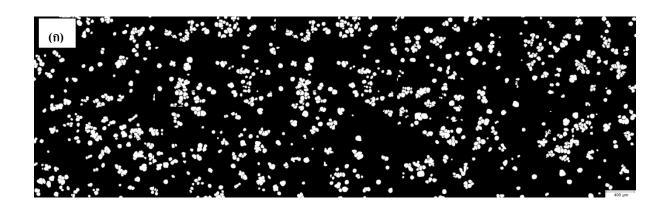


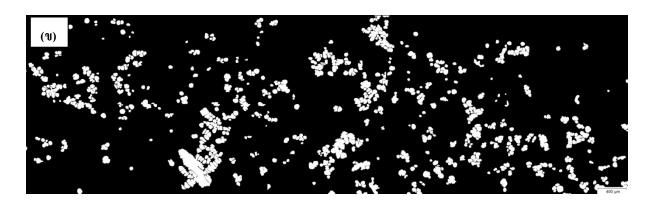


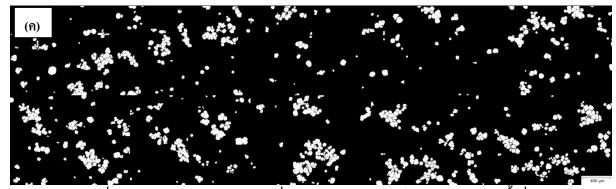
รูปที่ 3 -45แสดงโครงสร้างจุลภาคที่การจุ่มแท่งแกรไฟต์เป็นเวลา 35วินาทีครั้งที่ 3

(ก) ส่วนบน (ข) ส่วนกลาง และ (ค) ส่วนล่าง

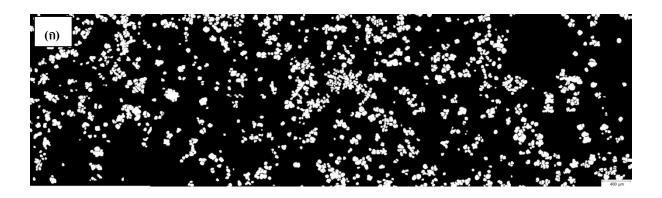


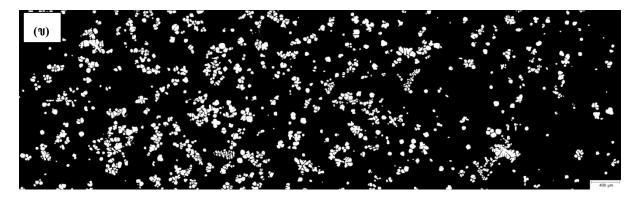


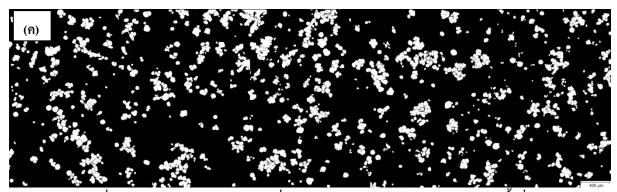

รูปที่ 3 -46แสดงโครงสร้างจุลภาคที่การจุ่มแท่งแกร ไฟต์เป็นเวลา 40วินาทีครั้งที่ 1


(ก) ส่วนบน (ข) ส่วนกลาง และ (ค) ส่วนล่าง

รูปที่ 3 -47แสดงโครงสร้างจุลภาคที่การจุ่มแท่งแกรไฟต์เป็นเวลา 40วินาทีครั้งที่ 2 (ก) ส่วนบน (ข) ส่วนกลาง และ (ค) ส่วนล่าง

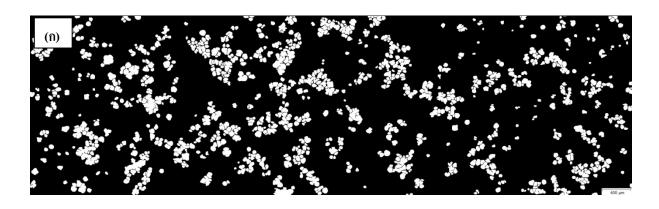


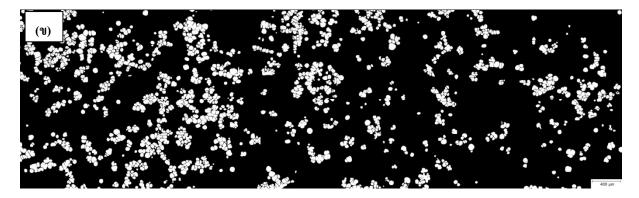


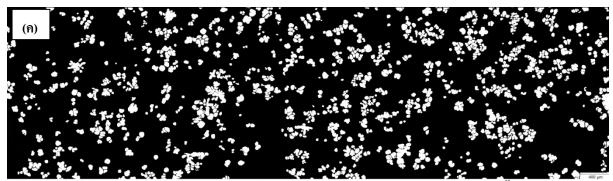


รูปที่ 3 -48แสดงโครงสร้างจุลภาคที่การจุ่มแท่งแกรไฟต์เป็นเวลา 40วินาทีครั้งที่ 3

(ก) ส่วนบน (ข) ส่วนกลาง และ (ค) ส่วนล่าง

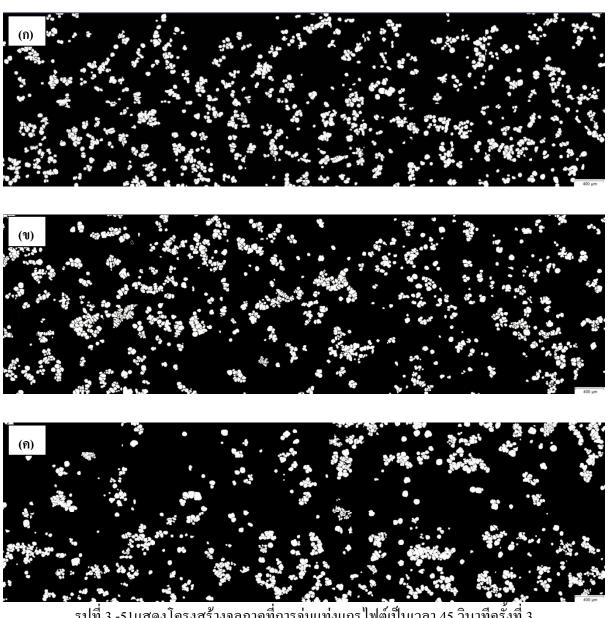






รูปที่ 3 -49แสดงโครงสร้างจุลภาคที่การจุ่มแท่งแกรไฟต์เป็นเวลา 45วินาทีครั้งที่ 1

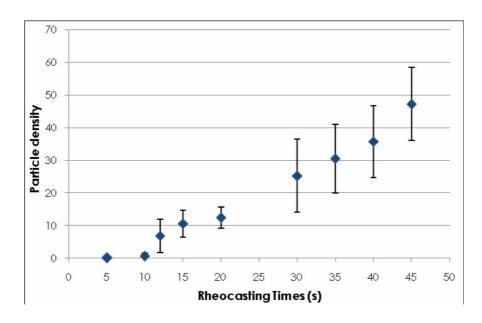
(ก) ส่วนบน (ข) ส่วนกลาง และ (ค) ส่วนล่าง



รูปที่ 3 -50แสดงโครงสร้างจุลภาคที่การจุ่มแท่งแกรไฟต์เป็นเวลา 45วินาทีครั้งที่ 2

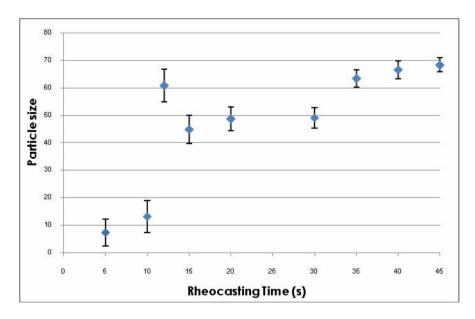
(ก) ส่วนบน (ข) ส่วนกลาง และ (ค) ส่วนล่าง

รูปที่ 3 -51แสดงโครงสร้างจุลภาคที่การจุ่มแท่งแกรไฟต์เป็นเวลา 45 วินาทีครั้งที่ 3

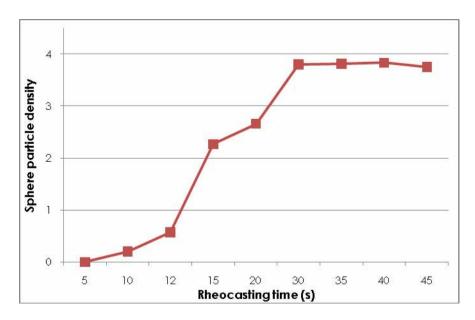

(ก) ส่วนบน (ข) ส่วนกลาง และ (ค) ส่วนล่าง

จากการวิเคราะห์สัดส่วนของแข็ง ขนาดของอนุภาค ความหนาแน่นของอนุภาค และลักษณะรูปร่าง ของอนุภาคด้วยโปรแกรม Image Toolพบว่า ที่การจุ่มแท่งแกรไฟต์เป็นเวลา 5 10 12 15 20 30 35 40 และ 45 วินาที จะมีสัดส่วนของแข็ง 0% 0.1% 1.8% 2.0% 2.8% 5.6% 7.9% 10.9%และ 14.6%ตามลำดับ และ อุณหภูมิที่ตำแหน่งต่าง ๆ ของเบ้าหลอมมีความสม่ำเสมอกัน เช่น ที่เวลาในการจุ่มแท่งแกรไฟต์เป็นเวลา 10 วินาที จะมีอุณหภูมิ 614 616 616 616 และ 613°C ตามลำดับ ดังตารางที่ 2 - 1

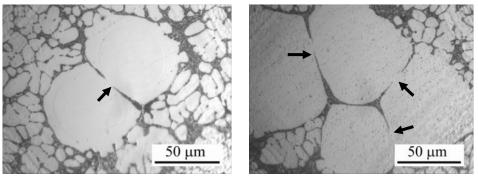
ตารางที่ 2 - 1แสดงอุณหภูมิที่ตำแหน่งต่าง ๆ ของเบ้าหลอมและสัดส่วนของแข็งที่การจุ่มแท่งแกรไฟต์ แตกต่างกัน


เวลาในการปล่อยฟองแก๊ส	อุณหภูมิที่ตำแหน่งต่าง ๆ ของเบ้าหลอม (°C)					สัดส่วนของแข็ง (%)
(วินาที)	T_1	T_2	T_3	T_4	T_5	
5	619	620	621	618	618	0.0
10	614	616	616	616	613	0.1
12	612	613	613	611	612	1.8
15	612	613	612	611	612	2.0
20	610	612	610	612	612	2.8
30	613	613	612	613	612	5.6
35	612	607	609	610	609	7.9
40	609	604	607	603	603	10.9
45	609	602	606	604	603	14.6

จากการวิเคราะห์ความหนาแน่นของอนุภาค พบว่า จะมีความหนาแน่นของอนุภาคเท่ากับ 0 1 7 11 12 25 31 36 และ 47 ต่อตารางมิลลิเมตรที่เวลาในการจุ่มแท่งแกร ไฟต์เป็นเวลา 5 10 12 15 20 30 35 40 และ 45 วินาทีตามลำดับ ดังรูปที่ 3 - 52 ที่เวลาในการจุ่มแท่งแกร ไฟต์เป็นเวลา 5 และ 10 วินาที มีความหนาแน่น ของอนุภาคน้อย และจะเพิ่มขึ้นอย่างชัดเจนที่การจุ่มแท่งแกร ไฟต์เป็นเวลา 12 วินาที จากความหนาแน่นของ อนุภาค1 เป็น 7 ต่อตารางมิลลิเมตร และเมื่อเวลาในการจุ่มแท่งแกร ไฟต์เพิ่มขึ้น จะทำให้ความหนาแน่นของ อนุภาคเพิ่มมากขึ้นด้วย

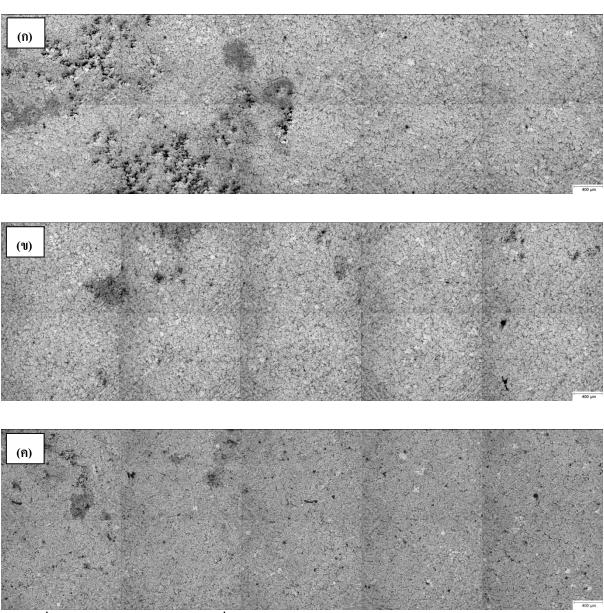

รูปที่ 3 - 52แสดงความสัมพันธ์ระหว่างความหนาแน่นของอนุภาคต่อเวลาในการจุ่มแท่งแกรไฟต์

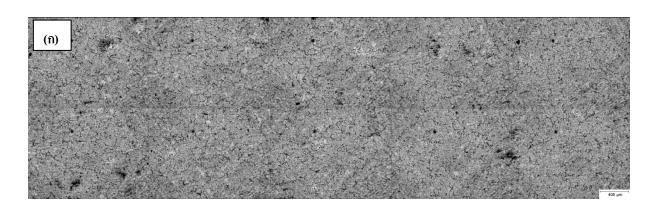
จากการวิเคราะห์ขนาดของอนุภาค พบว่า จะมีขนาดอนุภาค 7.3 13.2 60.8 44.9 48.8 49.1 63.5 66.6 และ 68.4 ใมครอน ที่เวลาในการจุ่มแท่งแกร ไฟต์เป็นเวลา 5 10 12 15 20 30 35 40 และ 45 วินาทีตามลำดับ ดังรูปที่ 3 - 53



รูปที่ 3 - 53แสดงความสัมพันธ์ระหว่างขนาดของอนุภาคต่อเวลาในการจุ่มแท่งแกรไฟต์

จากการวิเคราะห์ความหนาแน่นของอนุภาคทรงกลม พบว่า จะมีความหนาแน่นของอนุภาคทรง กลมเท่ากับ 0 0 1 2 3 4 4 4 และ 4 ต่อตารางมิลลิเมตร ที่เวลาในการจุ่มแท่งแกรไฟต์เป็นเวลา 5 10 12 15 20 30 35 40 และ 45 วินาทีตามลำดับ ดังรูปที่ 3 - 54ความหนาแน่นของอนุภาคทรงกลมจะเพิ่มขึ้นอย่างชัดเจนที่ เวลาในการจุ่มแท่งแกรไฟต์เป็นเวลา 12 วินาที และเพิ่มขึ้นเรื่อย ๆ จนที่การจุ่มแท่งแกรไฟต์เป็นเวลา30 วินาที จะมีความหนาแน่นของอนุภาคทรงกลมคงที่ เนื่องจากเกิดการเชื่อมติดกันระหว่างอนุภาค ดังแสดงใน รูปที่ 3 - 55


รูปที่ 3 - 54แสดงความสัมพันธ์ระหว่างความหนาแน่นของอนุภาคทรงกลมต่อเวลาในการจุ่มแท่งแกรไฟต์


รูปที่ 3 - 55แสดงตัวอย่างการเชื่อมกันระหว่างอนุภาค

3.2 การศึกษาอิทธิพลของอุณหภูมิแท่งแกรไฟต์ที่มีต่อโครงสร้างจุลภาค

ในขั้นตอนนี้จะนำรูปโครงสร้างจุลภาคที่ได้จากการวิเคราะห์ด้วยกล้องจุลทรรศน์แบบแสงคังรูปที่ 3 - 56 - รูปที่ 3 - 67นำรูปโครงสร้างที่ได้มาแยกเฟสระหว่างของแข็งกับของเหลวให้ชัดเจนโดยใช้คำสั่ง Threshold ของโปรแกรมตกแต่งภาพซึ่งผลการแยกเฟสแสดงในรูปที่ 3 - 68 - รูปที่ 3 - 79 และวิเคราะห์ผล ด้วยโปรแกรม Image Tool

รูปที่ 3 - 56แสดงโครงสร้างจุลภาคที่อุณหภูมิแท่งแกรไฟต์ 100°C จุ่มแท่งแกรไฟต์เป็นเวลา 10วินาที (ก) ส่วนบน (ข) ส่วนกลาง และ (ค) ส่วนล่าง

