

รายงานวิจัยฉบับสมบูรณ์

โครงการ การเตรียมสารสีเลคโดยวิธีจับก้อนด้วยไฟฟ้า Preparation of Lake by Electrocoagulation Method

โดย นีรนุช ไชยรังษี

ธันวาคม ๒๕๕๔

รายงานวิจัยฉบับสมบูรณ์

โครงการ การเตรียมสารสีเลคโดยวิธีจับก้อนด้วยไฟฟ้า Preparation of Lake by Electrocoagulation Method

ผู้วิจัย

ดร.นีรนุช ไชยรังษี

มหาวิทยาลัยราชภัฏเชียงใหม่

สหับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษาและ สำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

การวิจัยเรื่องการเตรียมสารสีเลคโดยวิธีจับก้อนด้วยไฟฟ้านี้สำเร็จได้โดยได้รับการ สนับสนุนเงินทุนการวิจัยจากสำนักงานคณะกรรมการการอุดมศึกษา (สกอ.)และสำนักงาน กองทุนสนับสนุนการวิจัย (สกว.) รวมถึงหน่วยงานและบุคลากรต่าง ๆที่สนับสนุนดังนี้

สาขาวิชาเคมี คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏเชียงใหม่ ที่ สนับสนุนสถานที่ทำวิจัยตลอดจนเครื่องมือวิเคราะห์ UV-vis spectrophotometer

คุณ วัทธิกร สร้อยหล้า ศูนย์วิจัยนาโนวิทยาและนาโนเทคโนโลยี คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ ที่ได้อำนวยความสะดวกในการตรวจวิเคราะห์ตัวอย่างด้วยเทคนิค SEM เป็นอย่างดี

คุณ รัตติกาล ติง สถาบันบริการตรวจสอบคุณภาพและมาตรฐานผลิตภัณฑ์ (Institute of Product Quality and Standardization (IQS)) ที่ได้อำนวยความสะดวกในการ ตรวจวิเคราะห์ตัวอย่างด้วยเทคนิค GC-MS เป็นอย่างดี

นางสาว อลิสษา ทาเปิ้น นางสาว อัจฉรา ใจดี นางสาวดวงสมร บุญเรือง นาย นั้นทัช พร ศรีนวล นางสาว พัชรา อภิวัน นักศึกษาวิจัยชั้นปีที่สี่ สาขาวิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยราชภัฏเชียงใหม่ ผู้ช่วยนักวิจัยของโครงการ

อาจารย์ ประไพ ประดับคำ อาจารย์ประจำโรงเรียนเกล็ดลิ้นวิทยา จังหวัดนครราชสีมา ผู้ให้คำปรึกษาในการทำวิจัยอันมีคุณค่า

และ รศ.ดร. ด้วง พุทธศุกร์ นักวิจัยที่ปรึกษาที่ได้ให้คำแนะนำอันเป็นประโยชน์ ให้ ความกรุณาตรวจแก้เอกสารรายงานการวิจัย อีกทั้งให้ข้อคิดในการศึกษาวิจัยอันมีคุณค่ายิ่ง

ผู้วิจัยหวังเป็นอย่างยิ่งว่าโครงการวิจัยการเตรียมสารสีเลคโดยวิธีจับก้อนดั่วยไฟฟ้านี้จะ เป็นประโยชน์ต่อการศึกษาวิจัยด้านสีและสารธรรมชาติและเป็นจุดเริ่มต้นสำหรับงานวิจัยอันมี คุณประโยชน์ในอนาคตต่อไป

> นีรนุช ไชยรังษี หัวหน้าโครงการวิจัย ชันวาคม 2554

บทคัดย่อ

รหัสโครงการ: MRG5280158

ชื่อโครงการ: การเตรียมสารสีเลคโดยวิธีจับก้อนด้วยไฟฟ้า

ชื่อนักวิจัย: ดร.นีรนุช ไชยรังษี มหาวิทยาลัยราชภัฏเชียงใหม่

E-mail Address: neeranuchc@yahoo.com

ระยะเวลาโครงการ: พ.ศ 2552 - 2554

ได้ประยุกต์วิธีการจับก้อนด้วยไฟฟ้าเพื่อเตรียมอะลูมิเนียมเลคพิกเม้นท์จากสีมาตรฐาน 7 ชนิดได้แก่ ตาร์ตราซีน, ออเลอร่า เรด, ซันเซ็ท เยลโลว์ เอฟซีเอฟ, อิริโทรซิน, นิวคอคซิน (ปองโซ), คาร์โมอีซีน และ อมารันท์ ผลการศึกษา พบว่าในสารละลายเอธานอลสามารถเตรียม อะลูมิเนียมเลคได้ทุกชนิดโดยเปอร์เซ็นต์สีในเลคที่เตรียมได้จะเพิ่มขึ้นตามความเข้มขันของสี มาตรฐานเริ่มต้น โดยมีเปอร์เซ็นต์สีอยู่ในช่วง 2-17 ในขณะที่เมื่อใช้น้ำเป็นตัวทำละลายมีเพียงอิริโทรซินเท่านั้นที่สามารถนำมาเตรียมสีเลคได้และเปอร์เซ็นต์สีในเลคที่เตรียมได้จะลดลงเมื่อ เพิ่มความเข้มขันสีมาตรฐานเริ่มต้น

ได้เตรียมสีเลค 3 ชนิดคือ ตาร์ตราซีน ออเลอร่า เรด และ ซันเซ็ทเยลโลว์ โดยวิธีจับ ก้อนด้วยไฟฟ้านำไปทดสอบสมบัติเทียบกับสีที่จำหน่ายเชิงพาณิชย์ คือ FD&C Yellow#5 (ตาร์ ตราซีนอะลูมิเนียมเลค) FD&C Red#40 (ออเลอร่า เรด อะลูมิเนียมเลค) และ FD&C Yellow#6 (ซันเซ็ทเยลโลว์อะลูมิเนียมเลค) พบว่าสารสีเลคที่เตรียมได้อินฟราเรดสเปกตรัมและโครมาโทร แกรมเมื่อวิเคราะห์ด้วยเทคนิคแก๊สโครมาโตรกราฟีตรงกับสีที่จำหน่ายเชิงพาณิชย์ ผลการ ตรวจสอบด้วย scanning electron microscope พบว่าสีเลคที่เตรียมได้มีปริมาณอะลูมิเนียม ประมาณ 12-38 เปอร์เซ็นต์ซึ่งสูงกว่าสีที่จำหน่ายในท้องตลาด 4 เท่า โดยประมาณ นอกจากนี้ ยังพบว่าพื้นผิวของอนุภาพมีขนาดใหญ่และหยาบกว่าอย่างเห็นได้ชัดและเฉดสีที่ได้มีความสด ตลอดจนคุณสมบัติในการละลายด้อยกว่าสีที่จำหน่ายในท้องตลาด

สามารถเตรียมสีเลคจากพืช ได้แก่ สีแดงจาก ครั่ง สีเหลืองจาก ดอกดาวเรื่อง ดอก คำฝอย ขมิ้น แห้ม สีเขียวจากใบเตย และ ใบย่านาง สีน้ำตาลจาก สีเสียด และ ก่อ ซึ่งยังไม่มีผู้ ศึกษามาก่อนและมีแนวโน้มที่จะนำมาพัฒนาเป็นสีจากธรรมชาติที่นำไปใช้ในอุตสาหกรรม เครื่องสำอางและอาหารได้ต่อไปในอนาคต

คำสำคัญ สารสีเลค อะลูมิเนียมเลค การจับก้อนด้วยไฟฟ้า

Abstract

Project Code: MRG5280158

Project Title: Preparation of Lake by Electrocoagulation Method

Investigator: Neeranuch Chairungsi Chiang Mai Rajabhat University

E-mail Address : neeranuchc@yahoo.com

Project Period: 2009-2011

Electrocoagulation method was applied to prepare aluminium lake from 7 standard dyes namely tartrazine, allura red, sunset yellow FCF, erythrosine, neucocine, carmoisine and amaranth. The result showed that in ethanolic solution when concentration of starting standard dye solution was increase the dye content in lake was increased proportionally. The dye content in the lake range between 2-17%. In aqueous solution only erythrosine aluminium lake could be prepared, dye content decreasing when dye concentration increase.

Three commercial grade of aluminium lake were studied compared with tartrazine, allura red and sunset yellow FCF aluminium lake. The result showed that their IR spectra, GC chromatogram were similar. When SEM technique was used for determine the surface area the result showed that ec aluminium lake have rough surface and contained more aluminium than the commercial product.

Electrocoagulation was applid to prepare aluminium lake from natural sources and successfully prepared many shade of colors, development of products will be study.

Keywords: lake, lake pigment, aluminium lake, electrocoagulation.

การเตรียมสารสีเลคโดยวิธีจับก้อนด้วยไฟฟ้า

Preparation of Lake by Electrocoagulation Method

บทน้ำ

การจับก้อนด้วยไฟฟ้า (electrocoagulation) เป็นเทคนิคสำคัญที่ใช้ในการบำบัดน้ำเสีย ใช้ในการตกตะกอนสิ่งเจือปนทั้งที่เป็นสารอินทรีย์ เช่น โปรตีน ไขมัน สี กลิ่น รวมไปถึงสารอนิ นทรีย์จำพวกโลหะหนักที่เจือปนอยู่ในน้ำ ในช่วงหลายปีที่ผ่านมาได้มีงานวิจัยเกี่ยวกับการ ประยุกต์วิธีการจับก้อนด้วยไฟฟ้าในการแยกสารผลิตภัณฑ์ธรรมชาติหลายชนิด ได้แก่ กลุ่มสารกลัยโคไซด์ (stevioside, D-pinitol, asiaticoside) กลุ่มสาร ฟืนอลิก (แทนนิน ฟลาโวนอยด์ และสารควิโนนบางชนิด) กลุ่มสารแอลคาลอยด์ (คาเฟอีน นิโคติน พิเพอริน รีเซอร์พีน แอจมาลีน อะรีโคลีน แคปไซซิน) เป็นต้น

วิธีการจับก้อนด้วยไฟฟ้าจึงเป็นอีกทางเลือกหนึ่งในการสกัดสารจากธรรมชาติ ซึ่งมีข้อดี คือใช้อุปกรณ์ไม่ยุ่งยากสามารถเตรียมได้ในห้องปฏิบัติการทั่วไป ไม่ใช้สารเคมีที่เป็นอันตราย ไม่มีปัญหาการกำจัดสารเคมีส่วนเกินที่เหลือทิ้ง และไม่ก่อให้เกิดมลภาวะ

สีเลค (lake หรือ lake pigment) หมายถึง สีที่ได้จากการดูดซับสารสีกับออกไซด์หรือไฮ ดรอกไซด์หรือเกลือของโลหะ เช่น แบเรียมซัลเฟต แคลเซียมซัลเฟต อะลูมิเนียมออกไซด์ หรือ ไฮดรอกไซด์ หรือเกลือของโลหะ เป็นสารสีที่ไม่ละลายในตัวทำละลาย แต่สามารถกระจายตัว เข้าไปในโมเลกุลของสารผลิตภัณฑ์ ให้สีที่มีความสดใสคงทนและสวยงามมากกว่าสีที่ละลายน้ำ ทั่วไป สารสีเลคบางชนิดมีความเสถียรสูง ปลอดภัย สามารถใช้ในอาหารและเครื่องสำอางหรือ หมึกพิมพ์ได้

สีสังเคราะห์หลายชนิดเป็นสารเคมีที่เป็นอันตราย ใช้วัตถุดิบที่จัดเป็นทรัพยากร สิ้นเปลืองที่ไม่อาจผลิตขึ้นมาใหม่ได้ ในขณะที่สีที่ได้จากธรรมชาติเป็นสีที่มีความปลอดภัย วัตถุดิบหาได้ง่ายและมีความหลากหลายตามชนิด อายุ และส่วนที่นำมาใช้ อีกทั้งกระบวนการ ผลิตไม่ก่อให้เกิดสารพิษ แต่อาจมีข้อจำกัดในด้านการนำไปใช้ เช่น ปริมาณสีในวัตถุดิบมีน้อย ทำให้ต้องใช้วัตถุดิบจำนวนมาก สีมีความคงทนต่อแสงต่ำ อย่างไรก็ตามสีจากธรรมชาติยังคง เป็นที่ต้องการของตลาดและมีแนวโน้มจะเพิ่มมากขึ้นในอนาคต

ในงานวิจัยนี้จะได้นำเทคนิคการจับก้อนด้วยไฟฟ้ามาประยุกต์ใช้กับการสกัดแยกสารสี ในรูปของผงสีเลค ซึ่งการเตรียมสารสีเลคโดยวิธีนี้จะเป็นองค์ความรู้ใหม่ เนื่องจากยังไม่เคยมี การศึกษามาก่อนนอกจากกลุ่มของผู้วิจัยนี้ แต่การวิจัยที่ผ่านมายังเป็นเพียงขั้นเริ่มแรกเท่านั้น

เอกสารและงานวิจัยที่เกี่ยวข้อง การจับก้อนด้วยไฟฟ้า

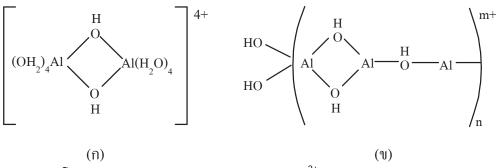
1.1 ความหมายและการจัดอุปกรณ์ของกระบวนการจับก้อนด้วยไฟฟ้า (อัจฉรา ,2551)

การจับก้อน (Coagulation) เป็นปรากฏการณ์ที่ทำให้สารแขวนลอยที่มีประจุกลายเป็นสารที่ ไม่มีประจุหรือมีประจุเป็นกลาง ซึ่งจะเกิดขึ้นเมื่อสารแขวนลอยชนิดนั้นชนกับประจุตรงกันข้าม (Counter ion) แล้วจับตัวกันเป็นก้อนและตกตะกอน ส่วนกลไกการตกตะกอนจะเริ่มจากการ ลดลงของประจุที่ผิวของอนุภาคคอลลอยด์ ทำให้อนุภาคต่าง ๆเข้าใกล้กันได้มากขึ้นและมาก พอที่จะเกิดแรงดึงดูดชนิดแวนเดอร์วาลส์ (Van der waals force) จนสามารถรวมกันเป็นก้อน และตกตะกอนออกมาได้ ส่วนกระบวนการจับก้อนด้วยไฟฟ้านั้นก็คล้ายกับการจับก้อนธรรมดา แต่ที่แตกต่างกันคือ มีการผ่านกระแสไฟฟ้าเข้าไปที่ขั้วไฟฟ้าสองขั้วไฟฟ้า ที่จัดไว้ขนานกันคือ ขั้วแอโนด และแคโทด สารก่อการจับก้อนถูกสร้างขึ้นที่ขั้วแอโนดโดยปฏิกิริยาออกซิเดชั่น ซึ่งใน ขั้นตอนนี้ประจุที่เกิดขึ้น (อาจเป็นโลหะไอออนหรือไอออนอื่น) จะถูกแยกออกจากสารละลาย โดย

- (1) เกิดปฏิกิริยากับไอออนที่มีประจุตรงกันข้าม หรือ
- (2) เกิดปฏิกิริยากับโลหะไฮดรอกไซด์ที่เกิดขึ้น

กลไกของการจับก้อนด้วยไฟฟ้าโดยส่วนมากจะขึ้นอยู่กับค่าความเป็นกรดด่าง (pH) ขนาดของอนุภาค หมู่ฟังก์ชั่น (Functional group) และขนาดโมเลกุลของสาร

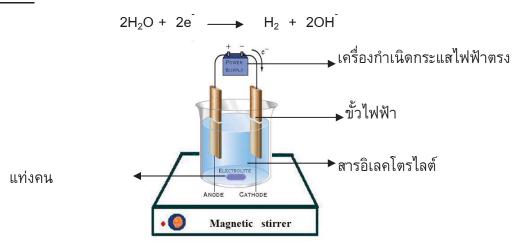
ขั้วไฟฟ้าที่นิยมใช้ในการจับก้อนด้วยไฟฟ้า ได้แก่ เหล็ก และอะลูมิเนียม ในกรณีที่ ใช้อะลูมิเนียมเป็นขั้วไฟฟ้าจะเกิดปฏิกิริยาดังนี้


<u>ขั้วแอโนด</u> : เกิดออกซิเดชั่นของอะลูมิเนียม

ที่ pH ต่ำๆ จะให้ Al^{3+} และ $Al(OH)^{2+}$ และที่ pH ที่เหมาะสมจะเปลี่ยนไปอยู่ในรูป $Al(OH)_3$ และสุดท้ายจะเกิด polymerize เป็น $Al_n(OH)_{3n}$ ดังปฏิกิริยาข้างล่างนี้

$$AI_{(s)}$$
 \longrightarrow $AI_{(aq)}^{3+} + 3e^{-}$ (1)
 $AI_{(aq)}^{3+} + 3H_2O_{(aq)} \longrightarrow$ $AI(OH)_3 + 3H_{(aq)}^{4+}$ (2)
 $nAI(OH)_3 \longrightarrow$ $AI_n(OH)_{3n}$ (3)

อะลูมีเนียมไฮดรอกไซด์ (Al(OH)₃) มีบทบาทในการตกตะกอนของอนุภาคในสารละลาย โดยการดูดซับที่ผิว (Adsorption) ส่วนอะลูมิเนียมไอออนที่ได้จากขั้วแอโนดจะทำอันตรกิริยากับ ไอออนลบ หรือฟีนอล (Phenol) ดังรูป 2.9 ทำให้ตกตะกอนแยกออกจากสารละลายในรูปของ เกลือที่ไม่ละลาย ได้แก่ อะลูมิเนียมไตรฟีโนเลต (Aluminium triphenolate; Al(OAr)₃) (Weerachai phutdhawong, et al., 2000) อย่างไรก็ตามไอออนอื่นๆเช่น Al(OH)²⁺, Al₂(OH)₂⁴⁺


และ AI(OH)⁴⁻ ก็อาจเกิดขึ้นในระบบได้ขึ้นอยู่กับ pH ของสารละลายตัวกลางนั้นๆ นอกจากนี้ ยังพบว่าที่สภาวะที่เหมาะสม ประจุจะเปลี่ยนไปอยู่ในรูป multimeric hydroxo AI³⁺ species ตัวอย่างโครงสร้างของ dimeric และ polymeric AI³⁺ hydroxo complexes แสดงได้ดังนี้ (Yousuf, Mollah, Schennach, Parga, และ Cocke, 2001)

รูป 1.1 โครงสร้าง dimeric (ก) และ polymeric Al³⁺ hydroxo complexes (ข)

สารเชิงซ้อนเหล่านี้ (Hydroxo cationic complexes) มีลักษณะเป็นเจล ที่สามารถกำจัด สิ่งสกปรกโดยการดูดซับสิ่งเจือปนต่าง ๆโดยการดูดซับสิ่งสกปรกนั้น แล้วเปลี่ยนให้มีประจุเป็น กลาง และจับยึดกันไว้ (Enmeshment) จนเกิดการตกตะกอน (Yousuf, *et al.*, 2001)

ขั้วแคโทด : เกิดการรีดักชันของน้ำ

รูป 1.2 การจัดชุดอุปกรณ์เพื่อใช้ในกระบวนการจับก้อนด้วยไฟฟ้า

1.2 เทคนิคการจับก้อนด้วยไฟฟ้ากับงานวิจัยทางเคมีอินทรีย์

วีระชัย พุทธวงษ์ สมบัติ เชาวนะพูลผล และ ด้วง พุธศุกร์ (1) ได้ศึกษาการจับก้อนด้วย ไฟฟ้าของสารมาตรฐานฟีนอลิกชนิดต่างๆ ผลการศึกษาพบว่าสารฟีนอลิกที่มีหมู่ไฮดรอกซิลอยู่ ติดกันสองหมู่ เช่น 1,2-dihydroxy และ 1,2,3-trihydroxy phenolic สามารถตกตะกอนได้ดีมาก ในขณะที่ฟีนอลและอนุพันธ์ของฟีนอลที่หมู่ไฮดรอกซิลอยู่ในตำแหน่งห่างกัน ได้แก่ 1,3-dihydoxyl, 1,3,5-trihydroxyl and 1,4-dihydroxyl ตกตะกอนได้โดยประมาณไม่เกิน 25% นั่นคือ ความสามารถในการจับก้อนของสารฟีนอลิกขึ้นอยู่กับจำนวนและตำแหน่งของหมู่ไฮดรอกซิลที่ มีในโครงสร้าง

ต่อมา สมบัติ เชาวนะพูลผล และ ด้วง พุธศุกร์⁽²⁾ ได้ศึกษาการจับก้อนด้วยไฟฟ้าของ สาร polyphenolicในกลุ่มของฟลาโวนอยด์ (flavonoids) น้ำตาลโมเลกุลเดี่ยว (monosaccharides) น้ำตาลโมเลกุลคู่ (disaccharides) แป้ง (starch) สาร polyols และโปรตีน ซึ่งผลการศึกษาพบว่า กลุ่มสารฟลาโวนอยด์ที่เลือกมาศึกษา ได้แก่ fisetin, quercetin, และ myricetin ซึ่งในโครงสร้างมี หมู่ไฮดรอกซิลอยู่ติดกันสามารถตกตะกอนได้อย่างสมบูรณ์ ในขณะที่สารซึ่งหมู่ไฮดรอกซิลไม่ อยู่ดิดกันเช่น naringenin และ morin ไม่ตกตะกอนแม้จะทำปฏิกิริยานานถึงสองชั่วโมง ผล การศึกษานี้สอดคล้องกับงานวิจัยชิ้นแรก ส่วนของการศึกษาการจับก้อนด้วยไฟฟ้าของสาร โมเลกุลใหญ่นั้น พบว่า น้ำตาลโมเลกุลเดี่ยว น้ำตาลโมเลกุลคู่ กลีเซอรอล และ ซอร์บิทอล ไม่ ตกตะกอน ในขณะที่ แป้ง และ โปรตีน สามารถตกตะกอนได้ นอกจากนี้คณะวิจัยกลุ่มเดียวกัน ยังได้ทำการสกัดสารแทนนินจากเปลือกตันไม้ด้วยเทคนิคการจับก้อนด้วยไฟฟ้า⁽³⁾ ผลการศึกษา พบว่าเทคนิคดังกล่าวใช้สกัดแทนนินจากเปลือกตันไม้ได้ และยังทำให้ได้แทนนินกลับคืนโดยวิธี ทางเคมีที่ไม่ยุ่งยาก สารที่สกัดได้ยังคงแสดงฤทธิ์ในการเป็นantioxidant อีกด้วย

วีระชัย พุธวงษ์ และ ด้วง พุธศุกร์ ได้สกัดสาร glycyrrhizic acid ซึ่งเป็นสารหวานใน Glycyrrhiza radix. และสกัด D-Pinitol (1D-3-O-methyl-chiro-inositol) จาก Cassia siamea. โดยใช้ วิธีการพื้นฐานรวม 3 ขั้นตอน คือ สกัดสารจากพืชด้วยน้ำร้อน กำจัดสีด้วยวิธีการอิเล็กโทรไลซิส และ กำจัดสีรวมทั้งธาตุบางอย่างด้วยวิธีแลกเปลี่ยนไอออน (4,5)

นีรนุช ไชยรังษี และ คณะ (6,7) ศึกษาผลของตัวทำละลายต่อกระบวนการจับก้อนด้วย ไฟฟ้าของสีจากพืชบางชนิด ได้แก่ คลอโรฟิล แคโรทีนอยด์ สารประกอบฟีนอลิกส์ และแทนนิน ในตัวทำละลายเอธานอล-น้ำ (15-75%) พบว่า การเพิ่มขึ้นของน้ำในตัวทำละลายจะมีผลทำให้ ประสิทธิภาพในการจับก้อนเพิ่มขึ้นด้วย แต่ในกรณีของแทนนินและสารฟีนอลิกส์พบว่ามีผลน้อย มาก แทนนินและสารฟีนอลิกส์สามารถเกิดการจับก้อนได้ดีในทุกระบบตัวทำละลายที่ศึกษา นอกจากนี้ในการศึกษาการจับก้อนของสารควิโนน ยังพบว่าอัตราการจับก้อนมีความสำพันธ์กับ ตำแหน่งและจำนวนของหมู่แทนที่ในโครงสร้างอีกด้วย

ณัฐพร พุทธวงศ์ และคณะ⁽⁸⁻⁹⁾ ได้สกัดสารแอลคาลอยด์ 8 ตัว จากพืช 6 ชนิด ด้วยวิธีจับ ก้อนด้วยไฟฟ้า เปรียบเทียบกับการแยกด้วยวิธีธรรมดา พบว่าสารแอลคาลอยด์ 3 ตัว แยกได้ ในปริมาณน้อยกว่าวิธีธรรมดา, 3 ตัว ได้ปริมาณใกล้เคียงกับวิธีธรรมดา แล 2 ตัวที่แยกได้ใน ปริมาณมากกว่าวิธีธรรมดาแต่เมื่อพิจารณาถึงปริมาณและจำนวนของสารเคมีและตัวทำละลาย อินทรีย์ที่ใช้ในขั้นตอนการสกัด พบว่าการแยกแอลคาลอยด์ทุกตัว โดยวิธีจับก้อนด้วยไฟฟ้าจะ ใช้ปริมาณสารเคมี และตัวทำละลายอินทรีย์น้อยกว่าการแยกแบบธรรมดาโดยเฉพาะอย่างยิ่งตัว ทำละลายที่เป็นอันตรายต่อสิ่งแวดล้อม

ประไพ ประดับคำ (10,11) เตรียมสีเลคจากสารสีบริสุทธิ์ 5 ชนิดคือ อะลิซาริน เพอร์เพ อริน อีริโธรซิน คลอโรฟิลิน และ อะมารันท์ ด้วยวิธีจับก้อนด้วยไฟฟ้าเทียบกับวิธีมาตรฐาน แคลเซียมเลคและอะลูมิเนียมเลค และประยุกต์ใช้กับการตรียมสีเลคจากวัสดุธรรมชาติ 4 ชนิด คือ แก่นฝาง รากยอป่า ใบหญ้าหวาน และ ผลหมาก พบว่าวิธีการจับก้อนด้วยไฟฟ้าใช้เวลาใน การเตรียมน้อยกว่า และใช้อุณหภูมิต่ำกว่า สีมาตรฐานที่นำมาศึกษาแสดงโครงสร้างในรูป 1.3

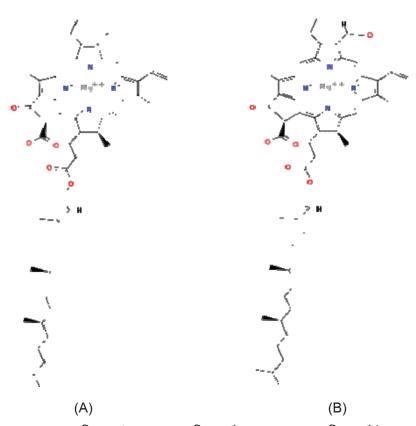
Tartrazine

Neucoccine

allurared

amaranth

carmoisine


รูป 1.3 โครงสร้างสารตัวอย่างชนิด monoazo dye ที่นำมาศึกษา

1.3 สารสีในพืช (เรียบเรียงโดย นั้นทัชพร, 2552)

ส่วนต่างๆของพืชมักมีสีเป็นองค์ประกอบ เรียกว่า สารสี หรือรงควัตถุ (pigment) ซึ่งมี อยู่ทั่วไปตามธรรมชาติ ตัวอย่างเช่น สีเขียวของผักใบเขียวเนื่องจากมีคลอโรฟิลล์ หรือสีเหลือง สีสัม และสีแดง เนื่องจากมีแคโรทีนอยด์ เป็นต้น สารสีจากพืชหลายชนิดได้ถูกนำมาใช้ใน ผลิตภัณฑ์ต่างๆมากมาย เช่น นำมาย้อมวัสดุต่างๆ เช่น ใยไหม ใยฝ้าย กระดาษ เป็นต้น ซึ่งจะ ให้สีที่ไม่ฉูดฉาด เย็นตากว่าสีสังเคราะห์ และที่สำคัญไม่เป็นอันตรายต่อทั้งสุขภาพ และ สิ่งแวดล้อมอีกด้วย สารให้สีที่สำคัญและพบมากในพืช ได้แก่

(1) สารสีเขียว ได้แก่ คลอโรฟิลล์ (chlorophyll) เป็นรงควัตถุสีเขียวที่พบอยู่ในพืช โดยเฉพาะ ผักในเขียวและผลไม้ดิบบางชนิด คลอโรฟิลล์ที่พบในพืชสีเขียวชั้นสูงมี 2 ชนิด คือ คลอโรฟิลล์ เอและคลอโรฟิลล์บี สำหรับอัตราส่วนของคลอโรฟิลล์เอต่อคลอโรฟิลล์บี จะมีประมาณ 3:1 คลอโรฟิลล์เอ มีสูตรโมเลกุล $C_{55}H_{72}O_5N_4Mg$ ส่วนคลอโรฟิลล์บี มีสูตรโมเลกุลเป็น $C_{55}H_{70}O_6N_4Mg$

สูตรโครงสร้างของคลอโรฟิลล์เอ และคลอโรฟิลล์บี ดังแสดงในรูปที่ 2.2

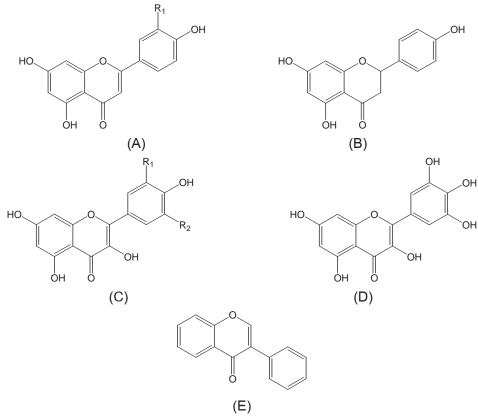
ร**ูป 1.4** โครงสร้าง (A) คลอโรฟิลล์เอ และ (B) คลอโรฟิลล์บี ที่มา : http://commons.wikimedia.org/wiki/File:Chlorophyll_a.svg

(2) สารสีเหลือง-สัม สารให้สีเหลือง-สัมที่สำคัญในพืช มีหลายชนิด ได้แก่

แคโรทีนอยด์ (carotenoids) เป็นกลุ่มของรงควัตถุที่ให้สีเหลือง สัม และสัมแดง แต่มัก พบมากในใบไม้สีเขียว โดยอยู่ในคลอโรพลาสต์รวมกับคลอโรฟิลล์ สีเขียวของคลอโรฟิลล์จึงบด บังสีเหลือง-สัม-แดง ของแคโรทีนอยด์ไว้ ดังนั้นในใบไม้แก่ก่อนจะร่วงหล่นซึ่งคลอโรฟิลล์ สลายตัวไป จึงมีสีเหลือง-สัม-แดงของแคโรทีนอยด์ได้เด่นชัดขึ้น

แคโรทีนอยด์แบ่งได้เป็น 2 กลุ่มคือ กลุ่มที่เป็นสารประกอบไฮโดรคาร์บอน และกลุ่มของ สารประกอบที่มีออกซิเจนในโมเลกุล แคโรทีนอยด์กลุ่มที่เป็นไฮโดรคาร์บอน ยังแบ่งออกเป็น กลุ่มย่อยได้อีก 3 กลุ่ม จำแนกตามโครงสร้างคือ

- ไฮโดรคาร์บอนที่ไม่มีวงแหวนอยู่ในโมเลกุล (acyclic) เช่น ไลโคพีน
- ไฮโดรคาร์บอนที่มีวงแหวนอยู่ที่ปลายด้านหนึ่งของโมเลกุล (monocyclic) เช่น แกมมา-แคโรทีน ทำให้ครึ่งหนึ่งของแกมมา-แคโรทีนเหมือนกับไลโคพีนและอีกครึ่งหนึ่ง เหมือนกับบีตา-แคโรทีน
- ไฮโดรคาร์บอนที่มีวงแหวนอยู่ในโมเลกุลที่ปลายทั้งสองด้าน (bicyclic) เช่น แอลฟา- และบีตา-แคโรทีน สำหรับแอลฟา-แคโรทีนนั้นต่างจากบีตา-แคโรทีน ที่ตำแหน่งพันธะ คู่ของวงแหวนที่ 2


รู**ป 1.5** โครงสร้างของแคโรทีนอยด์กลุ่มไฮโดรคาร์บอน (A)ไลโคพีน (B)แกมมา-แคโรทีน (C)แอลฟา-แคโรทีน และ (D) บีตา-แคโรทีน

แคโรทีนอยด์อีกกลุ่มนั้นในโครงสร้างจะประกอบด้วยออกซิเจนอยู่ในโมเลกุล จัดเป็น อนุพันธ์ไฮโดรคาร์บอนที่มีหมู่ไฮดรอกซิล เมทอกซิล คาร์บอกซิล ทั้งหมดนี้รวมเรียกว่า แซนโทฟิลล์ (xanthophylls) แคโรทีนอยด์กลุ่มนี้มักอยู่รวมกับแคโรทีน ตัวอย่างเช่น คริพ โตแซนทิน สารกลุ่มนี้เป็นรงควัตถุหลักในข้าวโพด พริกแดง มะละกอสุก และสัม

รูป 1.6 สูตรโครงสร้างของคริปโตแซนทิน

- ฟลาโวนอยด์ (flavonoids) เป็นกลุ่มของรงควัตถุที่พบในพืชที่มีสีเหลือง แบ่งออกเป็น กลุ่มย่อยๆได้หลายกลุ่ม เช่น ฟลาโวน(flavones) ฟลาโวนอล(flavonois) ฟลาวาโนน (flavanones) ฟลาวาโนนอล(flavanonois) ไอโซฟลาโวน(isoflavones) สูตรโครงสร้างของ ฟลาโวนอยด์ ดังแสดงในรูปที่ 1.7 และ 1.8

รูป 1.7 โครงสร้างพื้นฐานของสารฟลาโวนอยด์

รูป 1.8 โครงสร้างของฟลาโวนอยด์ชนิดต่างๆ (A) ฟลาโวน (B) ฟลาวาโนน
(C) ฟลาโวนอล (D) ฟลาวาโนนอล และ (E) ไอโซฟลาโวน

- บีตาเลน (betalains) เป็นรงควัตถุที่ให้สีแดงและเหลืองคล้ายกับแอนโทไซ ยานิน และ ฟลาโวนอยด์ พบเฉพาะในพืชตระกูล Centrospermae และชนิดที่เป็นอาหารบริโภค ได้คือ เรดบีท (red beet) นอกจากนั้นยังพบบีตาเลนได้ในผลแคคตัส (cactus fruit) พอกเบอรี่ (pokeberries) และดอกไม้บางชนิด เช่น เฟื่องฟ้า (bougainvillea) และผักโขม (amaranthus) เป็นต้นสูตรโครงสร้างของบีตาเลน แสดงในรูป 2.8
- ควิโนน(quinones) เป็นกลุ่มของรงควัตถุที่ให้สีเหลือง พบมากในเซลล์ที่มี น้ำหล่อเลี้ยงในเนื้อเยื่อ(cell sap) ของดอกไม้ ฟังใจ(fungi) ไลเคน(lichen) แบคทีเรีย และ สาหร่าย สารในกลุ่มควิโนนมีประมาณ 200 ชนิด ให้สีตั้งแต่สีเหลืองอ่อนไปจนถึงเกือบดำ ที่พบ มากคือ แอนทราควิโนน(anthtaquinones) ซึ่งนำมาใช้เป็นสีย้อมผ้าที่ได้จากธรรมชาติมาเป็น เวลานานแล้ว เช่น อีโมดิน(emodin) พบได้ใน ฟังใจ ไลเคน และพืชชั้นสูง ที่พบน้อยคือ แนพ โทควิโนน(napthroquinones) มีประมาณ 20 ชนิดที่ใช้เป็นสีย้อมผ้า เช่น เฮนนา (henna) จู โกลน (juglone) และ พลุมบากิน (plumbagin) นอกจากนี้ยังมี เบนโซควิโนน (benzoquinones) ซึ่งพบอยู่ในฟังใจและดอกไม้บางชนิด โครงสร้างของควิโนน ดังแสดงในรูปที่ 2.8
- แซนโทน (xanthones) เป็นรงควัตถุที่ให้สีเหลือง แซนโทนที่รู้จักกันดีใน อาหาร คือ แมนกิเฟอริน(mangiferin) ซึ่งอยู่ในรูปไกลโคไซด์ พบได้ในมะม่วงสุก โครงสร้างของ แซนโทน ดังแสดงในรูปที่ 2.8

- เคอร์คิวมินอยด์ (curcuminoid) เป็นรงควัตถุที่พบในพืชวงศ์ Zingiberaceae มีสีเหลือง พบมากในขมิ้น ตัวอย่างของสารกลุ่มนี้ เช่น เคอร์คิวมิน (curcumin) ดังแสดงในรูป 2.8

รูป 1.9 โครงสร้างสารสีเหลืองถึงส้ม

(3) สารสีแดง สารให้สีแดงที่สำคัญในพืช มีหลายชนิดได้แก่

- แอนโทไซยานิน(anthocyanins) เป็นรงควัตถุที่พบอยู่ใน cell sap ของพืช อยู่ในรูปของไกลโคไซด์ ให้สีแดง น้ำเงิน และม่วง ในผัก ผลไม้ และดอกไม้ชนิดต่างๆ ปัจจุบัน พบว่ามีแอนโทไซยานินประมาณ 120 ชนิด พบในพืชเช่น กะหล่ำปลีแดง มะเขือม่วง แครนเบอ รี่ แอปเปิล บลูเบอรี่ เชอรี่ สัม ท้อ พลัม เรดิช ราสพ์เบอรี่ สตรอเบอรี่ องุ่น เป็นต้น โครงสร้าง ของแอนโทไซยานิน ดังแสดงในรูปที่ 1.10

รูป 1.10 โครงสร้างสารแอนโทไซยานิน

(4) สารสีน้ำตาล

ได้แก่ แทนนิน (tannins) เป็นกลุ่มของสารประกอบเชิงซ้อนที่ได้จากธรรมชาติ พบอยู่ในเปลือก ของไม้ยืนต้น และในส่วนอื่นๆของพืช เช่น ใบชา โกโก้ และผลไม้ดิบบางชนิดที่มีรสฝาด ได้แก่ พลับ ละมุด กล้วย องุ่น ท้อ แอปเปิล และสาลี่ แทนนินเป็นสารที่ทำให้เกิดรสฝาด มีสีเหลือง จนถึงน้ำตาลแดง โครงสร้างของกลุ่มของสารประกอบแทนนิน ดังแสดงในรูปที่ 1.11

รูป 1.11 โครงสร้างของ (A) กรดแกลลิก (B)กรดเอลลาจิก (C) แคทีซิน และ (D) กรดคาฟเฟอิก

วัตถุประสงค์

เพื่อประยุกต์ใช้เทคนิคการจับก้อนด้วยไฟฟ้าในการเตรียมสารสีเลค

การทดลอง

สารตัวอย่าง

สารสีมาตรฐานตาร์ตราซีน (Tartrazine) อีริโทรซิน (Erythrosine) ซันเซ็ท เยลโลว์ เอฟซีเอฟ (Sunset Yellow FCF) นิวคอคซีน หรือ ปองโซ 4 อาร์ (Neucoccine or Ponceau 4R) ออเลอรา เรต (Allura red) อะมารันท์ (Amaranth) คาร์โมอีซีน หรือ อะโซรูบิน (Carmoisine or Azorubine)

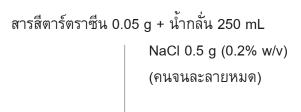
เครื่องมือ วัสดุ-อุปกรณ์ และสารเคมี เครื่องมือ

- (1) เครื่องกำเนิดไฟฟ้ากระแสตรง (Regulated DC Power supply), TES 6201 0-30V 3A, Tiwan
- (2) ตู้อบไอร้อน (Hot air oven), LABEC, Australia
- (3) ปั้มสุญญากาศ (Vacuum pump), ABM, 4EKF63CX-4, Germany
- (4) เครื่องชั่งสี่ตำแหน่ง (Balance), Mettler, AG245, Swiserland
- (5) เครื่องยูวี-วิสิเบิล สเปกโทรโฟโตมิเตอร์ (UV-VIS Spectrophotometer), Shimadzu, UV 1600, Japan
- (6) เครื่องเหวี่ยงแยกตะกอน (Centifuge), Heffic, Universal 32, Germany

วัสดุ-อุปกรณ์

- (1) แผ่นอะลูมิเนียม (Aluminium plate)
- (2) กระดาษกรอง (Filter paper Whatman No.5)
- (3) แท่งกวนแม่เหล็กและเครื่องกวนแม่เหล็ก (Magnetic bar and stirrer)
- (4) ชุดกรองบุชเนอร์ (Buchner Funnel)
- (5) แผ่นให้ความร้อน (Hot plate)

สารเคมี


- (1) โซเดียมคลอไรด์ (NaCl), assay 99.9%, MW 58.44 , AJAX
- (2) เอทานอล (Ethanol, $\mathrm{C_2H_5OH}$), assay 99.9%, d 0.88 g/mL , MW 46.07, Merck, Germany

วิธีทดลอง ประกอบด้วย 3 การทดลองดังนี้
การทดลองที่ 1 การเตรียมสีเลคด้วยวิธีจับก้อนด้วยไฟฟ้า

1.1 การศึกษาสภาวะที่เหมาะสมเพื่อเตรียมสีเลค ด้วยวิธีจับก้อนด้วยไฟฟ้า

นำสารสีมาตรฐานทั้งหมด 7 ชนิด มาเตรียมสีเลคด้วยวิธีจับก้อนด้วยไฟฟ้า เป็นสีชนิด monoazo dye 6 ชนิด ได้แก่ ตาร์ตราซีน (Tartrazine) ซันเซ็ท เยลโลว์ เอฟซีเอฟ (Sunset Yellow FCF) นิวคอคซีน หรือ ปองโซ 4 อาร์ (Neucoccine or Ponceau 4R) ออเลอรา เรด (Allura red) อะมารันท์ (Amaranth) และคาร์โมอีซีน หรือ อะโซรูบิน (Carmoisine or Azorubine) และ สีอีริโทรซิน (Erythrosine)

แผนผังการทดลองดังแสดงในรูป 2 ชุดอุปกรณ์สำหรับจับก้อนด้วยไฟฟ้าในห้องปฏิบัติการแสดง ในรูป 3

ผ่านกระบวนการจับก้อนด้วยไฟฟ้า

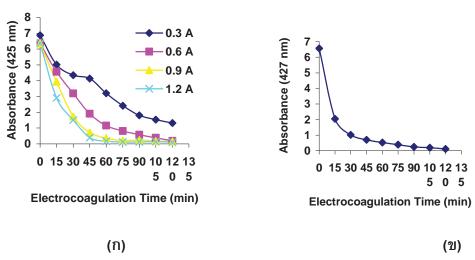
(ขั้วอิเล็กโทรดเป็นแผ่นอะลูมิเนียมขนาด 4 x 16 cm. วางห่างกัน 3 cm. จุ่มลงในสารละลายลึก 5cm.ให้กระแสไฟฟ้าตรงขนาด 0.3 A (0.6, 0.9 และ 1.2 A ตามลำดับ) นาน 2 ชั่วโมง)

เก็บตัวอย่าง 4 mL ทุก 15 นาที
 ปั่นแยกตะกอนวัดค่าการดูดกลืนแสง

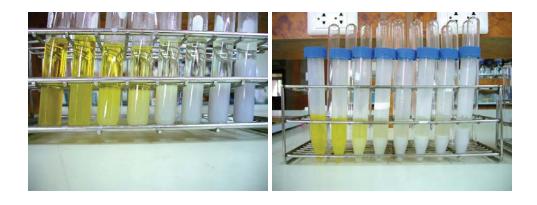
สร้างกราฟความสัมพันธ์ระหว่างค่าการดูดกลืนแสงเทียบกับเวลา

*ทำการทดลองซ้ำโดยใช้ สารละลายเอทานอล 85% (กระแส 0.3 A) และศึกษาการ ตกตะกอนของ Erythrosine, Sunset Yellow FCF, Neucoccine Allura red Carmoisine และ Amaranth

รูป 2 แผนภาพขั้นตอนการทดลองการจับก้อนด้วยไฟฟ้าของสีมาตรฐาน

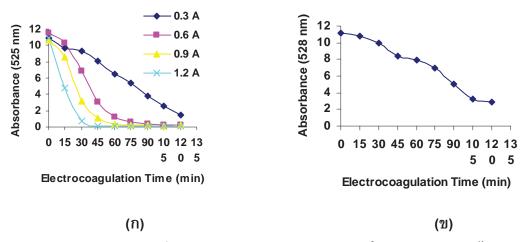


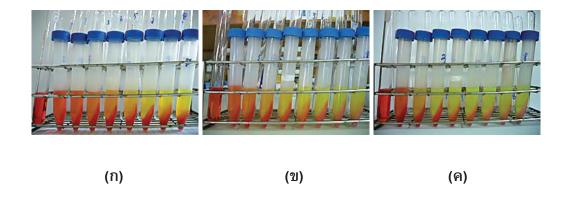
รูป 3 ชุดอุปกรณ์ในการเตรียมสารสีเลคโดยการจับก้อนด้วยไฟฟ้า


ผลการทดลอง

ทำการจับก้อนด้วยไฟฟ้าของสารละลายสีมาตรฐานความเข้มขัน 0.01-0.02% (w/v) ใช้ กระแสไฟฟ้า 0.3 แอมแปร์ นาน 2 ชั่วโมง เก็บตัวอย่างทุก 15 นาที นำส่วนใสไปวัดค่าการ ดูดกลืนแสงเพื่อหาปริมาณสีที่เหลืออยู่ในสารละลาย ทำการทดลองซ้ำโดยเพิ่มกระแสไฟฟ้า จนถึงปริมาณสูงสุดที่ผ่านได้ (1.2 แอมแปร์) พบว่าในน้ำสีเลคเป็นตะกอนสีขาวแต่ในเอธานอล จะได้สีเลคที่มีสีเหลือง


การเปลี่ยนแปลงปริมาณสีตาร์ตราซีนในสารละลาย (น้ำและ 85%เอธานอล) ระหว่าง การจับก้อนด้วยไฟฟ้าแสดงดังรูป 4 และ รูป 5 และ 6 แสดงสารตัวอย่างที่เก็บทุกๆ 15 นาทีของ การทดลอง


รู**ป 4** กราฟความสัมพันธ์ระหว่างค่าการดูดกลื่นแสงและเวลาในการจับก้อนด้วยไฟฟ้าของ สีมาตรฐาน Tartrazine (ก) ในน้ำ และ (ข) ในเอธานอล 85%


รูป 5 การตกตะกอนของ Tartrazine ในน้ำ ณ เวลาต่างๆ เมื่อใช้กระแสไฟฟ้า 0.9 (ซ้าย) และ 1.2 A (ขวา)

ร**ูป 6** การตกตะกอนของสีมาตรฐาน Tartrazine ใน 85%เอธานอล เมื่อใช้กระแสไฟฟ้า0.3A ผลการศึกษาการจับก้อนของสีอิริโธรซินดังแสดงในรูป 7-9

รูป 7 กราฟความสัมพันธ์ระหว่างค่าการดูดกลื่นแสงและเวลาในการจับก้อนด้วยไฟฟ้าของ สีมาตรฐาน Erythrosine (ก) ในน้ำ และ (ข) ในเอธานอล 85%

รูป 8 การตกตะกอนของ Erythrosine ในน้ำ ณ เวลาต่าง ๆ เมื่อใช้กระแสไฟฟ้า 0.3, 0.6 และ 1.2 A (ก-ค ตามลำดับ)

รู**ป 9** การตกตะกอนของ Erythrosine ใน 85%เอธานอล ใช้กระแสไฟฟ้า 0.3 A

สรุปผลการทดลองการจับก้อนด้วยไฟฟ้าของสารสีมาตรฐาน

จากการศึกษาการจับก้อนด้วยไฟฟ้าของสารสีมาตรฐาน 8 ชนิด คือ Quinolene Yellow, Tartrazine Sunset Yellow (กลุ่มสีเหลือง) Erythrosine FCF, Ponceau 4R, Allura Red, Carmoisine และ Amaranth (กลุ่มสีแดง) เพื่อเตรียมอะลูมิเนียมเลค โดยใช้กระแสไฟฟ้า 0.3 – 1.2 A นาน 2 ชั่วโมง และทดลองเตรียมโดยละลายสีในน้ำ เปรียบเทียบกับ 85% เอธานอล ได้สภาวะที่เหมาะสมในการเตรียมอะลูมิเนียมเลคดังแสดงในตาราง 1

ตาราง 1 สรุปผลการศึกษาสภาวะในการจับก้อนด้วยไฟฟ้าของสีมาตรฐานที่ศึกษา

·	น้ำ			สาละลายเอธานอล (85%)		
สีมาตรฐาน	กระแส	เวลา	การ	กระแส	เวลา	การ
	(แอมแปร์)	(นาที)	ตกตะกอน	(แอมแปร์)	(นาที)	ตกตะกอน
Tartrazine	0.9-1.2	60	สมบูรณ์**	0.3	60	สมบูรณ์
Erythrosine	0.6	75	สมบูรณ์	0.3	120	สมบูรณ์*
	0.9-1.2	60	สมบูรณ์			
Sunset	0.6-0.9	45	สมบูรณ์**	0.3	60	สมบูรณ์
Yellow	1.2	30	สมบูรณ์**			
Ponceau 4R	0.3	75	สมบูรณ์**	0.3	45	สมบูรณ์
	0.6- 1.2	30	สมบูรณ์**			
Allura red	0.6 -0.9	45	สมบูรณ์	0.3	120	สมบูรณ์*
	1.2	30	สมบูรณ์			
Carmoisine	0.3	90	สมบูรณ์**	0.3	120	ไม่สมบูรณ์
	0.6	60	สมบูรณ์**			
	0.9-1.2	30	สมบูรณ์**			
Amaranth	0.3	120	ไม่สมบูรณ์**	0.3	90	สมบูรณ์
	0.6	45	สมบูรณ์** สมบูรณ์**			
	0.9-1.2	30	สมบูรณ์**			

^{*} ทำการทดลองในสารละลายเอชานอล 25%

หมายเหตุ การตกตะกอนได้อย่างสมบูรณ์คือมีค่าการดูดกลืนแสงในส่วนสารละลายเหลืออยู่ น้อยกว่า 1% ของค่าเริ่มต้น

ในการเตรียมสีเลคโดยใช้ความเข้มข้นของสีมาตรฐานเริ่มต้นเท่ากับ 0.02% w/v และ ผ่านกระแสไฟฟ้าสูงสุดเท่าที่จะผ่านได้ในแต่ละตัวทำละลาย (ไม่เกิน 3.0 A) พบว่า เมื่อใช้น้ำ เป็นตัวทำละลาย Tartrazine และ Erythrosin ใช้เวลา 60 นาทีเกิดการตกตะกอนได้อย่าง สมบูรณ์ ในขณะที่ Sunset Yellow FCF, Ponceau 4R, Allura red, Carmoisine และ Amaranth จะใช้เวลา 30 นาที

การเตรียมอะลูมิเนียมเลคโดยใช้น้ำเป็นตัวทำละลายนี้ หากการตกตะกอนเป็นไปอย่าง สมบูรณ์มีเพียงอิริโทรซิน และ ออเลอร่าเรดเท่านั้นที่ให้ตะกอนที่มีสี สีชนิดอื่นเมื่อตกตะกอน อย่างสมบูรณ์จะให้ตะกอนสีขาว จึงมีเพียงอิริโทรซินและออเลอร่า เรด เท่านั้นที่สามารถเตรียม อะลูมิเนียมเลคได้ สำหรับสีมาตรฐานอีก 5 ชนิดที่เหลือถ้าต้องการเตรียมอะลูมิเนียมเลคจะต้อง

^{**}ได้ตะกอนสีขาว

ควบคุมกระแสไฟฟ้าและเวลาไม่ให้สูงและนานจนเกินไปจึงจะได้ตะกอนที่มีสีต่างๆ ทั้งนี้การตกตะกอนนั้นจะเป็นไปอย่างไม่สมบูรณ์ (สังเกตเห็นว่าในส่วนสารละลายจะยังมีสีเหลืองอยู่)

เมื่อใช้สารละลายเอธานอลเป็นตัวทำละลายมีเพียงคาร์โมอีซีนที่ตกตะกอนได้ไม่สมบูรณ์ สีมาตรฐานทั้ง 7 ชนิดให้ตะกอนที่มีสีทั้งสิ้น ดังนั้นในสภาวะการจับก้อนด้วยไฟฟ้าโดยใช้ สารละลายเอธานอลเป็นตัวทำละลาย สีมาตรฐานทุกสีสามารถเตรียมอะลูมิเนียมเลคได้ทั้งหมด

1.2 การเตรียมอะลูมิเนียมเลคของสีมาตรฐานที่ความเข้มข้นเริ่มต้นต่าง ๆ ศึกษาสภาวะที่ตกตะกอนได้อย่างสมบูรณ์ วิธีการทดลอง

ละลายตาร์ตราซีน 0.05 g ในน้ำกลั่น 200 mL (0.025% w/v) ในปีกเกอร์ขนาด 400 mL เติมโซเดียมคลอไรด์ 0.4 g (หรือคิดเป็น 0.2% w/v) คนให้ละลายจนหมด นำไปจับก้อนด้วย ไฟฟ้า โดยใช้แผ่นอะลูมิเนียมขนาด 4 x 16 cm. เป็นอิเล็กโทรด วางห่างกัน 3 cm. และจุ่มลงใน สารละลายลึก 5 cm. และให้ไฟฟ้าสูงสุดเท่าที่จะผ่านได้ (ประมาณ 3 A) เป็นเวลานาน 2 ชั่วโมง

สารละลายสีก่อนการเก็บตะกอนนำมาปั่นแยกตะกอน (centrifuge) 15 นาที นำส่วนใสไป วัดค่าการดูดกลืนแสงด้วยเครื่อง UV-Vis spectrophotometer ในช่วงคลื่น 200-800 นาโนเมตร เพื่อหาความยาวคลื่นที่มีการดูดกลืนแสงสูงสุด (λ max) จากนั้นทุก 15 นาที ของการทดลองทำ การเก็บตัวอย่างครั้งละ 4 mL แต่ละตัวอย่างนำมาปั่นแยกตะกอนด้วยเครื่อง centrifuge เก็บ ส่วนสารละลายใสวัดค่าการดูดกลืนแสงที่ λ max สร้างกราฟความสัมพันธ์เทียบกับเวลาที่ใช้ใน การตกตะกอน

ทำการทดลองซ้ำ โดยเพิ่มความเข้มข้นของสีมาตรฐานตั้งต้นจาก 0.025% เป็น 0.050, 0.075, 0.100และ 0.125% (w/v) จากนั้นเปลี่ยนตัวทำละลายจากน้ำเป็น สารละลายเอธานอล และทำการศึกษาลักษณะเดียวกันกับสีมาตรฐานอีก 6 ชนิดที่เหลือ (ในกรณีที่ใช้เอธานอลเป็นตัว ทำละลาย จะทำการทดลองใน 85% เอธานอล และอาจปรับเพิ่มเปอร์เซ็นต์ของน้ำในตัวทำ ละลายเพื่อช่วยให้สีมีการละลายได้มากขึ้น ทั้งนี้การที่มีเปอร์เซ็นต์น้ำแตกต่างกันทำให้ กระแสไฟฟ้ามีการเปลี่ยนแปลงอยู่ในช่วงตั้งแต่ 0.3-3.0 A)

บันทึกเวลาที่ใช้ในการตกตะกอนสีได้อย่างสมบูรณ์ โดยพิจารณาจากส่วนสารละลายหลัง การปั่นแยกตะกอนมีค่าการดูดกลืนแสงโดยประมาณต่ำกว่า 1% ของค่าการดูดกลืนแสงก่อนทำ การจับก้อนด้วยไฟฟ้า

การเตรียมอะลูมิเนียมเลคและวิเคราะห์เปอร์เซ็นต์สี วิธีการทดลอง

เตรียมอะลูมิเนียมเลคของสีมาตรฐานในตัวทำละลายทั้ง 2 ชนิด ที่ความเข้มข้นเริ่มต้น 0.25, 0.50, 0.075, 0.100 และ 0.125%(w/v) ปริมาตร 200 มล. โดยใช้สภาวะที่เกิดการ ตกตะกอนได้อย่างสมบูรณ์จากผลการทดลองในหัวข้อ 3.3.2.1 กรองเก็บตะกอนสีที่เตรียมได้ นำไปอบจนน้ำหนักคงที่ บันทึกน้ำหนักอะลูมิเนียมเลคที่ได้

การวิเคราะห์เปอร์เซ็นต์สี ได้ทำการวิเคราะห์ 2 วิธีดังนี้

วิธีที่ 1 คำนวณหาเปอร์เซ็นต์สีจากผลต่างของน้ำหนัก

เปอร์เซ็นต์ความเข้มสีจากผลต่างของน้ำหนัก คำนวณได้จากความสัมพันธ์ในสมการ
3.1

น้ำหนักของสีมาตรฐานตั้งต้นที่ใช้ในการจับก้อน x 1003.1 น้ำหนักของสีอะลูมิเนียมเลคที่เตรียมได้

วิธีที่ 2 คำนวณหาเปอร์เซ็นต์สีจากน้ำหนักเถ้าหลังการเผา

แบ่งสีเลคที่เตรียมได้ ชั่งน้ำหนักที่แน่นอน 0.1 กรัม เผาที่ความร้อน 700 °C ในเตาเผา เมื่อน้ำหนักคงที่บันทึกผลและคำนวณหาเปอร์เซ็นต์สี ดังสมการ 3.2

น้ำหนักของสีเลคก่อนเผา-น้ำหนักของสีเลคหลังเผา x 100 ...3.2 น้ำหนักของสีอะลูมิเนียมเลคที่เตรียมได้

ผลการทดลอง

สามารถเตรียมสีเลคจากสีมาตรฐานทั้งหมด 7 ชนิด โดยใช้ความเข้มข้นเริ่มต้นแตกต่างกัน

รูป 10 ตาร์ตราซีนอะลูมิเนียมเลคที่เตรียมโดยความเข้มขันเริ่มต้น 0.025, 0.050, 0.075 และ 0.10% (w/v) ในเอธานอล จากซ้ายไปขวาตามลำดับ

จากผลการศึกษาพบว่าตาร์ตราซีนอะลูมิเนียมเลคที่เตรียมในน้ำ (0.025-0.10 %) โดย ใช้กระแสไฟฟ้า 3 A ได้ตะกอนสีขาวในทุกความเข้มขัน จึงไม่สามารถเตรียมอะลูมิเนียมเลคได้ การเตรียมตาร์ตราซีนอะลูมิเนียมเลคในสารละลายแอลกอฮอล์ เปอร์เซ็นต์สีมีแนวโน้ม เพิ่มขึ้นนเมื่อความเข้มขันของสีมาตรฐานเริ่มตันเพิ่มขึ้น สีเลคที่ได้มีความเข้มสีสูงสุดเมื่อใช้ ความเข้มขันสีมาตรฐานเริ่มตันที่ 0.1% w/v กระแส 0.3 A นาน 60 นาที

ร**ูป 11** อีริโทรซินอะลูมิเนียมเลคที่เตรียมโดยความเข้มข้นเริ่มต้น 0.025, 0.050, 0.075 และ 0.10% (w/v) เรียงจากซ้ายไปขวาตามลำดับ (ใช้น้ำเป็นตัวทำละลาย)

รูป 12 อีริโทรซินอะลูมิเนียมเลคที่เตรียมโดยความเข้มข้นเริ่มต้น 0.025, 0.050, 0.075 และ0.10% (w/v) ใช้25% เอธานอล เป็นตัวทำละลาย

ร**ูป13** ปองโ.ซอะลูมิเนียมเลคที่เตรียมโดยความเข้มขันเริ่มต้น 0.025, 0.050, 0.075 และ0.10% (w/v) ใช้85% เอธานอล เป็นตัวทำละลาย

สรุปผลการทดลอง

ความเข้มข้นเริ่มต้นที่เหมาะสมสำหรับการเตรียมอะลูมิเนียมเลค โดยใช้กระแสไฟสูงสุด (0.3 - 0.5 A ในเอธานอล และ 3 A ในน้ำ) และทำให้เกิดการตกตะกอนอย่างสมบูรณ์ สรุปได้ดังตาราง (ทำการทดลองในเอธานอล 25-85 % ยกเว้นสารอิริโธรซิน เตรียมในน้ำและเอธานอล

ตาราง 2 ผลการเตรียมอะลูมิเนียมเลคด้วยวิธีจับก้อนด้วยไฟฟ้า

สีมาตรฐาน	ความเข้มข้น	เวลา	เปอร์เซ็นต์สี
	(% w/v)	(นาที)	(%)
ตาร์ตราซีน	0.100	60	12.6
อีริโธรซิน (ในน้ำ)	0.025	30	5.1
อิริโธรซิน	0.100	30	11.5
นิวคอกซีน	0.100	120	7.3
ซันเซ็ท เยลโลว์	0.025	120	2.6
ออเลอร่าเรด	0.025	120	4.4
คาร์โมอีซีน	0.025	15	10.3
อะมารันท์	0.10	105	16.5

จากผลการทดลองพบว่า ความเข้มข้นเริ่มต้นของสีมาตรฐานที่ให้เปอร์เซ็นต์สีใน อะลูมิเนียมเลคสูงสุด (คำนวณโดยหาผลต่างของน้ำหนักสี) สำหรับการเตรียมอะลูมิเนียมเลค ของ อิริโธรซิน(ในน้ำ) ซันเซ็ทเยลโลว์ ออเลอร่า เรด และ คาร์โมอีซีน อยู่ที่ 0.025% w/v และ 0.10 % w/v สำหรับ ตาร์ตราซีน อิริโธรซิน นิวคอกซีน และ อะมารันท์

เปอร์เซ็นต์สีของเลคที่เตรียมได้อยู่ระหว่าง 2-17 % โดยสีที่เตรียมได้เปอร์เซ็นต์สีน้อย ที่สุดคือ ซันเซ็ท เยลโลว์ (2.64) และ อะมารันท์ได้เปอร์เซ็นต์สูงสุด (16.55) อย่างไรก็ตาม เปอร์เซ็นต์สีที่ศึกษานี้ได้จากการคำนวณผลต่างน้ำหนัก ซึ่งมีข้อผิดพลาดได้ง่ายเนื่องจากสีมี น้ำหนักน้อย อีกทั้งสารที่ได้หลังการตกตะกอนนั้น ไม่ได้มีเฉพาะอะลูมิเนียมเลคที่ต้องการแต่ยัง รวมถึงอะลูมิเนียมไฮดรอกไซด์ที่เกิดขึ้นจากปฏิกิริยาด้วย แต่เป็นวิธีการที่สะดวกรวดเร็วและ เหมาะสำหรับการเปรียบเทียบผลโดยภาพรวม ในการทดลองต่อไปจะได้วิเคราะห์เปอร์เซ็นต์สี โดยวิธีการเผาที่อุณหภูมิสูง เพื่อให้ได้ข้อมูลที่มีความถูกต้องมากขึ้น

ปัญหาที่พบในการเตรียมอะลูมิเนียมเลคโดยไม่ควบคุมกระแสไฟฟ้านี้ พบว่าทำให้เกิด อะลูมิเนียมไฮดรอกไซด์ในปริมาณมากและรวดเร็วอีกทั้งทำให้มีความร้อนสูงในภาชนะที่ทำการ ตกตะกอน ผลที่ตามมาคือแม้ว่าจะได้ตะกอนในปริมาณมาก แต่ตะกอนที่เตรียมได้มักมีสีขาว จนถึงสีเทาซึ่งเป็นสีของอะลูมิเนียมไฮดรอกไซด์ ซึ่งในแง่ของการนำไปใช้ประโยชน์นั้นไม่ สามารถนำไปใช้ได้ ซึ่งพบว่าเมื่อใช้น้ำเป็นตัวทำละลายมีเพียงอิริโทรซินเท่านั้นที่สามารถเตรียม อะลูมิเนียมเลคที่มีสีได้

ในการทดลองต่อไปจะทำการเตรียมอะลูมิเนียมเลคโดยกำหนดกระแสไฟฟ้าและเวลาที่ แน่นอน และแปรค่าความเข้มข้นเริ่มต้นของสีมาตรฐาน เพื่อหาความเข้มข้นเริ่มต้นที่ให้ เปอร์เซ็นต์สีในอะลูมิเนียมเลค มากที่สุด

1.3 การเตรียมอะลูมิเนียมเลคของสีสังเคราะห์โดยการกำหนดกระแสไฟฟ้าและเวลาที่ แน่นอน

วิธีการทดลอง

ละลายตาร์ตราซีน 0.05 g ในน้ำกลั่น 200 mL (0.025% w/v) ในปีกเกอร์ขนาด 400 mL เติมโซเดียมคลอไรด์ 0.4 g (หรือคิดเป็น 0.2% w/v) คนให้ละลายจนหมด นำไปจับก้อนด้วย ไฟฟ้า โดยใช้แผ่นอะลูมิเนียมขนาด 4 x 16 cm. เป็นอิเล็กโทรด วางห่างกัน 3 cm. และจุ่มลงใน สารละลายลึก 5 cm. ผ่านกระแสไฟฟ้า 0.3 A เป็นเวลานาน 30 นาที กรองเก็บตะกอนผึ่งให้ แห้ง ชั่งน้ำหนัก วิเคราะห์เปอร์เซ็นต์สีโดยคำนวณจากผลต่างน้ำหนัก และ นำไปเผาที่อุณหภูมิ สูง

ทำการทดลองซ้ำ โดยเพิ่มความเข้มข้นของสีมาตรฐานตั้งต้นจาก 0.025% เป็น 0.050, 0.075, 0.100 0.125 0.150 0.1875, 0.200 และ 0.225% (w/v) จากนั้นเปลี่ยนตัวทำละลายจาก น้ำเป็น สารละลาย 85%เอธานอล และทำการศึกษาลักษณะเดียวกันกับสีมาตรฐานอีก 6 ชนิดที่ เหลือ

ผลการทดลอง

เมื่อใช้สภาวะในการจับก้อน 30 นาที กระแส 0.3 A จะได้เปอร์เซ็นต์สีในเลคเพิ่มขึ้น เมื่อ วิเคราะห์เปอร์เซ็นต์สีจากการเผาที่อุณหภูมิสูงพบว่าอยู่ในช่วง 40-60 %

1.4 การเตรียมอะลูมิเนียมเลคด้วยวิธีตกตะกอนด้วยสารส้ม

ละลายสารสัม 25 กรัม ลงในน้ำกลั่น 40 mL ให้ความร้อน 90-100 °C เติมตาร์ตราซีน 0.5 กรัม ให้ความร้อนนาน 3 ชั่วโมง จากนั้นทำให้เย็นและตกตะกอนด้วยสารละลายโซเดียม คาร์บอเนต (โซเดียมคาร์บอเนต 15 กรัมและน้ำกลั่น 30 mL) กรองและล้างตะกอนอีกครั้งด้วย น้ำกลั่น ฝึงตะกอนให้แห้งและชั่งน้ำหนัก เตรียมสารสีเลคของสารสีมาตรฐาน อีริโทรซิน ซันเซ็ท เยลโลว์ เอฟซีเอฟ นิวคอคซีน ออเลอรา เรด อะมารันท์ และ คาร์โมอีซีน คำนวณเปอร์เซ็นต์สี ด้วยวิธีชั่งน้ำหนัก และ เผาที่อุณหภูมิสูง

ตาราง 3 แสดงเปอร์เซ็นต์สีในอะลูมิเนียมเลคที่เตรียมได้

สีมาตรฐาน	น้ำหนักสี	น้ำหนักเลค	เปอร์เซ็นต์สี	เปอร์เซ็นต์สี
	เริ่มต้น		จากการ	จากการเผาที่
			คำนวณ	อุณหภูมิสูง
ตาร์ตราซีน	0.5001	7.1044	7.03	46.46
อิริโทรซิน	0.5001	6.5580	7.63	38.36
ซันเซ็ท เยลโลว์	0.5005	7.6359	6.62	45.75
นิวคอคซีน	0.5000	4.3989	11.36	50.64
ออเลอรา เรด	0.5005	7.5505	6.55	45.69
อะมารันท์	0.5000	9.1236	5.48	44.92
คาร์โมอีซีน	0.5000	9.4044	5.31	56.52

การเตรียมอะลูมิเนียมเลคด้วยวิธีตกตะกอนด้วยสารสัมซึ่งเป็นวิธีมาตรฐาน ได้เปอร์เซ็นต์สีจาก การคำนวณอยู่ระหว่าง 5-12 เปอร์เซ็นต์ เมื่อหาเปอร์เซ็นต์สีด้วยวิธีการเผาที่อุณหภูมิสูงได้ เปอร์เซ็นต์สีอยู่ระหว่าง 38-57 เปอร์เซ็นต์

แม้ว่าสีเลคที่เตรียมจากเทคนิคจับก้อนด้วยไฟฟ้ามีเปอร์เซ็นต์สีน้อยกว่าก็ตาม (ยกเว้นตาร์ตรา ซีน) แต่จะเห็นได้ว่าใช้สีมาตรฐานในการเตรียมน้อยกว่าวิธีตกตะกอนด้วยสารสัม ดังแสดงผลใน ตาราง 4

ตาราง 4 เปอร์เซ็นต์สีในเลคที่เตรียมด้วยวิธีจับก้อนด้วยไฟฟ้าเทียบกับวิธีมาตรฐาน

สีมาตรฐาน	วิธีจับก้อนด้วยไฟฟ้า			วิธีมาตรฐาน		
	น้ำหนักสี เริ่มต้น	เวลา ชั่วโมง	เปอร์เซ็นต์ สี	น้ำหนักสี เริ่มต้น	เวลา ชั่วโมง	เปอร์เซ็นต์ สี
			(%)			(%)
ตาร์ตราซีน	0.2	1	12.6	0.5	3	7.0
ซันเซ็ท เยล โลว์	0.05	2	2.6	0.5	3	6.6
ออเลอร่าเรด	0.05	2	4.4	0.5	3	6.6

การทดลองที่ 2 การเตรียมอะลูมิเนียมเลคจากแหล่งธรรมชาติ พิชที่นำมาศึกษา

สีเหลือง ดอกคำฝอย ดาวเรื่อง แครอท ขมิ้น มะละกอ แห้ม สีเขียว ใบเตย ใบย่านาง สีแดง ครั่ง แก่นไม้ฝาง สีน้ำตาล หมาก ก่อ

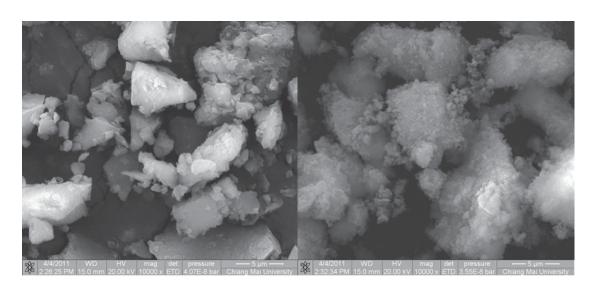
วิธีทำการทดลอง

สกัดสีจากพืชตัวอย่างด้วยน้ำและเอธานอลโดยใช้ชุดอุปกรณ์ซอกห์เลท นำสารละลาย มาเจือจางด้วยน้ำ(สำหรับสารสกัดเอธานอล) และ เติมอิเล็กโทรไลท์เสริม จากนั้นประกอบกับ ชุดอุปกรณ์จับก้อนด้วยไฟฟ้า ผ่านกระแสไฟฟ้าสูงสุดจนกว่าสารสีจะตกตะกอนได้สมบูรณ์ (รายละเอียดการทดลองเพื่อเตรียมสารเช่นเดียวกับการทดลองที่ 1)

ผลการทดลอง

สามารถเตรียมสีเลคด้วยวิธีจับก้อนด้วยไฟฟ้าได้สีเลคจากพืชต่างๆดังตัวอย่างในรูป 10 และ 11

ร**ูป 14** สีเลคที่เตรียมได้จากพืชชนิดต่าง ๆเมื่อใช้น้ำเป็นตัวทำละลายสกัด (1) แก่นไม้ฝาง (2) ครั่ง (3) หมาก (4) ก่อ (5) ดาวเรือง (6) แห้ม (7) ดอกคำฝอย (8) ใบเตย


รูป 15 สีเลคที่เตรียมได้จากพืชชนิดต่างๆเมื่อใช้เอธานอลเป็นตัวทำละลายสกัด (1) ขมิ้นเหลือง (2) ขมิ้นแดง (3) ดอกคำฝอย (จับก้อน 30 นาที) (4) ดอกดาวเรื่อง (5) ดอกคำฝอย (จับก้อน 15 นาที) (6) ใบเตย (จับก้อน 2 ชั่วโมง) (7) ใบเตย (จับก้อน 15 นาทีป (8) ใบย่านาง

จากผลการศึกษาพบว่าพืชที่ให้อะลูมิเนียมเลคปริมาณมากและมีสีเข้ม ได้แก่ พืชที่ให้สี แดง ได้แก่ ครั่ง และ แก่นไม้ฝาง พืชกลุ่มสีเหลืองได้แก่ ดอกดาวเรื่อง ดอกคำฝอย หัวขมิ้น พืช สมุนไพรแห้ม พืชกลุ่มสีน้ำตาล คือ หมาก สีเสียด (มีสารแทนนินปริมาณมากและสามารถ ตกตะกอนได้ด้วยเทคนิคนี้) สีเขียวได้แก่ ใบเตย และ ใบย่านาง (มีสารคลอโรฟิลปริมาณมากซึ่ง ตกตะกอนได้ด้วยเทคนิคนี้) โดยเฉพาะใบเตยนอกจากจะได้สีเลคสีเขียวแล้วยังได้กลิ่นหอมของ ใบเตยอีกด้วย

ตัวทำละลายสกัดและเวลาที่ใช้ในการจับก้อนมีผลทำให้ได้สีเลคที่มีเฉดสีแตกต่างกัน

ผลการทดสอบสีเลคจากพืชด้วยเทคนิค SEM

ด้วยเทคนิคนี้ทำให้ได้ภาพพื้นผิวของสีเลคจากพืชและทราบเปอร์เซ็นต์อะลูมิเนียม ในเลค ตัวอย่างพื้นผิวสีเลคที่เตรียมจากดอกดาวเรืองและใบเตยดังแสดงในรูป 16

รูป 16 ลักษณะพื้นผิวของอะลูมิเนียมเลคจากดอกดาวเรื่อง (ซ้าย) และ ใบเตย (ขวา)

นอกจากนี้ยังพบว่าโดยเฉลี่ยแล้วเปอร์เซ็นต์อะลูมิเนียมในเลคที่เตรียมในเอธานอลจะมีค่าต่ำกว่า ในสารละลายน้ำ เปอร์เซ็นต์อะลูมิเนียมในเลคที่เตรียมได้แสดงในตาราง 5

ตาราง 5 สีและเปอร์เซ็นต์อะลูมิเนียมที่พบในเลคจากพืช

พืช	สีเลคที่ได้	เปอร์เซ็นต์			
		อะลูมิเนียม			
ใช้น้ำเป็นตัวทำละลายสกัด					
ดอกดาวเรื่อง	เหลือง-น้ำตาล	20.08			
ดอกคำฝอย	เหลือง-น้ำตาล	17.58			
แห้ม	น้ำตาล	25.95			
ครั้ง	แดงเข้ม	20.44			
ฝาง	แดงเข้ม	45.10			
ก่อ	น้ำตาล	4.85			
หมาก	น้ำตาล	5.35			
ใบเตย	เขียวอ่อน	24.90			
ใช้เอธานอลเป็นตัวทำละลายสกัด					
ดอกดาวเรื่อง	เหลือง-น้ำตาล	11.9			
ดอกคำฝอย	เหลือง-น้ำตาล	5.88			
ขมิ้นเหลือง	เหลือง	6.59			
ขมิ้นแดง	น้ำตาลแดง	18.79			
ใบเตย	เขียว	18.45			
ใบย่านาง	เขียว	24.26			

ปริมาณอะลูมิเนียมในเลคที่เตรียมได้มีสิ่งที่น่าสนใจคือเลคที่ได้จากแทนนิน (จากหมากและก่อ) ซึ่งเป็นสีน้ำตาลพบอะลูมิเนียมในปริมาณต่ำมาก ในขณะที่ไม้ฝางซึ่งใช้เวลาในการจับก้อนถึง 2 ชั่วโมงตรวจพบอะลูมิเนียมปริมาณมาก ในขณะที่เลคสีเหลืองจากดอกดาวเรื่อง ดอกคำฝอย และขมิ้นนั้นการเตรียมเลคในเอธานอลจะตรวจพบอะลูมิเนียมในปริมาณต่ำกว่าการเตรียมในน้ำ อย่างมีนัยสำคัญ

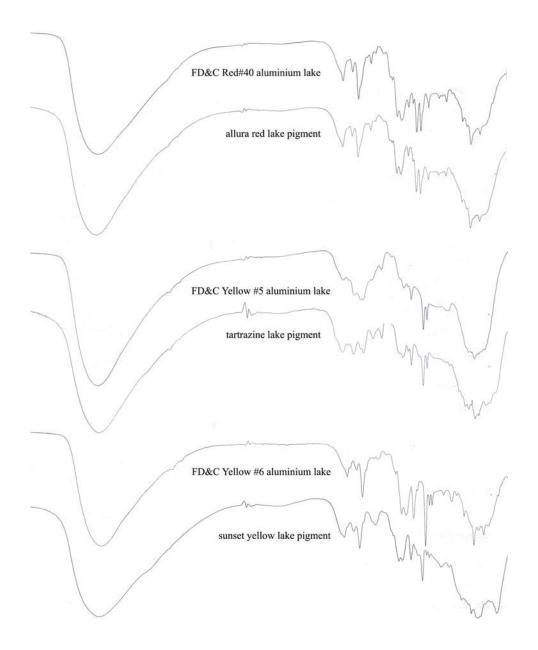
ผลการศึกษาสมบัติการละลาย

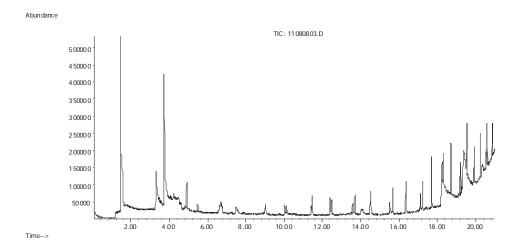

ศึกษาการละลายในตัวทำละลาย 4 ชนิด คือ น้ำ เอธานอล โพรพิลีนไกคอล และ น้ำมันพาราฟิน พบว่ามีการละลายได้เล็กน้อยในเอธานอล และ โพรพิลีนไกลคอล

การทดลองที่ 3 การวิเคราะห์เปรียบเทียบอะลูมิเนียมเลคที่เตรียมได้กับอะลูมิเนียมเลคที่มีจำหน่ายเชิง พาณิชย์

ได้วิเคราะห์เปรียบเทียบสมบัติของเลคที่เตรียมได้จากการวิจัยกับเลคที่จำหน่ายเชิง พานิชย์ 3 ชนิด คือ ตาร์ตราซีน ออเลอรา เรด และ ซันเซ็ท เยลโลว์ เนื่องจากสีอะลูมิเนียมเลคที่ ใช้ในเครื่องสำอางมีเพียง 3 ชนิดนี้เท่านั้น สำหรับสีอื่น ๆจะมีการใช้ในรูปแบบของแบเรียมลค และแคลเซียมเลค

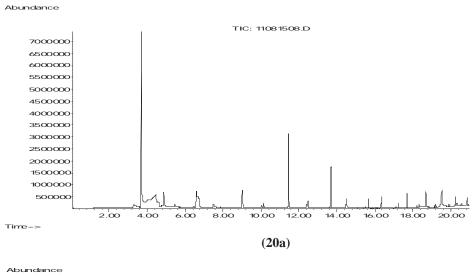
การละลาย

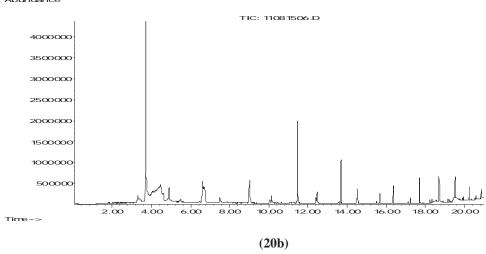

ทดสอบการละลายในตัวทำละลาย 4 ชนิด ดังนี้ โพรพิลีน ไกลคอล (Propylene glycol) พาราฟิน (paraffin) น้ำ และ 95% เอธานอล สารสีที่เตรียมได้ ไม่ละลายน้ำและพาราฟินสามารถ ละลายได้เล็กน้อยใน เอธานอล และ โพรพิลีนไกลคอล แต่เมื่อเทียบกับสีที่จำหน่ายในท้องตลาด แล้วมีความสามารถในการละลายได้น้อยกว่า เป็นที่น่าสังเกตว่าสีทั้งที่เตรียมได้และที่จำหน่าย ไม่สามารถละลายได้มากนัก แต่มีลักษณะของการกระจายตัวในตัวทำละลายมากกว่า ทั้งนี้ เนื่องจากสีเลคไม่ใช่สีที่ใช้สำหรับละลาย(dissolve) แต่จะกระจายตัว (disperse) ไปกับเนื้อของ ตัวทำละลาย


รูป 17 ลักษณะการกระจายตัวของของสีเลคในตัวทำละลาย โพรพิลีนไกลคอล พาราฟิน น้ำ และ เอธานอลตามลำดับ รูปซ้ายสีเลคที่มีจำหน่ายในท้องตลาด (yellow #5) และ ขวาคือสีเลคที่ เตรียมด้วยเทคนิค ec (ตาร์ตราซีนอะลูมิเนียมเลค)

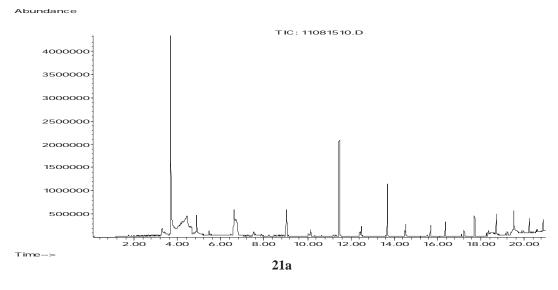
IR spectrum และ GC chromatogram

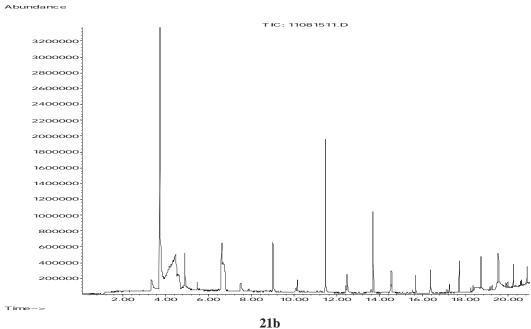

สีที่เตรียมได้มีลักษณะสเปกตรัมเมื่อวิเคราะห์ด้วย IR และ โครมาโทแกรมเมื่อวิเคราะห์ด้วย GC ที่ตรงกับสีจำหน่ายเชิงพาณิชย์ ดังรูป 18 -21


รูป 18 IR spectrum ของสีเลคที่เตรียมขึ้นเทียบกับสีที่จำหน่ายในท้องตลาด

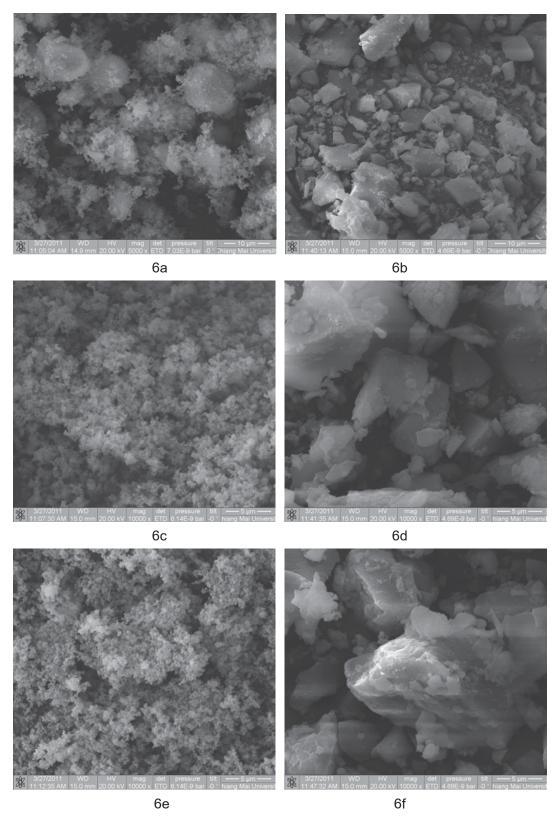


(19a)




รู**ป 19** GC Chromatogram เปรียบเทียบระหว่าง FD&C Red#40 aluminium lake (19a) และ อะลูมิเนียมเลคของออเลอร่าเลค (19b)

รู**ป 20** GC Chromatogram เปรียบเทียบระหว่าง FD&C Yellow #5 aluminium lake (20a) และ tartrazine lake pigment (20b)



รูป **21** GC Chromatogram เปรียบเทียบระหว่าง FD&C Yellow #6 aluminium lake (21a) และ sunset yellow lake pigment (21b)

ลักษณะพื้นผิวและเปอร์เซ็นต์อะลูมิเนียม

พื้นผิวของสีเลคที่จำหน่ายในท้องตลาดมีลักษณะที่ละเอียดกว่าอะลูมิเนียมเลคที่เตรียมได้มาก รูปภาพพื้นผิวจากการศึกษาด้วยเทคนิค SEM ได้ผลดังรูป 22

รูป 22 SEM micrographs of lake surface FD&C Red#40 aluminium lake (6a), allura red lake pigment (6b) FD&C Yellow #5 aluminium lake (6c) and tartrazine lake pigment (6d) FD&C Yellow #6 aluminium lake (6e) and sunset yellow lake pigment (6f)

เปอร์เซ็นต์อะลูมิเนียม

สีเลคที่เตรียมด้วยวิธีจับก้อนด้วยไฟฟ้ามีปริมาณอะลูมิเนียมเลคสูงที่สุดเมื่อเทียบการ สีเลคจากการเตรียมด้วยวิธีมาตรฐาน และสีที่จำหน่ายในท้องตลาด

ตาราง 6 เปอร์เซ็นต์อะลูมิเนียมเปรียบเทียบในสีเลคทั้งสามชนิด

ชนิด	ตกตะกอนโดยสาร	EC	สีจำหน่ายเชิง
	สัม		พาณิชย์
ตาร์ตราซีนเลค	19.11	25.15	8.08
ซันเซ็ท เยลโลว์เลค	15.12	38.19	8.73
ออเลอร่า เรด เลค	11.91	11.68	33

สรุปผลการวิจัยและข้อเสนอแนะสำหรับงานวิจัยในอนาคต

วิธีจับก้อนด้วยไฟฟ้าสามารถประยุกต์ใช้กับการเตรียมสีเลคได้ผลเป็นอย่างดีทั้งสี
สังเคราะห์และสีธรรมชาติ แม้ว่าคุณสมบัติการละลายและเฉดสีที่เตรียมได้ยังไม่สดใสเท่ากับสีที่
จำหน่ายในเชิงพาณิชย์ แต่หากทำการศึกษาปรับปรุงคุณภาพต่อไปจะทำให้ได้คุณสมบัติที่ดีขึ้น
ได้ การพัฒนาสีเลคที่ได้ให้มีคุณภาพดีขึ้นน่าจะมุ่งไปที่การลดปริมาณอะลูมิเนียมที่เจือปนอยู่
รวมทั้งการหาปริมาณสีที่เหมาะสมสำหรับการเตรียมเลคซึ่งจะให้สีเลคที่สดใสและเข้ม

ทั้งนี้งานวิจัยที่น่าสนใจศึกษาต่อคือการปรับปรุงคุณภาพของสีเลคโดยเฉพาะเลคที่ได้ จากธรรมชาติซึ่งยังไม่มีรายงานการศึกษามาก่อน สีจากธรรมชาตินั้นมีความสวยงามแตกต่าง จากสีสังเคราะห์แต่มีข้อจำกัดในด้านที่ไม่คงทนและความสม่ำเสมอของสีเมื่อนำมาใช้งานยังไม่ สามารถควบคุมได้ นอกจากนี้สีธรรมชาติเป็นสีที่ละลายน้ำเสียเป็นส่วนใหญ่ทำให้การนำมาใช้มี ข้อจำกัดคือมักใช้ได้กับการย้อมผ้าหรือผสมในอาหารเท่านั้น การนำมาผสมในผลิตภัณฑ์ เครื่องสำอางจำเป็นที่จะต้องเปลี่ยนรูปให้อยู่ในรูปที่ไม่ละลายน้ำ การเตรียมสีธรรมชาติในรูปสีเล คจึงเป็นแนวทางหนึ่งที่ทำให้สีธรรมชาติถูกนำมาใช้ได้อย่างหลากหลายมากขึ้น

แนวทางการวิจัยที่น่าสนใจคือการเตรียมสีเลคจากพืชนี้ให้ได้สีเข้มและมีปริมาณมากขึ้น รวมถึงการบดผงสีให้เป็นผงละเอียดเหมาะสำหรับการนำไปใช้งาน นอกจากนี้ควรพัฒนาวิธี เตรียมโดยลดปริมาณอะลูมิเนียมในเลคด้วยการศึกษากระแสไฟฟ้าและเวลาที่เหมาะสมในการ จับก้อนด้วยไฟฟ้า และทดสอบการนำไปใช้งานเช่นนำไปผสมกับเครื่องสำอางเพื่อสังเกตการให้ สีจะทำให้เกิดประโยชน์อย่างมากในด้านการเพิ่มมูลค่าผลผลิตและการใช้ทรัพยากรธรรมชาติที่มี อยู่ในประเทศได้อย่างคุ้มค่า

Out put จากโครงการ

การเตรียมอะลูมิเนียมเลคจากสีผสมอาหารโดยวิธีจับก้อนด้วยไฟฟ้า PREPARATION OF ALUMINIUM LAKE FROM FOOD DYE BY ELECTROCOAGULATION METHOD อลิสษา ทาเปิ้น และ นีรนุช ไชยรังษี* Alissa Tapern and Neeranuch Chairungsi* 35th Congress on Science and Technology of Thailand 1 (Poster presentation)

เอกสารอ้างอิง

- (1) W. Phutdhawong, S. Chowwanapoonpohn, and D. Buddasukh, Electrocoagulation and subsequent Recovery of Phenolic Compounds, J. Anal Sci., 2000, 16, 1083-1084.
- (2) S. Chowwanapoonpohn and D. Buddhasukh, Electrocoagulation of certain organic substances, *J. ACGC Chem Com.*, 2002, **14**, 70-75.
- (3) S.Chowwanapoonpohn, S.Chewchanwuttiwong, M.J. Garson and D. Buddhasukh, Electrocoagulation and recovery of tannins from tree barks, *J. Appl.Electrochem.*, 2003, **33**, 647-650.
- (4) W. Phutdhawong and D. Buddhasukh, Simple isolation and purification of D-pinitol from Cassia siamea. by electrolytic decolorization, J. ACGC., 2000, 10, 61-62.
- (5) W. Phutdhawong and D. Buddhasukh, Simple isolation and purification of glycyrrhizic acid *Chiang Mai J. Sci*, 1998, **25(2)**, 87-91.
- (6) N. Chairungsi, K. Jumpatong, W. Phutdhawong and D.Buddhasukh, Solvent Effets in Electrocoagulation of Selected Plant Pigments and Tannin, Molecules., 2006, 11: 309-317.
- (7) N. Chairungsi, K. Jumpatong, P. Suebsakwong, W. Sengpracha, W. Phutdhawong and D.Buddhasukh, Electrocoagulation of Quinone Pigments, Molecules., 2006, 11: 514-522.
- (8) N. Phutthawong, K. Jumpatong, N. Chairungsi, S. Wangkarn and D. Buddhasukh, Application of Electrocoagulation to the Isolation of Alkaloids, *Chiang Mai J.Sci*, 2006, 34(1): 127-133
- (9) ณัฐพร พุทธวงศ์, "การประยุกต์การจับก้อนด้วยไฟฟ้าในการคัดแยกแอลคาลอยด์", วิทยานิพนธ์วิทยาศาสตรมหาบัณฑิต มหาวิทยาลัยเชียงใหม่, 2549, 90 หน้า
- (10) ประไพ ประดับคำ, "การเตรียมสารสีเลคโดยการจับก้อนด้วยไฟฟ้า", วิทยานิพนธ์ วิทยาศาสตรมหาบัณฑิต มหาวิทยาลัยเชียงใหม่, 2550, 73 หน้า
- (11) W. Phutdhawong and D. Buddhasukh, Application of Electrocoagulation 1st edition, Chotana Print Co.Ltd., Chiang Mai, 2007
- (12) Powell Water System, INC. Electrocoagulation Technology [Online]. Available at http://www.powellwater.com/ec-technology.htm.
- (13) Mollah M.Y.A., Schennach R., Parga J.R., Cocke D.L., Electrocoagulation (EC)-science and applications, *J. Hazard.Mat.*, 2001, **84**, 29-41.

- (14) อลิสษา ทาเปิ้น, การเตรียมอะลูมิเนียมเลคจากสีผสมอาหารโดยวิธีจับก้อนด้วยไฟฟ้า, รายงานการวิจัยวิทยาศาสตรบัณฑิต สาขาวิชาเคมี, คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏเชียงใหม่, 255, 97 หน้า
- (15) อัจฉรา ใจดี, การสกัดสารเคอร์เซทินจากสะเดาและหอมแดงด้วยวิธีจับก้อนด้วย ไฟฟ้า,รายงานการวิจัยวิทยาศาสตรบัณฑิต สาขาวิชาเคมี, คณะวิทยาศาสตร์และ เทคโนโลยี มหาวิทยาลัยราชภัฏเชียงใหม่, 2551, 137 หน้า
- (16) ดวงสมร บุญเรื่อง, การเตรียมสีจากผลผักปลังสุกดอกคำฝอยและ ใบเตยด้วยเทคนิค การจับก้อนด้วยไฟฟ้า, รายงานการวิจัยวิทยาศาสตรบัณฑิต สาขาวิชาเคมี, คณะ วิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏเชียงใหม่, 2551, 115 หน้า
- (17) นั้นทัชพร ศรีนวล, การเตรียมอะลูมิเนียมเลคจากพืชด้วยวิธีจับก้อนด้วยไฟฟ้า, รายงานการวิจัยวิทยาศาสตรบัณฑิต สาขาวิชาเคมี, คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏเชียงใหม่, 2552, 150 หน้า
- (18) พัชรา อภิวัน, การสกัดสารเบอร์เบรินจากแห้มด้วยวิธีจับก้อนด้วยไฟฟ้า, รายงาน การวิจัยวิทยาศาสตรบัณฑิต สาขาวิชาเคมี, คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏเชียงใหม่, 2553, 119 หน้า

ภาคผนวก

อยู่ในระหว่างการเขียนรายงานการวิจัย คาดว่าจะตีพิมพ์ในปี 2555

รายงานการวิจัยฉบับร่างที่จะนำเสนอเพื่อตีพิมพ์ใน Journal of applied Electrochemistry (Impact factor ในปี 2010 1.494)

http://www.springer.com/chemistry/electrochemistry/journal/10800

จำนวน 2 เรื่องคือ

- 1. Preparation of Aluminium lake pigments from organic dyes by electrocoagulation method
- 2. Preparation of Aluminium lake pigments from natural material by electrocoagulation method (อยู่ในระหว่างปรับแก้และเรียบเรียงเนื้อหา)

Preparation of Aluminium lake pigments from organic dyes by electrocoagulation method

Chairungsi, N. 1*, Pradabkham, P. 2, Buddhasukh, D. 3

¹Department of Science, Faculty of Science and Technology, Chiang Mai Rajabhat University, Chiang Mai, 50300, Thailand

²Kled-Lin School, Nakhonratchasima, 30120, Thailand,

³Maejo University, Chiang Mai, 50292, Thailand

(* author for correspondence,fax: +66 53 885620,e-mail neeranuchc@yahoo.com

Abstract: In this research work lectrocoagulation was used for preparation of aluminium lake from 7 standard dyes, viz,. Tartarzine, Allura Red, Sunset Yellow FCF, Erythrosine, Neucoccin, Carmoisine and Amaranth.

Keywords: lake, lake pigment, aluminium lake, electrocoagulation.

1. Introduction

Pigments are water-insoluble dyes which are applied to a multitude of materials by various means. Lake pigments or lakes are a class of pigments used for the paint, lacquer, printing industries and can also be used as food drug and cosmetics colors. For this purpose the water-soluble dye is precipitated as water-insoluble color lake by the addition of metal salts e.g. Al, Ba, Ca, Sr, etc. Some lake pigments as shown in figure 1.

Figure 1 Structure of (a) FD&C Red#40 aluminium lake (allura red) (b) FD&C Yellow #5 aluminium lake (tartrazine) and (c) FD&C Yellow # 6 aluminium lake (sunset yellow)

The azo dye are the largest class of organic dyestuffs it could be classified by the number of azo bridges contained in the molecule to monoazo, disazo triazo etc. Monoazo dyes are very numerous and when free of slubilizing groups are used for the coloring of oils, waxes, lacquers, gasoline and plastic.[1] H_3C

In the previous work [4] our group has successfully to prepare 5 lake pigments by a simple method, electrocoagulation, which requires a lower temperature and much shorter preparation time than the conventional method. In this study 7 aluminium lake pigments were prepared from 7 organic dyes (almost are monoazo dyes) by electrocoagulation method in which concentration of standard dyes varying. In addition, three lake pigments were prepared and studied compared with three commercial aluminium lakes viz FD&C Red#40 an aluminium lake of allura red, FD&C Yellow#5 an aluminium lake of tartrazine and FD&C Yellow#6 an aluminium lake of sunset yellow.

2. Material and Method

2.1 Chemicals and apparatus

All of the tested dyes used were of standard reagent grade, and were used as received. Standard dyes of tartrazine (acid yellow 23), sunset Yellow FCF, allura red, erythrosine neucocine, carmoisine (azorubine) and amaranth were purchased from Sigma-Aldrich. Sodium chloride (NaCl) AR grade was purchased from Labscan (Thailand). Absolute

N=N

ethanol (C₂H₅OH) was purchased from E.Merck (Darmstadt, Germany). Parafin (Lab grade) was purchased from Ajax Chemical Co.(Sydney, Australia). Ethanol 95% and propylene glycol were a commercial grade was purchased locaaly. Aluminium potassium sulfate (KAl(SO₄)₃.16H₂O 97% was purchased from BDH (England). Sodium carbonate anhydrous (Na₂CO₃), 99.7%, RPE grade was purchased from Carlo Erba. All of the standard lake pigments used were of commercial grade. FD&C Yellow No.5 aluminium lake (4,5-dihydro-5-Oxo-1(4-sulfophenyl)-4-sulfophenyl-Azo]-1H-Pyrazole-3-Carboxilic Acid) with 15.0% dye content, FD&C Yellow No.6 aluminium lake (6-hydroxy-5-[(4-sulfophenyl)Azo]-2-naphthalenesulfonic Acid) with 40% dye content and FD&C Red No.40 aluminium lake (6-hydroxy-5-[(2-methoxy-5-methyl-4-sulfophenyl)Azo]-2-naphthalene sulfonic Acid) with 40% dye content were purchase from Sunchemical. For electrocoagulation set up, aluminium plates were purchased locally. Direct current was sustained by a TES 6210 DC power supply (Taiwan). Absorbance was measured on a UV 1600, Shimadzu (Japan).

2.2 Electrocoagulation of standard dyes

200 mL of dye solution of tartrazine, sunset Yellow FCF, allura red, erythrosine neucocine, carmoisine and amaranth (0.025 - 0.25 %w/v) were prepared in distillation water and ethanolic solution (up to 85% v/v) then subject to electrocoagulation, a procedure is as follows. Two aluminium plates (dimension 14x5 cm) were used as electrodes. These were spaced 3 cm apart and dipped 5.5 cm deep into a magnetically-stirred dye solution (200 mL) contained in a 400-mL beaker. Sodium chloride was added to the solution as supporting electrolyte at a concentration of 0.2% (w/v). Direct current (about 0.3-3.0 A) was passed through the solution via the two aluminium electrodes until the dye solution was colourless or very pale in colour (1-2 hours). The resulting precipitate was filtered and dried to afford the lake pigment. Percentage dye in lake were calculated by (weight of standard dye – weight of lake pigment obtained) x 100. The result was shown in Table 1 and 2 for experiment in aqueous solution and ethanolic solution respectively.

2.3 Aluminium lake preparation by standard method [5]

25 g of aluminium potassium sulfate ($KAl_2(SO_4)_3$) was dissolved in 40 mL deionized water at 90-100 °C, 0.5 g of standard dye* was added, the mixture was heated for 3 hour and treated with a solution of 15 g anhydrous Na_2CO_3 in 30 ml deionized water. After cooling, the aluminium lake was filtered off then washed by deionized water and dried at room temperature. Percentage dye content in lake was calculated and

compared with 3 aluminium lake which were prepared in section 2.2 the result as shown in table 3. * tartrazine, allura red and sunset yellow FCF

2.4 Test of aluminium lake

0.01 g of aluminium lake was added in 10 mL of deionized water, ethanol, propylene glycol and mineral oil respectively, solubility of lake pigment was observed. The infrared spectra were recorded as KBr discs on a Bruker FTIR Tenser27. Gas chromatographs-Mass spectra were obtained on a . Scanning Electron Microscope

3. Results and Discussion

Aluminium lakes from 7 standard organic dyes could be prepared by electrocoagulation in ethanolic solution. As show in Table 1 and 2, in case of aqueous solution only erythrosine lake could be prepared when the concentration increases the percentage dye in lake decrease proportionally. In the other hand, when electrocoagulation proceduer was done in ethanolic solution, with increasing of standard dye concentration the dye content in lake increases. The dye content in the lake ranges between 2-17%. In aqueous solution, due to the high voltage was generate through the reaction chamber, almost of preparing lake were colorless.

Table 1. Results of preparation of azo lake pigments by electrocoagulation (in aqueous solution)

Dye Used	Dye concentration in	Dye concentration in Time for complete		
	electrolysed solution	coagulation (minutes)		
	0.025-0.100	120	_*	
Tartrazine	0.125	120	Precipitation not	
			complete	
	0.025-0.100	120	_*	
Allura Red	0.125	120	Precipitation not	
			complete	
	0.025-0.20	120	_*	
Sunset Yellow	0.25	120	Precipitation not	
FCF			complete	
	0.025	30	5.1	
	0.050	45	3.3	
Erythrosine	0.075	45	2.1	
	0.100	120	2.1	
	0.125	120	Precipitation not	
			complete	
Neucocine	0.025-0.100	120	_*	
	0.125	120	Precipitation not	
			complete	
Carmoisine	0.025	120	_*	
	0.05	120	Precipitation not	
			complete	
	0.025-0.075	120	_*	
Amaranth	0.10	120	Precipitation not	
			complete	

^{*}colorless precipitate

Table2. Results of preparation of azo lake pigments by electrocoagulation (in aqueous ethanol solution)

Dye Used	Dye concentration in electrolysed solution	Time for complete coagulation (minutes)	% Dye in lake	
	cicon oryoca columni	oodgalation (minutes)		
Tartrazine	0.025	45	4.8	
	0.050	45	5.6	
	0.075	60	10.8	
	0.100	60	12.6	
	0.125	120	Precipitation not	
			complete	
	0.025	120	4.4	
Allura Red	0.050	120	Precipitate not	
			complete	
Sunset	0.025	120	2.6	
Yellow	0.050	120	_*	
	0.025	30	2.1	
	0.050	30	4.8	
Erythrosine	0.075	45	3.1	
	0.100	45	11.5	
	0.125	120	Precipitation not	
			complete	
	0.025	105	2.5	
	0.050	120	4.3	
Neucocine	0.075	120	5.4	
	0.100	120	7.3	
	0.125	120	Precipitation not	
			complete	
Carmoisine	0.025	15	10.3	
	0.050	120	Precipitation not	
			complete	
	0.025	60	4.8	
	0.050	60	5.8	

	0.075	75	9.8	
Amaranth	0.100 105 16.		16.5	
	0.125	120	13.9	
	0.150	120	Precipitation not	
			complete	

^{*} Colorless precipitate

By using electrocoagulation method, aluminium lake of tartrazine could be prepared in a higher dye content than that obtained by a standard method [5]. However, the other two aluminium lake pigment although have a lower dye content but the ec method consume a lower amount of standard dye.

Table 3. dye content in aluminium lake from electrocoagulation method and standard method.

Dye used	Electrocoagulation method		Standard method			
	Weight	Preparation	Dye	Weight	Preparation	Dye
	of	Time	content	of	Time	content
	standard	(Hour)	(%)	standard	(Hour)	(%)
	dye			dye		
	(g)			(g)		
Tartrazine	0.20	1	12.6	0.50	3	7.0
Sunset	0.05	2	2.6	0.50	3	6.6
yellow						
FCF						
Allura red	0.05	2	4.4	0.50	3	6.6

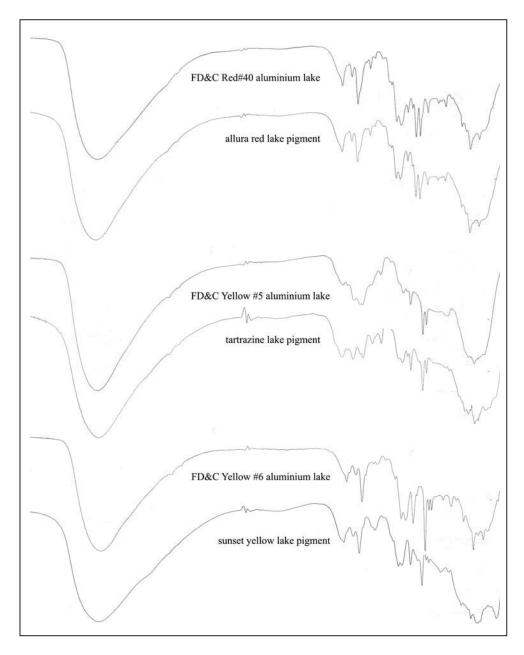
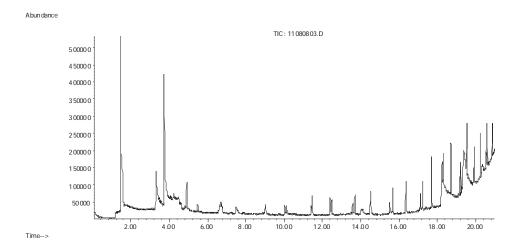



Figure 2 IR spectra of commercial lake pigment and ec lake pigment

(3a)

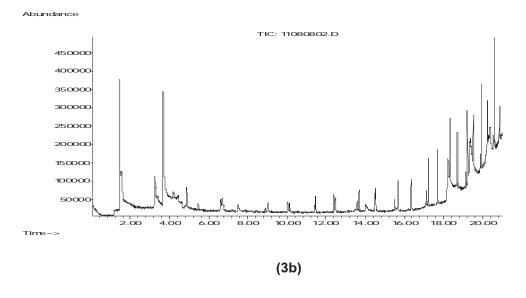
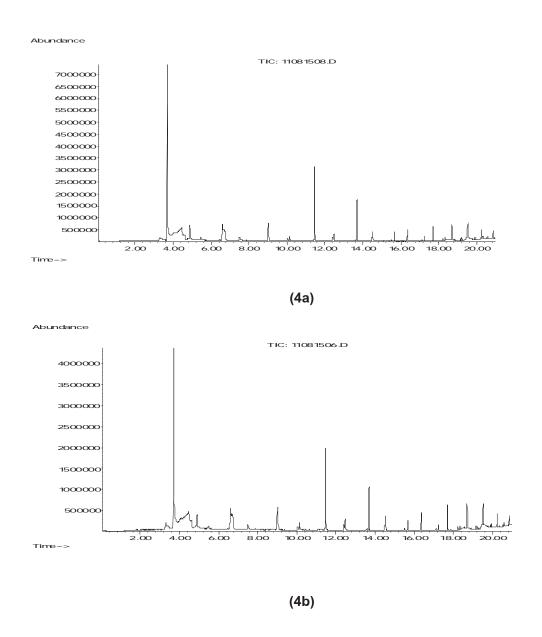
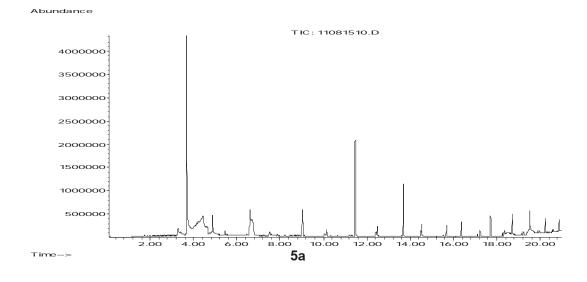
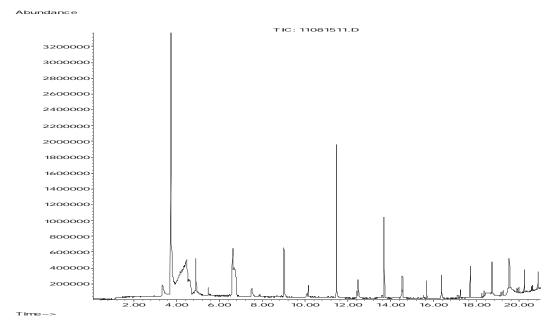


Figure 3 GC Chromatogram of FD&C Red#40 aluminium lake (3a) and allura red lake pigment (3b)

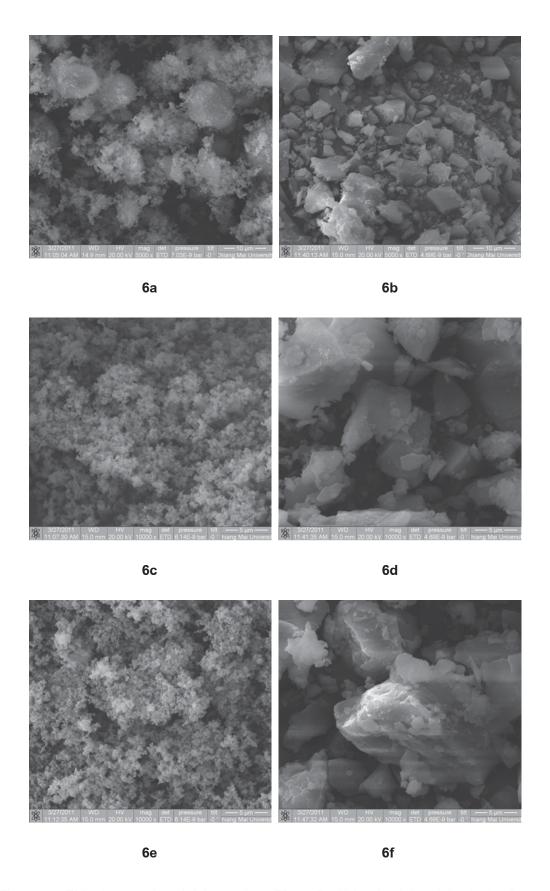

Figure 4 GC Chromatogram of FD&C Yellow #5 aluminium lake (4a) and tartrazine lake pigment (4b)

Figure 5 GC Chromatogram of FD&C Yellow #6 aluminium lake (5a) and sunset yellow lake pigment (5b)

5b

Figure 6 SEM micrographs of lake surface FD&C Red#40 aluminium lake (6a), allura red lake pigment (6b) FD&C Yellow #5 aluminium lake (6c) and tartrazine lake pigment (6d) FD&C Yellow #6 aluminium lake (6e) and sunset yellow lake pigment (6f)

4. Conclusion

In this study we successfully prepared 7 aluminium lake pigments by electrocoagulation in ethanolic solution. The dye content ranges between 2-17% this number is higher than the standard method but far from the dye content in commercial lake pigment which has 15% and 40%. There is a high percentage of aluminium in lake pigment obtained by this technique due to the aluminium hydroxide which generate during the procedure.

Acknowledgements

This research study is supported financially by TRF (Thailand Research Fund) and by the Commission on Higher Education grant.

References

- Henry Gilman, Organic chemistry an advanced treatise, volume III, John Wiley & Sons, Inc., New York. 1953
- peter A.Lewis, Coating Technology Handbook, third edition, Taylor and Francis
 Group, London, 2006
- SunChemical, organic and inorganic pigments, SunCROMA pigment catalog, 2010
 Prapai Pradabkham and Neeranuch Chairungsi, Preparation of aluminium lakes by
 electrocoagulation, short communication, Mj.Int.J.Sci.Tech.2008,2(02),440-443
- Pigment through the Ages. 'Madder lake (alizarin)." [Online]. Available:
 http://www.webexhibits.org/pigments/indiv/recipe/madder.html (1 December 2011)
- 6. W. Phutdhawong, S. Chowwanapoonpohn, and D. Buddasukh, Electrocoagulation and subsequent Recovery of Phenolic Compounds, J. Anal Sci., 2000, 16, 1083-1084.
- 7. S. Chowwanapoonpohn and D. Buddhasukh, Electrocoagulation of certain organic substances, J. ACGC Chem Com., 2002, 14, 70-75.

- S.Chowwanapoonpohn, S.Chewchanwuttiwong, M.J. Garson and D. Buddhasukh,
 Electrocoagulation and recovery of tannins from tree barks, J. Appl.Electrochem., 2003,
 647-650.
- 9. W. Phutdhawong and D. Buddhasukh, Simple isolation and purification of D-pinitol from Cassia siamea. by electrolytic decolorization, J. ACGC., 2000, 10, 61-62.
- W. Phutdhawong and D. Buddhasukh, Simple isolation and purification of glycyrrhizic acid Chiang Mai J. Sci, 1998, 25(2), 87-91.
- N. Chairungsi, K. Jumpatong, W. Phutdhawong and D.Buddhasukh, Solvent Effets in Electrocoagulation of Selected Plant Pigments and Tannin, Molecules., 2006, 11: 309-317.
- 12. N. Chairungsi, K. Jumpatong, P. Suebsakwong, W. Sengpracha, W. Phutdhawong and D.Buddhasukh, Electrocoagulation of Quinone Pigments, Molecules., 2006, 11: 514-522.
- N. Phutthawong, K. Jumpatong, N. Chairungsi, S. Wangkarn and D. Buddhasukh,
 Application of Electrocoagulation to the Isolation of Alkaloids, Chiang Mai J.Sci, 2006,
 34(1): 127-133