Abstract

With considerable academic and industrial attention focused on green chemical processes, environmentally friendly nanomaterials such as zeolites have been systemically modified and tuned to meet such requirements in various industrial chemical reactions. The dehydration of benzaldoxime over Fe-ZSM-5 zeolite has thus been systematically investigated by means of the ONIOM(M06:UFF) scheme. Four different forms of iron-oxo are used for the active center of Fe-ZSM-5: a) monooxo iron cation [FeO], b) dioxo iron cation [OFeO], c) superoxo cation [FeO₂][†], and d) dihydroxo iron cation [Fe(OH)₂][†]. Both the redox and nonredox mechanisms for the dehydration process were investigated. For the redox mechanism, this route begins with the oxygen-end benzaldoxime adsorption complex. From this adsorption mode, its orientation facilitates the transfer of a hydrogen atom from the oxime-carbon to a ligand bound on the iron metal acting as a hydrogen acceptor and the transfer of the hydroxyl group to oxidize the iron metal center, yielding the formation of the nitrile product and the oxidized Fe-ZSM-5 zeolite. In a single reaction step, these two processes occur simultaneously over these iron-oxo species with the exception of the dioxo-iron cation. In the [OFeO] Z system, the hydrogen-abstraction step occurs initially and then the hydroxyl-abstraction step takes place sequentially. As the latter is a barrierless step, the dehydration of benzaldoxime over the dioxo-iron cation would, therefore, involve a concerted non-synchronous process. The activation barrier of the dehydration process is calculated to be 24.5, 11.5, 31.4 and 33.6 kcal/mol for [FeO] Z, $[OFeO]^{\dagger}Z^{\dagger}$, $[FeO_2]^{\dagger}Z^{\dagger}$, and $[Fe(OH)_2]^{\dagger}Z^{\dagger}$, respectively. For the nonredox mechanism, the initial structure is the nitrogen-end benzaldoxime adsorption complex. The nonredox process takes place via the four-membered ring structure, in which the electron density of oxime-oxygen is increased in order to promote the concerted polar elimination. The higher activation energy demand of this route is in the range of 54-58 kcal/mol over the [FeO] Z, [OFeO] Z, [FeO2] Z systems, while with the involvement of the water molecule as a co-reactant, the activation energy is slightly reduced. The barrier of the dehydration process is in the range of 40-45 kcal/mol, which is still higher than that of the dehydration process via the redox mechanism. A comparison of the energetic profiles suggest that the dehydration process would take place through the redox mechanism in which the [OFeO] T is the most reactive form of mononuclear Fe-ZSM-5 zeolite. The α-oxygen has a function in migrating hydrogen of the benzaldoxime and the hydroxyl group of substrate then leads to bond with the metal center to produce the oxidized [OFeO] [†]Z and the benzonitrile product.

บทคัดย่อ

กระบวนการเคมีสีเขียว (Green chemistry) กลายเป็นงานวิจัยที่ได้รับความสนใจทั้งในด้านวิชาการและ อุตสาหกรรม จึงเป็นที่มาของณวัตกรรมในการปรับแต่งตัวเร่งปฏิกิริยาให้เหมาะสมกับปฏิกิริยาเคมีที่ใช้ ในอุตสาหกรรมภายใต้การคำนึงถึงผลกระทบที่มีต่อสิ่งแวดล้อม ในงานวิจัยนี้เป็นการศึกษา กระบวนการคายน้ำ (dehydration reaction) ของสาร benzaldoxime บนตัวเร่งปฏิกิริยาซีโอไลต์ชนิด Fe-ZSM-5 ด้วยระเบียบวิธีการ ONIOM(M06:UFF) สี่รูปแบบที่แตกต่างกันของ iron-oxo ที่ทำหน้าที่ เป็น activie site ของ Fe-ZSM-5 อันได้แก่ ไอออนบวก monooxo iron [FeO] ๋, ไอออนบวก dioxo iron ${[{\sf OFeO}]}^{^\dagger}$, ไอออนบวก superoxo iron ${[{\sf FeO}_2]}^{^\dagger}$ และ ไอออนบวก dihydroxo iron ${[{\sf Fe}({\sf OH})_2]}^{^\dagger}$ ซึ่ง ไอออนทั้ง 4 แบบนี้จะถูกนำมาศึกษาความสามารถในการเร่งปฏิกิริยากระบวนการการคายน้ำ (dehydration process) ทั้งแบบผ่านกลไก redox และ nonredox สำหรับกลไกแบบ redox เริ่มต้นจาก การดูดซับผ่านโครงสร้างแบบ Oxygen-ended benzaldoxime adsorption complex จากโครงสร้างนี้ เอื้อต่อการส่งอะตอมไฮโดรเจนจากอะตอมคาร์บอนของหมู่ oxime ไปยังหมู่ลิแกนด์บนโลหะเหล็กและ การโอนถ่ายหมู่ใฮดรอกซิลจากหมู่ oxime ไปยังโลหะเหล็ก เกิดเป็นสารประกอบในไตรล์และ Fe-ZSM-5 ที่ถูกออกซิไดซ์ กระบวนการทั้งสองขั้นตอนนี้เกิดขึ้นพร้อมกันบนตัวเร่งปฏิกิกิริยา Fe-ZSM-5 ยกเว้นในระบบที่มี active site เป็น [OFeO] ๋ ซึ่งจะเกิดกระบวนการถ่ายโอนอะตอมไฮโดรเจนก่อนแล้ว จึงเกิดการถ่ายโอนหมู่ไฮดรอกซิลตามมาโดยในขั้นตอนที่สองนี้จะเกิดขึ้นได้โดยไม่มี activation energy จากการคำนวนค่า activation barrier ของกระบวนการคายน้ำบนระบบต่างๆนี้เท่ากับ 24.5, 11.5, 31.4 and 33.6 kcal/mol สำหรับระบบ [FeO] [†]Z , [OFeO] [†]Z , [FeO₂] [†]Z และ [Fe(OH)₂] [†]Z ตามลำดับ ในขณะที่กระบวนการคายน้ำผ่านกลไกแบบ nonredox เกิดผ่านโครงสร้าง transition state เป็นวง สี่เหลี่ยมโดยการเพิ่มความหนาแน่นของอิเล็กตรอนของอะตอมออกซิเจนในหมู่ oxime เพื่อส่งเสริม กระบวนการคายน้ำผ่านกลไกแบบ concerted polar elimination ซึ่งจากกลไกนี้จะเกิดผ่านขั้นตอนที่ ต้องใช้พลังงาน activation สูงอยู่ในช่วงระหว่าง 54-58 kcal/mol โดยเมื่อมีโมเลกุลน้ำเข้ามาเป็น coreactant ช่วยในการส่งถ่ายอะตอมไฮโดรเจนจากอะตอมคาร์บอนไปยังอะตอมออกซิเจน ค่าพลังงาน activation ในชั้นตอนนี้ลดลงเหลืออยู่ในช่วง 40-45 kcal/mol แต่ถึงอย่างไรก็ตามค่าพลังงาน activation นี้ยังคงสูงกว่าการเกิดผ่านกลไกแบบ redox เพราะฉะนั้นจากแผนภาพพลังงานจึงสามารถสรุปได้ว่า กระบวนการคายน้ำบน Fe-ZSM-5 เกิดผ่านกลไกแบบ redox โดยที่ [OFeO] ๋ เป็น active center ที่มี ความสามารถในการเร่งปฏิกิริยาได้ดีที่สุดในกระบวนการสังเคราะห์สารประกอบในไตรล์จาก สารประกอบ aldoxime