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Abstract :

The aim of this research is to calculate the quasinormal modes of the 4 dimensional
topological Reissener-Nordstrom black holes with the zero sectional curvature. The system is
perturbed by a massive and charged scalar field. We compare our result with the numerical work

We also calculate the quasinormal modes, when the scalar field perturbation alters the
electromagnetic field. We calculate the conductivity of the system at the absolute temperature. We

fond the conductivity diverged when the current is in the states of quasinormal modes.
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1. Introduction (‘l.l‘YIﬁ»’l)

Physics is the study of the physical nature and its principals. The two main important
Physics theories, successfully explaining many physical phenomena, are the theory of relativity and
quantum theory. However both theories describe completely different situations. Relativity is
suitable for the macroscopic systems or is used in the systems with the speed of the particles
within the system considerable to the speed of light. Meanwhile quantum theory is used to describe
the microscopic system, the atom-sized systems. There are attempts to search for new theories
that can describe very kinds of situations. Call such kind of these theories ‘Quantum-Gravity

Theory'. The main leading theories currently are String Theory and Loop Quantum Gravity Theory

Black Holes are the regions that the gravitation is extremely high. It is so high that even
light can not escape when enters through the horizon. This excruciating gravitation can crash down
any macroscopic particles into elementary particles and can accelerate the speed of these
microscopic particles closer to the speed of light. To under the physical nature of the black holes
we need a new theory that embraces both relativity and quantum. In other word the study of black
hole physics can be used verify the candidate quantum-gravity theories, e.g. String theory and

Quantum Loop Gravity.

One of the important puzzles of the black holes is its thermodynamics. According to
classical relativity theory, black hole entropy is very large (near infinity), but their temperature is

zero because they consume everything near them without giving anything back.

This classical black hole entropy contradicts with the first law of thermodynamics
dE =TdS

And the third law of thermodynamics, larger than zero

T>0

In 1972 Bekenstein [1] pointed out the similarity between the non-decreasing area theorem
and the second law of thermodynamics. He proposed that the area of the black hole horizon
should be proportional to its entropy. This idea contradicted the traditional idea that entropy should

be proportional to the volume of the system.



In 1973, Bardeen, Carter and Hawking [4] provided a rigorous proof of the first law of black

holes,

M = sA
8z

the second law, the non-decreasing of the horizon area of a black hole, is
oA>0

and the third law T > 0 , where M is the mass of the black hole, A, the surface area of the black

holes, is

s>

and K is the surface gravity. The temperature is, Hawking temperature

T=—
27

Their work is in agreement with Bekenstein’s idea. This new black hole entropy and temperature

are the consequence of the quantum effect of the system.

The above research has become the foundation of quantum gravity and can be used to
verify the new quantum-gravity theory candidates, e.g. Loop Quantum Gravity Theory and

(Super)String Theory

In loop quantum gravity theory, the space-times is not continuous and have been
quantized, where the smallest length is the Plank’s length. In 1996, Rovelli [4] calculated a black
hole surface by counting the quantization of the area. He found that the area is in agreement with
the entropy as Bekenstein has predicted. In 1998, Hod [5] noticed that the area of Schwarzschild

black hole horizon equals to the frequency of the quasi-normal modes of the black holes.

String theory is currently the most successful in the calculation of the entropy and
scattering cross section of the black holes, where both in macroscopic and microscopic pictures

obtain the same result [6]. This calculation agreement has led to the conjecture of the



correspondence between Anti de Sitter space-time gravity and Conformal Field Theory (AdS/CFT)
[7]

AdS/CFT correspondence has generated the extensive research on the connection
between the low effective energy string theory and conformal field theory. One of the important
connections is that the poles of the propagator, which is the Green’s functions in quantum field

theory, turn out to be the quasi-normal frequencies of the AdS black holes.

Quasi-normal mode of black holes is the phenomena that the black holes absorb and
radiate particles in certain ranges of frequency, similar to the Bohr's atom model. In other word, the
black hole radiation is quantized. We expect that the quasi-normal mode research can be used to

verify or/and test new coming quantum-gravity theory candidates.

The steps of the calculation is : a) finding the solutions to the interesting black hole wave
equation, b) fitting the boundary conditions to the solutions, only ingoing wave at the horizon and
outgoing wave at the infinity. c) taking the limit of the far away-zone solution and near but outside
horizon-zone to the intermediate zone limit. d) only few solutions and frequencies satisfy the
boundary conditions, called them quasi-normal modes and frequencies. Example of fitting the

boundary condition is in [10].

There are many models of black holes, e.g. de sitter(dS), AdS, Schwarzschild, Reissner-
Nordstram, Kerr, etc. The research in this filed is both numerical and analytical. Our work is

analytical one.

We will describe some related research as the following. In 2000, Horowitz and Hubeny [8]
numerically calculated the lowest lying quasi-normal frequencies in the many-dimensional
Schwarzschild AdS space-times. In 2002, Starinets [9] numerically calculated the higher overtones

of the frequencies in the five-dimensional Schwarzschild AdS space-times. The higher frequency

overtones, (0, are related to the lowest lying quasi-normal frequencies as

®, =0, T2n(LFi)



In 2001, Cardoso and Lemos [11] calculated the quasi-normal modes in three-dimensional
BTZ space-times. To make the solutions satisfy the boundary conditions they set the argument of

the gamma function in the solutions to be zero.

In 2003 Musiri and Siopsis [10] analytically calculated the quasi-normal modes and
frequencies in three and five-dimensional AdS space-times. In three dimension space-times, we
found the exact solutions. In the five dimension space-times, we analytically calculated the lowest
lying quasi-normal frequencies. We also perform the first-order perturbative calculation of the
modes and frequencies. Our analytical results are in agreement with the numerical results by

Horowitz and Hubeny [8] and Starinets [9].

The method of connecting the far away-zone solution and the near horizon-zone was the
standard procedure of the calculation in this field, where the calculation is performed outside the
black holes. Until in 2003 Motl [12] did not only extend the inside-black hole solution to the far
away zone-solution, but he also extended the real variable radius, r, to be a complex variable. The
extension to the complex variable allows Molt to rotate his solution inside the black holes to some
new appropriate regions. However all the physical quantity, e.g. frequencies, should not change
according to the rotation. He could be able to obtain a new constraint equation of the frequencies
and solved it, called his method ‘Monodromy’. His result, zero-order perturbative frequencies, is in
agreement with numerical results by Hod [5] and Nollert [13]. This is for the first time in

Schwarzschild space-time that analytical result agrees with the numerical work.

In 2003, Musiri and Siopsis [10] took Motl's method, Monodromy [12], extended the
calculation to the firs-order perturbative frequencies of large Schwarzschild black holes. Our first-

order perturbation result is in agreement with Nollert's numerical result [13].

In 2003, Musiri and Siopsis [15] used monodromy method to calculate the higher tones of

frequencies of large AdS black holes. Again the result agrees with Starinet’'s numerical result [9].

In 2004, Siopsis [19] calculated the large massive zero-order and first-order quasi-normal
modes and frequencies of five-dimensional AdS black holes, where all the analytical work before is
only massless case. He did not used monodromy method. The Heun’s equation is perturbed

instead. The result again agrees with Starinet’s numerical result [9].



No hair theorem e.g.[21], one of the most important assumption of black holes, states that
the black hole characteristics depend only three initial parameters, i.e. mass, charge and angular
momentum, and the black holes are insensitive to any other outside parameters. However in 2004,
C.Martinez, R.Troncoso and J.Zanelli [21] found an exact black hole solution with minimally
coupled scalar field in the topological AdS space-time. For small mass black holes, they found an
evidence of the black hole transformation from one kind to another kind of black holes when the

black hole is perturbed by the scalar field.

In 2008 S.S.Gubser [34] has studied behaviors of the simple two gauge field model near a
charged black hole in with the negative cosmological constant in 4 dimensions, where one of the

fields is Maxwell’s field, (F, ) and the other is a massive and charged scalar field, (¥'). The

M

Lagrangian of the interaction is

1 .
L=— Fi- 0,¥ —igAy| ~m?y|’

At certain conditions of the system, he found a spontaneous symmetry breaking of the gauge
invariance near the horizon. This causes the black holes going on the second order phase

transition.

There are two research plans in this project.

1. Perturbative calculation of quasi-normal modes and frequencies of the scalar field,
where there is no back reaction of the scalar field.

2. Phase ftransition of the black holes, quasi-normal modes and frequencies and
conductivity of the current near the horizon, where the back reaction of the scalar field

is considered.



1. Quasi-normal modes of the charged scalar field in electromagnetic
background
The metric in this system is
ds’ = - fdt? +%dr2 +r2hydx'dx’
2M Q? r

_7_’_ JR—
rd73 4r2d76 LZ

where M is the black hole mass, k is the sectional curvature, Q is the black hole charge and L is

f=k

the AdS radius. The horizon, r,, can be solved from the condition

f(r,)=0

In this work, we simplify the problem by setting. The Hawking temperature is of the from

T=f(r)l4n

rizdil[ 2d=2 2(2,6 2d ]
T=-2 4(d -Dr=*= —(d =3)LL r> —4kr
16'2 ( )+ ( ) (Q + +)

The field potential, Aﬂ, in this system can be written in the form of the potential, ®(r) as

A=d(r)dt

By varying ¢ and ®in eq(1), the wave equations of v and ® can be obtained from eq(1). The

simple solution of the potential, @, for 7 =0 is

o /d—Z( Q _Q )
2(d=-3)\ re2

The wave equation of the scalar field

0
ox”

NN

j—mjﬁ:I‘I’:O

where m’; =m? +g"q*®?. The wave equation is separable when its ansatz is



2d
2

W =e"r 2 R(r)S(x;)
where S(x,)is a harmonic function with eigenvalue A° =I(I +d —3), 1=0,1,2,3... To understand
the boundary conditions at the horizon and the infinity, the tortoise variable, dr, =dr/ f(r), is

introduced into the radial wave equation

di; o2 V()R =0

where the effective potential V(r)is | =0

2
fam? f+9=2¢
2r

v(n={4-20-9 i)r(d 4 ¢ 2

At the horizon, V(r — r,) = 0, only the ingoing wave is allowed in this region e~ (z-1™,

whereas in the far away region V (r - «) = «, the wave must be decayed.

In our calculation, we set k=0 and d=4. To solve the wave equation in region, I, <T <oo, let

r
define a new variable z =-—. The wave equation (4) changes to
r

2(2-D(z-2,)(2 - 2)(2-2,) L@ -Dz-a)(z - a)z-a,) T+ K@R =0
where

K(2)=(2r, 1Q) (ar,)?2* - 2 (2r, 1Q) 2% (2 -1)(z - a,)(z - a,)(z - &,)

m?r?(2r, 1Q)(z-1D(z-2,)(z - a,)(z - a,) + 49°r?(2r, /Q)' 2° (2 -1)?
-2(z-1)*(z-a,)*(z-a,)*(z-2,)* +2(z-D(z-a,)*(z - a,)*(z - a,)°
+2(z-)*(z-a,)(z-a;,)(z-a,)* +2(z-D)?*(z-a,)*(z-a,)(z - a,)?
+2(z-1)%*(z-a,)*(z-a;)*(z-a,)

a2=A+B—§, ——f(A+B)+i(A B)——, ——f(A+B)—i(A B)——
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123 2 1 23 2 1 2
AB=-—(—'3—p+miJ -y

To simplify the equation, we let

R=2%(2-1)" (2~ a,)" (2 -a,) (2-a,) F(2)

where

a, :%i%\/9+4m2L2
S wr, (2r, /Q)?
v (1_a2)(l_a3)(l_a4)
(er,)*(2r, 1Q)*
—j (az —1)2(6.2 —a3)2(a2 _a4)2
4(ar,)’ (2r. 1Q)°?
(az _as)z(az _6‘4)2

1/2

2

1/2

(ar,)’(2r 1Q)*
i (as _1)2(a3 _az)z(a3 _a4)2
4gr,)*(2r, 1Q)*
(as _az)z(a3 _34)2

3 =—

The negative sign in «; is chosen to satisfy the boundary condition at the horizon, only ingoing

wave. To simplify the equation, take the term

Za0+l(z _1)a1+l(z _ aZl)a2+1(z _ a3)a3+1(z _ a4)zu+l

out from the equation.

Z(Z _1)(2 - a1)(z - az)(z - a3)(z - aA)%"' 2050 (Z - al)(z - az)(z - a3)(z - a4)((jj*|;

+(1+2a))z(z-a,)(z—a,)(z —a4)(:j—':+(1+ 2a,)2(z—a,)(z —a,)(z —aA)z—':

+(1+2a,)2(z—a,)(z—a,)(z —a4)(3j—';+(1+ 2a,)2(z—a,)(z—a,)(z —as)?j—';
+JF=0

where



J= A+ oy +2a0))(2-3,)(2-8,)(z—a,) + L+, +2a,a,)(2 -3, )(2-a,)(z - a,)
+ @+, +2a0a5)(z-a,)(z-a,)(z—a,)+ L+ o, +2a,a,)(2-a,)(2—-a,)(z-a,)
+(a,+a, +20,0,)2(2 - 8,)(z—a,) + (o + a5 + 20,2,5)2(z — @, ) (2 — a,)

+(a+a, +2040,)2(2-a,)(2 - 8,) + (o, + oy + 20,a;)2(2 -3, )(2 - a,)

+(a, +a, +2a,0,)2(z—a,)(2-a;) + (o + a, +20,02,)2(2 — a,) (2 - a,)

4r?
-2 Q+ z+m?L’[2® —(a, +a, +a, +a,)2%]

2

(z-a,)°+(4a, —a, —a, —a,)(z—a)" +| +(a —a,)(a —a;) +(a, —a,)(a, - a,)
+(al ’aa)(ai 7a4)
Jral(ai 7a2)(a1 7a3)+al(a1 732)(31 —a4)+a1(a1 7a3)(a1 734)+(al 732)(31 7a3)(a1 734)

_az (az _a1) +a, (az _aa) +a, (az - aA)
(Z_az)

~

+a

a1(a1 7a2)+ a1(a1 7a3)+a1(a1 734)
(Z_al)

1

(z-a,)° + (48, —a, -2, —8,)(2-a,)* +| + (2, —a,)(@, —8;) + (3, —a,)(a, - a,)
L+ (a, —3;)(a, —a,)
+a2(az _ai)(az _aa) +a2(az _a1)(az _aA) +a2(az _aa)(az _aA) +(az _a1)(a2 _aa)(az _aA)

[a,(a; —a,) +a;(a; —a,) +a;(8; - a,)
(z-a,)

~

+a,

ol (2*33)3 +(4a, —a, —a, -a,)(z ’as)z +|+ (@ —a)(a; —a,) +(a; —a,)(a; —a,)
: L+(a; —a,)(a; —a,)
+ay(a; —a)(a; —a,) +ay(ay —ay)(a; —a,) +a,(a; —a,)(a; —a,) +(a; —a)(a; —a,)(a; - a,)
>a4(a4 _a1)+aA(a4 _az)“’ a4(34 _aa)

](z—aa)

a? (z-a,)°% +(4a, —a, —a, —a,)(z-a,)> +| +(a, -a)(a, —a,) +(a, —a,)(a, —a,)

L+ (a4 _aa)(aA _aa)
+aA(aA 731)(34 7a2)+34(aa 73’1)(34 7a3)+34(34 732)(34 7a3)+(aA 7a1)(a4 732)(a4 733)

Let divide the wave equation with the term

(z-a,)(z-a,)(z-2a,)
We expand the solution near the horizon by defining the variable y =1-12

d2F
dy?

yl-vy)

1- 1- 1-y) | dF
+{1+ 20, — (L+ 20y +20,)y — (L+ 2a2)1{(a;’)y—(1+ 2a3)M_(l+ 2““)1{(614%}@
1 ~

_ JF=0
(l-a,-y)d-a,-y)1-a,-VY)

Near the horizon y ~ 0, we can approximate J as



1
(1_32)(1_a3)(1_a4)
o, +a,+200a, Loatast 2o, Loata,t 20,0,

J J(y=~0)

=l+a,+2a,0, +

1-a, 1-a, 1-a,
~ A4r’1Q° . m’L?p N al [0—5k + p]
(1-a,)2-a)A-a,) (@-a,)l-a)1-3a,) (@-a,)1-a,)1-a,)
, _
o 3 2 2 3 2, P
1-a 5a, —k)(1-a 10a; —4ka,)(1—a,) +9a; —5ka
ey & 68, 08, 008? b)) 1982 -kad + P
, -
a; 3 2 2 3 2, P
1-a 5a, —k)(1-a 10a; —4ka,)(1-a,) +9a; —5ka
+(1—az)(1—a3)(1—a4)_( 5)” + (53, —k)( 5)° +(10a; 3)( 5) +93; 3+a3:|
, -
a, 3 2 2 3 2, P
1- 5a, —k)(1- 10a; — 4k 1- 9a; -5k
e ayiay | )+ B2 -a)" + 100 —dka,)(-a,) < a4+aj

Mr

where k :8 >

. After approximated, the wave equation is reduced to

d

2
F
]__
yl-y) ay’?

+{1+ 2a, — (1+ 20, + 21, JLr2e, 12, +1+2a4)y}dF—JF =0

l1-a, 1-a, 1-a, dy
which is the Hypergeometric function.

d2F
dy?

yd-y) +{1+2a1—(1+a+b)y}?j—F—JF:0
Yy

where

ob by 20 L2 142, Jr\/(%m1 L+2a, 1+2a, 1+2a,, |

To-a,) 20-a,)  20-a)" To-a,) 20-a,)  2(-a,)

To check our result, we will make certain approximation and compare our approximated

result to the numerical work [35].

2.2 2 2
4mrS+A°)/Q ata, ata; onta,

J=l+a, +20,a, —
© (l-a,)-ay)(1-a,) 1-a, 1-a, 1-a,

We keep only the linear terms of «, the small frequency and small charge in J, as the zero-order

perturbation. At the horizon, y=0, the wave is only ingoing into black hole. Then the solution is



R(y) = y“2F,(a,b;c;y)

From the property of the Hypergoemetric functions,

rc)r(b-a)

TR e are-b)

F(a,bja+b-c+11-vy)

+(1-y) @) F(c-ac-bic—a-b+1l-y)

In this far away zone the solution behavior is in the form of

R(z) = (constant)z“" + (constant)z“-

The solution must be finite in this area. However

0507:1—1\/9+4m2L2 <0, for m’L* > -2

2 2

this case 2" — w0 as z — 0. To eliminate the divergent term we set the constant in the front of

the second term in eq(7) or eq(8) to be zero by letting the arguments of gamma function

dominators be negative integer number, N=0, 1, 2, 3, ... i.e.
(@ —>x or Ifh)—x
From the property of Gamma functions, their arguments must be

a=-n, b=-n

aand b can be expressed in the terms of ¢, @,, a,, a;, o, as

1+ 2a

ab=o,+a

1+2a, 1+20, 1+2¢, 1+2a, 1+2a,
+ + + (@ + oy
21-a,) 2(1-a,) 2(1-a,)

=-n

or

1+ 2¢, +1+2a3 +1+2a4)+J 0

n? +n2a, +2a, +
(1—32) (1_33) (1_a4)

+ + +
21-a,) 2(1-a;) 2(1-a,)

4)2—J



The approximated quasinormal frequencies are solved from the above equation and are

compared with the numerical result with the specific parameters as the following

|m(w) —10} . A f

—15+ " 4

1 . . . 1 . . . ! . . . ! % . . L A

0 2 4 6 8
Re(w)

Figure 1 The frequency plots between the real part on the x-axis and the imaginary part on the y-
axis where q =0, L=1.1, r, =Q=1 and m2L2=4. The markers B and A represent our result and

numerical result [35] respectively.
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Figure 2 The frequency plots between the real part on the x-axis and the imaginary part on the y-
axis where q =1, L=1.1, r, =Q=1 and m2L2=4. The markers B and A represent our result and

numerical result [35] respectively.



Our result is consistent with the numerical work. The slops of the both graphs in figure 1 and 2
are approximately -0.4. The space between the allowed frequencies is equally separated when the
number n is large. The quasinormal frequencies are a discrete set of complex number with the

equally spacing. This result is similar to those in many literatures, e.g. [17].

As the conclusion in this part, we make certain analytical approximation to the wave
equation in the system, where there still some other numerical results that we have not
approximated and compared with yet. Our further work is that we can take this approximated
solution as the zero order perturbation and then perform the first order perturbation. The result can

be compared with the available numerical work with various parameters.

2. Phase transition of the black holes, quasi-normal modes and frequencies and conductivity

of the current near the horizon, where the back reaction of the scalar field is considered.

In the section we still study the Lagrangian

1 . 2
L=—,Fi—[o,¥-iA,¥ -m?| |’

In the first section, we take the Maxwell’s scalar field to be @ = ﬁ dQ3 - ?3 ,
2d-3)(r°= r”

when the perturbative scalar field, V¥, is zero or small. However in this section, the black holes

have no charge and the scalar field, ¥, don’t have to be small, then Maxwell’s field does not have
to be the same as in the previous section. The Maxwell’s field and the scalar field will couple each
other in the wave equations. We have to solve both wave equations together. Before doing that, let

us explain some properties of this system. The metric in our case is

ds* =~ fdt" +dr® + r°h,cX'dx’

2M  r?

where f =k —?4—? and the black holes has no charge and the sectional curvature k =0
r

2M( r? r2 2ML?
f(ry=""2 “1|=—1-
) r (ZML2 J LZ[ rs j

The singularities can be solve from setting f(r)=0. The outside singularity is the horizon, r,




r=@M), = (ZMLZ)“{—;HQ, r, = (2ML2)“3(—;—ifj

The wave equation of the Maxwell’s equation, A# and the scalar field ¥ are obtained by varying

the Lagrangian., %and % where FW :G#A/ —GVA”,

To simplify the problem we let the potential to be only scalar potential

A= gt

and we let “I" =1 . Two wave equations are in the forms of

2 2
d z//+(df/dr+d—2sz//+¢W_mW:O

dr? f r )dr f f
d? d-2d w2
7?+77¢_L¢=
dr r dr f

In the scalar field i equation, there exists a non-linear term in ¢ . The same as in the scalar

potential ¢, there also exists the non-linear term in .

r
We have to solve the equations in the far away region, then let z =—= and f(r) becomes
r

r? .
f= L2+Zz @-z°)
Both wave equations change to
d%y s d s 1-2* |dy  ¢°L* m?L?
+(1-2°)—(1-2°)-(d-2)———= |—+ - =
dz? ( ) dz( )-(@-2 z dz r+2(1—z3)"y zz(l—zs)w

d’g (d-4)dg 2p°L° =0
dz? z dz 72°(1-72°)

In far away region the electric potential and the scalar field are of the forms



¢z,u—r£3+

v :ZanZnJrAi
n

where u and p are constant and

d-1. [(d-17?

A =% +m?
T 4

In [36] the scalar field y can be approximated as

1 bZ 2A-3

v ~——=(3-A)(bz)** tanh(j
N a

The simple Maxwell’s field can be written in term of component as A = (0,0, Ay ,0) . To simplify the

problem we consider for the low bound of A as

3
A=—
2
The potential V then can be written as
2 3
2 rr(1-z°) ,
V = 2 fl// = 2? 22

2A-3
V = (3-A)’b°r?(1-z*)(bz)**™ tanhz(t;f)
where the parameter b is approximated from [36] as p4 — <(2A >Z)M;3 or V(z) in term of the
— A)r!
variable z is
V ~cz(l-z°%)
Where the constant ¢ = % L*r’b® tanh? (1) . After put everything into the wave equation. It

becomes

-(1- z3)di(1— 23)2—A+VA= o’ A
z z

L2a)2
2
+

2
(23—1)2%+322(23—1)?1—A+cz(z3—1)A+ A=0
z z

From the identity
2°-1=(z-1)(z-a,)(z-a,)



1. .43 1 .43
and a2=—5+|7, a3=—§—|7.

The solution of the Maxwell’s field, A, can be put in the form as
A=(z-D"(z-a,)"(z—2a;)" F(2)
where
o ioLa,
e, R ar, ' ° 3r

+

ol _ _lala, 3

The minus sign in the front of the frequency is chosen to represent the ingoing wave at the horizon
and each singularity. After separate the singularities from the field A to be the field F, The wave

equation becomes

2
(Z _1)al+2(z _ az)a2+2(z _ as)a3+2 d Iz: + 20(1(2 _1)a1+1(z _ az)a2+2(z _ as)a3+2 di
dz dz
+2a,(2-D)“"%(z-a,)"(z-a,)“" (:TF+ 2a,(z =) (z-a,) " (z—a,)“" (:TF
z z

+ay (o, -D)(z-D)(z-a,)""*(z—a,)""*F +2o,, (2 - 1) (z - a,) " (2 —a,)“"°F
+2o0,(2 -0 (z2-a,) " (2 -8,) " F + ay (o, ~1)(2-1)*"*(z-a,) (z—a,)*"’F

+20,0,(2 =D (2-a,) ™ (2 -a,) " F + ay(a, —)(2-)*(z-a,)*(z—a,)*F
132 —D%“(z—az)”ﬁl(z—ag)%“‘;': 1302221 (1-a) " 2—a,) " F
30,72 (-0, (2-a) " F 130,721~ (2-a,) " (2—a))* F

e -a)e-a) F R ) a-a) -a) F=0

+

After being taken the term (z—1)“"(z—a,)“*" (z—a,)*™ out from the equation, the wave

equation reduces to.

d’F 1+20:1+1+2012+1+2053 dF cz

>+ + F=
dz z-1 z-a, z-a, |dz (z-D(z-a,)(z-1(z—a,)
d’F dF
1-72° + (-6, —32*)—-czF =0
or ( )OIZZ (-6, )0IZ

To further reduce the equation we set

F=e*’H
In term of the field H, the wave equation is



(-5 6020 +32) M L 002 (1- 25)H —3a, (6cr, + 322)H —czH =0
a oa e 1% -

What we are interested is the physical properties of the system at the absolute temperature, where
r

Z = . The temperature of the black holes is
r

3M 1/3 3r1/3

4 an?

204
O,) L
Thenas T —0, r, - 0. From Cz%L“bzn2 tanh? (1) =Ltanh2(l) ~i, then
r r

+ +
(0,)*L* tanh? (1)
r
At the absolute temperature, the equation is simplified to

2 2
d’H —(cz+9il JH ~0

CZ —>

dz?

Let define the variable

2L2
1/3
y=C"7-75
2
then d :l -yH =0
dy

There are two solutions to this equation, the Airy functions

i =k 2y
A'(y)—”\/gKl/z(Sy )

Jy

. 2 2/3 2 2/3
Bi(y) = 7Z'\/§|:Ill3(3y )+ |71/3(§y )}

At y=0 the Airy function Bi(y) diverges. However at the absolute temperature, the horizon shrink to

zero, for which very value of z the solutions must be finite. The only allowed solution in this case is

Wy
73

212 1/2 202 3/2
:m@ c'vz— IR Ki/s 5 C z——cm

H() = Ai(Y) = Ky (5 y)




2
K1/3(§ y*'?) is a modified Bessel function, where

Kys(x) = %[Lus(x) - |1/3(X)]

or

Jy

. 2 2/3 2 2/3
Ai(y) = 3[|1/3(3y ) |1/3(§y )}

From our Maxwell’s field which is written as A= (z —1)“ (z —a,)* (z —a,)“ e’ Ai(z) , i.e.

A(2) = (z-1)" (z-a,)" (z - a,) " ™ Ai(y)

2,2 1/2
z(z—1)"1(2—az)"Z(z—a3)“3e6”{c”3z—w L }

213
c

X|:|1/3(§<CU3Z -0’l? /C2’3)3/2)_ |1/3(§(01/32 — 0?2 /C2,3)3/2]:|

1
the Maxwell’s field can be expanded in the far region in term of — or z as,
r

@
A(z) = A® A
r

I dA(0) .
r dz
Therefore from the expansion of the Airy function, Ai(y), the first term in the above equation is

(Hal) IUS[ZHC‘L)SJ—IH{ZH“L)BJ

=A(0)+

X

0) _ D A
A° —azag(acm ~

)& (x/2)*
where the modified Bessel function |, (x) =| = Z¥ when its argument is a
2) = KI(v+k+1)

complex number
N3 +1/3 2k
. - = —x12) .
O () S I Xy
ﬂ/s(( i) X) ( 5 ék!l"(il/3+k+l) (1) 3415 (%)

Therefore the first term in the expansion is of the form

3 3
AO — gsigs Ok { JU{Z(a)L) J+ Jll{Z(a)L) H

3cl® 3c



The second term in the far way region expansion can be obtained by differentiating the Maxwell's

field respect to the variable z,

dAZ o —. a (o2 o2 H (22 oy —. a: o H
) ) 2 2) (2 2 e A (- (- ) 2 -2 e A(Y)

(2 -D)% (2-8,)" (2-8,) 15 Ai(Y) + 60z, (2 1) (2 - 8,) (2 - ;) “ € Ai(y)
F(2-D)% (2-a,)" (2-a,) e diAi(y)
z

where the derivative of the Airy function is

%Ai(z) = %%\N[I s (2y¥213)=1,,4(2y*2 13)]

3 1/3 d

= (2) E(Zym /3)1/3[| 71,3(2),3/2 /3)— |l/3(2y3/2 /3)]

:(3j1/3 d(2y3/2/3) d 2y3/2 1/3 I & y 2y73/2
2 dz d 2y 3 | 3 | 2

3
From the Bessel properties
d 1/3 1/3 d 1/3 13
&X |,1/3(X):X |2/3(X)1 &X |1/3(X): X |72/3(X)

The derivative of the Airy function is reduced to

d . 2 3/2 2 3/2
4 Ai(z) = CU3Y|:|2/3[y3J - Izm(ygﬂ

Again the derivative of the Maxwell’s equation is

dAZ ;- a a: iz A 122 ay— a az p
) - 22" (- a,) e AI(Y) + 0 (-1 (2 2,) (2 - a,) e AL)

Fay(2-D)" (2-a,)" (2 - a,) e Ai(y) + 6, (2% (2 - 3,)“ (2 - a,) €* Ai(y)

" " " v 2 3/2 2 3/2
HZ-D%(2-a,)" (2-a,) et c“ay{lm(yg J—Im[yg H

After the derivative, we substitute z=0



—d’;(zo) =, (-1 (-a,) (-a,)™ Al((HeL)? 167 )+ o, (-1) % (~a,) ™ (~a,) “ e°* Ai((-iwl)? /¢2)
+ay (1) (~,) (~a5)“  Aif(—iwL)? 1 ¢2° )+ 6a, (<1)“ (—a,)“ (~a;)“ Aif(—iml)? /¢?°)

@ @ ai 2(-iwl)? 2(-ial)®
+HED™ (-a,) " (-2,) c“y{lm(3C | T
From the relation of the conductivity in this system

(3 Q) _ i) AP ir dA©O)

ole) =gt =g oA oA®  0A0) dz

X X

finally the conductivity at the absolute temperature can be written as

a0, e )
O e e

At this absolute temperature the frequency @ is possibly be real number. From this equation the

conductivity is complex number, the real part of o, =1 and the imaginary part is

(@) =i 9,5(20°L° 13¢) -3, ,(20°L* 13¢)]
N KN PP PR CPSTRNE ™|

The real and imaginary parts of conductivity can be plotted against the frequency @



The conductivity, o(®), diverges at some values of the frequencies @ which satisfy the constraint

20°L3 20°1°
J-lls(gcJ + 31/3(3(: =0

or the dominator in the conductivity equation is zero. The frequencies that satisfies this equation is

actually the quasinormal frequencies and the solutions to this frequencies are quasinormal modes.

The divergences of the conductivity at these frequency values imply that there is a
tendency of the discrete energy values of the current in the system. Or it means that there are

discrete energy levels of the charge particles or the allowed states of the current.

As in the conclusion of this section, our work is to make the approximation to the wave
equation, i.e. at the absolute temperature and the potential at the lower bound and solving for the
solution, which in this case is the Airy function. Many physical properties and quantities can be
studied and calculated from this approximated solution e.g. the conductivity. We can take this
approximated solution as the zero order perturbation and calculate the first order where the
temperature is not zero but small. We can also extend our work by studying the case that the

potential is not at the lower bound and solve for a new approximated solution.
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We discuss holographic superconductors in an arbitrary dimension whose dual black holes have
scalar hair of mass near the Breitenlohner-Freedman bound. We concentrate on low temperatures
in the probe limit. We show analytically that when the bound is saturated, the condensate diverges
at low temperatures as | InT|?, where § depends on the dimension. This mild divergence was missed
in earlier numerical studies. We caleulate the conductivity analytically and show that in the zero
temperature limit all poles move to the real axis. We obtain an infinite tower of real poles which
are determined by the zeroes of the Airy function in 241 dimensions and the poles of the digamma
function in 3+1 dimensions. Our analytic results are in good agreement with numerical results
whenever the latter are available.

PACS numbers: 11.15.Ex, 11.25.Tq, 74.20.-z

I. INTRODUCTION

Using the AdS/CFT correspondence [1] it has been shown that if an abelian symmetry has been broken outside of
a black hole in AdS space, scalar hair can form creating a holographic superconductor in the dual CFT[2-5]. In the
last few years it has been seen that these systems exhibit several characteristics seen in real world strongly coupled
superconductors and seem very promising. The AdS/CFT correspondence has also been applied to other areas of
condensed matter physics [6-0]; some reviews are [10-12].

Studying the conductivity of holographic superconductors, Horowitz and Roberts [4, 14] noted that at the
Breitenlohner-Freedman (BF) bound of the scalar hair of the dual black hole, quasinormal modes appeared to move
toward the real axis at low temperatures. Once the back reaction to the metric was included, they showed that
the quasinormal modes never became normal. Their number was determined by the height of an effective potential
associated with the wave equation of an electromagnetic perturbation. The study was done numerically which limited
the ability to go to very low temperatures.

Using the analytic tools developed recently in [15], we explore the zero temperature limit of holographic supercon-
ductors near the BF bound. We find that in the probe limit, when the BF bound is saturated, the condensate diverges
at low temperatures as |InT|®, where § is a constant that we compute and depends on the dimension of spacetime.
This is a very mild divergence which explains why it was not detected in earlier numerical studies [4]. It signals the
breakdown of the probe limit at very low temperatures. When back reaction to the metric is included, the effective
potential associated with the electromagnetic perturbation that determines the conductivity has a finite height. This
results in a finite number of quasinormal modes. As one approaches the probe limit, the height of the potential
increases with an attendant increase in the number of modes. The latter approach the real axis as the temperature
is lowered. In the limit of zero temperature at the BF bound, we obtain infinitely many modes whose frequencies we
compute exactly. In 241 (3+1) dimensions they are given in terms of the zeroes of the Airy (poles of the digamma)
function.

Our paper is organized as follows. In section II we discuss solutions to the field equations at the eritical temperature
and near zero temperature in the probe limit, In section III we caleulate the conductivity at the BF bound at low
temperatures. Finally, section IV contains our concluding remarks.

*Electronic address: siopsisQtennessee.edu
tElectronic address: jtherrieGiutk.edu
tElectronic address: suphot@swu.ac.th



II. FIELD EQUATIONS

We are interested in the dynamics of a scalar field of mass m and electric charge g coupled to a U(1) vector potential
in the backgound of a d + 1— dimensional AdS black hole. The action is

Rtdd—1)/* 1
s :/dd“s/—_g [%G}’{— TFueF™ — |8 — igA,) V[ —m2|'-I-'|2] (1)

where F' = dA4. We shall adopt units in which I = 1.
To find a solution of the field equations, consider the metric ansatz

2o L = 2 gz, 42

ds? = — | —f(z)e™Xdt? 4+ 3 4 (2)
2 fz)

where ¥ € R?!, representing an AdS black hole of planar horizon. The AdS houndary is at z = 0. We shall choose

units so that the horizon is at 2 = 1, therefore we require f(1) = 0. This is possible becanse of scaling symmetries

of the system and can be done without loss of generality as long as one is careful to only consider physical quantities
which are scale invariant.

The Hawking temperature is
!
T=_f4{?:)e—t{1] (3}

Assuming that the scalar field is a real function ¥(z) and the potential is an electrostatic scalar potential, A = &(z)d¢,
the field equations are [3]

1 r . 252X 2
w”+[£—l—%]xp’+[“’” m}\l-' -0

F 2 2 f
"+ [%_ d;S] - 2‘;?2@ =0
—d—;x' +207 4 —zqzjf':@zex -0
foa e L AN g S0 @

where prime denotes differentiation with respect to z, to be solved in the interval (0, 1), where z = 1 is the horizon
and z =0 is the boundary.

We are interested in solving the system of non-linear equations (4) in the limit of large g (probe limit). To this end,
we shall expand the fields as series in 1 /g as follows:

bd

1 1
—|:\I‘g+\1f1—?+.,,}
q q

1

1
4= Hiceiere. ]
q q

f= fu+f1q%+...

1 B
x—xg+x1q—2+... (5)
and consider the zeroth order system (g — oo) first and then discuss the addition of first-order (Q(1/4%)) corrections

in order to obtain a physically sensible system.
Near the boundary (z — 0), we have f — 1, x — 0 and so approximately

U BlE) A% Py pri? (6)

faz
&i:gi %—!—mz (7T)

where



While a linear combination of asymptotics is allowed by the field equations, it turns out that any such combination is
unstable [20]. However, if the horizon has negative curvature, such linear combinations lead to stable configurations
in certain cases [21].

Thus, the system is labeled uniquely by the dimension A = A. The mass of the scalar field is bounded from below
by the BF bound [18], m* > —d—:' and there appears to be a guantum phase transition at m? = 0. There is also a
unitarity bound that requires A > %.

Demanding at the horizon

d(1)=0, (8)

(gange choice ensuring that A = @dt is regular at the horizon [2]), u is interpreted as the chemical potential of the
dual theory on the boundary. pis the charge density on the houndary and the leading coefficient in the expansion of
the scalar yields vacuum expectation values of operators of dimension A,

(Oag) = v2UH (9)

The field equations admit non-vanishing solutions for the scalar below a critical temperature T, where these operators
condense. In view of (6) and (9), it is convenient to define
1
U(z) = —b222F(z) , b= (qg@a)/> 10
()= 5= F ) (40s) (10)

with F(0) =1.

Ahove the eritical temperature, ¥ = (0 and the field equations are solved hy the AdS Reissner-Nordstrom black hole
with flat horizon,

d—2)p* d—2)p°
fz)=1— (1 4 1 e ) 21y % )" 1) . x(2)=0, &) =p(1-2%?) (11)
whose Hawking temperature (3) is
m_d (d—2)%p* ;
T=y [1 e (12)
The corresponding scale-invariant quantity (reduced critical temperature) is
. T
TR £

Right at the critical temperature, W obeys the scalar field equation (4) in the Reissner-Nordstrom background (11}
with p = p.. Thus F (eq. (10}) at T = T obeys the field equation

TO2A41-d d—A)1—f)+=f 1 zd-2)2
Frf+[f7+ . :|Fi'+|:‘&( )(zgff} f +q2.|93( J—g ):|F=D (14}
For a given g, p. is an eigenvalue which is determined by solving this equation for F subject to the boundary condition
at the AdS boundary F () = 1. We also demand that at the horizon F(1) be finite, and that there he no contribution
of the other solution (behaving as F(z) ~ 29-22 as z —+ 0). The latter condition implies that F has a Taylor expansion
around z = 0 with the properties F/(0) = 1, F’(0) = 0 (as can be easily deduced from (14}).

To solve eq. (14) for large g (probe limit), use the expansion (5) to write

1 1 1
F:FD+F1g_2+--~ ) p=E|:PQ+P1g—2+...j[ (15}

Then at zeroth order (g — oo limit), the background (11) turns into an AdS Schwarzschild black hole, so
folz)=1—-22, x0=0 (16)

and we obtain the field equation at the critical temperature

1 [ d

d—2 d—242
1 (1—2’ }
_FD+; 1—=2d

z
l_zdF°=ch_(1—zd)? Fo (17)

_23_1] Fy + A?
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FIG. 1: The critical temperature T. vs the scaling dimension A for d = 3 (left panel) and d = 4 (right panel). Data points
represent exact values; solid line is obtained by minimizing (19) with the trial funetion (20).

which yields the estimate of the reduced (eq. (13)) critical temperature

Ly (18)

The eigenvalue p2, minimizes the expression

_ fo de (1 — 2R + A% 2 Fo(2))%)

Poc = T dsi an B R OR (19)
We can estimate the eigenvalue by substituting the trial function
Fo=Fa(z)=1—az®? (20)
which obeys the boundary conditions F,(0) =1, F,(0) =0 and F.(1) is finite.
For A= % and d = 3,4, we obtain, respectively,
pR.~63, 42 |, T.=0.15./gp, 0.2(gp)'/? (21)

in very good agreement with the exact T, = 0.15, /gp, 0.25(gp)Y/2. In fig. 1 we extend the comparison to the entire
range of the scaling dimension A for d = 3, 4 demonstrating the accuracy of the estimate (19) with the trial function
(20) for the critical temperature (18).

Next we consider the zero temperature limit. Because we are working in units in which the radius of the horizon is
fixed (z = 1}, in this limit, T — 0 (eq. (13)) whereas T is bounded. Therefore, p —+ oc. Also the condensate diverges
in these units for the same reason, so b — oo (eq. (10)). We are interested in calculating scale-invariant quantities,
such as (O3 /T, ~ b/ (gp)*/13-1),

We shall consider the probe limit (g — oc) and then disenss how first-order corrections (in a 1/g expansion) can
be added to obtain a physically meaningful system.

In the probe limit, as we lower the temperature, Fy(z) (eq. (15)) has a smooth limit as T — 0 for A= A_ < %
This is not the case for A=A, > % and care should be exercised in taking the zero temperature limit in that case.

We need to solve the system of zeroth-order equations,

B ol i . D22 1
=¥ +E{l—zd_1_2A]FD+ 1 zd FD_(J—deZQ‘gFD = 4
d—3 28 ,2(A-T)
o — . @E—ﬁﬁ‘éig =0 (22)



wr

Let us first discuss the T = 0 limit. It is evident from the field equation for @4 (and can be easily confirmed numerically
for arbitrary regular functions Fo(z)) that & — 0 as b — oo for z = 1/b. Then for = = 1/b, we obtain

A A
F =AF[=, 112 23
()= AF (G 11 -2) (23)
which is regular at the horizon. At T =0, this is valid in the entire interval, becanse 1/b — 0. We deduce the T =0
function
r*1-%) A A :
Fo(z) = mﬁ- (? o Ll—z ) (24)

where we used Fy(0) = 1 and standard hypergeometric identities.
Next, we wish to solve the equations close to but above T' = 0. To this end, we shall use iteration as follows,

no 1 d 1 AZad - 4
_ plntn) 1 ‘ pim F[n+1] 2 Jad Hlrtihz pln)
g &l g 1— 29 (1_zd)z[° o
2 (n+1). d—3. n i n)21(n -
g“:] +1n - -I’f] +1) — {Fé )Ez‘i’nt] +1) 0 (25)
starting with
=1, #x=0 (26)
We defined
dy(z) = pdo(z) , Bo(0)=1 (27)

where g is the chemical potential.
At the nth step, we obtain for the scalar field

r =z Az
FS"H)(Z}I . }_1(2) |:1+#2f 1 ZM (z )2A+l d}— [d,{n+l) r)]zFé_n](Zr)l

_}'2 / — .r}d(" ):!A+! d'}- }[ﬂ:»[“"'” ]ZFfﬂJ (28}
where
R B Y zd28 A A 4
}_l(z}—F(E.E.?,_z ) , Fa(z) = Fi ZQF(I E'l i Q—T_z ) (29)

and we imposed the boundary condition Fé"H]{'D) = 1. At the horizon, this function diverges. Demanding regularity
at z = 1 fixes the chemical potential p.
For n = 0, we obtain for the electrostatic potential

A ((bz)ﬂ) k(%) y ((szQ‘ )] ,_d-2 (30)

A B a7 2A

where we imposed the boundary condition (8). Notice that the second Bessel function has an exponentially small

coefficient, O(~ e_ZE'A*'rAj, and can be neglected at low temperatures.
The charge density is found by using (6) and (15) to be

&(z) = (b2)"T

2
I(m(24)

bf._iZ - (aﬁ)zu 31)

For the scalar field we obtain

e =R |1+ [ o PR @B ER] - e [ R e
(32)
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FIG. 2: The field F (eq. (10)) for A = 1.2 (left panel), 1.4 (middle panel), 1.5 (right panel) and d = 3. Sclid curves are

first-order analytic expression (32), and dashed curves are exact numerical results (almost indistinguishable) at T /T ~= 0.1.

The logarithmic singularity at the horizon is found using

LU TE) o TE-3)
Fi(z) —T%Jln(l—na}. Fa(z) —m]ﬂ(l—z) (33)

Near the horizon, we deduce

r() (22
) WY b T ST TP s cx N S ) 3§ O (34)
£ r4(%) YT @A -g
where
L | 4
w= [ {Z R [0, i1 (35)
Demanding regularity at the horizon, we need
T 2A (2 — A
Co) (14 ptag) - — L)z, g (36)
2(3) (d—24)12(1—3)
which fixes the chemical potential g,
T(®— A rz A
A 2—Ir(3) e (37)
2 @—20)rErE(1-5)
Explicitly,
p 2 i
W R e (38)
BA+2-d (9A) 2T (u) TP (d—2A)T2(v)2T (SR
Evidently, for A < %‘ az/a, —+ 0 as b — oo, therefore
= 2 ZAVP2 _ A
#2 RﬂCbZA+2_d, = [d QA){QA) F[U]F{T)F (1 ?] (39)

(d—2)T(1—v)T(2 - 22 )T2(5)

It is easily seen (using standard hypergeometric identities) that the low temperature expression (32) reduces to the
T =0one (24) as b — oo in the entire interval [0, 1].

Before we consider the next iterative order, we note that at finite temperature, the first-order expression (32)
is in excellent agreement with numerical results even at T/T. ~ 0.1, which is the lowest temperature at which
a numerical solution is available. This is shown in figs. 2 and 3 in which the corresponding curves are almost
indistinguishable, implying that the next iterative order introduces negligible corrections to the first-order expression
(32) for temperatures T/T. < 0.1.

We can repeat the above steps for the next iterative order to calculate Fézl and 'ilff]‘ The resulting functions are
very close to the their first-order counterparts, showing that the iteration converges rather rapidly. In fact, the second
order quantities are subleading in 1/b and vanish as b —+ oo (I" — (). This is the case for all values of the scaling
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FIG. 3: The field F (eq. (10)) for A = 1.6 (left panel), 1.8 (middle panel), 2 (right panel} and 4 = 4. Solid curves are first-order
analytic expression (32}, and dashed curves are exact numerical results (almost indistinguishable} at T' /T ~= 0.2.
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FIG. 4: The second order correction to the scalar field F for d =3, A =14 at b= 20 (T /T, ~ 0.1) (solid line) and b = 200
(TT. ~ 0.01) (dashed line).

dimension A. In fig. 4, we show the difference between second and first iterative order for d = 3, A = 1.4 (all other
(2

values of A are similar). The error (1— %’m) is less than 0.05 in the entire interval [0, 1]. As the temperature decreases

from T/T, ~ 0.1 to T/T. ~ 0.01, the erl?ar decreases to less than 0.01. To demonstrate that the error is subleading

in 1/b, in fig. 5 we plot it at the mid-point (z = 5[) as well as the horizon (z = 1) (at 2 = 0 the error vanishes by

design). Evidently, it goes to zero as 1/b, showing that the second iterative order introduces subleading corrections

at low temperature.
For the charge density we deduce from (31)

po ~ b+ (40)
Using

@ 1/A . ! L I |
L W (1)

we finally obtain

d
(e 5)13‘ A TN A=
vt SN i) 42
T, N\E (42)
showing that the condensate diverges as T — 0. The exponent depends on the dimensions of the operator and space-
time. The expression for the exponent in (42) corrects an earlier analvtic result [15]. The constant of proportionality
~ can be found analytically. It is plotted in fig. 6 vs A. As A approaches the BF bound, v — 0, showing that the
power law behavior changes, as we discuss next.
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FIG. 6: The parameter v in the low temperature expression (42) for the condensate vs A. Curve on left (right) is for d = 3
(d=4).

d

Indeed, at the end point (BF bound), A = %, we need to exercise care. Letting A = 5 — ¢, we obtain from (37)
and (38),

1 d—2)[(2 1 1

— = ( ,.}(d) — — =5+ (43)
1o PU-30(1 — 3) | 260772« 2ed?

and taking the limit € —+ 0, we deduce at the BF bound

2

W d21-3T(1 - 2)
b

(d—2)T(3)[Inb+ Az + o(k°)] (44)

where 3 is a constant that depends on the dimension and is easily computed (e.g., for d =3, 53 == 1.75).

Higher-order corrections are computed as before by considering the next iterative order. This introduces correc-
tions that are subleading and vanish as T — (. Already at T/T, ~ 0.1, our first-order analytic results are almost
indistinguishable from numerical results (see right panels of figs. 2 and 3), the discrepancy being ~» 1%. Below that
temperature, numerical results are not available. Nevertheless the error can be estimated by calculating the correction

at the second iterative order, as hefore. One finds that the error tends to zero as T — 0 in the entire interval [D_. 11,
For the charge density, we have

po ~ b (Inb) '/ (45)
therefore,

% ~ (InB)TET o (111 %)m



showing that the condensate diverges at the BF hound, albeit very mildly. This mild divergence was missed in earlier
numerical studies [4].

The BF bound can also be approached from above. However, the calculation becomes considerably more invloved,
because for A > d/2, as T — 0, we have Fy = 1 near the boundary {z = 0}, but asymptotically (= = 1/b},
Fy ~ 29722 which does not have a smooth limit as T — 0. Therefore, we cannot apply perturbation theory and a
different approach is called for [15]. For example, one can approximate Fy by

R ={ (i)i_m oo (47)

and find e by a variational method. We shall not dwell on this further here.

Having understood the probe limit, we now turn to the first-order corections in a 1/g® expansion. For A < d/2,
it is necessary to include these corrections in order to obtain a physical system at low temperatures, because in the
g — oo limit the condensate diverges as T — 0 (eqgs. (42) and (46)).

At first order, we obtain for the functions determining the metric,

? (bz}Qﬁ 22(}2 A r T 24 12
2fi—dfy = D m2 4+ A2fy + (bz?g F2 4 2Az foFo Py + 22 fo " + W@o
24 L2H2N
s = BV (a4 220 F2 4+ 20 R Ry + 2R (48)
d—1 b5
They can be solved at low temperature using our zeroth-order results above. We obtain
A
=— bz [2—2f— e e, x =——— (). 49
1) =~ gy P 22 [+ne s () =g 62+ (19)
For the temperature, we deduce the first-order expression
d AZ A

T:E[1+mq—z+...] (50)

showing that the temperature receives a positive correction away from the probe limit. Moreover, it is now clear when
the probe limit fails. Indeed, for the expansion in 1/g? to be valid, we ought to have

h< gt/ (51)

For a given g, this places a lower bound on the temperature. While zero temperature is unattainable for finite g, the
temperature can be made arbitrarily low by choosing a sufficiently large g. It follows that, even though the probe limit
(g — oo) is not a physical system, its properties are a good approximation to corresponding properties of physical
systems (of finite g). The approximation becomes better with increasing g and the 1/¢? expansion is valid.

III. CONDUCTIVITY

Next, we calculate the low temperature conductivity at the BF bound. For explicit analytic results, we concentrate
on two cases, d = 3 and d = 4. We shall obtain the conductivity o as a function of the rescaled frequency
Gt (52)

b (OQ}IJ’A

The function o{w) has a well-defined limit as ¢ — oc (probe limit) down to zero temperature even though the
condensate {0, ) diverges. Thus, the probe limit, which is not a physical state at low temperatures, can be arbitrarily
well approximated by physical states of sufficiently large q. The conductivity of these states can be obtained as a
1/g?* expansion with the conductivity in the probe limit serving as the zeroth order term in the expansion.

A, d=3

The conductivity on the AdS boundary is found by applying a sinusoidal electromagnetic perturbation in the bulk
of frequency w obeying the wave equation

d*A

dr?

2
VA=A, V=22 jp (53)
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where A is any component of the perturbing electromagnetic potential along the boundary. Eq. (53) is to be solved
subject to ingoing boundary condition at the horizon

Arve W ] z)"W/3 (54)

as z — 1 (ry =+ —o0), where r, is the tortoise coordinate

B dz 1 (1—=z)* 1 V32 .
=] T —E[L“ e F} (55)

with the integration constant chosen so that the boundary is at r, = 0. We with to solve this equation at low
temperatures.
Using (10) with d = 3, the wave equation reads

d dA B w?

To acecount for the boundary condition at the horizon, set
A= (1—z) /3= w/3 4(2) (57)

where we included a factor e~2/3 for convenience, so that only 4(2) will contribute to the conductivity. The wave
equation becomes

31— 2 A" 4+ 2[02 - 201 + 2 4 2)iw] A

r2A A2 g2 . 2. (B3+2+2)3B+2+22+2°) o]
+ |36z Folz)— (1422 + 327 )iw — 30 +2+22) w | A=0 (58)
Regularity of the wavefunction A at the horizon (z = 1) implies the boundary condition
d*,UZ
(3—2iw) A'(1) + (bza‘FQ{l) — 2iw — T) A(ly=0 (59)

In the zero temperature limit, b — oc, it is convenient to rescale z — z /b. The wave equation can be solved as a series
expansion in 1/g%. The zeroth order term is given by replacing F by Fy (eq. (15)). For A < %f Fy(z) has a smooth
zero-temperature limit, so after rescaling and letting b — oo, we obtain the zero-temperature wave equation

A+l A=0 (60)

where we used F(z/b) -+ F(0) =1, asb 3 0. For1 < A < %‘ there are two linearly independent solutions, A4,
distinguished by their asymptotic behavior,

A ~meft? | 2 Lo (61)
The general solution can be written as a linear combination,

A=ct A, +e A (62)
Applying the boundary condition (59), we deduce
£ g (63)
s0 at zero temperature
=10 (64)

te, A—0as:z — e
For A = %, we obtain the exact explicit solution

A(z) = A_(z) = Ai(bz — &?) (65)
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whereas A (z) = Bi(bz — &?), with arbitrary normalization, where we restored the scaling parameter b.
At zero temperature in the probe limit, the quasinormal frequencies have moved to the real axis vielding an infinite
set of normal frequencies which are solutions of

Ai(—&?) =0 (66)

Thus we obtain an infinite tower of real frequencies given hy the zerces of the Airy function.

The zero temperature conductivity in the probe limit is
i Ai'(—?)
o@) = 5 M%) &0

The real frequencies that solve (66) are the poles of the conductivity. Notice that at zero temperature Ro = (0, except
at the poles of 3o where Ro diverges as a d-function.

At low temperatures, we can calculate the first-order correction analytically by considering the zero temperature
wave equation (60) as the zeroth-order equation. Then for the first-order correction 6.4 to the potential at low
temperatures, we obtain from (58),

1

" q_,a? T i,
—0A" + [z -6 A 3[1_23]?{1,4 (68)

where
241 — 152 — 1222 —1027) ,
A1 +z+22) = (59

The first-order potential leads to quasinormal modes which are zeroes of 4 4 6.4. Thus the zero temperature real
frequencies (66) get shifted at finite (low) temperatures away from the real axis. We obtain & — @ + dw, where

d ;
Hi = 2[02 — 2(1 4+ 2 4 2%)iw] ¥ 35%2(2F1(2) + 2°) — (1 + 22 4 32%)iw +

. wBi(—&% [ & . ; 2 i
8w = 3¢DAi{’(—:ﬁ2) jn 3 Ai(bz — &) Ha Al(bz — &%) (70)
This first-order expression is valid for low frequencies. As we heat up the system, most modes disappear and we are
left with a finite number of quasinormal modes. Their number decreases as we increase the temperature. Conversely,
as we cool down the system. (70) becomes increasingly accurate for an increasing number of modes. These modes
shift to the real axis (6w — 0 as T — 0) and at zero temperature we obtain an infinite number of real frequencies
given by (66).

This shifting of quasinormal modes can be seen in plots of the conductivity. As the mode frequency approaches the
real axis, the corresponding spike in the plot of the imaginary part of the conductivity becomes more pronounced. To
demonstrate this, we calculated the conductivity using the first-order approximation (32) to the scalar field. In figure
7, we show the imaginary part of the conductivity at temperature T /T, == .1 and compare with the exact numerical
solution. The agreement is very good even at such high temperature at which only one quasinormal mode is left.
Unfortunately, this is the low temperature limit attained by mumerical analysis as munerical instabilities prohibit one
from lowering the temperature further. Using our analytical results, we see in figure 8 the emergence of an increasing
number of poles as we lower the temperature to T/T,. = .06 and .04. Finally in figure 9 we compare the lower
temperature (T'/T,. = .01) result with the zero temperature analytic expression (67) demonstrating convergence.

For A = 3/2, the potential is

Vo= BB ,282(1 o5y F(hz) (71)

with F' given approximately by (47). It attains a maximum of order B22-2) for A < 2. Therefore, at zero temper-
ature 1t has infinite height. However, the width becomes mfinitely narrow leading to a finite tower of poles for the
conductivity (quasinormal modes). In the zero temperature limit, the mmmber of modes increases as one approaches
the BF bound and decreases away from it. For A = 2, the height of the potential becomes finite at zero temperature.
It turns out that the potential is too narrow to possess bound states, so no poles exist for A = 2.

B. d=4
The d = 4 case is similar. Working as in the d = 3 case, at zero temperature, the wave equation for A = 2 (at the
BF bound) in the probe limit reduces to

A" %A' — B2t —w?A=0 (12)
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FIG. 8: The imaginary part of the conductivity vs. frequency in d = 3 using the expression (32) for F at 'PJ:; a2 05 (left), .04
(right). As the temperature decreases, poles move on to the real axis.

whose acceptable solution can be written in terms of a Whittaker function,
A=Wa o (b27) (73)

{The other solution diverges as z — co.) At the boundary (z — 0}, it has a logarithmic divergence which we need to
subtract before we can caleulate QNMs and the conductivity [4]. The conductivity is then given by

) 2 4, iw
U{u.}—aA—D-F? (74)
where
o2

Alz) = Ao+ A, 2;?__40“?132:?111(52:2”.,, (75)

with an arbitrarily chosen cutoff.

Using the expansion for small arguments,
: 3 2 2 2 2 2 ; 2 22

H',,lgi[h‘z 1= —m {l — [l + " {2’]’ —14+nd ")+l —w ,I"-il)] B} } i gl (T6)

we deduce the zero temperature conductivity in the probe limit

1 1 < =
a(u“.']=7+u1‘[2'}-——+r£-‘(l—w"‘f4} (77)
iw 2
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FIG. 10: The imaginary part of the conductivity in d = 4 using the expression (32) for the scalar field (dotted line) compared
with the exact numerical solution (solid line) at 77-;- /2 17

We have a pole at w = 0, as expected and an infinite tower of real poles determined by the poles of the digamma
function. The poles have real frequencies

Le:w;‘;—';ﬂﬂ\/ﬁ. n=0,1,2,... (78)
As we increase the temperature, these poles move away from the real axis and turn into quasinormal modes. At
any given temperature we have a finite number of such modes with the number increasing as we approach zero
temperature. To demonstrate this, we have calculated the conductivity using the first-order approximation (32) to
the scalar field. In figure 10 we compare with numerical results at temperature T'/T,. = .17 and find good agreement.
As we go to lower temperature, numerical instabilities arise and it is no longer possible to compare our analytical
results with their numerical counterparts. We find convergence to the zero temperature limit (77) but much slower
than in d = 3. In figure 11 we show the imaginary part of the conductivity at T/T. = 0.1 and 0.04. As we lower the
temperature, the number of poles increases and the poles shift to the right on the real axis approaching the limiting
values (78) which correspond to the zero temperature limit of the conduectivity shown in figure 12.

IV. CONCLUSION

We discussed holographic superconductors in the probe limit when the scalar hair of the dual black hole is near the
BF bound. Using the analytic tools developed in [15], we analyzed the zero temperature limit trying to understand the
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FIG. 12: The imaginary part of the conductivity at zero temperature in d =4 (77).

ground state of the system. Undeterred by numerical instabilities, we found that at low temperatures the condensate
diverges as |InT|* where & depends on the dimension of spacetime {eq. (46)). This signals the breakdown of the probe
limit at low temperatures even at the BF bound. The divergence is very mild which explains why it was missed in
earlier numerical analyses. Even though the probe limit at the BF bound cannot be a physical state, it is still useful
to analyze it because it is a limit of physical states. The latter are obtained by including back reaction to the bulk
metric which sets the charge of the scalar hair g to a fixed (finite) value. The probe limit is then g — oo. Thus, any
quantity (such as the conductivity) caleulated in the probe limit can be approximated by the corresponding (physical)
quantity at finite g. This can be done with inereasing accuracy by increasing q.

We calculated the zero temperature conductivity at the BF found in the probe limit and found exact analytic
expressions in d = 3,4. Thus, we showed that the conductivity has an infinite tower of real poles determined by the
zeroes of the Airy function in d = 3 (eq. (66)) and the poles of the digamma function in d = 4 (eq. (78)). As we
heat up the system, only a finite number of poles remains and their positions move off of the real axis. Thus at low
temperature, we obtain a finite tower of quasinormal modes. Their number increases as we lower the temperature of
the system and diverges at zero temperature.

The probe limit we studied here can be used as a zeroth-order contribution to a perturbative expansion in 1/g°.
Our results can be extended in a systematic way to include back reaction to the bulk metric in order to analyze
physical states. This will greatly facilitate the probe of the zero temperature limit in which numerical methods fail
due to numerical instabilities. Work in this direction is in progress.
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Abstract

The quasinormal modes(QNM) of the 3+1 dimensional anti de Sitter(AdS) Reissener-Nordstrom(RN)
black holes interacting with the scalar field are analytically calculated for the zero order perturbation.
To simplify the problem we study for the case of the sectional curvature k=0. For the zero and small
perturbative charge case our result 1s consistent with the numerical result.

Keywords: Quasinormal modes, Quasinormal frequencies, AdS black holes, Reissener-Nordrom black

holes, Black hole phase transition

Introduction

Quasinormal modes of black holes are the
solutions to the Enstein wave equation, where the
boundary conditions are only the ingoing wave at the
horizon of the black holes and only outgomng or
decayed wave at the infinity [1]. These conditions
allow only certain number of the wave frequencies
and cause the frequencies becoming complex number.

Quasinormal modes are the wave that the black
holes respond to the perturbation. The frequencies are
mversely proportional to tume that the system uses to
recoil back to the equilibrium The wave carries
information of black hole property and space-time
geometry. in  some cases also including the
perturbative particles.

The comespondence between anti de Sitter
space-time and the conformal field theory (AdS/CFT)
[2] proposes that the general relativity in d+1
dimensional AdS space-time is equivalent to the
quantum field in d dimensions at the boundary of the
system. This allows us to study a microscopic system
with strong interactions through studying general
relativity of a corresponding AdS space-time.

The AdS black holes have recently become more
intense research topics, due to the armval of the
AdS/CFT comrespondence. In many cases, for
example. large-mass black holes in spherical-
symmetric space-times, the perturbation 15 stable.
However, i [3] the black hole solution in 3+1
dimensions with the sectional curvature k=-1.
hyperbolic symmetry, and perturbed by a scalar field
15 found. When the scalar field 1s turned off. the black
hole changes to an AdS black hole, called this
phenomenon, black hole phase transition.

In this work, the quasinormal modes of charged
AdS black holes, Reissner-Norstrom(RN) [4]
perturbed by a small charge 1s analytically calculated
for the zero-order perturbation. We consider for the

case of the sectional curvature k=0 and 1in
3+1dimensions. Let O be the black hole charge which

is the source of electromagnetic field, F in this

v
space-time and let ¥ be the charge scalar filed that
perturbs the system.

The Lagrangian of the fields and the interaction
can be written as [5]

Lr 15 v —iod vl —m2lwl
L=—Fp-low —gdw[ -mp[ @

where A.u the potentials of Fw and m is the mass of

the charge g.

We arrange this article as following. the first
section 1s the anti de Sitter Reissner-Nordstrom black
holes, which describes some properties of these black
holes. The second section 1s the quasinormal modes of
AdS RN black hole perturbed by a charge scalar field
with k=0 m 3+1 dimensions, which presents our
calculation. The third section 15 the result and
conclusion, which discusses the result, compares with
the numerical work. The forth section 1s conclusion,
where some further suggestion is given.

Anti de Sitter Reissner-Nordstrom Black
Haoles
The wave equations
The metric of d-dimensional AdS RN space-
times is [6]
2 _ 2 122 .2 i J
ds™ =—fdt” + fdr” +r hd«'dx
where
2M T
f=k-=5 +QT—6+ 7
[ L

M and Q are the black hole mass and charge
respectively. L 15 the AdS radius. k is the sectional

XXX
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curvature number, 1 for sphernical, 0 for flat and -1 for

hyperbolic symmetry. The Hawking temperature can
be calculated from the equation, T = f'[?:r)f 47,

where 7. 1s the horizon of the black hole.

T=

= 2 _(d-3)1 (0 -4k

The field potential. 4 i in this system can be written
in the form of the potential. @(7) as

A=d(r)dt
By varying I/ and @ in eq(1). the wave equations of
U/ and @ can be obtained from eq(1). The simple

solution of the potential. @ _for ¥ =0 1s

/ [ o Q
“\2d-3)| i

The wave equation of the scalar field 1/

1w =0 @

| 2
IV [ Cﬂ(\,—gg'“ al')_m;ﬁ
(V=&

: 2 -eun o242 1 5|
where M =m” +g°¢q @~ The wave equation is

separable when its ansatz 1s

¥=e™r " re)s) ©)
where S(X;) is a harmonic function with eigenvalue
A2 =1I(1+d—3). 1=0.123... To understand the
boundary conditions at the horizon and the mfinity.
the tortoise variable, dr, =dr/ f (r) . is introduced

into the radial wave equation

d’R(r 2
L GNE
dry
where the effective potential Fir) 1s

—vREH=0 @

V(r)=

d—2)(d— d—
@=2d=4) : fa

27
4rt r 2r

At the honizon, ¥ (r — 1.) = 0. only the ingoing

an (__ _])afl 3
whereas in the far away region ¥ (r —» w) = .

= = = 2 —i
wave 15 allowed in this region &

the wave must be decayed.
Quasinormal Modes of AdS RN Black Holes

In our calculation, we set k=0 and d=4. To solve

the wave equation in region. ¥, =7 < 20 let define
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r
a new varable Z =-2_ The wave equation (4)
r

changes to

2 (z-D(z-a,)(z—a;)(z—a,) *

d
;(2—1)(2—03)(2—03)(3—%) ®
+K(z)R=0

where

K=(2r,/0) (ar,)'z?

— 4 ar ;Q)‘v'(:—l)(:—aq)(:—az)(:—aﬂ‘)
10) (z-D(E-a,)z-a;)z-a,)
+4q'r;(2r__fQ Pz2(z—1)?
-2(z-D*(z—a,)(z-a,)’(z-a,)’
+z2(z-D(z-a,) (z—a,) (z—a,)’
+z(z—1)*(z—a,z—a;)*(z—a,)’
+:(:—ljz(z—azjz(z—al)(:—a4):
+:(:—ljz(z—ajjz(z—al)z(:—a4)

and the new parameters i the equation are

—m*r2(2r,

a,=A+B-p/3
a, =—(A+B)/2+iy3/2(4— B)
a,=—(A+B)/2—i\[3/2(4— B)

qu3

i 7 1

3 2 2
2 P | P
B iy p—d
p) 33(}’ %) |

To simplify the equation, we let

R=z%(z-1)%(z—a)* (z—a3)* (z—a,)" F(2)

where

L. .1 55
o, =2+ -\o+am’[’
2 2

. wr_(2r,/ Q)
_I(l—az)(l—as)(l—m
(ar)'2r./Q)*
a; _l)g(az _“5)1(“2 _34):
Hqr.)'(2r./0)
((11 _as)l(az _04):




(@r)’2r. 1 Q)"
_ @ =D as~a,)*(as ~a,)’
@; =1 3 5
LM ) Qr. [0)
(a; _01_)1(03 —04)1
(ar ) (2r, /1 0)*
i (ay _1):(04 _“:)l(aq _“5):
L _Mgr)'@r /0y
(ﬂ'! —a, }1(54 —{13-]1
We take the factor
:a,+1(:_1)a,—1(: _ﬂz)a’:+2(:_05)a’:+2(:_a“)a,,*!

out of the wave equation (5) and change variable

toy =1—7_ near the horizon We are going to
calculate the zero order solution. where the frequency
and charge. q. are small Then the wave equation 1s
reduced into the form of

d F daF

(l—y)—+(c—(a+b+1)y)——JF =0
yi-y) & (c—(a )¥) e

which 1s a hypergeometric function where

142, 142a; 1+2a,

ab=a,+a+

—a, l-a, l-a,

-J

[ 2 > >
5 Il(ozﬂ +a1+1+‘a3 i 1+ 2a; +1+_a4)3
\ l1-a, 1—a, l1-a,
(6)
am’r? 1@
(l—ﬂ':)(l—a!J(l—ﬂ_‘)

a +a,
+ 2+

Jxl+a,(l+2a;)

Lata o, +a,

1-a, 1-a; 1-a,
We keep only the linear terms of ¢ . the small
frequency and small charge in J. as the zero-order
perturbation. At the horizon. y=0. the wave 1s only
mngoing mto black hole. Then the solution 1s

R(y)=y*F(a.b:c.y)
From the property of the hypergoemetric funciions,

T{e)T(b—a)

F(a_b;f;J‘)=m

Fla.ba+b—c+11-y)

+({-p)=* M}T(f—a_c—b;r—a—b—c:—l:l—_\‘)
T(@)I(®)
Q)

In this far away zone the solution behavior is in the
form of

o

R(z) = (constant) =" + (constant)="  (8)

The solution must be finite in this area. However
r : iL.h
oy =1/2-1/249+4m’L* <0 for m'L* >-2
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this causes % —> o asz — 0. To eliminate the
divergent term we set the constant in the front of the
second term in eq(7) or eq(8) to be zero by letting the
arguments of gamma function dominators be negative

integer number, 1 = 0.1.2.3... .ie.

b=-n

orinterm of &. &), &5 . (4. ¢y from eq(6).

=M,

1+2a, 1+2a; 1+2a,
= +

5
n+n(a, +a +

l-a, l1—a, l-a, )
+J=0
®

Results and Discussion

The approximated quasinormal frequencies

could be solved from Eq(9).
-3k a i
5 a4 -0
' 'y
.-_5_:0: a 4
E | g
A &
-15f ]
'y
] 1 [; T

4
Reler)
Figure 1 The frequency plot between the real part on
the x-axis and the imaginary part on the y-axis where
q =0. L=1.1. r. =Q=1 and m’L’=4. The markers m
and A represent our result and numerical result [6]
respectively.

=3l

Refar)

Figure 2 The frequency plot between the real part on
the x-axis and the imaginary part on the y-axis where
g =1 L=11 r. =Q=1 and m’L’=4 The markers m
and A represent our result and numerical result [6]
respectively.

Our result 1s consistent with the numerical work.
The slops of the both graphs in figure 1 and 2 are
approximately -0.4. The space between the allowed



il

SIAM PHYSICS COMORESS

NS

frequencies 1s equally separated when the number n 15
large. The quasinormal frequencies are a discrete set
of complex number with the equally spacing. This
result is simular to those in many literatures. e.g. [7].

Conclusions

Our work aims to have better understanding
analytically of the AdS black hole system which 1s
perturbed by a simply gauge field. We take k=0 and
d=4 to simmplify the problem The zero-order
perturbation gives the quasinormal modes and
frequencies of the RN black holes interacting with the
scalar field. where the frequencies and the charge g
are taken to be small Even thought our work 1s 1n
agreement with the numerical result, there are things
that can be enhanced to improve the result. For
example, we could find a better approximated zero
order solution for large number of q and other
parameters. or continue to calculate the first order
perturbation. etc.
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Abstract: We study the Kaluza-Klein black holes, with squashed horizons. The system is
perturbed by a massless scalar field. We analytically calculate the solution to the wave equation,
which is the quasinormal modes. We approximate the non-rotating case, where the frequencies to
solution are a set of discrete complex number. Our analytical result is very well in agreement
with the numerical work. Both results imply the existence of the stable ground state and the few
lower excited states.

Introduction: The extra dimensions have become mandatory to sustain or generalize the
principles or theories in many physics areas of research. The Kaluza-Klein theory has combined
the general relativity and electrodynamics into a 5-dimensional theory. Black holes contained in
the general relativity can be viewed as singularities that dictate the spacetime curvature and the
behaviors of particle and fields in the systems. The fields in the black hole systems must satisfy
the boundary conditions that only ingoing wave at the horizons of the black holes and only
outgoing wave or the vanishing wave at the infinity are allowed. The waves that obey these
boundary conditions called quasinormal modes and their frequencies as quasinormal
frequencies.! The gravitational wave signals from supermassive black holes are expected to be
detected by Laser Interfermeter Space Antenna (LISA).? In this work, the non-rotating Kaluza-
Klein black holes with the squashed horizon are studied and the quasinormal modes of these
systems are analytically calculated, where we expect the frequencies to be a set of discrete
complex number.

In this introduction section we describe the Kaluza-Klein black hole system and the
squashed shape of the horizon. The wave equation in this curved spacetime is considered. The
five-dimensional rotating Kaluza-Klein black holes with the squashed horizons have the metric
in the form of 3

) r’+a’ a
dsz=—dt2+zk2dr2+ . [k(af+a§)+a§]+#(dt_gas)2 (1)
where
o, =—sinydf+cosy sinfdg, o, =cosydé+siny sinddg, o, =dy +cosddg (2)
(r)=r*(r* +a%), (3)
A(r)=(r*+a®)? —ur? 4
2 _r2)(r? _r2
k(lr):(;c e —r7) (5)

(r2-r?)?
Parameters x and a correspond to black hole mass and angular momentum respectively. The
variables have the range 0<r<r, 0<é@<rz, 0<¢<2x, 0<y <4r, where the radius has the

upper limit r, The sphere of the horizon is squashed by the term k(r). The singularities of the



metric are obtained by setting A(r,) =0. r, and r_ are outer and inner singularities respectively,
which are depend on x and a as

=\/(,1—2512)1«/;12—4#/1 ©)

r.
B 2

Since the metric is apparently singular at r =r_, the radial coordinate r is restricted within the

range O<r<r,. Note that, if we take r, - cowhich causes k(r)— 1therefore our metric
reduces to five-dimensional Kerr black hole. Moreover, the shape of the event horizon is also
characterized by the functionk(r,),k(r ) 3

The metric above describes the space-time geometry of the rotating squashed Kaluza-
Klein black hole which looks like a five-dimensional squashed black hole near the horizons, and
like the Kaluza-Klein geometry atr — r,_. To see the asymptotic behavior of this metric, let us

define a new radial coordinate *

2 (7
where

2 2 2 a2v2 2
p0=,/w,and k0=k(r=o)=w @®)

In a new radial coordinate p varies from 0 to o« while r varies from 0 tor, . By transforming (1)
via a new coordinate (7) and take limit o — oo, the metric becomes

2 2
r-+a U a .,
ds® =—dt’ +d p* + p* (07 + 07 ) +-2 o+ dt—-=o 9
p°+p(o; 2) 4 3 r2+a2( 2 2) 9)
To remove the cross-term between dt and o, let define new coordinates as
2ua

WZW_(rj+a2)2+ya2
(r?+a’)?’ —yazt

f:
(r?+a®)’ + pua’

(10)

and define a new notation &, = dy +cosé@d¢ , and replace all these new coordinates and notation
into (9). Then, the asymptotic structure of the rotating squashed Kaluza-Klein black hole is
revealed
2 2y\2 2

ds’ =—df2+dp2+p2(af+a§)+—(rw4+(:j)+;;‘a &2
The first three terms on the RHS of (11) represent a four dimensional Minkowski spacetime
while the4rest is a twisted S* bundle. The size of the compacified dimension at infinity is also
obtained

(11)

po_ (2 +2°) + ual
" r’ +a’
The size of the extra dimension depends on three parameters r_, zand a. Note that, for a— Oor

(12)

r’ >>a?, the radius of the compactified dimension (12) could be interpreted by r, .

Klein-Gordon equation in curved background

Our aim is to study a scalar field which evolves in the rotating squashed black hole
spacetime. Hence, we need to construct equation of motion for a scalar field in curved
background. An equation of motion for a real scalar field is so called Klein-Gordon equation. To



derive a Klein-Gordon equation in a curved background, let consider an action for a single scalar
field in curved spacetime

s:Iﬁ{_%g”"(Vﬂ(D)(VVQ))_%mZ(I)Z}d“X (13)

Here m stands for mass of a scalar field, where g is determinant of the metric tensor. For a scalar
field case, it is possible to replace the covariant derivative with an ordinary partial derivative. By
varying this action with respect to the scalar field, we obtain an equation of motion for a scalar
field in curved background.

ﬁaﬂ (\/5 g”vavtb)—mzq) =0 (15)

This equation will be used as an important part of our calculation in the next section. Its solution
describes the behavior of the scalar field in the curved spacetime. For simplicity in our work, we
consider only for a massless scalar field.

Methodology: In this section we study the wave equation of the perturbed scalar field. The
equation is separable. We analytically solve the radius wave equation. We obtain and present the
frequency-constrain equation which correspond to the each quasinormal mode.

Equation of motion for a real scalar field in a rotating squashed Kaluza-Klein black hole
We are going to calculate an equation of motion for a scalar particle in our particular

(r? +a%?
3

metric (1). First, we have defined the proper timedt=Bdz andB = is a constant.’

Zporoo
The former metric (1) becomes
b) r’+a’ U a
ds* =-B%d7’ +Zk2dr2 +T[k(<712 +ol)+ol]+ ER (de’—50'3)2 (16)
Therefore, we can calculate components of metric tensor g, , and its inverse g“” as
y7i 2 aucosé au
-1~ B> 0 0 - B ——
( r2+a2) 2(r* +a?) 2(r* +a?)
2
0 k. 0 0 0
A
2(,2 2
oo 0 0 K(Cra) 0 0
2 2 2 2 2 2y2 2
3 ayzcosf 0 0 r‘+a (ksin? 0+ cos? 9)+ya 2cos 20 cosé | (r +<':21 ) erya
2(r*+a%) 4 4(r°+a°) 4 r‘'+a
__au g 0 0 cos@( (r* +a®)* + ua’ (r*+a®)?+a’u
2(r* +a?) 4 r’+a’ 4(r* +a%)




(r*+a®)?+a’u) 1 2au 1
o Breraervamrll v AU 0 0 B i arvvamer el ey
(r‘'+a’) -r°u JB (r‘'+a’) -r°u )B
0 A 0 0 0
>k
4
= 0 0 ——5 0 0
g kZ(r2+a2)
0 0 4 3 4cos@
k(r’+a?)sin’@ k(r*+a’)sin’ @
2au 1 4cos8 4cos’ 4A(r*+a’ - p)
N 72,22 2, | p 0 0 - 2 2\ ain?2 2 N2, 2 272 2
(r‘+a’) —r°u )B k(r*+a”)sin“@ k(r*+a‘)sin“@ (r'+a®)"—ru
k®sin 6B . . -
where \/—g :T\/(r2+a2)2, In our calculation, we denote spacetime indices

by (z,r,0,¢4,) — (0,1,2,3,4). It is convenient to use a new radial coordinate p which defined by
(7). Then, take the ansatz for a scalar field ®(z, p, 0, 4,w) =e“*R(p)e™"**S(0), where S(0) is

the spheroidal harmonics. After change to a new radial coordinate and put the ansatz into (15),
we can separate the angular variable part from the radial and the time parts. For the angular part,

it reads °
1 df[. d (m—Acosd)’
———|sind— |S(@)-| —————-E,., |S(#)=0 17

sinede[ de} (©) { sin?@ 'm} (©) an

Here the eigenvalue of the angular equation isE,, =I(l +1)—A*. The parameters | is the angular

number of the variable @ and A is integer number for the 5" dimension represented by the angle
variable, . However, the time variable can be removed in the final step of the calculation. So,

the only remaining part is the radial component which takes the form

2 T2
eI R(W) dOdR() IN° 1411427 [R(p)=0 (18)
dp dp dp [ O
and
r’+a’
e(p) :ZTJZ)[(/DEZ +a%(p+ po)) = up(p+ po)rl |,
o /70

Nz_yduﬂu%f{w_ﬂaN%¢+a6T

N )’ s
APl (p+py)’ @’ A2 (p+p,)’ (19)
N%(r? +a%)* r’+a>
P+p
NZ=—1 70
a
P r’+a’ Po
r2
,0+ :po rz:rz !
o W=2a0)ut -4’
o0 2 *

In order to obtain the quasinormal frequencies @, we have to solve (18) under certain boundary
conditions as mentioned before. In this work our limit ourselves to our the case of non-rotation
a =0 and the equation of motion becomes



4p) (p+py) pe® 427 (p+p, )
i (przpo)p - (I?,z po) ~En |[R(p)=0

(20)
To simplify the solution let us separate the singularity at horizon by writing the R(p) function
as,

200 L 4= )(2p- ) B LA )

R(p)=(p-p.)*F(p)

ior

where a= —% (21)
2[@—@

U
The minus sign of « represents the incoming wave at the horizon. After substituted R(p) in
equation (20) the wave equation changes to
2
F(p)+2ade(p)+(2p_p+)dF_(m

s ip ip +(a(a—1)+2a)F(p)+

p(p—p+)d

o= +2(p=p) o+ 2)+ £ (PP )+ 20, (P 2) (P 23 [F(0)+

©

402 (p, + py) pa® 427 (p+p, )
po(p+ ,00),0 _ (,0 po) _E|m/1:|F(p)=0

r2 r2
(22)
Let’s define a new variablex:ﬂ, where x =1 at the horizon. The radius wave equation is
A,
reduced to
x(1-x)3 dF(X)+[1 20+2 x]dF(X) +[a'+Bx+y]F(x)=0 (23)
2
a'= );2 L +E,, —«
' /uwz 2 812p+p0
B'=="5 PP+ po) = pop + =5 (24)
2 2
y,:_wzpf + 4 2p+

0

To further simplify the solution let us define F =e“*H (x) , where we choose C? = —y'. Then the
above equation, (23) change to

X(X— 1) ZH

+[2Cx(x—1) —1+ 21+ a)x]%—l;'+ (@-C)H +[-C?+2C+2Ca+ p]xH =0
(25)

Change the variable from x to v=x-1, where at the horizon v = 0’ Next divide the equation -

with —2Cx and the wave equation becomes

(—2c:v)0'7H [1+2a (- 2Cv)+1—1} dH {1+a+'8+y}H—a_C H=0
d(=2Cv)? d(~2Cv) 2C 2Cx

(26)
The wave equation, near the horizon, x =1, can be approximated as

{ Mesing:




2 ' " '
(—2cwd'*+h+2a-(—2cw]‘“*—[1+a+f1+ﬂ+7}r|=o @7)
d(-2Cv)? d(-2Cv) |2 2C
The solutions to the above wave equation, (27) are the confluent hypergeometric function.
However we need only the ingoing solution to the horizon in order to satisfy the boundary
condition

R=e“(p-p.)" F(é; 6;—2Cv) (28)

where é=%+a+w and b=1+2¢ . In the region the value of x approaching infinity the

solution must be vanishing into order to satisfy the other boundary condition where the potential
in this region diverged. We can approximate the solution at the infinity by using the property of
the confluent hypergeometric function

R(V — o0) = e (=2C) y“? !

%4’ e—Cx (_Zc)éfﬁvoﬂré—ﬁ — (29)
I'(b-4) r'(a)

As v — oo, the first term decays, while the second term diverges. To get rid of the divergence,
set the argument of the Gamma function to be negative integer.

aolig @B, N=0123,. (30)

2 2C
The above equation, (30), is a constrain equation for the frequencies, where it can be written

down in term of a dimensionless wp, parameter as

2iwp. 1 2 iop, 1 r? 2
(2n+l—%J\/—(wp+)2 P B L +(a)p+)2(l+°°]—f'u—|(|+l)=0
u) vi-p

Ju Ci-u) u
(31)

The quasinormal frequencies can be solved from this equation. There are four roots to equation
(31), but there is only one that gives positive real number and negative imaginary number,
corresponding to the ingoing wave at the horizon and decaying wave at the far away region
respectively. We will compare our result with numerical work in the next section

©

Results, Discussion and Conclusion: The quasinormal frequencies are obtained from equation
(31). We put some specific parameters in order to compare with the numerical result as the
following °

Table 1 The quasinorma frequencies from WKB method and our analytical result, where 1 =10,
polp,=30rr /r,=2and n=2

WKB® Analytical work
0 3.5149 - 0.15956i 3.4921 - 0.16667i
0.5 3.5336 - 0.15821i 3.4940 - 0.16643i
1 3.5898 - 0.15413i 3.4999 - 0.16572i
15 3.6842 - 0.14729i 3.5098 - 0.16455i
2 3.8178 - 0.13759i 3.5236 - 0.16291i
2.5 3.9924 - 0.12493i 3.5413 - 0.16083i
3 4.2103 - 0.10912i 3.5629 - 0.15832i
35 4.4747 - 0.08988i 3.5883 - 0.15539i

From both results the imaginary part is negative, causing the wave vanishing in the far away
zone. As A increases, the real part increases while the imaginary part decreases.




Our frequencies change more slowly than WKB result when A increases. To improve
our frequency result, we can take our approximated solution as the zero order perturbation. We
can continue to perform the first order. Also we can add the rotation a =0 to black hole to the
problem in our future work.
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