บทคัดย่อ

จากการศึกษากลไกการช้ำของผลมะละกอพันธุ์แขกดำและพันธุ์ปลักไม้ลาย โดยปล่อยให้ผลมะละกอ ตกกระทบพื้นจากระดับความสูงแตกต่างกันสองระดับ พบว่า การช้ำของผลมะละกอมีความสัมพันธ์กับการ เปลี่ยนแปลงสีผิวผล โดยมีค่าความสว่างและการพัฒนาค่าความเป็นสีเหลืองลดลงตลอดอายุการเก็บรักษา ผิว ผลมีสีน้ำตาลคล้ำ และพบความสัมพันธ์ในเชิงบวกระหว่างพื้นที่การเกิดรอยช้ำกับระดับของการตกกระทบ โดยผลมะละกอตกกระทบที่ระดับความสูง 75 cm มีความรุนแรงของการซ้ำมากกว่าผลที่ตกกระทบจากระดับความสูง 50 cm เนื้อเยื่อบริเวณที่เกิดการอ่อนนุ่มอย่างรวดเร็วสอดคล้องกับการเปลี่ยนแปลงองค์ประกอบของ เพคตินจากรูปที่ไม่ละลายน้ำเป็นละลายน้ำเพิ่มมากขึ้น โมเลกุลมีขนาดเล็กลง และพบการเพิ่มขึ้นของกิจกรรมของเอนไซม์ GAL และ PG ขณะที่เอนไซม์ Xase มีกิจกรรมกงที่ตลอดระยะเวลาการเก็บรักษา เมื่อเปรียบเทียบการช้ำระหว่างมะละกอทั้งสองสายพันธุ์ พบว่ามะละกอพันธุ์แขกดำแสดงการช้ำของผลมากกว่ามะละกอพันธุ์ ปลักไม้ลาย อย่างไรก็ตามพบว่าผลมะละกอทั้งสองสายพันธุ์มีอัตราการหายใจและการผลิตเอทิลีนเพิ่มขึ้นอย่าง เห็นได้ชัดภายใน 24 ชั่วโมงหลังจากทำให้เกิดการช้ำ โดยเพิ่มขึ้นประมาณ 2 เท่าเมื่อเปรียบเทียบกับอัตราการหายใจในชั่วโมงแรกหลังจากทำให้เกิดการช้ำ ส่วนอัตราการผลิตเอทิลีนพบว่าผลมะละกอที่ทำให้เกิดการช้ำมีอัตราการผลิตเอทิลีนพบว่าผลมะละกอที่ทำให้เกิดการช้ำมีอัตราการผลิตเอทิลีนพบว่าผลมะละกอที่ทำให้เกิดการช้ำมีอัตราการผลิตเอทิลีนมากกว่าผลที่ไม่ได้ทำให้เกิดการช้ำประมาณ 2 เท่า

สำหรับการทดสอบผลของสารละลายแคลเซียมแลคเตทความเข้มข้น 1 และ 2% ที่อุณหภูมิ 55°C เป็น เวลา 5 นาที พบว่าการแช่ผลมะละกอด้วยสารละลายแคลเซียมแลคเตทและ ไม่ได้ทำให้ผลเกิดการช้ำสามารถ ชะลอการเปลี่ยนแปลงสีผิวผล การอ่อนนุ่มของเนื้อ ลดพื้นที่การเกิดรอยช้ำและการเกิด โรคหลังเก็บเกี่ยวได้ แต่ ไม่สามารถชะลอได้ในทรีตเมนต์ที่ทำให้เกิดการช้ำที่ระดับความสูง 75 cm และไม่พบความแตกต่างระหว่าง การแช่และ ไม่แช่ผลมะละกอด้วยสารละลายแคลเซียมแลกเตทต่อการเปลี่ยนแปลงปริมาณ TSS

เมื่อศึกษาผลของสารที่ปลดปล่อยเอทิลีนในรูปของสารเอทิฟอน (ethephon) และสารยับยั้งการทำงาน ของเอทิลีน (1-MCP) ก่อนทำให้ผลมะละกอเกิดการช้ำ พบว่าผลมะละกอที่จุ่มด้วยสารละลายเอทิฟอนช่วยเร่ง กระบวนการสุกและการอ่อนนุ่มของเนื้อ ผลมะละกอแสดงอาการช้ำ เร่งการพัฒนาสีผิว และการสูญเสีย น้ำหนักสดมากกว่าผลที่ไม่ได้จุ่มสารละลายเอทิฟอน ขณะที่การรมผลมะละกอด้วย 1-MCP พบว่า สามารถลด ความรุนแรงของการช้ำ มีพื้นที่การเกิดรอยช้ำน้อยกว่าทรีตเมนต์ที่ไม่ได้รมสาร 1-MCP ประมาณ 3 เท่า และ พบว่าผลมะละกอพันธุ์แขกดำและพันธุ์ปลักไม้ลายที่รมสาร 1-MCP ความเข้มข้น 1,000 ppb สามารถชะลอการ อ่อนนุ่มของผลได้ประมาณ 4 วัน

Abstract

The study of the effects of bruised impact in 'Khak dam' and 'Pak Mai Lai' papaya were study. Fruits of two cultivars showed bruising of fruits are associated with changes in the skin color. The brightness and the development of a yellow color decreased then became dark brown throughout storage. Positive correlation was found between the incidences of bruising and the impact level. By impact papaya fruit from the height 75 cm had more severity of the bruise over the incident of impact from height 50 cm. The fruit tissue in the area of bruising became quickly soft in the same time of the changes in the composition of the pectin. The solubilization of pectin increased especially in water soluble fraction and the molecular distribution of pectin became shifted downward to small molecule. The activities of GAL and PG were also increased during bruise development while the activity of Xase showed constant throughout the period of storage. Bruising the fruit comparison between these two cultivars showed that 'Khak dam' papaya had grater bruised symptom than 'Pak Mai Lai' papaya. However, the fruits of both cultivars had the rate of respiration and ethylene production increased significantly within 24 hours after bruised impact by approximately 2-fold compared with the respiratory rate in the first hour after bruised impact. The peak of ethylene production appeared 30 hours in bruised fruit, with a production rate 2 times higher than non-bruised.

The effect of calcium lactate concentration of 1 and 2% at 55C were studied by dipping fruits sample in the calcium lactate solution for 5 minute. The results showed that fruit dipped in calcium lactate solution could delay the change in skin color development, maintained fruit firmness and reduced the bruise development and fruit decay greater than non-dipped. However, the application of calcium lactate solution was not effective for reducing bruise symptom if fruit had been impacted from height level of 75 cm. Total soluble solids content was non-significant different between dipped and non-dipped in calcium lactate solution.

The effect of ethylene generates in the form of ethephon and the ethylene action inhibitor like 1-MCP application before impact was also studied. Fruit dipped in ethephon solution enhanced fruit ripening and pulp softening. Also, fruit in ethephon treatment appeared bruise damage, enhanced skin color development and fresh weight loss higher than non-dipped. Since then, to control the role of

ethylene action, fruit fumigation with 1-MCP before bruise impact was designed. Fruits fumigation with 1-MCP could reduce the bruise severity as shown by the reduction of bruise area less than non-treated with 1-MCP for 3 times. Moreover, 'Khak dam'and 'Pak Mai Lai'papaya fumigated with 1,000 ppb could delay fruit softening for approximately 4 days.