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ในตัวกลางระหว่าดาวเคราะห์ สนามแม่เหลก็ป่ันป่วนมีอิทธิพลต่อการขนส่งอนุภาคที่มีประจุพลังงาน

สูง ที่ผ่านมามีการศึกษาพบว่า แบบจองสนามแม่เหล็กป่ันป่วนแบบสององค์ประกอบ (2D+slab) เป็น

แบบจ าลองที่นิยมใช้และใกล้เคียงกบัสนามแม่เหลก็ป่ันป่วนในระบบสุริยะ โดยปกติเราพบลักษณะการฟุ้งของ

อนุภาคที่มีประจุในสนามแม่เหลก็ป่ันป่วนเม่ืออนุภาคเคล่ือนที่เป็นเวลานาน บ่อยคร้ังในการศึกษา อนุภาคถูก

สมมติให้เคล่ือนที่ตามเส้นสนามแม่เหลก็ และเกิดการฟุ้งเน่ืองจากการเดินสุ่มของสนามแม่เหลก็ อย่างไรก็

ตามบางทฤษฎีได้กล่าวถึงการขนส่งอนุภาคในแนวตั้งฉาก เช่น nonlinear guiding center (NLGC) ทฤษฎีน้ีมี

การใส่กลไกการเดินข้ามสนามแม่เหล็กของอนุภาค ซ่ึงท าให้เกิดการแยกตัวระหว่างอนุภาคและเส้น

สนามแม่เหลก็ที่สัมพันธ์กับต าแหน่งเร่ิมต้น ในงานวิจัยน้ีเราจึงสนใจศึกษากลไกที่อนุภาคที่มีประจุแยกตัวกับ

เส้นสนามแม่เหล็กที่สัมพันธ์กับศูนย์กลางการเคล่ือนที่ของอนุภาคที่ต าแหน่งเร่ิมต้น รวมทั้งผลกระทบ

เน่ืองจากการลดจ านวนมิติของความแปรปรวนในสนามแม่เหลก็ เราท าการจ าลองเชิงตัวเลขส าหรับเส้นทาง
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เดินอนุภาคที่มีประจุในสนามแม่เหล็กป่ันป่วนในหลายกรณี จากน้ันหาเส้นทางเดินสนามแม่เหล็กที่ มี

จุดเร่ิมต้นเดียวกับจุดศูนย์กลางการเล่ือนที่ของอนุภาค  ท าการค านวณสถิติของการแยกตัวระหว่างศูนย์กลาง

การเคล่ือนที่ของอนุภาคและเส้นสนามแม่เหล็ก ในงานวิจัยน้ีเราสนใจศึกษาผลกระทบของ มุมขั้วเร่ิมต้น 

พลังงานของอนุภาค ความแรงของสนามแม่เหล็ก  สัดส่วนของความแปรปรวน และการลดจ านวนมิติของ

ความแปรปรวน ที่มีต่อการแยกตัว นอกจากน้ันในงานวิจัยน้ีเราได้พัฒนาเทคนิคการวัดและแก้ไขค่า Taylor 

microscale ซ่ึงเป็นค่าที่พบในสนามแม่เหลก็ป่ันป่วนในอวกาศ เราจะลองข้อมูลสนามแม่เหลก็ที่ข้ึนกับเวลาจาก

รูปแบบของสเปกตรัมที่เราออกแบบส าหรับสนามแม่เหลก็แบบป่ันป่วน ซ่ึงเราน าข้อมูลสนามแม่เหลก็ที่ได้จาก

จ าลองมาหาค่า correlation function และ structure function จากน้ันใช้วิธีการฟิตและการประมาณนอกช่วง 

เพ่ือประมาณค่า Taylor microscale ในตอนท้ายเราแสดงการประยุกต์ใช้เทคนิคน้ีกบัข้อมูลจากยานอวกาศ 

ค าหลกั: อนุภาคพลังงานสงู, สนามแม่เหลก็ป่ันป่วน, การฟุ้ง, การลอยเล่ือน 
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ABSTRACT 
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Abstract: 

In interplanetary space, the transport of energetic charged particles is influenced by a 

turbulent magnetic field. Previous studies have shown that a two-component (2D+slab) magnetic 

model of turbulence is a useful model for the magnetic field in the heliosphere. Normally, the 

diffusive behavior of charged particles in a turbulent magnetic field is observed when they 

approach the long time limit. The charged particles are often assumed to follow and diffuse 

according to the random walk of the field lines but some theories of perpendicular particle 

transport, such as nonlinear guiding center theory (NLGC), implicitly assume some true cross-

field diffusion in which particles separate from the field line connected to their initial location. In 

this work, we study the mechanism by which charged particles separate from their initial 

magnetic field lines and also the effect of reduced dimensionality of the magnetic field on cross-

field motion of the charged particles. Here we perform numerical simulations of charged particle 

trajectories in several cases of magnetic turbulence such as pure slab turbulence, Gaussian 2D 

field+slab turbulence, and 2D+slab turbulence.  Then we trace their corresponding magnetic 

field lines which start at the initial guiding centers of the charged particles. After that we 

compute statistics of the mean squared average transverse separation between guiding centers of 

the particles and field lines. We will examine the effects of the initial pitch angle, particle 

energy, fraction of 2D and slab lines in order to understand the separation behavior.  

Furthermore, we develop the measuring and correcting techniques for Taylor microscale which 

is one of length scales that we can find from turbulent magnetic field in space.  Time series of the 

signal generated from known spectrum of turbulent magnetic field lead us to the correlation 
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function and structure function.  Fitting and extrapolation methods are used in other to estimate 

the Taylor microscale. The application of this technique to real spacecraft data of solar wind is 

also presented.     

 

Keywords: energetic charged particles, turbulent magnetic field, diffusion, drift. 
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หน้าสรปุโครงการ (Executive Summary) 
ทุนพฒันาศกัยภาพในการท างานวิจยัของอาจารยร์ุน่ใหม ่

 
1. ความส าคญัและท่ีมาของปัญหา  

ดวงอาทติย์ประกอบไปด้วยสนามแม่เหลก็ และก๊าซร้อนที่แตกตวัเป็นไอออนซึ่งเราเรียกว่าพลาสมา ( plasma)  
พลาสมาบนดวงอาทติย์นี้ส่วนหนึ่งถูกกกัด้วยเสน้สนามแม่เหล็กวงปิดบนดวงอาทิตย์ พลาสมาอีกส่วนมีพลงังานเพียง
พอทีจ่ะไหลออกมาอย่างต่อเนื่องสู่ตวักลางระหว่างดาวเคราะห ์(interplanetary space) ด้วยความเรว็โดยเฉลีย่ประมาณ  
400 km/s ซึง่เราเรยีกพลาสมาสว่นนี้ว่าลมสุรยิะ (solar wind)  การไหลของลมสุรยิะมลีกัษณะป ัน่ป่วนและในขณะเดยีวกนั
ไดล้ากเอาสนามแม่เหลก็ออกมาสูต่วักลางระหว่างดาวเคราะหด์ว้ย เน่ืองจากการหมุนของดวงอาทติยแ์ละความป ัน่ป่วนของ
ลมสรุยิะ ลกัษณะของสนามแม่เหลก็ระหว่างดาวเคราะหจ์งึมลีกัษณะเป็นเกลยีวกน้หอยและมคีวามป ัน่ป่วน ดงัแสดงในรูปที ่
1 นอกจากนี้ดวงอาทติยม์กีารประทุและปลดปล่อยอนุภาคพลงังานสงู (solar energetic particles) สู่ตวักลางระหว่างดาว
เคราะห ์ซึง่ส่วนใหญ่เป็นอนุภาคทีม่ปีระจุไฟฟ้า ทีม่คี่าตัง้แต่ระดบัพลงังาน keV ถงึระดบั GeV  ซึง่อนุภาคเหล่านี้มผีลต่อ
ชัน้บรรยากาศของโลก เมื่อเกดิการปะทุอย่างรุนแรงทีด่วงอาทติยห์รอืที่เราเรยีกว่าพายุสุรยิะ โดยทัว่ไปตามทฤษฎฟิีสกิส์
พืน้ฐานทางแม่เหลก็ไฟฟ้า เมื่ออนุภาคทีม่ปีระจุอยู่ในสนามแม่เหลก็จะเคลื่อนทีเ่ป็นเกลยีวรอบสนามแม่เหลก็ โดยลกัษณะ
การเกลยีวขึน้อยู่กบัความเขม้ของสนามแม่เหลก็ ความเรว็ของอนุภาค และมุมระหว่างทศิทางการเคลื่อนทีข่องอนุภาคกบั
ทศิของสนามแม่เหลก็ ดัง้นัน้อนุภาคพลงังานสงูทีป่ลดปล่อยออกมาจากดวงอาทติยจ์งึเคลื่อนที่เกลยีวรอบสนามแม่เหลก็
เช่นเดยีวกนั แต่เน่ืองจากสนามแม่เหลก็ระหว่างดาวเคราะหม์ลีกัษณะป ัน่ปว่น การเคลื่อนทีข่องอนุภาคจงึมลีกัษณะซบัซอ้น
กว่าการเคลื่อนทีแ่บบทัว่ไป เน่ืองจากสนามแม่เหลก็เป็นสิง่ทีก่ าหนดทศิทางการขนสง่อนุภาคสู่ตวักลางระหว่างดาวเคราะห ์
ดงันัน้การศกึษาอทิธพิลของสนามแม่เหลก็ป ัน่ปว่นต่ออนุภาคทีเ่คลื่อนทีใ่นอวกาศ จงึมคีวามส าคญัในการน าไปสูก่ารอธบิาย
กลไกและปรากฏการณ์ต่างๆทีม่กีารสงัเกตและเกบ็ขอ้มูลจากยานอวกาศ เช่น ปรากฏการณ์การเปลี่ยนแปลงความเขม้
อย่างรวดเร็วของอนุภาคพลังงานสูง (dropouts) และการลดลงของรังสีคอสมิคในกาแลกซีเนื่องจากลมสุริยะ (solar 
modulation)  นอกจากนี้งานวจิยันี้จะท าใหเ้ราเกดิองคค์วามรูใ้หม่ทางฟิสกิส ์จงึคาดว่าผลทีไ่ดจ้ากการวจิยัยงัสามารถน าไป
ประยุกตใ์ชส้ าหรบัการเคลื่อนทีข่องอนุภาคในสนามแม่เหลก็ป ัน่ป่วนในหอ้งทดลอง เช่น ในการพยายามผลติพลงังานจาก
การควบคุมปฏกิริยิานิวเคลยีรฟิ์วชนั และในสถานการณ์อื่นๆไดอ้กีดว้ย 

จากการศกึษาทีผ่่านมา นักวทิยาศาสตร์ไดใ้ห้ความสนใจที่จะอธบิายกลไลการเคลื่อนทีห่รอืการขนส่งอนุภาคใน
อวกาศและแบ่งไดเ้ป็นสองกลุ่มใหญ่ๆ กลุ่มแรกคอืศกึษาถงึสิง่ทีเ่ป็นสาเหตุใหอ้นุภาคเคลื่อนทีน่ัน่คอืสนามแม่เหลก็ป ัน่ป่วน 
เนื่องจากทางเดินของอนุภาคมีลักษณะเกลียวรอบสนามแม่เหล็ก ดังนัน้จึงประมาณได้ว่าศูนย์กลางก ารเกลียวรอบ
สนามแม่เหลก็ของอนุภาค (guiding center) มเีสน้ทางประมาณหรอืใกลเ้คยีงกบัเสน้สนามแม่เหลก็ ดงันัน้นักวทิยาศาสตร์
กลุ่มน้ีจงึมุ่งทีจ่ะเขา้ใจเสน้ทางเดนิของสนามแม่เหลก็ ก่อนทีจ่ะศกึษาการเคลื่อนทีข่องอนุภาคโดยตรง จงึหนัมาศกึษาปญัหา
การฟุ้งของเสน้ทางเดนิของสนามแม่เหลก็จากแนวสนามแม่เหลก็เฉลี่ยซึ่งมลีกัษณะปญัหาที่ซบัซ้อนน้อยกว่าศกึษาการ
เคลื่อนทีข่องอนุภาคโดยตรง จงึไดม้กีารสรา้งแบบจ าลองสนามแม่เหลก็แบบป ัน่ป่วน และสรา้งทฤษฎต่ีางๆเพื่อทีจ่ะเขา้ใจ
และอธบิายเสน้ทางเดนิของอนุภาค  แต่เราพบว่าการศกึษาเพยีงการฟุ้งของเสน้สนามแม่เหลก็ท าใหเ้ราเขา้ใจการเคลื่อนที่
ของอนุภาคเพยีงแค่บางสว่นเท่านัน้ และเมื่อเปรยีบเทยีบกบัการขนสง่หรอืการฟุ้งของอนุภาคโดยตรงยงัมคีวามแตกต่างอยู่
มาก เนื่องจากการเคลื่อนทีข่องอนุภาคมกีลไกทีซ่บัซอ้นมากกว่าเสน้สนามแม่เหลก็ ส่วนนักวทิยาศาสตรอ์กีกลุ่มมุ่งศึกษา
การเคลื่อนทีข่องอนุภาคโดยตรง โดยพยายามท าการจ าลองและสรา้งทฤษฎทีีส่ามารถประยุกต์ไดก้บัอนุภาคโดยตรง แต่
เน่ืองจากงานวจิยัทีผ่่านมายงัไมเ่ขา้ใจกลไกทีเ่กดิเน่ืองจากลกัษณะสนามแม่เหลก็ป ัน่ปว่นโดยตรงทีช่ดัเจน จงึท าใหท้ฤษฎทีี่
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ได้มาในปจัจุบันยังไม่สมบรูณ์ และไม่ครอบคลุมปญัหาโดยทัว่ไป ดังนัน้ในงานวิจัยน้ีจึงมุ่งเน้นที่จะศึกษาและหา
ความสมัพนัธ์ระหว่างเสน้สนามแม่เหลก็ และเสน้ทางเดนิของอนุภาคโดยใช้การจ าลองเชงิตัวเลขและปรบัปรุงทฤษฎีที่
อธิบายและน าไปประยุกต์ใช้กับการขนส่งของอนุภาคในอวกาศให้สมบูรณ์และครอบคลุมปญัหาโดยทัว่ไปมากขึ้น  
นอกจากน้ีเรายงัสนใจปญัหาทัง้ทีเ่ป็นแบบสนามแม่เหลก็ป ัน่ป่วนทีไ่ม่ขึน้กบัเวลา (static turbulent magnetic field) และ
แบบทีข่ ึน้กบัเวลา (dynamical turbulent magnetic field) ซึง่ในแบบหลงัจะใกลเ้คยีงกบัสถานการณ์จรงิมากขึน้   
 
 
 
 
 

 
 

 
 
 
 
 

 
 
 

รปูท่ี 1 แสดงโครงสรา้งสนามแม่เหลก็และลมสรุยิะ 
 
2.  วตัถปุระสงค ์

2.1 เพื่อเขา้ใจความสมัพนัธร์ะหว่างการเคลื่อนทีข่องอนุภาคทีม่ปีระจุและเสน้สนามแม่เหลก็ป ัน่ปว่น  
2.2 เพื่อหาผลกระทบของการลอยเลื่อนและการเคลื่อนทีข่า้มเสน้แม่เหลก็ของอนุภาคทีม่ปีระจุเนื่องจากความ

ป ัน่ปว่นของเสน้สนามแม่เหลก็ทัง้ในเชงิวเิคราะหแ์ละเชงิตวัเลข 
2.3 เพื่อสรา้งแบบจ าลองส าหรบัสนามแม่เหลก็แบบป ัน่ปว่นทีข่ ึน้กบัเวลาและศกึษาการเดนิสุม่ของเสน้

สนามแม่เหลก็ป ัน่ปว่นทีเ่คลื่อนที ่ 
2.4 เพื่อหาความสมัพนัธร์ะหว่างสนามแม่เหลก็ทีข่ ึน้กบัเวลาและการเคลื่อนทีข่องอนุภาคทีม่ปีระจ ุ

 
3.  ระเบียบวิธีวิจยั 
    โครงการน้ีมกีารศกึษาแบ่งไดเ้ป็นสองสว่นคอื  
      3.1 การศึกษาความสมัพนัธร์ะหว่างเส้นสนามแม่เหลก็และเส้นทางเดินของอนุภาค 

ระเบยีบวธิกีารวจิยัในส่วนนี้จะแบ่งออกเป็นการจ าลองเชงิตวัเลขดว้ยชุดคอมพวิเตอรท์ี่ต่อแบบขนาน ( parallel 
computing) เพื่อใหม้ปีระสทิธิภ์าพการท างานสงู  และอกีสว่นคอืการค านวณเชงิวเิคราะหเ์พื่อสรา้งทฤษฎมีาอธบิายผลทีไ่ด้
จากการจ าลองเชงิตวัเลข การสรา้งทฤษฎนีี้จะช่วยน าไปประยกุตใ์ชใ้นงานวจิยัในอนาคตไดง้่ายขึน้  ในสว่นทีเ่ป็นการจ าลอง

Earth 



vii 
 

เชงิตวัเลขจะเป็นการจ าลองเส้นทางเดนิสนามแม่เหลก็ป ัน่ป่วนและการจ าลองเสน้ทางเดนิของอนุภาคในสนามแม่เหลก็
ป ัน่ป่วนชุดเดยีวกบัทีห่าเสน้ทางเดนิของสนามแม่เหลก็ โดยเราจะใชแ้บบจ าลองสนามแม่เหลก็แบบสององคป์ระกอบเพื่อ
สรา้งชุดของสนามแม่เหลก็ในอวกาศ จากนัน้แกส้มการเชงิอนุพนัธข์องเสน้สนามแม่เหลก็ (field line equations) เพื่อหา
เสน้ทางเดนิของสนามแม่เหลก็ โดยท าการก าหนดจุดเริม่ต้นของเสน้สนามแม่เหลก็ในบรเิวณต่างๆ จากนัน้โปรแกรมจะ
ค านวณเส้นทางเดินของสนามแม่เหล็กซึ่งมีจ านวนมากและใช้เนื้อที่ในการเก็บข้อมูลมากเพื่อให้ได้สถิติที่ดีเมื่อน าไป
วเิคราะหข์อ้มลู  จากนัน้ท าการจ าลองอกีครัง้โดยใชส้นามแม่เหลก็ชุดเดยีวกบัทีท่ าการจ าลองหาเสน้สนามแม่เหลก็ แต่หา
เสน้ทางเดนิของอนุภาคทีม่ตี าแหน่งเริม่ตน้ทีเ่ดยีวกบัจุดเริม่ตน้ของสนามแม่เหลก็ดงักล่าวขา้งต้น แกส้มการเชงิอนุพนัธน์ิว
ตนั-ลอเรนซ ์(Newton-Lorentz equation) ผลทีไ่ดจ้ะเป็นต าแหน่งเสน้ทางเดนิของอนุภาคทีเ่คลื่อนทีอ่ยู่ใกลเ้คยีงกบัเสน้
สนามแม่เหลก็ที่เราหามาได้ขา้งต้น  จากนัน้จะวเิคราะห์หาความสมัพนัธ์ของเสน้ทางเดนิทัง้สองโดยใช้สถิติแบบต่างๆ 
สดุทา้ยสรา้งทฤษฎเีพื่ออธบิายความสมัพนัธข์องเสน้สนามแม่เหลก็และเสน้ทางเดนิของอนุภาค 

 
       3.2 การสรา้งแบบจ าลองสนามแม่เหลก็ปัน่ป่วนท่ีขึน้กบัเวลาและศึกษาการเดินสุ่ม 

เช่นเดยีวกบัการศกึษาในส่วนแรก ระเบยีบวธิกีารวจิยัในส่วนนี้จะแบ่งออกเป็นการจ าลองเชงิตวัเลขด้วยชุด
คอมพวิเตอรท์ี่ต่อแบบขนานและอกีส่วนคอืการค านวณเชงิวเิคราะห์เพื่อสรา้งทฤษฎีมาอธบิายผลที่ ได้จากการจ าลองเชงิ
ตวัเลข เราจะใชห้ลกัการค านวณหาเสน้สนามแม่เหลก็เช่นเดยีวกบัหวัขอ้ 3.1 เพยีงแต่เราจะท าการปรบัปรุงฟงักช์นัในการ
สรา้งชุดสนามแม่เหลก็ป ัน่ปว่นแบบสององคป์ระกอบใหข้ึน้กบัเวลา ซึง่แบบจ าลองของสนามแม่เหลก็ป ัน่ป่วนทีอ่ยู่กบัเวลาที่
เราจะท าการศกึษาในโครงการวจิยันี้มอียู่สองแบบคอืแบบ random sweeping และ แบบ damping ดงันัน้เราจงึต้อง
ออกแบบการสรา้งชุดสนามแม่เหลก็ทีข่ ึน้กบัเวลาเชงิตวัเลข เพื่อใหเ้ขา้กบัแบบจ าลองดงักล่าว ในการศกึษาในส่วนนี้เราจะ
เกบ็ขอ้มูลของเสน้สนามแม่เหลก็ทีเ่วลาและต าแหน่งต่างๆแลว้มาวเิคราะหท์างสถติเิพื่อน ามาประยุกต์ใช้กบัการเคลื่อนที่
ของอนุภาคในอวกาศ ซึง่ในการศกึษาสว่นนี้จะมลีกัษณะใกลเ้คยีงกบัธรรมชาตมิากขึน้เนื่องจากแทจ้รงิแลว้สนามแมเ่หลก็ใน
อวกาศมกีารเปลีย่นแปลงตามเวลา 
 
4. แผนการด าเนินงานวิจยัตลอดโครงการในแต่ละช่วง 6 เดือน 

4.1 แผนงานเดือนท่ี 1-6 

4.1.1 ศกึษาคน้ควา้และรวบรวมขอ้มลู เพื่อทีจ่ะทราบแนวทางในปจัจุบนั และน ามาประยุกต ์ ออกแบบ
งานวจิยัทีก่ าลงัจะด าเนินการ 

4.1.2 จดัซือ้อุปกรณ์ และสรา้งชุดการค านวณเชงิตวัเลข ไดอุ้ปกรณ์พรอ้มส าหรบัท าวจิยั 
4.1.3 ออกแบบเงื่อนไขค่าเริม่ตน้และคา่คงทีต่่างๆเพื่อน าไปค านวณเชงิตวัเลข และท าการจ าลองเสน้

สนามแม่เหลก็ป ัน่ปว่นและการเคลื่อนทีข่องอนุภาคทีเ่สน้สนามแม่เหลก็นัน้ เกบ็ขอ้มลู เพือ่ใหไ้ด้
ขอ้มลูเสน้ทางเดนิสนามแม่เหลก็และอนุภาคทีม่คีวามสมัพนัธก์นั 

4.2 แผนงานเดือนท่ี 7-12 

4.2.1 วเิคาระหห์าความสมัพนัธท์างสถติริะหว่างเสน้สนามแม่เหลก็ป ัน่ปว่นกบัการเคลื่อนทีข่องอนุภาค 
เพื่อเขา้ใจถงึกลไกทางฟิสกิสข์องอนุภาคในเสน้สนามแม่เหลก็ป ัน่ปว่น 

4.2.2 เผยแพร่ผลงาน และเรยีบเรยีงผลงานเพื่อการตพีมิพส์ าหรบับทความแรก 
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4.3 แผนงานเดือนท่ี 13-18 

4.3.1 ออกแบบการค านวณเชงิตวัเลขเพื่อสรา้งฟงักช์นัสนามแม่เหลก็ทีข่ ึน้กบัเวลา เพื่อใหไ้ดชุ้ด
สนามแม่เหลก็ป ัน่ปว่นทีเ่ปลีย่นแปลงไปตามเวลา 

4.3.2 จ าลองเสน้สนามแม่เหลก็ป ัน่ปว่นทีข่ ึน้กบัเวลา และเกบ็ขอ้มลู เพื่อน าไปวเิคราะหท์างสถติ 
4.4 แผนงานเดือนท่ี 19-24 

4.4.1 วเิคาระหข์อ้มลูและสรา้งทฤษฎกีารฟุ้งของสนามแม่เหลก็ป ัน่ปว่นทีข่ ึน้กบัเวลา และน าผลทีไ่ด้
เปรยีบเทยีบกบักรณีทีไ่มข่ึน้กบัเวลาและการเคลื่อนทีข่องอนุภาค    เพื่อเขา้ใจถงึกลไกทางฟิสกิส์
ของการเปลีย่นแปลงตามเวลาของเสน้สนามแม่เหลก็ป ัน่ปว่น และการเคลื่อนทีข่องอนุภาคใน
สนามแม่เหลก็ป ัน่ปว่นทีข่ ึน้กบัเวลา 

4.4.2 เผยแพร่ผลงาน และเรยีบเรยีงผลงานเพื่อการตพีมิพบ์ทความทีส่อง 
 

5. ผลงาน/หวัข้อเรือ่งท่ีคาดวา่จะตีพิมพใ์นวารสารวิชาการระดบันานาชาติในแต่ละปี 
 

ปีท่ี 1:  ช่ือเรือ่งท่ีคาดว่าจะตีพิมพ:์  
Separation of charged particle trajectories from turbulent magnetic field lines  
ช่ือวารสารท่ีคาดวา่จะตีพิมพ:์  Astrophysical Journal (impact factor = 6.405) 
 

ปีท่ี 2:  ช่ือเรือ่งท่ีคาดว่าจะตีพิมพ:์  
Dynamical magnetic field turbulence and implications for the transport of charged particles in 
interplanetary space  
ช่ือวารสารท่ีคาดวา่จะตีพิมพ:์ Astrophysical Journal (impact factor = 6.405)  
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6.       งบประมาณโครงการ (ตามระยะเวลาโครงการท่ีได้เสนอรบัทุน)  
 

รายการค่าใชจ้่าย 
จ านวนเงนิ (บาท) 

ปีที ่1 ปีที ่2 รวม 
1. หมวดค่าตอบแทน  

 - ค่าตอบแทนหวัหน้าโครงการ (5,000 บาท/เดอืน) 
 

60,000 
 

60,000 
 

120,000 

2. หมวดค่าวสัด ุ/ ครุภณัฑ ์
- เครื่องคอมพวิเตอรจ์ านวน 2 ชุด เพื่อท าการค านวณ

แบบขนาน (cluster)* 
- แผ่น DVDs เพื่อเกบ็ขอ้มลูส ารอง 

 
96,000 

 
2,000 

 
- 
 

3,000 
   

 
96,000 

 
5,000 

3. หมวดค่าใชส้อย 
- ค่าใชจ้่ายในการตพีมิพว์ารสาร Astrophysical Journal 
- ค่าไปรษณียแ์ละโทรศพัท ์
- ค่าหนงัสอืและค่าถ่ายเอกสาร 

      - การเดนิทางเพื่อรายงานความกา้วหน้าและ 
        สมัมนาอื่นๆ 

 
- 

3,000 
7,000 

12,000 
 

 
80,000 
5,000      

12,000 
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32,000 
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Chapter 1 

Introduction 

1.1 Overview 

The Sun consists of magnetic field and ionized gas called plasma.  Some plasma on the Sun 

is trapped by Sun’s magnetic field and some part continuous flows out into interplanetary space 

with the speed approximately to 400 km/s which we call this part as solar wind.  The flow of 

solar wind is turbulent and at the same time it drags the Sun’s magnetic field into the space.  Due 

to the rotation of the Sun and turbulence of the solar wind, the characteristic of interplanetary of 

magnetic field is achemedian spiral and turbulent as shown in Figure 1.1.  The Sun also releases 

high energy particle called solar energetic particles into interplanetary space.  Most of them are 

charged particles from keV to GeV.  These particles effect to the Earth’s atmosphere.  Since the 

magnetic field is turbulent, the spectrum has the shape as Kolmogorov spectrum with has the 

slope -5/3 in inertial range.  In this range the energy transfer from large to small scales.  This is 

also the range that the plasma loses the energy called dissipation range.  Taylor microscale is 

found as the scale that related to this range and observed from multi-spacecraft.       

 

Figure 1.1 Structure of interplanetary magnetic field and solar wind with moving charged 

particle. 
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 According to fundamental of electromagnetic field, when charged particles are in the 

magnetic field, they move as helical orbit around the magnetic field.  The shape of spiral depends 

on the strength of magnetic field, particle’s speed and the angle between the charged particle and 

the direction of magnetic field.  Therefore, the energetic particles released from the Sun also 

orbit around the magnetic field.  Since the magnetic field direction is the quantity that controls 

the transport of charged particles, the study of effect of the turbulent magnetic field to the 

charged particles in space is important to explain the mechanism and the phenomena that we can 

observe from the spacecraft data such as dropouts and solar modulation.  Moreover, this research 

leads us to new knowledge about basic physics which might be able to apply to the motion of 

charged particles in turbulent magnetic field in laboratory. 

 From the previous study, the scientists are interested to explain the mechanism of the 

particle transport in the space.  They can be divided into two big groups.  The first one focuses 

the trajectories of the turbulent magnetic field line instead of the motion of charged particles.  

They assume that the guiding centers of particles are very close to the magnetic field line 

trajectories.   They model several kind of magnetic turbulence and study the diffusion of field 

lines.   This problem is less complicated than examining the motion of charged particle directly.  

However, we cannot understand all mechanisms if we only study the field lines.  When we 

compare the real transport of the particles, they are still some different from field line theory.  

Another group of scientist studies the motion of charged particles in turbulent magnetic field 

directly and try to create the theory to explain the transport.  Recently, there is no theory that can 

completely explain the mechanism and cover all general problems.   

Therefore, this research examines the relationship between field line trajectories and the 

motion of the particle by using the numerical simulation and develops the theory to apply to 

particle transport in the interplanetary space.   Furthermore, we also use method of generating 

field lines above to crate the signals which depend on time.  Then we use the statistics properties 

that found in turbulent magnetic field to develop the technique to measure the Taylor microscale 

in real data from spacecraft. 
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1.2 Objectives 

 To understand the relationship between the motion of particle and turbulent 

magnetic field. 

  To find the drift and cross-field motion effects of charged particles due to the 

turbulence of magnetic field in both numerical and analytic calculation. 

 To model the spectrum and generate the time-series signal to study the 

characteristic of length scale of turbulence of magnetic field. 
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Chapter 2 

Model of Turbulent Magnetic Field 

 

 Since this research focus on the effect of turbulent magnetic fields in interplanetary space 

on the motion of solar energetic particles, in this chapter we present the model of magnetic field 

that we use.  One is two-component magnetic turbulence to study the separation and another one 

is turbulent magnetic field with Taylor microscale to find the technique of measurement.  We 

also assume that the magnetic field is static and homogeneous. 

2.1 Two-Component Magnetic Turbulence 

The two-component model was motivated by the observation that solar wind fluctuations 

are concentrated at nearly parallel and nearly perpendicular wave number (Matthaeus, Goldstein, 

& Roberts 1990).  For the parallel component, the wave vector is parallel to the direction of the 

mean field and the fluctuation of the magnetic field in this component is perpendicular to both 

the parallel wave vector and the mean field. This is motivated by Alfύenic or slab like waves in 

the solar wind propagating along the mean field. We call this component the “slab” component. 

Another component, which is motivated by laboratory experiments, is called “two-dimensional 

(2D)” turbulence, which has a wave vector perpendicular to the mean magnetic field. The 

magnetic fluctuation in this component is also perpendicular to both the wave vector and the 

mean field. This component gives long correlation lengths in the direction of the mean field. The 

analysis of solar wind data by Matthaeus, Goldstein, & Roberts (1990) showed that the power 

spectrum of the solar wind turbulence is composed of these two components. Furthermore, the 

two-component model provides a good explanation of the parallel transport of SEPs (Bieber et 

al. 1994; Bieber, Wanner, & Matthaeus 1996; Dröge 2000), providing a solution to the long-

standing discrepancy between theoretical and observed scattering mean free paths. 

 Two-component magnetic model can be generally written as 

 ⃗ (     )     ̂   ⃗     (z) +  ⃗   (x,y).                                  (2.1) 
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The total magnetic field consists of the uniform mean field (   ̂) and the transverse fluctuations 

( ⃗      and  ⃗   ) which are in the perpendicular direction to the mean field.  For the fluctuations, 

the slab (one dimensional) fluctuation depends on the   coordinate while the two dimensional 

(2D) fluctuation depends on the   and   coordinates (Chuychai 2004).  Next, we introduce the 

characteristic of each type of magnetic field that we use in this research.   

2.1.1 Slab Fluctuation 

From the definition of the slab field, the fluctuation depends only on  . Therefore, if we 

consider the slab fluctuation in the  -  plane at each  ,  ⃗      is the same along that plane but 

different from the field on other planes as shown in Figure 2.1. 
 

 

 

Figure 2.1 Illustration of the slab fluctuation, which depends only on the   coordinate. The 

arrows demonstrate the slab fluctuation  ⃗     . 

 

For the slab fluctuation, since the magnetic field is turbulent, the power spectrum is 

specified by a Kolmogorov spectrum, including an energy containing range and an inertial range 

with a 5/3 power law index, as  
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    (  )     

    (  )  
 

[  (  ) ]   
                                      (2.2) 

where   is a coherence length and   is constant.  See the shape of spectrum in Figure 2.2.  To 

generate the slab magnetic field, we first numerically compute the field in Fourier space by using 

the power spectrum and a random phase, and then transform them back to real space via and 

inverse Fourier transform.  Finally, we will have the magnetic field data over detailed grid in the 

simulation box.  Figure 2.3 shows the example of trajectories of magnetic field lines from pure 

slab turbulence [   ̂   ⃗     ( )]. 

 

Figure 2.2 Example of a slab power spectrum. 
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Figure 2.3 Example of two trajectories of magnetic field lines in pure slab turbulence. 

 

2.1.2 Two Dimensional (2D) Fluctuations 

For 2D field, the fluctuation depends only   and   coordinate.  Since  ⃗⃗   ⃗   ,  we have 

 ⃗   ⃗⃗  [ (   ) ̂], where  (   ) is the vector potential.  In this work, we create 2D field in 

two cases.  For the first case, the 2D field is turbulent.  To generate this type of fluctuation, we 

need to specify power spectrum in wave number space.  Another case is simple 2D field which 

model as only one single island.  Here the potential function is simply defined by a Gaussian 

function.    

I. Two dimensional (2D) Turbulence 

From  ⃗   ⃗⃗  [ (   ) ̂], we can write 2D turbulence as  ⃗     ⃗⃗  (   )   ̂.  From this 

relation, we can clearly see that the 2D field must be in the direction perpendicular to the 

gradient of the potential function and also to the z direction. Therefore, the direction of the 2D 

field must be along the equipotential line of  (   ) as shown in Figure 2.4.  A 2D field that has 
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a positive value of  (   )  is in a counterclockwise direction while one that has a negative value 

has a clockwise direction.  When we consider the pure 2D turbulence [   ̂   ⃗   ( )], the field 

lines conserve the value of the potential  function and move along the contour of  (   ).  The 

example is shown as Figure 2.5. 

 

Figure 2.4 Schematic contour plot of  (   ). The solid arrows show the 2D field,  ⃗   , and the 

dashed arrows show examples of the directions of  ⃗⃗  (   ) for both positive and negative 

potential functions. The 2D field must lie along the equipotential lines of the potential function.  

For a positive potential function, the 2D field is in a counter-clockwise direction, while a 2D 

field having a negative potential function is in the clockwise direction. 
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Figure 2.5 Example of a trajectory of a magnetic field line in pure 2D turbulence. 

 

 Finally, when we add both slab and 2D turbulence into the mean field, the trajectories of 

magnetic field lines look like Figure 2.6.  In our simulation, to model the 2D+slab turbulence 

similar to solar wind condition, we usually use 20% of slab turbulence and 80% of 2D 

turbulence.  
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Figure 2.6 Sample of magnetic field lines in 2D+slab magnetic field turbulence that start at the 

difference locations.  The field lines near O-point are trapped along some distance before they 

diffuse while the field line near X-point quickly spread at the beginning (Chuychai et al. 2007).  

II. Simple Gaussian 2D Field  

To understand the mechanism of separation between charged particles and their field 

lines, we also create a simple model for 2D field.  For the simple case, we model 2D field as a 

Gaussian function while the slab field is turbulent (Chuychai et al. 2005; Tooprakai et al. 2007). 

That would provide us more understanding about the mechanism of the motion of the charged 

particles when we vary the initial pitch angles. The potential function for simple 2D case can be 

written as 

 ( )       [ 
  

   
]                                                    (2.3) 

where    is the central maximum value,   determines the width of the Gaussian, and the 

distance   is measured from the axis of the flux tube.  Without the slab field, the field line 

trajectories in this model,    ̂   ⃗   (   ),  have helical orbits along a cylindrical surface of 

constant  (   ) with a constant angular frequency as a function of  . The contour of  (   ) in 

this model is circle and field line move along the surface of constant  (   ) as shown in Figure 
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2.7.  Then when we add slab turbulence,  the example of trajectories are in Figure 2.8.  The field 

lines start inside 2D island are trapped at the beginning and later become diffusive due to slab 

turbulence.  For the field lines start outside, they quickly spread due to slab turbulence. 

 

Figure 2.7 Magnetic field line trajectories for a single 2D island, with   ⃗     ̂   ⃗   (   ).  

The surface plot at bottom shows the potential function  (   ) of the 2D field (Chuychai et al. 

2007). 
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Figure 2.8 Example of two magnetic field lines in a single 2D Gaussian island plus slab 

turbulence. The red field line started deep inside the island, whereas the blue field line was 

initially located outside the island. The surface plot at bottom shows the potential function 

 (   ) of the 2D field (Chuychai et al. 2007). 

 

2.2 Turbulent Magnetic Field with Taylor Microscale  

In this section, we specify the magnetic field with microscale in order to develop the 

measuring technique and apply to spacecraft data (Chuychai et al. 2014).  We use synthetic data 

generated using a known spectrum, and then employ a typical methodology to evaluate the 

Taylor microscale.  The spectrum is constructed with inertial and dissipation ranges that have 

been independently controlled, and have generally different power law indices. To be specific, 

we let the inertial range have a spectral index of -5/3, while the dissipation range has an 

adjustable spectral index  .  The particular functional form of the spectrum is  
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                             (2.4) 

where     (See the shape of spectrum is presented in Figure 3.1).  The reasons for these 

choices are as follows: First, the flat spectral region at very low frequencies       is designed 

to make the signal time stationary.  This is unrealistic for the solar wind, which has very low 

frequency components due to, eg, solar rotation and solar cycle (see e.g., Matthaeus and 

Goldstein 1982).  However we are not concerned with very low frequency effects here.   Second, 

the inertial range with Kolmogorov spectral index of  5/3 is found for higher frequencies, at 

     .  Third, there is a discontinuous jump at the top of the inertial range at frequency   , the 

slope steepening from      to   , in qualitative accord with observations (Leamon et al. 2008; 

Alexandrova et al. 2009; Sahraoui et al. 2009).  Finally at high frequencies      we set the 

spectrum to zero, for numerical rather than physical reasons, to provide a very smooth 

trigonometric interpolation of the signal at the grid scale.  

Adopting illustrative values that are representative of the solar wind at 1AU, we assume 

that the spectrum starts from                Hz and is flat until    
 

  
            

Hz, a “bendover” frequency often associated with the correlation scale or coherence time.  

Thereafter the spectrum has an inertial range with a 5/3 power law index, until a second break 

point is encountered at             Hz.  For historical reasons, this breakpoint, which 

terminates the power law MHD-scale inertial range, is often referred to as the “dissipation scale” 

(Leamon et al. 1998), although it is also possible that it characterizes dispersion rather than 

dissipation (Gary and Borovsky 2004).  In the hydrodynamic case for which the eddy turnover 

time and viscous dissipation time scales become equal at the dissipation scale,  for the solar wind 

or other low-collisionality astrophysical plasmas,  it is unclear whether the fluctuations become 

critically damped at the breakpoint/dissipation scale.  For example, the inertial range is typically 

found to terminate near the proton gyroscales, and while some dissipation may occur at such 

scales, further kinetic plasma dynamics may transfer energy to higher frequencies until much 

smaller electron scales are encountered (Alexandrova et al. 2009; Sarhaoui et al. 2009).  It has 

been argued that a substantial fraction of actual dissipation may occur due to electrons.  In any 
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case the scale    corresponds to the onset of kinetic processes and the end of the Kolmogoroff-

like inertial range.  It is, however, the kinematic properties of the spectrum that come into play in 

the current study, rather than the dynamical origin of the spectral forms.   

In our model development, beyond the breakpoint   , we extend the dissipation range 

with power law index   until    = 16.0 Hz which may be considered, in the solar wind 

application, to be associated with the electron dissipation scale. The spectrum cuts off 

completely at     =25.6 Hz.  To decide upon these numerical values, here we assume that the 

dissipation scale and electron dissipation scale correspond to the proton and electron inertial 

scales, respectively.  Thus we set   
  
    to be consistent with the ratio of electron and proton 

inertial scales in MHD, which is about √           (see e.g., Sahraoui et al. 2009).  
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Chapter 3 

Methodology 

 

We generate magnetic field, which is static and homogeneous by using 2D+slab model of 

magnetic field turbulence. To study the separation between magnetic field line and charged 

particle trajectories, we simulate magnetic field lines corresponding to the initial guiding centers 

of the charged particles by numerically solving field line equation while the trajectories of 

particles is traced by solving equation of motion.  After that the data are collected and analyzed 

by using new statistical approach.  For the part of generating turbulent magnetic field with 

Taylor microscale, we show the method how to generate the spectrum and transform to time 

series in real space which are analogous to spacecraft data. 

 

3.1 Generation of magnetic field 

 

3.1.1 Turbulence Magnetic Field  

Since the magnetic field in interplanetary is turbulent, we simulate magnetic field by 

setting up magnetic field parameters and specify power spectrum.  In our simulations, we 

generate the magnetic field in the simulation box.  We need to consider the effects of the 

simulation box, representations of turbulent field, and suitable length scale for simulated field 

lines.  For turbulence case, the magnetic field is generated in wave number space (k-space) 

before conversion to real space.  We instead define the power spectrum as a function in k-space, 

which is the Fourier transform of the magnetic correlation function    ( ⃗)     ( )  ( ⃗)  .  

The spectrum that we usually use for the magnetic turbulence is a Komolgorov spectrum over a 

wide range of wave numbers.  The magnetic fluctuations in equation (2.1) are composed of slab 

and 2D turbulence.  Because the slab turbulence depends only on z and the 2D turbulence 

depends on x and y positions, we separately generate them in    and (  ,   ) spaces, 

respectively.  After that, the magnetic field in Fourier space is converted to position space by an 

inverse fast Fourier transform.  For numerical computation, we cannot generate the magnetic 

fluctuations continuously in space due to the limitation of the computer. Thus the magnetic field 
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is constructed only on the grid points in the simulation box. To avoid bias due to a periodicity 

effect, we have to generate the magnetic field in a large (but finite) box. Therefore, in this part, 

the parameters that we need to input are the sizes in x, y, and z directions of the simulation box 

(Lx, Ly, and Lz), the number of grid points (Nx, Ny, and Nz), the total root-mean-squared 

fluctuation (  ), the fraction of 2D and slab energy, the shapes of the 2D and slab power spectra, 

and coherence lengths (   an   ). 

 

Slab Turbulence 

For slab turbulence, we set the power spectrum for simulations as 

   
    (  )     

    (  )  
     

[  (   ) ]   
                              (   ) 

where       is a normalization constant that depends on the slab energy and   is the parallel 

coherence length. From the function of the slab spectrum, the slab magnetic fluctuations in    

space are 

  
    (  )  √   

    (  )    [  (  )]                                (3.2) 

  
    (  )  √   

    (  )    [  (  )]                                (3.3) 

where   is a random phase number and    is a discrete number which is            for 

               1.  

 

2D Turbulence 

For 2D turbulence, we instead specify the power spectrum  (     ) because the power 

spectra        (     )  and        (     ) can be written in terms of  (     ) as  

 (  )  
   

[  (    ) ]   
                                                 (   ) 

From the relationship between magnetic fluctuation and potential function in k-space, the 2D 

fluctuations in (     ) are 

  
  (     )      √ (  )    [  (     )]                                (3.5) 

  
  (     )     √ (  )    [  (     )]                                   (3.6) 
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3.1.2 Simple Gaussian 2D Field 

Since we can specify the function of simple Gaussian 2D Field directly in real space.  

From equation (2.3), we write potential function in Cartesian coordinate 

 (   )       [ 
(    )

  (    )
 

   
]                                      (   ) 

 where    and    are center of the Gaussian island.  From the relationship   ⃗⃗    ⃗⃗⃗ (   )   ̂, 

we can write 

   
  (   )

  
 
 (    ) (   )

  
                                                   (   ) 

    
  (   )

  
 
(    ) (   )

  
                                                  (   ) 

 

3.1.3 Turbulent Magnetic Field with Taylor Microscale 

Once we have specified the shape of spectrum as equation (2.4), we can generate 

realizations of the signal in the frequency domain,  ( ), as 

 ( )  √ ( )    [  ]                                              (3.10) 

where   is a random phase. Then a fast Fourier transform (FFT) is used to convert the function 

 ( ) into the real time domain.  In the simulations reported here, we employ this approach to 

obtain     data points for the time series. 

We next compute the Taylor microscale from the data set we generated by employing the 

definition equation (2.4).  In Table (3.1), we give the Taylor microscale values for a range of 

dissipation scale indices   corresponding to the generic power spectrum shown in Figure 3.1.  

(Note that the spectra are given here as Fourier amplitudes squared, which can easily be 

converted to power spectral density.)  We will treat these expected values of the Taylor 

microscale as the true or exact Taylor microscale values for the synthetic time series data.  To 

examine and test our extrapolation method, we use only one-eighth of the original data. The 
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purpose of defining this subset is that any consistent method will provide good (and even 

convergent) values of     when the time resolution    of the estimates is very fine, i.e., the 

spectral cutoff is resolved and           .  However, our motivation is to obtain reasonably 

accurate values of     when the effective resolution of the data sampling is adjusted so that we 

are not in this asymptotic regime – a circumstance that is more likely to be realized in practice 

when analyzing spacecraft data.  

With the subset of our discrete time series, we compute the second order structure 

function.  This can be used to obtain an estimate of the correlation function.  We then determine 

the radius of curvature from correlation function and an estimate of the Taylor microscale.   In 

the following section, we will demonstrate an extrapolation technique (Weygand et al. 2007, 

2009, 2010, 2011) to estimate Taylor microscale from a series of parabolic fits of the correlation 

function near the origin.  The details of the technique we use to analyze are given in Chapter 6. 

 

Figure 3.1 The power spectrum for a number of values of q in the dissipation range. 
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Table 3.1 Showing index   which we vary for each case and their Taylor scales when we fix 

dissipation scale (       s). 

 

Case    
       [s]    

       [  ] 

     6.569 2.63 

     5.097 2.04 

     4.368 1.75 

     2.869 1.15 

       1.607 0.64 

     1.095 0.44 

     0.095 0.028 
 

 

3.2 Particle Simulations 

For the charged particle q and mass m, moving with velocity ( ⃗) a magnetic field ( ⃗⃗), 

without electric field ( ⃗⃗), we can write motion equation by Newton’s Lorentz force ( ⃗ ): 

 ⃗   
  ⃗

  
  ( ⃗   ⃗⃗)                                               (    ) 

For our work, we a bit adapt equation (3.11) for simulation (Tooprakai et al., 2007), 

  ⃗ 

   
  ( ⃗   ⃗⃗ )                                                    (    ) 

where   (     ) (   )  and the quantities  ⃗ ,  ⃗⃗ , and    are normalized quantities which 

have units as scale to the speed of light ( ), the mean magnetic field (  ), the time scale    

   , respectively. Note that   is the slab turbulence coherence length.   

We can find trajectories of the charged particles, when we know the equation of motion 

of the charged particles. In this work, we use Newton’s Lorentz force equation to find positions 

of the charged particles by using fourth-order Runge-Kutta method with adaptive time stepping 

regulated by a fifth-order error estimate step (Press, Teukolsky, Vetterling & Flannery, 1992; 

Dalena, Chuychai, Mace, Greco, Qin & Matthaeus, 2012).  
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3.3 Magnetic Field Line Simulations 

When we know the value of the magnetic field at each grid point, we can trace the magnetic field 

line that is tangent everywhere to the magnetic field ( ⃗⃗).  The differential equation of the 

magnetic field line is 

  ⃗   ⃗⃗                                                            (3.13) 

In Cartesian coordinates,   ⃗ is (        ) and  ⃗⃗ is (        ).  From equation (3.13), it can be 

written as  

  

  
 
  

  
 
  

  
                                                            (    ) 

In our model, we use  ⃗⃗     ̂     ̂     ̂ so we obtain 

  

  
 
  

  
 
  

  
                                                             (    ) 

Finally, we can write the differential equation for the magnetic field line as 

  

  
 
  (     )

  
 
  
    ( )    

  (   )

  
                                       (    ) 

  

  
 
  (     )

  
 
  
    ( )    

  (   )

  
                                       (    ) 

After that the differential equation of the magnetic field line is solved by using fourth order 

Runge Kutta method with adaptive step size as same as we use in particle simulation to find 

positions of the magnetic field lines            . 

 

3.4 Simulation and Analysis Method for Separation between Charged Particles and Field 

Lines 

We simulate 1,000 pairs of particle trajectories (protons) and their initial field lines with 

starting points located at the initial guiding center (GC) of the particles. As the trajectories of the 

particles are traced by equation (3.12), their GCs are also computed from the radius of curve of 

the particle orbits,  ⃗: 

 ⃗  
 ⃗⃗   ⃗

   
                                                             (    ) 
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where  ⃗      ⃗ is the particle momentum.  From the radius of curvature and the particle 

position, we can find the GC from  ⃗    ⃗   ⃗ as shown in the Figure 3.2. 

 

Figure 3.2 Illustration of a particle orbit, magnetic field line and guiding center (Wikee 2013). 

  

After that, we analyze the statistics of spreading between particles and field lines by 

calculating the mean squared displacement between the position of a particles GC and its field 

line at the same z-coordinate (see Figure 3.3), as a function of time, that is 

〈(   ( )     [ ( )])
 〉     〈(   ( )     [ ( )])

 〉                       (    ) 

where z(t) is the z-coordinate of the particle GC at time t. Note that     and     are single valued 

because we assume transverse fluctuations, so       constant and the field line cannot back 

track in z.  We use linear interpolation to evaluate     and     at   coordinate of the particle GC 

at regular time intervals. 
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Figure 3.3 The diagram of separation between the guiding center and magnetic field line (Wikee 
2013). 
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Chapter 4 

Effect of Reduced Dimensionality of the Magnetic Field Fluctuations on the 

Cross-Field Motion of Charged Particles 

 

In interplanetary space, the transport of energetic charged particles is influenced by a 

turbulent magnetic field.   Previous studies have shown that a two-component (2D+slab) 

magnetic model (Matthaeus, Goldstein, and Roberts 1990; Bieber, Wanner, and Matthaeus 1996) 

of turbulence is a useful model for the magnetic field in the heliosphere.  Normally, the diffusive 

behavior of charged particles in a turbulent magnetic field is observed when they approach the 

long time limit.  The charged particles are often assumed to follow and diffuse according to the 

random walk of the field lines but some theories of perpendicular particle transport, such as 

nonlinear guiding center theory (NLGC) (Matthaeus et al. 2003; Ruffolo et al. 2008; Ruffolo et 

al. 2012), implicitly assume some true cross-field diffusion in which particles separate from the 

field line connected to their initial location.  Furthermore, such cross-field diffusion is of specific 

interest because it is the only way that particles can diffuse across boundaries of magnetic field 

topology, such as the heliospheric current sheet and boundaries of interplanetary magnetic flux 

ropes.  Jokipii et al. (1993) and Jones et al. (1998) derived a theorem showing that charged 

particles in an arbitrary electromagnetic field with at least one ignorable spatial coordinate 

remain forever tied to a given magnetic flux surface.  In this work, we consider charged particles 

in one- and two-component magnetic fields to illustrate the effect of reduced dimensionality of 

magnetic fluctuations on the cross-field motion.  A simple 2D flux tube and slab turbulence are 

used for fluctuations with we can turn the dimensionality on and off.       

 

4.1 Simulation Setup 

In the simulation, we set the box length in the   direction as         and the number of 

grid points is             .  The magnetic parameters are              ,       , and 

            . 
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The 100 MeV protons were released in random direction distribution.  There are three 

cases that we have explored in our work: particle motion in a pure 2D field, in pure slab 

turbulence and in 2D+slab fields. These three cases can demonstrate the effect of reduced 

dimensionality of the magnetic field fluctuations. That is a reduction to one dimensionality can 

be studied in the case of pure 2D field with azimuthal symmetry [   ̂   ⃗      ] and in the case 

of pure slab turbulence [   ̂   ⃗        ].  The 2D+slab case represents fully three dimensional 

fluctuations.  Note that in our results all length scale is in unit of   and time is in unit of    . 

 

4.2 Results 

Case I: Particles in the pure 2D field 

We inject all 1,000 protons of 100 MeV at a random angles along certain initial radius (  ) of the 

2D flux tube.  The results are shown in Table 1 and Figure 1 for        .  From the results, we 

found that 〈           [    ] 
 〉   

 .  It can be explained by the drift motion in the azimuthal 

direction (  direction) while the particles still stay near the flux surface.  Figure 4.2 shows 

similar results for 10 MeV particles started at        ). 
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Figure 4.1 The mean squared separation between guiding centers of 100 MeV particles starting 

at          with their field lines in the pure 2D field. The value close to   
  implies 

confinement to flux surface. 
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Figure 4.2 The mean squared separation between guiding centers of 10 MeV particles starting 

at         with their field lines in the pure 2D field. 

 

 

Table 4.1 Saturation values for 100 MeV particles in the pure 2D field when we vary the 

location of the initial positions. 

   〈         
 〉 〈         

 〉 

0.1 0.0149 0.0149 

0.3 0.0900 0.0902 

0.5 0.249 0.250 

0.7 0.492 0.493 

0.9 0.825 0.826 
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Case II: Particles in slab turbulence 

In this case, the particles are started at random positions in the simulation box. The 

results in Figure 4.3 show that the particles in slab turbulence have very little separation for their 

field lines.  The particles stick with their initial field lines.  

 

Figure 4.3 The mean squared separation between guiding centers of 100 MeV particles and their 

field lines in pure slab turbulence. The low value indicates confinement of the particle to remain 

near the same field line. 

 

Case III: Particles in 2D+slab fields 

In the case of three dimensional fluctuations, we can see that the particles have 

unconstrained cross-field motion illustrated in Figure 4.4.     
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Figure 4.4 The mean squared separation spreading between guiding centers of 100 MeV 

particles and their field lines in Gaussian 2D field + slab turbulence. The continual increase 

indicates unconstrained cross-field motion in this fully three-dimensional case. 

 

4.3 Conclusions and Discussion 

We have examined the cross-field motion of particles in the one- and two-component 

magnetic field models.  Our results show the effect of reduced of dimensionalities of the 

magnetic fluctuations on the cross-field motion.  When the fluctuations have two ignorable 

coordinates in one case (pure slab), no cross-field motion can be observed, with particles 

constrained to remain near one field line, and in another case (pure 2D with azimuthal 

symmetry), the particles are constrained to remain near on-flux surface.  Unconstrained cross-

field motion occurs only when the magnetic field has fully three dimensions.  These results are 

consistent with the theorem of Jokipii et al. (1993) and Jones et al. (1998) which states that  in an 
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EM field with an ignorable coordinate, the particle motion remains near a single magnetic flux 

surface.  The particles in the pure slab case stick to their initial field lines because the theorem 

applied to the ignorable   coordinate constrains the particle to one magnetic flux surface, 

application to the ignorable   coordinate constrains the same particle to a different flux surface, 

and the intersection of the two surfaces in simply the original field line. For the pure 2D case, 

application of the theorem to the ignorable coordinate   coordinate implies a constraint to remain 

near a flux surface of constant  , which is the same surface.  Thus there is no further constraint 

from the second application of the theorem, the particles are confined on the flux surface but 

have the drift motions in the   (or  ) direction that cause the saturate values in our statistics 

approximately    .  This study will help us to understand the cross-field motion of energetic 

particles in interplanetary space and will play an important role in developing the transport 

theory of charged particles in magnetic turbulence. 
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Chapter 5 

Separation of Charged Particles from Their Turbulent Magnetic Field Lines 

 

In this chapter we explore the separation of charged particles and magnetic field lines in 

two cases which are Guassian 2D Field + slab turbulence and 2D+slab turbulence.  For simple 

case, we release the particles at various distances from the center of Guassian island and then 

study behavior for each case.  For 2D + slab turbulence, we vary particle energy, 2D fraction, 

initial pitch angle, and the fluctuation strength in order to see the effect of separation.   

 

5.1 Separation of Charged Particles and Field Lines in Guassian 2D Field + Slab 

Turbulence 

The 1000 charged particles are released at random initial pitch angles on various 

distances from the center of the 2D Gaussian island (  ) as                      and      

(Wikee 2013).  For Gaussian function of potential function, we set the width of the Gaussian 

 as 0.5.  We define            1.0 and (             )      that means the 2D flux tube is 

very strong compared with slab turbulence.  The test particles are designed to represent protons 

that have energy 100 MeV. In our simulations, all units of lengths are scaled with  and the unit 

of the time is scaled by    .  Figure 5.1 shows the example of the trajectory of the test charged 

particle and magnetic field line.  
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Figure 5.1 Example of the trajectory of a charged particle in our model; red line demonstrates 

trajectory of magnetic field line, black line and blue line demonstrate trajectories of charged 

particle and its guiding centers, respectively. 

 

In our work, the simulation results for 1,000 particles show that the separation behaviors 

between the charged particles and the corresponding field lines can be divided into several 

regimes as we can see in Figure 5.2. We can explain the mechanism of separation in each regime 

by relating to the structure of the 2D Gaussian and slab turbulent magnetic field. 
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Figure 5.2 The results of the separation of charged particles and their corresponding field lines 

in the log-log scale. 

 

I. At the initial times (when       ) 

We found that the separation of the charged particles in initial time which are started at 

the radius of     is highest one following by the ones started at     and     , respectively. 

For the particles started at     and     , the separations are very close to each other and lower 

than the particles started        .  It seems that the separation of charged particles during this 

time depend on the structure of 2D field which can be explained by the radius of curvature of the 

magnetic field and the gradient of magnetic field.  The positions of     from center of Gaussian 

function have the lower radius of curvature of the magnetic field lines than the radii as     , 

    ,     and     . The curvature is larger when the distance is far from the center. For the 

gradient of magnetic field, we can see from the profile of the intensity of 2D Gaussian flux can 
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be seen in Figure 5.3. The gradient depends on the radius from the center of Gaussian 2D field. 

The maximum of 2D magnetic field is at the width of Gaussian function ( ) and the decrease 

when the radius towards to the center as well as when they go outside. Next, we compute the 

effect of curvature and gradient drifts due to 2D Gaussian field in order to explain the results 

during the beginning time.  In general, the drift velocity of guiding center due to the gradient of 

the magnetic field is represented by 

 

 ⃗  
  
 

   

 ⃗⃗    ⃗⃗

  
                                                               (   ) 

while the curvature drift is  

 ⃗  
     

 

   
 ⃗⃗   ⃗⃗

   
                                                            (   ) 

 

Then we plug in the pure Gaussian 2D magnetic field including mean field into equations (5.1) 

and (5.2) and compute the drift velocity. Then we can find that the magnitude of drift velocity of 

the guiding center due to the gradient and the curvature drift of the magnetic field are 

‖〈 ⃗ 〉‖  
    

      

   

  
|     

 |                                                      (   ) 

‖ ⃗ ‖  
    

     
                                                                  (   ) 

Then when we consider both effects, the equation for these is 

‖〈 ⃗ 〉  〈 ⃗ 〉‖  
    

     
|[(
   (  )

   
) (     

 )   ]|                               (   ) 

After that, we insert all magnetic field parameters in our simulation into equations (5.3), 

(5.4), and (5.5) and make a map to see the effect of the drift for each radius from the center of 

Gaussian. We found that they give the shapes of drift speed like Figure 5.4. From the drift speed 

profile, we can see that the curvature drift has more effect than the gradient drift and it is 

dominated at the small radius from the center of the Gaussian function. When we combine these 

two effects as in equation (5.5), the particles started near the center of the Gaussian have more 

drift speed due to 2D field.  That is why we can see the charged particles have high separation of 
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the charged particles when they are released at the small radius as shown in Figure 5.2. 

Moreover, from the profile in Figure 5.4, the effect of the drift for the particles started at     and 

    is slightly different which we can also see this effect in Figure 5.2. 

 

 

Figure 5.3 The profile of the 2D Gaussian magnetic field along the distance from the 

center of the flux tube. 
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Figure 5.4 Showing shape of drift speed of guiding center due to the gradient of the magnetic 

field, radius of curvature of the magnetic field line and the summation of the gradient drift and 

curvature drift in arbitrary units. 

 

 

II. At intermediate time (when           ) 

In this regime, the charged particles follow their corresponding field lines for a while and 

start to escape from the influence of the 2D flux tube. There are interesting features in this 

regime. The particles started deeper inside the 2D island have lower separation during this time 

and the particles started outside 2D island have almost the same slope of the separation. The 

particles start at         and     , at inside 2D islands, have lower separation rate than the 

others as shown in Figure 5.5a). Here, we can recognize the separation rate by the slope of the 

graph. The particles started deep inside the 2D island slowly drift out from the field lines because 

both field lines and the charged particles are trapped inside 2D island. For the behaviors of the 

particles released outside the 2D island such as at        ,     and     , they have almost the 

same separation rate and there is more the separation rate than the particles started at inside 2D 

island as shown in Figure 5.5b). That is because these particles quickly move outside and are not 
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trapped due to the strong 2D field. This corresponds with the suppression of field line and 

particle diffusion when there is a strong 2D magnetic field as found in previous work (Chuychai 

et al., 2005, 2007; Tooprakai et al., 2007). 

 
 

Figure 5.5 Showing the separation of the charged particles at a) inside the 2D island and b) 

outside the 2D island. 

 

III. At final time (when          ) 

From the final range in Figure 5.6, we can see that the charged particles released at radius 

as     ,     and     separate faster than the other radii. It seems the separation is related to the 

radius of releasing the charged particles. If the charged particles are released inside the center of 

Gaussian function, they separate from their initial field lines more than the other positions. In 

this range, the transition of the charged particles and their corresponding magnetic field lines are 

uncorrelated. Note that the corresponding length scale of the uncorrelation between particles and 

field lines is in the order of coherence length scale ( ) which, within this length scale, the slab 

field are still correlated. The charged particles are mainly influenced by slab turbulence and 

undergo subdiffusive as we can see from the slope = 0.5 in Figure 452.  We normally find 

subdiffusive process when charged particles transport in pure slab magnetic field (Tooprakai et 

al., 2007). 



37 
 

 

 
Figure 5.6 The mean squared perpendicular displacement and time in the final range. 

 

From the results in this section, the separation of the charged particles are related with the 

distance from the center of the Gaussian flux tube (  ) and where they experience the different 

structure of the magnetic field. When the charged particles are released at low curvature of the 

magnetic field line, the separation is more than the others at the initial times. In our results, we 

show that the separation at the beginning depend on the gradient and curvature drift due to the 

2D field. Then, in intermediate time, they slowly drift to outside the 2D flux tube. The sharp 

gradient of 2D field can be distinct behavior of the particles inside and outside the island in this 

regime. It corresponds with the suppressed diffusive regime in the previous work (Chuychai et 

al., 2007; Tooprakai et al., 2007). In addition, for final time the separation of the charged 

particles is uncorrected with the starting point to release the charged particles. The separation of 

the charged particles depends on distance from the center of the Gaussian function and becomes 

subdiffusive, the charged particles are released at outside of 2D Gaussian field (        and 

    ), the separation is lower than the others radius. Finally, this work can help us to understand 



38 
 

more about the relation of the separation between guiding centers of charged particles and 

magnetic field lines. In the next section, we present the effect of separation in 2D+slab 

turbulence.   

 

5.2 Separation of Charged Particles and their field lines in 2D+Slab tubuelence 

 Here we release the charged particles in 2D+slab turbulence inn various cases.  We also  trace the 

sample of charged particles and their magnetic field line which are started at the initial GC in pure slab 

and 2D+slab turbulence cases as shown in Figure 5.7      

 

Figure 5.7 Examples of 20 MeV particle trajectories (BLACK lines), their guiding centers 

(BLUE dots), and their initial field lines (RED lines) in a) pure slab turbulence and b) 10% 2D+ 

90% slab turbulence. Note that in our simulations the time scale is in units of     and the length 

scale is in units of  , where   is the slab coherence scale and   is the speed of light. 

 

 We can see that the particle in pure slab case ties along the field lines while the particles from 

2D+slab turbulence follow the field line at the beginning and then deviate from its field lines at the later 

time.  Figure 5.8 shows the statistics when we release 1,000 particles and compute the mean squared of 

separation between particle’s GCs and their field lines in both pure slab and 2D+slab turbulence.   For 

the pure slab case, the results show that the particles in pure slab turbulence have very little 
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separation between particle trajectories and their field lines. The particles stick with their initial 

field lines. This is consistent with the theorem of Jokipii et al. (1993) and Jones et al. (1998). 

This effect happens when we reduce the dimensionality of the magnetic field.  Despite from the 

particles in 2D+slab case, they diffuse along the time.   

 

 

Figure 5.8 The results from the simulations of 100 MeV protons in a) pure slab and b) 2D+slab 

turbulence. The statistics in the plots show the spreading of particles from field lines as a 

function of time. 

 

 After that we perform the simulations for 1,000 charged particles in various cases to see 

the effect the many parameters to the separation such as particle energy, initial pitch angle, 2D 

fraction, and magnetic field strength. 
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 Figure 5.9 shows how different particle energy responds to the separation.  From the 

results we can see that low energy particles have lower separation than high energy particles.  At 

intermediate time, very low energy particles stay or tie to the magnetic field before they leave the 

field lines as we can see the flat shape of the plot in Figure 5.9 for 10 keV and 1 MeV particles.    

  

 

Figure  5.9 The results of the separation of charged particles and their corresponding field lines 

when we vary particle energy. 

 

Next, we vary the initial pitch angle of the charged particles.  The pitch angle is defined 

by the angle between velocity of particle and magnetic field.   From the results in Figure 5.10, 

we found that the particles moving perpendicular to the magnetic field give more separation than 

the ones start in the direction parallel to the magnetic field.  For long time limit, the separation 

reaches the same rate for all initial pitch angles.       
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Figure 5.10 The results of the separation of charged particles and their corresponding field lines 

when we vary initial pitch angles. 

 

 We also vary 2D fraction to 10%, 20%, 50%, and 80%.  We found that more 2D portion 

gives high separation as seen in Figure 5.11.  Figure 5.12 presents the separation when the 

magnetic fluctuation is varied.  We found that  low magnetic fluctuation give less separation than 

the higher one.  Similar to the other cases, the particles and the field lines are independent at long 

time as we can see from slope =1 of the graph.   
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Figure 5.11 The results of the separation of charged particles and their corresponding field lines 

when we vary particle 2D fraction. 

 
 

Figure 5.12 The results of the separation of charged particles and their corresponding field lines 

when we vary magnetic field strength. 
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For the long time limit, the separation between particles and field is diffusive as indicated 

by the slope of 1 at the end in all plots which can be explained by nonlinear guiding center 

theory (NLGC) (Matthaeus et al. 2003; Ruffolo et al. 2012).  In this region the particles move 

independently from their initial field lines. At early times before strong separation, the 

simulations in most of the cases have a slope close to 2, related to a free streaming regime. The 

transition between free streaming separation and diffusive (independent) separation occurs at a 

displacement   . We find faster separation for an increasing 2D fraction, which is consistent 

with the lack of separation for pure slab turbulence, and also find faster separation for lower 

pitch angles. 
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Chapter 6 

Technique for Measuring and Correcting the Taylor Microscale 

 

 This Chapter presents the new technique for measuring and correcting the Taylor 

microscale.  After we generate time series as we discuss in subsection 3.1.3, we calculate the 

correlation function and the structure function. From parabolic fitting and extrapolation method, 

we obtain the estimated Taylor microscale.  Next, we suggest to apply the correction ratio which 

depends on index  .  Finally we apply with real spacecraft data.  

6.1 Correlation Function and Structure Function 

Focusing on the time domain, the Taylor microscale can be also view as the radius of 

curvature at the origin of the autocorrelation function.   

 ( )  〈 ( ) (   )〉                                                          (   ) 

For a small   expansion and using  ( )   (  ), a requirement of time stationarity, the 

autocorrelation function near the origin, can be determined by 

 ( )    
  

    
                                                           (   ) 

Therefore, one way to obtain the Taylor microscale from measurements is to fit  ( ) at the 

origin. However, sometimes the observation data do not have sufficient time resolution near the 

origin to perform an adequate parabolic fit. 

In estimating the correlation function from many samples of data, it is useful to employ 

the normalized correlation function 

 ̂  
 

〈[ ( )] 〉
                                                               (   ) 

We can also express the data in the second order structure function   , given by 

  ( )  〈[ (   )   ( )] 〉                                                (   ) 
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In fact, the normalized correlation function and the second order structure functions are related 

by 

 ̂( )    
  ( )

 〈 ( ) 〉
                                                      (   ) 

Figure 6.1 shows the structure functions for various dissipation range indices   that we generated 

as described in Sections 2.2 and 3.1.3.  Several regimes are seen: 

 For     , which is associated with the inertial range (     ) in Fourier space, one 

expects to find        .  

 For      and with      and   , one finds (see Figure 6.1) that      .  This is the 

regime, in accordance with equation (6.5), in which parabolic curvature of the correlation 

function is seen near    . 

 For     , but   values of     or shallower, the required parabolic behavior is not seen 

near   , but rather this asymptotic behavior is deferred  until       . This is due to the 

fact that the spectrum for this range of   is not steep enough to cause convergence of the 

Taylor scale estimate.  This convergence is now delayed until scales are sampled that are 

finer than the electron dissipation scale.  

This change in behavior of Taylor scale estimates as the dissipation range spectral index is 

varied is actually very relevant to solar wind observations.  For scales smaller than ion inertial 

length, the solar wind spectral slope is found to be quite variable.   For example, Smith et al. 

(2006b) estimate that dissipation range magnetic spectral indices are broadly distributed with 

average values               for intervals lacking magnetic clouds, and |             

for cloud intervals. 

A lesson can be learned from the above simple exercise: the asymptotic form of the 

correlation function embodied in equations (6.2) and (6.5) is not obtained until the sampled 

spectrum is      or steeper. Between spectral indices    and   , the transition to the asymptotic 

parabolic form migrates towards finer scales, until at    , the transition is delayed until 

separations within the assumed inner cutoff scale are sampled. 



46 
 

From equation (6.5) we can compute the correlation function from the structure function. 

Figure 6.2 displays the correlation function for various  .  From these plots, we can see that the 

correlation function has a parabolic shape at the origin.  At this fixed resolution, the 

characteristic parabolic shape becomes better defined as the values of     are increased. 

Suppose now we select a known   and we compute the radius of curvature of the correlation 

function from data over a range of small separations near the origin         .  While this 

value is intended to be small, to attempt to capture the parabolic regime (if present), the specific 

value      has no physical significance - it is just a maximum lag to be used in a fitting 

procedure.  This choice of a range of data provides an estimate of    ; let us call it    
   (    ).  

At this point we have obtained an approximate fit, or representation, of the data in this 

range of  , given by 

 ̂( )    
  

 [   
   (    )]

                                                  (   ) 

This fit is inexact even if the measurements are perfect, because we expect that the Taylor scale 

is              
   
   (    ).  It is not practical to compute this limit because the data has finite 

time resolution   , and because there may be limited data available at the shortest time lags.  In 

another section below we will systematically examine the influence of   , the data sampling 

time.  

What can be done however is to compute    
   (    ) for a range of     , and to examine 

the trend of the corresponding values of    
    as the maximum lag used in the fit becomes 

smaller.  Figure 6.3 illustrates sequences of such fits    
   (    ) versus     .  Each of these curves 

approaches the exact value of Taylor scale in the limit of zero     , as expected.  This is for an 

idealized model times series that can be evaluated at any time separation we wish. Consequently, 

when a range of    
    is available, but only for a set of values of      that excludes the origin, one 

can try to recover a more precise value of     by an extrapolation technique that provides a 

refined estimate of the radius of curvature at the origin. 
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Figure 6.1 The structure function computed from the time series data for a number of values of 

 .  The bottom curve is associated with a   value of    and the higher curves are determined 

with             and   , respectively. 
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Figure 6.2 The correlation function near the origin.  The top curve is determined from      

and the next curves are calculated using             and   , respectively. 

 

6.2 Extrapolation Method 

To obtain a stable value for the Taylor microscale at    , we apply an extrapolation 

method based on the Richardson extrapolation technique (see Dahlquist and Bjorck, 2003) in 

analogy with similar procedures employed in numerical analysis.  In the first step we compute a 

series of parabolic fits to data near the origin, and for varying values of     , up to a largest 

values of     , say,     .  Using the available estimated values of Taylor microscale    
   (    ), 

for this range of     , we can compute a straight-line extrapolation of the Taylor scale back to 

the origin (      ). This extrapolation gives a single estimate of a refined value of the Taylor 

microscale.  

Still, it remains unclear which value of      we should use.  On the one hand; a larger 

     permits the use of more data in the fit process, but a smaller      moves us closer to the 
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asymptotic range in which the formula equation (6.6) for approximating the radius of curvature 

at the origin becomes more exact. 

Therefore we will look for a stable range of values, as follows.  Figure 6.4 illustrates the 

variation of the extrapolated values of Taylor microscale as the value of      is varied.  In the 

next step of the method we examine whether for some range of      we find a stable value of 

estimated    
   .  When working with real data with time cadence   , this process is constrained 

by the temporal resolution, i.e.,        .  The distribution of number of available estimates at 

each lag   can also become an issue.  In addition, the quality of the refinement of the Taylor 

microscale value will depend on the steepness of the spectrum (i.e.,  ) at the high frequencies.  

In the next section we will discuss more details regarding the effects of data resolution 

and  . For now, (see Figure 6.4) we can make some general statements regarding quality of 

estimation when a range of estimates is available for time lags near the dissipation (spectral 

steepening) scale. For large values of  , where the correlation function has a large radius of 

curvature at the origin (compared to   ), we find a value of the Taylor microscale as       

approaches zero.  In contrast, for small values of    , we do not obtain a stable value of     after 

the extrapolation.   

One can also see by examining Figure 6.4 how lower time resolution data can have an 

adverse effect.  Larger    means that the data close to the origin become unavailable for the 

extrapolation near     =0.  The best we might be able to do in such cases is to choose a stable 

value in the range of        .  By trying this out with the graphs, we see that this approach 

yields an underestimate of the Taylor microscale value when   is approximately greater than 4 

and an overestimate when     is approximately less than 4.  Our results suggest that a good 

estimate of     is obtained by a linear extrapolation to zero lag using the slope of the curves     
     

evaluated near         (see Figure 6.3). In the next subsection we will discuss how we can 

further improve this estimate with a correction ratio that takes into account known information 

about the spectra at higher frequencies. 
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Figure 6.3 Taylor microscale from parabolic fit of the correlation function near the origin for 

each      for a number of  .  Axes are in units of   . 
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Figure 6.4 Values of     determined by linear extrapolation from the data in Figure 6.3 at the 

origin (i.e., the intercept).  Plotted are the extrapolated Taylor microscale values determined from 

a range of     . 
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6.3 Correction Ratio 

The resolution of the observational data is limited by the instrumentation,  the spacecraft 

data downlink and on board storage.  The lower resolution of the data, the less accurate Taylor 

microscale value will be since it is harder to make measurments that are sensitive to the radius of 

curvature of the correlation function at the origin.  In this section, we examine the effect of the 

temporal resolution of the data by artificially reducing the resolution of the synthetic time series, 

and again estimating the Taylor microscale with the same method.  The new values for each 

resolution of the data can be compared with the expected Taylor microscale value to assess the 

impact of the temporal resolution.  In particular, the ratio of these two, (   
      

     ) is of 

interest.  We call this ratio a “correction factor” as it can be employed to estimate the actual 

Taylor scale given the value computed from finite time resolution data. However this correction 

must assume knowledge of the spectrum at unresolved frequencies. Here that amounts to 

knowledge of the value of  . 

Figure 6.5 demonstrate the variation of the correction factor when we vary the temporal 

resolution    and the spectral index  . We can see that the correction ratio strongly depends on 

 . There are three regimes of behavior apparent in the Figure, which we approximate as a 

piecewise linear function. The model suggested for correction of Taylor scale estimates from 

finite time resolution data. Accordingly, the empirical correction factor  (   ) can be written as  

 (   )  

{
  
 

  
       (

 

   
)                 

        (
 

   
)                        

     (
 

   
)                    

                       (   ) 

With this model for a given data set and a known value of   it is possible to compute a corrected 

value of the Taylor microscale using 

     (   )   
                                                         (   ) 

where    
      is an estimate obtained by the extrapolation method described in Section 6.2 above.  
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Clearly this procedure presupposes availability of data such that the estimates of Taylor 

scale are based on near asymptotic tendencies of the functions that are computed.  From a 

practical perspective this appears to require that information about the functions near the 

dissipation scale    be included in the analysis.  Based on the present numerical experiments, we 

recommend therefore that the resolution of the data be at least as good as         . 

 

 

Figure 6.5 Correction ratio versus       for number of different    values. 

 

6.4 Applying the Technique to Spacecraft Data 

From an analysis of the magnetic field data from the ACE spacecraft (Smith et al. 2006a), the 

Taylor microscales in the left column of Figure 6.6 are determined by employing the 

extrapolation method described above, but without applying the correction ratio.  The time 

resolution of the ACE data used here is          s.  The black color shows the data from 

regions characterized as open magnetic field line regions, and the red color shows the data from 

magnetic clouds (closed field regions).  The Taylor scales have already been converted to spatial 

scales by using frozen-in approximation.  
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The values obtained for dissipation range spectral index lie between    to    and the 

ratio of Taylor scale (  ) to the dissipation scale (  ) ranges between 0.1 and 10.  

The individual plots show that the red and black points appear to be equally scattered. The right 

column of Figure 6.6 shows the values of   , after the application of the correction ratio. After 

the corrections, we can see that the majority of the black points have   
     for      and 

the red points have   
     for     . This indicates a hydrodynamics type of plasma for open 

magnetic field case and non-hydrodynamics in the magnetic cloud cases.  Further discussion of 

this analysis is found in Matthaeus et al. (2008), where it is argued that the difference in the 

behavior of these cases points to a difference in relative importance of dissipative processes at 

ion and electron scales. 
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Figure 6.6 The left column shows the plots before applying the correlation ratio to the Taylor 

mocroscale    and the right column shows the Taylor microscale (  
 ) after applying correlation 

ratio. 
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6.5 Conclusions 

We have demonstrated a refined technique of calculating the Taylor microscale from a 

discrete times series by computing correlation functions from structure functions. The method 

that we employed is based on the definition of the Taylor microscale. To verify this technique we 

analyze a synthetic time series derived from a defined power density spectrum. We are able to 

reproduce the Taylor scale values with our technique after applying a correction term, which 

improves our estimate of the Taylor microscale, estimated from a Richardson extrapolation 

technique (see Weygand et al. 2009). In addition, we studied the effects of the dissipation range 

spectral index and the time resolution of the simulated data. Moreover, we show an example of 

the application of the technique to solar wind magnetic field data (Matthaeus et al. 2005, 2008). 

This technique is expected to be useful for extracting refined estimates of the Taylor microscale 

from experimental and observational turbulence data in solar wind and other astrophysical 

contexts. 
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Abstract We discuss and develop methods to estimate and refine measurements of the Taylor
microscale from discrete data sets. To study how well a method works, we construct a time series of discrete
data with a known power spectrum and Taylor scale, but with various truncations of the resolution that
eliminate higher frequencies in a controlled fashion. We compute the second-order structure function and
correlation function, assuming that the unresolved dissipation range spectrum has various values of spectral
index. A series of Taylor scale estimates are obtained from parabolic fits to subsets of the correlation function
data, and these are extrapolated to the limit of zero separation. The error in this procedure, for finite time
resolution sampling, depends on the spectral index in the dissipation range. When the spectral form is
known, we can compute a correction factor that improves the estimate of the Taylor microscale value
determined from the extrapolation method and band-limited data. Application of this technique to
spacecraft observations of solar wind fluctuations is illustrated.

1. Introduction

The motivation of this study comes from recent efforts to measure the Taylor microscale in solar wind turbu-
lence calculated using multispacecraft techniques [Matthaeus et al., 2005; Weygand et al., 2007, 2009, 2010,
2011; Gurgiolo et al., 2013]. The Taylor scale is related to the second derivatives of the data [Batchelor, 1970]
(also see below); therefore, it is inherently sensitive to the high-frequency spectral content of the signal. Of
course, for idealized time-continuous infinite precision data, the Taylor scale may be computed. Likewise,
when very high cadence measurements are available [e.g., Alexandrova et al., 2009; Sahraoui et al., 2009],
and the spectrum is steep enough (see below), it may be possible to unambiguously determine the Taylor
scale. However, for available data sets with finite time cadence, the values of the Taylor scale obtained by a
straightforward evaluation may be sensitive to the data resolution, as the correct value may depend on the
physical signal above the sampling Nyquist frequency.

The objective of this study is to understand the accuracy of the Taylor scale estimates using finite resolu-
tion data sets, in which the high-frequency spectra may or may not be well known. We develop a method to
improve these estimates based on the spectrum of the unresolved data, which can be used when estimates
of the high-frequency spectrum of the signal are available in some way, whether it be observations, the-
ory, or an informed guess. Although the main purpose here is to discuss measurement issues, the physical
significance of the Taylor scale will be reviewed briefly in section 2.

In a system such as the solar wind, the Taylor microscale can be estimated from single spacecraft analyses.
Within the context of the Taylor [1938] frozen-in flow approximation, time t separation is converted to spa-
tial x separation using the relation x = Vsw × t. In the latter case, instead of working in the spatial domain,
the curvature of the two time correlation near the origin can be estimated. Frozen-in flow is a standard
approximation in solar wind observational analysis and in wind tunnels. Dasso et al. [2008] demonstrates the
validity of this approximation in the solar wind by comparing values determined from single spacecraft and
multispacecraft analysis. With this background in mind, one can define the Taylor microscale (𝜆T ) by

1
𝜆T

=

√√√√√⟨( 𝜕F
𝜕x

)2⟩
⟨F2⟩ →

1
Vsw𝜏TS

= 1
Vsw

√√√√√⟨( 𝜕F
𝜕t

)2⟩
⟨F2⟩ , (1)
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where F is the function of interest such as the velocity or magnetic field fluctuations. For generality and
simplicity, here we will discuss methods for arriving at improved estimates of the Taylor scale under the
assumption that the problem of interest is in the time domain or that frozen-in flow is valid. Therefore, the
discussion will center on the procedure to extract 𝜏TS from a time series F(t). We will employ a model spec-
trum in which the inertial range terminates by steepening at a “dissipation scale” (Kolmogorov scale) or its
equivalent in the time domain 𝜏d , which is the equivalent sweeping time of the dissipation length scale past
the detector. Thus, in the present paper the term dissipation scale implies only the scale at which the power
law cascade range terminates, generally leading to a steeper spectrum. This familiar terminology is used in a
purely kinematic sense, without regard for whether this steepening is due to dissipation, dispersion, or some
other effect.

Focusing on the time domain, the Taylor microscale can be also viewed as the radius of curvature at the
origin of the autocorrelation function

R(𝜏) = ⟨F(t)F(t + 𝜏)⟩. (2)

From a small 𝜏 expansion, and using R(𝜏) = R(−𝜏), a requirement of time stationarity, the autocorrelation
function near the origin, can be determined by

R(𝜏) ≈ 1 − 𝜏2

2𝜏2
TS

+… . (3)

Therefore, one way to obtain the Taylor microscale from measurements is to fit R(𝜏) at the origin. How-
ever, sometimes the observation data do not have sufficient time resolution near the origin to perform an
adequate parabolic fit. This is due to the fact that for many reasonable spectra, the quadratic behavior sug-
gested in equation (3) is not apparent until the correlation function is sampled at scales 𝜏 < 𝜏d . We will study
the expected effects on Taylor scale determination using a designed function F(t) that is intentionally under-
sampled but which is extracted from a signal that has better time resolution and a known spectral index in
the dissipation range. This is a useful approach to develop a procedure that reliably determines the Taylor
microscale. To develop this technique we construct the time data series based on a specified spectrum. With
varying resolution synthetic data, we obtain empirical values of the Taylor microscale and compare with the
known “exact” values. We find that it is possible to define a multiplicative correction factor that allows us
in some circumstances to adjust and improve the measured Taylor scale based on assumptions about the
spectrum of the unresolved high-cadence data.

Before turning to the main content of the paper, we digress briefly concerning the physical significance of
the Taylor scale, both in hydrodynamics [Batchelor, 1970] and in the case of collisionless plasma such as the
solar wind. In isotropic hydrodynamic turbulence, the Taylor scale may be defined as the radius of curvature
at the origin of the two-point velocity (𝐯) correlation R(r) = ⟨𝐯(0) ⋅ 𝐯(𝐫)⟩; that is, 𝜆2

T = R(0)∕R′′(0) or equally

well as the length associated with the mean square curl of the velocity (the vorticity), 𝜆2
T = ⟨|𝐯|2⟩

⟨|∇ × 𝐯|2⟩ . For vis-
cous (𝜈) dissipation in an incompressible medium, the Taylor scale is also related to dissipation, in that (for
suitable boundary conditions), d⟨|𝐯|2⟩

dt
= −𝜈𝜆−2

T ⟨|𝐯|2⟩. In this sense the Taylor scale is the “equivalent dissipa-
tion scale,” in that, any instant of time, the dissipation rate is the same as if all the energy were at the Taylor
scale. In older turbulence texts [Hinze, 1975] the Taylor scale is sometimes designated simply as “the dissi-
pation scale.” However, in more current terminology the latter is usually reserved for the Kolmogorov scale 𝜂

which signifies the scale (or wave number 1∕𝜂) at which the power law inertial range terminates and beyond
which lies the dissipation range. For high Reynolds number R and correlation scale L, in hydrodynamics, the
Taylor scale is 𝜆T = L∕

√
R, while 𝜂 = L∕R3∕4. Therefore, 𝜆T∕𝜂 = R1∕4, and the two become well separated at

very large R. For plasmas the dynamical status of both the Taylor scale and the Kolmogorov scale becomes
ambiguous [see, e.g., Matthaeus et al., 2008]. The mechanism of dissipation is not well understood for colli-
sionless plasma and may vary in different parameter regimes. Thus, 𝜆T cannot be interpreted as connected
with the length scale or rate of energy dissipation. Likewise, the termination of the inertial range may not
be associated with dissipation, as the onset of kinetic dispersive waves may also be influential. Nevertheless,
it is convenient to maintain the kinematic definitions of Taylor scale and “dissipation scale,” related respec-
tively to the second derivative of the correlation function at the origin and the termination of the inertial
range. In the remainder of the paper we adopt the kinematic meaning of 𝜆T and the dissipation scale, as well
as their time domain counterparts, to be defined below.
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2. Generating Discrete Data With a Known Taylor Scale

To develop our method, we use synthetic data generated using a known spectrum and then employ a typi-
cal methodology to evaluate the Taylor microscale. The spectrum is constructed with inertial and dissipation
ranges that have been independently controlled and have generally different power law indices. To be spe-
cific, we let the inertial range have a spectral index of −5∕3, while the dissipation range has an adjustable
spectral index q. The particular functional form of the spectrum is

P(f ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

C

[1+(f𝜏0)2]5∕6 , where fmin < f ≤ fd

C

[1+(fd𝜏0)2]5∕6

(
fd

f

)q
, where fd < f ≤ fe

0, where fe < f ≤ fmax,

(4)

where q < 0. The reasons for these choices are as follows: First, the flat spectral region at very low frequen-
cies f𝜏0 << 1 is designed to make the signal time stationary. This is unrealistic for the solar wind, which
has very low frequency components due to, e.g., solar rotation and solar cycle [see, e.g., Matthaeus and
Goldstein, 1982]. However, we are not concerned with very low frequency effects here. Second, the inertial
range with Kolmogorov spectral index of ∼ 5∕3 is found for higher frequencies, at f𝜏0 > 1. Third, there is a
discontinuous jump at the top of the inertial range at frequency fd , the slope steepening from −5∕3 to −|q|,
in qualitative accord with observations [Leamon et al., 1998; Hamilton et al., 2008; Alexandrova et al., 2009;
Sahraoui et al., 2009]. Finally, at high frequencies f > fe we set the spectrum to zero, for numerical rather
than physical reasons, to provide a very smooth trigonometric interpolation of the signal at the grid scale.

Adopting illustrative values that are representative of the solar wind at 1 AU, we assume that the spectrum
starts from fmin = 1.22 × 10−5 Hz and is flat until f0 = 1∕𝜏0 = 3.906 × 10−4 Hz, a “bendover” frequency
often associated with the correlation scale or coherence time. Thereafter, the spectrum has an inertial range
with a 5/3 power law index, until a second breakpoint is encountered at fd = 1∕𝜏d = 0.4 Hz. For histori-
cal reasons, this breakpoint, which terminates the power law MHD-scale inertial range, is often referred to
as the dissipation scale [Leamon et al., 1998], although it is also possible that it characterizes dispersion in
addition to dissipation [Gary and Borovsky, 2004]. In the hydrodynamic case the eddy turnover time and
viscous dissipation time scales become equal at the dissipation scale. However, for the solar wind or other
low-collisionality astrophysical plasmas, it is unclear whether the fluctuations become critically damped at
the breakpoint/dissipation scale. For example, the inertial range is typically found to terminate near the pro-
ton gyroscales, and while some dissipation may occur at such scales, further kinetic plasma dynamics may
transfer energy to higher frequencies until much smaller electron scales are encountered [Alexandrova et
al., 2009; Sahraoui et al., 2009]. It has been argued that a substantial fraction of actual dissipation may occur
due to electrons. In any case the scale fd corresponds to the onset of kinetic processes and the end of the
Kolmogorov-like inertial range. It is, however, the kinematic properties of the spectrum that come into play
in the current study, rather than the dynamical origin of the spectral forms.

In our model beyond the breakpoint fd , we extend the dissipation range with power law index q until fe =
16.0 Hz. This may be considered in the solar wind application to be associated with the electron dissipation
scale. The spectrum cuts off completely at fmax = 25.6 Hz. To decide upon these numerical values, here
we assume that the dissipation scale and electron dissipation scale correspond to the proton and electron
inertial scales, respectively. Thus, we set fe∕fd = 40 to be consistent with the ratio of electron and proton
inertial scales in MHD, which is about

√
mp∕me = 42.9 [see, e.g., Sahraoui et al., 2009].

Once we have specified the spectrum, we generate realizations of the signal in the frequency domain,
F(f ), as

F(f ) =
√

P(f ) exp [i𝜙] (5)

where 𝜙 is a random phase. Then a fast Fourier transform is used to convert the function F(f ) into the
real-time domain. In the simulations reported here, we employ this approach to obtain 222 data points for
the time series.
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Table 1. Showing Index q Which We
Vary for Each Case and Their Taylor
Scales When We Fix the Dissipation
Scale (𝜏d) = 2.5 s

case 𝜏
expect
TS

[s] 𝜏
expect
TS

[𝜏d]

q = −∞ 6.569 2.63
q = −5 5.097 2.04
q = −4 4.368 1.75
q = −3 2.869 1.15
q = −7∕3 1.607 0.64
q = −2 1.095 0.44
q = −1 0.095 0.028

We next compute the Taylor microscale from the data set we
generated by employing the definition equation (1). In Table 1,
we give the Taylor microscale values for a range of dissipation
scale indices q corresponding to the generic power spectrum
shown in Figure 1. (Note that the spectra are given here as Fourier
amplitudes squared, which can easily be converted to power spec-
tral density.) We will treat these expected values of the Taylor
microscale as the true or exact Taylor microscale values for the
synthetic time series data. To examine and test our extrapolation
method, we use only one eighth of the original data. The purpose
of defining this subset is that any consistent method will provide
good (and even convergent) values of 𝜏TS when the time resolution
Δt of the estimates is very fine, i.e., the spectral cutoff is resolved

and Δtfmax < 1∕2. However, our motivation is to obtain reasonably accurate values of 𝜏TS when the effective
resolution of the data sampling is adjusted so that we are not in this asymptotic regime—a circumstance
that is more likely to be realized in practice when analyzing spacecraft data.

With the subset of our discrete time series, we compute the second-order structure function. This can be
used to obtain an estimate of the correlation function. We then determine the radius of curvature from cor-
relation function and an estimate of the Taylor microscale. In the following section, we will demonstrate an
extrapolation technique [Weygand et al., 2007, 2009, 2010, 2011] to estimate Taylor microscale from a series
of parabolic fits of the correlation function near the origin. The details of the method we use are given in the
following subsections.

2.1. Correlation Function and Structure Function
In estimating the correlation function from many samples of data, it is useful to employ the normalized
correlation function

R̂ = R⟨[F(t)]2⟩ . (6)

This reduces errors associated with variability of the variance, i.e., the fluctuation energy. Almost the same
information is contained in the second-order structure function S2, given by

S2(𝜏) = ⟨[F(t + 𝜏) − F(t)]2⟩. (7)

In fact,

R̂(𝜏) = 1 −
S2(𝜏)

2⟨F(t)2⟩ . (8)

Figure 1. The power spectrum for a number of values of q in the
dissipation range.

Figure 2 shows the structure func-
tions for various dissipation range
indices q that we generated as
described in section 2. Note that
values of dissipation range spectral
index in the range −5∕3 < q < −1 are
pathological in that the implied “dis-
sipation range” has either the same
or shallower spectral power law than
that found in the inertial range. These
values are included only for illustra-
tion. As q is varied, several regimes
are seen:

1. For 𝜏 ≫ 𝜏d , which is associated with
the inertial range (f−5∕3) in Fourier
space, one expects to find S2 ∝ 𝜏2∕3.

2. For 𝜏 ≪ 𝜏d and with q = −5 and −4,
one finds (see Figure 2) that S2 ∝ 𝜏2.

CHUYCHAI ET AL. ©2014. American Geophysical Union. All Rights Reserved. 4



Journal of Geophysical Research: Space Physics 10.1002/2013JA019641

Figure 2. The structure function computed from the time series data
for a number of values of q. The bottom curve is associated with a q
value of −5, and the higher curves are determined with q = −4, −3, −2,
and −1, respectively.

This is the regime, in accordance with
equation (8), in which parabolic
curvature of the correlation function is
seen near 𝜏 = 0.

3. For 𝜏 ≪ 𝜏d , but q values of −3 or
shallower, the required parabolic
behavior is not seen near 𝜏d , but rather
this asymptotic behavior is deferred
until 𝜏 < 1∕fe. This is due to the
fact that the spectrum for this range
of q is not steep enough to cause
convergence of the Taylor scale
estimate. This convergence is now
delayed until scales are sampled
that are finer than the electron
dissipation scale.

This change in behavior of Taylor scale
estimates as the dissipation range spec-
tral index is varied and is actually very

relevant to solar wind observations. For scales smaller than ion inertial length, the solar wind spectral slope
is found to be quite variable. For example, Smith et al. [2006b] estimate that dissipation range magnetic
spectral indices are broadly distributed with average values |q| = 2.61 ± 0.96 for intervals lacking magnetic
clouds, and |q| = 2.01 ± 0.84 for cloud intervals.

A lesson can be learned from the above simple exercise: the asymptotic form of the correlation function
embodied in equations (3) and (8) is not obtained until the sampled spectrum is k−4 or steeper. Between
spectral indices −4 and −3, the transition to the asymptotic parabolic form migrates toward finer scales,
until at k−3, the transition is delayed until separations within the assumed inner cutoff scale are sampled.

From equation (8), we can compute the correlation function from the structure function. Figure 3 displays
the correlation function for various q. From these plots, we can see that the correlation function has a
parabolic shape at the origin. At this fixed resolution, the characteristic parabolic shape becomes better
defined as the values of |q| are increased.

Suppose now we select a known q and we compute the radius of curvature of the correlation func-
tion from data over a range of small separations near the origin 0 < 𝜏 ≤ 𝜏fit. While this value is
intended to be small, to attempt to capture the parabolic regime (if present), the specific value 𝜏fit has

Figure 3. The correlation function near the origin. The top curve is
determined from q = −5 and the next curves are calculated using
q = −4, −3, −2, and −1, respectively.

no physical significance—it is just a
maximum lag to be used in a fitting pro-
cedure. This choice of a range of data
provides an estimate of 𝜏TS; let us call it
𝜏est

TS (𝜏fit). At this point we have obtained
an approximate fit, or representation, of
the data in this range of 𝜏 , given by

R̂(𝜏) = 1 − 𝜏2

2
[
𝜏est

TS (𝜏fit)
]2
. (9)

This fit is inexact even if the mea-
surements are perfect, because we
expect that the Taylor scale is 𝜏TS =
lim𝜏fit→0 𝜏

est
TS (𝜏fit). It is not practical to

compute this limit because the data has
finite time resolution Δt and because
there may be limited data available at
the shortest time lags. In another section
below we will systematically examine the
influence of Δt, the data sampling time.
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Figure 4. Taylor microscale from parabolic fit of the correlation function near the origin for each 𝜏fit for a number values
of q. Axes are in units of 𝜏d . Dashed line indicates the exact Taylor microscale.

What can be done, however, is to compute 𝜏est
TS (𝜏fit) for a range of 𝜏fit and to examine the trend of the corre-

sponding values of 𝜏est
TS as the maximum lag used in the fit becomes smaller. Figure 4 illustrates sequences

of such fits 𝜏est
TS (𝜏fit) versus 𝜏fit. Each of these curves approaches the exact value of Taylor scale in the limit of

zero 𝜏fit, as expected. This is for an idealized model times series that can be evaluated at any time separa-
tion we wish. Consequently, when a range of 𝜏est

TS is available, but only for a set of values of 𝜏fit that excludes
the origin, one can try to recover a more precise value of 𝜏TS by an extrapolation technique that provides a
refined estimate of the radius of curvature at the origin.

2.2. Extrapolation Method
To obtain a stable value for the Taylor microscale at 𝜏 = 0, we apply a method based on the Richardson
extrapolation technique [see Dahlquist and Bjorck, 2003] in analogy with similar procedures employed
in numerical analysis. In the first step we compute a series of parabolic fits to data near the origin, and
for varying values of 𝜏fit, up to a largest values of 𝜏fit, say, 𝜏max. Using the available estimated values of
Taylor microscale 𝜏est

TS (𝜏max) for this range of 𝜏max, we can compute a straight line extrapolation of the
Taylor scale back to the origin (𝜏fit = 0). This extrapolation gives a single estimate of a refined value of the
Taylor microscale.

Still, it remains unclear which value of 𝜏max we should use. On the one hand, a larger 𝜏max permits the use of
more data in the fit process, but a smaller 𝜏max moves us closer to the asymptotic range in which the formula
equation (9) for approximating the radius of curvature at the origin becomes more exact. Therefore, we will
look for a stable range of values, as follows.

Figure 5 illustrates the variation of the extrapolated values of Taylor microscale as the value of 𝜏max is varied.
In the next step of the method we examine whether for some range of 𝜏max we find a stable value of esti-
mated 𝜏est

TS . When working with real data with time cadence Δt, this process is constrained by the temporal
resolution, i.e., 𝜏fit > Δt. The distribution of number of available estimates at each lag 𝜏 can also become an
issue. In addition, the quality of the refinement of the Taylor microscale value will depend on the steepness
of the spectrum (i.e., q) at the high frequencies.
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Figure 5. Values of 𝜏TS determined by linear extrapolation from the data in Figure 4 at the origin (i.e., the intercept).
Plotted are the extrapolated Taylor microscale values determined from a range of 𝜏max.

In the next section we will discuss more details regarding the effects of data resolution and q. For now, (see
Figure 5) we can make some general statements regarding quality of estimation when a range of estimates
is available for time lags near the dissipation (spectral steepening) scale. For large values of |q|, where the
correlation function has a large radius of curvature at the origin (compared to 𝜏d), we find a stable value of
the Taylor microscale as 𝜏max approaches zero. In contrast, for small values of |q|, we do not obtain a stable
value of 𝜏TS after the extrapolation.

One can also see by examining Figure 5 how lower time resolution data can have an adverse effect. Larger
Δt means that the data close to the origin become unavailable for the extrapolation near 𝜏fit = 0. The best
we might be able to do in such cases is to choose a stable value in the range of 𝜏max to 𝜏d . By trying this out
with the graphs, we see that this approach yields an underestimate of the Taylor microscale value when|q| is approximately greater than 4 and an overestimate when |q| is approximately less than 4. Our results
suggest that a good estimate of 𝜏TS is obtained by a linear extrapolation to zero lag using the slope of the
curves 𝜏est(𝜏fit) evaluated near 𝜏max = 𝜏d (see Figure 4). In the next subsection we will discuss how we can
further improve this estimate with a correction ratio that takes into account known information about the
spectra at higher frequencies.

2.3. Correction Ratio
The resolution of the observational data is limited by the instrumentation, the spacecraft data downlink,
and spacecraft data storage. The lower resolution of the data is the less accurate the Taylor microscale value
will be, since the measurements become less sensitive to the radius of curvature of the correlation func-
tion at the origin. In this section, we examine the effect of the temporal resolution of the data by artificially
reducing the resolution of the synthetic time series and again estimating the Taylor microscale with the
same method. The new values for each resolution of the data can be compared with the expected Taylor
microscale value to assess the impact of the temporal resolution. In particular, the ratio 𝜏

expect
TS ∕𝜏est

TS is of inter-
est. We call this ratio a “correction factor” as it can be employed to estimate the actual Taylor scale given the
value computed from finite time resolution data. However, this correction must assume knowledge of the
spectrum at unresolved frequencies. Here that amounts to knowledge of the value of q.
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Figure 6. Correction ratio versus 1∕q for number of different Δt values.

Figure 6 demonstrates the variation
of the correction factor when we vary
the temporal resolution Δt and the
spectral index |q|. We can see that the
correction ratio strongly depends on|q|. There are three regimes of behav-
ior apparent in the figure, which we
approximate as a piecewise linear
function. The model suggests a cor-
rection for the Taylor scale estimates
obtained from finite time resolu-
tion data. Accordingly, the empirical
correction factor r(|q|) can be
written as

r(|q|) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−0.64
(

1
|q|
)
+ 0.72, when |q| < 2

−2.61
(

1
|q|
)
+ 1.70, when 2 ≤ |q| < 4.5

−0.16
(

1
|q|
)
+ 1.16, when |q| ≥ 4.5.

(10)

With this model for a given data set and a known value of q, it is possible to compute a corrected value of
the Taylor microscale using

𝜏TS ≈ r(|q|)𝜏extra
TS (11)

where 𝜏extra
TS is an estimate obtained by the extrapolation method described in section 2.2 above. This proce-

dure presupposes that sufficient data are available to approximately determine the asymptotic tendencies
of the correlations. From a practical perspective this appears to require that information about the functions
near the dissipation scale 𝜏d be included in the analysis. Based on the present numerical experiments, we
recommend therefore that the resolution of the data be at least as good as Δt < 0.4𝜏d .

3. Applying the Technique to Spacecraft Data

From an analysis of the magnetic field data from the ACE spacecraft [Smith et al., 2006a], the Taylor
microscales in the left column of Figure 7 are determined by employing the extrapolation method described
above but without applying the correction ratio. We use the same data set of ACE observations as was
employed by Smith et al. [2006a, 2006b] and Hamilton et al. [2008]. The time resolution of the ACE data used
here is 𝛿t = 0.333 s or three vectors per second. The analysis of the ACE proceeds in the following way: The
second-order structure function matrix is computed for each interval in the set of intervals studied. The
Taylor scale is then estimated using a series of maximum lag approximations from a maximum lag of four
data points to a maximum lag of 25. A line is fit to these estimated values of the Taylor scale as a function
of maximum lag, and the lag = 0 intercept is computed. This gives the final estimated values shown in
the figure. The dissipation scale is computed from the power spectrum as the intercept between two fit
lines, one describing the ion inertial range frequencies and the other describing the ion dissipation range
frequencies. The dissipation range spectral index q is determined from the short wavelength fit.

The black color shows the data from regions characterized as open magnetic field line regions, and the
red color shows the data from magnetic clouds (closed field regions). The Taylor scales have already been
converted to spatial scales by using the frozen-in approximation.

The values obtained for dissipation range spectral index lie between −5 and −1, and the ratio of Taylor scale
(𝜆T ) to the dissipation scale (𝜆d) ranges between 0.1 and 10. The individual plots show that the red and black
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Figure 7. The left column shows the plots before applying the correction ratio to the Taylor microscale 𝜆T , and the right
column shows the Taylor microscale (𝜆′T ) after applying correction ratio.

points appear to be equally scattered. The right column of Figure 7 shows the values of 𝜆′T , after the appli-
cation of the correction ratio. After the corrections, we can see that the majority of the black points have
𝜆′T > 𝜆d for q < −3, and the red points have 𝜆′T < 𝜆d for q > −3. This indicates a hydrodynamics type of
plasma for open magnetic field case and nonhydrodynamics in the magnetic cloud cases. Further discussion
of this analysis is found in Matthaeus et al. [2008], where it is argued that the difference in the behavior of
these cases points to a difference in relative importance of dissipative processes at ion and electron scales.

4. Conclusions

We have demonstrated a refined technique of calculating the Taylor microscale from a discrete times series
by computing correlation functions from structure functions. The method that we employed is based on the
definition of the Taylor microscale. To verify this technique we analyze a synthetic time series derived from a
defined power density spectrum. We are able to reproduce the Taylor scale values with our technique after
applying a correction term, which improves our estimate of the Taylor microscale, estimated from a Richard-
son extrapolation technique [see Weygand et al., 2009]. In addition, we studied the effects of the dissipation
range spectral index and the time resolution of the simulated data. Moreover, we show an example of the
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application of the technique to solar wind magnetic field data [Matthaeus et al., 2005, 2008]. This technique
is expected to be useful for extracting refined estimates of the Taylor microscale from experimental and
observational turbulence data in solar wind and other astrophysical contexts.
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ABSTRACT

Nonlinear guiding center (NLGC) theory has been used to explain the asymptotic perpendicular diffusion coefficient
κ⊥ of energetic charged particles in a turbulent magnetic field, which can be applied to better understand cosmic
ray transport. Here we re-derive NLGC, replacing the assumption of diffusive decorrelation with random ballistic
decorrelation (RBD), which yields an explicit formula for κ⊥. We note that scattering processes can cause a reversal
of the guiding center motion along the field line, i.e., “backtracking,” leading to partial cancellation of contributions
to κ⊥, especially for low-wavenumber components of the magnetic turbulence. We therefore include a heuristic
backtracking correction (BC) that can be used in combination with RBD. In comparison with computer simulation
results for various cases, NLGC with RBD and BC provides a substantially improved characterization of the
perpendicular diffusion coefficient for a fluctuation amplitude less than or equal to the large-scale magnetic field.

Key words: diffusion – magnetic fields – turbulence

1. INTRODUCTION

While charged particles subject to a magnetic field in a ten-
uous plasma will mainly gyrate along that field, magnetic tur-
bulence can cause particles to also spread in the directions per-
pendicular to the large-scale field. Such perpendicular transport
involves an interesting interplay between the transport along
field lines, the random walk of magnetic field lines perpendicu-
lar to the large-scale field direction, and true cross-field transport
in which the particle guiding center eventually separates from
its original field line.

The classic FLRW theory (Jokipii 1966), in which particles
follow magnetic field lines with a fixed pitch angle, directly
related the perpendicular diffusion coefficient κ⊥ to the field
line diffusion coefficient D. Meanwhile another viewpoint in
terms of scattering led to a relation between κ⊥ and the
parallel diffusion coefficient κ‖ (Axford 1965; Gleeson 1969).
Nonlinear guiding center (NLGC) theory (Matthaeus et al.
2003) successfully accounted for both factors, allowing the
guiding center motion to decorrelate due to both parallel (pitch-
angle) scattering and the random walk of the guiding magnetic
field line, for transverse magnetic fluctuations with a general
power spectrum. This theory has provided a much closer match
to observations (Bieber et al. 2004) and computer simulation
results for κ⊥ (see also Minnie et al. 2007; Ruffolo et al. 2008),
and its framework has attracted theoretical interest and inspired
numerous related theories (e.g., Shalchi et al. 2004, 2006; le
Roux & Webb 2007; Qin 2007; Shalchi 2010).

The original NLGC theory (Matthaeus et al. 2003) used the
Taylor–Green–Kubo (TGK) formula (Taylor 1922; Green 1951;
Kubo 1957)

κxx ≡ lim
t→∞

〈Δx2〉
2t

=
∫ ∞

0
〈ṽx(0)ṽx(t)〉dt (1)

for the asymptotic particle diffusion coefficient κxx along
a coordinate x perpendicular to the large-scale magnetic
field direction z, based on the guiding center velocity ṽ.

That work used

〈ṽx(0)ṽx(t)〉 ≈ a2

B2
0

〈vz(0)vz(t)〉〈bx(0, 0)bx[x(t), t]〉, (2)

for the displacement x(t) of the particle guiding center trajectory
in a large-scale magnetic field B0ẑ. The authors set a2 = 1/3, a
factor which effectively accounts for the replacement of ṽz with
the particle velocity vz in the correlations. Then the Lagrangian
correlation 〈bx(0, 0)bx[x(t), t]〉 was evaluated in terms of the
Eulerian correlation function and power spectrum by using
Corrsin’s independence hypothesis (Corrsin 1959) and setting
the displacement distribution to that for asymptotic diffusion
(Salu & Montgomery 1977), leading to an implicit formula for
κ⊥ in terms of input values of κzz and the power spectrum
of magnetic fluctuations. A related approach was previously
used to derive a field line diffusion coefficient (Matthaeus et al.
1995) that is reasonably close to values from direct computer
simulations (Gray et al. 1996; Ghilea et al. 2011).

In the present work, we consider an alternate interpretation of
NLGC that replaces the diffusive distribution of guiding center
trajectories with a random ballistic distribution, for the purpose
of calculating the Lagrangian magnetic correlation function
〈bx(0, 0)bx[x(t), t]〉. This approach was recently introduced for
calculating the field line diffusion coefficient and led to some
substantial improvements in the match with direct simulation
results (Ghilea et al. 2011). It is analogous to concepts in
random walk theory in which the mean free path is determined
by the extent of ballistic motion between scattering events. In
this context, note that ṽx decorrelates over the decorrelation
scale of vz or bx, whichever is shorter. This implies that the
decorrelation of ṽx in the TGK integral (which determines κxx)
takes place over a distance scale for which the parallel motion
is approximately constant and the field lines are approximately
straight, so the guiding center motion can be treated as ballistic
in random directions determined by the distribution of magnetic
field directions (Figure 1). (As illustrated in the figure, at
longer times the guiding center velocity will change, the particle
will reverse its direction along B, and the particle will depart
from its original guiding field line.) We demonstrate that this
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Figure 1. Illustration of the random ballistic interpretation of nonlinear guiding
center (NLGC) theory. The diffusion coefficient κ⊥ of energetic charged particle
motion (red line) perpendicular to the large-scale magnetic field is related to
the decorrelation (i.e., change in direction) of a perpendicular component of
the guiding center velocity (GC, blue line), which roughly follows a local
magnetic field line (black line). Over the relevant distance scale, the guiding
center motion can be approximated as ballistic (i.e., with constant velocity)
along random directions distributed like the magnetic field directions. Such
random ballistic decorrelation (RBD) is determined using the framework of
NLGC theory, including the effects of the field line random walk and the parallel
scattering of particle trajectories.

approach, together with a backtracking correction (BC), leads
to a substantial improvement in the match with direct computer
simulations of the perpendicular diffusion of energetic charged
particles.

2. RANDOM BALLISTIC DECORRELATION

We consider the application of Corrsin’s independence hy-
pothesis (described below) assuming a Gaussian distribution of
displacements, where diffusive decorrelation (DD) or random
ballistic decorrelation (RBD) is used to describe the variance
σ 2

i along each direction. DD considers that the asymptotic dif-
fusion also governs the displacement distribution at early times
during the decorrelation process, so σ 2

i = 2κii t , while RBD
assumes the decorrelation is determined by ballistic motion of
guiding centers at early times in random directions, at guiding
center velocity ṽ, depending on the fluctuating magnetic field,
with σ 2

i = 〈ṽ2
i 〉t2.

Let us assume axisymmetry, define the fluctuation amplitude
b so that b2 = 〈b2

x + b2
y〉 = 2〈b2

x〉, and define vs as the particle
velocity along the local magnetic field. As a special case of
Equation (2) for t = 0, we use

〈
ṽ2

x

〉 = 〈
ṽ2

y

〉 ≈ a2

B2
0

〈
v2

z

〉〈
b2

x

〉 = a2v2

6

b2

B2
0

, (3)

where we use 〈v2
z 〉 = v2/3 for an isotropic distribution of

particle velocities. We also use 〈ṽ2〉 = v2/3 to obtain

〈
ṽ2

z

〉 = v2

3

(
1 − a2 b2

B2
0

)
. (4)

Note that for b/B0 > a−1 = √
3, Equation (4) gives a non-

sensical negative value for 〈ṽ2
z 〉. Thus, we will consider this

RBD approach to be limited to b/B0 �
√

3. Note that the NLGC
framework in general is also limited to magnetic fluctuation am-
plitudes that are not too great, in the sense that NLGC assumes
transverse fluctuations, and if b � B0 one would not expect
the (weak) mean magnetic field to force the fluctuations to be
strongly transverse.

As in the original derivation of NLGC, we use Equations (1)
and (2), with 〈vz(0)vz(t)〉= (v2/3)e−t/τ for a pitch-angle scat-
tering time τ , to obtain

κxx = a2v2

3B2
0

∫ ∞

0
e−t/τ 〈bx(0, 0)bx[x(t), t]〉dt. (5)

We then make use of Corrsin’s independence hypothesis to relate
the Lagrangian correlation 〈bx(0, 0)bx[x(t), t]〉 to the Eulerian
correlation function Rxx and the probability of displacement x
at time t, so that

κxx = a2v2

3B2
0

∫ ∞

0
e−t/τ

∫
Rxx(x, t)P (x|t)dx dt. (6)

Following Matthaeus et al. (2003), we use the Fourier trans-
form of the correlation function Rxx(x, t) as the power spectrum
Sxx(k, t) = Sxx(k)e−γ (k)t and assume independent guiding cen-
ter displacement probability distributions along each coordinate
to obtain

κxx = a2v2

3B2
0

∫ ∞

0
e−t/τ

∫
Sxx(k)e−γ (k)t

(∫ ∞

−∞
e−ikxxP (x|t)dx

)

×
(∫ ∞

−∞
e−ikyyP (y|t)dy

) (∫ ∞

−∞
e−ikzzP (z|t)dz

)
dk dt.

(7)

For a Gaussian displacement distribution P (x|t), we have
(Ghilea et al. 2011)∫ ∞

−∞
e−ikxxP (x|t)dx = exp

(
−1

2
k2
xσ

2
x

)
(8)

and analogous formulas for y and z. For RBD we use σ 2
i =

〈ṽ2
i 〉t2, and substituting Equation (8) into Equation (7) yields

κxx = a2v2

3B2
0

∫
Sxx(k)T (k) dk, (9)

where the mean free time T (k) is given by

T (k) =
∫ ∞

0
exp

[
− t

τ
− γ (k)t − 1

2

∑
i

k2
i

〈
ṽ2

i

〉
t2

]
dt. (10)

Performing the t-integration and using 1/τ = v/λ‖ = v2/(3κzz),
we obtain

T (k) =
√

π

2

eα2
erfc(α)√∑
i k

2
i

〈
ṽ2

i

〉 (11)

2
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and

κxx = a2v2

3B2
0

√
π

2

∫
Sxx(k)√∑

i k
2
i 〈ṽ2

i 〉
eα2

erfc(α)dk (RBD),

(12)
where

α ≡ v2/(3κzz) + γ (k)√
2

∑
i k

2
i 〈ṽ2

i 〉
(13)

and the expressions for 〈ṽ2
i 〉 are given by Equations (3) and (4).

Note that the original DD interpretation of Matthaeus et al.
(2003) used the formula for asymptotic diffusion with κxx in
the displacement distribution, yielding an implicit equation for
κxx . In contrast, the RBD theory uses a predetermined random
ballistic formula for the displacement distribution and yields an
explicit formula for κxx , as in analogous theories for the field
line diffusion coefficient (Ghilea et al. 2011). For numerical
evaluation, NLGC-type theories based on DD typically require
an iterative solution, whereas NLGC/RBD can be evaluated
without iteration.

3. BACKTRACKING CORRECTION

Previous simulations have shown that the perpendicular trans-
port of energetic charged particles is characterized by ballistic
(free-streaming) guiding center motion at short times, followed
by subdiffusion (Qin et al. 2002a) and later, if the fluctuations
have sufficient transverse complexity, by asymptotic diffusion
(Qin et al. 2002b). This subdiffusion is due to a parallel (pitch-
angle) scattering process that causes a particle to reverse its
motion along the local field line and partially retrace its steps.
Such “backtracking” leads to a negative vx-correlation function
over a certain time range, hence the reduction in the running
perpendicular diffusion coefficient. In some cases this leads to
subdiffusion (see Qin et al. 2002b and Section 4 of Ruffolo et al.
2008).

Backtracking was inherent in the original NLGC/DD theory
(Matthaeus et al. 2003). The use of diffusive displacements
means that the displacements for which the correlation function
is sampled can undergo a random walk, including backtracking.
It was assumed that backtracking did not completely cancel
out the perpendicular guiding center excursions due to other
physical effects. This is not the case for the RBD calculation,
which is based on ballistic guiding center trajectories.

For RBD theory, we note that Equations (9) and (10) assign
a mean free time T (k) to individual k-components of the
turbulence, which are averaged with weighting according to
the power spectrum, to determine κxx . Conceptually this relates
to the vz–bx independence hypothesis of Matthaeus et al. (2003).
For magnetostatic fluctuations with γ = 0, Equation (11) gives
T ≈ τ for low k and T decreases for higher k. Thus, for modes of
low k, the mean free time is determined by the parallel scattering,
whereas for higher k it is determined by the field line random
walk.

This random ballistic calculation of the mean free time does
not account for backtracking. Consider low k, for which the
decorrelation in Equation (10) is dominated by the scattering
term (first term in the exponential) while b is nearly constant.
Then the perpendicular displacement associated with T (k) will
be largely canceled out by subsequent backtracking. A similar
effect leads to subdiffusion in simulation results (i.e., running
κxx decreases with increasing t) for fluctuations with insufficient
transverse complexity (Qin et al. 2002a), whereas NLGC yields

a much larger asymptotic value of κxx (see Run 12 of Ruffolo
et al. 2008).

Therefore, we introduce a heuristic BC for RBD that reduces
the influence of such low-k modes by reducing T (k) and
therefore their contribution to the overall κxx . We multiply T (k)
by e−α2

, which simplifies Equation (11) to yield

T (k) =
√

π

2

erfc(α)√∑
i k

2
i 〈ṽ2

i 〉
(14)

and

κxx = a2v2

3B2
0

√
π

2

∫
Sxx(k)√∑

i k
2
i

〈
ṽ2

i

〉

× erfc

⎡
⎣v2/(3κzz) + γ (k)√

2
∑

i k
2
i

〈
ṽ2

i

〉
⎤
⎦ dk (RBD/BC). (15)

This BC is related to the terms that are linear and quadratic in t,
in the exponential of Equation (10). Here, e−α2

serves as a simple
“switch” that is close to 0 when k is sufficiently low that the linear
term dominates, suggesting a strong effect of backtracking,
while it approaches 1 for higher k. Note also that for a given k,
there is a time t when the linear and quadratic terms are equal,
i.e., the field line random walk becomes important. At that time
we have t/τ ∼ α2, and substitution into the parallel velocity
correlation term e−t/τ suggests the use of e−α2

to account for
backtracking effects.

4. NUMERICAL EVALUATION OF ANALYTIC THEORIES
USING 2D+slab TURBULENCE

To numerically evaluate analytic theories for comparison with
computer simulation results, we need to specify the power
spectrum. We employ a two-component 2D+slab model of
transverse magnetic fluctuations in which the power spectrum is
a sum of a two-dimensional (2D) power spectrum, depending on
kx and ky, and a slab power spectrum depending on kz. The latter
represents parallel Alfvénic fluctuations and the former idealizes
the quasi-2D structures, including “flux tubes,” that can develop
from interactions of such waves (Shebalin et al. 1983; see also
Borovsky 2008; Seripienlert et al. 2010; and references therein).
The two-component model was motivated by observations of
interplanetary magnetic fluctuations, indicating quasi-slab and
quasi-2D components (Matthaeus et al. 1990; Weygand et al.
2009), which can be modeled using a ratio of slab:2D fluctuation
energies of approximately 20:80 (Bieber et al. 1994, 1996). This
model has provided a useful description of the parallel transport
of particles in the inner heliosphere (Bieber et al. 1994), and was
used by most studies that implemented and/or tested NLGC
theory.

For the special case of 2D+slab fluctuations, Equations (12)
and (15) and their DD equivalent split into two terms using Sslab

xx

and S2D
xx . However, Shalchi (2006) has proposed that the direct

contribution of slab fluctuations to the perpendicular transport
should be subdiffusive, and that the Sslab

xx term should not be
included in the equation of κ⊥. (Note that slab fluctuations can
still play a role as a key determinant of λ‖, which enters into
the 2D contribution.) We refer to this proposal as the Shalchi
slab hypothesis. We employ this in the present work, and a
detailed evaluation of its accuracy will be presented in a future
publication (D. Ruffolo et al., in preparation).
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Figure 2. Asymptotic perpendicular diffusion coefficient κ⊥ of 100 MeV
protons in 2D+slab turbulence with a slab fraction fs = 0.2 as a function
of the magnetic fluctuation amplitude b/B0. Using the NLGC framework,
random ballistic decorrelation with backtracking correction (RBD/BC, thick
line) provides a closer match with computer simulation results (solid circles)
than the original DD theory (long-dashed line) and uncorrected RBD (short-
dashed line). In the present work we also employ the Shalchi slab hypothesis
(Shalchi 2006).

Therefore, when using the 2D+slab model of magnetic
turbulence, in Equation (12) or Equation (15) we include only
the 2D portion of the power spectrum, which is concentrated at
kz = 0. We also assume the fluctuations to be magnetostatic,
with γ = 0, and axisymmetric. For RBD without the BC, we
have

κxx = a2v2

3B2
0

√
π

2

∫ ∞

−∞

∫ ∞

−∞

× S2D
xx (kx, ky)

k⊥
√〈

ṽ2
x

〉 eα2
erfc(α)dkxdky (RBD), (16)

and with the BC we have

κxx = a2v2

3B2
0

√
π

2

∫ ∞

−∞

∫ ∞

−∞

× S2D
xx (kx, ky)

k⊥
√〈

ṽ2
x

〉 erfc(α)dkxdky (RBD/BC), (17)

where

α = v2

3κzzk⊥
√

2
〈
ṽ2

x

〉 (18)

and k2
⊥ = k2

x + k2
y .

For comparison, we also consider the original DD theory, and
for our model assumptions we obtain

κxx = a2v2

3B2
0

∫ ∞

−∞

∫ ∞

−∞

S2D
xx (kx, ky)dkxdky

v2/(3κzz) + k2
⊥κxx

(DD). (19)

The analytic theory expressions were evaluated numerically
using the MATHEMATICA program (Wolfram Research, Inc.)
to perform continuous k-space integrals. For the input value
of κzz, we used the simulation value.

Figure 3. Asymptotic perpendicular diffusion coefficient κ⊥ in 2D+slab
turbulence with fs = 0.2 and b/B0 = 0.5 as a function of the proton gyroradius
in units of the turbulence bendover scale. The simulation values shown here
(solid circles) correspond to proton energies ranging from 0.1 MeV to 50 GeV
for B0 = 5 nT and λ = 0.02 AU. In most cases, the RBD/BC theory (thick line)
provides a better explanation of the computer simulation results (solid circles)
than the original DD theory (dashed line).

5. COMPARISON WITH COMPUTER SIMULATIONS

We have also performed direct computer simulations to
trace particle orbits in 2D+slab magnetic turbulence. While the
simulations inevitably involve some discretization and statistical
errors, they do avoid key assumptions of the analytic work, and
thus provide an independent check of their validity.

The computer simulations were performed using the methods,
power spectra, and parameter values described by Ruffolo et al.
(2008). In particular, all distances are in units of λ = 0.02 AU,
the slab and 2D turbulence bendover scale,5 and velocities are
in units of the speed of light c. Simulations were performed
over a sufficient time for all κii to approach asymptotic values,
within statistical errors. We assume axisymmetry about the
large-scale field direction, so κxx and κyy should be the same
within statistical errors, which we verified in all cases. We
report κ⊥ ≡ (κxx +κyy)/2, which can be compared directly with
κxx from theories. In some contexts, we use κ⊥ as a synonym
for κxx .

Figure 2 shows the dependence of κ⊥ (in units of cλ) on
the overall fluctuation amplitude b/B0, using fs ≡ b2

slab/(b2
slab +

b2
2D) = 0.2. It is apparent that the RBD/BC version (thick lines)

agrees with computer simulation results (solid circles) better
and over a wider range of b/B0 values than either the DD theory
(long-dashed lines) or RBD without the BC (short-dashed lines),
over the range of applicability of RBD (b/B0 � 1/a = √

3). We
have also examined the dependence on the proton gyroradius
(Figure 3), which is related to its energy, for fixed fs = 0.2 and
b/B0 = 0.5. The seven simulations were for protons of kinetic
energy 0.1, 1, 10, and 100 MeV as well as 1, 10, and 50 GeV.
The RBD results, not shown, nearly match DD at RL/λ < 1,
nearly match RBD/BC at RL/λ > 1, and are intermediate at
RL/λ≈ 1. Overall, the RBD/BC theory again provides the best
explanation of the computer simulation results.

5 Ruffolo et al. (2008) incorrectly specified λ = 0.027 AU; their simulations
actually used λ = 0.02 AU, and calculations were performed for the same
parameters as the simulations.
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6. DISCUSSION

In the present work, we interpret NLGC theory in terms
of particle guiding center trajectories that are ballistic with
constant velocity over the distance scale leading up to their
decorrelation (Figure 1), a standard assumption in random
walk theory based on scattering concepts. Such RBD stands
in contrast to the previous assumption of DD in which the
displacements were taken to spread according to asymptotic
diffusion. The use of Corrsin’s hypothesis for RBD is similar
in spirit to a Fokker–Planck approach in which the unperturbed
trajectory has a constant but random velocity whose directional
distribution is related to the distribution of magnetic fluctuations.
It is also related to the Langevin-equation approaches of Balescu
et al. (1994). Our use of a heuristic BC that is specific to
RBD leads to a substantial improvement in the match with
direct computer simulation results, compared with DD and RBD
without BC.

Note that RBD theory does not require a small fluctuation
amplitude, and indeed RBD/BC matches computer simulation
results very well for amplitudes up to b/B0 ∼ 1 (Figure 2). The
inapplicability for b/B0 > 1/a = √

3 indicates room for future
improvements to obtain a truly non-perturbative theory. At the
same time, we should note that the NLGC framework treats only
transverse magnetic fluctuations. In the interplanetary medium
of the inner heliosphere, transverse fluctuations account for
∼90% of the magnetic fluctuation energy (Belcher & Davis
1971), so NLGC is well justified in this case. However, for
large amplitudes with b/B0 � 1 there is little reason for the
fluctuations to be so strongly anisotropic, and the NLGC
framework itself may have limited applicability.

Considering the dependence of κ⊥ on the proton Larmor
radius, RL, as shown in Figure 3, a discrepancy remains between
NLGC theory and simulation results for the two lowest energies,
0.1 and 1 MeV. The discrepancy is substantially reduced for
RBD/BC. For energies of 10 MeV to 10 GeV (i.e., RL/λ =
0.031–2.4), RBD/BC theory matches the simulation results very
well. The increase with RL/λ saturates in this range because κ⊥
is roughly proportional to v (Minnie et al. 2009), which saturates
at c.

The NLGC framework in general could break down when
RL/λ� 1. In this weak scattering limit NLGC considers that
guiding center motion tracks the local field line random walk,
whereas such a large gyroradius implies that particles experience
fluctuations independent from those at the guiding center,
and low-wavelength fluctuations should have less influence on
perpendicular diffusion when they are averaged over such a
large gyroradius. In the interplanetary magnetic field near Earth
of about 5 nT with λ ∼ 0.02 AU (Jokipii & Coleman 1968), we
have RL ∼ λ for a proton energy of about 4 GeV, and in the
local galactic magnetic field of about 0.4 nT (Opher et al. 2009),
where λ ∼ 100 pc (Armstrong et al. 1995; Dyson & Williams
1997), we have RL ∼ λ for a proton energy of ∼4 × 1017 eV.

We have searched for and found this effect at the high-
est proton energy considered, 50 GeV, which corresponds to
RL/λ = 11 for our parameter values of B0 = 5 nT, b/B0 = 0.5,
and fs = 0.2, which are applicable to the interplanetary medium
near Earth. The perpendicular diffusion coefficient κ⊥ decreases,
presumably due to cancellation of low-wavelength fluctuations

over the gyro-orbit, while all NLGC theories predict a slight
increase. In any case, the above energies where RL ∼ λ for
interplanetary and interstellar propagation are sufficiently high
that NLGC theories remain applicable to a wide range of cosmic
ray and energetic particle transport problems.
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