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ABSTRACT

Project Code: MRG5280239

Project Title: The effect of turbulent magnetic fields in interplanetary space on
the motion of solar energetic particles

Investigator: Dr. Piyanate Chuychai

School of Science, Mae Fah Luang University

E-mail Address: piyanate@gmail.com
Project Period: 2 years
Abstract:

In interplanetary space, the transport of energetic charged particles is influenced by a
turbulent magnetic field. Previous studies have shown that a two-component (2D+slab) magnetic
model of turbulence is a useful model for the magnetic field in the heliosphere. Normally, the
diffusive behavior of charged particles in a turbulent magnetic field is observed when they
approach the long time limit. The charged particles are often assumed to follow and diffuse
according to the random walk of the field lines but some theories of perpendicular particle
transport, such as nonlinear guiding center theory (NLGC), implicitly assume some true cross-
field diffusion in which particles separate from the field line connected to their initial location. In
this work, we study the mechanism by which charged particles separate from their initial
magnetic field lines and also the effect of reduced dimensionality of the magnetic field on cross-
field motion of the charged particles. Here we perform numerical simulations of charged particle
trajectories in several cases of magnetic turbulence such as pure slab turbulence, Gaussian 2D
field+slab turbulence, and 2D+slab turbulence. Then we trace their corresponding magnetic
field lines which start at the initial guiding centers of the charged particles. After that we
compute statistics of the mean squared average transverse separation between guiding centers of
the particles and field lines. We will examine the effects of the initial pitch angle, particle
energy, fraction of 2D and slab lines in order to understand the separation behavior.
Furthermore, we develop the measuring and correcting techniques for Taylor microscale which
is one of length scales that we can find from turbulent magnetic field in space. Time series of the

signal generated from known spectrum of turbulent magnetic field lead us to the correlation



function and structure function. Fitting and extrapolation methods are used in other to estimate
the Taylor microscale. The application of this technique to real spacecraft data of solar wind is

also presented.

Keywords: energetic charged particles, turbulent magnetic field, diffusion, drift.
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Chapter 1

Introduction

1.1 Overview

The Sun consists of magnetic field and ionized gas called plasma. Some plasma on the Sun
is trapped by Sun’s magnetic field and some part continuous flows out into interplanetary space
with the speed approximately to 400 km/s which we call this part as solar wind. The flow of
solar wind is turbulent and at the same time it drags the Sun’s magnetic field into the space. Due
to the rotation of the Sun and turbulence of the solar wind, the characteristic of interplanetary of
magnetic field is achemedian spiral and turbulent as shown in Figure 1.1. The Sun also releases
high energy particle called solar energetic particles into interplanetary space. Most of them are
charged particles from keV to GeV. These particles effect to the Earth’s atmosphere. Since the
magnetic field is turbulent, the spectrum has the shape as Kolmogorov spectrum with has the
slope -5/3 in inertial range. In this range the energy transfer from large to small scales. This is
also the range that the plasma loses the energy called dissipation range. Taylor microscale is

found as the scale that related to this range and observed from multi-spacecraft.

Figure 1.1 Structure of interplanetary magnetic field and solar wind with moving charged

particle.



According to fundamental of electromagnetic field, when charged particles are in the
magnetic field, they move as helical orbit around the magnetic field. The shape of spiral depends
on the strength of magnetic field, particle’s speed and the angle between the charged particle and
the direction of magnetic field. Therefore, the energetic particles released from the Sun also
orbit around the magnetic field. Since the magnetic field direction is the quantity that controls
the transport of charged particles, the study of effect of the turbulent magnetic field to the
charged particles in space is important to explain the mechanism and the phenomena that we can
observe from the spacecraft data such as dropouts and solar modulation. Moreover, this research
leads us to new knowledge about basic physics which might be able to apply to the motion of

charged particles in turbulent magnetic field in laboratory.

From the previous study, the scientists are interested to explain the mechanism of the
particle transport in the space. They can be divided into two big groups. The first one focuses
the trajectories of the turbulent magnetic field line instead of the motion of charged particles.
They assume that the guiding centers of particles are very close to the magnetic field line
trajectories. They model several kind of magnetic turbulence and study the diffusion of field
lines. This problem is less complicated than examining the motion of charged particle directly.
However, we cannot understand all mechanisms if we only study the field lines. When we
compare the real transport of the particles, they are still some different from field line theory.
Another group of scientist studies the motion of charged particles in turbulent magnetic field
directly and try to create the theory to explain the transport. Recently, there is no theory that can

completely explain the mechanism and cover all general problems.

Therefore, this research examines the relationship between field line trajectories and the
motion of the particle by using the numerical simulation and develops the theory to apply to
particle transport in the interplanetary space. Furthermore, we also use method of generating
field lines above to crate the signals which depend on time. Then we use the statistics properties
that found in turbulent magnetic field to develop the technique to measure the Taylor microscale

in real data from spacecratft.



1.2 Objectives

e To understand the relationship between the motion of particle and turbulent
magnetic field.

e To find the drift and cross-field motion effects of charged particles due to the
turbulence of magnetic field in both numerical and analytic calculation.

e To model the spectrum and generate the time-series signal to study the

characteristic of length scale of turbulence of magnetic field.



Chapter 2

Model of Turbulent Magnetic Field

Since this research focus on the effect of turbulent magnetic fields in interplanetary space
on the motion of solar energetic particles, in this chapter we present the model of magnetic field
that we use. One is two-component magnetic turbulence to study the separation and another one
is turbulent magnetic field with Taylor microscale to find the technique of measurement. We

also assume that the magnetic field is static and homogeneous.
2.1 Two-Component Magnetic Turbulence

The two-component model was motivated by the observation that solar wind fluctuations
are concentrated at nearly parallel and nearly perpendicular wave number (Matthaeus, Goldstein,
& Roberts 1990). For the parallel component, the wave vector is parallel to the direction of the
mean field and the fluctuation of the magnetic field in this component is perpendicular to both
the parallel wave vector and the mean field. This is motivated by Alfbenic or slab like waves in
the solar wind propagating along the mean field. We call this component the “slab” component.
Another component, which is motivated by laboratory experiments, is called “two-dimensional
(2D)” turbulence, which has a wave vector perpendicular to the mean magnetic field. The
magnetic fluctuation in this component is also perpendicular to both the wave vector and the
mean field. This component gives long correlation lengths in the direction of the mean field. The
analysis of solar wind data by Matthaeus, Goldstein, & Roberts (1990) showed that the power
spectrum of the solar wind turbulence is composed of these two components. Furthermore, the
two-component model provides a good explanation of the parallel transport of SEPs (Bieber et
al. 1994; Bieber, Wanner, & Matthaeus 1996; Droge 2000), providing a solution to the long-
standing discrepancy between theoretical and observed scattering mean free paths.

Two-component magnetic model can be generally written as

B(x,y,2) = BoZ + byap(2) + byp(Xy). 2.1



The total magnetic field consists of the uniform mean field (ByZ) and the transverse fluctuations

(Bszab and 132 p) Which are in the perpendicular direction to the mean field. For the fluctuations,
the slab (one dimensional) fluctuation depends on the z coordinate while the two dimensional
(2D) fluctuation depends on the x and y coordinates (Chuychai 2004). Next, we introduce the

characteristic of each type of magnetic field that we use in this research.
2.1.1 Slab Fluctuation

From the definition of the slab field, the fluctuation depends only on z. Therefore, if we

consider the slab fluctuation in the x-y plane at each z, Eslab is the same along that plane but

different from the field on other planes as shown in Figure 2.1.
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Figure 2.1 Tllustration of the slab fluctuation, which depends only on the z coordinate. The

arrows demonstrate the slab fluctuation leab.

For the slab fluctuation, since the magnetic field is turbulent, the power spectrum is
specified by a Kolmogorov spectrum, including an energy containing range and an inertial range

with a 5/3 power law index, as



Cc
PP (k) = PP (k,) = RGeS (2.2)

where 4 is a coherence length and C is constant. See the shape of spectrum in Figure 2.2. To
generate the slab magnetic field, we first numerically compute the field in Fourier space by using
the power spectrum and a random phase, and then transform them back to real space via and
inverse Fourier transform. Finally, we will have the magnetic field data over detailed grid in the

simulation box. Figure 2.3 shows the example of trajectories of magnetic field lines from pure

slab turbulence [ByZ + Bsiab 2)].
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Figure 2.2 Example of a slab power spectrum.
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Figure 2.3 Example of two trajectories of magnetic field lines in pure slab turbulence.

2.1.2 Two Dimensional (2D) Fluctuations

For 2D field, the fluctuation depends only x and y coordinate. Since V-B = 0, we have
B =Vx [a(x,y)Z], where a(x, y) is the vector potential. In this work, we create 2D field in
two cases. For the first case, the 2D field is turbulent. To generate this type of fluctuation, we
need to specify power spectrum in wave number space. Another case is simple 2D field which

model as only one single island. Here the potential function is simply defined by a Gaussian

function.
I. Two dimensional (2D) Turbulence

From B =V x [a(x,y)Z], we can write 2D turbulence as BZ p = Va(x, y) X Z. From this
relation, we can clearly see that the 2D field must be in the direction perpendicular to the
gradient of the potential function and also to the z direction. Therefore, the direction of the 2D

field must be along the equipotential line of a(x,y) as shown in Figure 2.4. A 2D field that has



a positive value of a(x,y) is in a counterclockwise direction while one that has a negative value
has a clockwise direction. When we consider the pure 2D turbulence [ByZ + Bz p(2)], the field
lines conserve the value of the potential function and move along the contour of a(x,y). The

example is shown as Figure 2.5.

Figure 2.4 Schematic contour plot of a(x,y). The solid arrows show the 2D field, EZD, and the

dashed arrows show examples of the directions of Va(x, y) for both positive and negative
potential functions. The 2D field must lie along the equipotential lines of the potential function.
For a positive potential function, the 2D field is in a counter-clockwise direction, while a 2D

field having a negative potential function is in the clockwise direction.
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Figure 2.5 Example of a trajectory of a magnetic field line in pure 2D turbulence.

Finally, when we add both slab and 2D turbulence into the mean field, the trajectories of
magnetic field lines look like Figure 2.6. In our simulation, to model the 2D+slab turbulence

similar to solar wind condition, we usually use 20% of slab turbulence and 80% of 2D

turbulence.



Figure 2.6 Sample of magnetic field lines in 2D+slab magnetic field turbulence that start at the
difference locations. The field lines near O-point are trapped along some distance before they

diffuse while the field line near X-point quickly spread at the beginning (Chuychai et al. 2007).
Il. Simple Gaussian 2D Field

To understand the mechanism of separation between charged particles and their field
lines, we also create a simple model for 2D field. For the simple case, we model 2D field as a
Gaussian function while the slab field is turbulent (Chuychai et al. 2005; Tooprakai et al. 2007).
That would provide us more understanding about the mechanism of the motion of the charged
particles when we vary the initial pitch angles. The potential function for simple 2D case can be

written as

a(r) = Ay exp [— %], (2.3)

where A, is the central maximum value, o determines the width of the Gaussian, and the
distance r is measured from the axis of the flux tube. Without the slab ficld, the field line
trajectories in this model, ByZ + I;ZD (x,¥), have helical orbits along a cylindrical surface of
constant a(x,y) with a constant angular frequency as a function of z. The contour of a(x,y) in

this model is circle and field line move along the surface of constant a(x,y) as shown in Figure

10



2.7. Then when we add slab turbulence, the example of trajectories are in Figure 2.8. The field
lines start inside 2D island are trapped at the beginning and later become diffusive due to slab

turbulence. For the field lines start outside, they quickly spread due to slab turbulence.

Figure 2.7 Magnetic field line trajectories for a single 2D island, with B = ByZ + b,p(x, y).
The surface plot at bottom shows the potential function a(x,y) of the 2D field (Chuychai et al.
2007).
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Figure 2.8 Example of two magnetic field lines in a single 2D Gaussian island plus slab
turbulence. The red field line started deep inside the island, whereas the blue field line was
initially located outside the island. The surface plot at bottom shows the potential function

a(x,y) of the 2D field (Chuychai et al. 2007).

2.2 Turbulent Magnetic Field with Taylor Microscale

In this section, we specify the magnetic field with microscale in order to develop the
measuring technique and apply to spacecraft data (Chuychai et al. 2014). We use synthetic data
generated using a known spectrum, and then employ a typical methodology to evaluate the
Taylor microscale. The spectrum is constructed with inertial and dissipation ranges that have
been independently controlled, and have generally different power law indices. To be specific,
we let the inertial range have a spectral index of -5/3, while the dissipation range has an

adjustable spectral index q. The particular functional form of the spectrum is

12
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where g < 0 (See the shape of spectrum is presented in Figure 3.1). The reasons for these
choices are as follows: First, the flat spectral region at very low frequencies f7, < 1 is designed
to make the signal time stationary. This is unrealistic for the solar wind, which has very low
frequency components due to, eg, solar rotation and solar cycle (see e.g., Matthaeus and
Goldstein 1982). However we are not concerned with very low frequency effects here. Second,
the inertial range with Kolmogorov spectral index of ~5/3 is found for higher frequencies, at
f1o > 1. Third, there is a discontinuous jump at the top of the inertial range at frequency f,, the
slope steepening from —5/3 to —q, in qualitative accord with observations (Leamon et al. 2008;
Alexandrova et al. 2009; Sahraoui et al. 2009). Finally at high frequencies f > f, we set the
spectrum to zero, for numerical rather than physical reasons, to provide a very smooth

trigonometric interpolation of the signal at the grid scale.

Adopting illustrative values that are representative of the solar wind at 1AU, we assume

that the spectrum starts from f,,;, = 1.22 X 107> Hz and is flat until f; = — = 3.906 x 10~*

To

Hz, a “bendover” frequency often associated with the correlation scale or coherence time.
Thereafter the spectrum has an inertial range with a 5/3 power law index, until a second break
point is encountered at f; = 1/t; = 0.4 Hz. For historical reasons, this breakpoint, which
terminates the power law MHD-scale inertial range, is often referred to as the “dissipation scale”
(Leamon et al. 1998), although it is also possible that it characterizes dispersion rather than
dissipation (Gary and Borovsky 2004). In the hydrodynamic case for which the eddy turnover
time and viscous dissipation time scales become equal at the dissipation scale, for the solar wind
or other low-collisionality astrophysical plasmas, it is unclear whether the fluctuations become
critically damped at the breakpoint/dissipation scale. For example, the inertial range is typically
found to terminate near the proton gyroscales, and while some dissipation may occur at such
scales, further kinetic plasma dynamics may transfer energy to higher frequencies until much
smaller electron scales are encountered (Alexandrova et al. 2009; Sarhaoui et al. 2009). It has

been argued that a substantial fraction of actual dissipation may occur due to electrons. In any

13



case the scale f; corresponds to the onset of kinetic processes and the end of the Kolmogoroft-
like inertial range. It is, however, the kinematic properties of the spectrum that come into play in

the current study, rather than the dynamical origin of the spectral forms.

In our model development, beyond the breakpoint f;, we extend the dissipation range
with power law index g until f, = 16.0 Hz which may be considered, in the solar wind
application, to be associated with the electron dissipation scale. The spectrum cuts off
completely at f;,,,,=25.6 Hz. To decide upon these numerical values, here we assume that the

dissipation scale and electron dissipation scale correspond to the proton and electron inertial

scales, respectively. Thus we set ]]:—" = 40 to be consistent with the ratio of electron and proton
d

inertial scales in MHD, which is about \/m,,/m, = 42.9 (see e.g., Sahraoui et al. 2009).
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Chapter 3

Methodology

We generate magnetic field, which is static and homogeneous by using 2D-+slab model of
magnetic field turbulence. To study the separation between magnetic field line and charged
particle trajectories, we simulate magnetic field lines corresponding to the initial guiding centers
of the charged particles by numerically solving field line equation while the trajectories of
particles is traced by solving equation of motion. After that the data are collected and analyzed
by using new statistical approach. For the part of generating turbulent magnetic field with
Taylor microscale, we show the method how to generate the spectrum and transform to time

series in real space which are analogous to spacecraft data.

3.1 Generation of magnetic field

3.1.1 Turbulence Magnetic Field

Since the magnetic field in interplanetary is turbulent, we simulate magnetic field by
setting up magnetic field parameters and specify power spectrum. In our simulations, we
generate the magnetic field in the simulation box. We need to consider the effects of the
simulation box, representations of turbulent field, and suitable length scale for simulated field
lines. For turbulence case, the magnetic field is generated in wave number space (K-space)
before conversion to real space. We instead define the power spectrum as a function in k-space,
which is the Fourier transform of the magnetic correlation function R;;(7) =< b;(0)b;(7) >.
The spectrum that we usually use for the magnetic turbulence is a Komolgorov spectrum over a
wide range of wave numbers. The magnetic fluctuations in equation (2.1) are composed of slab
and 2D turbulence. Because the slab turbulence depends only on z and the 2D turbulence
depends on X and Yy positions, we separately generate them in k, and (ky,k,) spaces,
respectively. After that, the magnetic field in Fourier space is converted to position space by an
inverse fast Fourier transform. For numerical computation, we cannot generate the magnetic

fluctuations continuously in space due to the limitation of the computer. Thus the magnetic field
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is constructed only on the grid points in the simulation box. To avoid bias due to a periodicity
effect, we have to generate the magnetic field in a large (but finite) box. Therefore, in this part,
the parameters that we need to input are the sizes in X, Y, and z directions of the simulation box
(Lx, Ly, and Lz), the number of grid points (Nx, Ny, and N:), the total root-mean-squared
fluctuation (6b), the fraction of 2D and slab energy, the shapes of the 2D and slab power spectra,

and coherence lengths (4, an 4,).

Slab Turbulence

For slab turbulence, we set the power spectrum for simulations as

Cslab
[+ (kD27 G

where €'Y is a normalization constant that depends on the slab energy and A is the parallel

PEIe0 (k) = PRt (i) =

coherence length. From the function of the slab spectrum, the slab magnetic fluctuations in k,

Space are

b3 (k;) = N P (k;) explig(k;)] (3.2)

b3'eb (k,) = /P;;ab (k,) explid(k,)], (3.3)

where ¢ is a random phase number and k, is a discrete number which is k, = j2r/L,, for

j: 1P2!3;"-pNz/2 _1.

2D Turbulence
For 2D turbulence, we instead specify the power spectrum A(k,, k,, ) because the power

spectra PSP (k,, k) and PSl* (k,, k) can be written in terms of A(ky, ky) as

CZD

[1+ (k2,)2]7/3

From the relationship between magnetic fluctuation and potential function in k-space, the 2D

Alk)) =

(3.4)

fluctuations in (ky, k,,) are

b2P (ky, k) = —ik,\JA(kL) explid(ky ky)] (3.5)
b2P (ky, ky) = ikeJA(k)) expligp(ky k)], (3.6)
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3.1.2 Simple Gaussian 2D Field
Since we can specify the function of simple Gaussian 2D Field directly in real space.

From equation (2.3), we write potential function in Cartesian coordinate

(x —x0)* + (y — ¥0)?
202 ’

a(x,y) = Agexp |— (3.7)

where x( and y, are center of the Gaussian island. From the relationship Ez D= V)a(x, y) X Z,

we can write

_9ay) _ = —yo)alx,y)

by =—5 = (3.8)
da(x, —~ :
by = ag; ) _ & x;)za(x ) 39)

3.1.3 Turbulent Magnetic Field with Taylor Microscale

Once we have specified the shape of spectrum as equation (2.4), we can generate

realizations of the signal in the frequency domain, F(f), as

F(f) = JP(f) explid] (3.10)

where ¢ is a random phase. Then a fast Fourier transform (FFT) is used to convert the function
F(f) into the real time domain. In the simulations reported here, we employ this approach to

obtain 222 data points for the time series.

We next compute the Taylor microscale from the data set we generated by employing the
definition equation (2.4). In Table (3.1), we give the Taylor microscale values for a range of
dissipation scale indices g corresponding to the generic power spectrum shown in Figure 3.1.
(Note that the spectra are given here as Fourier amplitudes squared, which can easily be
converted to power spectral density.) We will treat these expected values of the Taylor
microscale as the true or exact Taylor microscale values for the synthetic time series data. To

examine and test our extrapolation method, we use only one-eighth of the original data. The
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purpose of defining this subset is that any consistent method will provide good (and even
convergent) values of tr¢ when the time resolution At of the estimates is very fine, i.e., the
spectral cutoff is resolved and Atf,,,, < 1/2. However, our motivation is to obtain reasonably
accurate values of 775 when the effective resolution of the data sampling is adjusted so that we
are not in this asymptotic regime — a circumstance that is more likely to be realized in practice

when analyzing spacecraft data.

With the subset of our discrete time series, we compute the second order structure
function. This can be used to obtain an estimate of the correlation function. We then determine
the radius of curvature from correlation function and an estimate of the Taylor microscale. In
the following section, we will demonstrate an extrapolation technique (Weygand et al. 2007,
2009, 2010, 2011) to estimate Taylor microscale from a series of parabolic fits of the correlation

function near the origin. The details of the technique we use to analyze are given in Chapter 6.
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Figure 3.1 The power spectrum for a number of values of ¢ in the dissipation range.
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Table 3.1 Showing index g which we vary for each case and their Taylor scales when we fix

dissipation scale (5 = 2.5 s).

Case T;ascpect [s] T;J;pect [74]
q=— 6.569 2.63
q=-5 5.097 2.04
q=—4 4368 1.75
q=-3 2.869 1.15

q=-7/3 1.607 0.64
q=—2 1.095 0.4
q=-1 0.095 0.028

3.2 Particle Simulations

For the charged particle g and mass m, moving with velocity (¥) a magnetic field (E),

without electric field (E ), we can write motion equation by Newton’s Lorentz force (ﬁ B):

Fp =ma= q(va). (3.11)
For our work, we a bit adapt equation (3.11) for simulation (Tooprakai et al., 2007),
dv’ =
T = a(?' x B'), (3.12)

where a = (qBy1,)/(ym,) and the quantities v’, B ', and t' are normalized quantities which
have units as scale to the speed of light (c¢), the mean magnetic field (B), the time scale 7, =
A/c, respectively. Note that A is the slab turbulence coherence length.

We can find trajectories of the charged particles, when we know the equation of motion
of the charged particles. In this work, we use Newton’s Lorentz force equation to find positions
of the charged particles by using fourth-order Runge-Kutta method with adaptive time stepping
regulated by a fifth-order error estimate step (Press, Teukolsky, Vetterling & Flannery, 1992;
Dalena, Chuychai, Mace, Greco, Qin & Matthaeus, 2012).
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3.3 Magnetic Field Line Simulations

When we know the value of the magnetic field at each grid point, we can trace the magnetic field

line that is tangent everywhere to the magnetic field (§). The differential equation of the

magnetic field line is
dix B = 0. (3.13)

In Cartesian coordinates, dl is (dx,dy,dz) and Bis (B, By, B;). From equation (3.13), it can be

written as
dx dy dz (3.14)
B, B, B, '
In our model, we use B = ByZ + byX + b,y so we obtain
dx dy dz 315
B, B, B, (315
Finally, we can write the differential equation for the magnetic field line as
dx b,(x,y,z) b3 (z)+ b2P(x,
dx _by(x,y,2) _ b3 (@) + b2 (x,) 316
dz b, B,
d b X,V,Z bslab 7 +b2D X,
dy _by(xy,2) _ bi® () + b (x,y) 317)
dz b, By

After that the differential equation of the magnetic field line is solved by using fourth order
Runge Kutta method with adaptive step size as same as we use in particle simulation to find

positions of the magnetic field lines X, Vrr, ZFy .

3.4 Simulation and Analysis Method for Separation between Charged Particles and Field
Lines

We simulate 1,000 pairs of particle trajectories (protons) and their initial field lines with
starting points located at the initial guiding center (GC) of the particles. As the trajectories of the
particles are traced by equation (3.12), their GCs are also computed from the radius of curve of
the particle orbits, p:

__Bxp
p= W (3.18)
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where p = ym,v is the particle momentum. From the radius of curvature and the particle

position, we can find the GC from 7; = 7 — p as shown in the Figure 3.2.

Figure 3.2 Illustration of a particle orbit, magnetic field line and guiding center (Wikee 2013).

After that, we analyze the statistics of spreading between particles and field lines by
calculating the mean squared displacement between the position of a particles GC and its field
line at the same z-coordinate (see Figure 3.3), as a function of time, that is

(Ceoe(t) = xpL[2(OD?) and (e (8) — ye[2(0)]D?), (3.19)
where z(1) is the z-coordinate of the particle GC at time t. Note that xz; and y; are single valued
because we assume transverse fluctuations, so B, = B, constant and the field line cannot back
track in z. We use linear interpolation to evaluate xg; and yg; at z coordinate of the particle GC

at regular time intervals.
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Figure 3.3 The diagram of separation between the guiding center and magnetic field line (Wikee
2013).
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Chapter 4

Effect of Reduced Dimensionality of the Magnetic Field Fluctuations on the

Cross-Field Motion of Charged Particles

In interplanetary space, the transport of energetic charged particles is influenced by a
turbulent magnetic field. = Previous studies have shown that a two-component (2D+slab)
magnetic model (Matthaeus, Goldstein, and Roberts 1990; Bieber, Wanner, and Matthaeus 1996)
of turbulence is a useful model for the magnetic field in the heliosphere. Normally, the diffusive
behavior of charged particles in a turbulent magnetic field is observed when they approach the
long time limit. The charged particles are often assumed to follow and diffuse according to the
random walk of the field lines but some theories of perpendicular particle transport, such as
nonlinear guiding center theory (NLGC) (Matthaeus et al. 2003; Ruffolo et al. 2008; Ruffolo et
al. 2012), implicitly assume some true cross-field diffusion in which particles separate from the
field line connected to their initial location. Furthermore, such cross-field diffusion is of specific
interest because it is the only way that particles can diffuse across boundaries of magnetic field
topology, such as the heliospheric current sheet and boundaries of interplanetary magnetic flux
ropes. Jokipii et al. (1993) and Jones et al. (1998) derived a theorem showing that charged
particles in an arbitrary electromagnetic field with at least one ignorable spatial coordinate
remain forever tied to a given magnetic flux surface. In this work, we consider charged particles
in one- and two-component magnetic fields to illustrate the effect of reduced dimensionality of
magnetic fluctuations on the cross-field motion. A simple 2D flux tube and slab turbulence are

used for fluctuations with we can turn the dimensionality on and off.

4.1 Simulation Setup

In the simulation, we set the box length in the z direction as 10,0004 and the number of
grid points is N, = 4,194,304. The magnetic parameters are 6 B, /By = 0.5, 0 = 0.54, and
Ay, = 0.8436B,A.
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The 100 MeV protons were released in random direction distribution. There are three
cases that we have explored in our work: particle motion in a pure 2D field, in pure slab
turbulence and in 2D+slab fields. These three cases can demonstrate the effect of reduced

dimensionality of the magnetic field fluctuations. That is a reduction to one dimensionality can
be studied in the case of pure 2D field with azimuthal symmetry [302 + Ez D (r)] and in the case

of pure slab turbulence [Boﬁ + leab (z)]. The 2D+slab case represents fully three dimensional

fluctuations. Note that in our results all length scale is in unit of A and time is in unit of A/c.

4.2 Results
Case I: Particles in the pure 2D field

We inject all 1,000 protons of 100 MeV at a random angles along certain initial radius (7)) of the
2D flux tube. The results are shown in Table 1 and Figure 1 for ry = 0.5A. From the results, we
found that ((xgc(t) — xp,[2(£)])?)~7rZ. It can be explained by the drift motion in the azimuthal
direction (z direction) while the particles still stay near the flux surface. Figure 4.2 shows

similar results for 10 MeV particles started at 1y, = 0.17).
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Figure 4.1 The mean squared separation between guiding centers of 100 MeV particles starting
at 1y = 0.54 with their field lines in the pure 2D field. The value close to 7Z implies

confinement to flux surface.
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Figure 4.2 The mean squared separation between guiding centers of 10 MeV particles starting

at 1y = 0.14 with their field lines in the pure 2D field.

Table 4.1 Saturation values for 100 MeV particles in the pure 2D field when we vary the

location of the initial positions.

To (Cege = xpL)?) (Wec — yrL)?)
0.1 0.0149 0.0149
0.3 0.0900 0.0902
0.5 0.249 0.250
0.7 0.492 0.493
0.9 0.825 0.826
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Case Il: Particles in slab turbulence

In this case, the particles are started at random positions in the simulation box. The
results in Figure 4.3 show that the particles in slab turbulence have very little separation for their

field lines. The particles stick with their initial field lines.
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Figure 4.3 The mean squared separation between guiding centers of 100 MeV particles and their
field lines in pure slab turbulence. The low value indicates confinement of the particle to remain

near the same field line.

Case I11: Particles in 2D+slab fields

In the case of three dimensional fluctuations, we can see that the particles have

unconstrained cross-field motion illustrated in Figure 4.4.
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Figure 4.4 The mean squared separation spreading between guiding centers of 100 MeV
particles and their field lines in Gaussian 2D field + slab turbulence. The continual increase

indicates unconstrained cross-field motion in this fully three-dimensional case.

4.3 Conclusions and Discussion

We have examined the cross-field motion of particles in the one- and two-component
magnetic field models. Our results show the effect of reduced of dimensionalities of the
magnetic fluctuations on the cross-field motion. When the fluctuations have two ignorable
coordinates in one case (pure slab), no cross-field motion can be observed, with particles
constrained to remain near one field line, and in another case (pure 2D with azimuthal
symmetry), the particles are constrained to remain near on-flux surface. Unconstrained cross-
field motion occurs only when the magnetic field has fully three dimensions. These results are

consistent with the theorem of Jokipii et al. (1993) and Jones et al. (1998) which states that in an
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EM field with an ignorable coordinate, the particle motion remains near a single magnetic flux
surface. The particles in the pure slab case stick to their initial field lines because the theorem
applied to the ignorable x coordinate constrains the particle to one magnetic flux surface,
application to the ignorable y coordinate constrains the same particle to a different flux surface,
and the intersection of the two surfaces in simply the original field line. For the pure 2D case,
application of the theorem to the ignorable coordinate z coordinate implies a constraint to remain
near a flux surface of constant r, which is the same surface. Thus there is no further constraint
from the second application of the theorem, the particles are confined on the flux surface but
have the drift motions in the z (or ¢) direction that cause the saturate values in our statistics
approximately r¢. This study will help us to understand the cross-field motion of energetic
particles in interplanetary space and will play an important role in developing the transport

theory of charged particles in magnetic turbulence.

29



Chapter 5

Separation of Charged Particles from Their Turbulent Magnetic Field Lines

In this chapter we explore the separation of charged particles and magnetic field lines in
two cases which are Guassian 2D Field + slab turbulence and 2D+slab turbulence. For simple
case, we release the particles at various distances from the center of Guassian island and then
study behavior for each case. For 2D + slab turbulence, we vary particle energy, 2D fraction,

initial pitch angle, and the fluctuation strength in order to see the effect of separation.

5.1 Separation of Charged Particles and Field Lines in Guassian 2D Field + Slab

Turbulence

The 1000 charged particles are released at random initial pitch angles on various
distances from the center of the 2D Gaussian island (1) as 0.14,0.34,0.54,0.74, and 0.94
(Wikee 2013). For Gaussian function of potential function, we set the width of the Gaussian
o as 0.5L . We define b7} /B, = 1.0 and (bJ¥* /6bgqp)? = 20 that means the 2D flux tube is
very strong compared with slab turbulence. The test particles are designed to represent protons
that have energy 100 MeV. In our simulations, all units of lengths are scaled with A and the unit

of the time is scaled by A1/c. Figure 5.1 shows the example of the trajectory of the test charged

particle and magnetic field line.
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Figure 5.1 Example of the trajectory of a charged particle in our model; red line demonstrates
trajectory of magnetic field line, black line and blue line demonstrate trajectories of charged

particle and its guiding centers, respectively.

In our work, the simulation results for 1,000 particles show that the separation behaviors
between the charged particles and the corresponding field lines can be divided into several
regimes as we can see in Figure 5.2. We can explain the mechanism of separation in each regime

by relating to the structure of the 2D Gaussian and slab turbulent magnetic field.
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Figure 5.2 The results of the separation of charged particles and their corresponding field lines

in the log-log scale.

I. At the initial times (when tc/A < 1)

We found that the separation of the charged particles in initial time which are started at
the radius of 0.14 is highest one following by the ones started at 0.34 and 0.51 , respectively.
For the particles started at 0.74 and 0.94, the separations are very close to each other and lower
than the particles started r, = 0.51. It seems that the separation of charged particles during this
time depend on the structure of 2D field which can be explained by the radius of curvature of the
magnetic field and the gradient of magnetic field. The positions of 0.14 from center of Gaussian
function have the lower radius of curvature of the magnetic field lines than the radii as 0.34,
0.54, 0.74 and 0.9A. The curvature is larger when the distance is far from the center. For the

gradient of magnetic field, we can see from the profile of the intensity of 2D Gaussian flux can
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be seen in Figure 5.3. The gradient depends on the radius from the center of Gaussian 2D field.
The maximum of 2D magnetic field is at the width of Gaussian function (o) and the decrease
when the radius towards to the center as well as when they go outside. Next, we compute the
effect of curvature and gradient drifts due to 2D Gaussian field in order to explain the results
during the beginning time. In general, the drift velocity of guiding center due to the gradient of

the magnetic field is represented by

_ v? BxVB 5 1
Y6 = 2w, BZ (1)
while the curvature drift is
mv? R.x B
L, YmMV, R (5.2)

Ve T T4B2 " R?

Then we plug in the pure Gaussian 2D magnetic field including mean field into equations (5.1)
and (5.2) and compute the drift velocity. Then we can find that the magnitude of drift velocity of
the guiding center due to the gradient and the curvature drift of the magnetic field are

ymv? b2P

KU =W?|UZ — RZ| (5.3)

ymuv?
3qR.B’

Vel = (5-4)

Then when we consider both effects, the equation for these is

wa (RC)) (62 —R?) + 1” (5.5)

2
() + (Fe)ll = em

3gBR, Bo?

After that, we insert all magnetic field parameters in our simulation into equations (5.3),
(5.4), and (5.5) and make a map to see the effect of the drift for each radius from the center of
Gaussian. We found that they give the shapes of drift speed like Figure 5.4. From the drift speed
profile, we can see that the curvature drift has more effect than the gradient drift and it is
dominated at the small radius from the center of the Gaussian function. When we combine these
two effects as in equation (5.5), the particles started near the center of the Gaussian have more

drift speed due to 2D field. That is why we can see the charged particles have high separation of
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the charged particles when they are released at the small radius as shown in Figure 5.2.

Moreover, from the profile in Figure 5.4, the effect of the drift for the particles started at 0.7 Aand

0.94 is slightly different which we can also see this effect in Figure 5.2.
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Figure 5.3 The profile of the 2D Gaussian magnetic field along the distance from the

center of the flux tube.
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Figure 5.4 Showing shape of drift speed of guiding center due to the gradient of the magnetic
field, radius of curvature of the magnetic field line and the summation of the gradient drift and

curvature drift in arbitrary units.

Il. At intermediate time (when 1 < tc/A < 100)

In this regime, the charged particles follow their corresponding field lines for a while and
start to escape from the influence of the 2D flux tube. There are interesting features in this
regime. The particles started deeper inside the 2D island have lower separation during this time
and the particles started outside 2D island have almost the same slope of the separation. The
particles start at r, = 0.14 and 0.34, at inside 2D islands, have lower separation rate than the
others as shown in Figure 5.5a). Here, we can recognize the separation rate by the slope of the
graph. The particles started deep inside the 2D island slowly drift out from the field lines because
both field lines and the charged particles are trapped inside 2D island. For the behaviors of the
particles released outside the 2D island such as at 1, = 0.54, 0.74 and 0.94, they have almost the
same separation rate and there is more the separation rate than the particles started at inside 2D

island as shown in Figure 5.5b). That is because these particles quickly move outside and are not
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trapped due to the strong 2D field. This corresponds with the suppression of field line and
particle diffusion when there is a strong 2D magnetic field as found in previous work (Chuychai

et al., 2005, 2007; Tooprakai et al., 2007).

Figure 5.5 Showing the separation of the charged particles at a) inside the 2D island and b)
outside the 2D island.

I11. At final time (when tc/4 > 100)

From the final range in Figure 5.6, we can see that the charged particles released at radius
as 0.14, 0.31 and 0.54 separate faster than the other radii. It seems the separation is related to the
radius of releasing the charged particles. If the charged particles are released inside the center of
Gaussian function, they separate from their initial field lines more than the other positions. In
this range, the transition of the charged particles and their corresponding magnetic field lines are
uncorrelated. Note that the corresponding length scale of the uncorrelation between particles and
field lines is in the order of coherence length scale (A1) which, within this length scale, the slab
field are still correlated. The charged particles are mainly influenced by slab turbulence and
undergo subdiffusive as we can see from the slope = 0.5 in Figure 452. We normally find
subdiffusive process when charged particles transport in pure slab magnetic field (Tooprakai et

al., 2007).
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Figure 5.6 The mean squared perpendicular displacement and time in the final range.

From the results in this section, the separation of the charged particles are related with the
distance from the center of the Gaussian flux tube (1) and where they experience the different
structure of the magnetic field. When the charged particles are released at low curvature of the
magnetic field line, the separation is more than the others at the initial times. In our results, we
show that the separation at the beginning depend on the gradient and curvature drift due to the
2D field. Then, in intermediate time, they slowly drift to outside the 2D flux tube. The sharp
gradient of 2D field can be distinct behavior of the particles inside and outside the island in this
regime. It corresponds with the suppressed diffusive regime in the previous work (Chuychai et
al., 2007; Tooprakai et al., 2007). In addition, for final time the separation of the charged
particles is uncorrected with the starting point to release the charged particles. The separation of
the charged particles depends on distance from the center of the Gaussian function and becomes
subdiffusive, the charged particles are released at outside of 2D Gaussian field (r, = 0.74 and

0.94), the separation is lower than the others radius. Finally, this work can help us to understand
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more about the relation of the separation between guiding centers of charged particles and
magnetic field lines. In the next section, we present the effect of separation in 2D+slab

turbulence.

5.2 Separation of Charged Particles and their field lines in 2D+Slab tubuelence

Here we release the charged particles in 2D+slab turbulence inn various cases. We also trace the
sample of charged particles and their magnetic field line which are started at the initial GC in pure slab

and 2D+slab turbulence cases as shown in Figure 5.7

Figure 5.7 Examples of 20 MeV particle trajectories (BLACK lines), their guiding centers
(BLUE dots), and their initial field lines (RED lines) in a) pure slab turbulence and b) 10% 2D+
90% slab turbulence. Note that in our simulations the time scale is in units of 4/c and the length

scale is in units of A, where A is the slab coherence scale and c is the speed of light.

We can see that the particle in pure slab case ties along the field lines while the particles from
2D-+slab turbulence follow the field line at the beginning and then deviate from its field lines at the later
time. Figure 5.8 shows the statistics when we release 1,000 particles and compute the mean squared of
separation between particle’s GCs and their field lines in both pure slab and 2D+slab turbulence. For

the pure slab case, the results show that the particles in pure slab turbulence have very little
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separation between particle trajectories and their field lines. The particles stick with their initial
field lines. This is consistent with the theorem of Jokipii et al. (1993) and Jones et al. (1998).
This effect happens when we reduce the dimensionality of the magnetic field. Despite from the

particles in 2D+slab case, they diffuse along the time.

Figure 5.8 The results from the simulations of 100 MeV protons in a) pure slab and b) 2D+slab
turbulence. The statistics in the plots show the spreading of particles from field lines as a

function of time.
After that we perform the simulations for 1,000 charged particles in various cases to see

the effect the many parameters to the separation such as particle energy, initial pitch angle, 2D

fraction, and magnetic field strength.

39



Figure 5.9 shows how different particle energy responds to the separation. From the
results we can see that low energy particles have lower separation than high energy particles. At
intermediate time, very low energy particles stay or tie to the magnetic field before they leave the

field lines as we can see the flat shape of the plot in Figure 5.9 for 10 keV and 1 MeV particles.

Figure 5.9 The results of the separation of charged particles and their corresponding field lines

when we vary particle energy.

Next, we vary the initial pitch angle of the charged particles. The pitch angle is defined
by the angle between velocity of particle and magnetic field. From the results in Figure 5.10,
we found that the particles moving perpendicular to the magnetic field give more separation than
the ones start in the direction parallel to the magnetic field. For long time limit, the separation

reaches the same rate for all initial pitch angles.
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Figure 5.10 The results of the separation of charged particles and their corresponding field lines

when we vary initial pitch angles.

We also vary 2D fraction to 10%, 20%, 50%, and 80%. We found that more 2D portion
gives high separation as seen in Figure 5.11. Figure 5.12 presents the separation when the
magnetic fluctuation is varied. We found that low magnetic fluctuation give less separation than
the higher one. Similar to the other cases, the particles and the field lines are independent at long

time as we can see from slope =1 of the graph.
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Figure 5.11 The results of the separation of charged particles and their corresponding field lines

when we vary particle 2D fraction.

Figure 5.12 The results of the separation of charged particles and their corresponding field lines

when we vary magnetic field strength.
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For the long time limit, the separation between particles and field is diffusive as indicated
by the slope of 1 at the end in all plots which can be explained by nonlinear guiding center
theory (NLGC) (Matthaeus et al. 2003; Ruffolo et al. 2012). In this region the particles move
independently from their initial field lines. At early times before strong separation, the
simulations in most of the cases have a slope close to 2, related to a free streaming regime. The
transition between free streaming separation and diffusive (independent) separation occurs at a
displacement ~A. We find faster separation for an increasing 2D fraction, which is consistent
with the lack of separation for pure slab turbulence, and also find faster separation for lower

pitch angles.
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Chapter 6

Technique for Measuring and Correcting the Taylor Microscale

This Chapter presents the new technique for measuring and correcting the Taylor
microscale. After we generate time series as we discuss in subsection 3.1.3, we calculate the
correlation function and the structure function. From parabolic fitting and extrapolation method,
we obtain the estimated Taylor microscale. Next, we suggest to apply the correction ratio which

depends on index q. Finally we apply with real spacecraft data.
6.1 Correlation Function and Structure Function

Focusing on the time domain, the Taylor microscale can be also view as the radius of

curvature at the origin of the autocorrelation function.
R(t) = (F(t)F(t + 1)) (6.1)
For a small 7 expansion and using R(7) = R(—7), a requirement of time stationarity, the
autocorrelation function near the origin, can be determined by
2

T
R@)=1—z—+-- (6.2)
277

Therefore, one way to obtain the Taylor microscale from measurements is to fit R(7) at the
origin. However, sometimes the observation data do not have sufficient time resolution near the
origin to perform an adequate parabolic fit.

In estimating the correlation function from many samples of data, it is useful to employ

the normalized correlation function

R __R_ 6.3
REGES (63)

We can also express the data in the second order structure function S,, given by
Sy(v) = ([F(t + 1) — F(©)]?). (6.4)

44



In fact, the normalized correlation function and the second order structure functions are related

by

N S,(1)

R(T) =1- W (65)

Figure 6.1 shows the structure functions for various dissipation range indices q that we generated

as described in Sections 2.2 and 3.1.3. Several regimes are seen:

e For T » 1,4, which is associated with the inertial range (f /%) in Fourier space, one
expects to find S, o« 7273,

e For 7 « 14 and with ¢ = —5 and —4, one finds (see Figure 6.1) that S, o 2. This is the
regime, in accordance with equation (6.5), in which parabolic curvature of the correlation
function is seen near T = 0.

e For 7 < 14, but g values of —3 or shallower, the required parabolic behavior is not seen
near T4, but rather this asymptotic behavior is deferred until T < 1/f,. This is due to the
fact that the spectrum for this range of q is not steep enough to cause convergence of the
Taylor scale estimate. This convergence is now delayed until scales are sampled that are

finer than the electron dissipation scale.

This change in behavior of Taylor scale estimates as the dissipation range spectral index is
varied is actually very relevant to solar wind observations. For scales smaller than ion inertial
length, the solar wind spectral slope is found to be quite variable. For example, Smith et al.
(2006b) estimate that dissipation range magnetic spectral indices are broadly distributed with
average values |q| = 2.61 £ 0.96 for intervals lacking magnetic clouds, and |q| = 2.01 + 0.84

for cloud intervals.

A lesson can be learned from the above simple exercise: the asymptotic form of the
correlation function embodied in equations (6.2) and (6.5) is not obtained until the sampled
spectrum is k~* or steeper. Between spectral indices —4 and —5, the transition to the asymptotic
parabolic form migrates towards finer scales, until at k=3, the transition is delayed until

separations within the assumed inner cutoff scale are sampled.
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From equation (6.5) we can compute the correlation function from the structure function.
Figure 6.2 displays the correlation function for various q. From these plots, we can see that the
correlation function has a parabolic shape at the origin. At this fixed resolution, the

characteristic parabolic shape becomes better defined as the values of |g| are increased.

Suppose now we select a known q and we compute the radius of curvature of the correlation
function from data over a range of small separations near the origin 0 < 7 < 77;;. While this
value is intended to be small, to attempt to capture the parabolic regime (if present), the specific

value 77; has no physical significance - it is just a maximum lag to be used in a fitting

procedure. This choice of a range of data provides an estimate of Trg; let us call it T4 (Trit)-

At this point we have obtained an approximate fit, or representation, of the data in this

range of 7, given by

TZ

R)=1—-—"
2[es (vra)|’

(6.6)
This fit is inexact even if the measurements are perfect, because we expect that the Taylor scale
Is Trg = lime, 188 (Te). It is not practical to compute this limit because the data has finite
time resolution At, and because there may be limited data available at the shortest time lags. In
another section below we will systematically examine the influence of At, the data sampling

time.

What can be done however is to compute 75§ (Tri¢) for a range of 77, and to examine

the trend of the corresponding values of 745 as the maximum lag used in the fit becomes

smaller. Figure 6.3 illustrates sequences of such fits 755 (Tfit) versus 7. Each of these curves

approaches the exact value of Taylor scale in the limit of zero 77, as expected. This is for an

idealized model times series that can be evaluated at any time separation we wish. Consequently,
est

when a range of 775 is available, but only for a set of values of 7;; that excludes the origin, one

can try to recover a more precise value of g by an extrapolation technique that provides a

refined estimate of the radius of curvature at the origin.
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Figure 6.1 The structure function computed from the time series data for a number of values of
q. The bottom curve is associated with a g value of —5 and the higher curves are determined

with g = —4, -3, -2, and —1, respectively.
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Figure 6.2 The correlation function near the origin. The top curve is determined from g = —5
and the next curves are calculated using g = —4, —3, —2, and —1, respectively.

6.2 Extrapolation Method

To obtain a stable value for the Taylor microscale at T = 0, we apply an extrapolation
method based on the Richardson extrapolation technique (see Dahlquist and Bjorck, 2003) in
analogy with similar procedures employed in numerical analysis. In the first step we compute a

series of parabolic fits to data near the origin, and for varying values of 77;, up to a largest
values of Ty;;, say, Tpqy. Using the available estimated values of Taylor microscale T3 (Tmax)
for this range of 7,44, We can compute a straight-line extrapolation of the Taylor scale back to
the origin (7;; = 0). This extrapolation gives a single estimate of a refined value of the Taylor

microscale.

Still, it remains unclear which value of t,,,, we should use. On the one hand; a larger

Tmax permits the use of more data in the fit process, but a smaller t,,,, moves us closer to the
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asymptotic range in which the formula equation (6.6) for approximating the radius of curvature

at the origin becomes more exact.

Therefore we will look for a stable range of values, as follows. Figure 6.4 illustrates the
variation of the extrapolated values of Taylor microscale as the value of 7,,,, is varied. In the
next step of the method we examine whether for some range of 7,,,, we find a stable value of
estimated 755. When working with real data with time cadence At, this process is constrained
by the temporal resolution, i.e., Tf;; > At. The distribution of number of available estimates at
each lag t can also become an issue. In addition, the quality of the refinement of the Taylor

microscale value will depend on the steepness of the spectrum (i.e., q) at the high frequencies.

In the next section we will discuss more details regarding the effects of data resolution
and q. For now, (see Figure 6.4) we can make some general statements regarding quality of
estimation when a range of estimates is available for time lags near the dissipation (spectral
steepening) scale. For large values of q, where the correlation function has a large radius of
curvature at the origin (compared to 74), we find a value of the Taylor microscale as Ty
approaches zero. In contrast, for small values of |q|, we do not obtain a stable value of 7¢ after

the extrapolation.

One can also see by examining Figure 6.4 how lower time resolution data can have an
adverse effect. Larger At means that the data close to the origin become unavailable for the
extrapolation near 7;;;=0. The best we might be able to do in such cases is to choose a stable
value in the range of 7,,,,~74. By trying this out with the graphs, we see that this approach
yields an underestimate of the Taylor microscale value when q is approximately greater than 4
and an overestimate when |q| is approximately less than 4. Our results suggest that a good
estimate of Tr is obtained by a linear extrapolation to zero lag using the slope of the curves T]fftt
evaluated near 7,,,, = T4 (see Figure 6.3). In the next subsection we will discuss how we can

further improve this estimate with a correction ratio that takes into account known information

about the spectra at higher frequencies.
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6.3 Correction Ratio

The resolution of the observational data is limited by the instrumentation, the spacecraft
data downlink and on board storage. The lower resolution of the data, the less accurate Taylor
microscale value will be since it is harder to make measurments that are sensitive to the radius of
curvature of the correlation function at the origin. In this section, we examine the effect of the
temporal resolution of the data by artificially reducing the resolution of the synthetic time series,
and again estimating the Taylor microscale with the same method. The new values for each

resolution of the data can be compared with the expected Taylor microscale value to assess the

impact of the temporal resolution. In particular, the ratio of these two, (T?’;peCt/rTS ) is of

interest. We call this ratio a “correction factor” as it can be employed to estimate the actual
Taylor scale given the value computed from finite time resolution data. However this correction
must assume knowledge of the spectrum at unresolved frequencies. Here that amounts to

knowledge of the value of g.

Figure 6.5 demonstrate the variation of the correction factor when we vary the temporal
resolution At and the spectral index q. We can see that the correction ratio strongly depends on
q. There are three regimes of behavior apparent in the Figure, which we approximate as a
piecewise linear function. The model suggested for correction of Taylor scale estimates from

finite time resolution data. Accordingly, the empirical correction factor r(|q|) can be written as

1
( —0.64 (m) + 0.72, when |q| < 2
1
rqh = { —2.61 (m) +1.70, when2 < |q| <45 (6.7)
1
\ —0.16 (|q—|> + 1.16, when |g| = 4.5.

With this model for a given data set and a known value of q it is possible to compute a corrected

value of the Taylor microscale using

trs = r(lq) T (6.8)

where 7857 is an estimate obtained by the extrapolation method described in Section 6.2 above.
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Clearly this procedure presupposes availability of data such that the estimates of Taylor
scale are based on near asymptotic tendencies of the functions that are computed. From a
practical perspective this appears to require that information about the functions near the
dissipation scale 74 be included in the analysis. Based on the present numerical experiments, we

recommend therefore that the resolution of the data be at least as good as At < 0.47,.
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Figure 6.5 Correction ratio versus 1/|q| for number of different At values.

6.4 Applying the Technique to Spacecraft Data

From an analysis of the magnetic field data from the ACE spacecraft (Smith et al. 2006a), the
Taylor microscales in the left column of Figure 6.6 are determined by employing the
extrapolation method described above, but without applying the correction ratio. The time
resolution of the ACE data used here is 6t = 0.333 s. The black color shows the data from
regions characterized as open magnetic field line regions, and the red color shows the data from
magnetic clouds (closed field regions). The Taylor scales have already been converted to spatial

scales by using frozen-in approximation.

53



The values obtained for dissipation range spectral index lie between —5 to —1 and the

ratio of Taylor scale (A7) to the dissipation scale (1,) ranges between 0.1 and 10.

The individual plots show that the red and black points appear to be equally scattered. The right
column of Figure 6.6 shows the values of A7, after the application of the correction ratio. After
the corrections, we can see that the majority of the black points have A7 > A, for ¢ < —3 and
the red points have A7 < A4 for ¢ > —3. This indicates a hydrodynamics type of plasma for open
magnetic field case and non-hydrodynamics in the magnetic cloud cases. Further discussion of
this analysis is found in Matthaeus et al. (2008), where it is argued that the difference in the
behavior of these cases points to a difference in relative importance of dissipative processes at

1on and electron scales.
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Figure 6.6 The left column shows the plots before applying the correlation ratio to the Taylor
mocroscale Ay and the right column shows the Taylor microscale (A7) after applying correlation

ratio.
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6.5 Conclusions

We have demonstrated a refined technique of calculating the Taylor microscale from a
discrete times series by computing correlation functions from structure functions. The method
that we employed is based on the definition of the Taylor microscale. To verify this technique we
analyze a synthetic time series derived from a defined power density spectrum. We are able to
reproduce the Taylor scale values with our technique after applying a correction term, which
improves our estimate of the Taylor microscale, estimated from a Richardson extrapolation
technique (see Weygand et al. 2009). In addition, we studied the effects of the dissipation range
spectral index and the time resolution of the simulated data. Moreover, we show an example of
the application of the technique to solar wind magnetic field data (Matthaeus et al. 2005, 2008).
This technique is expected to be useful for extracting refined estimates of the Taylor microscale
from experimental and observational turbulence data in solar wind and other astrophysical

contexts.
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Abstract we discuss and develop methods to estimate and refine measurements of the Taylor
microscale from discrete data sets. To study how well a method works, we construct a time series of discrete
data with a known power spectrum and Taylor scale, but with various truncations of the resolution that
eliminate higher frequencies in a controlled fashion. We compute the second-order structure function and
correlation function, assuming that the unresolved dissipation range spectrum has various values of spectral
index. A series of Taylor scale estimates are obtained from parabolic fits to subsets of the correlation function
data, and these are extrapolated to the limit of zero separation. The error in this procedure, for finite time
resolution sampling, depends on the spectral index in the dissipation range. When the spectral form is
known, we can compute a correction factor that improves the estimate of the Taylor microscale value
determined from the extrapolation method and band-limited data. Application of this technique to
spacecraft observations of solar wind fluctuations is illustrated.

1. Introduction

The motivation of this study comes from recent efforts to measure the Taylor microscale in solar wind turbu-
lence calculated using multispacecraft techniques [Matthaeus et al., 2005; Weygand et al., 2007, 2009, 2010,
2011; Gurgiolo et al., 2013]. The Taylor scale is related to the second derivatives of the data [Batchelor, 1970]
(also see below); therefore, it is inherently sensitive to the high-frequency spectral content of the signal. Of
course, for idealized time-continuous infinite precision data, the Taylor scale may be computed. Likewise,
when very high cadence measurements are available [e.g., Alexandrova et al., 2009; Sahraoui et al., 2009],
and the spectrum is steep enough (see below), it may be possible to unambiguously determine the Taylor
scale. However, for available data sets with finite time cadence, the values of the Taylor scale obtained by a
straightforward evaluation may be sensitive to the data resolution, as the correct value may depend on the
physical signal above the sampling Nyquist frequency.

The objective of this study is to understand the accuracy of the Taylor scale estimates using finite resolu-
tion data sets, in which the high-frequency spectra may or may not be well known. We develop a method to
improve these estimates based on the spectrum of the unresolved data, which can be used when estimates
of the high-frequency spectrum of the signal are available in some way, whether it be observations, the-
ory, or an informed guess. Although the main purpose here is to discuss measurement issues, the physical
significance of the Taylor scale will be reviewed briefly in section 2.

In a system such as the solar wind, the Taylor microscale can be estimated from single spacecraft analyses.
Within the context of the Taylor [1938] frozen-in flow approximation, time t separation is converted to spa-
tial x separation using the relation x = V,,, X t.In the latter case, instead of working in the spatial domain,
the curvature of the two time correlation near the origin can be estimated. Frozen-in flow is a standard
approximation in solar wind observational analysis and in wind tunnels. Dasso et al. [2008] demonstrates the
validity of this approximation in the solar wind by comparing values determined from single spacecraft and
multispacecraft analysis. With this background in mind, one can define the Taylor microscale (4;) by

CHUYCHAI ET AL.

©2014. American Geophysical Union. All Rights Reserved. 1


http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9402
http://dx.doi.org/10.1002/2013JA019641

@AG U Journal of Geophysical Research: Space Physics 10.1002/2013JA019641

where F is the function of interest such as the velocity or magnetic field fluctuations. For generality and
simplicity, here we will discuss methods for arriving at improved estimates of the Taylor scale under the
assumption that the problem of interest is in the time domain or that frozen-in flow is valid. Therefore, the
discussion will center on the procedure to extract ;5 from a time series F(t). We will employ a model spec-
trum in which the inertial range terminates by steepening at a “dissipation scale” (Kolmogorov scale) or its
equivalent in the time domain z,, which is the equivalent sweeping time of the dissipation length scale past
the detector. Thus, in the present paper the term dissipation scale implies only the scale at which the power
law cascade range terminates, generally leading to a steeper spectrum. This familiar terminology is used in a
purely kinematic sense, without regard for whether this steepening is due to dissipation, dispersion, or some
other effect.

Focusing on the time domain, the Taylor microscale can be also viewed as the radius of curvature at the
origin of the autocorrelation function

R(z) = (F(OF(t + 7). )

From a small = expansion, and using R(t) = R(—r), a requirement of time stationarity, the autocorrelation
function near the origin, can be determined by

T2
R(r)z1—?+.... 3)
TS
Therefore, one way to obtain the Taylor microscale from measurements is to fit R(z) at the origin. How-
ever, sometimes the observation data do not have sufficient time resolution near the origin to perform an
adequate parabolic fit. This is due to the fact that for many reasonable spectra, the quadratic behavior sug-
gested in equation (3) is not apparent until the correlation function is sampled at scales 7 < 7. We will study
the expected effects on Taylor scale determination using a designed function F(t) that is intentionally under-
sampled but which is extracted from a signal that has better time resolution and a known spectral index in
the dissipation range. This is a useful approach to develop a procedure that reliably determines the Taylor
microscale. To develop this technique we construct the time data series based on a specified spectrum. With
varying resolution synthetic data, we obtain empirical values of the Taylor microscale and compare with the
known “exact” values. We find that it is possible to define a multiplicative correction factor that allows us
in some circumstances to adjust and improve the measured Taylor scale based on assumptions about the
spectrum of the unresolved high-cadence data.

Before turning to the main content of the paper, we digress briefly concerning the physical significance of
the Taylor scale, both in hydrodynamics [Batchelor, 1970] and in the case of collisionless plasma such as the
solar wind. In isotropic hydrodynamic turbulence, the Taylor scale may be defined as the radius of curvature
at the origin of the two-point velocity (v) correlation R(r) = (v(0) - v(r)); that is, /ﬁ = R(0)/R"(0) or equally
well as the length associated with the mean square curl of the velocity (the vorticity), /1% = <|V<|‘>I<‘2v>\2>. For vis-
cous (v) dissipation in an incompressible medium, the Taylor scale is also related to dissipation, in that (for
suitable boundary conditions), %Vf) = —vﬂ;2(|v|2). In this sense the Taylor scale is the “equivalent dissipa-
tion scale,” in that, any instant of time, the dissipation rate is the same as if all the energy were at the Taylor
scale. In older turbulence texts [Hinze, 1975] the Taylor scale is sometimes designated simply as “the dissi-
pation scale!” However, in more current terminology the latter is usually reserved for the Kolmogorov scale 5
which signifies the scale (or wave number 1/#) at which the power law inertial range terminates and beyond
which lies the dissipation range. For high Reynolds number R and correlation scale L, in hydrodynamics, the
Taylor scale is A; = L/\/R, while n = L/R3/4. Therefore, Ar/n = R'/4, and the two become well separated at
very large R. For plasmas the dynamical status of both the Taylor scale and the Kolmogorov scale becomes
ambiguous [see, e.g., Matthaeus et al., 2008]. The mechanism of dissipation is not well understood for colli-
sionless plasma and may vary in different parameter regimes. Thus, A; cannot be interpreted as connected
with the length scale or rate of energy dissipation. Likewise, the termination of the inertial range may not
be associated with dissipation, as the onset of kinetic dispersive waves may also be influential. Nevertheless,
it is convenient to maintain the kinematic definitions of Taylor scale and “dissipation scale,” related respec-
tively to the second derivative of the correlation function at the origin and the termination of the inertial
range. In the remainder of the paper we adopt the kinematic meaning of A; and the dissipation scale, as well
as their time domain counterparts, to be defined below.
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2. Generating Discrete Data With a Known Taylor Scale

To develop our method, we use synthetic data generated using a known spectrum and then employ a typi-
cal methodology to evaluate the Taylor microscale. The spectrum is constructed with inertial and dissipation
ranges that have been independently controlled and have generally different power law indices. To be spe-
cific, we let the inertial range have a spectral index of —5/3, while the dissipation range has an adjustable
spectral index g. The particular functional form of the spectrum is

C

W’ where fmin <f < fd
_ £\9
P(f) = m(7> , Wheref, <f <f, 4)
0, where f, < f < f .

where g < 0. The reasons for these choices are as follows: First, the flat spectral region at very low frequen-
cies fr, << 1is designed to make the signal time stationary. This is unrealistic for the solar wind, which
has very low frequency components due to, e.g., solar rotation and solar cycle [see, e.g., Matthaeus and
Goldstein, 1982]. However, we are not concerned with very low frequency effects here. Second, the inertial
range with Kolmogorov spectral index of ~ 5/3 is found for higher frequencies, at fz, > 1. Third, thereis a
discontinuous jump at the top of the inertial range at frequency f, the slope steepening from —5/3 to —|q|,
in qualitative accord with observations [Leamon et al., 1998; Hamilton et al., 2008; Alexandrova et al., 2009;
Sahraoui et al., 2009]. Finally, at high frequencies f > f, we set the spectrum to zero, for numerical rather
than physical reasons, to provide a very smooth trigonometric interpolation of the signal at the grid scale.

Adopting illustrative values that are representative of the solar wind at 1 AU, we assume that the spectrum
starts from f,,;,, = 1.22 x 107> Hzand is flat until f; = 1/7, = 3.906 x 10~* Hz, a “bendover” frequency
often associated with the correlation scale or coherence time. Thereafter, the spectrum has an inertial range
with a 5/3 power law index, until a second breakpoint is encountered at f; = 1/7, = 0.4 Hz. For histori-
cal reasons, this breakpoint, which terminates the power law MHD-scale inertial range, is often referred to
as the dissipation scale [Leamon et al., 1998], although it is also possible that it characterizes dispersion in
addition to dissipation [Gary and Borovsky, 2004]. In the hydrodynamic case the eddy turnover time and
viscous dissipation time scales become equal at the dissipation scale. However, for the solar wind or other
low-collisionality astrophysical plasmas, it is unclear whether the fluctuations become critically damped at
the breakpoint/dissipation scale. For example, the inertial range is typically found to terminate near the pro-
ton gyroscales, and while some dissipation may occur at such scales, further kinetic plasma dynamics may
transfer energy to higher frequencies until much smaller electron scales are encountered [Alexandrova et
al., 2009; Sahraoui et al., 2009]. It has been argued that a substantial fraction of actual dissipation may occur
due to electrons. In any case the scale f, corresponds to the onset of kinetic processes and the end of the
Kolmogorov-like inertial range. It is, however, the kinematic properties of the spectrum that come into play
in the current study, rather than the dynamical origin of the spectral forms.

In our model beyond the breakpoint f,, we extend the dissipation range with power law index g until f, =
16.0 Hz. This may be considered in the solar wind application to be associated with the electron dissipation
scale. The spectrum cuts off completely at f,,, = 25.6 Hz. To decide upon these numerical values, here
we assume that the dissipation scale and electron dissipation scale correspond to the proton and electron
inertial scales, respectively. Thus, we set f, /f; = 40 to be consistent with the ratio of electron and proton

inertial scales in MHD, which is about 4/m,, /m, = 42.9 [see, e.g., Sahraoui et al., 2009].
Once we have specified the spectrum, we generate realizations of the signal in the frequency domain,
F(f), as
F(f) = VP(f) exp [ig] (5)

where ¢ is a random phase. Then a fast Fourier transform is used to convert the function F(f) into the
real-time domain. In the simulations reported here, we employ this approach to obtain 222 data points for
the time series.
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Table 1. Showing Index g Which We We next compute the Taylor microscale from the data set we
Vary for Each Case and Their Taylor generated by employing the definition equation (1). In Table 1,
Scales When We Fix the Dissipation we give the Taylor microscale values for a range of dissipation
Scale (74) = 255 scale indices g corresponding to the generic power spectrum
=5 Tﬁ;pect Is] T;;pect 2] shown in Figure 1. (Note that the spectra are given here as Fourier
- 6.569 263 amplitudes squared, which can easily be converted to power spec-
q=-5 5.097 2.04 tral density.) We will treat these expected values of the Taylor
qg=—4 4368 1.75 microscale as the true or exact Taylor microscale values for the
qg=-3 2.869 1.15 synthetic time series data. To examine and test our extrapolation
a=-7/3 1.607 0.64 method, we use only one eighth of the original data. The purpose
g=-2 1.095 0.44 . . . . . .
g=-1 0.095 0.028 of defining this subset is that any consistent method will provide
g _ good (and even convergent) values of z;s when the time resolution
At of the estimates is very fine, i.e,, the spectral cutoff is resolved
and Atf ., < 1/2. However, our motivation is to obtain reasonably accurate values of 7 when the effective

resolution of the data sampling is adjusted so that we are not in this asymptotic regime—a circumstance
that is more likely to be realized in practice when analyzing spacecraft data.

With the subset of our discrete time series, we compute the second-order structure function. This can be
used to obtain an estimate of the correlation function. We then determine the radius of curvature from cor-
relation function and an estimate of the Taylor microscale. In the following section, we will demonstrate an
extrapolation technique [Weygand et al., 2007, 2009, 2010, 2011] to estimate Taylor microscale from a series
of parabolic fits of the correlation function near the origin. The details of the method we use are given in the
following subsections.

2.1. Correlation Function and Structure Function
In estimating the correlation function from many samples of data, it is useful to employ the normalized
correlation function

R

R= ———-.
([F®12)

(6)

This reduces errors associated with variability of the variance, i.e., the fluctuation energy. Almost the same
information is contained in the second-order structure function S,, given by

S,(7) = ([F(t + 7) — F(O]?). @)
In fact,
N S,(7)
R(z) =1 (8)
=1 ko
Figure 2 shows the structure func-
o f‘ . PV tions for various dissipation range
107 s . e . 7 indices g that we generated as
Ll ; ; (-5 ; X | described in section 2. Note that
10 i | | | D | values of dissipation range spectral
10-6 | | b s/l B indexin therange -5/3 < g < —1 are
5 i ‘ ‘ | ‘14-0 | pathological in that the implied “dis-
8 0% | | | -|  sipation range” has either the same
; r ! ! resct o or shallower spectral power law than
K 10777 | | la--2 1 thatfound in the inertial range. These
L ! . La=-7/3 . .
12 | | B : values are included only for illustra-
I | | 9= —
10 | ! ! ! | tion. As g is varied, several regimes
ol 1 1 1 a--+ |  areseen:
ol ! L ‘ ¢ } - e :‘75 7 1.Fort > t, which is associated with
10 107 1072 10° 102 the inertial range (f=>/3) in Fourier
Frequency [sec™'] space, one expects to find S, « 72/3,
Figure 1. The power spectrum for a number of values of g in the 2.Forz < 7zand withg = —5and —4,
dissipation range. one finds (see Figure 2) that S, « 72.
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10.00000 ¢ . This is the regime, in accordance with

equation (8), in which parabolic

1.00000 E curvature of the correlation function is
seen near 7 = 0.

0.10000 E 3.Fort <« 14 but g values of —3 or
shallower, the required parabolic

% 001000 3 behavior is not seen near 7, but rather

F ] this asymptotic behavior is deferred

0.00100 ¢ E until = < 1/f,. This is due to the
fact that the spectrum for this range

0.00010 E of g is not steep enough to cause
convergence of the Taylor scale

I e g CStimate. This convergenceis now

7 [sec] delayed until scales are sampled
that are finer than the electron

Figure 2. The structure function computed from the time series data L
dissipation scale.

for a number of values of g. The bottom curve is associated with a g
value of -5, and the higher curves are determined with g = -4, -3, =2, Tpjs change in behavior of Taylor scale

and —1, respectively. estimates as the dissipation range spec-

tral index is varied and is actually very
relevant to solar wind observations. For scales smaller than ion inertial length, the solar wind spectral slope
is found to be quite variable. For example, Smith et al. [2006b] estimate that dissipation range magnetic
spectral indices are broadly distributed with average values |q] = 2.61 + 0.96 for intervals lacking magnetic
clouds, and |g| = 2.01 + 0.84 for cloud intervals.

A lesson can be learned from the above simple exercise: the asymptotic form of the correlation function
embodied in equations (3) and (8) is not obtained until the sampled spectrum is k=* or steeper. Between
spectral indices —4 and —3, the transition to the asymptotic parabolic form migrates toward finer scales,
until at k3, the transition is delayed until separations within the assumed inner cutoff scale are sampled.

From equation (8), we can compute the correlation function from the structure function. Figure 3 displays
the correlation function for various g. From these plots, we can see that the correlation function has a
parabolic shape at the origin. At this fixed resolution, the characteristic parabolic shape becomes better
defined as the values of |g| are increased.

Suppose now we select a known g and we compute the radius of curvature of the correlation func-

tion from data over a range of small separations near the origin 0 < 7 < 7. While this value is
intended to be small, to attempt to capture the parabolic regime (if present), the specific value 5, has

no physical significance—it is just a
maximum lag to be used in a fitting pro-
cedure. This choice of a range of data
provides an estimate of 7; let us call it
7' (75,)- At this point we have obtained
an approximate fit, or representation, of

the data in this range of 7, given by

1.00

0.99 T4=2.5 sec

7

est 2"
2 [TTS (Tﬁt)]
This fit is inexact even if the mea-
surements are perfect, because we
expect that the Taylor scale is 75 =
lim_ o 75 (7). It is not practical to
compute this limit because the data has

Roy=1-

R(7)

0.98

0.97

0 KR 2 E finite time resolution At and because
7 [sec] there may be limited data available at
Figure 3. The correlation function near the origin. The top curve is the shortest time lags. In another section
determined from g = —5 and the next curves are calculated using below we will systematically examine the
q=-4,-3,-2,and —1, respectively. influence of At, the data sampling time.

CHUYCHAI ET AL.

©2014. American Geophysical Union. All Rights Reserved. 5



@AG U Journal of Geophysical Research: Space Physics 10.1002/2013JA019641

5 :
a)gqg=-5
4, |
L F
B D FT oo 1 %o
[ =
/‘, |

(7]
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Tr1s
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T1s
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T it [Td] Tit [Td]

Figure 4. Taylor microscale from parabolic fit of the correlation function near the origin for each 75, for a number values
of g. Axes are in units of 7. Dashed line indicates the exact Taylor microscale.

What can be done, however, is to compute 75 (z4,) for a range of 7z, and to examine the trend of the corre-

sponding values of rTegt as the maximum lag used in the fit becomes smaller. Figure 4 illustrates sequences
of such fits 7' (zq,) versus 7g,. Each of these curves approaches the exact value of Taylor scale in the limit of
zero 7, as expected. This is for an idealized model times series that can be evaluated at any time separa-
tion we wish. Consequently, when a range of rTegt is available, but only for a set of values of 75, that excludes
the origin, one can try to recover a more precise value of 7 by an extrapolation technique that provides a

refined estimate of the radius of curvature at the origin.

2.2. Extrapolation Method

To obtain a stable value for the Taylor microscale at = = 0, we apply a method based on the Richardson
extrapolation technique [see Dahlquist and Bjorck, 2003] in analogy with similar procedures employed
in numerical analysis. In the first step we compute a series of parabolic fits to data near the origin, and
for varying values of 74, up to a largest values of 4, say, 7,,,... Using the available estimated values of
Taylor microscale 772! (7y,,) for this range of z,,,, we can compute a straight line extrapolation of the

Taylor scale back to the origin (75, = 0). This extrapolation gives a single estimate of a refined value of the
Taylor microscale.

Still, it remains unclear which value of z,,,,, we should use. On the one hand, a larger z,,,, permits the use of
more data in the fit process, but a smaller z,,, moves us closer to the asymptotic range in which the formula
equation (9) for approximating the radius of curvature at the origin becomes more exact. Therefore, we will

look for a stable range of values, as follows.

Figure 5 illustrates the variation of the extrapolated values of Taylor microscale as the value of ,,,, is varied.
In the next step of the method we examine whether for some range of ., we find a stable value of esti-
mated r?ét. When working with real data with time cadence At, this process is constrained by the temporal
resolution, i.e., 7g; > At. The distribution of number of available estimates at each lag 7 can also become an
issue. In addition, the quality of the refinement of the Taylor microscale value will depend on the steepness

of the spectrum (i.e., g) at the high frequencies.
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Figure 5. Values of 715 determined by linear extrapolation from the data in Figure 4 at the origin (i.e., the intercept).
Plotted are the extrapolated Taylor microscale values determined from a range of 7,,54.

In the next section we will discuss more details regarding the effects of data resolution and g. For now, (see
Figure 5) we can make some general statements regarding quality of estimation when a range of estimates
is available for time lags near the dissipation (spectral steepening) scale. For large values of |g|, where the
correlation function has a large radius of curvature at the origin (compared to z,), we find a stable value of
the Taylor microscale as z,,,, approaches zero. In contrast, for small values of |g|, we do not obtain a stable
value of 75 after the extrapolation.

One can also see by examining Figure 5 how lower time resolution data can have an adverse effect. Larger
At means that the data close to the origin become unavailable for the extrapolation near 75, = 0. The best
we might be able to do in such cases is to choose a stable value in the range of z,,,, to 74. By trying this out
with the graphs, we see that this approach yields an underestimate of the Taylor microscale value when

|g| is approximately greater than 4 and an overestimate when |q| is approximately less than 4. Our results
suggest that a good estimate of 7 is obtained by a linear extrapolation to zero lag using the slope of the
curves °%(z,) evaluated near z,,,, = 74 (see Figure 4). In the next subsection we will discuss how we can
further improve this estimate with a correction ratio that takes into account known information about the
spectra at higher frequencies.

2.3. Correction Ratio

The resolution of the observational data is limited by the instrumentation, the spacecraft data downlink,
and spacecraft data storage. The lower resolution of the data is the less accurate the Taylor microscale value
will be, since the measurements become less sensitive to the radius of curvature of the correlation func-
tion at the origin. In this section, we examine the effect of the temporal resolution of the data by artificially
reducing the resolution of the synthetic time series and again estimating the Taylor microscale with the
same method. The new values for each resolution of the data can be compared with the expected Taylor
microscale value to assess the impact of the temporal resolution. In particular, the ratio 75 = /78t is of inter-
est. We call this ratio a “correction factor” as it can be employed to estimate the actual Taylor scale given the
value computed from finite time resolution data. However, this correction must assume knowledge of the
spectrum at unresolved frequencies. Here that amounts to knowledge of the value of g.
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1.4 : : Figure 6 demonstrates the variation
. L o aMBRolTa of the correction factor when we vary
B 120 s ’ it - ;i: i ™ 71 thetemporal resolution At and the
£ * ~ 24% of 1, 4
g\ 1ok o mmmnorn ] spectral index |q|. We can see that the
Sv [ h correction ratio strongly depends on
3 [ . ] ;
— 0.8F LN - |gl. There are three regimes of behav-
o r EAN 1 . . .
= r D ] ior apparent in the figure, which we
° 0Bl 4 | . . T
-t §£ ] approximate as a piecewise linear
2 0.4k ° é 1 function. The model suggests a cor-
§ T ¢ Tl ] rection for the Taylor scale estimates
é 0.2 BT - obtained from finite time resolu-
[ T ] tion data. Accordingly, the empirical
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0.0 0.9 0.4 0.6 0.8 10 correctlon factor r(]g|) can be
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Figure 6. Correction ratio versus 1/q for number of different At values.

—0.64 (j) +0.72, when |q| < 2

rql) =4 —2.61 (%) +1.70, when 2 < |q| < 4.5 (10)

~0.16 (%«n) +1.16, when |q] > 4.5.

With this model for a given data set and a known value of g, it is possible to compute a corrected value of
the Taylor microscale using

T1g & r(|CI|)TTe;"a (1)
where rTe;‘“a is an estimate obtained by the extrapolation method described in section 2.2 above. This proce-
dure presupposes that sufficient data are available to approximately determine the asymptotic tendencies
of the correlations. From a practical perspective this appears to require that information about the functions
near the dissipation scale 7, be included in the analysis. Based on the present numerical experiments, we
recommend therefore that the resolution of the data be at least as good as At < 0.4z,.

3. Applying the Technique to Spacecraft Data

From an analysis of the magnetic field data from the ACE spacecraft [Smith et al., 2006a], the Taylor
microscales in the left column of Figure 7 are determined by employing the extrapolation method described
above but without applying the correction ratio. We use the same data set of ACE observations as was
employed by Smith et al. [2006a, 2006b] and Hamilton et al. [2008]. The time resolution of the ACE data used
here is 5t = 0.333 s or three vectors per second. The analysis of the ACE proceeds in the following way: The
second-order structure function matrix is computed for each interval in the set of intervals studied. The
Taylor scale is then estimated using a series of maximum lag approximations from a maximum lag of four
data points to a maximum lag of 25. A line is fit to these estimated values of the Taylor scale as a function
of maximum lag, and the lag = 0 intercept is computed. This gives the final estimated values shown in

the figure. The dissipation scale is computed from the power spectrum as the intercept between two fit
lines, one describing the ion inertial range frequencies and the other describing the ion dissipation range
frequencies. The dissipation range spectral index g is determined from the short wavelength fit.

The black color shows the data from regions characterized as open magnetic field line regions, and the
red color shows the data from magnetic clouds (closed field regions). The Taylor scales have already been
converted to spatial scales by using the frozen-in approximation.

The values obtained for dissipation range spectral index lie between —5 and —1, and the ratio of Taylor scale
(A7) to the dissipation scale (4,) ranges between 0.1 and 10. The individual plots show that the red and black
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Figure 7. The left column shows the plots before applying the correction ratio to the Taylor microscale Ay, and the right
column shows the Taylor microscale (A’T) after applying correction ratio.

points appear to be equally scattered. The right column of Figure 7 shows the values of A, after the appli-
cation of the correction ratio. After the corrections, we can see that the majority of the black points have

A3 > 44forg < -3, and the red points have 4, < A, forq > —3.This indicates a hydrodynamics type of
plasma for open magnetic field case and nonhydrodynamics in the magnetic cloud cases. Further discussion
of this analysis is found in Matthaeus et al. [2008], where it is argued that the difference in the behavior of
these cases points to a difference in relative importance of dissipative processes at ion and electron scales.

4. Conclusions

We have demonstrated a refined technique of calculating the Taylor microscale from a discrete times series
by computing correlation functions from structure functions. The method that we employed is based on the
definition of the Taylor microscale. To verify this technique we analyze a synthetic time series derived from a
defined power density spectrum. We are able to reproduce the Taylor scale values with our technique after
applying a correction term, which improves our estimate of the Taylor microscale, estimated from a Richard-
son extrapolation technique [see Weygand et al., 2009]. In addition, we studied the effects of the dissipation
range spectral index and the time resolution of the simulated data. Moreover, we show an example of the
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application of the technique to solar wind magnetic field data [Matthaeus et al., 2005, 2008]. This technique
is expected to be useful for extracting refined estimates of the Taylor microscale from experimental and
observational turbulence data in solar wind and other astrophysical contexts.

References

Alexandrova, O,, J. Saur, C. Lacombe, A. Mangeney, J. Mitchell, S. J. Schwartz, and P. Robert (2009), Universality of solar-wind turbulent
spectrum from MHD to electron scales, Phys. Rev. Lett., 103, 165,003.

Batchelor, G. K. (1970), Theory of Homogeneous Turbulence, Cambridge Univ. Press, Cambridge, U. K.

Dahlquist, G., and A. Bjorck (2003), Numerical Methods, Courier Dover Publications, Mineola, New York, Prentice-Hall 1974.

Dasso, S., W. H. Matthaeus, J. M. Weygand, P. Chuychai, L. J. Milano, C. W. Smith, and M. G. Kivelson (2008), ACE/Wind multispacecraft
analysis of the magnetic correlation in the solar wind, in Proceedings of the 30th International Cosmic Ray Conference. July 3-11, 2007,
Meérida, Yucatdn, Mexico, vol. 1, edited by R. Caballero et al., pp. 625-628, Universidad Nacional Auténoma de México, Mexico City,
Mexico.

Gary, S. P, and J. E. Borovsky (2004), Alfvén-cyclotron fluctuations: Linear Vlasov theory, J. Geophys. Res., 109, 6105,
doi:10.1029/2004JA010399.

Gurgiolo, C,, M. L. Goldstein, W. H. Matthaeus, A. Vinas, and A. N. Fazakerley (2013), Characteristics of the Taylor microscale in the solar
wind/foreshock: Magnetic field and electron velocity measurements, Ann. Geophys., 31, 2063, doi:10.5194/angeo-31-2063-2013.

Hamilton, K., C. W. Smith, B. J. Vasquez, and R. J. Leamon (2008), Anisotropies and helicities in the solar wind inertial and dissipation
ranges at 1 AU, J. Geophys. Res., 113, A01106, doi:10.1029/2007JA012559.

Hinze, J. O. (1975), Turbulence, McGraw-Hill, New York.

Leamon, R. J., W. H. Matthaeus, and C. W. Smith (1998), Contribution of cyclotron-resonant damping to kinetic dissipation of
interplanetary turbulence, Astrophys. J., 507, L181, doi:10.1086/311698.

Matthaeus, W. H., and M. L. Goldstein (1982), Stationarity of magnetohydrodynamic fluctuations in the solar wind, J. Geophys. Res., 87,
10,347-10,354.

Matthaeus, W. H., S. Dasso, J. M. Weygand, L. J. Milano, C. W. Smith, and M. G. Kivelson (2005), Spatial correlation of solar-wind turbulence
from two-point measurements, Phys. Rev. Lett., 95, 231,101, doi:10.1103/PhysRevLett.95.231101.

Matthaeus, W. H., J. M. Weygand, P. Chuychai, S. Dasso, C. W. Smith, and M. Kivelson (2008), Interplanetary magnetic Taylor microscale
and implications for plasma dissipation, Astrophys. J., 678, L141, doi:10.1086/588525.

Sahraoui, F, M. L. Goldstein, P. Robert, and Y. V. Khotyaintsev (2009), Evidence of a cascade and dissipation of solar-wind turbulence at
the electron gyroscale, Phys. Rev. Lett., 102, 231,102, doi:10.1103/PhysRevLett.102.231102.

Smith, C. W.,, K. Hamilton, J. Vasquez, and R. J. Leamon (2006a), Dependence of the dissipation range spectrum of interplanetary
magnetic fluctuations on the rate of energy cascade, Astrophys. J., 645, L85, doi:10.1086/506151.

Smith, C. W,, B. J. Vasquez, and K. Hamilton (2006b), Interplanetary magnetic fluctuation anisotropy in the inertial range, J. Geophys. Res.,
111, A09111, doi:10.1029/2006JA011651.

Taylor, G. 1. (1938), The spectrum of turbulence, Proc. R. Soc. London, Ser. A, 164, 476-490.

Weygand, J. M., W. H. Matthaeus, S. Dasso, M. G. Kivelson, and R. J. Walker (2007), Taylor scale and effective magnetic Reynolds number
determination from plasma sheet and solar wind magnetic field fluctuations, J. Geophys. Res., 112, A10201, doi:10.1029/2007JA012486.

Weygand, J. M., W. H. Matthaeus, S. Dasso, M. G. Kivelson, L. M. Kristler, and C. Mouikis (2009), Anisotropy of the Taylor scale and the
correlation scale in plasma sheet and solar wind magnetic field fluctuations, J. Geophys. Res., 114, A07213, doi:10.1029/2008JA013766.

Weygand, J. M., W. H. Matthaeus, M. El-Alaoui, S. Dasso, and M. G. Kivelson (2010), Anisotropy of the Taylor scale and the correlation
scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity, J. Geophys. Res., 115, A12250,
doi:10.1029/2010JA015499.

Weygand, J. M., W. H. Matthaeus, S. Dasso, and M. G. Kivelson (2011), Correlation and Taylor scale variability in the interplanetary
magnetic field fluctuations as a function of solar wind speed, J. Geophys. Res., 116, A08102, doi:10.1029/2011JA016621.

CHUYCHAI ET AL.

©2014. American Geophysical Union. All Rights Reserved. 10


http://dx.doi.org/10.1029/2004JA010399
http://dx.doi.org/10.5194/angeo-31-2063-2013
http://dx.doi.org/10.1029/2007JA012559
http://dx.doi.org/10.1086/311698
http://dx.doi.org/10.1103/PhysRevLett.95.231101
http://dx.doi.org/10.1086/588525
http://dx.doi.org/10.1103/PhysRevLett.102.231102
http://dx.doi.org/10.1086/506151
http://dx.doi.org/10.1029/2006JA011651
http://dx.doi.org/10.1029/2007JA012486
http://dx.doi.org/10.1029/2008JA013766
http://dx.doi.org/10.1029/2010JA015499
http://dx.doi.org/10.1029/2011JA016621

LBNFIILULUUBNIULIY 2

64



THE ASTROPHYSICAL JOURNAL LETTERS, 747:L34 (5pp), 2012 March 10
© 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/2041-8205/747/2/L.34

RANDOM BALLISTIC INTERPRETATION OF NONLINEAR GUIDING CENTER THEORY

D. Rurrorol 2, T. PIaNPANITY, W. H. MATTHAEUS

3, AND P. CHUYCHATZ

1 Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; scdjr@mahidol.ac.th, th_ee@hotmail.com
2 Thailand Center of Excellencein Physics, CHE, Ministry of Education, Bangkok 10400, Thailand
3 Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA; yswvhm@bartol .udel .edu
4 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; p.chuychai @sci.mfu.ac.th
Received 2012 January 12; accepted 2012 February 8; published 2012 February 22

ABSTRACT

Nonlinear guiding center (NL GC) theory has been used to explain the asymptotic perpendicul ar diffusion coefficient
Kk, of energetic charged particles in a turbulent magnetic field, which can be applied to better understand cosmic
ray transport. Here we re-derive NLGC, replacing the assumption of diffusive decorrelation with random ballistic
decorrelation (RBD), which yields an explicit formulafor «, . We note that scattering processes can cause areversal
of the guiding center motion along thefield line, i.e., “ backtracking,” leading to partial cancellation of contributions
to «,, especialy for low-wavenumber components of the magnetic turbulence. We therefore include a heuristic
backtracking correction (BC) that can be used in combination with RBD. In comparison with computer simulation
results for various cases, NLGC with RBD and BC provides a substantially improved characterization of the
perpendicular diffusion coefficient for a fluctuation amplitude less than or equal to the large-scale magnetic field.

Key words:. diffusion — magnetic fields — turbulence

1. INTRODUCTION

While charged particles subject to a magnetic field in aten-
uous plasma will mainly gyrate along that field, magnetic tur-
bulence can cause particlesto also spread in the directions per-
pendicular to the large-scale field. Such perpendicular transport
involves an interesting interplay between the transport along
field lines, the random walk of magnetic field lines perpendicu-
lar tothelarge-scalefield direction, and true cross-field transport
in which the particle guiding center eventually separates from
itsoriginal field line.

The classic FLRW theory (Jokipii 1966), in which particles
follow magnetic field lines with a fixed pitch angle, directly
related the perpendicular diffusion coefficient «, to the field
line diffusion coefficient D. Meanwhile another viewpoint in
terms of scattering led to a relation between «; and the
parallel diffusion coefficient «; (Axford 1965; Gleeson 1969).
Nonlinear guiding center (NLGC) theory (Matthaeus et al.
2003) successfully accounted for both factors, alowing the
guiding center motion to decorrelate due to both parallel (pitch-
angle) scattering and the random walk of the guiding magnetic
field line, for transverse magnetic fluctuations with a genera
power spectrum. Thistheory has provided a much closer match
to observations (Bieber et al. 2004) and computer simulation
resultsfor «, (seealso Minnie et al. 2007; Ruffolo et al. 2008),
and its framework has attracted theoretical interest and inspired
numerous related theories (e.g., Shalchi et al. 2004, 2006; le
Roux & Webb 2007; Qin 2007; Shalchi 2010).

The original NLGC theory (Matthaeus et al. 2003) used the
Taylor-Green—Kubo (TGK) formula (Taylor 1922; Green 1951;
Kubo 1957)

2 00
o = lim 2 f (5:(0)5, (1)) di (1)
0

t—oo 2t

for the asymptotic particle diffusion coefficient «,, along
a coordinate x perpendicular to the large-scae magnetic
field direction z, based on the guiding center velocity V.

That work used
2
(Ux(Q)vx (1)) =~ %(vz(o)vz(t)HbX(O, 0)b.[x(1). 1), (2
0
for the displacement x(¢) of the particle guiding center trajectory
in alarge-scale magnetic field Bo2. The authors set a® = 1/3, a
factor which effectively accounts for the replacement of v, with
the particle velocity v, in the correlations. Then the Lagrangian
correlation (b, (0, 0)b,[x(¢), t]) was evaluated in terms of the
Eulerian correlation function and power spectrum by using
Corrsin’s independence hypothesis (Corrsin 1959) and setting
the displacement distribution to that for asymptotic diffusion
(Salu & Montgomery 1977), leading to an implicit formulafor
k) in terms of input values of «,, and the power spectrum
of magnetic fluctuations. A related approach was previously
used to derive afield line diffusion coefficient (Matthaeus et al.
1995) that is reasonably close to values from direct computer
simulations (Gray et a. 1996; Ghilea et a. 2011).

In the present work, we consider an alternate interpretation of
NLGC that replaces the diffusive distribution of guiding center
trajectories with arandom ballistic distribution, for the purpose
of calculating the Lagrangian magnetic correlation function
(b (0, 0)b, [X(2), t]). This approach was recently introduced for
calculating the field line diffusion coefficient and led to some
substantial improvements in the match with direct simulation
results (Ghilea et a. 2011). It is analogous to concepts in
random walk theory in which the mean free path is determined
by the extent of ballistic motion between scattering events. In
this context, note that v, decorrelates over the decorrelation
scale of v, or by, whichever is shorter. This implies that the
decorrelation of v, inthe TGK integral (which determines k,,.)
takes place over a distance scale for which the parallel motion
is approximately constant and the field lines are approximately
straight, so the guiding center motion can be treated as ballistic
in random directions determined by the distribution of magnetic
field directions (Figure 1). (As illustrated in the figure, at
longer timesthe guiding center velocity will change, the particle
will reverse its direction along B, and the particle will depart
from its original guiding field line.) We demonstrate that this
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Figure 1. lllustration of the random ballistic interpretation of nonlinear guiding
center (NLGC) theory. The diffusion coefficient «; of energetic charged particle
motion (red line) perpendicular to the large-scale magnetic field is related to
the decorrelation (i.e., change in direction) of a perpendicular component of
the guiding center velocity (GC, blue line), which roughly follows a local
magnetic field line (black line). Over the relevant distance scale, the guiding
center motion can be approximated as ballistic (i.e., with constant velocity)
along random directions distributed like the magnetic field directions. Such
random ballistic decorrelation (RBD) is determined using the framework of
NLGC theory, including the effects of thefield line random walk and the parallel
scattering of particle trajectories.

approach, together with a backtracking correction (BC), leads
to a substantial improvement in the match with direct computer
simulations of the perpendicular diffusion of energetic charged
particles.

2. RANDOM BALLISTIC DECORRELATION

We consider the application of Corrsin’s independence hy-
pothesis (described below) assuming a Gaussian distribution of
displacements, where diffusive decorrelation (DD) or random
ballistic decorrelation (RBD) is used to describe the variance
Jiz along each direction. DD considers that the asymptotic dif-
fusion also governs the displacement distribution at early times
during the decorrelation process, so 02 = 2;;t, while RBD
assumes the decorrelation is determined by ballistic motion of
guiding centers at early times in random directions, at guiding
center velocity ¥, depending on the fluctuating magnetic field,
with o2 = (9°)12.

L et us assume axisymmetry, define the fluctuation amplitude
b so that b = (b% + b3) = 2(b?), and define v, as the particle
velocity along the Iocal magnetic field. As a special case of
Equation (2) for t = 0, we use

a? a?v? b2

72) = (52) ~ L2\ = LV
=~ b = e @
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where we use (v?) = v?/3 for an isotropic distribution of
particle velocities. We also use (%) = v2/3 to obtain

(02) = gz (1— 22—2) @

Note that for b/By > a1 =+/3, Equation (4) gives a non-
sensical negative value for (ﬁf). Thus, we will consider this
RBD approach to belimited to b/ By < +/3. Notethat the NLGC
framework in general isalso limited to magnetic fluctuation am-
plitudes that are not too great, in the sense that NLGC assumes
transverse fluctuations, and if > By one would not expect
the (weak) mean magnetic field to force the fluctuations to be
strongly transverse.

Asintheorigina derivation of NLGC, we use Equations (1)
and (2), with (v.(0)v.(r)) = (v2/3)e~"/* for a pitch-angle scat-
tering time , to obtain

a?v?

o = 382

f b 0. 0B, [x(0). At (5)
0

Wethen make use of Corrsin’sindependence hypothesistorelate
the Lagrangian correlation (b, (0, 0)b,[X(t), t]) to the Eulerian
correlation function Ry and the probability of displacement x
at timet, so that

Koy = 332 / ”/’/ R (X, 1) P(X|t)dxdt.  (6)

Following Matthaeus et a. (2003), we use the Fourier trans-
form of the correlation function R, (X, ¢) asthe power spectrum
Sex(K, 1) = Sy (K)e 7 and assume independent guiding cen-
ter displacement probability distributions along each coordinate
to obtain

= [T e ([ e ranas)
X <f ik yP(ylt)dy) (/00 eik’ZP(z|t)dz) dk dt.

)

For a Gaussian displacement distribution P(x|t), we have
(Ghileaet a. 2011)

/OO ’“P(xmdx—exp( 1k202) (8)

XX
00 2

and analogous formulas for y and z. For RBD we use 62 =
(922, and substituting Equation (8) into Equation (7) yields

a2v2

o = 57 / Sex (K)T (K) dk, 9

where the mean freetime T'(k) is given by

0 t 1
T(k) = — —y(K)t — = 252 | dr. (1
0 foexp[ Lk lekl(v,)r}dr (10)
Performingthet-integrationandusing 1/t = v/A; = v?/(3«.,),

we obtain
(k) = \/?e erfc(oe) (11)
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and
Srx(K) o2
Kxx 332 [/ > e erfc(a)dk (RBD),
V 2 k(o7
(12)
where )
o= v%/(Bkz) + v (k) (13)

V22 kEF)

and the expressions for (?) are given by Equations (3) and (4).

Note that the original DD interpretation of Matthaeus et al.
(2003) used the formula for asymptotic diffusion with «,, in
the displacement distribution, yielding an implicit equation for
Ky IN contrast, the RBD theory uses a predetermined random
ballistic formulafor the displacement distribution and yields an
explicit formula for «,,, as in analogous theories for the field
line diffusion coefficient (Ghilea et al. 2011). For numerical
evaluation, NLGC-type theories based on DD typically require
an iterative solution, whereas NLGC/RBD can be evaluated
without iteration.

3. BACKTRACKING CORRECTION

Previous simulations have shown that the perpendicul ar trans-
port of energetic charged particles is characterized by ballistic
(free-streaming) guiding center motion at short times, followed
by subdiffusion (Qin et al. 2002a) and later, if the fluctuations
have sufficient transverse complexity, by asymptotic diffusion
(Qin et al. 2002b). This subdiffusion is dueto a paralel (pitch-
angle) scattering process that causes a particle to reverse its
motion along the local field line and partialy retrace its steps.
Such “backtracking” leadsto a negative v, -correlation function
over a certain time range, hence the reduction in the running
perpendicular diffusion coefficient. In some cases this leads to
subdiffusion (see Qin et a. 2002b and Section 4 of Ruffolo et al.
2008).

Backtracking was inherent in the original NLGC/DD theory
(Matthaeus et al. 2003). The use of diffusive displacements
means that the displacements for which the correlation function
is sampled can undergo arandom walk, including backtracking.
It was assumed that backtracking did not completely cancel
out the perpendicular guiding center excursions due to other
physical effects. This is not the case for the RBD calculation,
which is based on ballistic guiding center trajectories.

For RBD theory, we note that Equations (9) and (10) assign
a mean free time T'(k) to individual k-components of the
turbulence, which are averaged with weighting according to
the power spectrum, to determine «,... Conceptually thisrelates
to the v,—by independence hypothesis of Matthaeuset al. (2003).
For magnetostatic fluctuations with y = 0, Equation (11) gives
T ~ 7 forlow kand T decreasesfor higher k. Thus, for modes of
low k, themean freetimeisdetermined by the parallel scattering,
whereas for higher kit is determined by the field line random
walk.

This random ballistic calculation of the mean free time does
not account for backtracking. Consider low k, for which the
decorrelation in Equation (10) is dominated by the scattering
term (first term in the exponential) while b is nearly constant.
Then the perpendicular displacement associated with 7' (k) will
be largely canceled out by subsequent backtracking. A similar
effect leads to subdiffusion in simulation results (i.e., running
Ky decreaseswith increasing t) for fluctuationswith insufficient
transverse complexity (Qin et al. 2002a), whereas NLGC yields
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a much larger asymptotic value of «,, (see Run 12 of Ruffolo
et a. 2008).

Therefore, we introduce a heuristic BC for RBD that reduces
the influence of such low-k modes by reducing T'(k) and
therefore their contribution to the overall «,.,.. We multiply T (k)

by e=**, which simplifies Equation (11) to yield
T(K) = f

erfc(a)

k2 ~2>

(14)

and

Sex (K)
o 332 \f/ JX k)
% erfc UZ/(SKZZ) + V(k)
23, k(i)

ThisBC isrelated to the termsthat are linear and quadraticint,
intheexponential of Equation (10). Here, ¢~ servesasasi mple
“switch” thatiscloseto Owhenkissufficiently low that thelinear
term dominates, suggesting a strong effect of backtracking,
while it approaches 1 for higher k. Note aso that for agivenk,
there is atime t when the linear and quadratic terms are equal,
i.e., thefield line random walk becomesimportant. At that time
we have ¢/t ~ o2, and substitution into the parallel velocity
correlation term ¢~/* suggests the use of ¢~ to account for
backtracking effects.

:|dk (RBD/BC). (15)

4. NUMERICAL EVALUATION OF ANALYTIC THEORIES
USING 2D+slab TURBULENCE

Tonumerically evaluate analytic theoriesfor comparison with
computer simulation results, we need to specify the power
spectrum. We employ a two-component 2D+slab model of
transverse magnetic fluctuationsin which the power spectrumis
asum of atwo-dimensional (2D) power spectrum, depending on
ky and ky, and aslab power spectrum depending on k.. The latter
representsparallel Alfvénicfluctuationsand theformer idealizes
the quasi-2D structures, including “flux tubes,” that can develop
from interactions of such waves (Shebalin et al. 1983; see also
Borovsky 2008; Seripienlert et al. 2010; and referencestherein).
The two-component model was motivated by observations of
interplanetary magnetic fluctuations, indicating quasi-slab and
quasi-2D components (Matthaeus et al. 1990; Weygand et al.
2009), which can bemodel ed using aratio of slab: 2D fluctuation
energies of approximately 20:80 (Bieber et al. 1994, 1996). This
model has provided auseful description of the parallel transport
of particlesintheinner heliosphere (Bieber et al. 1994), and was
used by most studies that implemented and/or tested NLGC
theory.

For the special case of 2D+d ab fluctuations, Equations (12)
and (15) and their DD equivalent split into two terms using S
and S%°. However, Shalchi (2006) has proposed that the direct
contribution of slab fluctuations to the perpendicular transport
should be subdiffusive, and that the S3® term should not be
included in the equation of «, . (Note that slab fluctuations can
still play arole as a key determinant of A, which enters into
the 2D contribution.) We refer to this proposal as the Shalchi
dlab hypothesis. We employ this in the present work, and a
detailed evaluation of its accuracy will be presented in a future
publication (D. Ruffolo et al., in preparation).
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Figure 2. Asymptotic perpendicular diffusion coefficient «; of 100MeV
protons in 2D+dglab turbulence with a dab fraction f; = 0.2 as a function
of the magnetic fluctuation amplitude b/Bg. Using the NLGC framework,
random ballistic decorrelation with backtracking correction (RBD/BC, thick
line) provides a closer match with computer simulation results (solid circles)
than the original DD theory (long-dashed line) and uncorrected RBD (short-
dashed line). In the present work we also employ the Shalchi slab hypothesis
(Shalchi 2006).

Therefore, when using the 2D+dlab model of magnetic
turbulence, in Equation (12) or Equation (15) we include only
the 2D portion of the power spectrum, which is concentrated at
k, = 0. We aso assume the fluctuations to be magnetostatic,
with y = 0, and axisymmetric. For RBD without the BC, we
have

330 [/ /

Bk
k/l72)

and with the BC we have

o 330 \/>/ /

S?(ky, ky)
X —_—

kl\/@

erfc(a)dkxdky (RBD), (16)

erfc(a)dk, dk, (RBD/BC), (17)

where

v2

=" (18)

3c.k, \/2(i2)
and k2 = k2 + k2.

For comparison, we also consider the origina DD theory, and
for our model assumptions we obtain

/ / Sk, ky)dkydky
Kxx =
33O o V2/(3c;) + k3 keyy

The analytic theory expressions were evaluated numerically
using the MATHEMATICA program (Wolfram Research, Inc.)
to perform continuous k-space integrals. For the input vaue
of k.., we used the simulation value.

(DD). (19)
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Figure 3. Asymptotic perpendicular diffusion coefficient «, in 2D+slab
turbulencewith f; = 0.2and b/Bo = 0.5 asafunction of the proton gyroradius
in units of the turbulence bendover scale. The simulation values shown here
(solid circles) correspond to proton energies ranging from 0.1 MeV to 50 GeV
for Bp = 5nT and A = 0.02 AU. In most cases, the RBD/BC theory (thick line)
provides a better explanation of the computer simulation results (solid circles)
than the original DD theory (dashed line).

5. COMPARISON WITH COMPUTER SIMULATIONS

We have aso performed direct computer simulations to
trace particle orbits in 2D+dlab magnetic turbulence. While the
simulationsinevitably involve some discretization and statistical
errors, they do avoid key assumptions of the analytic work, and
thus provide an independent check of their validity.

The computer simulationswere performed using the methods,
power spectra, and parameter values described by Ruffolo et al.
(2008). In particular, all distances are in units of A = 0.02 AU,
the slab and 2D turbulence bendover scale,® and velocities are
in units of the speed of light c. Simulations were performed
over asufficient time for all «;; to approach asymptotic values,
within statistical errors. We assume axisymmetry about the
large-scale field direction, so ., and «,, should be the same
within statistical errors, which we verified in al cases. We
report k| = (kxx +kyy)/2, which can be compared directly with
Kk, from theories. In some contexts, we use «, as a synonym
for ic,y.

Figure 2 shows the dependence of «, (in units of cA) on
the overall fluctuation amplitude b/ Bo, using f; = b3,/ (b3 +
b3p) = 0.2. Itisapparent that the RBD/BC version (thick lines)
agrees with computer simulation results (solid circles) better
and over awider range of b/ By values than either the DD theory
(long-dashed lines) or RBD without the BC (short-dashed lines),
over the range of applicability of RBD (b/Bg < 1/a = +/3). We
have also examined the dependence on the proton gyroradius
(Figure 3), which isrelated to its energy, for fixed f; = 0.2 and
b/Bo = 0.5. The seven simulations were for protons of kinetic
energy 0.1, 1, 10, and 100MeV as well as 1, 10, and 50 GeV.
The RBD results, not shown, nearly match DD at R; /A <1,
nearly match RBD/BC at R, /1 > 1, and are intermediate at
R /)=~ 1. Overdl, the RBD/BC theory again provides the best
explanation of the computer simulation results.

5 Ruffolo et al. (2008) incorrectly specified » = 0.027 AU; their smulations
actually used 2 = 0.02 AU, and cal culations were performed for the same
parameters as the simulations.
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6. DISCUSSION

In the present work, we interpret NLGC theory in terms
of particle guiding center tragjectories that are ballistic with
constant velocity over the distance scale leading up to their
decorréelation (Figure 1), a standard assumption in random
walk theory based on scattering concepts. Such RBD stands
in contrast to the previous assumption of DD in which the
displacements were taken to spread according to asymptotic
diffusion. The use of Corrsin’s hypothesis for RBD is similar
in spirit to a Fokker—Planck approach in which the unperturbed
trajectory has a constant but random vel ocity whose directional
distributionisrelated to thedistribution of magnetic fluctuations.
Itisalsorelated to the Langevin-equation approaches of Balescu
et al. (1994). Our use of a heuristic BC that is specific to
RBD leads to a substantial improvement in the match with
direct computer simulation results, compared with DD and RBD
without BC.

Note that RBD theory does not require a small fluctuation
amplitude, and indeed RBD/BC matches computer simulation
results very well for amplitudesupto b/ By ~ 1 (Figure 2). The
inapplicability for b/ By > 1/a = +/3 indicates room for future
improvements to obtain a truly non-perturbative theory. At the
sametime, we should note that the NL GC framework treats only
transverse magnetic fluctuations. In the interplanetary medium
of the inner heliosphere, transverse fluctuations account for
~90% of the magnetic fluctuation energy (Belcher & Davis
1971), so NLGC is well justified in this case. However, for
large amplitudes with b/ By >> 1 there is little reason for the
fluctuations to be so strongly anisotropic, and the NLGC
framework itself may have limited applicability.

Considering the dependence of «; on the proton Larmor
radius, R_, asshown in Figure 3, adiscrepancy remains between
NL GC theory and simulation resultsfor thetwo |owest energies,
0.1 and 1 MeV. The discrepancy is substantially reduced for
RBD/BC. For energies of 10MeV to 10GeV (i.e, R /A =
0.031-2.4), RBD/BC theory matchesthe simulation resultsvery
well. Theincreasewith R; /A saturatesin thisrange because « |
isroughly proportional to v (Minnieet a. 2009), which saturates
ac.

The NLGC framework in general could break down when
R /2> 1. In this weak scattering limit NLGC considers that
guiding center motion tracks the local field line random walk,
whereassuch alargegyroradiusimpliesthat particlesexperience
fluctuations independent from those at the guiding center,
and low-wavelength fluctuations should have less influence on
perpendicular diffusion when they are averaged over such a
large gyroradius. In the interplanetary magnetic field near Earth
of about 5nT with A ~ 0.02 AU (Jokipii & Coleman 1968), we
have R; ~ A for a proton energy of about 4GeV, and in the
local galactic magnetic field of about 0.4 nT (Opher et al. 2009),
where A ~ 100 pc (Armstrong et al. 1995; Dyson & Williams
1997), we have R; ~ X for a proton energy of ~4 x 10 eV.

We have searched for and found this effect at the high-
est proton energy considered, 50 GeV, which corresponds to
R; /A = 11for our parameter valuesof By = 5nT, b/ By = 0.5,
and f; = 0.2, which areapplicableto theinterplanetary medium
near Earth. Theperpendicul ar diffusion coefficient k , decreases,
presumably due to cancellation of low-wavel ength fluctuations
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over the gyro-orbit, while al NLGC theories predict a slight
increase. In any case, the above energies where R, ~ A for
interplanetary and interstellar propagation are sufficiently high
that NL GC theoriesremain applicable to awiderange of cosmic
ray and energetic particle transport problems.
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