

รายงานวิจัยฉบับสมบูรณ์

โครงการ การใช้เรซินแลกเปลี่ยนอิออนประจุบวกเป็นสารช่วยควบคุม การปลดปล่อยยาไดเฟนไฮดรามีนไฮโดรคลอไรด์ออกจากเมทริกซ์

รองศาสตราจารย์ ดร. ประเสริฐ อัครมงคลพร รองศาสตราจารย์ ดร. ธนะเศรษฐ์ ง้าวหิรัญพัฒน์ ภาควิชาเทคโนโลยีเภสัชกรรม คณะเภสัชศาสตร์ มหาวิทยาศิลปากร วิทยาเขตพระราชวังสนามจันทร์ นครปฐม

สัญญาเลขที่ MRG5280242

รายงานวิจัยฉบับสมบูรณ์

โครงการ การใช้เรซินแลกเปลี่ยนอิออนประจุบวกเป็นสารช่วยควบคุม การปลดปล่อยยาไดเฟนไฮดรามีนไฮโดรคลอไรด์ออกจากเมทริกซ์

รองศาสตราจารย์ ดร. ประเสริฐ อัครมงคลพร
 รองศาสตราจารย์ ดร. ธนะเศรษฐ์ ง้าวหิรัญพัฒน์
 ภาควิชาเทคโนโลยีเภสัชกรรม คณะเภสัชศาสตร์ มหาวิทยาศิลปากร
 วิทยาเขตพระราชวังสนามจันทร์ นครปฐม

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษาและสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

การวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาการใช้เรซินแลกเปลี่ยนอิออนบวกอย่างแรง sodium polystyrene sulfonate USP (Amberlite IRP69®) และเรซินแลกเปลี่ยนอิออนบวกอย่างอ่อน polacrillin potassium USP (Amberlite IRP64[®]) ในการดัดแปรการปลดปล่อยยาออกจากเมทริกซ์ของยาตันแบบ (ไดเฟนไฮดรา มีนไฮโดรคลอไรด์) รวมทั้งศึกษาถึงผลของเรซินต่อสมบัติทางกายภาพของเมทริกซ์ด้วย เมทริกซ์ซึ่งมีเรซิน ปริมาณ 0-40 %w/w จะเตรียมจาก hydroxypropylmethylcellulose (Methocel K4M®) ใช้เป็นตัวแทนของ สารก่อเมทริกซ์ชนิดที่ชอบน้ำและพองตัว หรือ ethylcellulose (Ethocel 7cp®) ใช้เป็นตัวแทนของสารก่อ เมทริกซ์ชนิดที่ไม่ชอบน้ำและไม่พองตัวโดยวิธีตอกตรง จากนั้นประเมินหาความหนา เส้นผ่าศูนย์กลาง ความแข็ง ความกร่อน การแตกตัว การปลดปล่อยยาออกจากเมทริกซ์และจลนศาสตร์ในตัวกลางชนิดต่างๆ ผลการวิจัยพบว่าในน้ำปราศจากอิออน เรซินสามารถดัดแปรการปลดปล่อยยาออกจากเมทริกซ์ได้ โดย ลักษณะของการดัดแปรการปลดปล่อยยาของเรซินจะขึ้นอยู่กับชนิดของสารก่อเมทริกซ์และของเรซิน เรซิน ทั้งสองจะควบคุมการปลดปล่อยยาออกจากเมทริกซ์ที่เตรียมจาก Methocel K4M ให้ช้าลงได้ เนื่องจาก สมบัติการพองตัวของ Methocel K4M[®] และสมบัติการแลกเปลี่ยนอิออนของเรซิน ในกรณีของเมทริกซ์ที่ เตรียมจาก Ethocel 7cp[®] พบว่าการปลดปล่อยยาในช่วงแรกจะเร็วขึ้น เนื่องจากเรซินทำให้เมทริกซ์ของ Ethocel 7cp[®] ซึ่งไม่พองตัวเกิดการแตกตัว แต่หลังจากนั้นการปลดปล่อยยาจะลดลง เนื่องจากสมบัติการ แลกเปลี่ยนอิออนของเรซิน นอกจากนี้เรซินยังทำให้จลนศาสตร์ของการปลดปล่อยออกจากเมทริกซ์ที่เตรียม จากสารก่อเมทริกซ์ทั้งสองเปลี่ยนไปจาก Higuchi model โดยเรซิน Amberlite IRP69[®] จะทำให้เกิดผลการ ์ ดัดแปรดังที่กล่าวมาทั้งหมดมากกว่า Amberlite IRP64 อากการทดสอบการปลดปล่อยยาในสารละลาย โพแทสเซียมคลอไรด์ (KCI) ความเข้มข้นต่างๆ พบว่าประสิทธิภาพในการดัดแปรการปลดปล่อยยาออกจาก เมทริกซ์ของเรซินจะลดลง (ยาปลดปล่อยออกมาเพิ่มขึ้น) เหตุผลเนื่องจากโพแทสเซียมอิออนซึ่งมีประจุบวก เช่นเดียวกับยาจะไปลดการแลกเปลี่ยนยาเข้าสู่เรซิน ทำให้มียาอิสระที่จะปลดปล่อยออกจากเมทริกซ์ใด้ เพิ่มขึ้น นอกจากนี้ยังทำให้จลนศาสตร์ของการปลดปล่อยยาออกจากเมทริกซ์เปลี่ยนกลับเป็นไปตาม Higuchi model การใช้เรซินมีอิทธิพลต่อสมบัติทางกายภาพของเมทริกซ์ เรซิน Amberlite IRP69[®] ทำให้ เมทริกซ์มีความแข็งลดลงและความกร่อนเพิ่มขึ้น ในขณะที่เรซิน Amberlite IRP64[®] ทำให้เมทริกซ์มีความ แข็งเพิ่มขึ้น ความกร่อนลดลง และมีความหนาน้อยกว่า แสดงว่าเรซิน Amberlite IRP64 [®] มีความสามารถ การตอกอัด (compressibility) ดีกว่า Amberlite IRP69[®] จากผลการวิจัยนี้สรุปได้ว่า มีความเป็นไปได้ที่จะ นำเรซินแลกเปลี่ยนอิออนมาประยุกต์ใช้เป็นสารช่วยดัดแปรการปลดปล่อยยาออกจากระบบนำส่งเมทริกซ์ที่ เตรียมจากสารก่อเมทริกซ์ชนิดที่ชอบน้ำและพองตัว เช่น Methocel K4M[®] เป็นต้น

คำสำคัญ: เรซินแลกเปลี่ยนอิออน, เมทริกซ์, การดัดแปร, การปลดปล่อยยา

Abstract

This study was aimed at investigating the use of a strongly cationic exchange resin i.e. sodium polystyrene sulfonate USP (Amberlite IRP69) and a weakly cationic exchange resin i.e. polacrillin potassium USP (Amberlite IRP64®) in modifying the release of a model drug i.e. diphenhydramine hydrochloride (DPH) from matrices. In addition, the effect of resin addition on the physical properties of matrices was investigated. The matrices containing 0-40 %w/w of each resin were prepared by direct compression using hydroxypropylmethylcellulose (Methocel K4M or ethylcellulose (Ethocel 7cP®) as gelling hydrophilic and hydrophobic matrix formers, respectively. Thereafter, the produced matrices were evaluated for thickness, diameter, hardness, friability, disintegration, drug release and kinetics in various release media. In deionized water, the resins could differently modify the drug release from matrices, depending on the types of matrix formers and resins. For Methocel K4M -based matrices, the resins retarded the DPH release due to the gelling property of the matrix former and the ion exchange property of the resins. In contrast, the DPH release from Ethocel 7cP based matrices, which did not swell but disintegrated, initially increased because of the disintegrating property of the resins, but thereafter declined due to the complex formation between released drug and dispersed resin via the ion exchange process. Moreover, the kinetics of drug release from the matrices changed from Higuchi model. Amberlite IRP69[®] was found to exert all above modifications in a greater extent than Amberlite IRP64[®]. In potassium chloride solutions, the resins modified the drug release in a lower extent than in deionized water. This was due to the potassium ion could compete and prevent the exchange and hence binding of drug with the resins. Therefore, there were high amounts of free drug which readily released from the matrices. Moreover, the kinetics of drug release returned to obey Higuchi model. The resins also affected some physical properties of matrices. Amberlite IRP69 caused a decrease in the hardness and an increase in the friability of the matrices. In contrast, the matrices containing Amberlite IRP64 had the increased hardness, decreased friability and a smaller thickness. These findings indicated that Amberlite IRP64 had a greater compressibility than Amberlite IRP69 $^{\circledR}$. In conclusion, this research demonstrated that ion exchange resins could be used as a potential excipient in modifying the drug release for matrix drug delivery systems prepared from gelling hydrophilic matrix formers e.g. Methocel K4M[®].

Keyword: ion exchange resin, matrices, modification, drug release

Executive summary

1. ความสำคัญและที่มาของปัญหา

ระบบนำส่งเมทริกซ์แบบตอกตรงยังคงได้รับความสนใจมากในการใช้ควบคุมการปลดปล่อยยา เนื่องจากข้อดีคือ เตรียมได้ง่าย ไม่มีการใช้ตัวทำละลายอินทรีย์และความร้อน เพราะวิธีการเตรียม ประกอบด้วยการผสมตัวยาสำคัญและสารก่อเมทริกซ์ จากนั้นนำไปตอกอัดเป็นเมทริกซ์ทันที สารก่อเมท ริกซ์อาจแบ่งได้เป็น 2 กลุ่มใหญ่คือ กลุ่มที่ไม่ชอบน้ำ ได้แก่พอลิเมอร์ที่ไม่ชอบน้ำ (hydrophobic polymers) และแวกซ์ (wax) และกลุ่มที่ชอบน้ำ ซึ่งมักเป็นพอลิเมอร์ที่ชอบน้ำ (hydrophilic polymers) การพัฒนาเมท ริกซ์ของยาหนึ่งๆ เพื่อให้มีอัตราการปลดปล่อยยาตามที่ต้องการ มักใช้เทคนิคการเปลี่ยนแปลงชนิด (คุณสมบัติ) ของสารก่อเมทริกซ์ การเปลี่ยนแปลงสัดส่วนระหว่างยาและสารก่อเมทริกซ์ และการใส่สารช่วย อื่น เป็นต้น ซึ่งในการใช้เทคนิคดังกล่าวอาจใช้เพียงเทคนิคเดียวหรือหลายเทคนิคร่วมกันในการควบคุมการ ปลดปล่อยยาออกจากเมทริกซ์ สำหรับยาที่ละลายน้ำได้ดีกลไกการปลดปล่อยยาออกจากเมทริกซ์มักถูก ควบคุมโดยกระบวนการแพร่ผ่านเมทริกซ์

เรซินแลกเปลี่ยนอิออน (ion exchange resin) เป็นอนุภาคโคพอลิเมอร์ที่ไม่ละลายน้ำซึ่งสามารถ แลกเปลี่ยนอิออนได้ เนื่องด้วยตัวยาต่าง ๆ เมื่อละลายน้ำจะอยู่ในรูปโมเลกุลที่มีประจุ (ionized molecule) จึงสามารถแลกเปลี่ยนเข้าสู่อนุภาคเรซินได้ มีการประยุกต์ใช้เรซินแลกเปลี่ยนอิออนเพื่อนำส่งยา โดยเมื่อ รับประทานเรซินที่บรรจุยา อิออนในทางเดินอาหารจะไปแลกเปลี่ยนให้ยาปลดปล่อยออกมาและถูกดูดซึม เข้าสู่ร่างกายต่อไป ในปัจจุบันมีผลิตภัณฑ์ยาที่อาศัยระบบนำส่งยาโดยใช้เรซินแลกเปลี่ยนอิออนวาง จำหน่ายอยู่หลายตำรับ ตัวอย่างเช่น Codipront Delsym Bronchopront Rhinopront เป็นต้น ซึ่งผลิตภัณฑ์เหล่านี้แสดงให้เห็นถึงความสำเร็จของการประยุกต์ใช้เรซินแลกเปลี่ยน อิออนได้เป็นอย่างดี นอกจากนี้การที่ยาเมื่อบรรจุในเรซิน เวลารับประทานโมเลกุลยาจะไม่สัมผัสกับต่อมรับ รสโดยตรง จึงมีการประยุกต์ใช้เรซินเป็นเทคนิคในการกลบรสไม่พึงประสงค์ (ขม) ของยาได้อีกด้วย

การปลดปล่อยยาออกจากระบบนำส่งเมทริกซ์ ยาจะต้องละลาย จากนั้นโมเลกุลยาจะแพร่ผ่านเมทริกซ์ออกไป จากคุณสมบัติการแลกเปลี่ยนอิออนของเรซินดังที่ได้กล่าวข้างต้น ถ้าในเมทริกซ์มีเรซินแลก เปลี่ยนอิออน โมเลกุลยาที่ละลายส่วนหนึ่งจะต้องเกิดการแลกเปลี่ยนอิออนกับเรซิน ผลคือจะทำให้ พฤติกรรมการปลดปล่อยยาออกจากเมทริกซ์เปลี่ยนแปลงไปจากเดิม หรือในอีกแง่หนึ่งก็คือสามารถที่จะ ประยุกต์ใช้เรซินแลกเปลี่ยนอิออนเป็นสารช่วยในการควบคุมการปลดปล่อยยาออกจากระบบนำส่งเมทริกซ์ ได้อีกเทคนิคหนึ่ง อย่างไรก็ตามการประยุกต์ใช้เรซินกับระบบนำส่งเมทริกซ์ยังไม่เป็นที่แพร่หลาย เนื่องจาก จำนวนรายงานการศึกษาที่สนับสนุนยังมีน้อยมาก และองค์ความรู้อีกมากยังไม่เคยมีรายงาน เช่น ผลต่อ คุณสมบัติทางกายภาพของเมทริกซ์ และผลต่อจลนศาสตร์การปลดปล่อยยาออกจากเมทริกซ์ เป็นต้น

ดังนั้นการศึกษานี้จึงมีวัตถุประสงค์เพื่อ ศึกษาการใช้เรชินแลกเปลี่ยนอิออนเป็นสารช่วยควบคุมการ ปลดปล่อยยาออกจากเมทริกซ์ที่เตรียมโดยวิธีตอกตรง นอกจากนี้ยังศึกษาถึงผลของเรชินต่อคุณสมบัติทาง กายภาพอื่น ๆของเมทริกซ์ด้วย ได้แก่ ความหนา ความแข็ง ความกร่อน และการแตกตัว เป็นต้น ประโยชน์ที่ได้จากการวิจัยนี้คือองค์ความรู้ในการประยุกต์ใช้เรชินแลกเปลี่ยนอิออนเป็นสารช่วยควบคุมการ ปลดปล่อยยาของระบบเมทริกซ์ และองค์ความรู้เกี่ยวกับผลของเรชินต่อคุณสมบัติต่าง ๆของเมทริกซ์ ซึ่ง สามารถนำไปใช้ประโยชน์ในการพัฒนาระบบนำส่งเมทริกซ์ได้ เรซินต้นแบบที่ใช้ในการศึกษานี้มี 2 ชนิดคือ

sodium polystyrene sulfonate USP (Amberlite IRP69[®]) และ polacrilin potassium USP (Amberlite IRP88[®] หรือ IRP64[®]) ผลิตภัณฑ์ทั้งสองเป็นเรซินชนิดสำหรับใช้ในงานทางเภสัชกรรม ชนิดแรกเป็นเรซิน แลกเปลี่ยนอิออนบวกอย่างแรงมีหมู่ sulfonic เป็นหมู่แลกเปลี่ยนอิออน ชนิดที่สองเป็นเรซินแลกเปลี่ยน อิออนบวกอย่างอ่อนมีหมู่ carboxylic เป็นหมู่แลกเปลี่ยนอิออน ยาตันแบบที่เลือกใช้คือ diphenhydramine hydrochloride เป็นยาที่มีประจุบวก ละลายน้ำได้ดี ปลอดภัยและราคาไม่แพงมาก ในการวิจัยนี้เมทริกซ์จะ เตรียมจาก hydroxypropylmethylcellulose (Methocel K4M[®]; ความหนืด 4000 cps; ปริมาณ methoxyl และ hydroxypropyl เท่ากับ 22 และ 8 % ตามลำดับ) ซึ่งใช้เป็นตัวแทนของสารก่อเมทริกซ์ชนิดที่ชอบน้ำ หรือ ethylcellulose (Ethocel 7cp[®]; ความหนืด 7 cps; ปริมาณ ethoxyl เท่ากับ 48-49.5 %) ซึ่งใช้เป็น ตัวแทนของสารก่อเมทริกซ์ชนิดที่ไม่ชอบน้ำ

งานวิจัยที่เสนอนี้แตกต่างจากงานวิจัยของคณะ Pongjanyakul, T. ใน AAPSPharmSciTech 2005; 6(2) ในงานวิจัยของคณะ Pongjanyakul, T. เป็นการศึกษาการนำส่งยาโดยใช้เรซินแลกเปลี่ยนอิออน โดย จะมีการบรรจุยาเข้าไปในเรซินก่อน (เรียกว่าเรซิเนท) ด้วยกระบวนการแลกเปลี่ยนอิออน จากนั้นนำเรซิเนท ไปตอกเป็นเม็ด (ใส่สารช่วยแตกตัวในยาเม็ด) เมื่อรับประทานต้องการให้ยาเม็ดแตกตัวแล้วเรซิเนทจะกระ จายออกและปลดปล่อยยา แต่ในโครงการวิจัยนี้จะศึกษาการประยุกต์ใช้เรซินเป็นสารช่วยควบคุมการ ปลดปล่อยยาออกจากเมทริกซ์ (ไม่ใส่สารช่วยแตกตัว) โดยจะไม่มีการบรรจุยาเข้าไปในเรซิน แต่จะผสมยา เรซินและสารก่อเมทริกซ์แล้วนำไปตอก เมื่อรับประทานไม่ต้องการให้เมทริกซ์แตกตัวแต่ให้ยาปลดปล่อย ด้วยการแพร่ผ่านเมทริกซ์ โดยมีเรซินเป็นสารช่วยควบคุมการปลดปล่อยยาด้วยอีกกลไกหนึ่ง

2. วัตถุประสงค์

ศึกษาผลการใช้เรซินแลกเปลี่ยนอิออน เป็นสารช่วยควบคุมการปลดปล่อยยาออกจากเมทริกซ์ของยา ไดเฟนไฮดรามีนไฮโดรคลอไรด์

3. ระเบียบวิธีวิจัย

3.1. สืบคันและศึกษาข้อมูลต่างๆ ของระบบนำส่งยาเมทริกซ์ คุณสมบัติของเรซินแลกเปลี่ยนอิออน (sodium polystyrene sulfonate USP และ polacrilin potassium USP) การประยุกต์ใช้เรซิน คุณสมบัติและ ความคงตัวของยาไดเฟนไฮดรามีนไฮโดรคลอไรด์

3.2. การเตรียมเมทริกซ์

เตรียมเมทริกซ์โดยวิธีตอกตรง สูตรตำรับประกอบด้วยตัวยา เรซินแลกเปลี่ยนอิออน (Amberlite IRP-69[®] หรือ Amberlite IRP-88[®] (หรือ Amberlite IRP64[®])) เปลี่ยนแปลงปริมาณ 5-6 ระดับอยู่ระหว่าง 0-40 %w/w) magnesium stearate (เป็นสารหล่อลื่น ใช้ไม่เกิน 1 %w/w) และสารก่อเมทริกซ์ (Methocel K4M[®] หรือ Ethocel 7cp[®]) ผสมส่วนผสมต่าง ๆให้เข้ากันนาน 10 นาที จากนั้นชั่งสารผสมน้ำหนักแน่นอน นำไปตอกอัดโดยใช้เครื่องตอกอัดไฮดรอลิกด้วยสากสแตนเลสโดยให้แรงตอกอัดคงที่ทุกตำรับ เมทริกซ์ที่ เตรียมได้เก็บในภาชนะปิดสนิทจนกว่าจะทำการประเมิน

3.3. การประเมินคุณสมบัติเมทริกซ์

3.3.1. น้ำหนักเมทริกซ์

สุ่มเมทริกซ์จำนวน 10 เม็ด ชั่งหาน้ำหนักของเมทริกซ์แต่ละเม็ด คำนวณค่าเฉลี่ย ค่า เบี่ยงเบนมาตรฐาน และ %CV

3.3.2. ความหนาและเส้นผ่าศูนย์กลาง

สุ่มเมทริกซ์จำนวน 10 เม็ด วัดความหนาและเส้นผ่าศูนย์กลางของเมทริกซ์แต่ละเม็ดด้วย ไมโครมิเตอร์ คำนวณค่าเฉลี่ย ค่าเบี่ยงเบนมาตรฐาน และ %CV

3.3.3. ความแข็ง

สุ่มเมทริกซ์จำนวน 10 เม็ด วัดความแข็งของเมทริกซ์แต่ละเม็ดด้วยเครื่องวัดความแข็ง คำนวณค่าเฉลี่ย ค่าเบี่ยงเบนมาตรฐาน และ %CV

3.3.4. ความกร่อน

สุ่มเมทริกซ์จำนวน 20 เม็ด วัดความกร่อนของเมทริกซ์ด้วยเครื่องวัดความกร่อน (Roche friabilator) คำนวณหาเปอร์เซ็นต์ความกร่อนของเมทริกซ์

3.3.5. การแตกตัว

สุ่มเมทริกซ์จำนวน 6 เม็ด ทดสอบการแตกตัวด้วยเครื่องทดสอบการแตกตัว (disintegration apparatus) หาระยะเวลาที่เมทริกซ์แตกตัวหมด

3.3.6. การปลดปล่อยยา

ทดสอบการปลดปล่อยยาด้วยเครื่องทดสอบการละลายแบบตะกร้า (basket dissolution apparatus) ในน้ำปราศจากอิออน (ตัวแทนตัวกลางไม่มีอิออน) และสารละลาย KCI (ตัวแทนตัวกลางที่มี อิออน) ที่ความเข้มข้น 0.05-0.4 N เป็นระยะเวลา 10 ชั่วโมง โดยทดสอบที่อุณหภูมิ 37±0.5 องศาเซลเซียส ที่เวลาต่างๆทำการวิเคราะห์หาปริมาณยาที่ปลดปล่อยออกมาด้วยวิธี UV spectrophotometer

3.3.7. ความคงตัวของยาในตัวกลาง

ชั่งยาใส่ในตัวกลางที่ใช้ในข้อ 3.3.6. ตั้งทิ้งไว้ที่อุณหภูมิ 37 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง วิเคราะห์หาปริมาณยาที่เหลือด้วยวิธี high performance liquid chromatography

- 3.3.8. การศึกษาด้วย scanning electron microscope (SEM) ถ่ายภาพเมทริกซ์ทั้งก่อนและหลังการศึกษาการปลดปล่อยยา ด้วยเครื่อง SEM
- 3.3.9. วิเคราะห์จลนศาสตร์การปลดปล่อยยา

หาจลนศาสตร์ของการปลดปล่อยยาของเมทริกซ์ โดยนำค่าปริมาณยาที่ปลดปล่อยที่เวลา ต่างๆ ทดสอบกับสมการจลนศาสตร์ที่ใช้อธิบายการปลดปล่อยยาออกจากเมทริกซ์ เช่น Higuchi model, zero/first order model และ Korsmeyer and Peppas model เป็นต้น และทดสอบกับสมการจลนศาสตร์ที่ ใช้อธิบายการปลดปล่อยยาออกจากเรซินแลกเปลี่ยนอิออน เช่น particle และ film diffusion controlled model วิเคราะห์ผลของเรซินต่อจลนศาสตร์ของการปลดปล่อยยาออกจากเมทริกซ์

4. แผนการดำเนินงานวิจัยตลอดโครงการในแต่ละช่วง 6 เดือน เดือนที่ 1-6:

- รวบรวมข้อมูล จัดซื้อสารเคมี
- ศึกษาและหาสภาวะที่เหมาะสมในการวิเคราะห์หาปริมาณยาโดยวิชี UV และ HPLC
- ศึกษาความคงตัวของยาในตัวกลางที่ใช้

เดือนที่ 7-12:

- การใช้เรซิน Amberlite IRP69[®] กับเมทริกซ์ของ hydroxypropylmethylcellulose (Methocel K4M[®]) และของ ethylcellulose (Ethocel 7cp[®])
- เตรียมเมทริกซ์
- ประเมินคุณสมบัติต่างๆ
- วิเคราะห์และแปรผลข้อมูล
- เขียนและส่งผลงานวิจัยเพื่อตีพิมพ์ในวารสารทางวิชาการ

เดือนที่ 13-18:

- การใช้เรซิน Amberlite IRP88[®] หรือ IRP64[®] กับเมทริกซ์ของ hydroxypropylmethylcellulose (Methocel K4M[®]) และของ ethylcellulose (Ethocel 7cp[®])
- เตรียมเมทริกซ์
- ประเมินคุณสมบัติต่างๆ
- วิเคราะห์และแปรผลข้อมูล

เดือนที่ 19-24:

- วิเคราะห์และแปรผลข้อมูล
- สรุปและวิจารณ์ผล
- เขียนและส่งผลงานวิจัยเพื่อตีพิมพ์ในวารสารทางวิชาการ
- เขียนรายงานวิจัยฉบับสมบูรณ์
- 5. ผลงาน/หัวข้อเรื่องที่คาดว่าจะตีพิมพ์ในวารสารวิชาการระดับนานาชาติในแต่ละปี
- ปีที่ 1 : ชื่อเรื่องที่คาดว่าจะดีพิมพ์ : Effect of cationic exchange resins on the properties of controlled release diphenhydramine hydrochloride matrices

ชื่อวารสารที่คาดว่าจะตีพิมพ์ : AAPS PharmSciTech (impact factor 1.3)

ปีที่ 2 : ชื่อเรื่องที่คาดว่าจะดีพิมพ์ : Use of cationic exchange resins as an excipient for modifying the release of diphenhydramine hydrochloride from matrices

ชื่อวารสารที่คาดว่าจะตีพิมพ์ : International Journal of Pharmaceutics (impact factor 2.4)

- หมายเหตุ: 1. หัวหน้าโครงการวิจัยผู้รับทุนเป็นชื่อแรกของบทความ
 - 2. ระบุค่า impact factor ของวารสารที่คาดว่าจะตีพิมพ์
- 3. สำหรับสาขาสังคมศาสตร์ ผลงานอาจอยู่ในลักษณะบทความตีพิมพ์ในวารสารวิชาการ นานาชาติหรือในประเทศ (ที่ไม่ใช่วารสารสถาบัน) หรือหนังสือเล่มเฉพาะเรื่องที่มี peer review อย่าง เคร่งครัด

เนื้อหางานวิจัย

1. สารเคมีและเครื่องมือที่ใช้ทำการวิจัย

1.1. สารเคมี

- (1) Amberlite IRP69[®] (Dow Chemical Co., USA)
- (2) Amberlite IRP64[®] ใช้แทน IRP88[®] (Dow Chemical Co., USA)
- (3) Methocel K4M (Dow Chemical Co., USA)
- (4) Ethocel 7cP or 7FP (Dow Chemical Co., USA)
- (5) Diphenhydramine hydrochloride (Beijing Shuanglao Pharmaceutical Co., China และ Sigma Chemical Co., USA)
- (6) Magnesium stearate (BP grade)
- (7) Potassium chloride (analytical grade)
- (8) Potassium dihydrogen orthophosphate (analytical grade)
- (9) Orthophosphoric acid (analytical grade)
- (10) Acetronitrile (HPLC grade)
- (11) Triethylamine (analytical grade)

1.2. เครื่องมือวิทยาศาสตร์

- (1) High pressure liquid chromatography (Agilent 1100, USA)
- (2) Ultraviolet spectrophotometer (Perkin Elmer Lambda 2, Germany)
- (3) Roche friabilator (Yeo Heng Factory, Thailand)
- (4) Texture analyzer (Stable Micro Systems TA.XT Plus, UK)
- (5) Dissolution testing apparatus I (Dissolutest Prolabo, France)
- (6) Disintegration testing apparatus (Sotax DT3, Switzerland)
- (7) Scanning electron microscope (CamScan MX 2000, UK หรือ Jeol JSM 5400, Japan)
- (8) Hydraulic hand press machine (Specac P/N 15011/25011, UK)
- (9) Micrometer (Sylvac S229, Switzerland)
- (10) Digital camera and image analysis software (Digital Blue QX5, Taiwan หรือ Dino-Lite Digital AM-313T Plus, Taiwan)

2. ระเบียบวิธีการวิจัย

- 2.1. ศึกษาและหาสภาวะที่เหมาะสมในการวิเคราะห์หาปริมาณยาโดยวิธี UV และ HPLC
 - 2.1.1. การวิเคราะห์ยาโดยวิธี ultraviolet spectroscopy

เตรียมสารละลายยาไดเฟนไฮดรามีนไฮโดรคลอไรด์ (DPH) ในน้ำปราศจากอิออน (deionized water), 0.05, 0.1, 0.2 และ 0.4 N สารละลายโพแทสเซียมคลอไรด์ (KCI) ให้มีความเข้มข้น 0, 5, 10, 15, 20 และ 25 μg/ml ตามลำดับ จากนั้นนำไปวัดค่าการดูดกลืนแสง UV ที่ความยาวคลื่น 218 nm บันทึกค่าการดูดกลืนแสงของสารละลายยาความเข้มขันต่าง ๆ จากนั้นวิเคราะห์ความสัมพันธ์เชิงเส้นระหว่าง ความเข้มขันของสารละลายยาและค่าการดูดกลืนแสง โดยวิธีวิเคราะห์ความถดถอย (regression analysis) และหาค่าสัมประสิทธิ์การตัดสินใจ (coefficient of determination หรือ R²)

2.1.2. การวิเคราะห์ยาโดยวิชี high pressure liquid chromatography (HPLC)

หาสภาวะในการวิเคราะห์ยา DPH และตรวจสอบความถูกต้องของวิธีวิเคราะห์ โดย เตรียมสารละลายยา DPH ความเข้มข้น 0, 5, 10, 20, 30 และ 40 µg/ml วิเคราะห์หาปริมาณยาโดยวิธี HPLC ตามสภาวะที่ได้ บันทึกค่าพื้นที่ใต้พีค (peak area) จากนั้นวิเคราะห์ความสัมพันธ์เชิงเส้นระหว่าง ความเข้มข้นของสารละลายยาและพื้นที่ใต้พีค โดยวิธีวิเคราะห์ความถดถอยและหาค่าสัมประสิทธิ์การ ตัดสินใจ

คำนวณหา % relative standard deviation (RSD) จากการวิเคราะห์สารละลายยาใน แต่ละความเข้มข้น (n=5) ด้วยความสัมพันธ์

$$\% RSD = \frac{S.D. \times 100}{\overline{A}}$$

เมื่อ

S.D. = ค่าเบี่ยงเบนมาตรฐาน (standard deviation)

A = ค่าเฉลี่ย (average) ของพื้นที่ใต้พีค

และคำนวณหาความสมมาตรของพีคยา (tailing factor) ด้วยความสัมพันธ์

$$T = \frac{W}{2f}$$

เมื่อ

T = Tailing factor

W = ความกว้างของพีคที่ความสูง 5 % จากฐาน

f = ระยะระหว่างจุดเริ่มเกิดพีคและจุดกึ่งกลางของพีคที่ความสูง 5 % จากฐาน

2.2. การศึกษาความคงตัวของยาในตัวกลางที่ใช้

เตรียมสารละลายยาความเข้มข้น 30 µg/ml ในน้ำปราศจากอิออน, 0.05, 0.1, 0.2 และ 0.4 N สารละลาย KCI ตามลำดับ เก็บไว้ที่อุณหภูมิ 37°C เป็นเวลา 24 ชั่วโมง จากนั้นวิเคราะห์หาปริมาณยาใน สารละลายยาโดยวิธี HPLC และคำนวณหาปริมาณยาที่เหลืออยู่ในสารละลายยาที่เตรียมด้วยตัวกลางชนิด ต่างๆ

2.3. การเตรียมเมทริกซ์

เตรียมเมทริกซ์โดยวิธีตอกตรง สูตรตำรับแสดงในตารางที่ 1 ชั่งและผสมส่วนผสมต่างๆให้เข้า กันนาน 10 นาที จากนั้นชั่งสารผสมน้ำหนักแน่นอน (100 mg) นำไปตอกอัดโดยใช้เครื่องตอกอัดไฮดรอลิก ด้วยสากสแตนเลสหน้าเรียบ (เส้นผ่าศูนย์กลาง 6.35 mm) ใช้แรงตอกอัดคงที่ทุกตำรับ (5000 Kg) เก็บเมท ริกซ์ที่เตรียมได้ไว้ในภาชนะปิดสนิทจนกว่าจะทำการประเมิน

ตารางที่ 1 ชื่อสูตรและองค์ประกอบในเมทริกซ์ที่เตรียม

 ชื่อสูตร		HPMC หรือ EC/Am69 หรือ Am64/_					
	/0	/5	/10	/20	/30	/40	
ส่วนประกอบ (%w/w)							
DPH	30	30	30	30	30	30	
Amberlite IRP69 หรือ 64 [®] a	0	5	10	20	30	40	
Magnesium stearate	1	1	1	1	1	1	
$HPMC^{^b}$ หรือ $EC^{^c}$ added to	100	100	100	100	100	100	

^{*} Amberlite IRP64 [®] ใช้แทน Amberlite IRP88 [®] (ไม่สามารถหาซื้อได้ และมีสมบัติคล้ายกัน)

2.4. การประเมินสมบัติต่างๆ

ประเมินสมบัติต่างๆของเมทริกซ์ที่เตรียมได้ดังนี้

2.4.1. น้ำหนักเมทริกซ์

สุ่มเมทริกซ์จำนวน 10 เม็ด ชั่งหาน้ำหนักของเมทริกซ์แต่ละเม็ด คำนวณค่าเฉลี่ยและ ค่าเบี่ยงเบนมาตรฐาน

2.4.2. ความหนาและเส้นผ่าศูนย์กลาง

สุ่มเมทริกซ์จำนวน 10 เม็ด วัดความหนาและเส้นผ่าศูนย์กลางของเมทริกซ์แต่ละเม็ด ด้วยไมโครมิเตอร์ คำนวณค่าเฉลี่ยและค่าเบี่ยงเบนมาตรฐาน

2.4.3. ความแข็ง

สุ่มเมทริกซ์จำนวน 10 เม็ด วัดความแข็งของเมทริกซ์แต่ละเม็ดด้วยเครื่องวัดความ แข็ง texture analyzer คำนวณค่าเฉลี่ยและค่าเบี่ยงเบนมาตรฐาน

2.4.4. ความกร่อน

สุ่มเมทริกซ์จำนวน 20 เม็ด ชั่งหาน้ำหนักเริ่มต้น (W₁) นำเมทริกซ์ใส่ในเครื่องวัด ความกร่อน (Roche friabilator) เปิดให้เครื่องทำงานด้วยอัตราเร็ว 25 รอบต่อนาที เป็นเวลา 4 นาที จากนั้น

^b Methocel K4M[®]

 $[^]c$ Ethocel 7cP $^{\circledR}$ หรือ 7FP $^{\circledR}$

นำเมทริกซ์ออกจากเครื่องวัดความกร่อนและชั่งหาน้ำหนัก (W₂) คำนวณหาเปอร์เซ็นต์ความกร่อนของเมท ริกซ์ด้วยความสัมพันธ์⁽¹⁾

$$= \left(\frac{\mathbf{W}_1 - \mathbf{W}_2}{\mathbf{W}_1}\right) \times 100$$

2.4.5. การแตกตัว

สุ่มเมทริกซ์จำนวน 6 เม็ด ทดสอบการแตกตัวด้วยเครื่องทดสอบการแตกตัว (disintegration apparatus) หาระยะเวลาที่เมทริกซ์แตกตัวได้หมด คำนวณค่าเฉลี่ยและค่าเบี่ยงเบน มาตรฐาน

2.4.6. การปลดปล่อยยา

ทดสอบการปลดปล่อยยาด้วยเครื่องทดสอบการละลายแบบตะกร้า (basket dissolution apparatus) ในน้ำปราศจากอิออน (ตัวแทนของตัวกลางที่ไม่มีอิออน) โดยทดสอบเป็น ระยะเวลา 10 ชั่วโมง ที่อุณหภูมิ 37±0.5°C ที่เวลาต่างๆสุ่มเก็บตัวกลาง (5 ml) และทำการวิเคราะห์หา ปริมาณยาที่ปลดปล่อยออกมาด้วยวิธี UV spectroscopy ที่ความยาวคลื่น 218 นาโนเมตร เมทริกซ์บางสูตร ทดสอบการปลดปล่อยยาเพิ่มเติมในสารละลาย KCI (ตัวแทนของตัวกลางที่มีอิออน) ที่ความเข้มข้น 0.005-0.4 N โดยสภาวะการทดสอบอื่นๆใช้เหมือนกับการทดสอบในน้ำปราศจากอิออนข้างต้น

2.4.7. จลนศาสตร์ของการปลดปล่อยยา

วิเคราะห์หาจลนศาสตร์ของการปลดปล่อยยาออกจากเมทริกซ์ โดยนำค่าปริมาณยาที่ ปลดปล่อยที่เวลาต่างๆทดสอบกับสมการจลนศาสตร์ที่ใช้อธิบายการปลดปล่อยยารูปแบบต่างๆ ได้แก่⁽³⁻⁵⁾

> (1) Higuchi model⁽³⁾ สมการความสัมพันธ์ระหว่างปริมาณยาที่ปลดปล่อยและเวลา เป็นดังนี้

$$Q_t = k_H t^{0.5}$$

เมื่อ

Q_t = ปริมาณยาที่ปลดปล่อยที่เวลาใดๆ

k_H = Higuchi release rate constant

t = เวลา

จากข้อมูลของปริมาณยาที่ปลดปล่อยที่เวลาต่างๆ ถ้ากราฟระหว่าง \mathbf{Q}_t และ $\mathbf{t}^{0.5}$ เป็นเส้นตรง แสดงว่าจลนพลศาสตร์ของการปลดปล่อยยาเป็นแบบ Higuchi model

(2) Zero order model⁽³⁾
สมการความสัมพันธ์ระหว่างปริมาณยาที่ปลดปล่อยและเวลา เป็นดังนี้

$$Q_t = k_0 t$$

เมื่อ

k₀ = Zero order release rate constant

จากข้อมูลของปริมาณยาที่ปลดปล่อยที่เวลาต่าง ๆ ถ้ากราฟระหว่าง Q_t และ t เป็นเส้นตรง แสดงว่าจลนพลศาสตร์ของการปลดปล่อยยาเป็นแบบ Zero order model

(3) First order model (3) สมการความสัมพันธ์ระหว่างปริมาณยาที่ปลดปล่อยและเวลา เป็นดังนี้

$$-\ln(1-F_t) = k_1 t$$

$$F_t = \frac{Q_t}{Q_0}$$

เมื่อ

F_t = สัดส่วนของยาที่ปลดปล่อยที่เวลาใดๆ

Q₀ = ปริมาณยาเริ่มต้นในเมทริกซ์

 k_1 = First order release rate constant

จากข้อมูลสัดส่วนของปริมาณยาที่ปลดปล่อยที่เวลาต่างๆ คำนวณหา –In(1-F_t) ถ้ากราฟระหว่าง –In(1-F_t) และ t เป็นเส้นตรง แสดงว่าจลนพลศาสตร์ของการปลดปล่อยยาเป็นแบบ first order model

> (4) Korsmeyer and Peppas model⁽³⁾ สมการความสัมพันธ์ระหว่างปริมาณยาที่ปลดปล่อยและเวลา เป็นดังนี้

$$F_t = kt^n$$

เมื่อ

k = ค่าคงที่ของการแลกเปลี่ยน

n = Diffusion exponent

จากข้อมูลสัดส่วนของปริมาณยาที่ปลดปล่อยที่เวลาต่างๆ ถ้ากราฟระหว่าง F_t และ tⁿ (n ใดๆ) เป็นเส้นตรง แสดงว่าจลนพลศาสตร์ของการปลดปล่อยยาเป็นแบบ Korsmeyer and Peppas model

(5) Particle diffusion controlled model⁽⁴⁾
สมการความสัมพันธ์ระหว่างปริมาณยาที่ปลดปล่อยและเวลา เป็นดังนี้

$$-\ln(1-F_t) = 1.59 \left(\frac{6}{d}\right)^{1.3} D_m^{0.65} t^{0.65}$$

เมื่อ

D_m = สัมประสิทธิ์การแพร่ (diffusion coefficient) ผ่านเมทริกซ์

d = เส้นผ่าศูนย์กลางของอนุภาคเรซิน

จากข้อมูลสัดส่วนของปริมาณยาที่ปลดปล่อยที่เวลาต่างๆ คำนวณหา –In(1-F_t) ถ้ากราฟระหว่าง –In(1-F_t) และ t^{0.65} เป็นเส้นตรง แสดงว่าจลนพลศาสตร์ของการปลดปล่อยยาเป็นแบบ particle diffusion controlled model

(6) Film diffusion controlled model⁽⁵⁾
สมการความสัมพันธ์ระหว่างปริมาณยาที่ปลดปล่อยและเวลา เป็นดังนี้

$$-\ln(1-F_{t}) = Pt$$

เมื่อ

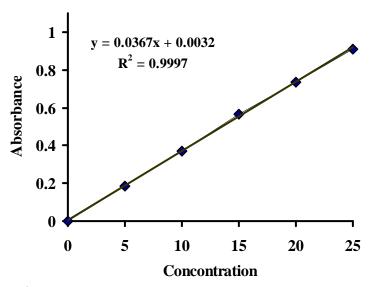
P = สภาพให้ซึมผ่านได้ (permeability) ของฟิล์ม
จากข้อมูลสัดส่วนของปริมาณยาที่ปลดปล่อยที่เวลาต่างๆ คำนวณหา –In(1-F_t)
ถ้ากราฟระหว่าง –In(1-F_t) และ t เป็นเส้นตรง แสดงว่าจลนพลศาสตร์ของการปลดปล่อยยาเป็นแบบ film
diffusion controlled model

- 2.4.8. การศึกษาพื้นผิวเมทริกซ์ด้วย scanning electron microscope (SEM)
 ศึกษาลักษณะพื้นผิวของเมทริกซ์ก่อนการศึกษาการปลดปล่อยยาด้วย SEM
- 2.4.9. การศึกษาการเปลี่ยนแปลงของเมทริกซ์ระหว่างการปลดปล่อยยา ใช้สภาวะเหมือนกับการทดสอบการปลดปล่อยยาตามหัวข้อ 2.4.6 ที่เวลาต่าง ๆนำ เมทริกซ์ขึ้นมาและถ่ายภาพด้วยกล้องดิจิตอล
 - 2.4.10. วิเคราะห์และแปลผลข้อมูล
 - 3. ผลและวิจารณ์ผลการวิจัย
 - 3.1. การวิเคราะห์ยาโดยวิธี UV

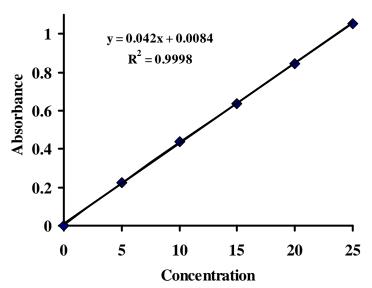
จากการวิเคราะห์สารละลายยา DPH ในตัวกลางชนิดต่าง ๆ ได้แก่ น้ำปราศจากอิออน, 0.05, 0.1, 0.2 และ 0.4 N KCl ช่วงความเข้มข้น 0-25 µg/ml โดยวิธี UV spectroscopy ที่ความยาวคลื่น 218 nm พบว่าความสัมพันธ์ระหว่างความเข้มข้นของสารละลายยาและค่าการดูดกลืนแสงเป็นเส้นตรง (รูปที่ 1-5) โดยมีค่าสัมประสิทธิ์การตัดสินใจ (coefficient of determination; R²) ไม่น้อยกว่า 0.9995 สรุปได้ว่าสามารถ ใช้วิธี UV spectroscopy นี้ในการวิเคราะห์หาปริมาณยาที่ได้จากการศึกษาการปลดปล่อยยาในตัวกลางชนิด ต่าง ๆดังกล่าวได้

3.2. การวิเคราะห์หาปริมาณยา DPH โดยวิธี HPLC จากผลการวิจัยได้สภาวะของการวิเคราะห์ยา DPH ดังนี้

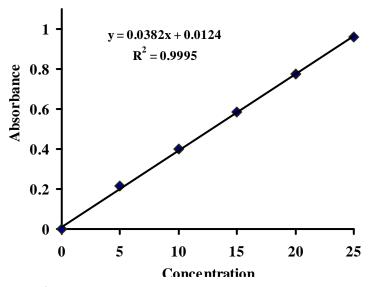
HPLC : Agilent 1100 (UV/VIS detector), USA

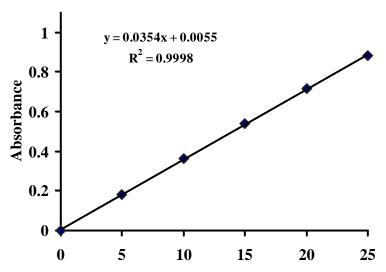

Column (4 \times 250 mm) : 5 μ m C8 (Betasil, UK)

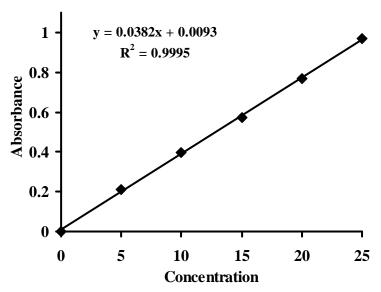
Mobile phase : 75 mM potassium dihydrogen orthophosphate (ปรับ pH ที่ 3.5 ด้วย


orthophosphoric acid): acetronitrile: triethylamine (65:35:0.003)

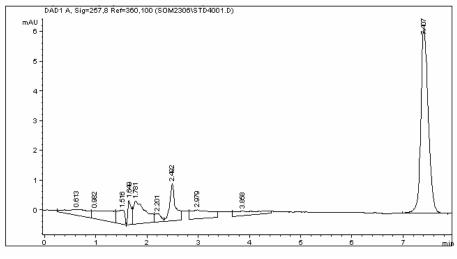
Flow rate : 1 ml/min


Retention time : \sim 7.5 min


รูปที่ 1 ความสัมพันธ์ระหว่างความเข้มข้น (μg/ml) ของสารละลายยา DPH ในน้ำและค่าการดูดกลืนแสง

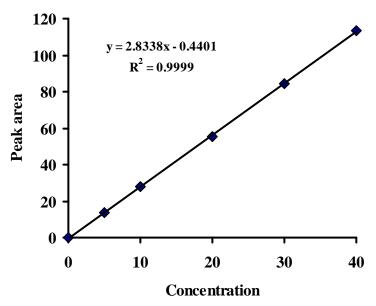

รูปที่ 2 ความสัมพันธ์ระหว่างความเข้มข้น (μg/ml) ของสารละลายยา DPH ใน 0.05 N KCl และค่าการดูดกลืนแสง

รูปที่ 3 ความสัมพันธ์ระหว่างความเข้มข้น (μg/ml) ของสารละลาย ยา DPH ใน 0.1 N KCl และค่าการดูดกลืนแสง



รูปที่ 4 ความสัมพันธ์ระหว่างความเข้มข้น (μg/ml) ของสารละลายยา DPH ใน 0.2 N KCl และค่าการดูดกลืนแสง

รูปที่ 5 ความสัมพันธ์ระหว่างความเข้มข้น (μg/ml) ของสารละลายยา DPH ใน 0.4 N KCI และค่าการดูดกลืนแสง


และได้ chromatogram ดังแสดงในรูปที่ 6 จากการวิเคราะห์สารละลายยา DPH ช่วงความ เข้มข้น 0-40 μ g/ml โดยวิธี HPLC ตามสภาวะข้างต้น พบว่าได้พีคเดี่ยวของยาแยกออกจากสารอื่น ๆอย่าง สมบูรณ์ พีคของยามีความสมมาตรที่ยอมรับได้ (tailing factor < 1) ความสัมพันธ์ระหว่างความเข้มข้นของ สารละลายยาและพื้นที่ใต้พีค (peak area) เป็นเส้นตรง (รูปที่ 7) โดยมีค่าสัมประสิทธิ์การตัดสินใจ (R^2) เท่ากับ 0.9999 และค่า RSD จากการวิเคราะห์หาปริมาณยาในช่วงความเข้มข้น 10-40 μ g/ml น้อยกว่า 2 $\%^2$ สรุปได้ว่าสามารถใช้วิธี HPLC นี้ในการวิเคราะห์หาปริมาณยาที่ได้จากการศึกษาความคงตัวของยา DPH ในตัวกลางชนิดต่างๆได้

รูปที่ 6 Chromatogram ของการวิเคราะห์ยาด้วยวิธี HPLC

¹ USP24/NF19 กำหนดความสมมาตรของพีคสำหรับการวิเคราะห์ยา DPH โดยวิธี HPLC ต้องมี tailing factor < 2⁽²⁾

² USP24/NF19 กำหนด repeatability สำหรับการวิเคราะห์ยา DPH โดยวิธี HPLC ต้องมี %RSD < 2 $^{(2)}$

รูปที่ 7 ความสัมพันธ์ระหว่างความเข้มข้น (μg/ml) ของสารละลายยา DPH และพื้นที่ใต้พีค

3.3. ความคงตัวของยาในตัวกลางและสภาวะที่ใช้ศึกษาการปลดปล่อยยา

สารละลายยา DPH (30 µg/ml) ที่เตรียมด้วยตัวกลางชนิดต่างๆ ได้แก่ น้ำปราศจากอิออน, 0.05, 0.1, 0.2 และ 0.4 N KCI หลังจากเก็บที่ 37°C นาน 24 ชั่วโมง พบว่าปริมาณยา DPH ไม่ได้ลดลงจาก เดิม (ตารางที่ 2) ปริมาณยาที่เพิ่มขึ้นเล็กน้อย (ประมาณ 2 %) สอดคล้องกับค่า %RSD (หรือความ ผิดพลาด) ของวิธีวิเคราะห์ สรุปได้ว่ายา DPH มีความคงตัวดีในตัวกลางชนิดต่างๆและในสภาวะที่ใช้ศึกษา การปลดปล่อยยาในการวิจัยนี้

ตารางที่ 2 ความคงตัวของยา DPH ในตัวกลางชนิดต่างๆ (37°C 24 ชั่วโมง)

ตัวกลาง	1	2	ค่าเฉลี่ย	%*
ยาเริ่มต้น	30.0	30.1	30.0	-
ในน้ำ 37 [°] C	30.5	30.1	30.3	100.7
0.05 N KCI	30.7	30.8	30.7	102.3
0.1 N KCI	30.8	30.7	30.8	102.3
0.2 N KCI	30.7	30.7	30.7	102.1
0.4 N KCI	30.6	30.8	30.7	102.2

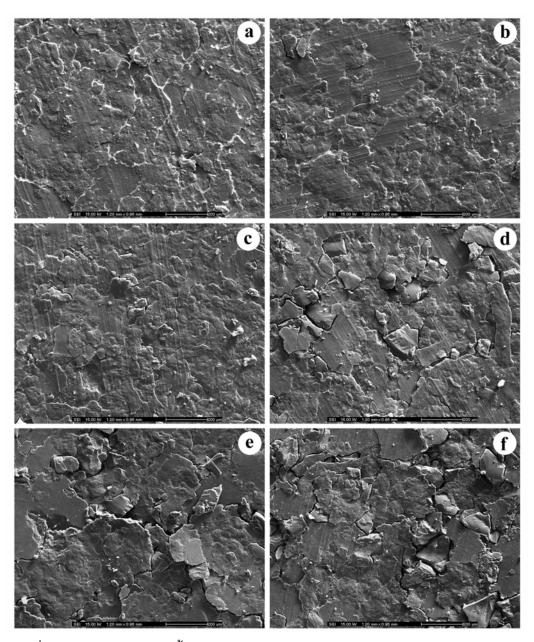
^{*} ค่าเฉลี่ย × 100 / ยาเริ่มต้น

3.4. ผลของเรซิน Amberlite IRP69[®] ต่อสมบัติต่างๆของเมทริกซ์

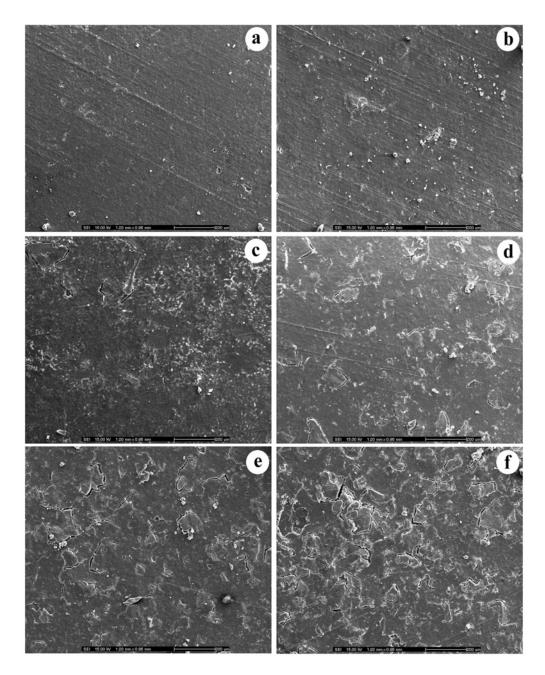
3.4.1. ผลต่อสมบัติกายภาพของเมทริกซ์

การเตรียมเมทริกซ์เกิดจากการชั่งสารผสมให้ได้น้ำหนักแน่นอนแล้วนำไปตอกอัด โดยตรง ทำให้เมทริกซ์ที่ได้ของ HPMC หรือ EC ที่มีเรซิน Amberlite IRP69 ปริมาณต่าง ๆมีน้ำหนักเฉลี่ย ใกล้เคียงกับน้ำหนักเป้าหมายที่ต้องการ (100 mg ต่อเม็ด) ดังแสดงในตารางที่ 3 และ 4 เมทริกซ์ HPMC หรือ EC ที่มีเรซินปริมาณต่าง ๆมีความหนาเฉลี่ยอยู่ระหว่าง 2.80-2.98 mm และ 2.64-2.84 mm ตามลำดับ เมทริกซ์ EC มีความหนาเฉลี่ยเล็กกว่าเมทริกซ์ HPMC เล็กน้อย เนื่องจาก EC มีขนาดอนุภาคเล็กกว่า ทำ ให้มีความสามารถการตอกอัด (compressibility) ดีกว่า HPMC (รายละเอียดอธิบายในหัวข้อถัดไป) อย่างไร ก็ตามเมทริกซ์ HPMC หรือ EC ที่มีเรซินปริมาณต่าง ๆมีเส้นผ่าศูนย์กลางใกล้เคียงกัน (6.40-6.41 mm) ซึ่ง พบว่าใหญ่กว่าขนาดเส้นผ่าศูนย์กลางของสากที่ใช้ตอกเล็กน้อย (6.35 mm) อาจเป็นผลจากเกิดการยืดตัว กลับ (elastic recovery) ของเมทริกซ์ภายหลังการตอก

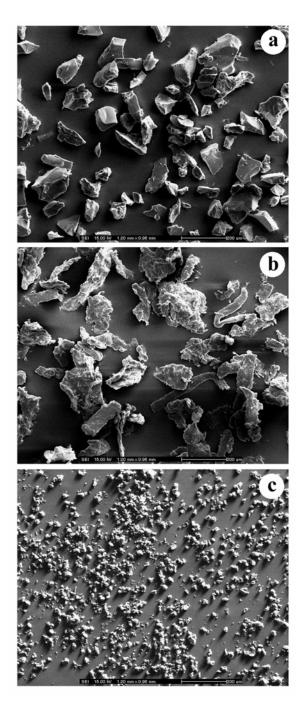
เมทริกซ์ HPMC จะมีความแข็งน้อยกว่าเมทริกซ์ EC (เมื่อไม่มีเรซิน) ดังแสดงใน ตารางที่ 3 และ 4 ซึ่งผลสอดคล้องกับภาพ SEM ของเมทริกซ์ ที่ปรากฏว่าพื้นผิวของเมทริกซ์ HPMC จะ เรียบและอัดแน่นน้อยกว่าพื้นผิวของเมทริกซ์ EC (รูปที่ 8a และ 9a) จากรายงานที่ผ่านมาพบว่าทั้ง HPMC และ EC เป็นสารก่อเมทริกซ์ที่มีความสามารถการตอกอัดดี สามารถใช้เป็นสารก่อเมทริกซ์ด้วยวิธีตอกตรง ได้ โดยระหว่างการตอกอัดเกิดการกลายรูปแบบพลาสติก (plastic deformation) อย่างไรก็ตามไม่พบ รายงานการศึกษาเปรียบเทียบว่าชนิดใดมีความสามารถการตอกอัดดีกว่ากัน ในทางทฤษฎีเป็นที่ยอมรับว่า ความแข็งของสารที่มีการกลายรูปแบบพลาสติกจะขึ้นอยู่กับขนาดอนุภาคของสารค่อนข้างมาก โดยความ แข็งจะเพิ่มขึ้นถ้าสารนั้นมีขนาดอนุภาคเล็กลง เนื่องจากมีพื้นที่ผิวในการเกิดแรงดึงดูดระหว่างอนุภาคของ สาร (interparticular attraction) มากขึ้น⁽⁶⁻⁹⁾ จากภาพถ่าย SEM ของ HPMC และ EC (รูปที่ 10) จะพบว่า HPMC มีขนาดอนุภาคใหญ่กว่า EC อย่างมาก ซึ่งอาจเป็นสาเหตุที่ทำให้เมทริกซ์ HPMC มีความแข็งด้อย กว่าเมทริกซ์ EC

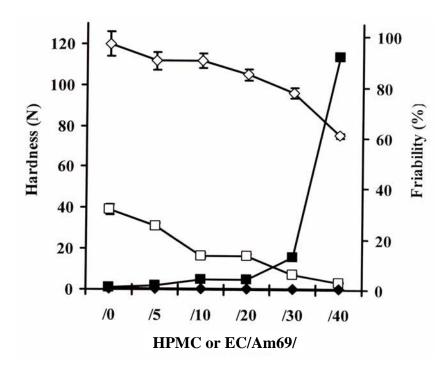

ความแข็งของเมทริกซ์ HPMC หรือ EC ที่มีเรซินบรรจุอยู่ปริมาณต่างๆแสดงใน ตารางที่ 3 และ 4 พบว่าความแข็งของเมทริกซ์จะลดลงเมื่อมีเรซินปริมาณเพิ่มขึ้น (รูปที่ 11) ซึ่งผลสอดคล้อง กับภาพถ่าย SEM ของเมทริกซ์ ที่ปรากฏว่าพื้นผิวของเมทริกซ์จะขรุขระและมีรอยแตกร้าวเพิ่มขึ้นเมื่อ ปริมาณเรซินเพิ่มขึ้น (รูปที่ 8 และ 9) ได้ทำการศึกษาเพิ่มเติมโดยการตอกอัดเรซิน Amberlite IRP69 แด้ยวๆ พบว่าไม่สามารถตอกอัดเรซินให้เป็นเม็ดได้ แสดงว่าอนุภาคเรซินมีความสามารถในการยึด เกาะกันเอง (cohesive attraction) ที่ไม่ดี ยิ่งไปกว่านั้นเมื่อพิจารณาอย่างละเอียดจากภาพถ่าย SEM (รูปที่ 8b-f และรูปที่ 9b-f) จะพบว่ารอยแตกร้าวส่วนใหญ่เกิดรอบๆ (บางส่วนหรือทั้งหมด) อนุภาคเรซิน แสดงให้ เห็นว่าการเกิดแรงระหว่างอนุภาคของเรซินและสารอื่นๆในเมทริกซ์ (adhesive attraction) ก็ไม่ดีด้วยเช่นกัน จากผลการวิจัยนี้จึงสามารถสรุปได้ว่า ความแข็งที่ลดลงของเมทริกซ์ที่บรรจุเรซิน เป็นผลมาจากการที่เรซินมี ความสามารถการตอกอัดไม่ดี ซึ่งมีความสอดคล้องกับผลการวิจัยก่อนหน้าที่พบว่า ยาเม็ดที่บรรจุเรซิเนท (เรซินที่บรรจุยา) หรือเรซิเนทเคลือบจะมีความแข็งลดลง

ตารางที่ 3 สมบัติต่างๆของเมทริกซ์ HPMC ที่มีเรซิน Amberlite IRP69®


การประเมิน	สูตร (HPMC/_)					
	AM69/0	Am69/5	Am69/10	Am69/20	Am69/30	Am69/40
น้ำหนัก (mg)	100.3±0.4	99.8±0.9	99.7±0.8	100.4±0.7	100.5±0.9	100.2±1.5
ความหนา (mm)	2.98±0.02	2.87±0.10	2.80±0.03	2.81±0.06	2.84±0.03	2.88±0.04
เส้นผ่าศูนย์กลาง						
(mm)	6.41±0.02	6.41±0.01	6.40±0.00	6.40±0.00	6.40±0.00	6.40±0.00
ความแข็ง (N)	39.1±2.4	31.3±1.5	16.6±1.2	16.7±1.1	7.5±0.5	3.7±0.4
ความกร่อน (%)	0.88	1.64	3.91	3.94	12.90	92.13
เวลาการแตกตัว						
(min)	กลายเป็นเจล/ไม่แตกตัว					

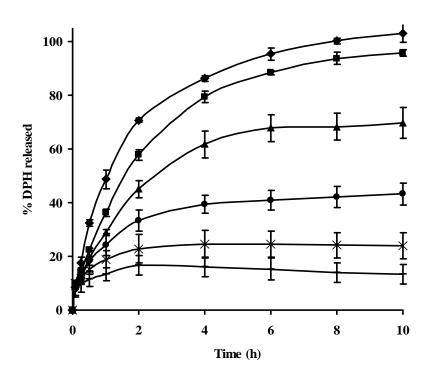
ตารางที่ 4 สมบัติต่างๆของเมทริกซ์ EC ที่มีเรซิน Amberlite IRP69®


การประเมิน	สูตร (EC/_)					
	AM69/0	Am69/5	Am69/10	Am69/20	Am69/30	Am69/40
น้ำหนัก (mg)	100.6±0.5	100.8±1.0	101.1±0.5	100.8±0.6	100.6±0.7	100.5±0.8
ความหนา (mm)	2.84±0.03	2.79±0.03	2.78±0.02	2.71±0.02	2.65±0.02	2.64±0.02
เส้นผ่าศูนย์กลาง						
(mm)	6.40±0.00	6.40±0.00	6.40±0.00	6.40±0.00	6.40±0.00	6.40±0.00
ความแข็ง (N)	120.1±5.9	111.7 <u>±</u> 4.2	105.2±2.7	111.7±3.5	96.4±2.3	75.7±1.3
ความกร่อน (%)	0.21	0.24	0.27	0.24	0.27	0.45
เวลาการแตกตัว						
(min)	>60	46.02±0.70	28.63±1.01	9.08±0.86	4.47±0.65	2.82±0.31

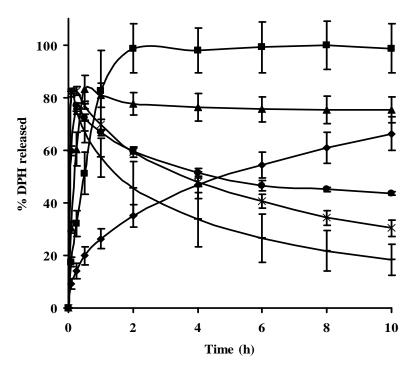

รูปที่ 8 ภาพถ่าย SEM ของพื้นผิวเมทริกซ์ (a) HPMC/Am69/0, (b) /5, (c) /10, (d) /20, (e) /30 และ 40 (f) /40 ตามลำดับ (CamScan MX 2000, UK)

รูปที่ 9 ภาพถ่าย SEM ของพื้นผิวเมทริกซ์ (a) EC/Am69/0, (b) /5, (c) /10, (d) /20, (e) /30 และ 40 (f) /40 ตามลำดับ (CamScan MX 2000, UK)

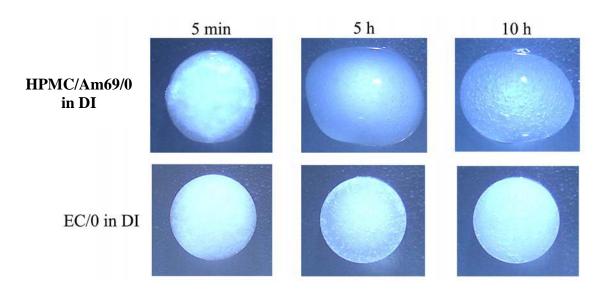
รูปที่ 10 ภาพถ่าย SEM ของ (a) Amberlite IRP69[®], (b) Methocel K4M[®] (HPMC) และ (c) Ethocel 7cP[®] (EC) (CamScan MX 2000, UK)



รูปที่ 11 ความแข็ง (สัญลักษณ์โปร่ง) และความกร่อน (สัญลักษณ์ทีบ) ของ เมทริกซ์ HPMC () และ EC (◊) ที่มีเรซินปริมาณต่างๆ

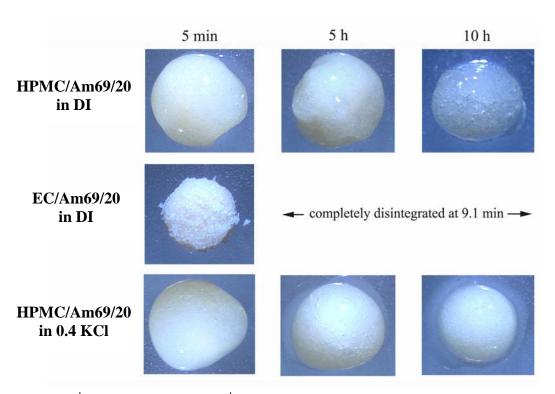

กรณีเมทริกซ์ HPMC พบว่าความกร่อนจะเพิ่มขึ้นเมื่อความแข็งของเมทริกซ์ลดลง โดยแบ่งได้เป็น 2 ช่วง ช่วงแรกเมื่อเมทริกซ์มีเรซินบรรจุจนถึง 20 %w/w ความแข็งของเมทริกซ์ลดลงจาก 39.1 เหลือ 16.7 N และความกร่อนค่อย ๆเพิ่มขึ้นจาก 0.88 เป็น 3.94 % (รูปที่ 11) ช่วงที่สองเมื่อเมทริกซ์ มีเรซินบรรจุมากกว่า 20 %w/w ความแข็งของเมทริกซ์ลดลงจาก 16.7 เหลือ 3.7 N ซึ่งลดลงน้อยกว่าใน ช่วงแรก แต่ความกร่อนเพิ่มขึ้นอย่างรวดเร็วจาก 3.94 เป็น 92 % จากผลที่ได้นี้สรุปได้ว่าความสัมพันธ์ ระหว่างความแข็งและความกร่อนของเมทริกซ์จะมีค่าวิกฤติหนึ่ง (critical matrix strength) ซึ่งถ้าความแข็ง ของเมทริกซ์ลดลงแต่ยังคงสูงกว่าความแข็งวิกฤติ จะทำให้ความกร่อนไม่เปลี่ยนแปลงหรือเพิ่มขึ้นเพียง ้ เล็กน้อย แต่ถ้าความแข็งของเมทริกซ์ลดลงต่ำกว่าความแข็งวิกฤติ จะทำให้ความกร่อนเพิ่มขึ้นอย่างรวดเร็ว ซึ่งจากรูปที่ 11 ค่าความแข็งวิกฤติของเมทริกซ์ HPMC จะมีค่าประมาณ 16-17 N ในทางตรงกันข้ามพบว่า เมทริกซ์ EC มีความกร่อนค่อนข้างคงที่ (0.21-0.45 %) แม้ว่าความแข็งของเมทริกซ์จะลดลงจาก 120 เหลือ 76 N (รูปที่ 11) ที่เป็นเช่นนี้อาจเนื่องจากความแข็งของเมทริกซ์ EC ทุกตำรับ ยังคงมีค่ามากกว่าความแข็ง วิกฤติของมัน ดังจะเห็นได้จากความแข็งของเมทริกซ์ EC ที่บรรจุเรซิน 40 % ก็ยังมากกว่าของเมทริกซ์ HPMC ที่ไม่ได้บรรจุเรซิน รวมทั้งมากกว่าความแข็งวิกฤติของเมทริกซ์ HPMC ด้วย จึงทำให้ความกร่อน การศึกษาก่อนหน้าอันหนึ่ง พบว่าความกร่อนของยาเม็ดไม่เปลี่ยนแปลงมากนัก (0.6-1 %) แม้ว่าความแข็ง จะลดลงจาก 105 เหลือ 60 N⁽¹²⁾

3.4.2 ผลต่อการปลดปล่อยยาออกจากเมทริกซ์ในน้ำปราศจากอิออน


ยาไดเฟนไฮดรามีนไฮโดรคลอไรด์ (DPH) เป็นยาที่มีการละลายน้ำดีมาก โดยมีขีด การละลายประมาณ 1 g/ml การพัฒนายา DPH เป็นระบบนำส่งเมทริกซ์โดยใช้ HPMC หรือ EC เป็นสาร ก่อเมทริกซ์ พบว่าสามารถควบคุมให้ยาปลดปล่อยหรือละลายออกมาอย่างช้า ๆได้ (HPMC/Am69/0 ในรูปที่ 12 และ EC/Am69/0 ในรูปที่ 13) อย่างไรก็ตามกลไกการควบคุมการปลดปล่อยยาออกจากเมทริกซ์ HPMC/Am69/0 และ EC/Am69/0 จะไม่เหมือนกัน เนื่องจากสมบัติที่ต่างกันของสารก่อเมทริกซ์ทั้งสอง HPMC เป็นพอลิเมอร์ที่ชอบน้ำ (hydrophilic polymer) จะพองตัวและเกิดเป็นเจลได้ ดังนั้นเมื่อสัมผัสกับน้ำ เมทริกซ์ HPMC/Am69/0 จะพองตัวและกลายเป็นเจล (รูปที่ 14) และยา DPH ที่ละลายจะแพร่ผ่านเจลเมทริกซ์ออกมา ส่วน EC เป็นพอลิเมอร์ที่ไม่ชอบน้ำ (hydrophobic polymer) จะไม่พองตัวและไม่เกิดเป็นเจล (รูปที่ 14) ดังนั้นเยาจะปลดปล่อยออกจากเมทริกซ์ EC/Am69/0 โดยการแพร่ผ่านเมทริกซ์ที่ไม่พองตัว เมื่อ เปรียบเทียบอัตราการปลดปล่อยออกจากเมทริกซ์ HPMC และ EC ที่ไม่มีเรซิน (HPMC/Am69/0 และ EC/Am69/0) พบว่ายา DPH จะปลดปล่อยออกจากเมทริกซ์ HPMC/Am69/0 ได้รวดเร็วกว่าเมทริกซ์ EC/Am69/0 ที่เป็นเช่นนี้เนื่องจาก HPMC มีสมบัติชอบน้ำและเกิดเป็นเจลได้อย่างรวดเร็ว ยา DPH ซึ่ง ละลายน้ำได้ดีและมีสมบัติชอบน้ำเช่นกัน จึงละลายและปลดปล่อยอกจากเมทริกซ์ HPMC/Am69/0 ได้เร็ว กว่าเมทริกซ์ EC/Am69/0 ซึ่งเตรียมจากพอลิเมอร์ที่ไม่ชอบน้ำและไม่ละลายน้ำ⁽¹⁴⁻¹⁶⁾

รูปที่ 12 การปลดปล่อยยา DPH ออกจากเมทริกซ์ (♦) HPMC/Am69/0, (■)
/5, (▲) /10, (●) /20, (×) /30 และ (─) /40 ตามลำดับ ในน้ำ

รูปที่ 13 การปลดปล่อยยา DPH ออกจากเมทริกซ์ (♦) EC/Am69/0, (■)
/5, (▲) /10, (●) /20, (×) /30 และ (─) /40 ตามลำดับ ในน้ำ



รูปที่ 14 ภาพถ่ายของเมทริกซ์ระหว่างการปลดปล่อยยาในน้ำ (Digital Blue QX5, Taiwan)

ผลของเรซินต่อการปลดปล่อยยาออกจากเมทริกซ์ HPMC แสดงในรูปที่ 12 พบว่ายา จะปลดปล่อยออกจากเมทริกซ์ที่บรรจุเรซินช้าและน้อยกว่าที่ไม่ได้บรรจุเรซิน แสดงให้เห็นว่าเรซินสามารถ ควบคุมการปลดปล่อยออกจากเมทริกซ์ HPMC ให้ช้าลงได้ การควบคุมการปลดปล่อยยาของเรซินเกิดขึ้น จากสมบัติการพองตัวของ HPMC และสมบัติการแลกเปลี่ยนอิออนของเรซิน เมื่อเมทริกซ์สัมผัสกับน้ำจะ พองตัวและกลายเป็นเจล (รูปที่ 15) และให้ยาที่ละลายแพร่และปลดปล่อยออกมา แต่เนื่องจากในเจลเมท EC/Am69/0 ลายบางส่วนจะเกิดการแลกเปลี่ยนอิออนกับเรซินและเกิดเป็นสารเชิงซ้อน (drug resin in DI (resinate) ดังปฏิกิริยา

$$RSO_3Na + DPH^+ \Leftrightarrow RSO_3DPH + Na^+$$
 [Eqn.1]

ยาที่อยู่ในเรซิเนทจะจับกับหมู่แลกเปลี่ยนอิออน (หมู่ซัลโฟนิก) ของเรซินด้วยแรง ดึงดูดไฟฟ้าสถิต (electrostatic attraction) เนื่องจากในน้ำมีอิออนอยู่น้อยมาก จึงไม่มีอิออนไปแลกเปลี่ยนยา ให้ออกจากเรซิเนท ดังนั้นการปลดปล่อยยาออกจากเมทริกซ์ที่บรรจุเรซินจึงซ้าและน้อยลง

รูปที่ 15 ภาพถ่ายของเมทริกซ์ที่มีเรซิน 20 %w/w (HPMC/Am69/20 และ EC/Am69/20) ระหว่างการปลดปล่อยยาในน้ำและใน 0.4 N KCI (Digital Blue QX5, Taiwan)

ประสิทธิภาพในการควบคุมให้ยาปลดปล่อยออกจากเมทริกซ์ HPMC จะสัมพันธ์กับ ปริมาณเรชิน เมื่อเรชินในเมทริกซ์เพิ่มขึ้นยาจะปลดปล่อยได้น้อยลง (รูปที่ 12) ซึ่งสามารถอธิบายได้โดย อาศัยหลักการสมดุล (equilibrium principle) ของปฏิกิริยาการแลกเปลี่ยนอิออน (17.18) [Eqn.1] เมื่อมี ปริมาณเรซิน (RSO₃Na) ในเมทริกซ์มากขึ้น เพื่อรักษาสมดุลของปฏิกิริยาให้คงที่ ปฏิกิริยาจะดำเนินจาก ซ้ายไปขวามากขึ้นหรือเกิดการแลกเปลี่ยนระหว่างยาและเรซินเพิ่มขึ้น (เกิดเป็นเรซิเนทเพิ่มขึ้น) การ เกิดปฏิกิริยาจากขวาไปซ้ายไม่น่าจะเกิดขึ้น เนื่องจากในน้ำมีอิออนอยู่น้อยมาก ดังนั้นจึงมียาที่ละลาย เหลืออยู่ในเมทริกซ์น้อยลง ทำให้การปลดปล่อยยาออกเมทริกซ์ซ้าและน้อยลง

ผลการศึกษาข้างต้นสอดคล้องเพียงบางส่วนกับผลการศึกษาก่อนหน้า (17) ซึ่งในผล การศึกษาครั้งก่อนพบว่า การปลดปล่อยยาออกจากเมทริกซ์จะลดลงเมื่อปริมาณเรซินเพิ่มขึ้นถึงระดับหนึ่ง หลังจากนั้นการปลดปล่อยยาจะคงที่ไม่ขึ้นอยู่กับปริมาณเรซินที่เพิ่มขึ้นอีก แต่ในการศึกษานี้กลับพบว่าเมื่อ ปริมาณเรซินในเมทริกซ์เพิ่มขึ้น การปลดปล่อยยาออกจากเมทริกซ์จะยังคงลดลงอย่างต่อเนื่อง ยิ่งไปกว่านั้น ในเมทริกซ์ที่มีเรซินบรรจุอยู่มากกว่า 30 % ยังพบว่ามีการลดลงของยาที่ได้ปลดปล่อยออกมาแล้ว ลักษณะ เช่นนี้อธิบายได้ว่ายาที่ปลดปล่อยออกมาแล้วมีการแพร่กลับเข้าไปในเมทริกซ์และแลกเปลี่ยนกับเรซิน โดยเฉพาะกับเมทริกซ์ที่มีเรซินบรรจุ 40 % เนื่องจากเรซินยังมีพื้นที่สำหรับแลกเปลี่ยนยาที่เหลือจากการจับ กับยาที่ละลายอยู่ในเมทริกซ์มากกว่า จึงสามารถทำให้เกิดการแพร่กลับและเกิดการแลกเปลี่ยนกับยาที่ได้ ปลดปล่อยออกมาแล้วได้มากกว่า ในขณะที่เมทริกซ์ที่มีเรซินบรรจุน้อยกว่า 30 % (HPMC/Am69/5-/20) ไม่ พบการลดลงของยาที่ได้ปลดปล่อยออกมาแล้ว เนื่องจากเรซินมีปริมาณน้อย จึงไม่มีพื้นที่สำหรับแลกเปลี่ยน ยาเหลืออยู่อีก

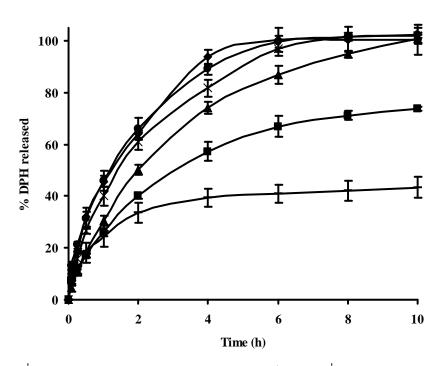
เมื่อสัมผัสกับน้ำเมทริกซ์ EC ที่ไม่มีเรชิน (EC/Am69/0) จะไม่เกิดเป็นเจลเมทริกซ์ และไม่แตกตัวตลอดเวลาการทดสอบการปลดปล่อยยา (10 ชั่วโมง รูปที่ 14) แต่เมทริกซ์ EC ที่มีเรชิน (EC/Am69/5-/40) จะแตกตัว (รูปที่ 15) ทำให้พฤติกรรมการปลดปล่อยยาแตกต่างไปจากเมทริกซ์ HPMC ที่ มีเรชิน (รูปที่ 13) การแตกตัวของเมทริกซ์ EC จะเร็วขึ้นเมื่อมีปริมาณเรชินมากขึ้น (ดารางที่ 3) การค้นพบ นี้แสดงให้เห็นว่าเรชิน Amberlite IRP69[®] มีสมบัติเป็นสารช่วยแตกตัวเช่นเดียวกับเรซิน Amberlite IRP88[®] และ Indion 414[®] ดังที่ได้มีการรายงานอยู่ในผลการวิจัยก่อนหน้า^(19,20) เรซินทั้งสองนี้มีผลิตภัณฑ์ ออกจำหน่ายเพื่อใช้เป็นสารช่วยแตกตัวในยาเม็ด ซึ่งกลไกการเป็นสารช่วยแตกตัวเกิดจากสมบัติการพองตัว (swelling property) ของเรซิน เมื่อเรซินในเมทริกซ์สัมผัสกับน้ำ เรซินจะพองตัวผลักดันและทำลายแรงดึงดูด ระหว่างอนุภาค (inter-particulate binding) ทำให้เมทริกซ์แตกตัว ผลการศึกษานี้ทำให้ทราบว่าอาจไม่เหมาะ ในการใช้เรซินเป็นสารช่วยควบคุมการปลดปล่อยยาในเมทริกซ์ EC หรือของสารก่อเมทริกซ์ที่ไม่พองตัว ชนิดอื่นๆ เนื่องจากอาจทำให้เมทริกซ์เกิดการแตกตัวและจะเกิดการปลดปล่อยยาออกมาในปริมาณสูงทันที (dose-dumping) ซึ่งจะเป็นอันตรายต่อผู้ป่วยได้

การปลดปล่อยยาออกจากเมทริกซ์ EC ที่มีเรซิน 5 % (EC/Am69/5) จะเร็วกว่าเมท ริกซ์ EC ที่ไม่มีเรซิน (EC/Am69/0) เนื่องจากผลการเป็นสารช่วยแตกตัวของเรซินดังกล่าวข้างต้น ถึงกระนั้น จะพบว่าก่อนถึงเวลาการแตกตัวของเมทริกซ์ (46 นาที) การปลดปล่อยยาออกจากเมทริกซ์ EC/Am69/5 ก็ ยังเร็วกว่าเมทริกซ์ EC/Am69/0 (รูปที่ 13) อธิบายได้ว่าแม้ยังไม่แตกตัวหมดแต่เมทริกซ์ EC/Am69/5 จะ

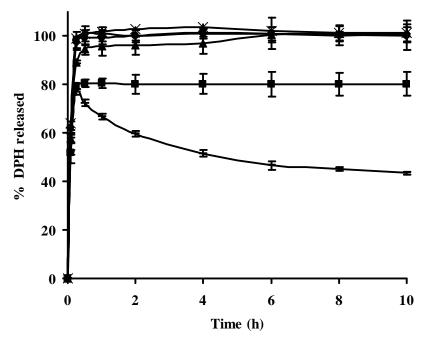
กร่อนและเกิดรอยแยก ทำให้ยาปลดปล่อยออกมาได้เร็วขึ้น นอกจากนี้ยังพบว่าการปลดปล่อยยาออกจาก เมทริกซ์ EC/Am69/5 จะสมบูรณ์เมื่อเวลาล่วงเลยไปหลังจากที่เมทริกซ์แตกตัวแล้วนาน 1-2 ชั่วโมง แสดงให้ เห็นว่าเมทริกซ์จะแตกตัวเป็นชิ้นเล็ก ๆ ซึ่งยายังคงปลดปล่อยออกมาได้อยู่

การแตกตัวอย่างรวดเร็วของเมทริกซ์ EC ที่มีเรซิน ไม่ได้ทำให้การปลดปล่อยยา ออกมามากขึ้นเสมอไป พบว่าเมทริทซ์ที่มีเรซินตั้งแต่ 10 % ขึ้นไป (EC/Am69/10-/40) การปลดปล่อยยาจะ แบ่งออกได้เป็นสองช่วง (biphasic release) ช่วงแรกการปลดปล่อยยาจะสูงขึ้นอย่างรวดเร็ว จากนั้นการ ปลดปล่อยยาจะค่อย ๆลดลง (รูปที่ 13) สาเหตุเนื่องจากสมบัติการแลกเปลี่ยนอิออนนอกเหนือจากสมบัติการ เป็นสารช่วยแตกตัวของเรซิน การปลดปล่อยยาในช่วงแรกเกิดขึ้นอย่างรวดเร็ว เนื่องจากเรซินจะทำให้เมท ริกซ์แตกตัวและเพิ่มพื้นที่ผิวให้ยาปลดปล่อยอกมา ซึ่งในช่วงนี้เมทริกซ์จะแตกตัวและปลดปล่อยยาเร็วขึ้น เมื่อปริมาณเรซินในเมทริกซ์เพิ่มขึ้น อย่างไรก็ตามการปลดปล่อยยาไม่สมบูรณ์และจะค่อย ๆลดลง เนื่องจาก ยาที่ปลดปล่อยอกมาจะแลกเปลี่ยนและจับกับเรซินที่กระจายอยู่ในตัวกลาง เกิดเป็นสารเชิงซ้อนระหว่างยา และเรซินหรือเรซิเนทขึ้น ยาที่อยู่ในเรซิเนทจะไม่ปลดปล่อยอกมา เนื่องจากตัวกลางที่ใช้ทดสอบการ ปลดปล่อยยาเป็นน้ำปราศจากอิออน จึงไม่มีอิออนที่จะไปแลกเปลี่ยนยาให้ออกจากเรซิเนทได้ ในช่วงหลังนี้ การลดลงของยาที่ปลดปล่อยอกมาจะมากขึ้น เมื่อปริมาณเรซินในเมทริกซ์มากขึ้น เพราะยาจะแลกเปลี่ยน และจับกับเรซินหรือเกิดเรซิเนทได้เพิ่มขึ้น

3.4.3 ผลต่อการปลดปล่อยยาออกจากเมทริกซ์ในสารละลายอิออน


เป็นที่ทราบว่าการปลดปล่อยยาออกจากระบบนำส่งที่อาศัยเรชินแลกเปลี่ยนอิออนจะ ขึ้นอยู่กับปริมาณอิออนในตัวกลางที่ใช้ทดสอบการปลดปล่อยยา (13,21) ดังนั้นในการวิจัยนี้จึงได้ทำการทดสอบ การปลดปล่อยยาเพิ่มเติมในสารละลายโพแทสเซียมคลอไรด์ (KCI) ที่ความเข้มขันต่างๆ (0.005-0.4 N) โดย ศึกษากับเฉพาะเมทริกซ์ที่มีเรซิน Amberlite IRP69 20 % ดังที่ได้คาดการณ์ไว้พบว่าปริมาณ KCI มีผล อย่างมากต่อการปลดปล่อยยาออกจากเมทริกซ์ของทั้ง HPMC และ EC ที่มีเรซิน (HPMC/Am69/20 ในรูปที่ 16 และ EC/Am69/20 ในรูปที่ 17) โดยการปลดปล่อยยาออกจากเมทริกซ์ในสารละลาย KCI จะมากกว่าใน น้ำปราศจากอิออน สาเหตุเนื่องจากอิออน K ในตัวกลางมีประจุบวกเหมือนกับประจุของยา DPH จึงเป็น เคาน์เตอร์อิออน (counter ion) ที่สามารถแย่งยาแลกเปลี่ยนและจับกับเรซิน ทำให้ยาจับกับเรซินหรือเกิด เรซิเนทลดลง ดังปฏิกิริยา

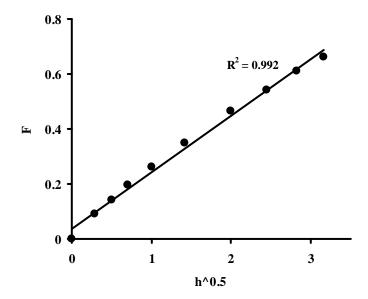
$$RSO_3Na + DPH^+ + K^+ \Leftrightarrow RSO_3(DPH/K) + Na^+$$
 [Eqn.2]


และแม้ว่ายาจะแลกเปลี่ยนและจับกับเรซินไปแล้วก็ตาม อิออน K ⁺ ในตัวกลางก็ สามารถที่จะไปแลกเปลี่ยนยาที่จับกับเรซินให้เป็นยาอิสระและปลดปล่อยออกจากเรซิเนทได้ ดังปฏิกิริยา

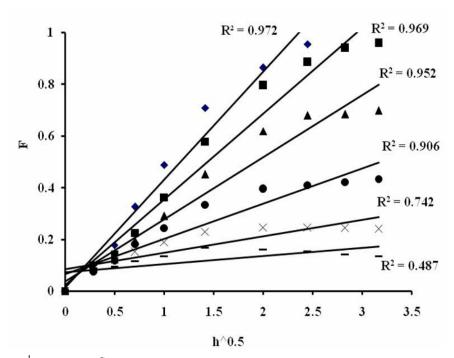
$$RSO_3DPH + K^+ \Leftrightarrow RSO_3K + DPH^+$$
 [Eqn.3]

จากผลร่วมกันของปฏิกิริยาที่ 2 และ 3 ข้างต้น ทำให้ยาปลดปล่อยออกจากเมทริกซ์ ได้เพิ่มขึ้น ส่วนคลอไรด์อิออน (Cl) ในตัวกลางมีประจุลบซึ่งตรงข้ามกับประจุของยา DPH (แต่มีประจุ เหมือนกับประจุของเรซิน) จึงเป็นโคอิออน (co-ion) มีรายงานว่าจะไม่สามารถแลกเปลี่ยนและจับกับเรซิน แลกเปลี่ยนอิออนประจุบวกได้ (เรซินมีประจุลบ) ดังนั้นจึงไม่น่ามีผลต่อการปลดปล่อยยาออกจากเมทริกซ์²²⁾

รูปที่ 16 การปลดปล่อยยา DPH ออกจากเมทริกซ์ HPMC ที่มีเรซิน 20 %w/w
(HPMC/Am69/20) ในสารละลายต่างๆ (─) DI, (■) 0.005, (▲) 0.05,
(×) 0.1, (●) 0.2 และ (♦) 0.4 N KCI ตามลำดับ

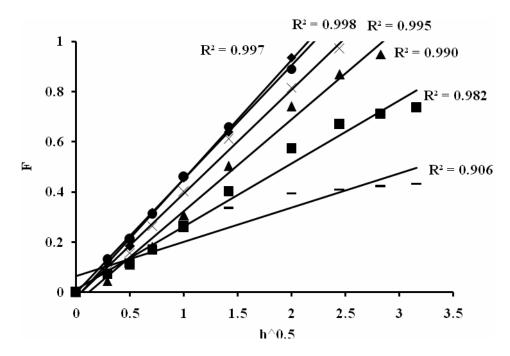


รูปที่ 17 การปลดปล่อยยา DPH ออกจากเมทริกซ์ EC ที่มีเรซิน 20 %w/w
(EC/Am69/20) ในสารละลายต่างๆ (─) DI, (■) 0.005, (▲) 0.05, (×)
0.1. (●) 0.2 และ (♦) 0.4 N KCI ตามลำดับ


การพองตัวของเมทริกซ์ HPMC ที่มีเรซิน 20 % (HPMC/Am69/20) ในสารละลาย KCI แสดงในรูปที่ 15 พบว่าเมทริกซ์ HPMC/Am69/20 ยังคงพองตัวและเกิดเป็นเจลดังเช่นที่พบในน้ำ ปราศจากอิออน การเกิดเจลค่อนข้างรวดเร็ว (ภายใน 5 นาที) และเจลเมทริกซ์ยังคงอยู่จนกระทั่งสิ้นสุดการ ทดสอบการปลดปล่อยยา (10 ชั่วโมง) ถึงแม้ว่าจะมีการกร่อนของเมทริกซ์ไปบ้าง ในสารละลาย KCI ที่มีความเข้มขันสูง เช่น สารละลาย 0.4 N KCI มีแนวโน้มว่าเมทริกซ์ HPMC/Am69/20 จะเกิดเป็นเจล พองตัว และกร่อนหายไปซ้าและน้อยกว่าในน้ำปราศจากอิออนและสารละลาย KCI ที่มีความเข้มขันต่ำ (0.005-0.2 N) สาเหตุอาจเป็นเพราะผล salting out ต่อพอลิเมอร์ HPMC (23) ถึงกระนั้นการที่ยาปลดปล่อยออกจากเมทริกซ์ เพิ่มขึ้นในสารละลาย KCI ที่มีความเข้มขันสูงขึ้น (การกร่อนของเมทริกซ์ลดลง) จึงเป็นการสนับสนุนว่า กระบวนแพร่ของยาและการแลกเปลี่ยนอิออนของเรซินเป็นปัจจัยควบคุม (determining factor) การ ปลดปล่อยยาออกจากเมทริกซ์เหล่านี้มากกว่ากระบวนการกร่อน (erosion) สำหรับเมทริกซ์ EC ที่มีเรซิน 20 % (EC/Am69/20) ยังคงแตกตัวได้ดีในสารละลาย KCI ความเข้มขันต่างๆ โดยมีเวลาการแตกตัวใกล้เคียง กับในน้ำปราศจากอิออน คืออยู่ในช่วง 8.2-11.8 นาที

3.4.4 จลนศาสตร์ของการปลดปล่อยยาออกจากเมทริกซ์ที่มีเรซิน

เมื่อทดสอบการปลดปล่อยยาในน้ำปราศจากอิออนด้วยความสัมพันธ์จลนศาสตร์ รูปแบบต่างๆ พบว่าจลนศาสตร์ของการปลดปล่อยยาออกเมทริกซ์ HPMC และ EC ที่ไม่มีเรซินจะเป็นไป ตาม Higuchi model (R² = 0.992 สำหรับ EC/Am69/0 ในรูปที่ 18 และ R² = 0.972 สำหรับ HPMC/Am69/0 ในรูปที่ 19) การบรรจุเรซินจะมีผลกระทบอย่างมากต่อรูปแบบจลนศาสตร์ของการ ปลดปล่อยยาออกจากเมทริกซ์ของทั้ง HPMC และ EC เมทริกซ์ EC ที่บรรจุเรซินจะแตกตัว ทำให้ยาไม่ถูก ควบคุมด้วยกระบวนการแพร่ผ่านเมทริกซ์อีกต่อไป (R² ลดลงจาก 0.992 เหลือ 0.232 ดังตารางที่ 46 ใน ภาคผนวก) ส่วนเมทริกซ์ HPMC ที่บรรจุเรซิน (HPMC/Am69/5-/40) การแพร่ของยาผ่านเจลเมทริกซ์ที่พอง ตัวจะถูกรบกวนจากกระบวนการแลกเปลี่ยนอิออนของเรซิน ทำให้รูปแบบจลนศาสตร์ของการปลดปล่อยยา ออกจากเมทริกซ์เบี่ยงเบนไปจาก Higuchi model (R² ลดลงจาก 0.972 เหลือ 0.487 ดังรูปที่ 19)



รูปที่ 18 เส้นแนวโน้มจากการ plot ตาม Higuchi model ของการปลดปล่อย ยาออกจากเมทริกซ์ EC ที่ไม่มีเรซิน (EC/Am69/0)

รูปที่ 19 เส้นแนวโน้มจากการ plot ตาม Higuchi model ของการปลดปล่อยยา ออกจากเมทริกซ์ (♦) HPMC/Am69/0, (■) /5, (▲) /10, (●) /20, (×) /30 และ (—) /40 ตามลำดับ ในน้ำ

รูปที่ 20 แสดงผลของโพแทสเซียมอิออนต่อจลนศาสตร์ของการปลดปล่อยยาออกจาก เมทริกซ์ HPMC (ศึกษาเฉพาะที่มีเรซินปริมาณ 20 % หรือ HPMC/Am69/20) พบว่าจลนศาสตร์ของการ ปลดปล่อยยาจะกลับเป็นไปตาม Higuchi model ตามเดิม (ค่า R² เพิ่มขึ้น) เหตุผลเนื่องจากอิออนในตัวกลาง จะไปแย่งยาจับกับเรซิน ทำให้ยาไม่ถูกแลกเปลี่ยนเข้าไปในเรซินและปลดปล่อยออกจากเมทริกซ์ดัวย กระบวนการแพร่ พฤติกรรมนี้ยืนยันว่าการปลดปล่อยยาที่ช้าลงของเมทริกซ์ที่มีเรซินเกิดจากกลไกการ แลกเปลี่ยนอิออน ผลของโพแทสเซียมอิออนต่อจลนศาสตร์ของการปลดปล่อยยาออกจากเมทริกซ์ EC (ศึกษาเฉพาะที่มีเรซินปริมาณ 20 % หรือ EC/Am69/20) พบว่าไม่มีรูปแบบแน่นอน (ค่า R² ไม่มีแนวโน้มไป ทางใดทางหนึ่งชัดเจน ดังตารางที่ 48 ในภาคผนวก) เนื่องจากเมทกริซ์เกิดการแตกตัว

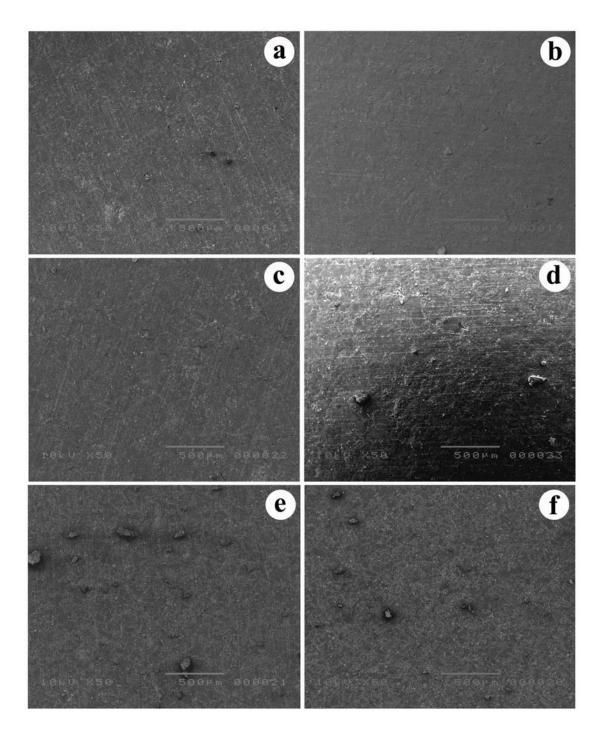
รูปที่ 20 เส้นแนวโน้มจากการ plot ตาม Higuchi model ของการปลดปล่อยยา ออกจากเมทริกซ์ HPMC/Am69/20 ในสารละลายต่างๆ (—) DI, (■) 0.005, (▲) 0.05, (×) 0.1, (●) 0.2 และ (♦) 0.4 N KCI ตามลำดับ

3.5. ผลของเรซิน Amberlite IRP64® ต่อสมบัติต่างๆของเมทริกซ์

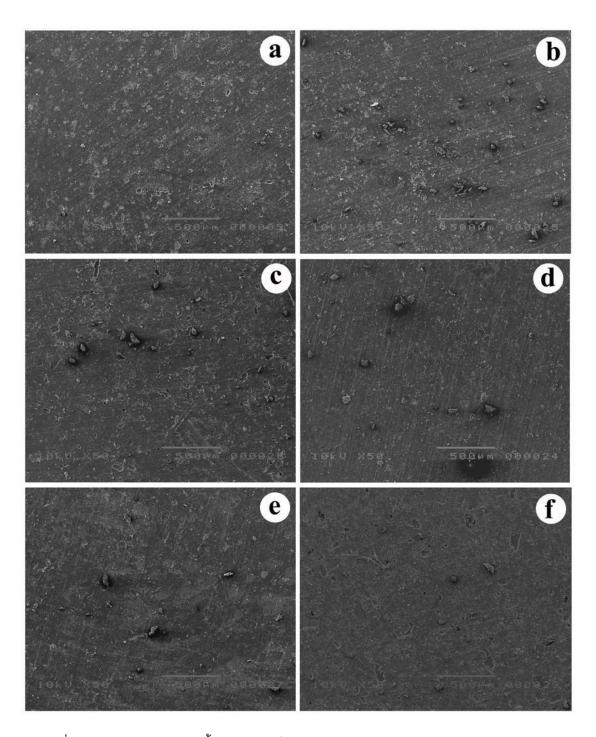
3.5.1. ผลต่อสมบัติกายภาพของเมทริกซ์

คล้ายกับในกรณีของเมทริกซ์ที่มีเรซิน Amberlite IRP69 แมทริกซ์ที่ได้ของ HPMC หรือ EC ที่มีเรซิน Amberlite IRP64 ปริมาณต่างๆ มีน้ำหนักเฉลี่ยใกล้เคียงกับน้ำหนักเป้าหมายที่ต้องการ (100 mg ต่อเม็ด %RSD < 1) เนื่องจากการเตรียมเมทริกซ์เกิดจากการซั่งให้ได้น้ำหนักแน่นอนแล้วนำไป ตอกอัดโดยตรงทำให้ได้น้ำหนักเมทริกซ์ใกล้เคียงกัน (ตารางที่ 5 และ 6) เมทริกซ์ HPMC หรือ EC ที่มี เรซินปริมาณต่างๆ มีความหนาเฉลี่ยอยู่ในช่วง 2.70-2.90 mm และมีเส้นผ่าศูนย์กลางเฉลี่ยอยู่ในช่วง 6.38-6.40 mm ตามลำดับ ขนาดเส้นผ่าศูนย์กลางเฉลี่ยของเมทริกซ์ใหญ่กว่าขนาดเส้นผ่าศูนย์กลางของสากที่ใช้ ตอกเล็กน้อย (6.35 mm) อาจเนื่องจากเกิดการยืดตัวกลับ (elastic recovery) ของเมทริกซ์ภายหลังการตอก

ตาราง 5 สมบัติต่างๆของเมทริกซ์ HPMC ที่มีเรซิน Amberlite IRP64®


การประเมิน	สูตร (HPMC/_)					
	Am64/0	Am64/5	Am64/10	Am64/20	Am64/30	Am64/40
น้ำหนัก (mg)	100.0±0.5	100.1±0.5	99.9±0.4	100.5±0.3	100.3±0.3	100.5±0.4
ความหนา (mm)	2.73±0.01	2.82±0.03	2.82±0.02	2.83±0.01	2.83±0.01	2.71±0.01
เส้นผ่าศูนย์กลาง						
(mm)	6.39±0.01	6.40±0.00	6.40±0.00	6.40±0.00	6.38±0.00	6.40±0.01
ความแข็ง (N)	55.6±2.6	72.2±1.6	59.4±1.4	88.0±1.1	76.6±7.0	90.8±3.8
ความกร่อน (%)	0.31	0.17	0.10	0.01	0.12	0.01
เวลาการแตกตัว						
(min)	กลายเป็นเจล/ไม่แตกตัว					

์ ตาราง 6 สมบัติต่างๆของเมทริกซ์ EC ที่มีเรซิน Amberlite IRP64®

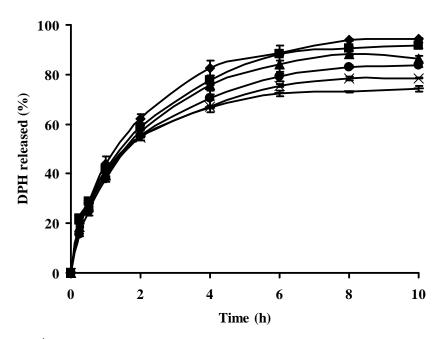

การประเมิน	สูตร (EC/_)					
	Am64/0	Am64/5	Am64/10	Am64/20	Am64/30	Am64/40
น้ำหนัก (mg)	100.1±0.3	99.7±0.3	100.0±0.4	100.2±0.6	100.3±0.4	100.5±0.2
ความหนา (mm) เส้นผ่าศนย์กลาง	2.80±0.01	2.90±0.01	2.90±0.02	2.87±0.02	2.83±0.01	2.70±0.01
(mm)	6.39±0.01	6.40±0.01	6.39±0.01	6.38±0.00	6.38±0.01	6.40±0.00
ความแข็ง (N)	114.0±3.5	119.2±2.7	126.2±3.9	129.7±5.3	137.2±3.9	135.5±5.2
ความกร่อน (%) เวลาการแตกตัว	0.007	0.19	0.26	0.28	0.03	0.099
(min)	>60	>60	>60	>60	>60	>60 (กร่อน)

ความแข็งของเมทริกซ์ HPMC หรือ EC ที่มีเรซิน Amberlite IRP64 บรรจุอยู่ ปริมาณต่างๆ แสดงในตารางที่ 5 และ 6 พบว่าความแข็งของเมทริกซ์จะเพิ่มขึ้นเมื่อมีปริมาณเรซินเพิ่มขึ้น ซึ่งผลสอดคล้องกับภาพ SEM ของเมทริกซ์ที่ปรากฏว่าพื้นผิวของเมทริกซ์ทุกสูตรมีความเรียบแน่น (รูปที่ 21 และ 22) ได้ทำการศึกษาเพิ่มเติมโดยการตอกอัดเรซิน Amberlite IRP64 เดี่ยวๆ พบว่าได้เมทริกซ์ที่มี ความแข็งสูงมาก แสดงว่าเรซินชนิดนี้มีความสามารถในการตอกอัด (compressibility) ที่ดี ซึ่งจะตรงกันข้าม กับเรซิน Amberlite IRP69 ที่มีความสามารถในการตอกอัดที่ไม่ดี เรซิน Amberlite IRP64 และ IRP69 มีชนิดของโคพอลิเมอร์แตกต่างกัน เรซิน Amberlite IRP64 มีโคพอลิเมอร์เป็น crosslinked methacrylic acid-divinylbenzene ส่วนเรซิน Amberlite IRP69 มีโคพอลิเมอร์เป็น crosslinked styrene-

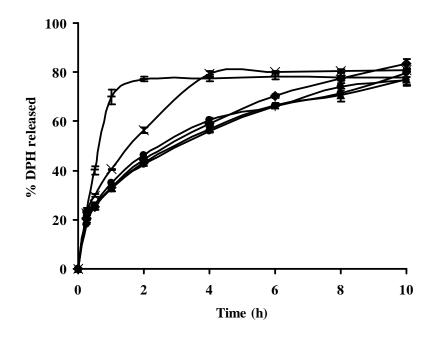
divinylbenzene (รูปที่ 23) จากผลการวิจัยนี้ชี้ให้เห็นว่าโครงสร้างเคมีของโคพอลิเมอร์อาจมีอิทธิพลต่อ ความสามารถในการตอกอัดของเรซิน เรซินที่มีโคพอลิเมอร์เป็น crosslinked methacrylic acid-divinylbenzene จะมีความสามารถในการตอกอัดดีกว่าเรซินที่มีโคพอลิเมอร์เป็น crosslinked styrene-divinylbenzene

รูปที่ 21 ภาพถ่าย SEM ของพื้นผิวเมทริกซ์ (a) HPMC/Am64/0, (b) /5, (c) /10, (d) /20, (e) /30 และ (f) /40 ตามลำดับ (Jeol JSM 5400, Japan)

รูปที่ 22 ภาพถ่าย SEM ของพื้นผิวเมทริกซ์ (a) EC/Am64/0, (b) /5, (c) /10, (d) /20, (e) /30 และ (f) /40 ตามลำดับ (Jeol JSM 5400, Japan)

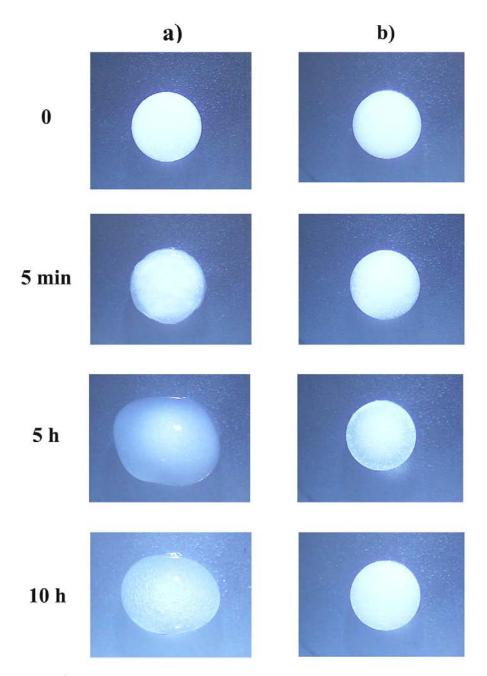

รูปที่ 23 โครงสร้างเคมีของเรซิน Amberlite IRP69 $^{ ext{ iny R}}$ (a) และ Amberlite IRP64 $^{ ext{ iny R}}$ (b) ตามลำดับ

ความกร่อนของเมทริกซ์ HPMC หรือ EC ที่บรรจุเรซิน Amberlite IRP64[®] จะต่ำ (<1 %) ดังแสดงในตารางที่ 5 และ 6 ตามลำดับ สาเหตุเนื่องจากเรซินชนิดนี้มีความสามารถในการตอกอัดดี ทำให้เมทริกซ์มีความแข็งเพิ่มขึ้น จึงมีความกร่อนต่ำ ซึ่งผลจะตรงกันข้ามกับเมทริกซ์ที่บรรจุเรซิน Amberlite IRP69[®] ที่มีความกร่อนสูง เพราะความแข็งของเมทริกซ์ลดลงจากการที่เรซิน Amberlite IRP69[®] มี ความสามารถในการตอกอัดที่ไม่ดี


3.5.2 ผลต่อการปลดปล่อยยาของออกจากเมทริกซ์ในน้ำปราศจากอิออน ยาไดเฟนไฮดรามีนไฮโดรคลอไรด์ (DPH) เป็นยาที่มีการละลายน้ำดีมาก โดยมีขีด การละลายประมาณ 1 g/ml⁽¹³⁾ การพัฒนายา DPH เป็นระบบนำส่งเมทริกซ์โดยใช้ HPMC หรือ EC เป็นสาร ก่อเมทริกซ์ สามารถควบคุมยาให้ปลดปล่อยหรือละลายออกมาอย่างช้าๆได้ (HPMC/Am64/0 ในรูปที่ 24 และ EC/Am64/0 ในรูปที่ 25) อย่างไรก็ตามกลไกควบคุมการปลดปล่อยยาออกจากเมทริกซ์ HPMC/Am64/0 และ EC/Am64/0 จะไม่เหมือนกัน เนื่องจากสมบัติที่ต่างกันของสารก่อเมทริกซ์ทั้งสอง HPMC เป็นพอลิเมอร์ที่ชอบน้ำ (hydrophilic polymer) และเกิดเป็นเจลได้ ดังนั้นเมื่อสัมผัสกับน้ำ เมทริกซ์ HPMC/Am64/0 จะเกิดเป็นเจล (รูปที่ 26a) และยา DPH ที่ละลายจะแพร่ผ่านเจลเมทริกซ์ออกมา ส่วน EC เป็นพอลิเมอร์ที่ไม่ชอบน้ำ (hydrophobic polymer) ไม่พองตัว และไม่เกิดเป็นเจล (รูปที่ 26b) ดังนั้นยาจะ ปลดปล่อยออกจากเมทริกซ์ EC/Am64/0 โดยการแพร่ผ่านเมทริกซ์ที่ไม่พองตัว เมื่อเปรียบเทียบอัตราการ ปลดปล่อยยาระหว่างเมทริกซ์ HPMC/Am64/0 และ EC/Am64/0 จะพบว่ายา DPH ปลดปล่อยออกจากเมทริกซ์ HPMC/Am64/0 ได้รวดเร็วกว่าเมทริกซ์ EC/Am64/0 สาเหตุเนื่องจาก HPMC มีสมบัติชอบน้ำ และเกิด เจลได้รวดเร็ว ยา DPH ละลายน้ำได้ดีและมีสมบัติชอบน้ำเช่นกัน จึงละลายและปลดปล่อยออกจากเมทริกซ์ HPMC/Am64/0 ได้เร็วกว่าเมทริกซ์ EC/Am64/0 ซึ่งเป็นพอลิเมอร์ที่ไม่ชอบน้ำและไม่ละลายน้ำ (14-16)

รูปที่ 24 แสดงผลของเรซิน Amberlite IRP64[®] ต่อการปลดปล่อยยาออกจากเมทริกซ์ HPMC จะพบว่าเรซินทำให้การปลดปล่อยยาออกจากเมทริกซ์ลดลงกว่าเมทริกซ์ที่ไม่มีเรซิน แสดงให้เห็น ว่าเรซินสามารถควบคุมการปลดปล่อยอกจากเมทริกซ์ HPMC ให้ช้าลงได้ การควบคุมการปลดปล่อยยาของเรซินเกิดขึ้นจากสมบัติการพองตัวของสารก่อเมทริกซ์ (HPMC) และสมบัติการแลกเปลี่ยนอิออนของ เรซินในเจลเมทริกซ์ เมื่อเมทริกซ์สัมผัสกับน้ำจะเกิดเป็นเจล (รูปที่ 27a) และให้ยาที่ละลายแพร่และ ปลดปล่อยออกมา แต่เนื่องจากในเจลเมทริกซ์มีเรซินอยู่ ยาที่ละลายบางส่วนจะเกิดการแลกเปลี่ยนอิออน กับเรซิน และเกิดเป็นสารเชิงซ้อนกับเรซินหรือเรซิเนท (resinate)⁽¹⁷⁾ ดังปฏิกิริยา

$$RCOOH + DPH^+ \Leftrightarrow RCOODPH + H^+$$
 [Eqn.4]


รูปที่ 24 การปลดปล่อยยา DPH ออกจากเมทริกซ์ (♦) HPMC/Am64/0, (■) /5, (▲) /10, (●) /20, (×) /30 และ (─) /40 ตามลำดับ ในน้ำ

รูปที่ 25 การปลดปล่อยยา DPH ออกจากเมทริกซ์ (♦) EC/Am64/0, (■) /5, (▲) /10, (●) /20, (×) /30 และ (─) /40 ตามลำดับ ในน้ำ

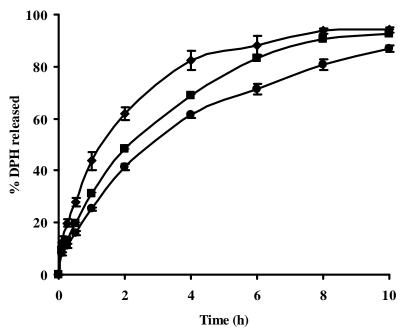
ยาที่อยู่ในเรซิเนทจะจับกับหมู่แลกเปลี่ยนอิออน (หมู่คาร์บอกซิลิก) ของเรซินด้วยแรง ดึงดูดไฟฟ้าสถิต (electrostatic attraction) เนื่องจากในน้ำมีอิออนอยู่น้อยมาก จึงไม่มีอิออนไปแลกเปลี่ยนยา ให้ออกจากเรซิเนท ดังนั้นการปลดปล่อยยาออกจากเมทริกซ์ที่บรรจุเรซินจึงซ้าและน้อยลง

ประสิทธิภาพในการควบคุมให้ยาปลดปล่อยออกจากเมทริกซ์ HPMC ซ้าลงขึ้นอยู่กับ ปริมาณเรซิน (รูปที่ 24) ซึ่งสามารถอธิบายได้โดยอาศัยหลักการรักษาสมดุล (equilibrium treatment) ของ ปฏิกิริยาการแลกเปลี่ยนอิออน (17,18) [Eqn. 4] เมื่อปริมาณเรซิน (RCOOH) ในเมทริกซ์มากขึ้น เพื่อรักษา สมดุลของปฏิกิริยาให้คงที่ ปฏิกิริยาจะดำเนินไปทางขวามากขึ้นหรือเกิดการแลกเปลี่ยนยาและเรซินเพิ่มขึ้น (เกิดเป็นเรซิเนทเพิ่มขึ้น) การเกิดปฏิกิริยาจากขวาไปซ้ายน่าจะเกิดขึ้นน้อยกว่า เนื่องจากในน้ำมีอิออนอยู่ น้อยมาก ดังนั้นจึงมียาที่ละลายในเมทริกซ์และไม่ได้จับกับเรซิน (ยาอิสระ) เหลืออยู่น้อยลง ทำให้การ ปลดปล่อยยาออกจากเมทริกซ์ช้าและน้อยลง

รูปที่ 26 ภาพถ่ายของเมทริกซ์ (a) HPMC/Am64/0 และ (b) EC/Am64/0 ใน ระหว่างการปลดปล่อยยาที่เวลาต่างๆ (Dino-Lite Digital AM-313T Plus, Taiwan)

รูปที่ 27 ภาพถ่ายของเมทริกซ์ (a) HPMC/Am64/20, (b) EC/Am64/10, (c) /20 และ (d) /40 ตามลำดับ ในระหว่างการปลดปล่อยยาที่เวลาต่างๆ (Dino-Lite Digital AM-313T Plus, Taiwan)

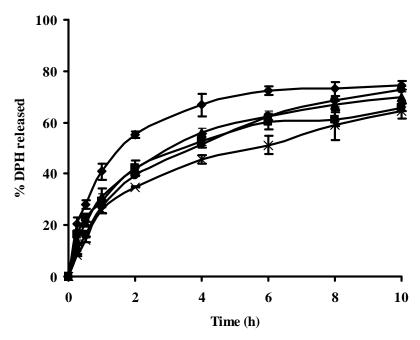
อย่างไรก็ตามเมื่อเปรียบเทียบกับเรซิน Amberlite IRP69 จะพบว่าเรซิน Amberlite IRP64 ควบคุมการปลดปล่อยยาออกจากเมทริกซ์ให้ซ้าลงได้น้อยกว่า สาเหตุอาจเนื่องจากเรซิน Amberlite IRP64 เป็นเรซินแลกเปลี่ยนอิออนบวกอย่างอ่อน มีค่าคงที่การแตกตัว (pKa) ของหมู่คาร์บอกซิลิคประ มาณ 5-6 ในขณะที่เรซิน Amberlite IRP69 เป็นเรซินแลกเปลี่ยนอิออนบวกอย่างแรง มีค่าคงที่การแตกตัว


(pKa) ของหมู่ซัลโฟนิกประมาณ 1-2 ในสารละลายยาซึ่งมี pH ประมาณ 5-6 ทำให้เรซิน Amberlite IRP64® แตกตัวได้น้อย จึงแลกเปลี่ยนและจับกับยาได้น้อยกว่าเรซิน Amberlite IRP69® ซึ่งแตกตัวได้สมบูรณ์

ผลของเรซิน Amberlite IRP64 ต่อการปลดปล่อยยาออกจากเมทริกซ์ EC แสดงใน รูปที่ 25 เมื่อเมทริกซ์มีเรซินน้อยกว่า 20 % เมทริกซ์จะแตกตัวน้อยมาก (รูปที่ 27b,c) และการปลดปล่อยยา จะไม่แตกต่างจากเมทริกซ์ที่ไม่มีเรซิน แสดงว่าการปลดปล่อยยาที่เพิ่มขึ้นเนื่องจากการแตกตัวของเมทริกซ์ เท่ากับการปลดปล่อยยาที่ลดลงเนื่องจากการแลกเปลี่ยนอิออนของเรซิน เมื่อเมทริกซ์มีเรซินบรรจุมากกว่า 20 % พบว่าการแตกตัวจะมากขึ้น (รูปที่ 27d) และการปลดปล่อยยาจะรวดเร็วกว่าเมทริกซ์ที่ไม่มีเรซิน (รูป ที่ 25) การแตกตัวของเมทริกซ์ทำให้มีพื้นที่ผิวสัมผัสกับตัวกลางเพิ่มขึ้น การปลดปล่อยยาจึงรวดเร็วขึ้น อย่างไรก็ตามปริมาณการปลดปล่อยยาไม่ได้เพิ่มขึ้นตามไปด้วย เนื่องจากยาที่ปลดปล่อยออกมาแล้วในเวลา ต่อมาจะแลกเปลี่ยนและจับกับเรซินซึ่งกระจายอยู่ในสารละลายตัวกลาง โดยการปลดปล่อยยาจะลดลงมาก ขึ้นเมื่อเรซินในเมทริกซ์มีปริมาณเพิ่มขึ้น

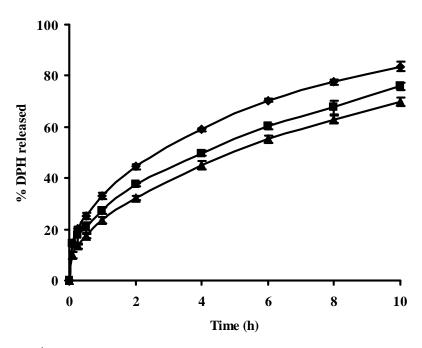
3.5.3 ผลต่อการปลดปล่อยยาของออกจากเมทริกซ์ในสารละลายอิออน การปลดปล่อยยาออกจากเมทริกซ์ HPMC ที่ไม่มีเรซินในสารละลายโพแทสเซียมคลอ ไรด์ (KCI) ความเข้มข้น 0.1 และ 0.4 N KCI แสดงในรูปที่ 28 พบว่าการปลดปล่อยยาในสารละลาย KCI จะ

น้อยกว่าในน้ำปราศจากอิออน มีรายงานผลการวิจัยก่อนหน้านี้ที่พบว่าการพองตัวและการกร่อนของ HPMC จะลดลงในสารละลาย KCI เนื่องจากเกิด salting-out effect ซึ่งอาจเป็นสาเหตุทำให้การแพร่ของยาผ่าน เมทริกซ์ลดลง และจากรูปที่ 28 ผลของ salting-out effect จะมากขึ้น (การปลดปล่อยยาลดลง) เมื่อความ


เข้มข้นของ KCI สูงขึ้น

รูปที่ 28 การปลดปล่อยยา DPH ออกจากเมทริกซ์ (♦) HPMC/Am64/0 ใน น้ำ, (■) 0.1 และ (●) 0.4 N KCl ตามลำดับ

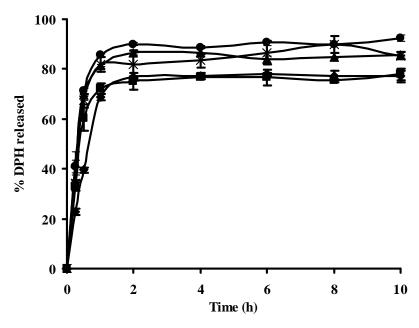
การปลดปล่อยยาออกจากเมทริกซ์ HPMC ที่มีเรซิน Amberlite IRP64[®] 40 % (HPMC/Am64/40) ในสารละลาย 0.05-0.4 N KCI แสดงในรูปที่ 29 พบว่าการปลดปล่อยยาในสารละลาย KCI ทุกความเข้มขันจะน้อยกว่าในน้ำปราศจากอิออนเช่นกัน แสดงว่าโพแทสเซียมอิออนซึ่งเป็นเคาน์เตอร์ อิออนจะแข่งขันและยับยั้งยาจับกับเรซินชนิดนี้ [Eqn. 5] ได้เพียงเล็กน้อย ทำให้ผลเนื่องจาก salting-out effect มีอิทธิพลมากกว่า การปลดปล่อยยาจึงลดลง อย่างไรก็ตามการปลดปล่อยยาที่ลดลงไม่มีความสัมพันธ์ กับความเข้มข้นของสารละลาย KCI


$$RCOOH + DPH^+ + K^+ \Leftrightarrow RCOOK + H^+ + DPH$$
 [Eqn.5]

รูปที่ 29 การปลดปล่อยยา DPH ออกจากเมทริกซ์ (♦) HPMC/Am64/40 ใน น้ำ, (■) 0.05, (▲) 0.1, (×) 0.2 และ (●) 0.4 N KCI ตามลำดับ

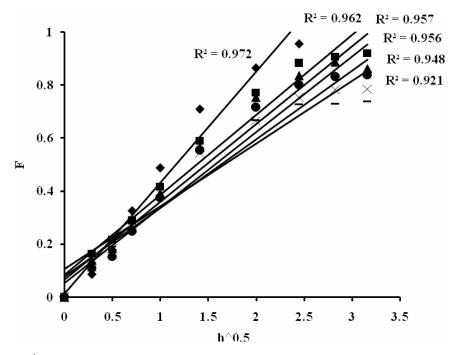
การปลดปล่อยยาออกจากเมทริกซ์ EC ที่ไม่มีเรซิน (EC/Am64/0) ในน้ำและ สารละลายโพแทสเซียมคลอไรด์ (KCI) ความเข้มขัน 0.1 และ 0.4 N KCI แสดงในรูปที่ 30 พบว่าการ ปลดปล่อยยาในสารละลาย KCI จะน้อยกว่าในน้ำปราศจากอิออนเช่นเดียวกับกรณีของเมทริกซ์ HPMC ที่ไม่ มีเรซิน (HPMC/Am64/0) อย่างไรก็ตามสาเหตุที่ทำให้การปลดปล่อยยาลดลงไม่น่าจะเกิดจาก salting-out effect ดังเช่นที่เกิดกับเมทริกซ์ HPMC เนื่องจาก EC เป็นพอลิเมอร์ที่ไม่พองตัวและไม่ละลายน้ำ และเมท ริกซ์ EC/Am64/0 ไม่เกิดการกร่อนและคงรูปตลอดระยะเวลาที่ทดสอบการปลดปล่อยยา (10 ชั่วโมง รูปที่ 26b) สำหรับสาเหตุที่แท้จริงยังไม่ทราบแน่ชัด และจากการสืบคันในการศึกษาที่ผ่านมาไม่พบรายงานผล ของอิออนต่อการปลดปล่อยยาออกจากเมทริกซ์ EC ถึงกระนั้นเมื่อพิจารณาจากหลักของการเปียก (wettability) และการดูดซับน้ำเข้าไปในรูพรุนภายในเมทริกซ์ (matrix pore) จะพบว่าเมทริกซ์ EC ซึ่งเป็น

พอลิเมอร์ที่ไม่ชอบน้ำ น่าที่จะเปียกและดูดซับสารละลาย KCI (แตกตัวได้) เข้าไปในรูพรุนภายในเมทริกซ์ได้ ยากกว่าน้ำ (มีขั้วแต่ไม่แตกตัว) ทำให้การปลดปล่อยยาในสารละลาย KCI น้อยกว่าในน้ำ

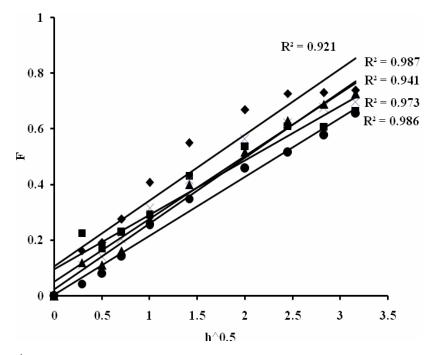

รูปที่ 30 การปลดปล่อยยา DPH ออกจากเมทริกซ์ (♦) EC/Am64/0 ใน น้ำ, (■) 0.1 และ (●) 0.4 N KCI ตามลำดับ

ในทางตรงกันข้ามเมทริกซ์ EC ที่มีเรซิน Amberlite IRP64[®] 40 % (EC/Am64/0) พบว่าเมทริกซ์จะแตกตัวและการปลดปล่อยยาในสารละลาย 0.05-0.4 N KCI จะมากกว่าในน้ำ (รูปที่ 31) ใน กรณีนี้เมทริกซ์จะแตกตัว ทำให้ตัวกลาง (น้ำและสารละลาย KCI) สัมผัสกับยาและละลายได้ทันที แต่ใน ตัวกลางที่เป็นสารละลาย KCI จะมีโพแทสเซียมอิออนซึ่งมีประจุบวกเช่นเดียวกับยา จึงเป็นเคาน์เตอร์อิออน ที่สามารถแข่งขันและยับยั้งยาจับกับเรซินได้ [Eqn. 5] ทำให้มียาอิสระเหลืออยู่มากกว่า ยาจึงปลดปล่อย ออกมามากกว่าในน้ำ จากรูปที่ 31 มีแนวโน้มว่าการปลดปล่อยยาจะมากขึ้นเมื่อความเข้มขันของสารละลาย KCI สูงขึ้น เนื่องจากเกิดการแข่งขันและยับยั้งยาจับกับเรซิน [Eqn. 5] มากขึ้น

3.5.4 จลนศาสตร์ของการปลดปล่อยยาออกจากเมทริกซ์ที่มีเรซิน


จะพบว่าเรซิน Amberlite IRP64[®] ทำให้จลนศาสตร์การปลดปล่อยยาออกจากเมท ริกซ์เบี่ยงเบนไปจาก Higuchi model (R² ลดลงจาก 0.972 เหลือ 0.921 สำหรับเมทริกซ์ HPMC ดังรูปที่ 32 และ R² ลดลงจาก 0.991 เหลือ 0.731 สำหรับเมทริกซ์ EC ดังตารางที่ 83 ในภาคผนวก) สาเหตุเนื่องจาก สมบัติการแลกเปลี่ยนอิออนและการทำให้เมทริกซ์แตกตัวของเรซิน อย่างไรก็ตามผลของเรซิน Amberlite IRP64[®] ต่อการเปลี่ยนแปลงจลนศาสตร์การปลดปล่อยยาออกจากเมทริกซ์จะน้อยกว่าเรซิน Amberlite IRP69[®] ทั้งนี้เพราะเรซิน Amberlite IRP64[®] มีความสามารถในการแลกเปลี่ยนอิออนและการทำให้เมท

ริกซ์แตกตัวน้อยกว่า Amberlite IRP69[®] สมบัติในการทำให้เมทริกซ์แตกตัวของเรซินเกิดจากกลไกหลาย อย่างร่วมกัน ได้แก่ การดูดซับน้ำ การพองตัว และการลดความแข็งของเมทริกซ์



รูปที่ 31 การปลดปล่อยยา DPH ออกจากเมทริกซ์ (♦) EC/Am64/40 ใน น้ำ, (■) 0.05, (▲) 0.1, (×) 0.2 และ (●) 0.4 N KCl ตามลำดับ

ผลของโพแทสเซียมอิออนต่อจลนศาสตร์ของการปลดปล่อยยาออกจากเมทริกซ์ที่มี เรซิน Amberlite IRP64 (ศึกษาเฉพาะที่มีเรซินปริมาณ 40 %) คล้ายกับกรณีของเมทริกซ์ที่มีเรซิน Amberlite IRP69 สำหรับเมทริกซ์ HPMC ที่มีเรซิน 40 % (HPMC/Am64/40) พบว่าค่า R² มีแนวโน้ม เพิ่มขึ้น (รูปที่ 33) แสดงว่าจลนศาสตร์ของการปลดปล่อยยาในสารละลาย KCI เปลี่ยนกลับเป็นไปตาม Higuchi model เช่นเดิม เหตุผลเนื่องจาก salting-out effect ซึ่งทำให้เมทริกซ์ HPMC พองตัวน้อยลง กระบวนการแพร่ของยาผ่านเมทริกซ์จึงเกิดได้ยากขึ้นและเป็นขั้นตอนควบคุมอัตรา (rate determining step) สำหรับเมทริกซ์ EC ที่มีเรซิน 40 % (EC/Am64/40) พบว่าผลของโพแทสเซียมอิออนต่อจลนศาสตร์ของการ ปลดปล่อยยาไม่มีรูปแบบแน่นอน (ค่า R² ไม่มีแนวโน้มไปทางใดทางหนึ่งชัดเจน ดูตารางที่ 85 ใน ภาคผนวก) เนื่องจากเมทริกซ์เกิดการแตกตัว

รูปที่ 32 เส้นแนวโน้มจากการ plot ตาม Higuchi model ของการปลดปล่อยยา ออกจากเมทริกซ์ (♦) HPMC/Am64/0, (■) /5, (▲) /10, (●) /20, (×) /30 และ (─) /40 ตามลำดับ ในน้ำ

รูปที่ 33 เส้นแนวโน้มจากการ plot ตาม Higuchi model ของการปลดปล่อยยา ออกจากเมทริกซ์ (♦) HPMC/Am64/40 ในน้ำ, (■) 0.05, (▲) 0.1, (×) 0.2 และ (●) 0.4 N KCI ตามลำดับ ในน้ำ

เอกสารอ้างอิง

- 1. M. Ozyazici, E.H. Gokce, and G. Ertan. Release and diffusional modeling of metronidrazole lipid matrices. Eur J Pharm Biopharm. 63:331-339 (2006).
- 2. The United States Pharmacopeia 24 and The National Formulary 19, The United States Pharmacopeial Convention, USA, 2000.
- 3. P. Costa and J.M.S. Lobo. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 12:123-133 (2001).
- 4. R. Bhaskar, R.S.R. Murthy, B.D. Miglani, and K. Viswanathan. Novel method to evaluate diffusion controlled release of drug from resinate. Int J Pharm. 28:59-66 (1986).
- 5. G.E. Boyd, A.W. Adamson, and L.S. Myers. The exchange adsorption of ions from aqueous solutions by organic zeolites. II. J Am Chem Soc. 69:2836-2848 (1947).
- 6. M.A. Dabbagh, J.L. Ford, and M.H. Rubinstein. Effects of polymer particle size, compaction pressure and hydrophilic polymers on drug release from matrices containing ethylcellulose. Int J Pharm. 140:85-95 (1996).
- 7. P.R. Katikaneni, S.M. Upadrashta, S.H. Neau, and A.K. Mitra. Ethylcellulose matrix controlled release tablets of a water-soluble drug. Int J Pharm. 123:119-125 (1995).
- 8. A. Nokhodchi, M.H. Rubinstein, and J.L. Ford. The effect of particle size and viscosity grade on the compaction properties of hydroxypropylmethylcellulose 2208. Int J Pharm. 126:189-197 (1995).
- 9. G. Alderbon. Particle dimensions. In G. Alderborn and C. Nystrom (eds), Pharmaceutical Powder Compaction Technology, Marcel Dekker, New York, 1996, pp. 245-282.
- 10. T. Pongjanyakul, A. Priprem, P. Chitropas, and S. Puttipipatkhachorn. Effect of polysulfonate resins and direct compression fillers on multiple-unit sustained-release dextromethorphan resinate tablets. AAPS PharmSciTech. 6:article 28 (2005).
- 11. W. Prapaitrakul and C.W. Whitworth. Compression of microcapsule II: Effect of excipients and pressure on physical properties. Drug Dev Ind Pharm. 16:1427-1434 (1990).
- 12. M. Riippi, O. Antikainen, T. Niskanen, and J. Yliruusi. The effect of compression force on surface structure, crushing strength, friability and disintegration เวลา of erythromycin acistrate tablets. Eur J Pharm Biopharm. 46:339-345 (1998).
- 13. P. Akkaramongkolporn, P. Kulvanich, and M. Pathipvanich. Preparation and in vitro release of dual-drug resinates containing equivalent content dextromethorphan and diphenhydramine. Drug Dev Ind Pharm. 32:483-496 (2006).
- 14. R.V. Nellore, G.S. Rekhi, A.S. Hussain, L.G. Tillman, and L.L. Augsburger. Development of metoprolol tartrate extended-release matrix tablet formulations for regulatory policy consideration. J Control Release. 50:247-256 (1998).
- 15. A.R. Rajabi-Siahboomi, R.W. Bowtell, P. Mansfield, A. Henderson, M.C. Davies, and C.D. Melia. Structure and behavior in hydrophilic matrix sustained-release dosage forms: 2. NMR-

- imaging studies of dimensional changes in the gel layer and core of HPMC tablets undergoing hydration. J Control Release. 31:121-128 (1994).
- 16. O. Chambin, D. Champion, C. Debray, M.H. Rochat-Gonthier, M.L. Meste, and Y. Pourcelot. Effects of different cellulose derivatives on drug release mechanism studied at a preformulation stage. J Control Release. 95:101-108 (2004).
- 17. M. Sriwongjanya and R. Bodmeier. Effect of ion exchange resins on the drug release from matrix tablets. Eur J Pharm Biopharm. 46:321-327 (1998).
- 18. P. Akkaramongkolporn, K. Terada, and E. Yonemochi. Molecular properties of propranolol hydrochloride prepared as drug-resin complexes. Drug Dev Ind Pharm. 27:359-364 (2001).
- 19. K.A. Khan and C.T. Rhodes. Water-sorption properties of tablet disintegrants. J Pharm Sci. 64:447-451 (1975).
- 20. A. Purnima, P. Namita, and W. Anita. Indion 414 as superdisintegrant in formulation of mouth dissolve tablets. Indian J Pharm Sci. 68:117-119 (2006).
- 21. K.E. Ogger, C. Noory, J. Gabay, V.P. Shah, and J.P. Skelly. Dissolution profiles of resinbased oral suspensions. Pharm Technol. 9:84-91 (1991).
 - 22. P. Russel. An Introduction to Ion-exchange Resin, Heyden & Son, London, 1970.
- 23. N. Kavanagh and O.I. Corrigan. Swelling and erosion properties of hydroxypropylmethylcellulose (Hypromellose) matrices-influence of agitation rate and dissolution medium composition. Int J Pharm. 279:141-152 (2004).
 - 24. CE. Harland Ion exchange: Theory and practice. UK: Royal Society of Chemistry; 1994.
- 25. CJ. Kim Controlled release dosage form design. USA: Technomic Publishing Company; 2000.

Output ที่ได้จากโครงการ

- 1. Akkaramongkolporn, P.; Ngawhirunpat, T.; Nunthanid, J.; Opanasopit, P. (2008) Effect of a pharmaceutical cationic exchange resin on the properties of controlled release diphenhydramine hydrochloride matrices using methocel K4M or Ethocel 7cP as matrix formers. AAPSPharmSciTech. 9(3): 899-908. (ผลงานชิ้นนี้ผู้วิจัยขออนุญาตใส่รวมไว้ เพราะมีเนื้อหาเกี่ยวข้อง กับโครงการวิจัยนี้ แม้ สกว. จะไม่นับเป็น output ของโครงการเนื่องจากตีพิมพ์ก่อนได้รับทุน ผู้วิจัย ดำเนินการวิจัยบางส่วนและได้รับการดีพิมพ์ในระหว่างขอและพิจารณาทุน)
- Akkaramongkolporn, P.; Ngawhirunpat, T.; Opanasopit, P. (2009) Preparation and evaluation of differently sulfonated styrene-divinylbenzene cross-linked copolymer cationic exchange resins as novel carriers for drug delivery. AAPSPharmSciTech. 10(2): 641-648.
- 3. Akkaramongkolporn, P.; Wongsermsin, K.; Opanasopit P.; Ngawhirunpat, T. (2010) Comparison between the effect of strongly and weakly cationic exchange resins on matrix physical properties and the controlled release of diphenhydramine hydrochloride from matrices. AAPSPharmSciTech;11(3):1104-14.

ภาคผนวก

ข้อมูลผลการวิจัย

ตารางที่ 7 ค่าการดูดกลืนแสงของสารละลายยา DPH ในน้ำความเข้มข้นต่างๆ

ความเข้มข้น	กา	nm	
(µg/ml)	1	2	ค่าเฉลี่ย
0	0	0	0
5	0.183	0.183	0.183
10	0.371	0.372	0.372
15	0.563	0.565	0.564
20	0.736	0.738	0.737
25	0.915	0.909	0.912

ตารางที่ 8 ค่าการดูดกลืนแสงของสารละลายยา DPH ใน 0.05 N KCI ความเข้มขันต่างๆ

ความเข้มข้น	กา	nm	
(µg/ml)	1	2	ค่าเฉลี่ย
0	0	0	0
5	0.225	0.221	0.223
10	0.435	0.436	0.436
15	0.636	0.640	0.638
20	0.848	0.846	0.847
25	1.053	1.055	1.054

ตารางที่ 9 ค่าการดูดกลืนแสงของสารละลายยา DPH ใน 0.1 N KCI ความเข้มขันต่างๆ

 ความเข้มข้น	การดูดกลืนแสงที่ 218 nm					
(µg/ml)	1	2	ค่าเฉลี่ย			
0	0	0	0			
5	0.216	0.210	0.213			
10	0.402	0.399	0.401			
15	0.587	0.587	0.587			
20	0.773	0.774	0.774			
25	0.961	0.962	0.962			

ตารางที่ 10 ค่าการดูดกลืนแสงของสารละลายยา DPH ใน 0.2 N KCI ความเข้มขันต่าง ๆ

ความเข้มข้น	การดูดกลืนแสงที่ 218 nm				
(µg/ml)	1	2	ค่าเฉลี่ย		
0	0	0	0		
5	0.184	0.184	0.184		
10	0.362	0.364	0.363		
15	0.539	0.539	0.539		
20	0.718	0.718	0.718		
25	0.883	0.883	0.883		

ตารางที่ 11 ค่าการดูดกลื่นแสงของสารละลายยา DPH ใน 0.4 N KCI ความเข้มข้นต่าง ๆ

- ความเข้มข้น	ข้มข้น การดูดกลืนแสงที่ 218 nm					
(µg/ml)	1	2	ค่าเฉลี่ย			
0	0	0	0			
5	0.211	0.215	0.213			
10	0.394	0.399	0.397			
15	0.575	0.575	0.575			
20	0.768	0.773	0.771			
25	0.966	0.970	0.968			

ตารางที่ 12 ผลการวิเคราะห์สารละลายยา DPH ความเข้มข้นต่างๆโดยวิธี HPLC

 ความเข้มข้น		พื้นที่ใต้พีค							
$(\mu \text{g/ml})$	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	ครั้งที่ 4	ครั้งที่ 5	ค่าเฉลี่ย	S.D.	%RSD	
0	0	0	0	0	0	0	0	0	
5	14.582	12.980	13.364	13.271	13.625	13.564	0.614	4.526	
10	28.559	28.028	28.598	27.358	27.823	28.073	0.521	1.857	
20	55.885	55.892	55.204	55.307	55.675	55.593	0.322	0.579	
30	84.318	82.962	84.657	84.236	84.609	84.156	0.692	0.822	
40	113.451	113.236	113.079	114.328	113.542	113.527	0.483	0.425	

ตารางที่ 13 ความสมมาตรของพีค (tailing factor) ยา DPH ความเข้มขันต่างๆ

ความเข้มข้น	พื้นที่ใต้พีค							
(µg/ml)	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	ครั้งที่ 4	ครั้งที่ 5	ค่าเฉลี่ย	S.D.	%RSD
0	0	0	0	0	0	0	0	0
5	0.920	0.888	0.920	0.906	0.909	0.909	0.013	1.467
10	0.849	0.858	0.857	0.848	0.847	0.852	0.005	0.624
20	0.752	0.751	0.744	0.745	0.747	0.748	0.004	0.489
30	0.660	0.660	0.659	0.662	0.662	0.661	0.001	0.176
40	0.589	0.585	0.588	0.585	0.591	0.587	0.003	0.448

ตารางที่ 14 ผลการประเมินน้ำหนักของเมทริกซ์ HPMC ที่มี Amberlite IRP69®

เม็ดที่	สูตร (HPMC/_)								
	AM69/0	Am69/5	Am69/10	Am69/20	Am69/30	Am69/40			
1	99.7*	98.1	98.8	99.4	100.7	101.3			
2	99.9	99.6	100.2	100.1	99.2	101.6			
3	100.3	99.4	100.1	100.9	99.8	101.4			
4	100.8	100.0	98.7	100.7	100.5	102.0			
5	100.4	100.2	99.6	99.7	101.5	98.9			
6	99.9	99.8	98.9	101.1	101.5	100.5			
7	100.7	98.8	99.1	99.2	100.0	98.0			
8	100.5	100.5	100.6	100.8	99.2	98.6			
9	100.3	100.8	100.7	101.3	101.2	98.9			
10	100.5	100.7	100.1	100.5	101.1	100.7			
ค่าเฉลี่ย	100.3	99.8	99.7	100.4	100.5	100.2			
S.D.	0.4	0.9	0.8	0.7	0.9	1.5			

^{*} มิลลิกรัม

ตารางที่ 15 ผลการประเมินความหนาของเมทริกซ์ HPMC ที่มี Amberlite IRP69®

เม็ดที่	สูตร (HPMC/_)								
	AM69/0	Am69/5	Am69/10	Am69/20	Am69/30	Am69/40			
1	2.97*	2.95	2.73	2.81	2.79	2.89			
2	2.96	2.80	2.77	2.88	2.86	2.91			
3	3.00	2.81	2.80	2.79	2.86	2.88			
4	3.01	2.76	2.78	2.79	2.83	2.92			
5	2.98	2.77	2.82	2.79	2.81	2.85			
6	2.97	2.82	2.76	2.91	2.86	2.85			
7	2.96	3.02	2.83	2.81	2.82	2.96			
8	2.97	2.99	2.81	2.71	2.88	2.84			
9	3.00	2.97	2.84	2.78	2.88	2.91			
10	2.96	2.78	2.81	2.84	2.81	2.84			
ค่าเฉลี่ย	2.98	2.87	2.80	2.81	2.84	2.88			
S.D.	0.02	0.10	0.03	0.06	0.03	0.04			

^{*} มิลลิเมตร

ตารางที่ 16 ผลการประเมินเส้นผ่าศูนย์กลางของเมทริกซ์ HPMC ที่มี Amberlite IRP69[®]

			-							
เม็ดที่		ត្តូចs (HPMC/_)								
	AM69/0	Am69/5	Am69/10	Am69/20	Am69/30	Am69/40				
1	6.40*	6.40	6.40	6.40	6.38	6.40				
2	6.38	6.40	6.40	6.40	6.38	6.40				
3	6.40	6.40	6.40	6.40	6.38	6.40				
4	6.38	6.40	6.40	6.40	6.38	6.40				
5	6.38	6.40	6.40	6.40	6.38	6.42				
6	6.40	6.40	6.40	6.40	6.38	6.40				
7	6.40	6.40	6.40	6.40	6.38	6.40				
8	6.38	6.40	6.40	6.40	6.38	6.40				
9	6.40	6.40	6.40	6.40	6.38	6.40				
10	6.38	6.40	6.40	6.40	6.38	6.40				
ค่าเฉลี่ย	6.39	6.40	6.40	6.40	6.38	6.40				
S.D.	0.01	0.00	0.00	0.00	0.00	0.01				

^{*} มิลลิเมตร

ตารางที่ 17 ผลการประเมินความแข็งของเมทริกซ์ HPMC ที่มี Amberlite IRP69[®]

	AM69/0 38.7*	Am69/5	Am69/10			
	38.7*		A11109/10	Am69/20	Am69/30	Am69/40
1	30.7	32.7	18.3	16.0	7.7	4.1
2	35.7	30.0	18.4	17.2	7.8	4.1
3	37.0	32.1	17.0	15.4	7.8	3.5
4	40.0	33.8	17.3	15.9	8.1	4.3
5	40.7	31.9	15.3	18.4	7.0	3.9
6	40.6	31.2	14.9	16.1	7.3	3.4
7	37.2	30.5	16.0	15.8	8.2	3.8
8	41.2	29.2	17.3	16.5	7.0	3.7
9	43.1	32.5	16.4	17.2	7.7	3.5
10	36.8	29.5	15.6	18.4	6.9	3.0
ค่าเฉลี่ย	39.1	31.3	16.6	16.7	7.5	3.7
S.D.	2.4	1.5	1.2	1.1	0.5	0.4

^{*} นิวตัน

ตารางที่ 18 ผลการประเมินน้ำหนักของเมทริกซ์ EC ที่มี Amberlite IRP69®

เม็ดที่	สูตร (EC/_)								
•	AM69/0	Am69/5	Am69/10	Am69/20	Am69/30	Am69/40			
1	99.8*	99.5	99.9	99.8	100.0	100.6			
2	100.1	99.4	99.8	100.6	100.8	100.3			
3	100.5	99.4	99.7	100.4	99.6	100.6			
4	100.4	99.6	100.7	100.8	100.8	100.1			
5	100.3	99.6	99.9	99.5	100.5	100.8			
6	99.9	99.4	99.6	99.4	100.5	100.4			
7	100.2	100.2	100.1	100.6	99.9	100.4			
8	99.6	100.3	99.9	100.8	99.9	100.7			
9	99.9	99.6	100.6	100.6	100.2	100.6			
10	100.0	99.5	100.1	99.3	100.8	100.2			
ค่าเฉลี่ย	100.1	99.7	100.0	100.2	100.3	100.5			
S.D.	0.3	0.3	0.4	0.6	0.4	0.2			

^{*} มิลลิกรัม

ตารางที่ 19 ผลการประเมินความหนาของเมทริกซ์ EC ที่มี Amberlite IRP69®

เม็ดที่	สูตร (EC/_)						
	AM69/0	Am69/5	Am69/10	Am69/20	Am69/30	Am69/40	
1	2.85*	2.79	2.81	2.74	2.65	2.64	
2	2.86	2.82	2.78	2.73	2.64	2.61	
3	2.82	2.76	2.80	2.72	2.68	2.64	
4	2.84	2.82	2.79	2.68	2.66	2.64	
5	2.85	2.82	2.79	2.71	2.68	2.62	
6	2.85	2.78	2.76	2.70	2.61	2.61	
7	2.77	2.80	2.73	2.70	2.67	2.66	
8	2.86	2.79	2.78	2.71	2.64	2.66	
9	2.83	2.81	2.81	2.71	2.67	2.63	
10	2.85	2.74	2.76	2.71	2.66	2.65	
ค่าเฉลี่ย	2.84	2.79	2.78	2.71	2.65	2.64	
S.D.	0.03	0.03	0.02	0.02	0.02	0.02	

^{*} มิลลิเมตร

ตารางที่ 20 ผลการประเมินเส้นผ่าศูนย์กลางของเมทริกซ์ EC ที่มี Amberlite IRP69®

เม็ดที่	สูตร (EC/_)						
•	AM69/0	Am69/5	Am69/10	Am69/20	Am69/30	Am69/40	
1	6.40*	6.40	6.40	6.40	6.40	6.40	
2	6.40	6.40	6.40	6.40	6.40	6.40	
3	6.40	6.40	6.40	6.40	6.40	6.40	
4	6.40	6.40	6.40	6.40	6.40	6.40	
5	6.40	6.40	6.40	6.40	6.40	6.40	
6	6.40	6.40	6.40	6.40	6.40	6.40	
7	6.40	6.40	6.40	6.40	6.40	6.40	
8	6.40	6.40	6.40	6.40	6.40	6.40	
9	6.40	6.40	6.40	6.40	6.40	6.40	
10	6.40	6.40	6.40	6.40	6.40	6.40	
ค่าเฉลี่ย	6.40	6.40	6.40	6.40	6.40	6.40	
S.D.	0.00	0.00	0.00	0.00	0.00	0.00	

^{*} มิลลิเมตร

ตารางที่ 21 ผลการประเมินความแข็งของเมทริกซ์ EC ที่มี Amberlite IRP69®

เม็ดที่	สูตร (EC/_)						
	AM69/0	Am69/5	Am69/10	Am69/20	Am69/30	Am69/40	
1	123.7*	112.1	106.4	114.7	98.8	73.2	
2	126.0	113.7	104.0	108.7	96.6	75.9	
3	113.1	116.3	106.7	113.5	97.0	74.7	
4	125.9	104.1	104.0	105.1	99.1	76.8	
5	110.3	109.9	108.6	112.9	92.5	76.8	
6	127.7	114.0	102.8	117.2	92.5	75.3	
7	116.1	115.0	110.2	113.1	96.1	75.4	
8	118.6	105.4	104.9	111.7	97.9	77.4	
9	117.5	115.8	102.0	108.2	96.5	77.1	
10	121.9	110.9	102.5	112.5	96.8	74.4	
ค่าเฉลี่ย	120.1	111.7	105.2	111.7	96.4	75.7	
S.D.	5.9	4.2	2.7	3.5	2.3	1.3	

^{*} นิวตัน

ตารางที่ 22 ผลการประเมินเวลาการแตกตัวของเมทริกซ์ EC ที่มี Amberlite IRP69®

เม็ดที่	สูตร (EC/_)							
	AM69/0*	Am69/5	Am69/10	Am69/20	Am69/30	Am69/40		
1	>60**	45.5	29.10	10.15	4.55	2.49		
2	>60	45.5	27.59	8.30	5.20	3.10		
3	>60	46.5	29.45	8.35	4.00	3.15		
4	>60	47.2	29.20	9.18	3.45	2.54		
5	>60	45.5	29.32	10.07	4.58	2.58		
6	>60	45.9	27.10	8.42	5.04	3.05		
ค่าเฉลี่ย	>60	46.02	28.63	9.08	4.47	2.82		
S.D.	-	0.70	1.01	0.86	0.65	0.31		

^{*} ไม่แตกตัวแม้เวลาผ่านไป 10 h

^{**} นาที

ตารางที่ 23 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am69/0 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	8.8	8.9	8.6	8.8	0.1
0.3	17.0	20.0	17.7	18.3	1.6
0.5	31.9	33.8	32.5	32.7	1.0
1.0	50.5	51.1	48.8	50.1	1.2
2.0	71.1	71.6	70.9	71.2	0.4
4.0	85.5	87.5	86.4	86.5	1.0
6.0	93.2	95.4	95.5	94.7	1.3
8.0	100.3	101.5	100.3	100.7	0.7
10.0	103.9	106.4	103.3	104.5	1.6

ตารางที่ 24 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am69/5 ในน้ำ

 เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	10.1	10.4	10.0	10.2	0.2
0.3	14.1	14.2	14.2	14.2	0.1
0.5	21.8	22.4	22.4	22.2	0.4
1.0	34.6	36.8	36.3	35.9	1.1
2.0	55.7	58.8	57.8	57.5	1.6
4.0	77.2	80.7	79.5	79.1	1.8
6.0	87.7	88.8	88.5	88.3	0.5
8.0	95.6	94.7	93.9	94.7	0.9
10.0	95.0	95.2	95.9	95.4	0.4

ตารางที่ 25 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am69/10 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	9.1	8.7	8.9	8.9	0.2
0.3	12.3	12.2	12.4	12.3	0.1
0.5	18.7	19.4	19.4	19.1	0.4
1.0	27.9	29.5	29.0	28.8	0.8
2.0	41.6	46.2	45.1	44.3	2.4
4.0	56.1	65.2	61.8	61.1	4.6
6.0	62.2	71.1	67.9	67.1	4.5
8.0	62.6	71.8	68.3	67.6	4.6
10.0	63.3	73.1	69.8	68.7	5.0

ตารางที่ 26 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am69/20 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	5.2	9.4	7.5	7.4	2.1
0.3	9.9	13.8	11.6	11.8	1.9
0.5	14.6	22.2	18.3	18.3	3.8
1.0	20.3	28.5	24.4	24.4	4.1
2.0	30.6	37.8	33.4	34.0	3.6
4.0	39.2	43.0	39.5	40.5	2.1
6.0	41.3	44.3	41.0	42.2	1.8
8.0	43.0	45.5	42.2	43.6	1.8
10.0	44.1	47.0	43.3	44.8	1.9

ตารางที่ 27 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am69/30 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	9.5	10.2	10.1	9.9	0.4
0.3	10.7	11.8	11.9	11.5	0.6
0.5	13.7	17.1	15.1	15.3	1.7
1.0	15.8	21.9	18.9	18.9	3.1
2.0	16.9	26.0	22.9	21.9	4.6
4.0	19.0	26.4	24.6	23.3	3.9
6.0	19.0	26.1	24.6	23.2	3.7
8.0	19.1	25.1	24.2	22.8	3.2
10.0	19.1	24.3	24.1	22.5	2.9

ตารางที่ 28 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am69/40 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	9.4	4.4	7.7	7.2	2.5
0.3	10.7	6.1	9.3	8.7	2.3
0.5	13.5	8.4	11.5	11.2	2.5
1.0	14.7	10.7	13.4	12.9	2.0
2.0	16.5	13.1	16.6	15.4	2.0
4.0	15.9	12.4	15.9	14.7	2.1
6.0	15.4	11.2	15.3	14.0	2.4
8.0	13.9	10.5	14.1	12.8	2.0
10.0	13.3	9.6	13.4	12.1	2.1

ตารางที่ 29 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am69/0 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	7.0	9.7	9.2	8.6	1.4
0.3	10.9	14.7	14.0	13.2	2.0
0.5	16.1	20.5	19.8	18.8	2.4
1.0	22.8	26.0	26.3	25.0	2.0
2.0	31.6	33.6	35.0	33.4	1.8
4.0	43.2	44.3	46.7	44.7	1.8
6.0	51.8	51.1	54.3	52.4	1.7
8.0	57.3	57.9	61.0	58.7	2.0
10.0	62.9	62.3	66.3	63.8	2.1

ตารางที่ 30 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am69/5 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	16.1	19.5	17.4	17.7	1.7
0.3	27.1	37.0	32.0	32.0	5.0
0.5	42.8	58.5	51.2	50.8	7.9
1.0	65.9	95.8	82.7	81.4	15.0
2.0	88.9	107.7	98.6	98.4	9.4
4.0	88.7	105.4	97.9	97.3	8.4
6.0	88.3	107.0	99.1	98.1	9.4
8.0	89.7	107.2	99.9	99.0	8.8
10.0	87.8	105.1	98.7	97.2	8.7

ตารางที่ 31 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am69/10 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	32.7	28.4	30.5	30.5	2.2
0.3	67.6	57.9	60.3	61.9	5.0
0.5	88.7	82.7	83.1	84.8	3.3
1.0	85.8	80.0	80.9	82.2	3.1
2.0	82.1	77.1	77.6	78.9	2.7
4.0	81.7	76.0	76.4	78.0	3.2
6.0	80.3	75.2	75.5	77.0	2.9
8.0	80.3	75.4	75.3	77.0	2.9
10.0	80.0	75.5	75.3	76.9	2.6

ตารางที่ 32 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am69/20 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	60.4	57.8	59.7	59.3	1.4
0.3	75.7	77.0	76.9	76.5	0.7
0.5	71.0	72.9	72.4	72.1	1.0
1.0	65.4	66.8	66.6	66.3	8.0
2.0	58.5	60.2	59.7	59.5	0.9
4.0	49.9	52.5	51.5	51.3	1.3
6.0	44.4	47.8	46.6	46.3	1.7
8.0	44.2	45.8	45.1	45.0	8.0
10.0	42.7	44.1	43.4	43.4	0.7

ตารางที่ 33 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am69/30 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	79.8	82.8	81.7	81.5	1.5
0.3	81.5	84.4	82.6	82.8	1.4
0.5	75.9	78.6	77.0	77.2	1.3
1.0	68.1	71.9	69.8	69.9	1.9
2.0	57.5	61.4	59.2	59.4	2.0
4.0	46.1	49.3	47.7	47.7	1.6
6.0	38.2	43.3	40.5	40.7	2.6
8.0	31.7	37.3	34.3	34.4	2.8
10.0	27.4	33.6	30.4	30.5	3.1

ตารางที่ 34 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am69/40 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	82.3	81.6	82.2	82.0	0.4
0.3	75.7	74.8	74.7	75.0	0.5
0.5	70.4	68.7	67.2	68.7	1.6
1.0	61.8	61.2	57.2	60.1	2.5
2.0	51.9	50.8	45.5	49.4	3.4
4.0	40.0	39.1	33.6	37.5	3.5
6.0	32.4	31.3	26.5	30.0	3.1
8.0	27.5	24.6	21.7	24.6	2.9
10.0	23.2	20.0	18.3	20.5	2.5

ตารางที่ 35 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am69/20 ใน 0.005 N KCI

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	7.0	8.1	7.2	7.4	0.6
0.3	12.6	12.5	11.7	12.3	0.5
0.5	16.1	17.0	16.9	16.7	0.5
1.0	26.8	26.0	26.4	26.4	0.4
2.0	41.1	40.7	40.2	40.6	0.4
4.0	58.8	59.8	57.3	58.6	1.3
6.0	67.8	70.3	66.9	68.3	1.8
8.0	70.5	73.0	71.1	71.5	1.3
10.0	73.3	74.4	73.6	73.8	0.6

ตารางที่ 36 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am69/20 ใน 0.05 N KCI

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	4.1	6.0	4.5	4.9	1.0
0.3	13.1	10.4	11.1	11.5	1.4
0.5	18.8	18.6	18.3	18.6	0.3
1.0	32.1	30.9	30.6	31.2	8.0
2.0	51.9	50.8	50.3	51.0	8.0
4.0	76.2	74.4	74.1	74.9	1.2
6.0	89.7	87.7	86.8	88.1	1.5
8.0	96.4	94.6	94.8	95.3	1.0
10.0	99.5	99.9	100.6	100.0	0.6

ตารางที่ 37 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am69/20 ใน 0.1 N KCI

	เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
	0.0	0.0	0.0	0.0	0.0	0.0
	0.1	9.5	7.7	8.5	8.6	0.9
	0.3	17.5	13.0	15.8	15.4	2.3
	0.5	27.5	25.6	26.5	26.5	0.9
	1.0	44.0	37.0	40.1	40.3	3.5
	2.0	64.7	60.2	61.0	62.0	2.4
	4.0	85.4	79.2	81.6	82.1	3.1
	6.0	100.4	94.6	97.1	97.4	2.9
	8.0	100.7	100.5	101.6	101.0	0.6
_	10.0	101.3	99.1	102.0	100.8	1.5

ตารางที่ 38 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am69/20 ใน 0.2 N KCI

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	13.5	14.5	13.1	13.7	0.8
0.3	20.2	22.7	21.2	21.4	1.3
0.5	29.3	34.6	31.2	31.7	2.7
1.0	46.9	49.3	46.0	47.4	1.7
2.0	66.0	70.4	66.1	67.5	2.5
4.0	90.0	90.5	89.0	89.9	0.7
6.0	99.4	102.0	99.5	100.3	1.5
8.0	101.5	102.2	101.6	101.8	0.3
10.0	103.0	102.4	102.1	102.5	0.4

ตารางที่ 39 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am69/20 ใน 0.4 N KCI

-						
	เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
	0.0	0.0	0.0	0.0	0.0	0.0
	0.1	10.3	11.1	11.6	11.0	0.6
	0.3	18.8	18.7	18.4	18.6	0.2
	0.5	34.9	27.7	31.9	31.5	3.6
	1.0	44.1	44.9	45.7	44.9	0.8
	2.0	64.8	62.5	64.0	63.8	1.2
	4.0	96.2	94.3	93.6	94.7	1.3
	6.0	103.5	102.2	100.3	102.0	1.6
	8.0	104.3	102.2	100.5	102.4	1.9
_	10.0	104.7	94.0	100.5	99.7	5.4

ตารางที่ 40 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am69/20 ใน 0.005 N KCI

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	56.7	49.2	51.8	52.6	3.8
0.3	80.5	79.5	79.5	79.9	0.6
0.5	82.0	80.8	80.6	81.1	0.8
1.0	82.9	79.5	80.7	81.0	1.7
2.0	84.7	78.8	80.2	81.2	3.1
4.0	84.9	78.3	80.2	81.1	3.4
6.0	85.8	78.0	80.1	81.3	4.1
8.0	85.5	77.8	80.1	81.1	4.0
10.0	85.9	78.1	80.3	81.4	4.0

ตารางที่ 41 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am69/20 ใน 0.05 N KCI

- เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	57.3	56.2	57.9	57.2	0.9
0.3	88.9	89.8	89.3	89.4	0.5
0.5	92.5	96.8	94.5	94.6	2.1
1.0	91.9	99.5	95.8	95.7	3.8
2.0	92.2	99.7	96.2	96.0	3.7
4.0	92.7	101.5	97.0	97.1	4.4
6.0	97.8	104.0	100.7	100.8	3.1
8.0	97.6	104.2	101.0	100.9	3.3
10.0	97.0	104.7	101.2	101.0	3.9
4.0 6.0 8.0	92.7 97.8 97.6	101.5 104.0 104.2	97.0 100.7 101.0	97.1 100.8 100.9	4.4 3.1 3.3

ตารางที่ 42 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am69/20 ใน 0.1 N KCI

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	63.3	64.9	64.1	64.1	0.8
0.3	98.2	98.1	99.1	98.5	0.5
0.5	100.9	100.6	100.9	100.8	0.2
1.0	101.3	102.6	101.9	101.9	0.7
2.0	102.9	103.6	102.8	103.1	0.4
4.0	104.1	104.5	103.6	104.0	0.5
6.0	101.9	101.3	102.1	101.8	0.4
8.0	98.1	102.5	101.4	100.7	2.3
10.0	98.2	103.1	101.2	100.9	2.4

ตารางที่ 43 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am69/20 ใน 0.2 N KCI

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	59.0	62.3	61.9	61.1	1.8
0.3	94.4	98.1	98.1	96.9	2.1
0.5	96.0	99.7	99.4	98.4	2.1
1.0	96.5	102.4	99.5	99.5	3.0
2.0	97.0	101.2	100.1	99.4	2.2
4.0	100.3	100.5	101.5	100.8	0.6
6.0	94.8	100.9	101.1	98.9	3.6
8.0	95.9	101.4	100.5	99.3	2.9
10.0	93.5	101.8	100.2	98.5	4.4

ตารางที่ 44 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am69/20 ใน 0.4 N KCI

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	53.1	51.8	52.1	52.3	0.7
0.3	100.1	96.8	97.5	98.1	1.8
0.5	104.7	99.1	101.1	101.6	2.8
1.0	104.4	98.8	100.8	101.3	2.8
2.0	102.6	99.9	100.3	100.9	1.5
4.0	103.0	100.9	100.9	101.6	1.2
6.0	103.5	101.1	101.0	101.9	1.4
8.0	100.1	101.9	100.1	100.7	1.0
10.0	101.3	103.7	100.9	102.0	1.5

ตารางที่ 45 การทดสอบจลนศาสตร์ของการปลดปล่อยยาออกจากเมทริกซ์ HPMC ที่มีเรซิน Amberlite IRP69[®] ในน้ำ

 ตำรับ	สูตร (HPMC/_)								
	AM69/0	Am69/5	Am69/10	Am69/20	Am69/30	Am69/40			
Zero order model									
R^2	0.796	0.847	0.810	0.721	0.513	0.261			
Slope (mg.h ⁻¹)	9.758	9.496	6.786	3.724	1.628	0.700			
y-int	25.338	19.611	16.649	14.254	12.460	9.493			
	First order และ film diffusion controlled model								
R^2	0.994	0.992	0.879	0.769	0.538	0.263			
Slope (h ⁻¹)	0.332	0.326	0.125	0.051	0.019	0.008			
y-int	-0.097	0.118	0.185	0.160	0.136	0.102			
Higuchi model									
R^2	0.972	0.969	0.952	0.906	0.742	0.487			
Slope (h ^{-1/2})	0.338	0.332	0.240	0.136	0.064	0.031			
y-int	-0.035	0.022	0.038	0.065	0.085	0.072			
Korsmayer and	Korsmayer and Peppas model								
n*	0.42	0.41	0.38	0.29	0.17	0.11			
R^2	0.979	0.977	0.969	0.967	0.955	0.877			
Slope (h ⁻ⁿ)	0.495	0.421	0.332	0.248	0.181	0.124			
y-int	-0.039	-0.040	-0.027	-0.016	-0.005	-0.001			
Bhaskar หรือ particle diffusion controlled model									
R^2	0.984	0.992	0.955	0.884	0.681	0.398			
Slope (h ^{-0.65})	0.724	0.735	0.293	0.124	0.049	0.021			
y-int	-0.330	-0.154	0.060	0.102	0.110	0.088			

^{*} Best fitted

ตารางที่ 46 การทดสอบจลนศาสตร์ของการปลดปล่อยยาออกจากเมทริกซ์ EC ที่มีเรซิน Amberlite IRP69[®] ในน้ำ

 ตำรับ	สูตร (EC/_)								
•	AM69/0	Am69/5	Am69/10	Am69/20	Am69/30	Am69/40			
Zero order model									
R^2	0.893	0.526	0.190	0.036	0.206	0.318			
Slope (mg.h ⁻¹)	5.959	7.757	3.233	-1.122	-3.326	-4.183			
y-int	14.297	43.054	53.184	55.779	62.907	55.999			
First order และ	film diffusi	ion controll	ed model						
R^2	0.962	0.700	0.152	0.129	0.335	0.361			
Slope (h ⁻¹)	0.101	0.582	0.062	-0.041	-0.096	-0.093			
y-int	0.142	0.927	0.989	0.950	1.202	0.980			
Higuchi model	Higuchi model								
R^2	0.992	0.750	0.371	0.002	0.112	0.232			
Slope (h ^{-1/2})	0.205	0.303	0.148	-0.008	-0.080	-0.117			
y-int	0.038	0.243	0.423	0.534	0.638	0.594			
Korsmayer and	l Peppas m	odel							
n*	0.41	0.22	0.08	< 0.0001	< 0.0001	< 0.0001			
R^2	1.000	0.881	0.809	0.717	0.472	0.306			
Slope (h ⁻ⁿ)	0.260	0.709	0.690	0.580	0.581	0.474			
y-int	0.000	-0.061	-0.012	0.000	0.000	0.000			
Bhaskar หรือ particle diffusion controlled model									
R^2	0.997	0.786	0.244	0.089	0.304	0.355			
Slope (h ^{-0.65})	0.233	1.391	0.177	-0.077	-0.206	-0.209			
y-int	0.050	0.303	0.871	0.956	1.264	1.055			

^{*} Best fitted

ตารางที่ 47 การทดสอบจลนศาสตร์ของการปลดปล่อยยาออกจากเมทริกซ์ HPMC ที่มีเรซิน Amberlite IRP69[®] 20 % (HPMC/Am69/20) ในตัวกลางชนิดต่างๆ

 ตัวกลาง	น้ำ	สารละลายโพแทสเซียมคลอไรด์ (KCI) ความเข้ม				ข้มข้น			
		0.005 N	0.05 N	1.0 N	2.0 N	4.0 N			
Zero order model									
R^2	0.721	0.877	0.920	0.913	0.886	0.928			
Slope (mg.h ⁻¹)	3.724	7.269	12.004	15.493	15.582	21.737			
y-int	14.254	13.975	12.059	14.527	18.818	13.571			
	First order และ film diffusion controlled model								
R^2	0.769	0.950	0.996	0.968	0.997	0.980			
Slope (h ⁻¹)	0.051	0.137	0.356	0.540	0.531	0.654			
y-int	0.160	0.136	0.001	-0.027	0.072	-0.004			
Higuchi model									
R^2	0.906	0.983	0.991	0.995	0.998	0.997			
Slope (h ^{-1/2})	0.136	0.251	0.366	0.414	0.453	0.473			
y-int	0.065	0.010	-0.043	-0.020	-0.002	-0.021			
Korsmayer and	Peppas m	odel							
n*	0.29	0.42	0.48	0.47	0.47	0.51			
R^2	0.967	0.987	0.990	0.995	0.998	0.998			
Slope (h ⁻ⁿ)	0.248	0.310	0.383	0.440	0.475	0.466			
y-int	-0.016	-0.030	-0.054	-0.037	-0.017	-0.016			
Bhaskar หรือ particle diffusion controlled model									
R ²	0.884	0.991	0.962	0.913	0.970	0.921			
Slope (h ^{-0.65})	0.124	0.317	0.733	1.000	0.874	1.058			
y-int	0.102	0.009	-0.223	-0.279	-0.117	-0.220			

^{*} Best fitted

ตารางที่ 48 การทดสอบจลนศาสตร์ของการปลดปล่อยยาออกจากเมทริกซ์ EC ที่มีเรชิน Amberlite IRP69[®] 20 % (EC/Am69/20) ในตัวกลางชนิดต่างๆ

 ตัวกลาง	น้ำ	สารละลายโพแทสเซียมคลอไรด์ (KCI) ความเข้มข้น				ข้มข้น			
		0.005 N	0.05 N	1.0 N	2.0 N	4.0 N			
Zero order model									
R^2	0.036	0.162	0.246	0.671	0.315	0.745			
Slope (mg.h ⁻¹)	-1.122	2.858	7.872	175.224	29.884	185.419			
y-int	55.779	60.240	65.312	29.508	57.396	24.042			
	First order และ film diffusion controlled model								
R^2	0.129	0.186	0.468	0.985	0.712	0.979			
Slope (h ⁻¹)	-0.041	0.066	0.636	19.085	5.115	15.176			
y-int	0.950	1.159	1.566	-0.227	1.190	-0.212			
Higuchi model	Higuchi model								
R^2	0.002	0.320	0.463	0.904	0.755	0.935			
Slope (h ^{-1/2})	-0.008	0.131	0.276	1.483	0.980	1.516			
y-int	0.534	0.505	0.500	0.105	0.229	0.060			
Korsmayer and	d Peppas m	odel							
n*	< 0.0001	0.05	0.08	0.09	0.09	0.31			
R^2	0.717	0.929	0.944	0.939	0.940	0.964			
Slope (h ⁻ⁿ)	0.580	0.750	0.909	1.037	1.018	1.330			
y-int	0.000	0.002	-0.005	-0.019	-0.020	-0.012			
Bhaskar หรือ particle diffusion controlled model									
R^2	0.089	0.280	0.635	0.912	0.844	0.900			
Slope (h ^{-0.65})	-0.077	0.182	1.236	11.512	5.760	9.118			
y-int	0.956	1.044	1.170	-0.428	0.482	-0.364			

^{*} Best fitted

ตารางที่ 49 ผลการประเมินน้ำหนักของเมทริกซ์ HPMC ที่มี Amberlite IRP64®

สูตร (HPMC/_)						
Am64/0	Am64/5	Am64/10	Am64/20	Am64/30	Am64/40	
99.8*	100.5	99.6	100.4	100.2	99.8	
100.0	100.5	99.8	99.9	100.4	100.6	
100.7	100.6	100.1	100.2	99.9	100.8	
100.1	100.2	100.0	100.8	100.2	100.7	
100.7	99.2	100.0	100.6	100.0	100.6	
100.6	100.1	99.6	100.8	100.7	100.6	
99.4	100.4	99.4	100.8	100.7	100.7	
99.2	99.4	100.8	100.7	100.3	100.6	
99.5	99.8	99.8	100.3	99.8	100.8	
99.7	99.8	100.0	100.6	100.5	99.9	
100.0	100.1	99.9	100.5	100.3	100.5	
0.5	0.5	0.4	0.3	0.3	0.4	
	99.8* 100.0 100.7 100.1 100.7 100.6 99.4 99.2 99.5 99.7 100.0	99.8* 100.5 100.0 100.5 100.7 100.6 100.1 100.2 100.7 99.2 100.6 100.1 99.4 100.4 99.2 99.4 99.5 99.8 99.7 99.8 100.0 100.1	Am64/0 Am64/5 Am64/10 99.8* 100.5 99.6 100.0 100.5 99.8 100.7 100.6 100.1 100.1 100.2 100.0 100.7 99.2 100.0 100.6 100.1 99.6 99.4 100.4 99.4 99.2 99.4 100.8 99.5 99.8 99.8 99.7 99.8 100.0 100.0 100.1 99.9	Am64/0 Am64/5 Am64/10 Am64/20 99.8* 100.5 99.6 100.4 100.0 100.5 99.8 99.9 100.7 100.6 100.1 100.2 100.1 100.2 100.0 100.8 100.7 99.2 100.0 100.6 100.6 100.1 99.6 100.8 99.4 100.4 99.4 100.8 99.2 99.4 100.8 100.7 99.5 99.8 99.8 100.3 99.7 99.8 100.0 100.6 100.0 100.1 99.9 100.5	Am64/0 Am64/5 Am64/10 Am64/20 Am64/30 99.8* 100.5 99.6 100.4 100.2 100.0 100.5 99.8 99.9 100.4 100.7 100.6 100.1 100.2 99.9 100.1 100.2 100.0 100.8 100.2 100.7 99.2 100.0 100.6 100.0 100.6 100.1 99.6 100.8 100.7 99.4 100.4 99.4 100.8 100.7 99.2 99.4 100.8 100.7 100.3 99.5 99.8 99.8 100.3 99.8 99.7 99.8 100.0 100.6 100.5 100.0 100.1 99.9 100.5 100.3	

^{*} มิลลิกรัม

ตารางที่ 50 ผลการประเมินความหนาของเมทริกซ์ HPMC ที่มี Amberlite IRP64®

เม็ดที่	สูตร (HPMC/_)							
	Am64/0	Am64/5	Am64/10	Am64/20	Am64/30	Am64/40		
1	2.74*	2.84	2.81	2.83	2.84	2.72		
2	2.72	2.83	2.82	2.84	2.82	2.71		
3	2.73	2.82	2.85	2.83	2.84	2.71		
4	2.73	2.83	2.83	2.83	2.83	2.71		
5	2.73	2.86	2.82	2.83	2.82	2.71		
6	2.74	2.86	2.81	2.84	2.81	2.69		
7	2.72	2.77	2.81	2.81	2.83	2.70		
8	2.73	2.83	2.81	2.82	2.82	2.72		
9	2.72	2.80	2.82	2.82	2.82	2.70		
10	2.73	2.80	2.85	2.82	2.83	2.71		
ค่าเฉลี่ย	2.73	2.82	2.82	2.83	2.83	2.71		
S.D.	0.01	0.03	0.02	0.01	0.01	0.01		

^{*} มิลลิเมตร

ตารางที่ 51 ผลการประเมินเส้นผ่าศูนย์กลางของเมทริกซ์ HPMC ที่มี Amberlite IRP64®

เม็ดที่	สูตร (HPMC/_)							
	Am64/0	Am64/5	Am64/10	Am64/20	Am64/30	Am64/40		
1	6.40*	6.40	6.40	6.40	6.38	6.40		
2	6.38	6.40	6.40	6.40	6.38	6.40		
3	6.40	6.40	6.40	6.40	6.38	6.40		
4	6.38	6.40	6.40	6.40	6.38	6.40		
5	6.38	6.40	6.40	6.40	6.38	6.42		
6	6.40	6.40	6.40	6.40	6.38	6.40		
7	6.40	6.40	6.40	6.40	6.38	6.40		
8	6.38	6.40	6.40	6.40	6.38	6.40		
9	6.40	6.40	6.40	6.40	6.38	6.40		
10	6.38	6.40	6.40	6.40	6.38	6.40		
ค่าเฉลี่ย	6.39	6.40	6.40	6.40	6.38	6.40		
S.D.	0.01	0.00	0.00	0.00	0.00	0.01		

^{*} มิลลิเมตร

ตารางที่ 52 ผลการประเมินความแข็งของเมทริกซ์ HPMC ที่มี Amberlite IRP64[®]

เม็ดที่	สูตร (HPMC/_)						
	Am64/0	Am64/5	Am64/10	Am64/20	Am64/30	Am64/40	
1	59.8*	71.7	60.3	89.6	68.1	90.7	
2	54.2	74.7	60.1	88.8	69.8	87.2	
3	60.8	73.9	60.2	87.2	83.5	89.8	
4	53.6	73.1	59.9	88.1	69.6	92.0	
5	55.2	70.7	59.1	88.6	79.9	89.5	
6	54.2	71.4	59.1	86.1	75.3	95.5	
7	55.4	70.4	57.2	89.2	70.3	92.2	
8	53.9	74.0	56.9	87.6	85.8	83.1	
9	54.6	72.0	59.2	88.2	78.0	92.1	
10	54.1	70.5	61.8	86.8	85.5	95.8	
ค่าเฉลี่ย	55.6	72.2	59.4	88.0	76.6	90.8	
S.D.	2.6	1.6	1.4	1.1	7.0	3.8	

^{*} นิวตัน

ตารางที่ 53 ผลการประเมินน้ำหนักของเมทริกซ์ EC ที่มี Amberlite IRP64®

เม็ดที่	สูตร (EC/_)						
	Am64/0	Am64/5	Am64/10	Am64/20	Am64/30	Am64/40	
1	99.8*	99.5	99.9	99.8	100.0	100.6	
2	100.1	99.4	99.8	100.6	100.8	100.3	
3	100.5	99.4	99.7	100.4	99.6	100.6	
4	100.4	99.6	100.7	100.8	100.8	100.1	
5	100.3	99.6	99.9	99.5	100.5	100.8	
6	99.9	99.4	99.6	99.4	100.5	100.4	
7	100.2	100.2	100.1	100.6	99.9	100.4	
8	99.6	100.3	99.9	100.8	99.9	100.7	
9	99.9	99.6	100.6	100.6	100.2	100.6	
10	100.0	99.5	100.1	99.3	100.8	100.2	
ค่าเฉลี่ย	100.1	99.7	100.0	100.2	100.3	100.5	
S.D.	0.3	0.3	0.4	0.6	0.4	0.2	
4 4 4 2							

^{*} มิลลิกรัม

ตารางที่ 54 ผลการประเมินความหนาของเมทริกซ์ EC ที่มี Amberlite IRP64®

เม็ดที่	สูตร (EC/_)							
	Am64/0	Am64/5	Am64/10	Am64/20	Am64/30	Am64/40		
1	2.79*	2.91	2.93	2.90	2.83	2.71		
2	2.79	2.88	2.87	2.83	2.83	2.69		
3	2.77	2.89	2.90	2.89	2.82	2.70		
4	2.79	2.92	2.90	2.86	2.83	2.72		
5	2.81	2.90	2.90	2.86	2.85	2.72		
6	2.78	2.90	2.93	2.90	2.83	2.69		
7	2.79	2.90	2.89	2.85	2.82	2.69		
8	2.81	2.89	2.89	2.88	2.83	2.67		
9	2.82	2.88	2.89	2.88	2.84	2.71		
10	2.81	2.90	2.89	2.89	2.83	2.69		
ค่าเฉลี่ย	2.80	2.90	2.90	2.87	2.83	2.70		
S.D.	0.01	0.01	0.02	0.02	0.01	0.01		

^{*} มิลลิเมตร

ตารางที่ 55 ผลการประเมินเส้นผ่าศูนย์กลางของเมทริกซ์ EC ที่มี Amberlite IRP64®

เม็ดที่	สูตร (EC/_)						
	Am64/0	Am64/5	Am64/10	Am64/20	Am64/30	Am64/40	
1	6.40*	6.38	6.38	6.38	6.40	6.40	
2	6.40	6.40	6.38	6.38	6.38	6.40	
3	6.40	6.40	6.40	6.38	6.38	6.40	
4	6.38	6.40	6.40	6.38	6.38	6.40	
5	6.40	6.40	6.40	6.38	6.38	6.40	
6	6.38	6.40	6.40	6.38	6.38	6.40	
7	6.38	6.40	6.40	6.38	6.38	6.40	
8	6.38	6.40	6.38	6.38	6.38	6.40	
9	6.38	6.40	6.40	6.38	6.38	6.40	
10	6.40	6.40	6.40	6.38	6.38	6.40	
ค่าเฉลี่ย	6.39	6.40	6.39	6.38	6.38	6.40	
S.D.	0.01	0.01	0.01	0.00	0.01	0.00	

^{*} มิลลิเมตร

ตารางที่ 56 ผลการประเมินความแข็งของเมทริกซ์ EC ที่มี Amberlite IRP64®

เม็ดที่	สูตร (EC/_)							
	Am64/0	Am64/5	Am64/10	Am64/20	Am64/30	Am64/40		
1	116.8*	118.0	120.7	122.8	141.0	143.5		
2	116.1	122.8	128.4	125.0	139.4	134.3		
3	111.5	116.7	125.0	133.3	128.6	139.0		
4	110.1	122.4	127.1	133.1	137.9	143.3		
5	116.9	116.8	132.1	133.5	139.8	131.9		
6	118.2	119.6	125.2	120.9	137.4	136.8		
7	117.5	115.8	120.3	130.9	132.6	129.7		
8	111.1	121.9	128.4	136.8	136.7	129.0		
9	108.7	121.2	130.6	128.0	141.0	132.0		
10	113.1	116.8	124.6	132.4	138.1	135.6		
ค่าเฉลี่ย	114.0	119.2	126.2	129.7	137.2	135.5		
S.D.	3.5	2.7	3.9	5.3	3.9	5.2		

^{*} นิวตัน

ตารางที่ 57 ผลการประเมินเวลาการแตกตัวของเมทริกซ์ EC ที่มี Amberlite IRP64 $^{ ext{ iny R}}$

เม็ดที่	ଶ୍ୱଡୀ (EC/_)							
	Am64/0*	Am64/5	Am64/10	Am64/20	Am64/30	Am64/40		
1	>60**	>60	>60	>60	>60	>60		
2	>60	>60	>60	>60	>60	>60		
3	>60	>60	>60	>60	>60	>60		
4	>60	>60	>60	>60	>60	>60		
5	>60	>60	>60	>60	>60	>60		
6	>60	>60	>60	>60	>60	>60		
ค่าเฉลี่ย	>60	>60	>60	>60	>60	>60		
S.D.	-	-	-	-	-	-		

^{*} ไม่แตกตัวและไม่กร่อนแม้เวลาผ่านไป 10 h

ตารางที่ 58 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am64/0 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	8.0	8.2	7.9	8.1	0.1
0.3	15.4	18.3	16.2	16.6	1.5
0.5	28.7	30.8	29.5	29.7	1.1
1.0	45.4	46.5	44.2	45.4	1.1
2.0	63.9	65.1	64.2	64.4	0.6
4.0	76.9	79.7	78.4	78.3	1.4
6.0	83.8	86.9	86.7	85.8	1.7
8.0	90.1	92.4	91.0	91.2	1.2
10.0	93.4	96.9	93.8	94.7	1.9

^{**}นาที

ตารางที่ 59 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am64/5 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	15.0	18.2	16.4	16.5	1.6
0.3	21.3	22.1	22.0	21.8	0.4
0.5	28.8	28.4	28.9	28.7	0.3
1.0	41.5	42.0	41.5	41.7	0.3
2.0	58.5	59.7	58.8	59.0	0.6
4.0	78.0	75.7	77.8	77.2	1.2
6.0	88.1	88.2	88.2	88.2	0.1
8.0	90.6	91.2	90.4	90.7	0.4
10.0	91.8	92.6	91.6	92.0	0.6

ตารางที่ 60 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am64/10 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	13.8	14.3	13.7	13.9	0.3
0.3	18.2	18.2	18.4	18.3	0.1
0.5	26.1	25.7	26.4	26.1	0.3
1.0	38.5	38.9	39.3	38.9	0.4
2.0	56.6	56.0	56.9	56.5	0.5
4.0	71.4	78.7	75.6	75.3	3.7
6.0	79.6	86.7	84.1	83.5	3.6
8.0	88.1	89.4	88.3	88.6	0.7
10.0	85.1	87.4	86.3	86.3	1.1

ตารางที่ 61 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am64/20 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	11.2	10.2	11.0	10.8	0.5
0.3	15.9	14.9	15.4	15.4	0.5
0.5	26.3	23.3	24.7	24.8	1.5
1.0	37.7	36.6	37.8	37.4	0.7
2.0	55.2	55.3	55.4	55.3	0.1
4.0	72.2	72.1	70.3	71.5	1.0
6.0	80.4	80.3	79.2	79.9	0.7
8.0	83.7	82.7	83.0	83.1	0.6
10.0	84.7	82.9	83.8	83.8	0.9
4.0 6.0 8.0	72.2 80.4 83.7	72.1 80.3 82.7	70.3 79.2 83.0	71.5 79.9 83.1	1.0 0.7 0.6

ตารางที่ 62 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am64/30 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	9.8	12.4	11.8	11.3	1.4
0.3	18.8	18.2	18.5	18.5	0.3
0.5	27.3	26.7	27.1	27.0	0.3
1.0	38.1	39.5	39.3	39.0	0.8
2.0	53.4	54.8	54.5	54.2	0.7
4.0	64.3	68.3	67.2	66.6	2.1
6.0	75.6	75.1	75.5	75.4	0.3
8.0	77.7	78.7	78.5	78.3	0.5
10.0	78.6	78.4	78.6	78.5	0.2

ตารางที่ 63 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am64/40 ในน้ำ

(1)	4			١ ط	
เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	16.9	14.9	16.9	16.2	1.2
0.3	21.2	16.6	19.7	19.1	2.3
0.5	28.7	26.3	28.0	27.6	1.2
1.0	41.1	40.1	40.8	40.7	0.5
2.0	55.3	54.4	55.1	54.9	0.5
4.0	67.1	66.3	66.9	66.8	0.4
6.0	73.0	72.9	72.3	72.7	0.4
8.0	73.0	72.9	73.0	73.0	0.1
10.0	74.0	73.5	74.4	73.9	0.4

ตารางที่ 64 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am64/0 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	14.9	14.1	14.1	14.4	0.5
0.3	20.1	20.1	20.2	20.1	0.1
0.5	25.7	23.7	25.3	24.9	1.0
1.0	34.4	31.8	32.9	33.0	1.3
2.0	45.3	43.5	44.5	44.4	0.9
4.0	59.5	58.7	58.9	59.1	0.4
6.0	69.7	70.5	70.4	70.2	0.4
8.0	77.3	78.6	77.5	77.8	0.7
10.0	82.0	83.3	83.6	83.0	0.9

ตารางที่ 65 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am64/5 ในน้ำ

1000 (1-)	4	0	2	ค่าเฉลี่ย	0.0
เวลา (h)	1	2	3	คาเฉลย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	21.1	19.3	20.8	20.4	1.0
0.3	23.6	21.9	23.1	22.9	0.8
0.5	25.6	24.5	25.4	25.1	0.6
1.0	32.6	32.2	32.6	32.5	0.2
2.0	42.4	43.0	42.6	42.7	0.3
4.0	55.9	56.0	55.9	55.9	0.1
6.0	66.2	67.0	66.3	66.5	0.4
8.0	70.0	72.5	71.3	71.3	1.3
10.0	80.1	80.5	79.8	80.1	0.4

ตารางที่ 66 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am64/10 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	16.8	16.3	16.0	16.4	0.4
0.3	20.5	18.9	19.5	19.6	0.8
0.5	27.4	24.4	25.5	25.8	1.5
1.0	34.9	32.2	33.2	33.4	1.4
2.0	43.7	42.7	43.2	43.2	0.5
4.0	55.6	57.5	56.6	56.6	0.9
6.0	66.1	67.2	66.6	66.6	0.5
8.0	67.8	72.0	70.6	70.1	2.1
10.0	80.6	75.0	77.2	77.6	2.8

ตารางที่ 67 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am64/20 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	14.5	11.8	13.0	13.1	1.4
0.3	19.5	17.3	18.2	18.3	1.1
0.5	27.0	24.4	25.7	25.7	1.3
1.0	36.2	33.5	34.8	34.8	1.3
2.0	47.0	45.8	46.2	46.3	0.6
4.0	61.7	59.8	60.4	60.6	0.9
6.0	67.4	64.1	66.0	65.8	1.6
8.0	74.8	71.5	74.1	73.5	1.8
10.0	75.0	77.7	76.7	76.5	1.3

ตารางที่ 68 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am64/30 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	14.8	15.4	15.6	15.3	0.4
0.3	22.0	23.2	22.5	22.6	0.6
0.5	29.9	30.6	29.9	30.1	0.4
1.0	40.5	40.2	40.5	40.4	0.2
2.0	57.8	55.7	56.5	56.6	1.1
4.0	80.6	78.3	79.3	79.4	1.1
6.0	80.5	80.2	80.2	80.3	0.2
8.0	80.0	80.4	80.6	80.3	0.3
10.0	80.9	81.1	80.7	80.9	0.2

ตารางที่ 69 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am64/40 ในน้ำ

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	16.2	16.0	16.9	16.4	0.5
0.3	23.9	21.6	23.3	22.9	1.2
0.5	40.1	38.3	40.1	39.5	1.0
1.0	69.0	67.3	69.8	68.7	1.3
2.0	76.4	77.2	77.2	76.9	0.5
4.0	76.0	78.6	77.6	77.4	1.3
6.0	77.1	78.4	78.3	77.9	0.7
8.0	75.3	79.1	77.8	77.4	1.9
10.0	74.6	78.9	77.7	77.1	2.2

ตารางที่ 70 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am64/0 ใน 0.1 N KCI

เวลา	(h) 1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	10.1	8.6	9.4	9.4	0.7
0.3	13.1	13.1	13.1	13.1	0.0
0.5	19.9	20.1	19.8	20.0	0.1
1.0	31.4	31.1	31.0	31.2	0.2
2.0	48.5	48.2	48.3	48.4	0.2
4.0	69.0	69.0	69.0	69.0	0.0
6.0	82.7	83.0	83.1	82.9	0.2
8.0	90.9	90.5	90.7	90.7	0.2
10.0	92.5	92.4	92.6	92.5	0.1

ตารางที่ 71 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am64/0 ใน 0.4 N KCI

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	8.6	8.0	8.0	8.2	0.3
0.3	11.7	11.1	10.9	11.2	0.4
0.5	16.5	16.3	15.9	16.2	0.3
1.0	25.5	25.6	25.3	25.5	0.2
2.0	41.2	42.8	41.4	41.8	0.9
4.0	61.0	62.4	61.3	61.6	8.0
6.0	70.4	73.8	71.3	71.8	1.8
8.0	79.8	83.3	80.9	81.3	1.8
10.0	86.3	88.2	86.8	87.1	1.0

ตารางที่ 72 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am64/40 ใน 0.05 N KCI

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	19.9	26.1	21.5	22.5	3.2
0.3	13.1	21.2	16.3	16.9	4.0
0.5	21.5	24.3	22.9	22.9	1.4
1.0	24.2	33.5	29.4	29.0	4.6
2.0	41.4	45.4	42.3	43.1	2.1
4.0	54.1	54.5	52.8	53.8	0.9
6.0	60.3	62.6	60.1	61.0	1.4
8.0	58.2	63.0	61.2	60.8	2.4
10.0	65.4	67.4	65.8	66.2	1.0

ตารางที่ 73 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am64/40 ใน 0.1 N KCI

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	10.0	12.5	10.6	11.1	1.3
0.3	13.9	14.2	13.8	14.0	0.2
0.5	20.0	20.6	20.7	20.4	0.4
1.0	32.4	30.6	31.1	31.4	0.9
2.0	41.1	42.4	41.7	41.7	0.7
4.0	54.5	58.1	56.0	56.2	1.8
6.0	63.2	60.3	62.5	62.0	1.5
8.0	67.5	67.8	67.1	67.5	0.4
10.0	67.5	71.8	69.7	69.7	2.1

ตารางที่ 74 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am64/40 ใน 0.2 N KCI

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	3.7	5.0	4.2	4.3	0.7
0.3	8.2	7.8	8.3	8.1	0.2
0.5	15.3	13.3	14.3	14.3	1.0
1.0	25.6	24.7	26.0	25.4	0.7
2.0	35.3	34.6	34.9	34.9	0.4
4.0	47.5	44.4	45.5	45.8	1.6
6.0	55.4	48.3	51.2	51.6	3.5
8.0	52.1	61.9	59.0	57.7	5.0
10.0	65.1	67.3	64.6	65.7	1.4

ตารางที่ 75 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ HPMC/Am64/40 ใน 0.4 N KCI

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	9.1	15.6	11.0	11.9	3.3
0.3	11.3	11.2	10.5	11.0	0.4
0.5	15.7	16.4	16.4	16.2	0.4
1.0	27.5	27.8	27.2	27.5	0.3
2.0	38.7	42.0	39.3	40.0	1.8
4.0	50.3	53.2	51.5	51.7	1.4
6.0	63.6	62.5	62.4	62.8	0.7
8.0	70.0	68.1	68.5	68.9	1.0
10.0	70.7	74.2	73.0	72.6	1.7

ตารางที่ 76 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am64/0 ใน 0.1 N KCI

 เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	14.5	14.9	14.6	14.7	0.2
0.3	15.7	21.8	17.7	18.4	3.1
0.5	19.1	23.1	20.6	21.0	2.0
1.0	27.8	28.4	27.4	27.9	0.5
2.0	38.1	37.5	37.5	37.7	0.4
4.0	50.2	50.5	49.8	50.1	0.3
6.0	59.3	61.3	60.2	60.3	1.0
8.0	65.8	70.7	67.7	68.1	2.5
10.0	74.4	77.0	76.0	75.8	1.3

ตารางที่ 77 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am64/0 ใน 0.4 N KCI

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	9.7	8.8	9.9	9.5	0.6
0.3	12.6	14.4	13.5	13.5	0.9
0.5	16.3	17.5	17.2	17.0	0.7
1.0	22.2	24.2	23.6	23.3	1.0
2.0	31.1	32.5	32.1	31.9	0.7
4.0	43.2	46.3	45.0	44.8	1.5
6.0	53.7	56.1	55.2	55.0	1.2
8.0	61.6	64.1	63.0	62.9	1.3
10.0	68.0	70.8	69.9	69.6	1.4

ตารางที่ 78 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am64/40 ใน 0.05 N KCI

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	24.3	22.1	22.5	23.0	1.1
0.3	33.7	34.0	33.0	33.6	0.5
0.5	65.7	60.4	60.4	62.2	3.1
1.0	74.6	71.1	72.1	72.6	1.8
2.0	78.6	75.0	75.1	76.2	2.0
4.0	77.6	76.4	76.7	76.9	0.6
6.0	77.2	79.3	76.6	77.7	1.4
8.0	74.7	76.0	75.5	75.4	0.6
10.0	80.0	78.4	77.9	78.8	1.1

ตารางที่ 79 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am64/40 ใน 0.1 N KCI

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	20.8	16.8	18.7	18.8	2.0
0.3	47.0	37.5	42.3	42.2	4.7
0.5	71.8	67.4	69.7	69.7	2.2
1.0	81.7	81.1	81.5	81.5	0.3
2.0	87.0	87.3	86.6	87.0	0.4
4.0	87.8	83.0	86.4	85.7	2.5
6.0	85.6	82.6	83.8	84.0	1.5
8.0	84.8	84.6	84.7	84.7	0.1
10.0	85.5	85.7	85.6	85.6	0.1

ตารางที่ 80 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am64/40 ใน 0.2 N KCI

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	10.7	17.1	12.3	13.4	3.4
0.3	33.7	33.5	34.3	33.8	0.4
0.5	70.4	66.4	67.3	68.0	2.1
1.0	85.3	79.4	81.8	82.2	3.0
2.0	88.1	80.2	81.8	83.4	4.2
4.0	86.4	80.8	83.5	83.6	2.8
6.0	88.6	89.7	86.5	88.2	1.6
8.0	93.1	86.3	89.9	89.8	3.4
10.0	86.7	83.5	85.4	85.2	1.6

ตารางที่ 81 การปลดปล่อยยา (%w/w) ออกจากเมทริกซ์ EC/Am64/40 ใน 0.4 N KCI

เวลา (h)	1	2	3	ค่าเฉลี่ย	S.D.
0.0	0.0	0.0	0.0	0.0	0.0
0.1	23.5	15.3	20.2	19.6	4.1
0.3	41.8	40.0	40.9	40.9	0.9
0.5	71.9	67.5	71.2	70.2	2.4
1.0	83.2	87.6	85.6	85.5	2.2
2.0	90.6	91.6	90.0	90.7	8.0
4.0	90.9	93.2	88.5	90.9	2.4
6.0	90.8	93.4	90.6	91.6	1.6
8.0	88.5	89.3	89.8	89.2	0.7
10.0	92.5	92.5	92.4	92.5	0.1

ตารางที่ 82 การทดสอบจลนศาสตร์ของการปลดปล่อยยาออกจากเมทริกซ์ HPMC ที่มี Amberlite IRP64 [®] ในน้ำ

 ตำรับ	สูตร (HPMC/_)							
- -	Am64/0	Am64/5	Am64/10	Am64/20	Am64/30	Am64/40		
Zero order mod	del .							
R^2	0.838	0.821	0.814	0.813	0.792	0.746		
Slope (mg.h ⁻¹)	15.189	8.522	8.277	8.023	7.234	6.506		
y-int	18.782	24.451	22.391	20.659	21.851	23.781		
First order และ	film diffusi	ion controll	ed model					
R^2	0.994	0.960	0.924	0.927	0.903	0.847		
Slope (h ⁻¹)	0.500	0.262	0.219	0.191	0.157	0.133		
y-int	0.095	0.236	0.236	0.221	0.247	0.287		
Higuchi model								
R^2	0.972	0.962	0.957	0.957	0.949	0.922		
Slope (h ^{-1/2})	0.419	0.301	0.293	0.284	0.259	0.236		
y-int	0.013	0.083	0.067	0.054	0.078	0.106		
Korsmayer and	l Peppas me	odel						
n*	0.42	0.42	0.52	0.40	0.36	0.33		
R^2	0.979	0.990	0.994	0.984	0.987	0.979		
Slope (h ⁻ⁿ)	0.495	0.401	0.385	0.398	0.403	0.405		
y-int	-0.039	0.004	0.007	-0.027	-0.025	-0.015		
Bhaskar หรือ p	article diffu	sion contro	olled model					
R2	0.984	0.990	0.973	0.981	0.972	0.938		
Slope (h-0.65)	0.949	0.601	0.507	0.444	0.368	0.315		
y-int	-0.165	0.001	0.030	0.040	0.093	0.148		

^{*} Best fitted

ตารางที่ 83 การทดสอบจลนศาสตร์ของการปลดปล่อยยาออกจากเมทริกซ์ EC ที่มี Amberlite IRP64[®] ในน้ำ

ตำรับ		สูตร (EC/_)						
	Am64/0	Am64/5	Am64/10	Am64/20	Am64/30	Am64/40		
Zero order model								
R^2	0.892	0.885	0.869	0.843	0.748	0.506		
Slope (mg.h ⁻¹)	7.430	6.694	6.658	6.804	7.331	5.968		
y-int	19.037	20.431	19.736	19.802	25.253	34.423		
First order และ	film diffusi	ion controll	ed model					
R^2	0.985	0.975	0.964	0.947	0.830	0.566		
Slope (h ⁻¹)	0.167	0.142	0.135	0.138	0.172	0.131		
y-int	0.173	0.199	0.200	0.208	0.314	0.535		
Higuchi model								
R^2	0.991	0.980	0.982	0.974	0.920	0.731		
Slope (h ^{-1/2})	0.256	0.230	0.231	0.239	0.266	0.234		
y-int	0.060	0.087	0.077	0.072	0.105	0.198		
Korsmayer and	l Peppas m	odel						
n*	0.41	0.20	0.34	0.37	0.35	0.25		
R^2	1.000	0.986	0.994	0.996	0.973	0.8776		
Slope (h ⁻ⁿ)	0.260	0.310	0.334	0.350	0.434	0.5444		
y-int	0.000	0.001	0.002	-0.006	-0.016	-0.0326		
Bhaskar หรือ p	article diffu	sion contro	olled model					
R^2	0.996	0.986	0.993	0.993	0.917	0.705		
Slope (h ^{-0.65})	0.378	0.321	0.310	0.319	0.408	0.330		
y-int	0.030	0.078	0.079	0.079	0.135	0.364		

^{*} Best fitted

ตารางที่ 84 การทดสอบจลนศาสตร์ของการปลดปล่อยยาออกจากเมทริกซ์ HPMC ที่มี
Amberlite IRP64[®] 40 % (HPMC/Am64/40) ในตัวกลางชนิดต่าง ๆ

 ตัวกลาง	น้ำ	สารละลายโพแทสเซียมคลอไรด์ (KCI) ความเข้ม			
		0.05 N	1.0 N	2.0 N	4.0 N
Zero order mod	lel				
R^2	0.746	0.808	0.845	0.889	0.893
Slope (mg.h ⁻¹)	6.506	5.541	6.440	6.137	6.883
y-int	23.781	19.982	16.900	11.245	14.349
First order และ	film diffus	sion controlle	ed model		
R^2	0.847	0.894	0.929	0.956	0.966
Slope (h ⁻¹)	0.133	0.098	0.117	0.100	0.128
y-int	0.287	0.223	0.179	0.108	0.137
Higuchi model					
R^2	0.922	0.941	0.974	0.986	0.987
Slope (h ^{-1/2})	0.236	0.195	0.226	0.211	0.236
y-int	0.106	0.096	0.050	0.005	0.023
Korsmayer and	Peppas m	odel			
n*	0.31	0.30	0.40	0.45	0.46
R^2	0.971	0.898	0.992	0.986	0.991
Slope (h ⁻ⁿ)	0.403	0.312	0.308	0.242	0.272
y-int	-0.014	0.007	-0.008	-0.017	-0.002
Bhaskar หรือ pa	article diff	usion control	lled model		
R^2	0.938	0.958	0.986	0.992	0.996
Slope (h ^{-0.65})	0.315	0.229	0.273	0.231	0.292
y-int	0.148	0.127	0.067	0.017	0.022

^{*} Best fitted

ตารางที่ 85 การทดสอบจลนศาสตร์ของการปลดปล่อยยาออกจากเมทริกซ์ EC ที่มี Amberlite IRP64[®] 40 % (EC/Am64/40) ในตัวกลางชนิดต่างๆ

์ ตัวกลาง	น้ำ	สารละลายโพแทสเซียมคลอไรด์ (KCI) ความเข้มข้น							
		0.05 N	1.0 N	2.0 N	4.0 N				
Zero order model									
R^2	0.506	0.410	0.379	0.427	0.416				
Slope (mg.h ⁻¹)	5.968	4.972	5.401	6.073	6.079				
y-int	34.423	41.813	46.725	43.426	47.760				
First order และ film diffusion controlled model									
R^2	0.566	0.498	0.454	0.556	0.554				
Slope (h ⁻¹)	0.131	0.113	0.145	0.174	0.207				
y-int	0.535	0.668	0.864	0.781	0.937				
Higuchi model									
R^2	0.731	0.636	0.604	0.650	0.643				
Slope (h ^{-1/2})	0.234	0.202	0.223	0.245	0.247				
y-int	0.198	0.286	0.319	0.276	0.317				
Korsmayer and Peppas model									
n*	0.23	0.57	0.34	0.18	0.22				
R^2	0.867	0.997	0.940	0.849	0.851				
Slope (h ⁻ⁿ)	0.535	0.258	0.667	0.677	0.648				
y-int	-0.029	0.002	-0.011	-0.028	-0.028				
Bhaskar หรือ particle diffusion controlled model									
R^2	0.705	0.637	0.595	0.692	0.692				
Slope (h ^{-0.65})	0.330	0.289	0.376	0.438	0.521				
y-int	0.364	0.514	0.658	0.555	0.667				

^{*} Best fitted

Research Article

Effect of a Pharmaceutical Cationic Exchange Resin on the Properties of Controlled Release Diphenhydramine Hydrochloride Matrices Using Methocel K4M or Ethocel 7cP as Matrix Formers

Prasert Akkaramongkolporn, 1,2 Tanasait Ngawhirunpat, 1 Jurairat Nunthanid, 1 and Praneet Opanasopit 1

Received 11 March 2008; accepted 17 June 2008; published online 31 July 2008

Abstract. This work was aimed at evaluating the effect of a pharmaceutical cationic exchange resin (Amberlite IRP-69) on the properties of controlled release matrices using Methocel K4M (HPMC) or Ethocel 7cP (EC) as matrix formers. Diphenhydramine hydrochloride (DPH), which was cationic and water soluble, was chosen as a model drug. HPMC- and EC-based matrices with varying amounts (0-40%w/w) of resin incorporation were prepared by a direct compression. Matrix properties including diameter, thickness, hardness, friability, surface morphology and drug release were evaluated. The obtained matrices were comparable in diameter and thickness regardless of the amount of resin incorporation. Increasing the incorporated resin decreased the hardness of HPMC- and EC-based matrices, correlating with the degree of rupturing on the matrix surfaces. The friability of HPMC-based matrices increased with increasing the incorporated resin, corresponding to their decreased hardness. In contrast, the EC-based matrices showed no significant change in friability in spite of decreasing hardness. The incorporated resin differently influenced DPH release from HPMC- and EC-based matrices in deionized water. The resin further retarded DPH release from HPMC-based matrices due to the gelling property of HPMC and the ion exchange property of the resin. In contrast, the release from EC-based matrices initially increased because of the disintegrating property of the resin, but thereafter declined due to the complex formation between released drug and dispersed resin via the ion exchange process. The release in ionic solutions was also described. In conclusion, the incorporated resin could alter the release and physical properties of matrices

KEYWORDS: diphenhydramine hydrochloride; ethylcellulose; hydroxypropylmethylcellulose; ion exchange resin; matrix properties.

INTRODUCTION

Manipulation of polymers as matrices has been a popular mean to control release of drugs (1,2). Matrices can be prepared via direct compression or a wet granulation process (2-7). Materials generally used in forming matrices are polymers, which can be organized into hydrophobic and hydrophilic groups. Drug release from matrices using hydrophobic (water insoluble) polymers such as ethylcellulose derivatives proceeds via diffusion through an almost intact matrix (3). On the other hand, matrices made of hydrophilic polymers such as hydroxypropylmethylcellulose derivatives swell and form a gelled matrix upon contact with water, and thus drug release is primarily governed by diffusion through the gelled matrix (4). Polymers selected from either the same or different groups can be admixed to modify the rate and mechanism of drug release from matrices (2,3). In addition, drug release from matrices may be tuned by adjustment of polymer concentration or/and addition of other excipients (3-8).

Aside from the desired release, the physical properties of matrices are also of great importance. Finished matrices must have acceptable physical properties, typically hardness and friability, which can withstand impacts and abrasions during storage, transportation and handling. Matrices failing to meet the physical requirements could break or partially disintegrate, which may cause dose-dumping after administration (9). Using the above techniques to modify the drug release may also alter the physical properties of matrices (1).

Ion exchange resins are swellable crosslinked copolymers which can reversibly adsorb ionized drugs via ion exchange. The resins have been primarily used as drug carriers for the development of controlled release systems, and as taste maskers in preparations of suspensions and chewing gums of bitter drugs. Furthermore, resins with a high propensity for swelling can act like a disintegrant, usable in tablet formulations (10,11). Recently, it was found that the direct compression of some resins with other matrix components can modify drug release from matrices without need for prior formation of resinate (4). Nevertheless, knowledge of this extended use of resins remains scant, and must be further investigated not only with regard to the modification of the drug release but also the alteration of the physical properties of matrices. Therefore this study was aimed at investigating the effect of a

Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.

² To whom correspondence should be addressed. (e-mail: prasert@ email.pharm.su.ac.th)

pharmaceutical cationic exchange resin (Amberlite IRP-69) on the physical and release properties of controlled release matrices using Methocel K4M (HPMC) or Ethocel 7cP (EC), which represents hydrophobic and hydrophilic polymers respectively, as matrix formers. In this work, diphenhydramine hydrochloride (DPH), an antihistamine agent, was chosen as a model drug. It is well absorbed from the gastrointestinal tract. Because of its short half life (approximately 5–6 h), the usual dose of DPH (10–50 mg) is orally taken four times daily (12,13). The drug therefore could potentially be prepared in controlled-release matrices which provided better convenience and patient compliance.

MATERIALS AND METHODS

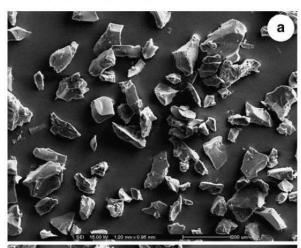
Materials

Amberlite IRP-69 (Sigma Chemical Co., USA), Diphenhydramine hydrochloride (Beijing Shuanglao Pharmaceutical Co., China) and Potassium chloride (Ajax Finechem, Australia) were purchased from various suppliers. Methocel K4M and Ethocel 7cP were kindly donated from Colorcon Ltd., UK. Magnesium stearate (BP grade) was a gift from Glaxo Wellcome Vidhyasom, Thailand. Deionized water (DI) prepared by a water purifier (Barnstead/Thermolyne D 4745, USA) was used entirely in this work.

Methods

Preparation of Matrices by Direct Compression

The formulations and compositions of prepared matrices are presented in Table I. Required compositions were blended together for 10 min, and then each portion (100 mg) was weighed accurately and fed into a hydraulic hand press machine (Specac P/N 15011/25011, UK). All matrices were compressed using stainless steel flat-circular punches (6.35 mm in diameter) with a constant force of 5 tons for 5 s of dwelling time. One hundred matrices were prepared for each batch of the formulations. The matrices obtained were kept in tight containers until used.


Diameter and Thickness of Matrices

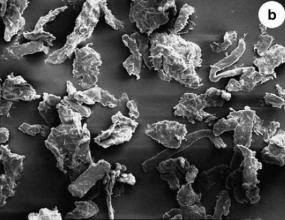

Ten matrices of each formulation were randomly selected and then measured for their diameter and thickness using a micrometer (S229, Sylvac, Switzerland).

Table I. Formulations and Compositions of Prepared Matrices

Formulations			HPMC	or EC		
Compositions (%w/w)	/0	/5	/10	/20	/30	/40
DPH	30	30	30	30	30	30
Amberlite IRP-69 ^a	0	5	10	20	30	40
Magnesium stearate HPMC ^b or EC ^c added to	1 100	1 100	1 100	1 100	1 100	1 100

^aThe resin incorporated

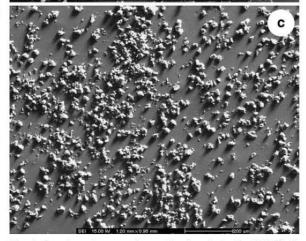


Fig. 1. Scanning electron micrograph of a Amberlite IRP-69, b Methocel K4M (HPMC) and c Ethocel 7cP (EC)

Hardness of Matrices

The hardness of ten matrices was measured using a texture analyzer (Stable Micro Systems TA.XT plus, UK). The measurement was carried out in a manner that the matrices were pressed by a stainless steel flat-face (6 mm in diameter)

b Methocel K4M

^c Ethocel 7cP

cylindrical probe moving at a predetermined speed (1 mm/s). The hardness value, directly read from the instrument, was the maximum force that caused a diametrical crush of matrices.

Friability of Matrices

Twenty matrices were weighed (W_1) and rotated for 100 revolutions in 4 min in a Roche friabilator. The matrices were then weighed (W_2) again, and the friability was calculated as the percent weight loss of tested matrices using (14,15).

$$\left(\frac{W_1 - W_2}{W_1}\right) \times 100\tag{1}$$

Drug Release

Drug release was investigated in triplicate using a USP release testing apparatus I (Prolabo Dissolutest, France) (16). The release medium was 900 ml of deionized water or ionic solutions (i.e. KCl solutions (0.005-0.4 M), simulated gastric (SGF) and intestinal fluids USP without enzyme (SIF)), as indicated. The rotation and temperature were maintained at 50 rev/min and 37±1°C, respectively, throughout testing. At predetermined times, small portions (5 ml) of medium were withdrawn through a filter and assayed by an ultraviolet spectrophotometer (Lambda 2, Perkin-Elmer, Germany) at a wavelength of 218 nm. The same volume of fresh medium was returned into the vessels to keep the volume constant. Photoimages of matrices during the release test were also determined. The matrices were conducted in the same condition of the release test. At predetermined times, the matrices were taken out and then viewed using a digital camera and associated image analysis software (QX5, Digital Blue, China) under a fixed magnification.

Disintegration Test

The disintegration time was measured using a USP disintegration testing apparatus (Sotax DT3, Switzerland) (16). Six matrices were placed into a basket-rack assembly at the start of each test. The medium used for this test was deionized water or the ionic solutions, as indicated, which were maintained at $37\pm1^{\circ}$ C throughout testing. The disintegration time, defined as the point at which matrices disintegrated and passed through the screen of the assembly, was recorded.

Scanning Electron Microscopy (SEM)

The resin, polymers and surface morphology of produced matrices were viewed by an electron scanning electron microscope (CamScan MX 2000, UK). Prior to testing, samples were fixed on stubs and sputter coated with gold in a vacuum evaporator (Cressington Sputter Coater 108, UK). Visualization was performed at a fixed magnification (shown in SEM pictures).

RESULTS AND DICUSSION

Amberlite IRP-69

This resin is a strongly cationic exchange resin commercially produced in plate-like particles (Fig. 1a) with a reported average diameter of 165 μ m (17). The resin structure is a crosslinked styrene-divinylbenzene copolymer carrying many fixed salts of sodium sulfonate (RSO₃Na; R is the copolymer). Though completely water-insoluble, when placed in aqueous solutions the resin hydrates and swells considerably due to the hydrophilicity and dissociation of the sodium sulfonate salts. The sodium ion of the sulfonate salt is able to be exchanged for, or be replaced by, a counter-ion or a cationic drug in the external solution.

Effect on Physical Properties

Direct compression was used to prepare matrices due to ease of production and to avoid using solvents and heat (15,18). All matrices obtained were of fairly uniform weight (%CV≤1), since the blended compositions were weighed and then carefully fed to the compress (15). In each polymerbased system, the matrices were comparable in diameter and thickness regardless of the amount of resin incorporated. The average diameter of each formulation was in the range of 6.40-6.41 (%CV≤1.59) for HPMC- and 6.40 (%CV≤0.00) mm for EC-based matrices, respectively. The diameter was slightly larger than that of the punches used (6.35 mm), probably due to the elastic recovery of matrices (19). The average thickness of each formulation was in the range of 2.80-2.98 (%CV≤2.54) for HPMC- and 2.64-2.84 (%CV≤ 0.96) mm for EC-based matrices, respectively. The diameter of matrices using EC was slightly lower than those using HPMC, which might be attributed to the smaller particle size and hence greater compressibility of EC.

With regard to matrices without the resin, the hardness of HPMC/0 was much lower than that of EC/0 (Fig. 2). In SEM pictures, HPMC/0 (Fig. 3a) had a lesser compact surface than EC/0 (Fig. 4a), in agreement with the observed hardness. This was attributed to the fact that EC had a much smaller particle size than HPMC (Fig. 1b,c). Particle size was one of the most important factors controlling the hardness of compressed tablets or matrices, especially when plastic materials were used as tablet fillers or matrix formers. A smaller particle size was associated with a greater bonding surface area and hence

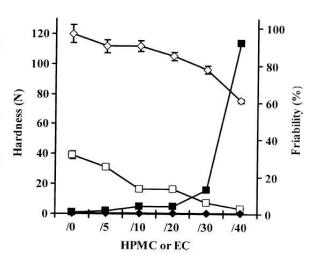


Fig. 2. Hardness (opened symbols) and friability (closed symbols) of various (square) HPMC- and (diamond) EC-based matrices

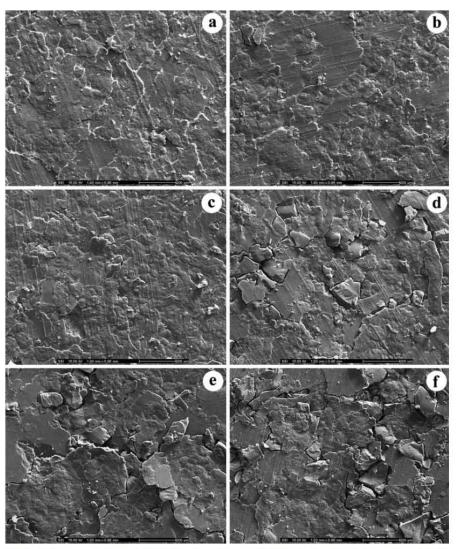


Fig. 3. Surface morphology of HPMC-based matrices; a HPMC/0, b /5, c /10, d /20, e /30 and f /40, respectively

numbers of interparticular attractions among contacting excipients, thus providing greater compact and hardness of tablets or matrices (3,20). HPMC and EC could be used as directly compressible matrix formers for preparing controlled release matrices. Previous investigations reported that both polymers had good compressibility without mention of which was superior. During compression, the polymers primarily underwent plastic deformation, forming matrices whose hardness increased with decreasing particle size (3,18,19).

Resin incorporation significantly reduced the hardness of HPMC- and EC-based matrices. The reduction of hardness increased with increasing amounts of resin incorporation (Fig. 2). This finding agreed with the SEM results in which ruptures on the surface of matrices appeared progressively in proportion with increasing resin incorporation (Fig. 3b–f and Fig. 4b–f). This could be explained by the results of further study. For these experiments, direct compression of the resin alone was performed, in which it was found that the resin

could not form matrices due to extremely low hardness. This demonstrated the poor cohesive attraction and hence poor compressibility of the resin. From careful consideration of Fig. 3b–f and Fig. 4b–f, it could be seen that partial or total ruptures occurred along interfaces of the incorporated resin. This evidence could also imply the poor adhesive attraction between the resin and other components. Therefore, the hardness of matrices would decrease as the incorporated resin was increased. This finding was similar to previous works in which the incorporation of resinates (dextromethorphanloaded resins) or cellulose acetate butyrate coated resinates (phenylpropranolamine-loaded resins) resulted in a dramatic decrease in the hardness of matrices (17,21).

An increase in friability was one of the most common consequences of decreasing the hardness of tablets. With HPMC-based systems, the friability increased with increasing amounts of resin incorporation in a manner that could be divided into two phases. In the first phase, the friability

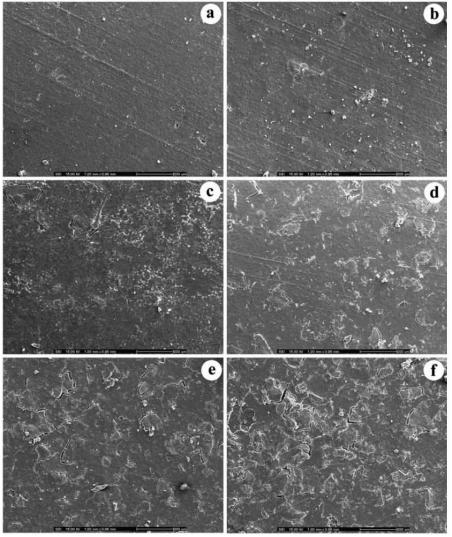


Fig. 4. Surface morphology of EC-based matrices; a EC/0, b /5, c /10, d /20, e /30 and f /40, respectively

increased gradually from 0.88 to 3.94% as the matrices contained up to 20% resin, corresponding to a decrease in hardness from 39.1 to 16.7 N (Fig. 2). The friability increased quickly (from 3.94 to 92%) in the second phase, in which the hardness of matrices containing 20 to 40% resin dropped from 16.7 to 3.7 N. In contrast, the friability of EC-based matrices containing up to 40% incorporated resin was totally unchanged (0.21-0.45%) although their hardness decreased from 120 to 76 N (Fig. 2). It should be noted that all matrices using EC had greater hardness than those using HPMC. The results suggested that there was a critical matrix strength under which the friability would increase in relation to the decreased hardness, otherwise remaining unchanged. The critical matrix strength of HPMC-based matrices might be about 16-17 N, below which the friability increased greatly. With EC-based matrices, the friability was considerably unchanged because the hardness might be above their critical matrix strength. Our findings were in agreement with a previous result in which the friability of matrices (0.6-1%)

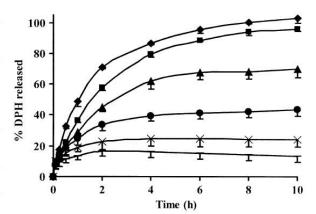


Fig. 5. DPH release from (filled diamond) HPMC/0, (filled square) /5, (filled upright triangle) /10, (filled circle) /20, (ex symbol) /30 and (horizontal bar) /40, respectively. One-side error bars were presented for clarification, and some were hidden by bigger symbols

did not considerably change in spite of a dramatic decrease in hardness from 105 to 60 N (22).

Effect on Drug Release in DI

DPH was very soluble in water (1 g/ml), dissolving very fast (<1 min) (23). Without the resin, development into matrices using either HPMC or EC retarded in-vitro release of DPH (HPMC/0 in Fig. 5 and EC/0 in Fig. 6). The mechanism of DPH release from these two matrices was different because of the distinct natures of the matrix formers. HPMC was a hydrophilic gelling polymer. Upon contact with water, HPMC/0 formed a gelled matrix through which DPH diffused (Fig. 7). The gelled matrices still persisted after 100% release reached, demonstrating that the DPH release from HPMC/0 was predominantly governed by drug diffusion through rather than erosion of the gelled matrix (4). On the other hand, EC/0 provided a non-gelling matrix that remained intact throughout the release test (Fig. 7) due to the hydrophobicity of the matrix former (EC). Therefore, the DPH release from EC/0 proceeded via diffusion through water-filled pores created by the leaching out of dissolved drug (3). Though governed by different mechanisms, it could be clearly seen that HPMC/0 provided faster DPH release than EC/0 (Fig. 5 and Fig. 6). The hydration and gelling of HPMC was quite fast, resulting in the rapid gelling formation of HPMC/0 (8,24). As mentioned earlier, DPH dissolved freely in water, allowing it to diffuse and be rapidly released from the gelled matrix of HPMC/0. In contrast, EC/0 had a lower affinity for water, thus resulting in the slower rate of DPH release (25).

The influence of the resin on DPH release from HPMC-based matrices is shown in Fig. 5. In comparison with the matrices without the resin (HPMC/0), the incorporation of the resin further lowered DPH release. This was due to both the gelling effect of the polymer and the ion exchange effect of the resin (4). Upon contact with DI, the matrices quickly formed the gelled matrix (Fig. 7) in which DPH simultaneously dissolved and then diffused out. During diffusion through the gelled matrix containing the resin, the dissolved drug (DPH) was partly released but was also exchanged for

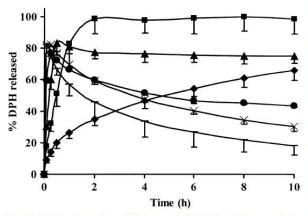


Fig. 6. DPH release from (filled diamond) EC/0, (filled square) /5, (filled upright triangle) /10, (filled circle) /20, (ex symbol) /30 and (horizontal bar) /40, respectively. One-side error bars were presented for clarification, and some were hidden by bigger symbols

sodium ions (Na) in the resin, forming a drug-resin complex by the following exchange reaction:

$$RSO_3Na + DPH^+ \Leftrightarrow RSO_3DPH + Na^+$$
 (2)

In the complex, the drug bound with the sulfonic group of the resin by electrostatic attraction, and was not liberated unless it was replaced by another counter ion (11). Since there were no counter ions in DI, only the limited amount of drug remaining unbound was available for release, thus explaining the lesser amount of released drug.

As shown in Fig. 5, the DPH release decreased with increasing amounts of resin incorporation. This could be explained by applying equilibrium principles to Eq. 2 (26). As the amount of the resin was increased, the reaction was driven to the right. This reaction was unlikely to reverse in this situation because of the lack of counter ions in DI, resulting in a more formation of the drug-resin complex and hence a lesser DPH release. Indeed, this finding partly agreed with a previous result (4). In that case, drug release was found to decrease as resins were added to a certain point, beyond which it remained unchanged. In this study, the DPH release continuously decreased with increasing amounts of the incorporated resin due to increased complex formation, as described above. Moreover, the DPH release from matrices containing more than 30% resin (HPMC/30 and /40) decreased considerably from the plateau it had reached. Qualitatively speaking, the post-plateau release of HPMC/40 also appeared to decrease more quickly than that of HPMC/ 30. This finding suggested that some of the drug released in the medium was diffused back, exchanged for Na in the resin and then formed the drug-resin complex in the gelled matrix. This phenomenon occurred because the amount of incorporated resin, especially in HPMC/40, was excessive for the dissolved drug not yet released from the gelled matrix. Therefore, it was able to bind the released drug returning into the gelled matrix via diffusive gradient created by the exhaust of drug due to earlier complex formation. The matrices containing less than 30% resin (HPMC/5-/20) showed no decline in the plateau of drug release because the amount of incorporated resin was low, and thus reached equilibrium without needing to bind the released drug from the medium further.

As observed in Fig. 7, the gel formation, at least in the initial phase (e.g. 5 min), of the matrices with the resin (e.g. HPMC/20) appeared faster than that without the resin (HPMC/0). This was probably resulted from the hydrophilic property of the incorporated resin promoting the matrix hydration. However, the release from the matrices with the resin was lower than that without the resin, as shown in Fig. 5. This suggested that the effect of such different gelling, on the release, was minor compared with that of the ion exchange.

The EC-based matrices without the resin (EC/0) did not form the gelled matrix, and remained intact throughout the release test. The incorporation of the resin caused EC-based matrices to disintegrate (Fig. 7), resulting in completely different DPH release profiles compared to HPMC-based systems (Figs. 5 and 6). The matrix disintegration time decreased as the resin incorporation increased (Fig. 8). This finding demonstrated that the resin (Amberlite IRP-69) could act as a disintegrant, as previously found with other resins, e.g. Amberlite IRP-88 and Indion 414 (4,10,27). The disintegration

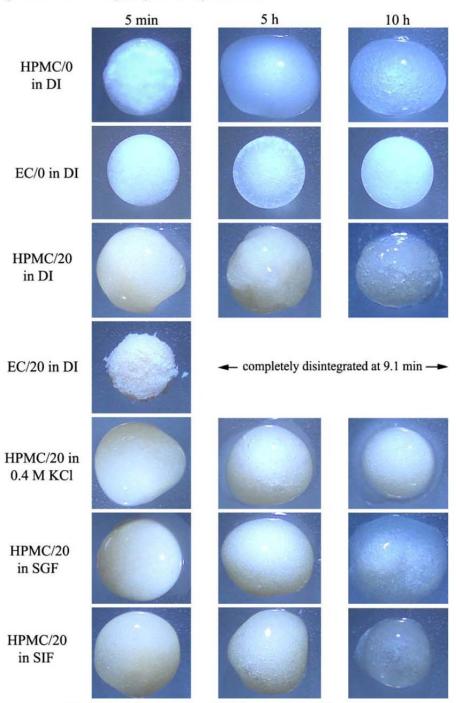


Fig. 7. Photoimages of matrices during the release test in different media

mechanism for these resins was associated with their swelling ability. Upon exposure to water, the resins first swelled and then expanded, disintegrating the matrices they incorporated. This study informed that it should be aware of the propensity for disintegration and hence dose-dumping prior to incorporation of a resin in matrices designed to control drug release from a wholly single unit in the gastrointestinal tract.

In the matrices with 5% resin (EC/5), the DPH release was higher than that from the matrices without the resin (EC/0). This was attributed to the disintegration of matrices via swelling of the incorporated resin. It was observed that the rate of DPH release before its disintegration time (46 min) was also faster, indicating the occurrence of ruptures promoting drug release before complete disintegration of the matrices.

Akkaramongkolporn, Ngawhirunpat, Nunthanid and Opanasopit

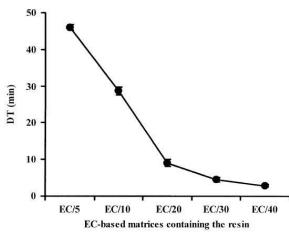


Fig. 8. Disintegration time (DT) of various EC-based matrices containing the resin. Some *error bars* were hidden by bigger symbols

The release was almost complete (98–100%) around 1–2 h, long after disintegration was complete. This suggested that the matrices had disintegrated into fractions from which the drug continued to release.

Faster disintegration did not always result in greater DPH release from EC-based matrices containing the resin. Incorporation of 10% or more resin into the matrices (EC/ 10-/40) typically resulted in biphasic release profiles, in which the release initially increased but thereafter declined (Fig. 6). This behavior was caused by the ion exchange property in addition to disintegrating property of the incorporated resin. Initially, the release increased rapidly due to the combined contributions of the rapid disintegration of the matrices and the rapid dissolution of the drug. This initial release tended to be faster when the incorporated resin was increased, resulting from faster and greater disintegration of the matrices (Figs. 6 and 8). It was likely that the matrices with higher amounts of the incorporated resin disintegrated into smaller fractions than those with lesser amounts, allowing for more efficient drug release due to a higher surface area. However, the release did not reach 100%, and later declined because the released drug was partly exchanged for Na in the dispersed

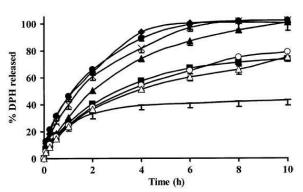


Fig. 9. DPH release from HPMC/20 in (horizontal bar) DI, (empty circle) SGF, (empty upright triangle) SIF, (filled square) 0.005, (filled upright triangle) 0.05, (ex symbol) 0.1, (filled circle) 0.2 and (filled diamond) 0.4 M KCl, respectively. One-side error bars were presented for clarification, and some were hidden by bigger symbols

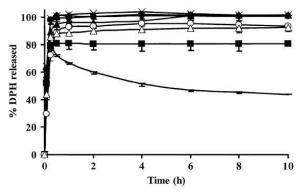


Fig. 10. DPH release from EC/20 in (horizontal bar) DI, (empty circle) SGF, (empty upright triangle) SIF, (filled square) 0.005, (filled upright triangle) 0.05, (ex symbol) 0.1, (filled circle) 0.2 and (filled diamond) 0.4 M KCl, respectively. One-side error bars were presented for clarification, and some were hidden by bigger symbols

resin and then formed the drug-resin complex. The bound drug could not release due to the absence of counter ions in the medium, resulting in the decreased drug release. This reduction of drug release was more pronounced as the amount of the resin incorporated in the matrices was increased, which was attributed to the equilibrium treatment described earlier.

Effect on Drug Release in Ionic Solutions

In regard to ion exchange resin-based dosage forms, ions played an important role in drug release (23,28). Therefore, DPH release from matrices containing 20% resin (HPMC/20 and EC/20) were further investigated in 0.005-0.4 M KCl solutions. As expected, it was found that the presence of ions in the release medium greatly influenced the DPH release from both matrices (HPMC/20 in Fig. 9 and EC/20 in Fig. 10). The drug release in KCl solutions was higher than that in DI. This was possible because potassium ion (K) acted as a cationic counter ion, like the drug, and could exchange for Na in the resin. During the release and complex formation process, the released drug (DPH) therefore competed with K in exchange for Na in the resin, which then formed less of the drug-resin complex (Eq. 3), meaning that a larger amount of drug remained available for release. Even in cases where the drug-resin complex was already formed, the bound drug would be replaced by K and then liberated from the complex (Eq. 4), thus further promoting the release. As shown in Figs. 9 and 10, the increase in the concentration of KCl solutions dramatically increased the release. According to the equilibrium treatment of Eq. 3 and Eq. 4, the increased K could more effectively both deter the released drug (DPH) from forming the drug-resin complex and liberate the bound drug from the formed complex. Chloride ion (Cl-), the anionic co-ion, was not involved in the cationic exchange of this resin and hence in these phenomena (29).

$$RSO_3Na + DPH^+ + K^+ \Leftrightarrow RSO_3(DPH/K) + Na^+$$
 (3)

$$RSO_3DPH + K^+ \Leftrightarrow RSO_3K + DPH^+ \tag{4}$$

The gastrointestinal fluids containing a number of ions, it was also worth determining how the release behaved in SGF and SIF. Like in KCl solutions, the drug release in the simulated gastrointestinal fluids was higher than that in DI (HPMC/20 in Fig. 9 and EC/20 in Fig. 10). This was due to the existence of cationic ions, i.e. the mixture of H and Na in SGF and the mixture of K, H and Na in SIF, which competed with the drug in the ion exchange process as explained above. The total cationic ions in SGF and SIF were reported to be 0.104 and 0.087 M, respectively (30); nonetheless, the release in these media was evidently lower than that in 0.1 M KCl solution. It has been reported that the order of the exchange affinity (selectivity) for the cationic ions to strong ionexchange resins, e.g. Amberlite IRP-69, obeyed the Hofmeister series, i.e. K>Na>H (28,31). Therefore, it could be explained that, at the comparable total cationic ions, K alone competed with the drug in the ion exchange process (Eq. 3 and Eq. 4) more efficiently than the mixture of those cationic ions, thus providing the higher release. The release in SGF and SIF was also lower than even that in 0.05 M KCl solution, implying that K had much higher affinity to the resin than either H or Na. The drug release in SGF seemed to be higher than that in SIF due to two reasons. First, SGF had more total cationic ions than SIF. Second, the lower pH of SGF increased the ionization and hence solubility of the drug, a weakly basic drug, in the medium and therefore the drug release was more or less promoted (4,5). These coupling contributions dominated the greater selectivity of K present in SIF, resulting in the higher release in SGF.

Tested in the ionic solutions, HPMC/20 still provided sustained patterns of drug release due to the gel formation of matrices that similarly formed in DI (Fig. 7). The gelled matrices quickly formed, but still persisted after the release test (10 h) and even 100% release reached. The gelled matrices seemed to erode less in a higher concentration of the ionic solutions, e.g. 0.4 M KCl solution. The high concentration of ions caused the salting-out effect to the polymer, which subsequently reduced the erosion rate of the matrices, as discussed elsewhere (32). However, the higher concentration of the ionic solutions provided the higher release (Fig. 9) in spite of the lower matrix erosion obtained. These findings confirmed that the release was primarily governed by the diffusion and the ion exchange rather than the erosion process, EC/20 was still able to result in fast-release patterns (Fig. 10) because it also disintegrated in the ionic solutions. The disintegration time determined was comparable in DI and the ionic solutions (8.2-11.8 min).

CONCLUSION

The resin incorporation greatly influenced the hardness, friability and *in vitro* release properties of matrices. The degree and pattern of the influences, especially the release, depended on the amount of resin incorporation and the nature of matrix formers. The hardness of resin-incorporated matrices was decreased due to the poor compressibility of the resin. The matrices with high amounts of the resin could be weakened to the extent that severely deteriorated the matrix friability, e.g. HPMC/20-/40. In DI, the incorporated resin further retarded the drug release from the hydrophilic gelling matrices of HPMC by virtue of the ion exchange property of

the resin. In contrast, the hydrophobic non-gelling matrices of EC disintegrated by virtue of the disintegrating property of the resin, initially resulting in a rapid release. The release however later declined due to the ion exchange property of the resin. The release tested in the ionic solutions appeared greater than that in DI since the cationic counter ions competed with the drug in the ion exchange process.

ACKNOWLEDGEMENTS

The authors wish to thank the Thailand Research Fund and the Commission on Higher Education, Ministry of Education, Thailand for its funding of this work, the Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand for its instrument support, and are also thankful to the Faculty of Science, Silpakorn University for its assistance in the SEM study.

REFERENCES

- M. A. Holgado, I. Caraballo, J. Alvarez-Fuentes, M. J. Fernandez-Hervas, M. Fernandez-Arevalo, and A. M. Rabasco. Influence of diluents and manufacturing method on the *in vitro* dissolution of carteolol hydrochloride matrix tablets. *Int. J. Pharm.* 118:151–160 (1995).
- N. Traconis, R. Rodriguez, M.E. Campos, and L. Villafuerte. Influence of admixed polymers on the metromidazole release from hydroxypropyl methylcellulose matrix tablets. *Pharm. Acta. Helv.* 72:131–138 (1997).
- M. A. Dabbagh, J. L. Ford, and M. H. Rubinstein. Effects of polymer particle size, compaction pressure and hydrophilic polymers on drug release from matrices containing ethylcellulose. *Int. J. Pharm.* 140:85–95 (1996).
- M. Sriwongjanya, and R. Bodmeier. Effect of ion exchange resins on the drug release from matrix tablets. Eur. J. Pharm. Biopharm. 46:321–327 (1998).
- A. Streubel, J. Siepmann, A. Dashevsky, and R. Bodmeier. pHindependent release of a weakly basic drug from water-insoluble and -soluble matrix tablets. J. Control. Release. 67:101–110 (2000).
- M. Tapia-Albarran, and L. Villafuerte-Robles. Assay of amoxicillin sustained release from matrix tablets containing different proportions of Carbopol 971P NF. Int. J. Pharm. 273:121–127 (2004).
- H. Kranz, C. Guthmann, T. Wagner, R. Lipp, and J. Reinhard. Development of a single unit extended release formulation for ZK 811 752, a weakly basic drug. Eur. J. Pharm Sci. 26:47–53 (2005).
- R. V. Nellore, G. S. Rekhi, A. S. Hussain, L. G. Tillman, and L. L. Augsburger. Development of metoprolol tartrate extendedrelease matrix tablet formulations for regulatory policy consideration. *J. Control. Release.* 50:247–256 (1998).
- N. Ramirez, L. M. Melgoza, M. Kuentz, H. Sandoval, and I. Caraballo. Comparison of different mathematical models for the tensile strength-relative density profiles of binary tablets. *Eur. J. Pharm. Sci.* 22:19–23 (2004).
- Pharm. Sci. 22:19–23 (2004).
 K. A. Khan, and C. T. Rhodes. Water-sorption properties of tablet disintegrants. J. Pharm. Sci. 64:447–451 (1975).
- S. Borodkin. Ion exchange resins and sustained release. In J. Swarbick, and J. C. Boylan (eds.), Encyclopedia of Pharmaceutical Technology, Marcel Dekker, New York, 1993, pp. 203–216.
- D. B. Jack. Handbook of Clinical Pharmacokinetic Data, Macmillan, Great Britain, 1992.
- Martindale the Extra Pharmacopoeia, Thirty-first edition, The Royal Pharmaceutical Society of Great Britain, London, 1996.
- L. Genc, H. Bilac, and E. Guler. Studies on controlled release dimenhydrinate from matrix tablet formulations. *Pharm. Acta. Helv.* 74:43–49 (1999).

- M. Ozyazici, E. H. Gokce, and G. Ertan. Release and diffusional modeling of metronidrazole lipid matrices. *Eur. J. Pharm. Biopharm.* 63:331–339 (2006).
- The United States Pharmacopeia 24 and The National Formulary 19, The United States Pharmacopeial Convention, USA, 2000.
- T. Pongjanyakul, A. Priprem, P. Chitropas, and S. Puttipipatkhachorn. Effect of polysulfonate resins and direct compression fillers on multiple-unit sustained-release dextromethorphan resinate tablets. AAPS PharmSciTech. 6:article 28 (2005).
- P. R. Katikaneni, S. M. Upadrashta, S. H. Neau, and Á. K. Mitra. Ethylcellulose matrix controlled release tablets of a water-soluble drug. *Int. J. Pharm.* 123:119–125 (1995).
- A. Nokhodchi, M. H. Rubinstein, and J. L. Ford. The effect of particle size and viscosity grade on the compaction properties of hydroxypropylmethylcellulose 2208. *Int. J. Pharm.* 126:189–197 (1995).
- G. Alderbon. Particle dimensions. In G. Alderborn, and C. Nystrom (eds.), *Pharmaceutical Powder Compaction Technology*, Marcel Dekker, New York, 1996, pp. 245–282.
- W. Prapaitrakul, and C. W. Whitworth. Compression of microcapsule II: effect of excipients and pressure on physical properties. *Drug Dev. Ind. Pharm.* 16:1427–1434 (1990).
- M. Riippi, O. Antikainen, T. Niskanen, and J. Yliruusi. The
 effect of compression force on surface structure, crushing
 strength, friability and disintegration time of erythromycin
 acistrate tablets. Eur. J. Pharm. Biopharm. 46:339–345 (1998).
- P. Akkaramongkolporn, P. Kulvanich, and M. Pathipvanich. Preparation and *in vitro* release of dual-drug resinates containing equivalent content dextromethorphan and diphenhydramine. *Drug Dev. Ind. Pharm.* 32:483–496 (2006).

- A. R. Rajabi-Siahboomi, R. W. Bowtell, P. Mansfield, A. Henderson, M. C. Davies, and C. D. Melia. Structure and behavior in hydrophilic matrix sustained-release dosage forms: 2. NMR-imaging studies of dimensional changes in the gel layer and core of HPMC tablets undergoing hydration. *J. Control. Release.* 31:121–128 (1994).
- O. Chambin, D. Champion, C. Debray, M. H. Rochat-Gonthier, M. L. Meste, and Y. Pourcelot. Effects of different cellulose derivatives on drug release mechanism studied at a preformulation stage. J. Control Release. 95:101–108 (2004).
- P. Akkaramongkolporn, K. Terada, and E. Yonemochi. Molecular properties of propranolol hydrochloride prepared as drugresin complexes. *Drug Dev. Ind. Pharm.* 27:359–364 (2001).
- A. Purnima, P. Namita, and W. Anita. Indion 414 as superdisintegrant in formulation of mouth dissolve tablets. *Indian J. Pharm. Sci.* 68:117–119 (2006).
- K. E. Ogger, C. Noory, J. Gabay, V. P. Shah, and J. P. Skelly. Dissolution profiles of resin-based oral suspensions. *Pharm. Technol.* 9:84–91 (1991).
- P. Russel. An introduction to ion-exchange resin, Heyden, London, 1970.
- T. Pongjanyakul, S. Prakongpan, U. Rungsardthong, P. Chancham, and A. Priprem. Characteristics and *in vitro* release of dextromethorphan resinates. *Powder Technol.* 152:100–106 (2005).
- C. E. Harland. Ion exchange: theory and practice, Royal Society of Chemistry, UK, 1994.
- N. Kavanagh, and O. I. Corrigan. Swelling and erosion properties of hydroxypropylmethylcellulose (Hypromellose) matrices-influence of agitation rate and dissolution medium composition. *Int. J. Pharm.* 279:141–152 (2004).

Research Article

Preparation and Evaluation of Differently Sulfonated Styrene–Divinylbenzene Cross-linked Copolymer Cationic Exchange Resins as Novel Carriers for Drug Delivery

Prasert Akkaramongkolporn, Tanasait Ngawhirunpat, 1,2 and Praneet Opanasopit 1

Received 22 December 2008; accepted 23 April 2009; published online 19 May 2009

Abstract. The differently sulfonated styrene—divinylbenzene cross-linked copolymer cationic exchange resins were prepared by oil-in-water polymerization and varied degrees of sulfonation. Several characteristics of the obtained resins were evaluated, i.e., Fourier transform infrared spectra, the ion-exchange capacity, microscopic morphology, size, and swelling. The resin characteristics were altered in relation to the degree of sulfonation, proving that differently sulfonated resins could be prepared. The behavior of chlorpheniramine (CPM) loading and in vitro release in the USP simulated gastric (SGF) and intestinal fluids (SIF) of the obtained resins were also evaluated. The CPM loaded in the resinates (drugloaded resins) increased with the increasing degree of sulfonic group and hence the drug binding site in the employed resins. The CPM release was lower from the resins with the higher degree of sulfonic group due to the increase in the diffusive path depth. The CPM release was obviously lower in SGF than SIF because CPM, a weak base drug, ionized to a greater extent in SGF and then preferred binding with rather than releasing from the resins. In conclusion, the differently sulfonated resins could be utilized as novel carriers for drug delivery.

KEY WORDS: cationic exchange resin; chlorpheniramine maleate; different sulfonation; drug loading; drug release; oil-in-water polymerization.

INTRODUCTION

Ion-exchange resins are swellable cross-linked copolymers that can reversibly interchange counterions. The resins are organized into two main types depending upon the charge of the counterions with which they exchange. The cationic exchange resin contains the negatively ionizable group such as a sulfonic group, which is capable of interchanging the positively charged or cationic counterion. The anionic exchange resin interchanges the negatively charged or anionic counterion due to the existence of the positively ionizable group such as a quaternary ammonium group (1,2).

The preparation of these two resins is quite similar, consisting of two stages (2). First, the cross-linked copolymer bead is synthesized, to which the ionizable or ion-exchangeable group is added later. The cross-linked copolymer between styrene and divinylbenzene is commonly tailored in both resin types. The spherical bead can be obtained using oil-in-water emulsion polymerization. In this method, the monomer mixture containing styrene, divinylbenzene, and benzoyl peroxide (as a

In pharmaceutics, the resins have diversified applications, the primary among which is as carriers for drug delivery. A drug that ionizes into either a positively or negatively charged molecule can act as an incoming counterion, replacing the counterion and electrically interacting with the oppositely charged ionized group of the resins. This drug and resin combination is interchangeably referred to as the "drug resin complex" or "resinate" (1). The loaded drug will substantially release from the resinate on exposure to a likecharge ion (another counterion) present in the gastrointestinal tract. The drug release can be tuned to a desired rate by selecting suitable cross-linked resins (3), entrapping (4), or coating the resinate with suitable polymers (5). However, the above application employs only the commercial resins with the ion-exchangeable site fully filled. To the best of our knowledge, the characteristic and behavior of different partially sulfonated resins in delivering a drug has never been presented.

catalyst) is gradually added into a well-stirred aqueous phase of a stabilizing agent. Then, the polymerization is begun after the drops of the monomer mixture are formed. Having received the bead, the negatively ionizable group (i.e., sulfonic group) is simply added by a treatment with concentrated sulfuric acid, dubbed "sulfonation." The addition of the positively ionizable group (i.e., quaternary ammonium group), however, is somewhat complex, requiring multiple steps. Up until present time, when preparing a resin, the ion-exchangeable group is always added until the maximum capacity of the resin is reached.

¹ Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.

²To whom correspondence should be addressed. (e-mail: tanasait@ email.pharm.su.ac.th)

Table I. Assignment, IEC, and Yield Weight of Differently Sulfonated Resins

Sulfonation time (min)	0	15	28	35	40	90	210
Assigned code	R/0	R/15	R/28	R/35	R/40	R/90	R/210
IEC (meq/g) ^a	0.000 ± 0.000	0.000 ± 0.000	0.480 ± 0.001	2.057 ± 0.007	3.586 ± 0.002	4.138 ± 0.046	4.144±0.012
Resin weight (g)b	3.000	3.115	3.303	4.178	5.159	6.220	6.410
% Weight increase ^c	0	3.8	10.1	39.3	72.0	107.3	113.7

^a Mean ± SD from triplicate measurements

As a novel approach, this work was aimed at preparing and characterizing the differently sulfonated resins. The behavior of the obtained resins in terms of drug (chlorpheniramine maleate) loading and *in vitro* release were evaluated and discussed. Chlorpheniramine maleate was used as a representative of a low-dose drug. The different partially sulfonated resins had lower ion exchange than the usual resins with the full ion-exchange capacity; thus, they were feasible for use in delivering the low dose drug.

MATERIALS AND METHODS

Materials

Styrene (Sigma-Aldrich, Germany), divinylbenzene (Sigma-Aldrich), polyvinyl alcohol ($M_{\rm W}$ 85,000–124,000, 87–89% hydrolyzed, Sigma-Aldrich), benzoyl peroxide (Sigma-Aldrich), concentrated sulfuric acid (Mallinckrodt Baker Inc., USA), chlorpheniramine maleate (Green Chemical Company Ltd., Japan), dichloromethane (Ajax Finechem, Australia), sodium chloride (Ajax Finechem), potassium chloride (Ajax Finechem), sodium hydroxide (Ajax Finechem), potassium dihydrogen orthophosphate (Ajax Finechem), and concentrated hydrochloric acid (Mallinckrodt Baker Inc.) were purchased from various suppliers and used as received. Deionized water prepared by a water purifier (Barnstead/Thermolyne D 4745, USA) was used entirely in this work.

Methods

Preparation of Differently Sulfonated Resins

The cross-linked copolymer bead was prepared by oil-inwater emulsion polymerization in a 2-1 Erlenmeyer flask fitted with a mechanical agitator (IKA-RW20, Germany) in a temperature-controllable oil bath (IKA-Werke). The aqueous phase (1.5 l) of a 0.5% (w/v) polyvinyl alcohol solution was added to the flask, and the temperature was raised to around 65°C. Under a fixed stirring (400 rpm), the monomer mixture containing styrene (75 ml), divinylbenzene (3 ml), and benzoyl peroxide (3 g) was gradually poured into the aqueous phase. Then, the temperature was raised to around 85°C and maintained at that temperature until the polymerization was terminated (4 h). Thereafter, the bead was washed several times with deionized water (totally 21) and methanol (totally 400 ml) and then sieved. The fraction in the range of 74-149 μm (100–200 mesh) was collected, dried at 50°C for 6 h in a hot air oven, kept in a tightly closed container, and used for sulfonation. This bead fraction (25.7 g) approximately corresponded to 60% of the whole beads (42.5 g) and 33% of the employed monomers (78 g), respectively.

Prior to sulfonation, the dried copolymer bead (3 g) was swollen by contacting with dichloromethane (12 ml) for 30 min. The swollen bead was then sulfonated with a fixed volume (30 ml) of concentrated sulfuric acid (H₂SO₄) in the oil bath maintained at 70°C. The slurry was periodically shaken during the sulfonation. The degree of sulfonation was

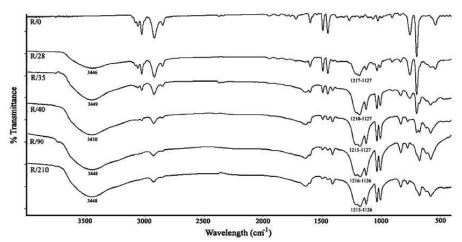


Fig. 1. Fourior transform infrared spectra of differently sulfonated resins

^b After drying at 50°C for 6 h

 $^{^{}c}$ 100 × (resin weight – bead weight)/bead weight , where bead weight = 3.000 g

regulated by varying the reaction times from 0 (no sulfonation) to 210 min. The sulfonated resin was filtered, washed with excess deionized water until neutral pH, and finally dried at 50°C for 6 h. The final resin was kept in a tightly closed container until further investigation.

Characterizations of Copolymer Bead and Differently Sulfonated Resins

Fourier Transform Infrared Spectroscopy. The resins that were previously dried at 100°C until reaching a constant weight were crushed and pressed into KBr pellets. The infrared (IR) spectra of the obtained pellets were recorded over the range 400–4,000 cm⁻¹ by a Fourier transform infrared spectrophotometer (Nicolet Magma-IR system 750, USA).

Ion-Exchange Capacity. The ion-exchange capacity of resins was determined by the salt splitting titration (2). An accurate amount (0.1 g) of the resins was weighed and added into a 125-ml Erlenmeyer flask containing a 2 N sodium chloride solution (25 ml). The slurry was swirled periodically and left for 3 h to allow for the displacement of H⁺ from the resins. Thereafter, the slurry was titrated slowly with a 0.1 N standardized sodium hydroxide (NaOH) solution using phenolphthalein as the indicator. The ion-exchange capacity of the resins (IEC, meq/g) was calculated from:

$$IEC = \frac{c \times v}{w} \tag{1}$$

where c is the standardized concentration (N), v is the volume (ml) at an endpoint of the NaOH solution, and w is the weight (g) of determined resins.

Microscopic Morphology. The dried resins (the dry state) and those put into a drop of excess deionized water (the wet state) were photographed by a microscope (Olympus, Japan) equipped with a digital camera (AnMo AM-423X DinoEye, Taiwan). The dried resins were also viewed by a scanning electron microscope (CamScan MX 2000, UK). Before viewing, the samples were fixed on stubs and sputter-coated with gold in a vacuum evaporator (Cressington Sputter Coater 108, UK).

Size and Swelling. The resins dried at 50° C for 6 h and those suspended in deionized water for 3 h were photographed with the digital microscope. Feret's diameter of 200 particles on the images was randomly measured with a calibrated digital micrometer of the image analysis program (AnMo DinoCapture version 2.3.0.0, Taiwan). Then, the average diameter of the dried (d_{dry}) and swollen (d_{swell}) resins was determined, and the swelling (%) of the resins was calculated using the following equation (6):

Swelling =
$$\frac{d_{\text{swell}} - d_{\text{dry}}}{d_{\text{dry}}} \times 100.$$
 (2)

Behavior of Differently Sulfonated Resins as Drug Carriers

CPM Loading. Chlorpheniramine (CPM) loading into the differently sulfonated resins was carried out by the batch

method. In this process, 0.5 g of resin was placed into a 1.0% (w/v) CPM solution in water (100 ml). The preliminary test showed that this selected drug solution could provide maximum drug loading for the resins. The mixture was allowed to come to equilibrium for drug exchange (24 h) at 35°C under constant agitation (BioSan Environmental shaker-incubator ES-20, Latvia). A preliminary study proved that 24 h was sufficient for achieving equilibrium. Thereafter, the obtained resinate was washed with deionized water to remove the unloaded drug. The resinate was dried overnight in a hot air oven at 50°C and then stored in a tightly closed container. The drug content was determined by eluting 50 mg of each resinate with a 1 N KCl solution

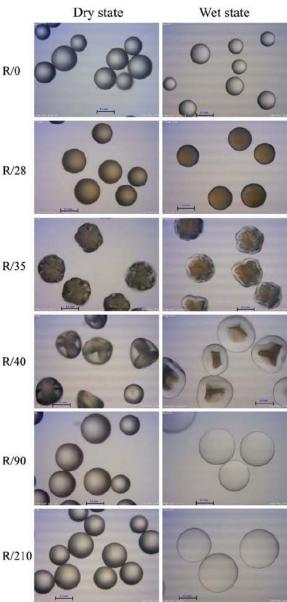


Fig. 2. Photomicrographs of differently sulfonated resins

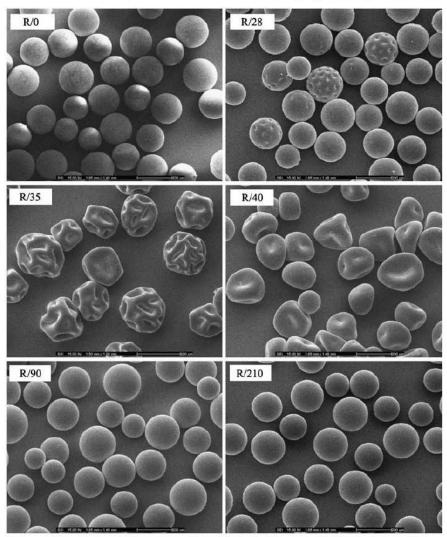


Fig. 3. Scanning electron micrographs of differently sulfonated resins

(200 ml) and then calculated in % w/w as the (amount of drug/amount of resinate) \times 100 (7). The eluted drug was assayed by a UV spectrophotometer (Perkin-Elmer Lambda 2, Germany) at 261 nm.

CPM Release. In vitro CPM release was investigated in the USP simulated gastric and intestinal fluids (450 ml) by a USP release testing apparatus I (Prolabo Dissolutest, France) (8). Each resinate prepared from the differently sulfonated resins was weighed to obtain an equivalent of 24 mg CPM and then added into the release vessel. The rotation and temperature were set at 50 rpm and 37±1°C, respectively, throughout testing. At the predetermined times, small portions (5 ml) of the medium were withdrawn through a filter and assayed by the UV spectroscopic method. The same volume of fresh medium was returned to maintain the volume entirely constant. The release testing was conducted in triplicate.



Fig. 4. Scanning electron micrograph showing fractures found in R/35

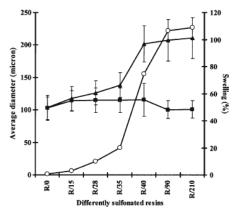


Fig. 5. Average diameter in dry (square) and wet (triangle) states and swelling (circle) of differently sulfonated resins

RESULTS AND DISCUSSION

Preparation and Characterizations of Differently Sulfonated Resins

The copolymer beads were prepared by oil-in-water emulsion polymerization and then sulfonated for varied reaction times to transform into the differently sulfonated resins, the codes of which are displayed in Table I. To evaluate the success of this process, the IR spectra and the ion-exchange capacity of the obtained resins were determined. The IR spectra of the differently sulfonated resins were shown in Fig. 1. There were significant new peaks around 1,126-1,217 and 3,450 cm⁻¹ in the IR spectra of the copolymer beads after sulfonation or, in the other words, the differently sulfonated resins. These peaks were attributed to the stretching vibrations of the S=O and O-H of the sulfonic group (-SO₃H), respectively (9,10). The peaks obviously appeared more prominently in the IR spectra of the resins treated with the longer sulfonation periods, demonstrating the higher degree of sulfonic group introduced into the resins. In addition, the IR spectra of the obtained resins resembled those of identical or commercial sulfonated styrenedivinylbenzene (DVB) copolymer resins reported elsewhere (9,11). This evidence indicated that the differently sulfonated styrene-DVB cross-linked copolymer resins could be successfully prepared.

To determine the ion-exchange function of the introduced sulfonic group, the IEC of the prepared resins as well as the copolymer beads were determined (Table I). The

copolymer beads showed no ion-exchange property (IEC = 0 meq/g) due to the absence of sulfonic group. In contrast, the ion-exchange property and hence IEC were found in the sulfonated resins. The IEC increased as the resins were treated with the longer sulfonation periods. This evidence confirmed the successful addition of varied degrees of sulfonic group into the resins. The sulfonic group was the ion-exchangeable site of the resins. In an ionic solution (e.g., NaCl as an ionic solution used in the determination of IEC), the sulfonic group ionized and interchanged its counterion (i.e., Na*). The greater degree of sulfonic group added in the resins, the greater interchange of the counterions, thus providing the higher IEC.

Also, it was found that the weight and hence the percent weight increase of the obtained resins in relation to the employed copolymer bead was increased as the sulfonation time was increased (Table I). This was due to the more sulfonic group introduced into the resins. However, this work could not provide the percent yield of the resins in relation to the used reactants because the actually reacted amount of sulfuric acid, which was added in excess for sulfonation, was not determined.

The photomicrographs of the differently sulfonated resins in the dry and wet states are shown in Fig. 2. The figure depicted, especially from the wet state, the progress of the sulfonation, proceeding from the outside into the center of the copolymer beads. The beads without sulfonation (R/0 in Fig. 2) were seen to be totally unchanged between the dry and wet states. In contrast, the outer region, which was already reacted, of the different partially sulfonated resins (R/ 15, /28, /35, and /40 in Fig. 2) significantly swelled, which clearly distinguished it from the remaining unreacted core. The virgin cores were of irregular shapes, demonstrating the uneven rates of sulfonation proceeding toward the bead center in each direction. Nevertheless, the irregular-shaped cores became smaller as the sulfonation further progressed and eventually disappeared in the completely sulfonated resins (R/90 and /210 in Fig. 2). The fully sulfonated resins swelled evenly throughout the beads and then returned to a uniformly spherical shape. The swelling occurrence helped confirm the success of the introduction of sulfonic group into the resins. The embedded sulfonic group had strong hydrophilicity and affinity for water, enabling it to transform the rigid cross-linked copolymer into water swellable but insoluble gelled beads (9).

The scanning electron micrographs of the resins supported the finding obtained from the photomicroscopic study presented above (Fig. 3). The surfaces and shapes of the different partially sulfonated resins were wavy and irregular

Table II. CPM Loading and Resinate Formulation Obtained from Differently Sulfonated Resins

Resin	R/0	R/28	R/35	R/40	R/90	R/210
CPM loaded in resinate (% w/w)	0	12.8	37.6	48.9	55.0	56.7
Amount of resinate formulation (mg) ^a	0	187.5	63.8	49.1	43.6	42.3
Amount of employed resin (mg) ^b	0	163.5	39.8	25.1	19.6	18.3

^a Containing equivalently 24 mg CPM

^b The amount of resinate formulation minus 24 mg CPM

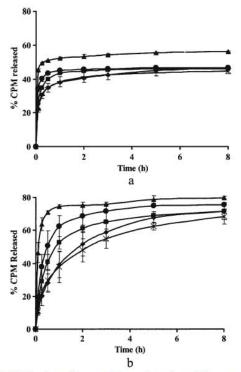


Fig. 6. CPM release from various resinate formulations prepared from (triangle) R/28, (circle) /35, (square) /40, (diamond) /90, and (multiplication sign) /210, respectively, as determined in a SGF and b SIF

due to the shrinkage of the outer sulfonated region superimposed upon the rigid irregular unreacted core. They reverted to uniformly smooth and spherical shapes in the completely sulfonated resins. However, according to the scanning electron microscopy study, fractures were observed on the hollow surface of moderately sulfonated resins, i.e., R/35 (Fig. 4) and /40. The fully (R/90 and /210) and poorly (R/28) sulfonated resins had no such fractures. This evidence might indicate that the fractures did not occur during the sulfonation step but rather during the post treatment, i.e., the washing step where the swelling of resins occurred. During swelling, the hollows in R/35 and /40 were the point of highest swelling (Fig. 2 and 3). Because of uneven swelling, these

regions were likely to be stretched by a greater force or, in other words, had a greater internal tension than the adjacent or other regions, thus making them prone to fracture (12). On the other hand, the fully sulfonated resin beads (R/90 and / 210) swelled evenly, keeping the internal tension small enough that no fractures occurred. Additionally, no fractures were found in R/28 and R/0 owing to the very low and no swelling, respectively. In fact, the fractures and breakages could be observed even in commercial resins if treated improperly during use; nevertheless, they did not significantly influence on the ion-exchange property of the resins (9).

The average diameters in the dry and wet states as well as the swelling of the resins are illustrated in Fig. 5. In the dry state, the average diameters of the differently sulfonated resins were comparable (100–115 μ m), whereas those in the wet state progressively increased from 103 to 211 μ m in relation to the increased degree of sulfonic group introduced in the resins. As described above, the sulfonic group brought about the increased hydration, thus resulting in the larger wet size and hence the higher swelling of the resins.

Behavior of Differently Sulfonated Resins as Drug Carriers

After the resin was placed in the drug solution, CPM dissociated into a cationic molecule would exchange with the resin counterion (H^+) and then form the resinate. The CPM loading $(\% \ w/w)$ in the resinates prepared from the differently sulfonated resins are presented in Table II. As expected, the drug loading was greater in the resins treated with the longer sulfonation times and hence the higher degree of sulfonic group. This is due to the fact that the sulfonic group is the ion-exchangeable or drug-binding site of the resins. As it increased, the drug loading in the resinates accordingly increased.

According to the aforementioned trend, the different partially sulfonated resins had the lower ion exchange and hence the drug loading than the resins with the full ion-exchange capacity. Therefore, to deliver the same amount of CPM (24 mg), greater amounts of resins were necessary, thus requiring higher amounts of resinate formulations than the resins with the full ion-exchange capacity (Table II). This point could be considered to be an advantage of the partially sulfonated resins for use in delivering especially low dose drugs. The increased amount of the resinate formulations may facilitate dispensing and weighing. Additionally, it might

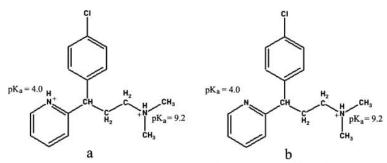


Fig. 7. Ionization of CPM in a SGF (pH 1.2) and b SIF (pH 7.5)

reduce the use of fillers when the resinate is further prepared in certain dosage forms, e.g., capsules.

The in vitro release of CPM from various resinates in SGF and SIF is illustrated in Fig. 6. In both media, a similar pattern was observed of the drug release being slower from the resins with the higher degree of sulfonic group. This behavior may be attributed to several causes. The first cause resulted from the sulfonation process, which began at the outer shell and proceeded toward the resin center (Fig. 2). Therefore, the resins with the higher amount of sulfonic group would have a wider diffusive path depth (or length) for drug passage. It should be noted that the wet size of the resins with the higher sulfonic group was larger because of the greater swelling (Fig. 2), simultaneously expanding the diffusive path depth. In terms of distances, the drug located at the deeper site near the resin center would require more time to diffuse out. Moreover, it was less releasable as compared with that located at the region near the resin surface (3), which would be described in more detail below. These effects thus led the resins with the higher degree of sulfonation to provide a slower rate of drug release. The other reason might be linked to the amount and hence the surface area of the resinate formulation exposed to the release medium. As presented in Table II, the resins with the higher sulfonic group were correspondingly employed in lower amounts than those with the smaller sulfonic group, offering, qualitatively speaking, lower numbers of resinate particles in the obtained formulation. As the number of resinate particles in the formulation was decreased, the surface area exposed to the release media would decrease, thus providing a slower release rate.

The CPM release in both SGF and SIF was not complete (Fig. 6) because it was driven by the ion-exchange process toward equilibrium (13). From surveying existing literature, it was found that the equilibrium release of a drug was apparently not constant but instead was likely to vary with various factors, namely, the cross-linkage and particle size of resin (3,13,14), the amount of loaded drug (11), the type of release medium (13), and the sampling procedure of release testing (15). Nevertheless, the effect of the degree of resin sulfonation on equilibrium release has never been mentioned. As seen in Fig. 6, the equilibrium release from the resinates seemed to decrease with increasing degree of sulfonic group in the employed resins. This behavior could potentially be explained by the heterogeneous nature of the cross-linked copolymer matrix. Irwin et al. (3) reported that not all ionexchangeable sites (sulfonic group) were in the same accessible and releasable locations within a resin. The sulfonic group located at the deeper site near the center was less accessible and less releasable than that at the outer shell of the resin, offering a limitation for diffusion and release of the loaded drug. This effect was reportedly more pronounced with an increase in the cross-linkage and the particle size of the resin. As with this case, the resins with the higher degree of sulfonic group had both larger diffusive path depth and larger wet size (Figs. 2 and 5). Therefore, the extent of the drug loaded in the less releasable site was likely to be higher in the resins with the higher degree of sulfonic group, thus providing the lower equilibrium release.

In existing literature, the type of release medium always affects the drug release from resinates. In the present case, the CPM release determined in SGF was obviously lower than that in SIF (Fig. 6), although the total cation concentration in SGF (104.2 mN) was higher than that in SIF (87.0 mN), which was similar to the previous work (13). This might indicate that the difference in the release observed was primarily caused by the ionization of the drug rather than the total cation concentration in the release media (SGF and SIF). For CPM (Fig. 7), two p K_a values (9.2 and 4.0) were reported, corresponding to the ionization of the tertiary amino group and the pyridine ring, respectively (16). In SIF (pH 7.5), only the tertiary amino group of the drug ionized. In contrast, not only the tertiary amino group but also the pyridine ring of the drug was able to ionize in SGF (pH 1.2). Therefore, the drug in SGF ionized and then preferred to bind with the resin to a greater extent than that in SIF, thus allowing a smaller amount of the drug to be available for

CONCLUSION

In this study, the differently sulfonated resins were successfully prepared. The resin characteristics, CPM loading, and *in vitro* release were clearly affected by the degree of sulfonic group in the prepared resins. In addition, the release also depended on the ionization of the drug in the release medium. The different partially sulfonated resins are novel carriers for drug delivery and can be used for application in a controlled drug delivery system. In spite of experiencing surface fracture, the resins could be utilized as carriers, especially for delivering low-dose drugs, which provided the increased amount of the resinate formulation. However, further experiments should be performed to eliminate the surface fracture of the resins.

ACKNOWLEDGMENTS

The authors wish to thank the Thailand Research Fund and the Commission on Higher Education, Ministry of Education, Thailand for its funding of this work (MRG5280242), the Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand for its instrument support, and also the Faculty of Science, Silpakorn University for its assistance in the SEM study.

REFERENCES

- Borodkin S. Ion exchange resins and sustained release. In: Swarbick J, Boylan JC, editors. Encyclopedia of pharmaceutical technology, vol. 8. New York: Marcel Dekker; 1993. p. 203–16.
- Harland CE. Ion exchange: theory and practice. UK: Royal Society of Chemistry; 1994. p. 21–32, 73.
- Irwin WJ, Belaid KA, Alpar HO. Drug-delivery by ionexchange, part III: interaction of ester prodrug of propranolol with cationic exchange resins. Drug Dev Ind Pharm. 1987;13: 2047–66.
- Sriwongjanya M, Bodmeier R. Entrapment of drug-loaded ionexchange particles within polymeric microparticles. Int J Pharm. 1997;158:29–38.
- Zhang ZY, Ping QN, Xiao B. Microencapsulation and characterization of tramadol–resin complexes. J Control Release. 2000;66:107–13.

Akkaramongkolporn, Ngawhirunpat and Opanasopit

- Halder A, Sa B. Entrapment efficacy and release characteristics of polyethyleneimine-treated or untreated calcium alginate beads loaded with propranolol-resin complex. Int J Pharm. 2005;302:84-94.
- Cuna M, Jato JLV, Torres D. Controlled-release liquid emulsions based on ion-exchange particles entrapped within acrylic microcapsules. Int J Pharm. 2000;199:151–8.
- USP 29. The United States Pharmacopeial Convention, Rockville, MD; 2006. p. 3174.
- Oliveira AJB, Aguiar AP, Aguiar MRMP, Maria LCS. How to maintain the morphology of styrene-divinylbenzene copolymer beads during the sulfonation reaction. Mater Lett. 2005;59:1089–94.
- Liu H, Zhang S, Nie S, Zhao X, Sun X, Yang X, et al. Preparation and characterization of a novel pH-sensitive ion exchange resin. Chem Pharm Bull. 2005;53:631–3.
- Akkaramongkolporn P, Yonemochi E, Terada K. Molecular state of chlorpheniramine in resinates. Chem Pharm Bull. 2000;48: 231–4

- Coutinho FMB, Souza RR, Gomes AS. Synthesis, characterization and evaluation of sulfonic resins as catalysts. Eur Polym J. 2004;40:1525–32
- Pongjanyakul T, Prakongpan S, Rungsardthong U, Chancham P, Priprem A. Characteristics and in vitro release of dextromethorphan resinates. Powder Technol. 2005;152:100-6.
- Burke GM, Mendes RW, Jambhekar SS. Investigation of the applicability of ion-exchange resins as a sustained release drug delivery system for propranolol hydrochloride. Drug Dev Ind Pharm. 1986;12:713–32.
- Pongjanyakul T. Effect of sampling procedures of release testing on drug release and scale-up production feasibility of multipleunit dextromethorphan resinate tablets: a technical note. AAPS PharmSciTech. 2007;8:E117.
- Villoslada IM, Gonzalez F, Rivas BL, Shibue T, Nishide H. Tuning the pK_a of the antihistamine drug chlorpheniramine maleate by supramolecular interactions with water-soluble polymers. Polymer. 2007;48:799–804.

Research Article

Comparison Between the Effect of Strongly and Weakly Cationic Exchange Resins on Matrix Physical Properties and the Controlled Release of Diphenhydramine Hydrochloride from Matrices

Prasert Akkaramongkolporn, 1,3 Kaewnapa Wongsermsin, Praneet Opanasopit, and Tanasait Ngawhirunpat

Received 7 March 2010; accepted 11 June 2010; published online 9 July 2010

Abstract. This study focused on investigating and comparing between the effect of the strongly cationic exchange resin, Dowex 88 (Dow88), and the weakly cationic exchange resin, Amberlite IRP64 (Am64), on the physical properties of matrices and their drug release profiles. The matrices were prepared by direct compression of Methocel K4M (HPMC) or Ethocel 7FP (EC) polymeric matrix formers and contained diphenhydramine hydrochloride as a model drug. The addition of Dow88 to the matrices decreased matrix hardness and increased thickness, diameter, and friability. In contrast, the addition of Am64 increased matrix hardness and maintained the original thickness, diameter, and friability. In deionized water, both resins lowered drug release from HPMC-based matrices by virtue of the gelation property of matrix former and the drug exchange property of embedded resin, in other words in situ resinate formation. Dow88 strongly dissociated and lowered the drug release to a greater extent than Am64, which was weakly dissociated. However, Am64 could retard drug release under simulated gastrointestinal conditions. EC-based matrices containing either resin displayed a propensity for this study provided useful information on the utilization of ion exchange resins as release modifiers in matrix systems.

KEY WORDS: controlled release; matrices; physical properties; strongly cationic exchange resin; weakly cationic exchange resin.

INTRODUCTION

Ion exchange resins are insoluble, crosslinked copolymers that can reversibly bind dissociated drugs via ion exchange. Resins have diversified applications in chemical and pharmaceutical industries. In pharmaceutics, they are often used as drug carriers and to control the rate of drug release. Controlled release systems using resin technology can be administered in a variety of forms including tablet, capsule, powder, gum, and liquid suspension. The bitter and unpleasant taste of drugs is reduced when bound to resins; thus, patients are more compliant in consuming these "resinates." Furthermore, resins can be exploited as a disintegrant in tablet formulations (1–3).

Matrix systems, especially those prepared by direction compression, are a popular method for controlling the release of drugs (4). Materials used for forming matrices include hydrophobic or hydrophilic polymers. Drug release from matrices using hydrophobic polymers such as ethyl cellulose proceeds via diffusion through an almost intact matrix (5,6).

Matrices made of hydrophilic polymers such as hydroxypropyl methylcellulose swell and form gels that may simultaneously erode if the molecular weight of the polymer is low. Nonetheless, the release of water-soluble drugs is governed primarily by diffusion rather than erosion of gelled matrices (7,8). Common methods of modifying drug release from matrices include selecting a suitable polymer, adjusting the polymer/drug ratio, admixing several polymers, and adding an excipient such as a pore former (4–9).

Recent studies have shown that resins can modify the release of drugs from matrices without the need for prior formation of a resinate. Thus, drug release may be governed by "in situ resinate formation" (10,11). Adding an ion exchange resin to modify the drug release may alter the physical properties of matrices such as hardness and friability (11). The literature suggests that strongly cationic exchange resins such as Amberlite IRP69 and Dowex 50W can retard drug release from matrices and adversely affect matrix hardness and friability. However, the mechanism of drug release modification and the effect of weakly cationic exchange resins on the physical properties of matrices have not been established. This information is necessary for adopting ion exchange resins as a release modifier for matrix systems.

Thus, the objective of this study was to investigate the effect of the weakly cationic exchange resin, Amberlite IRP64 (Am64), on the physical properties of matrices and their drug

Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.

² Faculty of Pharmacy, Siam Universiy, Bangkok Thailand.

³ To whom correspondence should be addressed. (e-mail: prasert@su. ac.th)

release profiles. In addition, the effect of the strongly cationic exchange resin, Dowex 88 (Dow88), on the matrix properties and drug release was investigated and compared to those of Am64. The matrices were prepared from either Methocel K4M hydroxypropyl methylcellulose (HPMC) or Ethocel 7FP ethyl cellulose (EC), which represented hydrophilic and hydrophobic polymeric matrix formers, respectively. In this study, the antihistamine diphenhydramine hydrochloride was chosen as a model drug. Diphenhydramine hydrochloride has a short half-life of approximately 5-6 h and is administered orally several times daily (12,13). The drug could be prepared in a controlled release matrix to provide improved convenience and patient compliance. Moreover, this drug was used in our previous work; the use of diphenhydramine hydrochloride in the current study allowed for a direct comparison to prior results (11).

MATERIALS AND METHODS

Materials

Methocel K4M hydroxypropyl methylcellulose (viscosity of 3,000–5,600 cps as a 2% solution in water and methoxyl and hydroxypropyl contents of 19–24% and 7–12%, respectively) and Ethocel 7FP ethyl cellulose (viscosity of 6–8 cps as a 5% solution in 80% toluene and 20% alcohol and a ethoxyl content of 48.0–49.5%) were kindly donated from Colorcon Ltd., UK (Dow Chemical Co., USA). Magnesium stearate (BP grade) was a gift from Glaxo Wellcome Vidhyasom, Thailand. Dowex 88 (Dow Chemical Co., USA), Amberlite IRP64, Amberlite IRP69, and diphenhydramine hydrochloride (Sigma Chemical Co., USA) were purchased from various suppliers. Other chemicals employed in the investigation were analytical grade or higher. Deionized water was used entirely in this work.

Methods

Preparation of Matrices by Direct Compression

Fixed weight matrices were composed of diphenhydramine hydrochloride, a resin (Dow88 or Am64), magnesium stearate, and a matrix former (HPMC or EC). The drug content and lubricant were fixed at 30% and 1% w/w, respectively. The amount of resin was varied from 0% to 40% w/w, and the remainder of each matrix was composed of (percent w/w) matrix former. All required components were gently blended in a mortar for 10 min. Then, a total of 100 mg of each mixture was accurately weighed and carefully placed into a hydraulic hand press machine (Specac P/N 15011/25011, UK). The matrices were compressed using stainless steel flat-circular punches (6.35 mm in diameter) with a constant force and dwelling time of 5 t for 5 s. The produced matrices were stored tightly in containers until use.

Thickness, Diameter, Hardness, and Friability of Matrices

The thickness and diameter of ten matrices were measured with a micrometer (Sylvac S229, Switzerland), and hardness was measured with a texture analyzer (Stable Micro Systems TA.XT plus, UK). To this end, matrices were pressed

by a stainless steel flat-face (6 mm in diameter) cylindrical probe moving at a constant speed (1 mm/s). The hardness value was read directly from the instrument and was given as the force that caused a diametrical break in the matrices. Friability was tested on a Roche friabilator. Twenty matrices were weighed (W_1) and placed into the friabilator operating at 100 rev for 4 min. The matrices were then weighed (W_2) again, and the friability (percent) was calculated by the equation: $100 \times (W_1 - W_2)/W_1$ (14).

Drug Release from Matrices

(a) In deionized water

Drug release was investigated in triplicate using a USP dissolution testing apparatus I (Dissolutest Prolabo, France) and 900 ml of deionized water at $37\pm1^{\circ}$ C (15). The release test was conducted under a constant rotation (50 rpm). At predetermined times, 5 ml of the medium was withdrawn through a filter, and an identical volume of fresh medium was added to the vessels to maintain a constant volume. The withdrawn medium was assayed by an ultraviolet spectrophotometer (UV, Perkin Elmer Lambda 2, Germany) at 218 nm.

(b) Under simulated gastrointestinal conditions

A simulated gastrointestinal release study was conducted following the USP dissolution test for delayed release (method A) using an identical apparatus (15). Drug release was determined in 750 ml of a 0.1-N hydrochloric acid solution (HCl) for 2 h. Thereafter, 250 ml of a 0.2-M tribasic sodium phosphate solution (Na₃PO₄) was added into the vessels, and drug release into the buffered solution (pH 6.8) was determined. The rotation rate and temperature were maintained at 50 rpm and $37\pm1^{\circ}\text{C}$, respectively. At predetermined times, 5 ml of medium was withdrawn through a filter, and an identical volume of fresh medium was added to the vessels to maintain a constant volume. The withdrawn medium was assayed by UV at 218 nm, and appropriate blanks were used as correction factors. Drug release was evaluated in triplicate.

Disintegration Test

Disintegration tests were conducted with a USP disintegration testing apparatus (Sotax DT3, Switzerland) (15). At the beginning of each test, six matrices were placed into a basket-rack assembly with disks and deionized water at $37\pm1^{\circ}$ C. The disintegration time, defined as the moment the matrix disintegrated and passed through the assembly screen, was recorded for each sample.

Scanning Electron Microscopy (SEM)

The surface morphology of produced matrices was determined with a scanning electron microscope (SEM; Jeol JSM 5400, Japan) under a fixed magnification. Prior to viewing, matrices were firmly held on the top of stubs and sputter coated with gold in a vacuum evaporator (SPI Module Carbon Coater, USA).

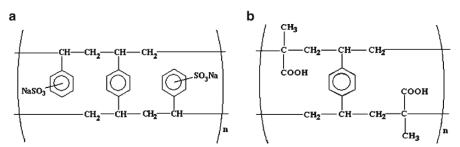
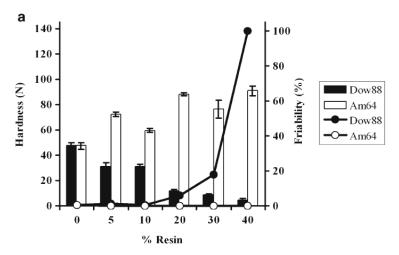


Fig. 1. Chemical structure of a Dow88 and b Am64, respectively


Photograph of Matrices During Drug Release

Photographs of matrices were taken under conditions identical to the release tests. At predetermined times, matrices were viewed with a digital camera in association with image analysis software (Dino-Lite Digital AM-313T Plus, Taiwan) under a fixed magnification.

Swelling of Resin

(a) Volume swelling

Equal weights of resin were placed into a 10-ml cylinder and were tapped until constant volume. The volume of resin

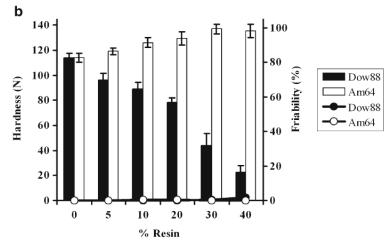


Fig. 2. Hardness (bar graph) and friability (line graph) of a HPMC- and b EC-based matrices containing various amounts of resin, respectively

 (v_1) was recorded, and an excess amount of water was carefully added into the cylinder. After 2 h, the volume of swollen resin (v_2) was recorded, and volume swelling (percent) was calculated according to the following equation: $100 \times (v_2 - v_1)/v_1$ (16).

(b) Weight swelling

Equal weights of resin (w_1) were placed in a centrifuge tube, and an excess amount of water was carefully added. After 2 h, the slurry was centrifuged at 2,000 rpm until the supernatant was clear. The supernatant was carefully removed with a micropipette, and the swollen resin was weighed (w_2) . Weight swelling (percent) was calculated according to the following equation: $100 \times (w_2 - w_1)/w_1$ (17).

RESULTS AND DICUSSION

Dow88 and Am64

Dow88 is a strongly cationic exchange resin containing crosslinked styrene–divinylbenzene copolymer with sodium sulfonate groups as ion exchange sites (Fig. 1a) (18). This resin was milled in a mortar, and the fraction that passed through a 100-mesh sieve was used. Am64 is a weakly cationic exchange resin containing crosslinked methacrylic acid-divinylbenzene copolymer with carboxylic acid groups as ion exchange sites (Fig. 1b) (19). Am64 was obtained as a mixture of particles ranging in size from 100 to 400 mesh and therefore was used without modification. The results of an SEM study revealed that both resins were irregular in shape (figures not shown). The resins were insoluble in water but could hydrate and swell due to the dissociation of ion exchange sites.

Physical Properties of Matrices

All matrices were prepared by direct compression. Matrices with or without resin had a fairly uniform weight (%CV≤1) because mixture ingredients were weighed and directly fed into the compress (14). The hardness of HPMC-or EC-based matrices containing Dow88 continuously decreased with increasing amounts of embedded resin (Fig. 2), which was in agreement with SEM results. The density of matrix surface deteriorated (Fig. 3a *versus* b for HPMC-based matrices and Fig. 3d *versus* e for EC-based matrices, respectively) with increasing amounts of embedded resin. The deterioration in the hardness of HPMC-based

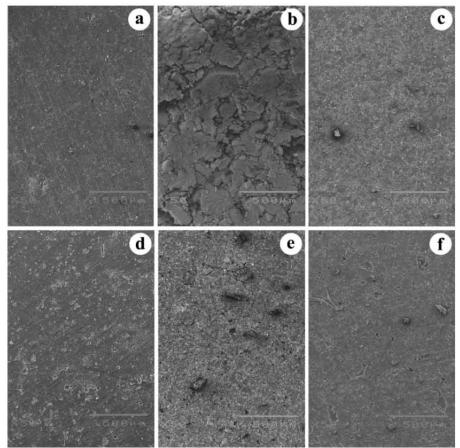


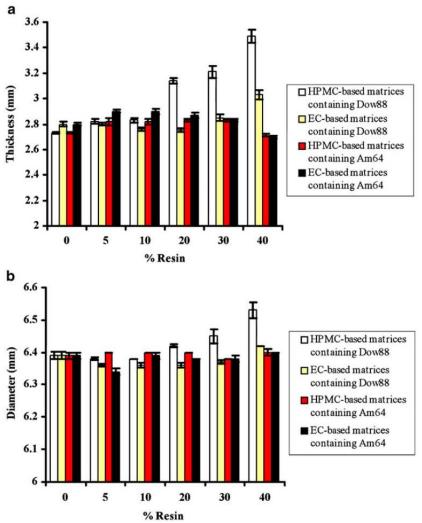
Fig. 3. Surface morphology of HPMC-based matrices containing **a** no resin, **b** 40% Dow88, and **c** 40% Am64 and EC-based matrices containing **d** no resin, **e** 40% Dow88, and **f** 40% Am64, respectively (×50 magnification)

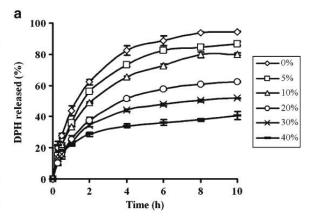
matrices was higher than EC-based matrices because HPMC had lower compressibility than EC. This result was similar to those observed from the matrices containing Amberlite IRP69 (Am69) in the previous work (11). Am69 and Dow88 are crosslinked styrene–divinylbenzene copolymer resins with sodium sulfonate as ion exchange sites. Am69 is a gel-type (lowly crosslinked copolymer) resin, whereas Dow88 is a macroporous-type (highly crosslinked copolymer) resin (18–20). Thus, hardness results confirmed that crosslinked styrene–divinylbenzene copolymer resins had poor compressibility regardless of resin type or degree of crosslinking.

Interestingly, the hardness of HPMC- or EC-based matrices containing Am64 increased as the amount of embedded resin increased (Fig. 2). Coincidently, the matrices maintained smooth and compact surfaces (Fig. 3a *versus* c for HPMC-based matrices and Fig. 3d *versus* f for EC-based matrices, respectively). This result differed from those observed in matrices containing either Dow88 or Am69 (11), which implied that Am64 had higher compressibility than Dow88 and Am69. As already mentioned, Am64 is a

crosslinked methacrylic acid–divnylbenzene copolymer resin, whereas Dow88 and Am69 are crosslinked styrene–divinylbenzene copolymer resins. It was possible that the copolymer chemistry governed the resin compressibility; the methacrylic acid–divinylbenzene copolymer resin might be inherently more compressible than styrene–divinylbenzene copolymer resins. Based on this virtue, Am64 was likely to be a superior release modifier for matrices because it did not undermine matrix hardness, which was observed with the addition of Dow88 and Am69.

Figure 2 also shows the friability of obtained matrices. The friability of HPMC-based matrices containing Dow88 increased markedly and could be divided into two phases (Fig. 2a). In the first phase, friability was gradually increased from 0.3% to 6.0% as the amount of Dow88 increased to 20%, corresponding to a decrease in hardness from 47.4 to 11.6 N. In the second phase, the friability of matrices containing 20% to 40% Dow88 increased dramatically from 6.0% to 100%, while the hardness slightly declined from 11.6 to 4.9 N. In contrast, the friability of EC-based matrices




Fig. 4. Thickness a and diameter b of matrices containing various amounts of resin

containing Dow88 up to 40% increased slightly (<1.5%), although their hardness continuously decreased from 114.0 to 22.6 N (Fig. 2b). Indeed, this result concurred with those of previous studies and confirmed that a critical matrix strength was present in resin-embedded matrices (11). Below the critical matrix strength, friability would greatly increase with a decrease in hardness, otherwise remaining nearly unchanged. From Fig. 2, the critical matrix strength of HPMC-based matrices containing Dow88 was estimated to be approximately 12 N, which was similar to those of matrices containing Am69 (16-17 N). Therefore, HPMC-based matrices containing 20% to 40% Dow88 had a matrix hardness below 12 N, and the friability greatly increased with decreasing the matrix hardness. The friability of EC-based matrices containing Dow88 was nearly unchanged because their hardness had not declined below the critical matrix strength. In both HPMC- and EC-based matrices, the friability was maintained constant (≤0.3%) when Am64 was added to the matrices (Fig. 2). This result was due to the high compressibility of Am64, which increased the hardness of the obtained matrices.

The thickness and diameter of the matrices are depicted in Fig. 4. The matrices had similar dimensions; however, HPMC-based matrices containing Dow88 had an increased thickness and diameter, particularly when the amount of embedded resin exceeded 10%. This result might be due to the severe decrease in hardness and inter-particulate binding of the matrices, which was a result of the poor compressibility of the original matrix and embedded resin. As mentioned above, the compressibility of HPMC and Dow88 was lower than EC and Am64, respectively. Therefore, Dow88 greatly weakened inter-particulate binding of the HPMC matrix, leading to a less compact and more relaxed matrix. Due to the superior compressibility of EC, matrix hardness and interparticulate binding of EC-based matrices containing Dow88 were not lowered as severely as those of HPMC-based matrices containing Dow88. Instead, the matrices were strong enough to withhold matrix relaxation after punch withdrawal. As with Am64, it strengthened matrix hardness and interparticulate binding. As a result, the density of HPMC- or ECbased matrices containing Am64 was maintained, producing an unchanged thickness and diameter.

Drug Release from Matrices in Deionized Water

Drug release from HPMC-based matrices containing Dow88 is shown in Fig. 5a. The results revealed that drug release was lowered by the incorporation of Dow88 into the matrix, which was similar to the results of previous studies (10,11). The decrease in drug release was due to the gelation property of HPMC and the drug exchange property of embedded resin. Thus, the observed decrease was caused by "in situ resinate formation"; upon contact with water, the matrices formed a gel (Fig. 6) of which the drug was able to diffuse out. However, a portion of the dissolved drug became bound to the embedded resin via ion exchange and formed a resinate or drug-resin complex, resulting in a decrease in drug release. This decrease in drug release was more dramatic with increasing amounts of embedded resin due to an increase in resinate formation.

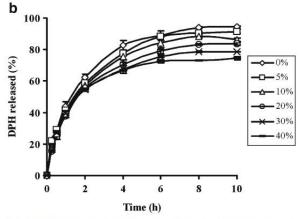


Fig. 5. DPH release from HPMC-based matrices containing various amounts of a Dow88 and b Am64, respectively

The incorporation of Am64 also decreased drug release from HPMC-based matrices (Fig. 5b) due to *in situ* resinate formation. Matrices containing Am64 formed a gel during drug release (Fig. 6); however, the decline in drug release from Am64 was clearly less than Dow88-embedded matrices due to the weaker drug exchange property of Am64 compared to Dow88. The ion exchange sites of Am64 and Dow88 are carboxylic and sulfonic groups, respectively, and the pH of drug solutions was between 5 and 6. Thus, the carboxylic group of Am64 (pK_a=4–6) weakly dissociated and provided lower drug exchange and *in situ* resinate formation than the sulfonic group of Dow88 (pK_a=1–2), which could strongly dissociate and interact with the dissolved drug (20.21).

It was observed that gelled matrices gradually eroded during drug release, and the erosion rate increased with increasing amounts of embedded resin due to a decrease in the amount of matrix former. For example, gelled matrices containing 40% Dow88 eroded so much that the small, collapsed residue could not be prepared for photographic viewing at the end of the release test (Fig. 6a). Nevertheless, matrices containing a higher amount of embedded resin provided a lower drug release in spite of higher matrix erosion. This phenomenon supported that drug release from the matrices was primarily governed by drug diffusion and

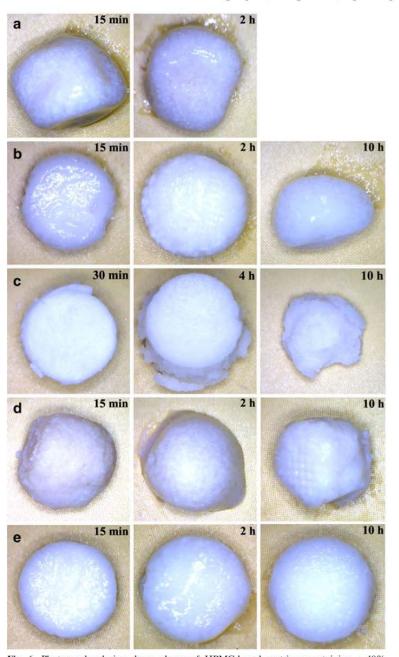


Fig. 6. Photographs during drug release of HPMC-based matrices containing a 40% Dow88 and b 40% Am64, EC-based matrices containing c 40% Am64 tested in deionized water, and HPMC-based matrices containing d 40% Dow88 and e 40% Am64 tested under simulated gastrointestinal conditions, respectively

exchange rather than matrix erosion (10,11). Moreover, it could be further evaluated by the kinetic analysis of release profiles. In general, the release data from gelled matrix systems can be analyzed according to the power law equation: $F_t = kt^n$, where F_t is the fractional release of the drug (in the range of 0–70%) at time t, k is the kinetic constant, and n is the release exponent indicative of the release mechanism, respectively. According to the resultant kinetic parameters

(Table I), all release profiles were satisfactorily fitted to the power law equation using appropriate n values ($R^2 \ge 0.98$). The value of n from the free-resin matrices was 0.569, indicating an anomalous transport corresponding to drug diffusion in the hydrated matrix and the polymer erosion (22,23). However, the matrices containing either resin exhibited a trend of decreasing n values, *i.e.*, from 0.569 to 0.227 for Dow88 and from 0.569 to 0.410 for Am64,

Table I. Kinetic Parameters Analyzed from Release Profiles of HPMC-Based Matrices Containing Various Amounts of Dow88 or Am64

% Resin	Dow88			Am64		
	n	k (h ⁻ⁿ)	R^2	n	$k (h^{-n})$	R^2
0	0.569	0.421	0.999	0.569	0.421	0.999
5	0.547	0.386	0.999	0.504	0.412	0.999
10	0.465	0.355	0.994	0.539	0.392	1.000
20	0.422	0.260	0.977	0.492	0.372	0.991
30	0.349	0.251	0.980	0.434	0.383	0.993
40	0.227	0.239	0.977	0.410	0.395	0.991

respectively, elucidating that the release mechanism was not purely dependent on such drug diffusion, but coupled with drug exchange property from the embedded resin. The greater shift of n values was observed from Dow88 due to stronger drug exchange property of the resin. In addition, the effect of increased amounts of resin and delayed drug release could be expressed as slowed kinetic constant (k) for matrices containing Dow88.

Drug release from EC-based matrices containing Dow88 is shown in Fig. 7. During the release test, it was observed that Dow88 caused non-swelling EC-based matrices to disintegrate with a disintegration rate and extent paralleling

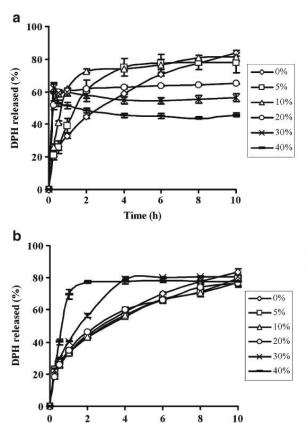


Fig. 7. DPH release from EC-based matrices containing various amounts of a Dow88 and b Am64, respectively

Time (h)

the amount of embedded resin added to the matrix. This observation was further quantitatively confirmed by a disintegration test. Clearly, disintegration times were shorter with increasing amounts of embedded resin, which were 329.6 ± 4.4 , 72.3 ± 1.3 , 8.3 ± 0.5 , 1.3 ± 0.4 , and 0.4 ± 0.1 min for EC-based matrices containing 5%, 10%, 20%, 30%, and 40% Dow88, respectively. A greater disintegration rate allowed the drug to be released faster (Fig. 7) due to an increase in surface area exposed to the medium (24). However, the amount of drug released into solution tended to be lower because the released drug was bound to resin dispersed in the medium. The decrease in the amount of drug released into solution was more pronounced as the amount of dispersed resin, and hence, resinate formation in the medium increased. This result was in agreement with previous studies where Am69 was embedded into EC-based matrices (11).

The mechanism of matrix disintegration due to embedded resin was further evaluated. It was believed that resins caused matrix disintegration via resin swelling; therefore, the swelling of resins was determined (10,11). The swelling of Am69 was also determined for comparison. Indeed, results indicated that the resins swelled volumetrically (volume swelling) and gravimetrically (weight swelling). The volume swelling was 19.6±3.1%, 44.0±2.9%, and 68.5±5.2%, while the weight swelling was 158.9±14.2%, 231.9±2.2%, and 167.2±5.4% for Dow88, Am64, and Am69, respectively. It could be found that the volume and weight swelling were not equal and not totally parallel. For example, the volume swelling of Am64 was lower than that of Am69, but the former resin had higher weight swelling than the latter resin. This result indicated that volume and weight swelling might have different origins. Volume swelling represented an increase in size (swelling action), whereas weight swelling indicated that water was adsorbed by the resin without a change in volume or size (wicking action) (25). Previous studies reported that the disintegrating effect of Am69 was primarily due to the adsorption of water and subsequent increase in resin size (10,11). However, Am69 is a gel-type resin with high volume and weight swelling. In this work, Dow88 had a weight swelling comparable to Am69 but significantly lower volume swelling. Both Dow88 and Am69 possess sodium sulfonate ion exchange sites, which are dissociable and have a high affinity for water. However, Dow88 is a macroporous resin that has a higher degree of crosslink than gel-type resins (20). Thus, Dow88 had a similar propensity for water adsorption to Am69; however, Dow88 swelled slightly. This result suggested that matrix disintegration created by embedded Dow88 might be the result of wicking (water adsorption) rather than swelling actions.

Figure 7 displays the drug release profiles of EC-based matrices containing Am64. Due to the hydrophobicity of EC, Am64 addition caused non-swelling EC-based matrices to disintegrate; however, the extent of matrix disintegration was significantly less than observed in Dow88. Matrices containing up to 20% Am64 disintegrated only slightly over 10 h, and the resultant drug release profiles did not differ significantly from those without the resin (Fig. 7). This result implied that the increase in drug release caused by disintegration was offset by the decrease in drug release due to drug exchange on the embedded resin. As the amount of the embedded resin increased from 30% to 40%, the extent of disintegration increased but was incomplete at 10 h, as confirmed by photographic observation (Fig. 6c). Nonetheless, a greater disintegration of these matrices allowed for an increase in drug release, which dominated the adsorption of the drug on ion exchange sites of the embedded resin. As a result, drug release was faster in matrices containing 30% to 40% Am64 than from resin-free matrices. However, the amount of drug released from the matrix was likely less than resin-free matrices due to drug exchange and resinate formation. Due to slow and incomplete disintegration, a portion of the drug was bound to resin dispersed in the medium or resided in the remaining matrices. The decrease in drug release caused by Am64 was not as pronounced as the decrease caused by Dow88 because of the weaker drug exchange property of Am64. Thus, the profiles of drug release from EC-based matrices containing 30% to 40% Am64 were similar to those containing up to 10% Dow88.

In general, it has been suggested in the literature that softer tablets disintegrate quickly, whereas harder tablets disintegrate more slowly. Therefore, pore structure is significant for tablet disintegration; softer tablets have larger pores and greater tortuosity, allowing for more water penetration and subsequent breakage of inter-particle binding and disintegration (4,5,25-27). Additionally, softer tablets have weaker inter-particle bonds that are more easily broken by disintegrating forces (3). EC-based matrices that contained increasing amounts of Dow88 had reduced hardness (Fig. 2b) and increased pore size, as observed in SEM results (Fig. 3d versus e). Therefore, the decrease in hardness of EC-based matrices containing Dow88 might contribute to increased disintegration. On the other hand, Am64 yielded harder ECbased matrices due to the high compressibility of the resin (Fig. 2b), which needed to be overcome by disintegrating forces derived from the resin. Moreover, EC-based matrices containing Am64 likely had smaller pores and greater tortuosity due to a denser powder bed (Fig. 3e versus f) that impeded water penetration into matrices. These factors outweighed the disintegrating forces caused by swelling and wicking (water adsorption) actions by Am64, leading to delayed matrix disintegration. Also, it explained that ECbased matrices containing Am64 did not disintegrate as much as those containing Dow88 even though Am64 displayed higher volume and weight swelling.

Drug Release from Matrices Under Simulated Gastrointestinal Conditions

According to the above results, resins had the potential to slow down drug release from HPMC-based matrices. EC- based matrices containing either resin had a propensity for disintegration; thus, these matrices could not be used to delay drug release. Therefore, the drug release of selected HPMC-based matrices containing Dow88 or Am64, as well as resinfree matrices, was further investigated under simulated gastrointestinal conditions. Drug release from resin-free matrices under simulated gastric conditions was lower than

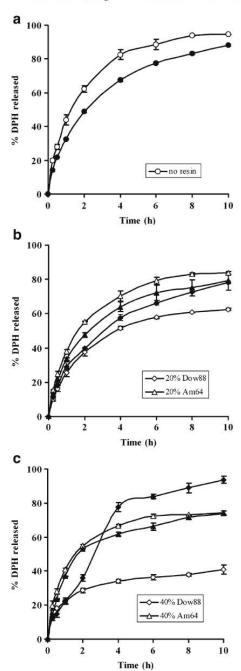


Fig. 8. DPH release from HPMC-based matrices containing a no resin, b 20%, and c 40% each resin tested in deionized water (open symbols) and under simulated gastrointestinal conditions (filled symbols), respectively

1113

in deionized water (Fig. 8a). This result might be due to a salting-out effect caused by inorganic salts, which decreased polymer swelling and erosion, thus delaying drug release (7,8). This explanation was supported by photographs (Fig. 6) in which the gelled matrices under simulated gastrointestinal conditions were more persistent than in deionized water during drug release. Results revealed that Dow88 did not retard drug release under simulated gastrointestinal conditions as much as in deionized water, especially when the amount of embedded resin was high (Fig. 8b, c). This result might be due to competition between counter ions and the drug for binding sites on the embedded resin (10,11). Thus, more drug was available due to a decrease in free binding sites and was released from the matrices into solution. Matrices containing a higher amount of embedded resin provided a higher drug release because these matrices contained a lower amount of matrix former. Thus, the free drug was released faster from the resultant matrix gel (5). In addition, the drug released in the buffer stage (2-10 h) was markedly higher than the amount released in the acidic stage (0-2 h). This was because Na+, apart from H+, was present in the buffer stage, which had a higher affinity for strongly cationic exchange resins, such as Dow88, compared to H+ (20). Additionally, the total amount of cations in the buffer stage (150 mEq of Na+ plus 75 mEq of H⁺) was three times higher than in the acidic stage (75 mEq of H+). Cations in the buffer stage could compete with the drug to a greater extent for binding sites on the resin (28). In contrast, drug release from matrices containing Am64 in deionized water was higher than under simulated gastrointestinal conditions, in which both H+ and Na+ were present (Fig. 8b, c). This result suggested that both H⁺ and Na⁺ could slightly compete with the drug in binding to the resin under simulated gastrointestinal conditions. Therefore, the increase in drug release caused by competition with cations was minor and was dominated by a decrease in drug release due to the salting-out effect of the polymer, thus providing a lower drug release under simulated gastrointestinal conditions. As shown in Fig. 8a-c, drug release from the matrices continuously decreased as the amount of Am64 increased. Thus, Am64 could retard drug release under simulated gastrointestinal conditions.

CONCLUSION

Dow88 and Am64 yielded matrices with unique physical properties. Dow88 caused the matrices to become softer, resulting in an increase in thickness, diameter, and friability. In contrast, Am64 increased matrix hardness and yielded a thickness, diameter, and friability similar to resin-free matrices. The addition of Dow88 decreased drug release from HPMC-based matrices in deionized water more than Am64. However, Am64 impeded drug release under simulated gastrointestinal conditions. EC-based matrices containing either resin had a propensity for disintegration caused by swelling and wicking (water adsorption) actions by the resin.

ACKNOWLEDGEMENTS

The authors wish to thank the Thailand Research Fund and the Commission on Higher Education, Ministry of Education, Thailand, for funding (MRG5280242). The

authors would also like to thank the Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand, for instrument support and the Faculty of Medicine, Srinakharinwirot University, Thailand, for assistance with SEM analysis.

REFERENCES

- 1. Kunin R. Ion exchange resins. New York: Wiley; 1963.
- Borodkin S. Ion exchange resins and sustained release. In: Swarbick J, Boylan JC, editors. Encyclopedia of pharmaceutical technology, vol. 8. New York: Marcel Dekker; 1993. p. 203–16.
- Bandelin FJ. Compressed tablets by wet granulation. In: Lieberman HA, Lachman L, Schwartz JB, editors. Pharmaceutical dosage forms: tablets, vol. 1. New York: Marcel Dekker; 1989. p. 131–94.
- Sanchez-Lafuente C, Faucci MT, Fernandez-Arevalo M, Alvarez-Fuentes J, Rabasco AM, Mura P. Development of sustained release matrix tablets of didanosine containing methacrylic and ethylcellulose polymers. Int J Pharm. 2002;234:213– 21.
- Dabbagh MA, Ford JL, Rubinstein MH, Hogan JE. Effects of polymer particle size, compaction pressure and hydrophilic polymers on drug release from matrices containing ethylcellulose. Int J Pharm. 1996;140:85–95.
- Crowley MM, Schroeder B, Fredersdorf A, Obara S, Talarico M, Kucera S, et al. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int J Pharm. 2004;269:509–22.
- Abrahamsson B, Alpsten M, Bake B, Larsson A, Sjogren J. In vitro and in vivo erosion of two different hydrophilic gel matrix tablets. Eur J Pharm Biopharm. 1998;46:69–75.
- Kavanagh N, Corrigan OI. Swelling and erosion properties of hydroxypropyl methylcellulose (hypromellose) matrices-influence of agitation rate and dissolution medium composition. Int J Pharm. 2004;279:141–52.
- Kim JE, Kim SR, Lee SH, Lee CH, Kim DD. The effect of pore formers on the controlled release of cefadroxil from a polyurethane matrix. Int J Pharm. 2000;201:26–36.
- Sriwongjanya M, Bodmeier R. Effect of ion exchange resins on the drug release from matrix tablets. Eur J Pharm Biopharm. 1998;46:321-7.
- Akkaramongkolpom P, Ngawhirunpat T, Nunthanid J, Opanasopit P. Effect of a pharmaceutical cationic exchange resin on the properties of controlled release diphenhydramine hydrochloride matrices using Methocel K4M or Ethocel 7cP as matrix formers. AAPS PharmSciTech. 2008;9:899–908.
- Jack DB. Handbook of clinical pharmacokinetic data. Great Britain: Macmillan Publisher; 1992.
- Reynolds JEF. Martindale the extra pharmacopoeia. 31st ed. London: The Royal Pharmaceutical Society of Great Britain; 1996.
- Ozyazici M, Gokce EH, Ertan G. Release and diffusional modeling of metronidrazole lipid matrices. Eur J Pharm Biopharm. 2006;63:331–9.
- The United States Pharmacopeial Convention. USP 29. Rockville: The United States Pharmacopeial Convention; 2006.
- Mamo M, Ginting D, Renken R, Eghball B. Stability of ion exchange resin under freeze-thaw or dry-wet environment. Soil Sci Soc Am J. 2004;68:677–81.
- Bajpai SK, Sharma S. Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca²⁺ and Ba²⁺ ions. React Funct Polym. 2004;59:129–40.
- Dowex product literature. http://www.dow.com. Accessed 15 Jan 2010.
- Amberlite product literature. http://www.rohmhaas.com. Accessed 15 Jan 2010.
- Harland CE. Ion exchange: theory and practice. UK: Royal Society of Chemistry; 1994.

- 21. Kim CJ. Controlled release dosage form design. USA: Technomic Publishing Company; 2000.
- 22. Levina M, Rajabi-Siahboomi AR. The influence of excipients on drug release from hydroxypropyl methylcellulose matrices. J Pharm Sci. 2004;93:2746-54.
- 23. Avachat A, Kotwal V. Design and evaluation of matrix-based controlled release tablets of diclofenac sodium and chondroitin sulphate. AAPS PharmSciTech. 2007;8:E1-6.
- Zhao N, Augsburger LL. Functionality comparison of 3 classes of superdisintegrants in promoting aspirin tablet disintegration and dissolution. AAPS PharmScTech. 2005;6:E634-40.
 Rudnic EM, Kottke MK. Tablet dosage forms. In: Banker GS,
- Rhodes CT, editors. Modern pharmaceutics third edition,
- revised and expanded. New York: Marcel Dekker, 1996. p.
- 26. Lahdenpaa E, Niskanen M, Yliruusi J. Crushing strength, disintegration time and weight variation of tablets compressed from three Avicel PH grades and their mixtures. Eur J Pharm Biopharm. 1997;43:315-22.
- Riippi M, Antikainen O, Niskanen T, Yliruusi J. The effect of compression force on surface structure, crushing strength, friability and disintegration time of erythromycin acistrate tablets. Eur J Pharm Biopharm. 1998;46:339–45.
- Sprockel OL, Prapaitrakul W. Effect of eluant properties on drug release from cellulose acetate butyrate-coated drug resin complexes. Int J Pharm. 1988;48:217-22.