บทคัดย่อ

รหัสโครงการ: MRG5280246

ชื่อโครงการ: วิธีการออกกำลังกายแบบที่กล้ามเนื้อยืดยาวออกในระดับเบา ปานกลางและหนัก

มีผลช่วยในการป้องกันผลเสียจากการออกกำลังกายในระดับหนัก ในแง่ของการ

บาดเจ็บของกล้ามเนื้อและการเปลี่ยนแปลงของระบบประสาทได้อย่างไร

ชื่อนักวิจัย และสถาบัน: ผศ.ดร. อรวรรณ ประศาสน์วุฒิ และคณะ

ภาควิชากายภาพบำบัด คณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่

E-mail Address: oprasa@chiangmai.ac.th

ระยะเวลาโครงการ: 2 ปี

การออกกำลังกายแบบกล้ามเนื้อยืดยาวออกซ้ำ สามารถใช้เป็นแนวทางเพื่อลดการ บาดเจ็บต่อกล้ามเนื้อ ภายหลังการออกกำลังกายแบบนี้ การบาดเจ็บของกล้ามเนื้อมีส่วนทำให้เกิด การลดลงของแรง อย่างไรก็ตาม การลดลงของกระแสประสาทก็มีส่วนอย่างมากเช่นกัน งานวิจัยนี้ มีวัตถุประสงค์คือเพื่อประเมินว่าการออกกำลังกายที่ระดับเบา ปานกลาง และหนักในเซตแรก มีผล ต่อการลดลงของแรงจากการออกกำลังกายในเซตที่สองอย่างไร และประเมินกลไกที่เกี่ยวข้องว่า เป็นผลจากการปรับตัวของระบบประสาท และ/หรือ การปรับตัวของระบบกล้ามเนื้อ อาสาสมัคร สุขภาพดี 30 คน ถูกจัดให้เข้ากลุ่มเพื่อไม่ให้เกิดความแตกต่างของระดับแรงสูงสุด โดยแบ่งกลุ่ม ออกเป็น 3 กลุ่มๆ ละ 10 คน อาสาสมัครออกกำลังกายของกลุ่มกล้ามเนื้องอข้อศอก โดยให้ กล้ามเนื้อทำงานแบบยืดยาวออก 30 ครั้ง ที่ระดับความหนัก 10%, 20% และ 40% ของแรงสูงสุด ในเซตแรก จากนั้น 2 สัปดาห์ ทุกกลุ่มทำการออกกำลังกายซ้ำ ที่ระดับความหนัก 40% ของแรง สูงสุด วัดระดับแรงสูงสุด ระดับพลังประสาท และแรงกระตุกขณะพัก โดยวัดก่อนและทันที่หลังการ ออกกำลังกาย วันที่ 1 และ 4 หลังการออกกำลังกายในเซตที่ 1 และ 2 ผลการศึกษาพบว่าหลังการ ออกกำลังกายเซตแรก ทั้งสามกลุ่มมีการลดลงอย่างมีนัยสำตัญทางสถิติของแรงสูงสุด พลังประสาท และแรงกระตุกขณะพัก ทันทีหลังการออกกำลังกายเซตที่ 2 ทั้งสามตัวแปรของทั้ง สามกลุ่มไม่มีความแตกต่างกัน อย่างไรก็ตามวันที่ 1 และ 4 หลังการออกกำลังกาย กลุ่มที่ออก กำลังกายระดับหนัก มีการฟื้นตัวของแรงดีกว่ากลุ่มอื่นๆ แสดงให้เห็นว่าเป็นผลจากการลดการ การฟื้นตัวของแรงที่ดีขึ้นนี้สอดคล้องกับการเปลี่ยนแปลงของ บาดเจ็บของการออกกำลังกายซ้ำ ระดับพลังประสาท แสดงให้เห็นว่าเกิดการปรับตัวของระบบประสาทในช่วงแรก ในขณะที่แรง กระตุกขณะพักของกลุ่มที่ออกกำลังกายระดับหนัก แตกต่างจากลุ่มอื่นๆ ในวันที่ 4 แสดงให้เห็นว่า มีการปรับตัวของระบบกล้ามเนื้อ สรุปการฟื้นตัวของแรงจากการออกกำลังกายแบบกล้ามเนื้อยืด และจากนั้นเป็นผลการปรับตัว ยาวออกซ้ำในช่วงแรกเป็นผลจากการปรับตัวของระบบประสาท ของระบบกล้ามเนื้อร่วมด้วย

คำหลัก: การบาดเจ็บของกล้ามเนื้อ, การออกกำลังกายซ้ำ, การออกกำลังกายแบบกล้ามเนื้อยืด ยาวออก

ABSTRACT

Project Code: MRG5280246

Project Title: How do the low, moderate and high loads of eccentric exercises

affect muscular damage and neural changes against high load

eccentric exercise?

Investigators: Orawan Prasartwuth and colleagues

E-mail Address: oprasa@chiangmai.ac.th

Project Period: 2 years

Repeated bout effect (RBE) is known as a protective way to reduce the eccentric damaging exercise. After eccentric exercise (ECC), muscle damage reduces maximal voluntary force; however, impaired neural drive to the muscle has also primarily contributed. We aimed to investigate whether three sub-maximal loads could contribute differently to force loss in the repeated bout effect and to clarify the underlying mechanisms in term of neural and muscular adaptations. Thirty healthy subjects were selectively placed into three groups to match for maximal voluntary contraction (MVC) (n = 10 per group), performing 30 eccentric actions of the elbow flexors of 10%, 20% and 40% of MVC for ECC1, followed 2 weeks later by a similar exercise (ECC2) that used 40%MVC load. MVC, voluntary activation and resting twitch were measured before, immediately, day 1 and day 4 after exercise following ECC1 and ECC2. The results showed that for the first eccentric bout, MVC, voluntary activation and the resting twitch were significant (p< 0.0001) interaction (group x time). Following the second eccentric bout immediately after exercise, there were no significant (group x time) interaction in all outcome variables. However, at day 1 and 4, only high-load group demonstrated significantly (p< 0.01) greater improvement in maximal voluntary force compared with the first high-load eccentric bout, indicating greater recovery in force generating capacity as RBE. This force recovery at day 1 and 4 corresponded with a significant (p< 0.01) improvement in voluntary activation, indicating better the level of neural drive to the muscle or neural adaptations in the early stage. In contrast, the resting twitch in highload group demonstrated a significant (p< 0.01) improvement only at day 4, suggesting muscular adaptations. In conclusion, greater force recovery in the second eccentric damaging exercise at day 1 and 4 measured in high-load group could primarily be the neural adaptations. There is a contribution of muscular adaptations at day 4 as well.

Keywords: Muscle damage, Repeated bout effect, Eccentric exercise