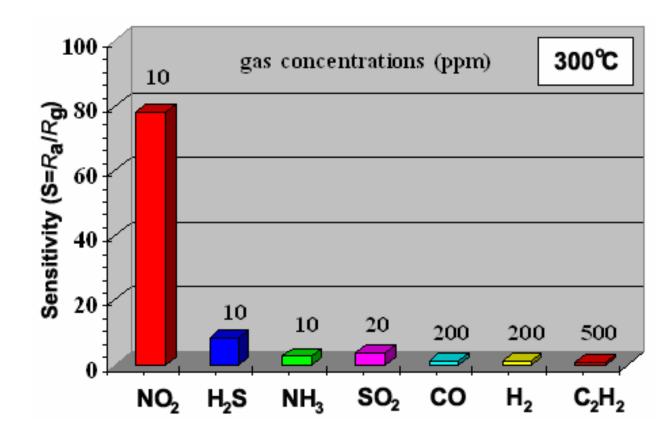
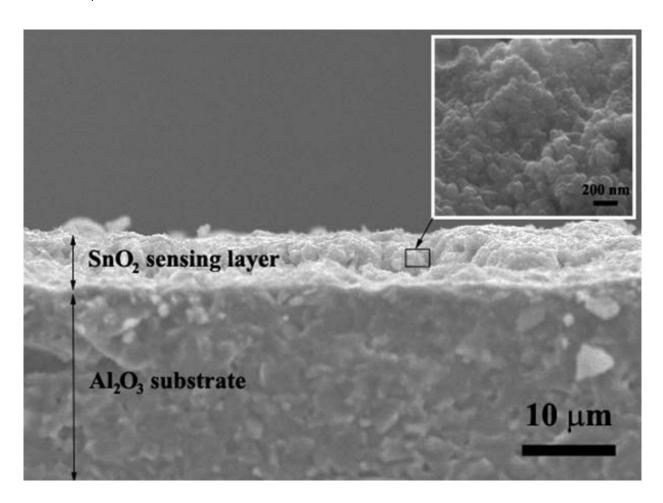
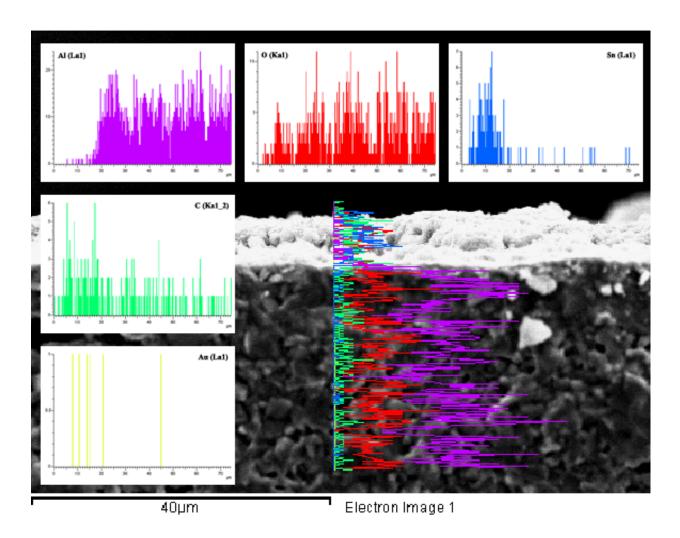

รูป 3.47 ความสัมพันธ์ของสภาพความไวและเวลาในการตอบสนองต่อการเปลี่ยนแปลงของอุณหภูมิและความ เข้มขันในการทดสอบของเซนเซอร์ทินไดออกไซด์ต่อแก็สอะเซทิลีน

3.2.1.8 การคัดสรรจำเพาะของเซนเซอร์


ในการวิเคราะห์คุณสมบัติของเซนเซอร์ที่ดีนั้น การคัดสรรจำเพาะต่อแก๊สนับว่าเป็นคุณสมบัติอีกอย่าง หนึ่งซึ่งต้องให้ความสำคัญ จากการวิเคราะห์หาการคัดสรรจำเพาะ ในงานวิจัยนี้ ได้ทำการเปรียบเทียบสภาพ การตอบสนองต่อแก๊สสภาวะแวดล้อมทั้งชนิดรีดิวซ์ทั้งหมด 6 ชนิด และ แก๊สชนิดออกซิไดซ์ 1 ชนิด โดยที่แก๊ส ชนิดรีดิวซ์ ประกอบด้วย แก๊สไฮโดรเจนซัลไฟด์ (10 ppm), แก๊สแอมโมเนีย (10 ppm), ออกไซด์ (20 ppm), แก๊สคาร์บอนมอนอกไซด์ (200 ppm), แก๊สไฮโดรเจน (200 ppm) และ แก๊สอะเซทีลีน (500 ppm) ส่วนแก๊สชนิดออกซิไดซ์ ได้แก่ ในโตรเจนไดออกไซด์ (10 ppm) เปรียบเทียบกันภายใต้การ ทดสอบที่อุณหภูมิ 300 องศาเซลเซียส ซึ่งแก๊สส่วนใหญ่จะตอบสนองได้ดีที่สุดที่อุณหภูมินี้ ยกเว้นแก๊สทดสอบ โดยการวิเคราะห์การคัดสรรจำเพาะของเซนเซอร์นั้น จะทำการวิเคราะห์โดยรูปแบบความ ้ต้านทานที่เปลี่ยนแปลงไปของการตอบสนองต่อแก๊สทดสอบ รูป 3.48 แสดงตัวอย่างการเปรียบเทียบการ เปลี่ยนแปลงความต้านทานของเซนเซอร์ทินไดออกไซด์บริสุทธิ์ที่ทำการทดสอบกับแก๊สพิษ 3 ชนิด ได้แก่ แก๊ส ในโตรเจนไดออกไซด์, คาร์บอนมอนอกไซด์ และ ซัลเฟอร์ไดออกไซด์ พบว่า เซนเซอร์ทินไดออกไซด์บริสุทธิ์มี การตอบสนองได้ไวเป็นพิเศษต่อแก๊สไนโตรเจนไดออกไซด์ที่ความเข้มขันต่ำ แสดงการเปลี่ยนค่าความ ้ต้านทานที่สูงมากเมื่อเทียบกับแก๊สอีก 2 ชนิด ซึ่งถือว่าตอบสนองได้น้อยมาก อาจะเรียกว่าไม่ตอบสนองเลย ซึ่งอัตราการเปลี่ยนแปลงความต้านทานนี้ สามารถวิเคราะห์ค่าสภาพความไวของเซนเซอร์ ซึ่งเป็นคุณสมบัติที่ สำคัญอีกชนิดหนึ่งของคุณภาพเซนเซอร์ ซึ่งจะสามารถทราบถึง การคัดสรรจำเพาะที่เหมาะสมมากที่สุดต่อแก๊ส หลายชนิดที่ใหลปะปนในอากาศ โดยการคัดสรรจำเพาะของเซนเซอร์ทินไดออกไซด์จะแสดงการตอบสนองต่อ แก๊สทั้งหมด 5 ชนิด ที่อุณหภูมิการตอบสนอง 2 ค่า คือ 200 และ 300 องศาเซลเซียส แสดงได้ดังรูป 3.49 พบว่า เซนเซอร์ประเภทนี้มีการตอบสนองต่อแก๊สในโตรเจนไดออกไซด์ด้วยสภาพความไวที่สูงกว่าอย่างเห็นได้ ชัด ที่อุณหภูมิต่ำกว่า คือ 200 องศาเซลเซียส ดังนั้นจึงได้มีการเปรียบเทียบการตอบสนองต่อแก๊สอีกหลาย ชนิดที่อุณหภูมิ 200 องศาเซลเซียส ดังรูป 3.50 ซึ่งพบว่า ค่าความเข้มข้นจะมีขีดจำกัดต่ำสุดในการตอบสนอง แตกต่างกันไป พบว่า เซนเซอร์ที่ประดิษฐ์จากอนุภาคนาโนดีบุกออกไซด์โดยวิธีเฟลมสเปรย์ไพโรลิซิส และ ขึ้น มีความเหมาะสมอย่างมากที่จะใช้เป็นเซนเซอร์ที่ทำการตรวจจับแก๊ส รูปเซนเซอร์ด้วยวิธีสปินโคตติงนั้น ประเภทแก๊สพิษและแก๊สเสียที่เกิดจากการปล่อยออกมาในสภาวะบรรยากาศ ซึ่งเป็นประเภทของแก๊สที่สำคัญ เซนเซอร์ประเภทนี้เมื่อนำมาทดสอบการตอบสนองต่อแก๊สประเภทการ ในการตรวจจับปริมาณในอากาศ ตรวจวัดประกอบด้วย แก๊สพิษและแก๊สที่ติดไฟได้ จะแสดงการตอบสนองค่อนข้างต่ำ ความเสถียรภาพของ เซนเซอร์มีค่าไม่คงตัวมากนัก อีกทั้งยังต้องใช้ปริมาณความเข้มข้นของแก๊สที่ค่อนข้างสูงในการตรวจวัด ซึ่งไม่ เหมาะสมในการประยุกต์ใช้ต่อแก๊สประเภทเหล่านี้ อาจจะมีการปรับปรุงคุณภาพของเซนเซอร์ให้มี ประสิทธิภาพมากขึ้นในการตรวจวัด โดยการเจือสารเร่งปฏิกิริยา หรือ สารที่ช่วยเพิ่มสภาวะการจ่ายอิเล็กตรอน ให้มีค่ามากขึ้น อาจทำให้สามารถตรวจจับแก๊สได้ในปริมาณต่ำ และยังมีค่าความไวในการตอบสนองที่สูงขึ้นอีก ด้วย

รูป 3.48 การเปลี่ยนแปลงความต้านทานในการตอบสนองของเซนเซอร์ทินไดออกไซด์บริสุทธิ์ต่อแก๊สพิษชนิด ในโตรเจนไดออกไซด์, คาร์บอมอนอกไซด์ และ ซัลเฟอร์ไดออกไซด์ ความเข้มข้น 20 ppm ภายใต้อุณหภูมิ การทดสอบ 200 องศาเซลเซียส

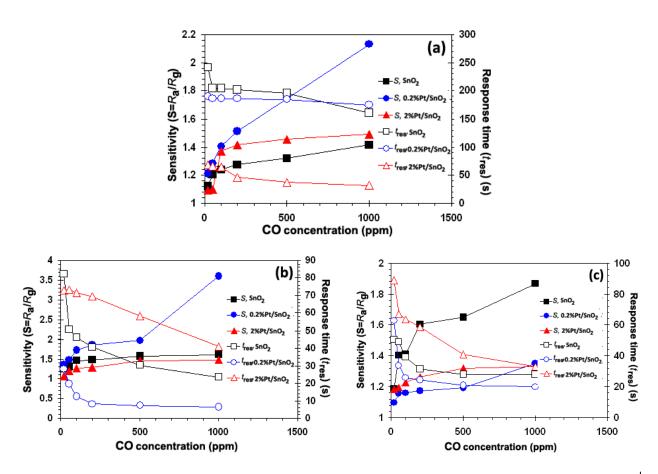

รูป 3.49 การเปรียบเทียบการคัดสรรจำเพาะของเซนเซอร์ทินไดออกไซด์บริสุทธิ์ต่อแก๊สพิษและแก๊สติดไฟได้ที่ ความเข้มข้นแตกต่างกัน ภายใต้อุณหภูมิการทดสอบ 200 และ 300 องศาเซลเซียส


รูป 3.50 การคัดสรรจำเพาะของเซนเซอร์ทินไดออกไซด์บริสุทธิ์ต่อแก๊สสภาวะแวดล้อมหลายชนิด

3.2.1.9 สัณฐานวิทยาของเซนเซอร์ภายหลังการทดสอบ

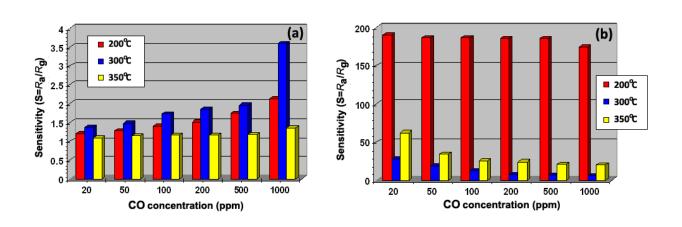
โครงสร้างภายหลังการทดสอบเซนเซอร์ สามารถวิเคราะห์ได้ดังรูป 3.51 ซึ่งแสดงถึงภาพถ่าย ภาคตัดขวางของเซนเซอร์ภายหลังการทดสอบการตอบสนอง จากรูปแสดงถึง โครงสร้างแน่นตัวระดับ ไมโครเมตรของซับสเตรทชนิดอะลูมินาและทำการพิมพ์ลายตัวนำไฟฟ้าชนิดทอง อีกทั้งยังแสดงให้เห็นถึงความ หนาของฟิล์มที่เตรียมได้ ภายหลังการทดสอบ สามารถวิเคราะห์ความหนาของฟิล์มได้ประมาณ 5 โมโครเมตร ซึ่งมีลักษณะที่ค่อนข้างแน่นตัวและมีรูพรุน และ 3.52 เป็นการวิเคราะห์องค์ประกอบของธาตุทั้งหมดในการ เตรียมเซนเซอร์โดยการกระจายตัวของรังสีเอกซ์ชนิดแบบเส้น ของตัวอย่างเซนเซอร์ที่มีการตอบสนองต่อแก๊ส ทั้ง 7 ชนิดที่เป็นตัวอย่างแก๊สสภาวะแวดล้อมในงานวิจัยครั้งนี้ พบว่าองค์ประกอบของธาตุทุกตัวจะพบได้จาก การวิเคราะห์โดยเทคนิคนี้ ทั้งธาตุที่เป็นองค์ประกอบของซับสเตรทที่ใช้ และ ธาตุของอนุภาคนาโนทินได ออกไซด์บริสุทธิ์ที่เตรียมได้จากเทคนิคเฟลมสเปรย์ไพโรลิซิสนั่นเอง

รูป 3.51 ความหนาของฟิล์มมีค่าประมาณ 5 โมโครเมตร ซึ่งมีลักษณะที่ค่อนข้างแน่นตัวและมีรูพรุน ถูกทำการ เหวี่ยงกระจายบนซับสเตรทชนิดอะลูมินาพิมพ์ลายด้วยทอง ภาพแทรก คือ อนุภาคที่มีการเปลี่ยนขนาดเพียง เล็กน้อยภายหลังจากการผ่านความร้อนจากการเตรียมเซนเซอร์และทดสอบการตอบสนองในอุณหภูมิที่ แตกต่างกัน


รูป 3.52 การวิเคราะห์องค์ประกอบของชาตุทั้งหมดในการเตรียมเซนเซอร์ทินไดออกไซด์บริสุทธิ์โดยการ กระจายตัวของรังสีเอกซ์ชนิดแบบเส้น ที่ตอบสนองต่อแก๊สสภาวะแวดล้อมทั้งหมด 7 ชนิด

3.2.2 คุณสมบัติการตอบสนองต่อแก๊สสภาวะแวดล้อมของเซนเซอร์ทินไดออกไซด์บริสุทธิ์เจือด้วย แพลตินัม (Pt)

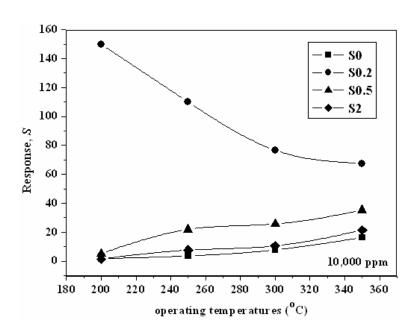
3.2.2.1 ผลการวิเคราะห์การตอบสนองต่อแก๊สพิษชนิดคาร์บอนมอนอกไซด์


ในการทดสอบการตอบสนองของเซนเซอร์ ได้ทำการทดสอบกับแก๊สคาร์บอนมอนอกไซด์ ที่ความ เข้มขันในช่วง 20-1000 ppm โดยใช้เซนเซอร์ที่เตรียมจากอนุภาคนาโนทินไดออกไซด์บริสุทธิ์ และ เจือด้วย แพลตินัมในปริมาณ 0.2 และ 2 wt% ภายใต้สภาวะอากาศ ที่อุณหภูมิ ที่แตกต่างกัน คือ 200, 300, 350 องศา เซลเซียส พบว่า สภาพการตอบสนองดีที่สุดที่อุณหภูมิ 350 องศาเซลเซียส ในเซนเซอร์ทุกตัว ดังรูป 3.53 (a) เป็นการทดสอบเซนเซอร์ที่อุณหภูมิ 200 องศาเซลเซียส พบว่าเมื่อมีการเจือแพลตินัมในปริมาณน้อยที่สุดคือ 0.2 wt% ลงไป สามารถปรับปรุงค่าการตอบสนองได้ดีขึ้นอย่างเห็นได้ชัด แสดงค่าสภาความไวสูงสุดที่ 1000 ppm (S=2.13) และพบว่าเวลาในการตอบสนองค่อนข้างช้า กว่าที่มีการเจือแพลตินัมในปริมาณมากที่สุดคือ 2 wt% ลงไป ที่ความเข้มขันของแก๊สไฮโดรเจนสูงสุด คือ 1000 ppm (tres=31s) จะเห็นว่าการตอบสนองต่อแก๊ส

ของเซนเซอร์ที่ทำจากทินใดออกไซด์บริสุทธิ์ และมีการเจือในปริมาณ 0.2 และ 2 wt% นั้น มีการตอบสนองที่ช้า มากที่อุณหภูมิ 200 องศาเซลเซียสนี้ ซึ่งมีเวลาในการตอบสนองประมาณ 160, 174 และ 31 วินาที ตามลำดับ ในทางตรงกันข้ามกัน พบว่า เมื่อเพิ่มอุณหภูมิในการทดลองขึ้นที่ 300 และ 350 องศาเซลเซียส ดังรูป 3.53 (b) และ 3.53 (c) ตามลำดับนั้น พบว่า จะแสดงสภาพความไวของเซนเซอร์ที่สูงกว่า และ เวลาในการตอบสนองที่ ดีกว่า อุณหภูมิ 200 องศาเซลเซียส อย่างเห็นได้ชัด ที่อุณหภูมิ 300 องศาเซลเซียสนั้น พบว่า เมื่อมีการเจือ แพลตินัมลงไปในปริมาณ 0.2 wt% จะแสดงผลของการตอบสนองต่อแก๊สคาร์บอนมอกไซด์ได้ไว และ เร็วกว่า เมื่อมีการเจือแพลตินัมในปริมาณ 3 wt% อย่างเห็นได้ชัด ค่าสภาพความไวของเซนเซอร์ที่เจือแพลตินัมในปริมาณ 0.2 wt% นั้น มีค่าประมาณ 3.6 และเวลาในการตอบสนองที่รวดเร็วมากขึ้น คือ 6 วินาที ที่ความ เข้มข้นของแก๊สไฮโดรเจนสูงสุดที่ 1000 ppm จะเห็นได้อย่างชัดเจนเลยว่า เมื่อมีการเจือแพลตินัมลงไปในทิน ใดออกไซด์ พบว่า อุณหภูมิมีผลเป็นอย่างมากในการตอบสนองต่อแก๊สไฮโดรเจน และเมื่ออุณหภูมิเปลี่ยน ปริมาณการเจือก็มีผลเช่นเดียวกัน

รูป 3.53 กราฟความสัมพันธ์ระหว่างสภาพความไวในการตอบสนองและเวลาในการตอบสนองของเซนเซอร์ที่ เตรียมได้จากอนุภาคนาโนทินไดออกไซด์บริสุทธิ์ และเจือด้วยแพลตินัม ในปริมาณ 0.2 wt% และ และ 2 wt% ภายใต้สภาวะการทดสอบต่อแก๊สคาร์บอนมอนอกไซด์ในอากาศที่อุณหภูมิ (a) 200, (b) 300 และ (c) 350 องศาเซลเซียส ตามลำดับ

สามารถอธิบายได้จากหลักการให้ความร้อนแก่เซนเซอร์ เนื่องจากเมื่อมีการทดสอบที่อุณหภูมิต่ำกว่า คือ 200 องศาเซลเซียสนั้น จะเห็นว่า เมื่อมีการเจือแพลดินัมในปริมาณสูงสุดคือ 2 wt% นั้น ทำให้ค่าสภาพ ความไวในการตอบสนองได้ช้ากว่าที่ 300 องศาเซลเซียส ทั้งนี้เนื่องจาก อนุภาคแพลดินัมยังคงไม่รวมตัวกัน เป็นก้อนหยาบมากขึ้น และ เนื่องจากอุณหภูมิยังไม่สูงพอที่จะเกิดอิเล็กตรอน หรือช่องว่างออกซิเจนได้มาก เพียงพอ แต่เมื่อมีการทดสอบเซนเซอร์ที่อุณหภมิสูงขึ้นคือ 300 และ 350 องศาเซลเซียสนั้น จะพบว่า ที่ 350 องศาเซลเซียสนั้น เมื่อมีการเจือในปริมาณมากที่สุดกลับมีผลของการตอบสนองต่ำที่สุด เนื่องจากว่า การ กระจายตัวของอนุภาค แพลดินัมนั้น เกิดการรวมกลุ่มกันเป็นก้อน ทำให้อนุภาคแพลดินัมมีขนาดที่ใหญ่ขึ้น ซึ่ง ทำให้ความสามารถในการตอบสนองลดลงอย่างเห็นได้ชัด เมื่อเทียบกับเซนเซอร์ที่มีการเจือด้วยแพลดินัมใน ปริมาณที่น้อยกว่า ซึ่งจะมีผลต่อพื้นที่ผิวจำเพาะของแพลดินัมในการสัมผัสกับแก๊สเพื่อเกิดปฏิกิริยาอีกด้วย การ เปรียบเทียบค่าสภาพความไวและเวลาในการตอบสนองของเซนเซอร์ทั้ง 3 ชนิด และ อุณหภูมิที่แตกต่างกันไป ต่อแก๊สคาร์บอนมอนอกไซด์ แสดงได้จากกราฟแท่งดังรูป 3.54 (a) และ 3.54 (b) ตามลำดับ ซึ่งพบว่า สภาพ ความไวของเซนเซอร์ และ เวลาในการตอบสนองจะมีแนวโน้มเพิ่มขึ้นและลดลงแบบเชิงเส้นเมื่อมีปริมาณแก๊ส คาร์บอนมอนอกไซด์ที่สูงมากขึ้น

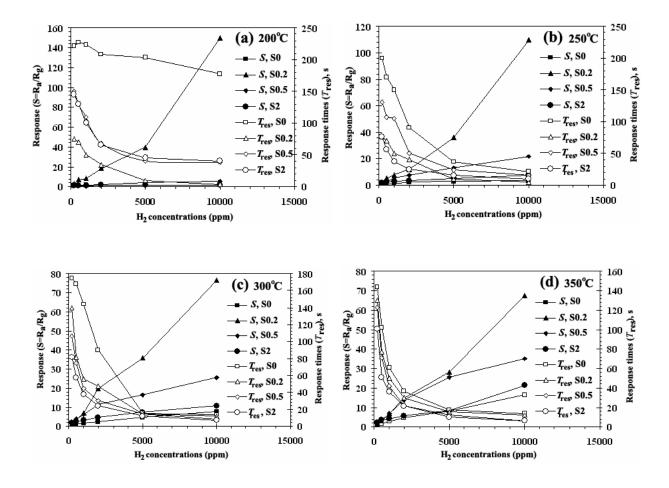

รูป 3.54 การเปรียบเทียบค่าสภาพความไวและเวลาในการตอบสนองของเซนเซอร์ทั้ง 3 ชนิด และ อุณหภูมิที่ แตกต่างกันไปต่อแก๊สคาร์บอนมอนอกไซด์ในช่วงความเข้มข้น 20-1000 ppm

3.2.2.2 ผลการวิเคราะห์การตอบสนองต่อแก๊สไฮโดรเจนเซนเซอร์3.2.2.2.1 ผลการวิเคราะห์รูปแบบอุณหภูมิในการตอบสนอง (Temperature profile)

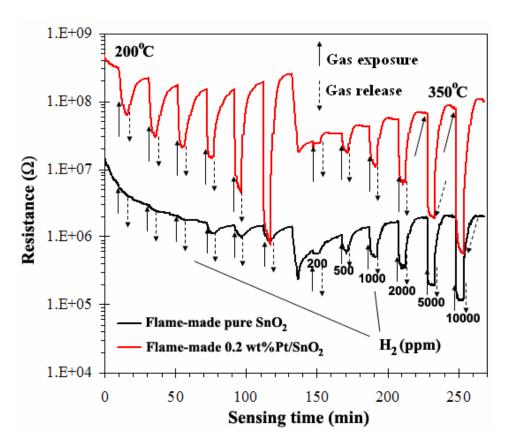
ในการวิเคราะห์การตอบสนองต่อแก๊สไฮโดรเจน จะทำการทดสอบโดยการเลือกเซนเซอร์ที่ไม่มีการเจือ และ มีการเจือด้วยแพลตินัมในปริมาณ 0.2 (S0.2), 0.5 (S0.5) และ 2 wt% (S2) ในทินไดออกไซด์บริสุทธิ์ (S0) จำนวน 4 ตัวอย่าง ทดสอบกับแก๊สไฮโดรเจนความเข้ม 200-10,000 ppm ภายใต้สภาวะบรรยากาศ ในช่วง อุณหภูมิ 200-350 องศาเซลเซียส ความสำคัญของการทดสอบด้วยแก๊สประเภทนี้ เนื่องจากเป็นแก๊สที่ติดไฟได้

เมื่อมีความเข้มข้นในปริมาณที่เหมาะสม หากเกิดการรั่วไหลออกมาอาจเกิดอันตรายได้ ถ้าบริเวณดังกล่าวมี การก่อให้เกิดประกายไฟ เนื่องจาก แก๊สประเภทนี้ไม่มีสี ไม่มีกลิ่น จึงยากที่จะสังเกตหรือเฝ้าระวัง ได้ด้วยตา เปล่า หรือ การสัมผัสกลิ่นโดยตรง ดังนั้น การประยุกต์ใช้ของเซนเซอร์ประเภทนี้จึงมีความสำคัญอย่างยิ่ง ที่จะ ศึกษาถึงผลของการเจือที่มีผลต่อการตอบสนองที่ดีขึ้นของเซนเซอร์ต่อแก๊สไฮโดรเจน

สำหรับการวิเคราะห์รูปแบบอุณหภูมิในการตอบสนองนั้น แสดงได้ดังรูป 3.55 ซึ่งเป็นการตอบสนอง ของเซนเซอร์ต่อแก๊สไฮโดรเจนความเข้มข้นสูงสุดที่ 10,000 ppm จะเห็นได้อย่างชัดเจนเลยว่า เซนเซอร์ที่ ประดิษฐ์จากอนุภาคนาโนทินออกไซด์บริสุทธิ์และเจือด้วยแพลตินัมที่ความเข้มข้นปริมาณต่างกัน มีการ ตอบสนองได้ดีที่สุดที่อุณหภูมิต่างกันเช่นกัน จากการวิเคราะห์พบว่า เซนเซอร์ทินไดออกไซด์ที่ไม่มีการเจือ ด้วยแพลตินัมมีการตอบสนองด้วยความไวที่ต่ำกว่าในกรณีที่มีการเจือด้วยแพลตินัม สำหรับเซนเซอร์ที่ไม่มี การเจือนี้จะมีการตอบสนองด้วยความไวสูงสุดที่อุณหภูมิ 350 องศาเซลเซียส และพบว่า เมื่อมีการเจือใน ปริมาณที่สูงมากขึ้น การตอบสนองยังคงตอบสนองได้ที่สุดที่อุณหภูมิ 350 เช่นเดิม ยกเว้น เซนเซอร์ที่มีการเจือ ด้วยแพลตินัมในปริมาณ 0.2 wt% สามารถที่จะลดอุณหภูมิในการตอบสนองลงมา และแสดงค่าความไวในการ ตอบสนองสูงสุดที่อุณหภูมิต่ำที่สุดของการทดสอบคือ 200 องศาเซลเซียส ข้อดีของการเจือด้วยแพลตินัมลงใน อนุภาคทินไดออกไซด์นั้น พบว่าทุกปริมาณการเจือที่ทดสอบจะสามารถปรับปรุง หรือพัฒนาคุณสมบัติทางด้าน เซนเซอร์ได้ในเชิงความไวของการตอบสนอง แต่ ความไวจะมีค่าลดลงเมื่อมีปริมาณการเจือที่สูงมากขึ้น ซึ่งเชื่อ ว่า น่าจะเกิดจากการที่แพลตินัมในปริมาณการเจือที่สูง จะเกิดการเกาะกลุ่มกันเป็นก้อนหยาบขนาดใหญ่ขึ้น ส่งผลให้ค่าพื้นที่ผิวจำเพาะจกกิรีการ บีอีที นั่นเอง

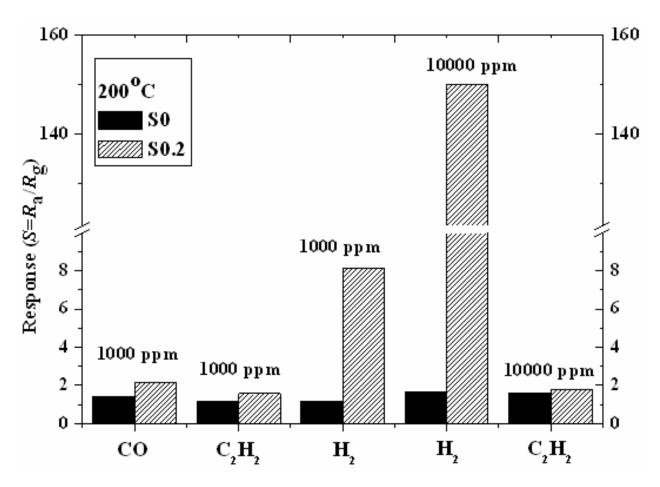


รูป 3.55 รูปแบบของอุณหภูมิในการตอบสนองของเซนเซอร์ทินไดออกไซด์บริสุทธิ์ (S0) และ เจือด้วยแพลตินัม ในปริมาณ 0.2 wt% (S0.2), 0.5 wt% (S0.5) และ 2 wt% (S2) ต่อแก๊สไฮโดรเจนความเข้มข้น 10,000 ppm ที่ อุณหภูมิการทดสอบในช่วง 200-350 องศาเซลเซียส


3.2.2.2.2. ผลการการตอบสนองต่อแก๊สไฮโดรเจน

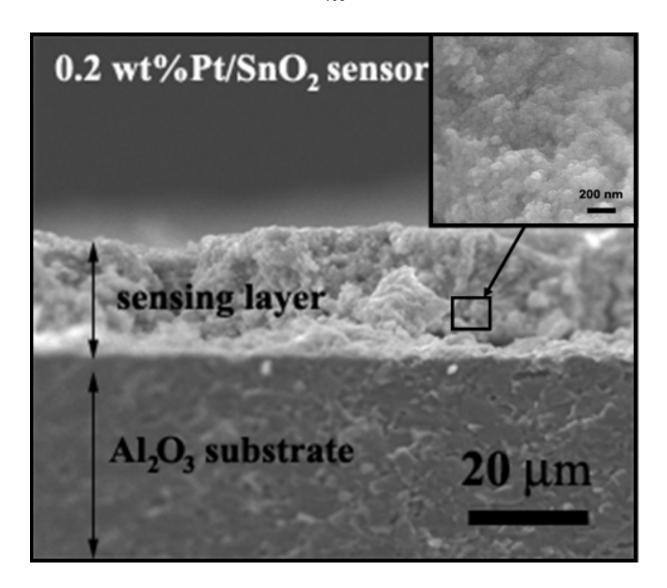
ในการทดสอบการตอบสนองของเซนเซอร์ภายใต้เงื่อนไขที่กล่าวมาแล้ว ที่สุดอย่างเห็นได้ชัดที่อุณหภูมิ 200 องศาเซลเซียส ในเซนเซอร์ทุกตัว ดังรูป 3.56 (a) พบว่า เมื่อมีการเจือด้วย แพลตินัมลงไป สามารถปรับปรุงค่าการตอบสนองได้ดีขึ้นอย่างมาก และในปริมาณการเจือแพลตินัมต่ำสุดคือ 0.2 wt% แสดงค่าสภาพความไวสูงสุด (S=150.2) และเวลาในการตอบสนองเร็วที่สุด ประมาณ 3 วินาที ที่ ความเข้มข้นของแก๊สไฮโดรเจนสูงสุด คือ 10,000 ppm จะเห็นว่าการตอบสนองต่อแก๊สของเซนเซอร์ที่ทำจาก ทินไดออกไซด์บริสุทธิ์ และมีการเจือในปริมาณสูงขึ้นนั้น มีการตอบสนองที่ช้าลดลงไปที่อุณหภูมิ 200 องศา เซลเซียสนี้ โดยแสดงสภาพความไวประมาณ 1.68 และ เวลาในการตอบสนองประมาณ 178 วินาที สำหรับ เซนเซอร์ที่ทำจากทินไดออกไซด์บริสุทธิ์, สภาพความไวประมาณ 5.2 และ เวลาในการตอบสนองประมาณ 38 วินาที สำหรับเซนเซอร์ที่ทำจากทินไดออกไซด์เจ็ดด้วยแพลตินัมปริมาณ 0.5 wt% และ สภาพความไว ประมาณ 1.5 และ เวลาในการตอบสนองประมาณ 40 วินาที สำหรับเซนเซอร์ที่ทำจากทินไดออกไซด์เจ็ดด้วย แพลตินัมปริมาณ 2 wt% ในการศึกษาผลของอุณหภูมิ พบว่า เมื่อเพิ่มอุณหภูมิในการทดลองให้สูงขึ้นที่ 250, 300 และ 350 องศาเซลเซียส ดังรูป 3.56 (b) 3.56 (c) และ 3.56 (d) ตามลำดับนั้น จะแสดงสภาพความไวของ เซนเซอร์ที่ต่ำกว่าอย่างเห็นได้ชัด และ เวลาในการตอบสนองที่ช้ากว่า อุณหภูมิ 200 องศาเซลเซียส ในปริมาณ การเจือด่ำสุดที่ 0.2 wt% เท่ากัน โดยที่อุณหภูมิ 250, 300 และ 350 องศาเซลเซียสนั้น พบว่า แสดงผลของ การตอบสนองต่อแก๊สไฮโดรเจนได้ต่ำกว่า และ ใช้เวลาช้ากว่า ค่าสภาพความไวของเซนเซอร์ที่เจือแพลตินัมใน ปริมาณ 0.2 wt% นั้น มีค่าประมาณ 110, 77 และ 67 ตามลำดับ และ เวลาในการตอบสนองที่ช้าลง คือ 5, 12 และ 12 วินาที ตามลำดับ ที่ความเข้มข้นของแก๊สไฮโดรเจนสูงสุดที่ 10,000 ppm จะเห็นได้อย่างชัดเจนเลยว่า เมื่อมีการเจือแพลตินัมลงไปในทินไดออกไซด์ พบว่า อุณหภูมิมีผลเป็นอย่างมากในการตอบสนองต่อแก๊ส ไฮโดรเจน และเมื่ออุณหภูมิเปลี่ยน ปริมาณการเจือก็มีผลเช่นเดียวกัน สามารถอธิบายได้จากหลักการให้ความ ร้อนแก่เซนเซอร์ เนื่องจากเมื่อมีการทดสอบที่อุณหภูมิต่ำกว่า คือ 200 องศาเซลเซียสนั้น จะเห็นว่า เมื่อมีการ เจือแพลตินัมในปริมาณสูงสุดคือ 0.2 wt% นั้น ทำให้ค่าสภาพความไวในการตอบสนองได้สูงสุดและจะลดลง อย่างชัดเจนเมื่อมีปริมาณการเจือที่สูงขึ้น ถึง 2 wt% ทั้งนี้เนื่องจาก อนุภาคแพลตินัมยังคงมีการกระจายตัวได้ดี อีกทั้งอนุภาคแพลตินัมยังคงไม่รวมตัวกันเป็นก้อนหยาบมากขึ้น บนพื้นผิวของทินไดออกไซด์ อุณหภูมิยังไม่สูงพอที่จะเกิดการรวมตัวกันได้ อนุภาคจึงยังไม่เพิ่มขนาดมากเกินไป แต่เมื่อมีการทดสอบ เซนเซอร์ที่อุณหภูมิสูงขึ้นคือ 300 และ 350 องศาเซลเซียสนั้น จะพบว่า เมื่อมีการเจือในปริมาณมากที่สุดกลับมี ผลของการตอบสนองต่ำลง เนื่องจากว่า การกระจายตัวของอนุภาค แพลตินัมนั้น เกิดการรวมกลุ่มกันเป็นก้อน ทำให้อนุภาคแพลตินัมมีขนาดที่ใหญ่ขึ้น ซึ่งทำให้ความสามารถในการตอบสนองลดลงอย่างเห็นได้ชัดเมื่อเทียบ ้กับเซนเซอร์ที่มีการเจือด้วยแพลตินัมในปริมาณที่น้อยกว่า เนื่องจากปฏิกิริยาการตอบสนองต่อแก๊สใด ๆ จะ เกิดขึ้นบริเวณพื้นผิวเป็นบริเวณแรก ดังนั้น อนุภาคที่มีขนาดเล็กกว่าจึงมีพื้นผิวสัมผัสจำเพาะที่มีค่าสูงกว่า ้ดังนั้นจึงมีการรับปริมาณโมเลกุลของแก๊สได้มากกว่า ส่งผลให้เกิดปฏิกิริยาในการตอบสนองได้มากกว่านั่นเอง มากไปกว่านั้น ในการเจือด้วยแพลตินัม ซึ่งถือว่าเป็นสารเจือที่เป็นตัวเร่งปฏิกิริยาชั้นดี ความสามารถและความรวดเร็วในการตอบสนองต่อแก๊สไฮโดรเจนได้ดี อีกทั้งยังมีส่วนช่วยลดอุณหภูมิในการ ตอบสนองของเซนเซอร์ลดต่ำลงมา ซึ่งเป็นข้อดี เนื่องจากสามารถนำไปใช้ในชีวิตประจำวันได้ดียิ่งขึ้น และ ช่วย

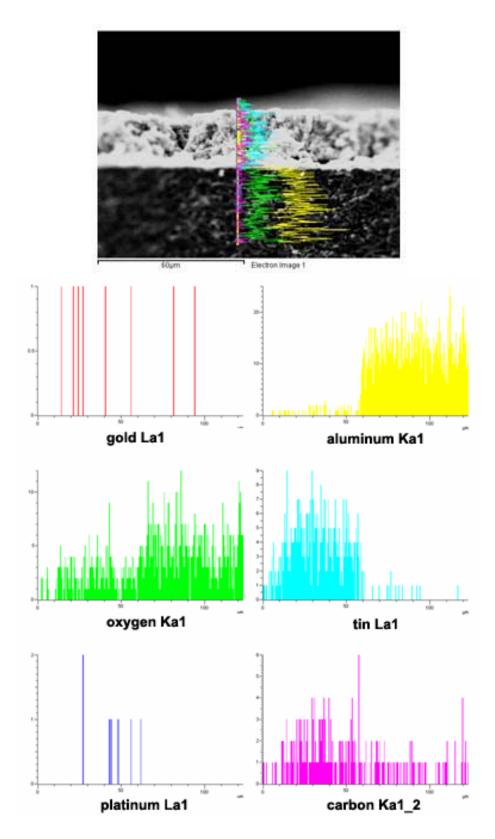
เพิ่มความเสถียรภาพของเซนเซอร์ให้มีความสามารถในการตอบสนองต่อแก๊สได้ยาวนานและมีค่าที่น่าเชื่อถือ ได้มากขึ้นอีกด้วย การแสดงความสามารถในการตอบสนองต่อแก๊สนั้นสามารถแสดงตัวอย่างการเปลี่ยนแปลงของความต้านทานที่อุณหภูมิต่ำสุดและสูงสุดได้ดังรูป 3.57 โดยที่ความแตกต่างของการเปลี่ยนแปลงความต้านทานเมื่อมีค่ามาก ก็จะส่งผลให้เซนเซอร์มีสภาพความไวที่มากเช่นกัน จากรูปแบบการเปลี่ยนแปลงความต้านทานพบว่า มีความสอดคล้องกับค่าสภาพความไวสูงสุดที่อุณหภูมิต่ำสุดคือ 200 องศาเซลเซียส เนื่องจากมีการลดลงของค่าความต้านทานมากที่สุด เมื่อมีการเพิ่มอุณหภูมิในการทดสอบสูงสุดที่ 350 องศาเซลเซียส พบว่า ค่าการเปลี่ยนแปลงความต้นทางมีค่าต่ำกว่า แสดงให้เห็นถึง ค่าสภาพความไวที่ต่ำกว่านั่นเอง มากไปกว่านั้นพบว่า เมื่อมีการเจือด้วยแพลตินัมที่ปริมาณต่ำที่สุดคือ 0.2 wt% สามารถเพิ่มการเปลี่ยนแปลงความต้านทานของเซนเซอร์ได้มากกว่าในกรณีที่ไม่มีการเจือด้วยแพลตินัมลงไป อีกทั้ง เมื่อมีการทดสอบที่ค่าความเข้มข้นของแก๊สสูงมากขึ้น ก็ส่งผลให้ค่าความต้านทานมีการเปลี่ยนแปลงมากขึ้น ในลักษณะเชิงเส้นอย่างมีนัยสำคัญอีกด้วย


รูป 3.56 กราฟความสัมพันธ์ระหว่างสภาพความไวในการตอบสนองและเวลาในการตอบสนองของเซนเซอร์ที่ เตรียมได้จากอนุภาคนาโนทินไดออกไซด์บริสุทธิ์ และเจือด้วยแพลตินัม ในปริมาณ 0.2 wt% และ 2 wt% ภายใต้สภาวะการทดสอบต่อแก๊สไฮโดรเจนในอากาศที่อุณหภูมิ (a) 200, (b) 300 และ (c) 350 องศาเซลเซียส

รู**ป 3.57** การเปลี่ยนแปลงความต้านทานของเซนเซอร์ทินไดออกไซด์บริสุทธิ์ และ เจือด้วยแพลตินัมปริมาณ 0.2 wt% รูปแบบทดสอบไปข้างหน้า (forward cycle) ที่ตอบสนองต่อแก๊สไฮโดรเจนที่ค่าความเข้มข้นช่วง 200-10,000 ppm ภายใต้อุณหภูมิการทดสอบต่ำสุดคือ 200 องศาเซลเซียส และ สูงสุด คือ 350 องศาเซลเซียส

3.2.2.2.3 การคัดสรรจำเพาะต่อแก๊สสภาวะแวดล้อม

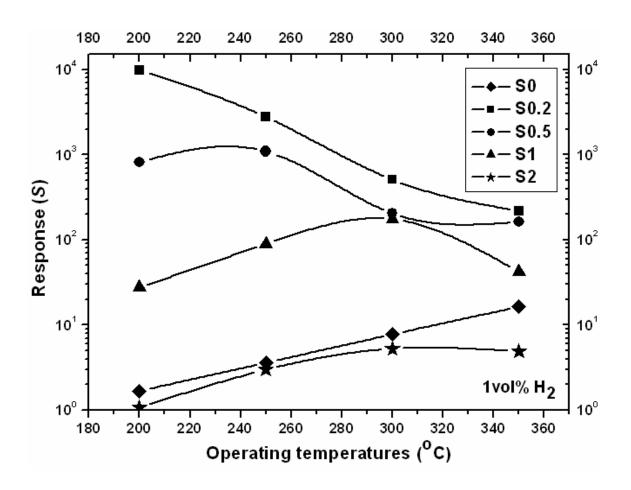

จากการวิเคราะห์ความสามารถของเซนเซอร์ในรูปแบบของการคัดสรรจำเพาะนั้น แสดงดังรูป 3.58 ได้ ทำการเปรียบเทียบสภาพความไวในการตอบสนองของเซนเซอร์ทินไดออกไซด์บริสุทธิ์ และ เจือด้วยแพลตินัม ในปริมาณ 0.2 wt% ต่อแก๊สสภาวะแวดล้อม 3 ชนิด ภายใต้อุณหภูมิการทดสอบที่ 200 องศาเซลเซียส ได้แก่ แก๊สไฮโดรเจนที่ความเข้มขันสองค่า คือ 1,000 ppm กับ 10,000 ppm เพื่อเปรียบเทียบกับแก๊สในกลุ่มเดียวกัน คือแก๊สติดใฟได้ชนิดแก๊สอะเซทิลีนที่ความเข้มขัน 2 ค่า เช่นกัน คือ 1,000 ppm กับ 10,000 ppm อีกทั้งยังทำ การเปรียบเทียบกับแก๊สพิษ ได้แก่ แก๊สคาร์บอมอนอกไซด์ ความเข้มขัน 1,000 ppm พบว่า การตอบสนองของ เซนเซอร์ที่มีการเจือด้วยแพลตินัมปริมาณ 0.2 wt% ต่อแก๊สไฮโดรเจนนั้น มีค่าสภาพความไวสูงที่สุดอย่างเห็น ได้ชัดเมื่อเทียบกับแก๊สประเภทอื่น ๆ ซึ่งมีสภาพความไวในการตอบสนองต่ำกว่า 10 ในขณะที่การตอบสนอง ต่อแก๊สไฮโดรเจนนั้นมีการตอบสนองมากกว่า 100 ดังนั้น เซนเซอร์ทินไดออกไซด์ที่มีการเจือด้วยแพลตินัม ปริมาณ 0.2 wt% จึงมีความเหมาะสมที่จะนำไปประยุกต์ใช้เป็นเซนเซอร์ตรวจจับแก๊สสภาวะแวดล้อมชนิด ไฮโดรเจนได้ แต่อย่างไรก็ตาม ผลของการเจือด้วยโลหะมีตระกูลชนิดอื่นอาจจะมีความเหมาะสมแตกต่างกันไป เมื่อเทียบกับแพลดินัม ซึ่งจะได้อริบายในหัวข้อต่อไป


รูป 3.58 การคัดสรรจำเพาะของเซนเซอร์ทินไดออกไซด์บริสุทธิ์และเจือด้วยแพลตินัมปริมาณ 0.2 wt% ต่อแก๊ส สภาวะแวดล้อมชนิดไฮโดรเจน, อะเซทิลีน และ คาร์บอนมอนอกไซด์ ในปริมาณต่างกัน ภายใต้อุณหภูมิการ ทดสอบที่ 200 องศาเซลเซียส

3.2.2.2.4 สัณฐานวิทยาของเซนเซอร์ภายหลังการทดสอบเซนเซอร์

องค์ประกอบของเฟสที่ต่างกัน, สัณฐานวิทยาของฟิล์มตอบสนอง และ โครงสร้างภายหลังการทดสอบ เซนเซอร์ต่อแก๊สประเภทต่าง ๆ สามารถวิเคราะห์ได้ดังรูป 3.59 ซึ่งแสดงถึงภาพถ่ายภาคตัดขวางของเซนเซอร์ ภายหลังการทดสอบการตอบสนอง พบว่า สามารถวิเคราะห์โครงสร้างแน่นตัวระดับไมครอนของซับสเตรทชนิด อะลูมินาความหนาของฟิล์มที่เตรียมได้ ภายหลังการทดสอบ สามารถวิเคราะห์ความหนาของฟิล์มได้ประมาณ 10 โมโครเมตร ซึ่งมีลักษณะที่ค่อนข้างแน่นตัวและมีรูพรุน ขนาดอนุภาคมีดารเติบโตขึ้นเล็กน้อย (ภาพแทรก) เนื่องจากเป็นการทดสอบภายใต้อุณหภูมิสูงเป็นระยะเวลานาน มากไปกว่านั้น ยังมีการวิเคราะห์องค์ประกอบ ของธาตุทั้งหมดในการเตรียมเซนเซอร์โดยการกระจายตัวของรังสีเอกซ์ชนิดแบบเส้น แสดงดังรูป 3.60 ของ ตัวอย่างเซนเซอร์ที่มีการตอบสนองได้ดีที่สุด คือ เซนเซอร์ที่มีการเจือด้วยแพลตินัมในปริมาณ 0.2 wt% พบว่า องค์ประกอบของธาตุทุกตัวจะพบได้จากการวิเคราะห์โดยเทคนิคนี้ ไม่ว่าจะเป็นธาตุที่ประกอบกันเป็น ซับสเตรทและธาตุของอนุภาคนาโนที่เตรียมได้จากเทคนิคเฟลมสเปรย์ไพโรลิซิสนั่นเอง

รูป 3.59 ภาพถ่าย SEM ของภาคตัดขวางรอยต่อระหว่างซับสเตรทชนิดอะลูมินา และ ความหนาของฟิล์ม ตอบสนองชนิดทินไดออกไซด์เจือด้วยรแพลตินัมปริมาณ 0.2 wt% มีค่าประมาณ 20 โมโครเมตร ซึ่งมีลักษณะ ที่ค่อนข้างแน่นตัวและมีรูพรุน ภาพแทรกแสดงถึงขนาดและสัณฐานวิทยาของอนุภาคที่เปลี่ยนไปภายหลังจาก การเตรียมเซนเซอร์ และ ทดสอบการตอบสนองต่อแก๊สประเภทต่าง ๆ



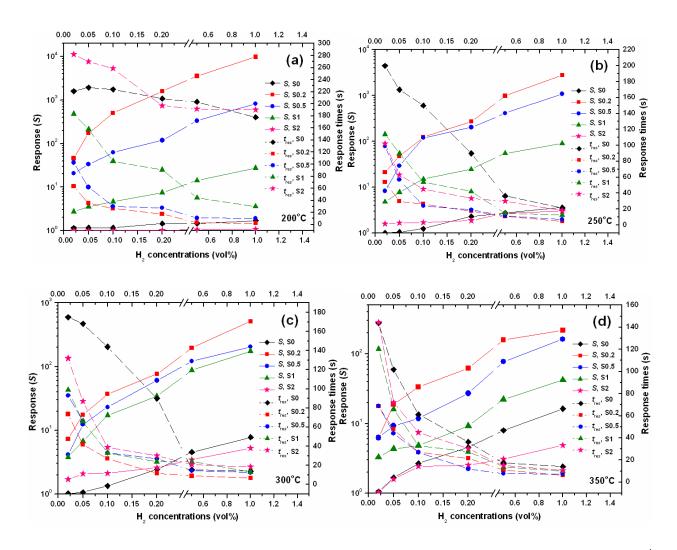
รูป 3.60 องค์ประกอบของธาตุทั้งหมดในการเตรียมเซนเซอร์โดยการกระจายตัวของรังสีเอกซ์ชนิดแบบเส้น ของตัวอย่างเซนเซอร์ที่มีการตอบสนองได้ดีที่สุด คือ เซนเซอร์ที่มีการเจือด้วยแพลตินัมในปริมาณ 0.2 wt%

3.2.3 คุณสมบัติการตอบสนองต่อแก๊สสภาวะแวดล้อมของเซนเซอร์ทินไดออกไซด์บริสุทธิ์เจือ ด้วยแพลเลเดียม (Pd)

3.2.3.1 ผลการวิเคราะห์รูปแบบอุณหภูมิในการตอบสนอง (Temperature profile)

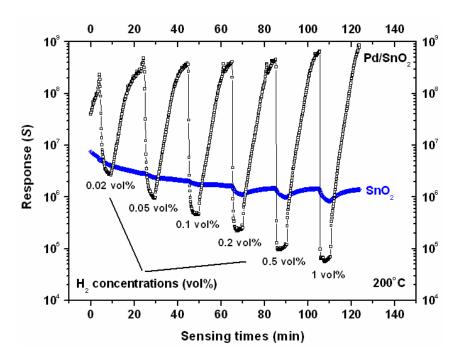
ในการวิเคราะห์การตอบสนองต่อแก๊สไฮโดรเจน จะทำการทดสอบโดยการเลือกเซนเซอร์ที่ไม่มีการเจือ และ มีการเจือด้วยแพลเลเดียมในปริมาณ 0.2 (S0.2), 0.5 (S0.5), 1 (S1) และ 2 wt% (S2) ในทินไดออกไซด์ บริสุทธิ์ (S0) จำนวน 5 ตัวอย่าง ทดสอบกับแก๊สไฮโดรเจนความเข้มข้น 200-10,000 ppm (0.02-1 vol%) ภายใต้สภาวะบรรยากาศ ในช่วงอุณหภูมิ 200-350 องศาเซลเซียส

รูป 3.61 รูปแบบของอุณหภูมิในการตอบสนองของเซนเซอร์ทินไดออกไซด์บริสุทธิ์ (S0) และ เจือด้วย แพลเลเดียมในปริมาณ 0.2 wt% (S0.2), 0.5 wt% (S0.5), 1 wt% (1) และ 2 wt% (S2) ต่อแก๊สไฮโดรเจน ความเข้มขัน 10,000 ppm (1 vol%) ที่อุณหภูมิการทดสอบในช่วง 200-350 องศาเซลเซียส


สำหรับการวิเคราะห์รูปแบบอุณหภูมิในการตอบสนองนั้น แสดงได้ดังรูป 3.61 ซึ่งเป็นการตอบสนอง ของเซนเซอร์ต่อแก๊สไฮโดรเจนความเข้มข้นสูงสุดที่ 10,000 ppm จะเห็นได้อย่างชัดเจนเลยว่า เซนเซอร์ที่ ประดิษฐ์จากอนุภาคนาโนทินออกไซด์บริสุทธิ์และเจือด้วยแพลเลเดียมที่ความเข้มข้นปริมาณต่างกัน มีการ ตอบสนองได้ดีที่สุดที่อุณหภูมิต่างกันเช่นกัน จากการวิเคราะห์พบว่า เซนเซอร์ทินไดออกไซด์ที่ไม่มีการเจือ ด้วยแพลเลเดียมมีการตอบสนองด้วยค่าความไวที่ด่ำกว่าในกรณีที่มีการเจือด้วยแพลเลเดียม สำหรับเซนเซอร์ ที่ไม่มีการเจือนี้จะมีการตอบสนองด้วยความไวสูงสุดที่อุณหภูมิ 350 องศาเซลเซียส เมื่อมีการเจือในปริมาณที่ สูงมากขึ้น การตอบสนองสูงสุดต่ออุณหภูมิการทดสอบเปลี่ยนแปลงไป เมื่อลดปริมาณการเจือจาก 2 wt% ลง ไปยัง 0.2 wt% นั้น สำหรับเซนเซอร์ที่มีการเจือด้วยแพลเลเดียมในปริมาณ 0.2 wt%, 0.5 wt%, 1 wt% และ 2 wt% จะมีการตอบสนองด้วยความไวสูงสุดที่อุณหภูมิ 300, 300, 350 และ 200 องศาเซลเซียส ตามลำดับ จะ เห็นได้ว่า ปริมาณการเจือมีผลต่อการลดลงขออุณหภูมิในการตอบสนองที่แสดงค่าสภาพความไวได้สูงที่สุด มากไปกว่านั้น พบว่า เมื่อมีการเจือด้วยแพลเลเดียมในปริมาณสูงสุดคือ 2 wt% นั้น ไม่สามารถพัฒนาสภาพ ความไวของเซนเซอร์ได้ อาจสันนิษญานได้ว่า อนุภาคของแพลเลเดียมมีการเกาะตัวกันสูงมาก จนทำให้พื้นที่ ผิวทั้งของอนุภาคแพลเลียม และ ทินไดดอกไซด์มีขนาดใหญ่ขึ้น ส่งผลให้ค่าพื้นที่ผิวจำเพาะมีค่าลดต่ำลงในการ เกิดปฏิกิริยากับแก๊สไฮโดรเจน ดังนั้น ปริมาณการเจือที่สูงที่สุดในการพัฒนาคุณสมบัติการตอบสนองของ เซนเซอร์ต่อแก๊สไฮโดรเจน คือ 1 wt% ของแพลเลเดียม

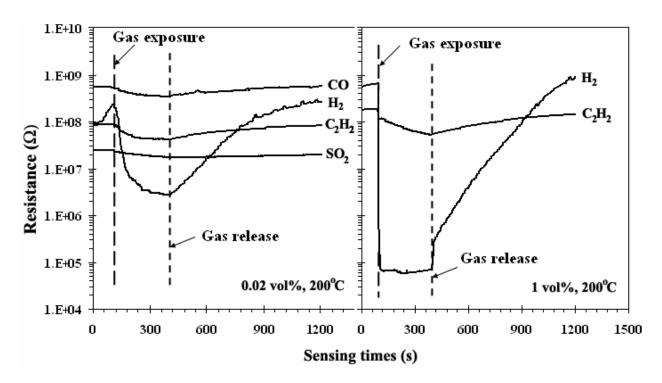
3.2.3.2 ผลการการตอบสนองต่อแก๊สไฮโดรเจน

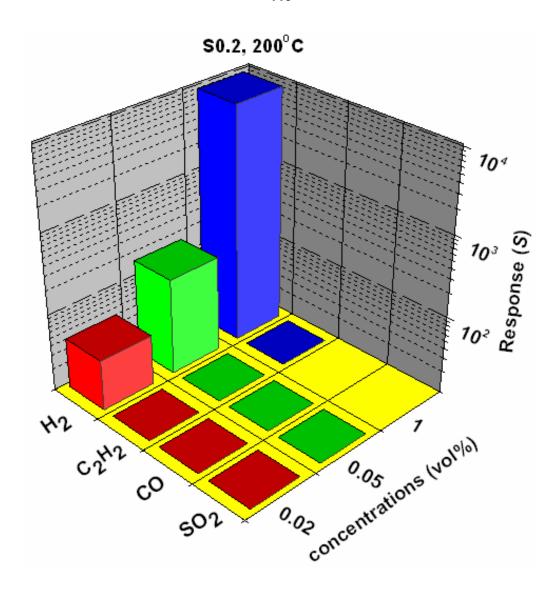
ในการทดสอบการตอบสนองของเซนเซอร์ภายใต้เงื่อนไขที่กล่าวมาแล้ว แสดงสภาพการตอบสนองดี ที่สุดอย่างเห็นได้ชัดที่อุณหภูมิ 200 องศาเซลเซียส ในเซนเซอร์ทุกตัว ดังรูป 3.62 (a) พบว่า เมื่อมีการเจือด้วย แพลเลเดียมลงไป สามารถปรับปรุงค่าการตอบสนองได้ดีขึ้นอย่างมาก และในปริมาณการเจือแพลเลเดียม ์ ต่ำสุดคือ 0.2 wt% แสดงค่าสภาพความไวสูงสุด (S=9,830) และเวลาในการตอบสนองเร็วที่สุด ประมาณ 2.3 วินาที ที่ความเข้มข้นของแก๊สไฮโดรเจนสูงสุด คือ 10,000 ppm จะเห็นว่าการตอบสนองต่อแก๊สของเซนเซอร์ ที่ทำจากทินไดออกไซด์บริสุทธิ์ และมีการเจือในปริมาณสูงขึ้นนั้น มีการตอบสนองที่ช้าลดลงไป โดยแสดง สภาพความไวประมาณ 1.68 และ เวลาในการตอบสนองประมาณ 178 วินาที สำหรับเซนเซอร์ที่ทำจากทินได ออกไซด์บริสุทธิ์, สภาพความไวประมาณ 817.6 และ เวลาในการตอบสนองประมาณ 10.1 วินาที สำหรับ เซนเซอร์ที่ทำจากทินไดออกไซด์เจือด้วยแพลเลเดียมปริมาณ 0.5 wt%, สภาพความไวประมาณ 27.6 และ เวลาในการตอบสนองประมาณ 30 วินาที สำหรับเซนเซอร์ที่ทำจากทินไดออกไซด์เจือด้วยแพลเลเดียมปริมาณ 1 wt% และ สภาพความไวประมาณ 1.07 และ เวลาในการตอบสนองประมาณ 190.2 วินาที สำหรับเซนเซอร์ ที่ทำจากทินไดออกไซด์เจือด้วยแพลเลเดียมปริมาณสูงสุดคือ 2 wt% มากไปกว่านั้น ในการศึกษาผลของ อุณหภูมิ พบว่า เมื่อเพิ่มอุณหภูมิในการทดลองการตอบสนองเซนเซอร์สูงขึ้นที่ 250, 300 และ 350 องศา เซลเซียส ดังรูป 3.62 (b) 3.62 (c) และ 3.62 (d) ตามลำดับนั้น จะแสดงสภาพความไวของเซนเซอร์ที่ด่ำกว่า อย่างเห็นได้ชัด และ เวลาในการตอบสนองที่ช้ากว่า อุณหภูมิ 200 องศาเซลเซียส ในปริมาณการเจือต่ำสุดที่ 0.2 wt% เท่ากัน โดยที่อุณหภูมิ 250 องศาเซลเซียส แสดงค่า สภาพความไวประมาณ 2,794 และ เวลาในการ ตอบสนองประมาณ 7.9 วินาที สำหรับเซนเซอร์ที่เจือด้วยแพลเลเดียมปริมาณ 0.2 wt%, สภาพความไว ประมาณ 3.6 และ เวลาในการตอบสนองประมาณ 21.5 วินาที สำหรับเซนเซอร์ทินไดออกไซด์บริสุทธิ์, สภาพ ความไวประมาณ 1092 และ เวลาในการตอบสนองประมาณ 7 วินาที สำหรับเซนเซอร์ที่ทำจากทินไดออกไซด์ เจือด้วยแพลเลเดียมปริมาณ 0.5 wt%, สภาพความไวประมาณ 90 และ เวลาในการตอบสนองประมาณ 12.5


วินาที สำหรับเซนเซอร์ที่ทำจากทินไดออกไซด์เจือด้วยแพลเลเดียมปริมาณ 1 wt% และ สภาพความไว ประมาณ 3 และ เวลาในการตอบสนองประมาณ 18.3 วินาที สำหรับเซนเซอร์ที่ทำจากทินไดออกไซด์เจือด้วย แพลเลเดียมปริมาณสูงสุดคือ 2 wt% สำหรับการตอบสนองที่อุณหภูมิ 300 องศาเซลเซียสนั้น แสดงค่า สภาพ ีความไวประมาณ 511 และ เวลาในการตอบสนองประมาณ 6.7 วินาที่ สำหรับเซนเซอร์ที่เจือด้วยแพลเลเดียม ปริมาณ 0.2 wt%, สภาพความไวประมาณ 7.7 และ เวลาในการตอบสนองประมาณ 14 วินาที สำหรับเซนเซอร์ ที่ทำจากทินไดออกไซด์บริสุทธิ์, สภาพความไวประมาณ 205 และ เวลาในการตอบสนองประมาณ 12.5 วินาที สำหรับเซนเซอร์ที่ทำจากทินไดออกไซด์เจือด้วยแพลเลเดียมปริมาณ 0.5 wt%, สภาพความไวประมาณ 174 และ เวลาในการตอบสนองประมาณ 13 วินาที สำหรับเซนเซอร์ที่ทำจากทินไดออกไซด์เจือด้วยแพลเลเดียม ปริมาณ 1 wt% และ สภาพความไวประมาณ 5.2 และ เวลาในการตอบสนองประมาณ 18.5 วินาที่ สำหรับ เซนเซอร์ที่ทำจากทินไดออกไซด์เจือด้วยแพลเลเดียมปริมาณสูงสุดคือ 2 wt% จากการวิเคราะห์การตอบสนอง ภายใต้อุณหภูมิ 300 องศาเซลเซียสนี้ ในช่วงความเข้มข้นต่ำกว่า 2,000 ppm การเจือด้วยแพลเลเดียมปริมาณ 2 wt% ยังคงสามารถพัฒนาคุณสมบัติการตอบสนองต่อแก๊สไฮโดรเจนได้ดีกว่าในกรณที่ไม่มีการเจือ แต่เมื่อ เพิ่มการทดสอบที่ความเข้มข้นช่วงสูงกว่า 2,000 พบว่า การเจือด้วยแพลเลเดียมปริมาณ 2 wt% ไม่สามารถ ปรับปรุงสภาพความไวของเซนเซอร์ให้สูงกว่าแรณไม่มีการเจือได้ และในอุณหภูมิการทดสอบสุดท้ายคือ 350 องศาเซลเซียส นั้นพบว่า สภาพความไวมีค่าประมาณ 218 และ เวลาในการตอบสนองประมาณ 6.5 วินาที สำหรับเซนเซอร์ที่เจือด้วยแพลเลเดียมปริมาณ 0.2 wt% ซึ่งมีค่าต่ำที่สุดเมื่อเทียบกับอุณหภูมิในการทดสอบที่ ้ต่ำกว่า, สภาพความไวประมาณ 16.3 และ เวลาในการตอบสนองประมาณ 14 วินาที สำหรับเซนเซอร์ที่ทำจาก ทินไดออกไซด์บริสุทธิ์ ซึ่งมีค่าการตอบสนองสูง และเร็วที่สุดเมื่อเทียบกับอุณหภูมิการทดสอบที่ต่ำกว่า, สภาพ ความไวประมาณ 162 และ เวลาในการตอบสนองประมาณ 7.2 วินาที สำหรับเซนเซอร์ที่ทำจากทินไดออกไซด์ เจือด้วยแพลเลเดียมปริมาณ 0.5 wt%, สภาพความไวประมาณ 42 และ เวลาในการตอบสนองประมาณ 10 วินาที สำหรับเซนเซอร์ที่ทำจากทินไดออกไซด์เจือด้วยแพลเลเดียมปริมาณ 1 wt% ประมาณ 4.8 และ เวลาในการตอบสนองประมาณ 10.6 วินาที สำหรับเซนเซอร์ที่ทำจากทินไดออกไซด์เจือ ้ด้วยแพลเลเดียมปริมาณสูงสุดคือ 2 wt% ในการวิเคราห์ความสัมพันธ์ระกว่าคุณสมบัติเซนเซอร์เช่น สภาพ ความไว แล้วเวลาในการตอบสนอง ต่อ การเปลี่ยนแปลงของอุณหภูมิการทดสอบนี้จะทำให้ทราบความสามาร และ ปริมาณที่เหมาะสมในการเจือแพลเลเดียมลงไปในทินไดออกไซด์ ซึ่งพบว่า แพลเลเดียมสามารถปรับปรุง สภาพความไวให้สูงขึ้น เป้นอย่างมากเมื่อเทียบกับทินไดออกไซด์บริสุทธิ์ ซึ่งมีการตอบสนองที่ต่ำกว่ามาก อีก ทั้งยังช่วยลดอุณหภูมิในการตอบสนองให้ต่ำลง ซึ่งมีความใกล้เคียงกับการนำเซนเซอร์ไปใช้ได้จริง ความสามารถขอแพลเลเดียมในริมาณการเจือที่ต่ำนั้น สามารถอธิบายได้จากหลักการให้ความร้อนแก่เซนเซอร์ ้ เนื่องจากเมื่อมีการทดสอบที่อุณหภูมิต่ำกว่า คือ 200 องศาเซลเซียสนั้น จะเห็นว่า เมื่อมีการเจือแพลเลเดียมใน ปริมาณสูงสุดคือ 0.2 wt% นั้น ทำให้ค่าสภาพความไวในการตอบสนองได้สูงสุดและจะลดลงอย่างชัดเจนเมื่อมี ปริมาณการเจือที่สูงขึ้น ถึง 2 wt% ทั้งนี้เนื่องจาก อนุภาคแพลเลเดียมยังคงมีการกระจายตัวได้ดีบนพื้นผิวของ ทินไดออกไซด์ อีกทั้งอนุภาคแพลเลเดียมยังคงไม่รวมตัวกันเป็นก้อนหยาบมากขึ้น เนื่องจากอุณหภูมิยังไม่สูง พอที่จะเกิดการรวมตัวกันได้ อนุภาคจึงยังไม่เพิ่มขนาดมากเกินไป แต่เมื่อมีการทดสอบเซนเซอร์ที่อุณหภูมิ ัสูงขึ้นคือ 250, 300 และ 350 องศาเซลเซียสนั้น จะพบว่า เมื่อมีการเจือในปริมาณมากที่สุดกลับมีผลของการ

ตอบสนองต่ำลง เนื่องจากว่า การกระจายตัวของอนุภาคแพลเลเดียมนั้น เกิดการรวมกลุ่มกันเป็นก้อน ทำให้ อนุภาคแพลเลเดียมมีขนาดที่ใหญ่ขึ้น ซึ่งทำให้ความสามารถในการตอบสนองลดลงอย่างเห็นได้ชัดเมื่อเทียบ กับเซนเซอร์ที่มีการเจือด้วยแพลเลเดียมในปริมาณที่น้อยกว่า เนื่องจากปฏิกิริยาการตอบสนองต่อแก๊สใด ๆ จะ เกิดขึ้นบริเวณพื้นผิวเป็นบริเวณแรก ดังนั้น อนุภาคที่มีขนาดเล็กกว่าจึงมีพื้นผิวสัมผัสจำเพาะที่มีค่าสูงกว่า ดังนั้นจึงมีการรับปริมาณโมเลกุลของแก๊สได้มากกว่า ส่งผลให้เกิดปฏิกิริยาในการตอบสนองได้มากกว่านั่นเอง มากไปกว่านั้น ในการเจือด้วยแพลเลเดียม ซึ่งถือว่าเป็นสารเจือที่เป็นตัวเร่งปฏิกิริยาชั้นดี และสามารถ เกิดปฏิกิริยาเฉพาะกลุ่มฟังก์ชันของแก๊สไฮโดรเจนที่อุณหภูมิต่ำได้เป็นอย่างดี ส่งผลให้เพิ่มความสามารถและ ความรวดเร็วในการตอบสนองต่อแก๊สไฮโดรเจนได้ดี

รูป 3.62 กราฟความสัมพันธ์ระหว่างสภาพความไวในการตอบสนองและเวลาในการตอบสนองของเซนเซอร์ที่ เตรียมได้จากอนุภาคนาโนทินไดออกไซด์บริสุทธิ์ และเจือด้วยแพลเลเดียม ในปริมาณ 0.2-2 wt% ภายใต้ สภาวะการทดสอบต่อแก๊สไฮโดรเจนในอากาศที่อุณหภูมิ (a) 200, (b) 250, (c) 300 และ (c) 350 องศา เซลเซียส

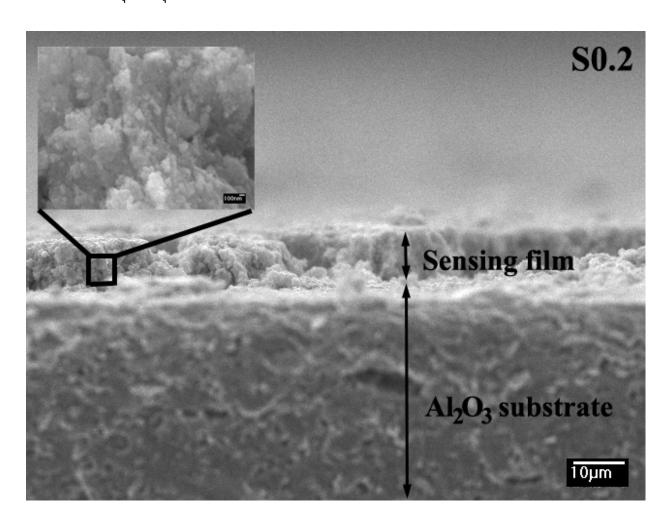

การแสดงความสามารถในการตอบสนองต่อแก๊สนั้น สามารถแสดงตัวอย่างการเปลี่ยนแปลงของความ ต้านทานที่อุณหภูมิต่ำสุดของการทดสอบที่ 200 องศาเซลเซียส ซึ่งเป็นอุณหภูมิในการตอบสนองได้ดีที่สุดของ เซนเซอรีที่มีการเจือด้วยแพลเลเดียมปริมาณ 0.2 wt% พิจารณาดังรูป 3.63 โดยที่ความแตกต่างของการ เปลี่ยนแปลงความต้านทานเมื่อมีค่ามาก ก็จะส่งผลให้เซนเซอร์มีสภาพความไวที่มากเช่นกัน จากรูปแบบการ เปลี่ยนแปลงความต้านทาน พบว่า มีความสอดคล้องกับค่าสภาพความไวสูงสุดที่อุณหภุมิต่ำสุดคือ 200 องศา เซลเซียส เนื่องจากมีการลดลงของค่าความต้านทานมากที่สุด มากไปกว่านั้นพบว่า เมื่อมีการเจือด้วยแพลตินัม ที่ปริมาณต่ำที่สุดคือ 0.2 wt% สามารถเพิ่มการเปลี่ยนแปลงความต้านทานของเซนเซอร์ได้มากกว่าในกรณีที่ไม่ มีการเจือด้วยแพลตินัมลงไป อีกทั้ง เมื่อมีการทดสอบที่ค่าความเข้มข้นของแก๊สสูงมากขึ้น ก็ส่งผลให้ค่าความ ด้านทานมีการเปลี่ยนแปลงมากขึ้น ในลักษณะเชิงเส้นอย่างมีนัยสำคัญอีกด้วย


รูป 3.63 การเปลี่ยนแปลงความต้านทานของเซนเซอร์ทินไดออกไซด์บริสุทธิ์ และ เจือด้วยแพลเลเดียมปริมาณ ต่ำสุด 0.2 wt% รูปแบบทดสอบไปข้างหน้า (forward cycle) ที่ตอบสนองต่อแก๊สไฮโดรเจนที่ค่าความเข้มข้น ช่วง 200-10,000 ppm ภายใต้อุณหภูมิการทดสอบต่ำสุดคือ 200 องศาเซลเซียส

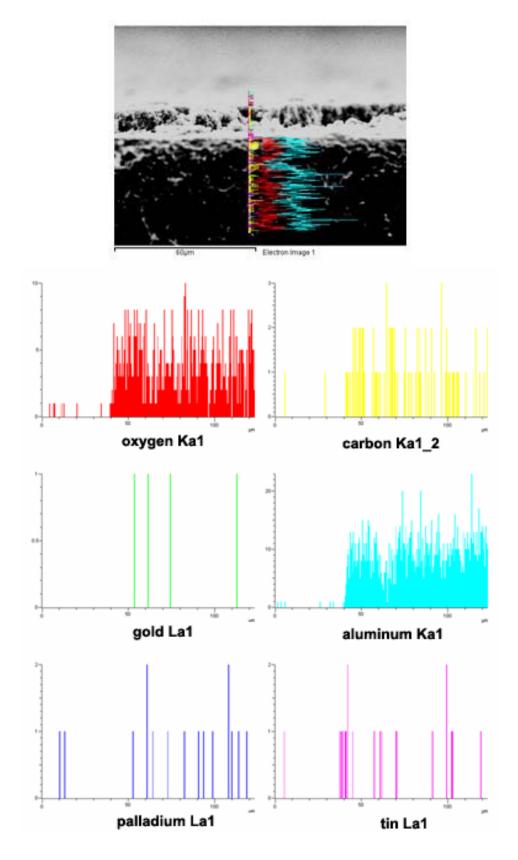
3.2.3.3 การคัดสรรจำเพาะต่อแก๊สสภาวะแวดล้อม

จากการวิเคราะห์ความสามารถของเซนเซอร์ในรูปแบบของการคัดสรรจำเพาะนั้น ได้มีการวิเคราะห์ ความสามารถในการตรวจจับแก๊สทั้งหมด 4 ชนิด ได้แก่ คาร์บอมอนอกไซด์ความเข้มข้น 200 ppm, ซัลเฟอร์ ไดออกไซด์ความเข้มข้น 200 ppm, อะเซทิลีน และ ไฮโดรเจนความเข้มข้น 2 ค่า คือ 200 ppm และ 10,000 ppm ภายใต้อุณหภูมิการทดสอบต่ำสุดของการทดลอง คือ 200 องศาเซลเซียส ในการวิเคราห์จะพิจารณาจาก รูปแบบการเปลี่ยนแปลงของค่าความต้านทานเมื่อเกิดปฏิกิริยาต่อแก๊สไฮโดรเจน พิจารณาดังรูป 3.64 พบว่าที่ ความเข้มข้น 200 ppm การเปลี่ยนแปลงความต้านทานของเซนเซอร์ต่อแก๊สไฮโดรเจนมีค่าสูงสุดเมื่อเทียบกับ แก๊สอีก 3 ประเภท ได้แก่ คาร์บอนมอนอกไซด์, ซัลเฟอร์ไดออกไซด์ และ อะเซทิลีน ซึ่งมีค่าการเปลี่ยนแปลง ความต้านทานต่ำมาก อาจถือได้ว่าไม่มีการตอบสนองเลย ส่งผลให้ค่าสภาพความไวของเซนเซอร์มีค่าสูงกว่า อย่างเห็นได้ชัด และเมื่อทำการเปรียบเทียบกับแก๊สกลุ่มเดียวกันคือแก๊สติดไฟได้ คือ อะเซทิลีนที่ความเข้มข้น แก๊สมากขึ้นที่ 10,000 ppm พบว่า การตอบสนองของเซทิลีนยังคงตอบสนองต่ำมากเช่นเดิม เมื่อเทียบกับการ ตอบสนองต่อแก๊สไฮโดรเจนซึ่งมีค่าสูงมากขึ้นอย่างเห็นได้ชัด โดยสัมพันธ์กันอย่างมีนัยกับการเปลี่ยนแปลงค่า ความต้านทานที่มากกว่า ดังนั้น การคัดสรรจำเพาะของเซนเซอร์ทินไดออกไซด์เจือด้วยแพลเลเดียมปริมาณ 0.2 wt% ต่อแก๊สไฮโดรเจนมีการแสดงค่าที่เหมาะสมที่สุด ที่จะนำไปประยุกต์ใช้ในการตรวจจับการปะปนของ แก๊สในบริเวณที่มีแก๊สมากกว่า 1 ชนิดขึ้นไป ซึ่งถ้าในแก๊สเหล่านั้นมีไฮโดรเจนปะปนอยู่ด้วย การตรวจจับของ แก๊สไฮโดรเจนจากเซนเซอร์ประเภทนี้ก็สามารถตรวจจับได้ตัวยความสภาพความไวที่สูง และ เวลาในการ ตรวจจับที่เร็วในระดับวินาที พิจารณาจากกราฟแท่งฮิสโทแกรมดังรูป 3.65 ความสัมพันธ์ของค่าสภาพความไวของเซนเซอร์ต่อแก๊สทดสอบ 4 ชนิด ที่ความเข้มข้นแก๊สวิเคราะห์ 3 ค่า ได้แก่ 200 ppm (0.02 vol%), 500 ppm (0.05 vol%) และ 10,000 ppm (1 vol%) ซึ่งวิเคราะห์ผลได้จากการเปลี่ยนแปลงความต้านทานในรูป 3.59 จะเห็นได้อย่างชัดเจนว่า เซนเซอร์ซนิดนี้มีความเหมาะสมอย่างมากในการตรวจจับแก๊สไฮโดรเจนที่ความ เข้มข้นสูง เมื่อเทียบกับแก๊สประเภทอื่นที่มีการตอบสนองที่ต่ำมาก

รูป 3.64 การเปลี่ยนแปลงความต้านทานของการคัดสรรจำเพาะของเซนเซอร์ทินไดออกไซด์เจือด้วย แพลเลเดียมปริมาณต่ำสุด 0.2 wt% ตอบสนองต่อแก๊สทดสอบ 4 ชนิด ได้แก่ ไฮโดรเจน, อะเซทิลีน, คาร์บอ มอนอกไซด์ และ ซัลเฟอร์ไดออกไซด์ ที่ค่าความเข้มข้น 200 ppm และ 10,000 ppm ภายใต้อุณหภูมิการ ทดสอบต่ำสุดคือ 200 องศาเซลเซียส



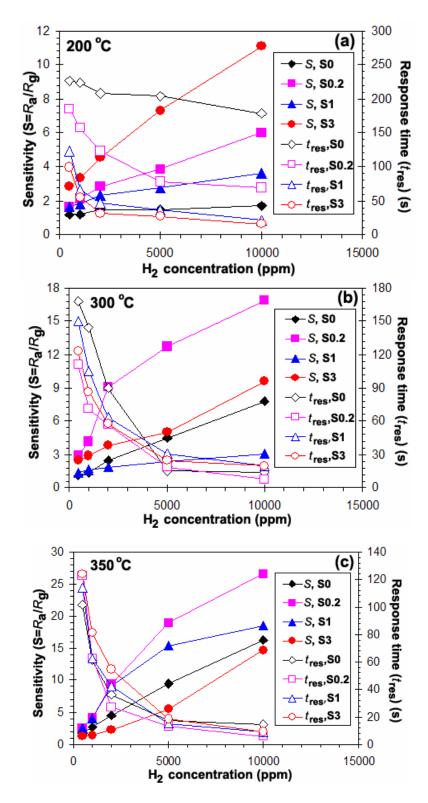
รูป 3.65 กราฟฮิสโทแกรมของการคัดสรรจำเพาะรูปแบบสภาพความไวของเซนเซอร์ทินไดออกไซด์เจือด้วย แพลเลเดียมปริมาณต่ำสุด 0.2 wt% ตอบสนองต่อแก๊สทดสอบ 4 ชนิด ได้แก่ ไฮโดรเจน, อะเซทิลีน, คาร์บอ มอนอกไซด์ และ ซัลเฟอร์ไดออกไซด์ ที่ค่าความเข้มข้น 200 ppm, 500 ppm และ 10,000 ppm ภายใต้ อุณหภูมิการทดสอบต่ำสุดคือ 200 องศาเซลเซียส


3.2.3.4 สัณฐานวิทยาของเซนเซอร์ภายหลังการทดสอบเซนเซอร์

องค์ประกอบของเฟสที่ต่างกัน, สัณฐานวิทยาของฟิล์มตอบสนอง และ โครงสร้างภายหลังการทดสอบ เซนเซอร์ต่อแก๊สประเภทต่าง ๆ สามารถวิเคราะห์ได้ดังรูป 3.66 ซึ่งแสดงถึงภาพถ่ายภาคตัดขวางของเซนเซอร์ ภายหลังการทดสอบการตอบสนอง พบว่า สามารถวิเคราะห์โครงสร้างแน่นตัวระดับไมครอนของซับสเตรทชนิด อะลูมินาความหนาของฟิล์มที่เตรียมได้ ภายหลังการทดสอบ สามารถวิเคราะห์ความหนาของฟิล์มได้ประมาณ

10 โมโครเมตร ซึ่งมีลักษณะที่ค่อนข้างแน่นตัวและมีรูพรุน ขนาดอนุภาคมีดารเติบโตขึ้นเล็กน้อย (ภาพแทรก) เนื่องจากเป็นการทดสอบภายใต้อุณหภูมิสูงเป็นระยะเวลานาน มากไปกว่านั้น ยังมีการวิเคราะห์องค์ประกอบ ของธาตุทั้งหมดในการเตรียมเซนเซอร์โดยการกระจายตัวของรังสีเอกซ์ชนิดแบบเส้น แสดงดังรูป 3.67 ของ ตัวอย่างเซนเซอร์ที่มีการตอบสนองได้ดีที่สุด คือ เซนเซอร์ที่มีการเจือด้วยแพลเลเดียมในปริมาณ 0.2 wt% พบว่าองค์ประกอบของธาตุทุกตัวจะพบได้จากการวิเคราะห์โดยเทคนิคนี้ ไม่ว่าจะเป็นธาตุที่ประกอบกันเป็น ชับสเตรทและธาตุของอนุภาคนาโนที่เตรียมได้จากเทคนิคเฟลมสเปรย์ไพโรลิซิสนั่นเอง

รูป 3.66 ภาพถ่าย SEM ของภาคตัดขวางรอยต่อระหว่างซับสเตรทชนิดอะลูมินา และ ความหนาของฟิล์ม ตอบสนองชนิดทินไดออกไซด์เจือด้วยแพลเลเดียมปริมาณ 0.2 wt% มีค่าประมาณ 10 โมโครเมตร ซึ่งมี ลักษณะที่ค่อนข้างแน่นตัวและมีรูพรุน ภาพแทรกแสดงถึงขนาดและสัณฐานวิทยาของอนุภาคที่เปลี่ยนไป ภายหลังจากการเตรียมเซนเซอร์ และ ทดสอบการตอบสนองต่อแก๊สประเภทต่าง ๆ

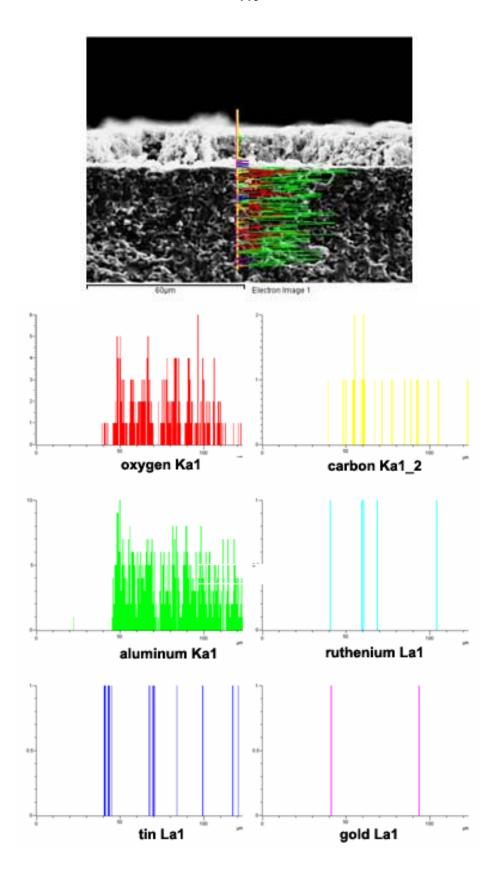


รูป 3.67 องค์ประกอบของชาตุทั้งหมดในการเตรียมเซนเซอร์โดยการกระจายตัวของรังสีเอกซ์ชนิดแบบเส้น ของตัวอย่างเซนเซอร์ที่มีการตอบสนองได้ดีที่สุด คือ เซนเซอร์ที่มีการเจือด้วยแพลตินัมในปริมาณ 0.2 wt%

3.2.4 คุณสมบัติการตอบสนองต่อแก๊สสภาวะแวดล้อมของเซนเซอร์ทินไดออกไซด์บริสุทธิ์เจือ ด้วยรูติเนียม (Ru)

3.2.4.1 ผลการวิเคราะห์การตอบสนองต่อแก๊สไฮโดรเจน

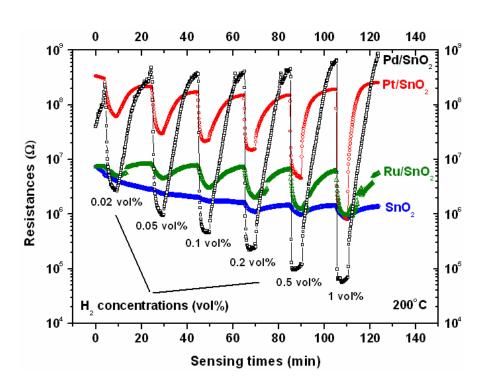
ในการทดสอบการตอบสนองของเซนเซอร์ ได้ทำการทดสอบกับแก๊สไฮโดรเจนที่ความเข้มข้นสูงในช่วง 500-10000 ppm โดยใช้เซนเซอร์ที่เตรียมจากอนุภาคนาโนทินไดออกไซด์บริสุทธิ์ และ เจือด้วยรูติเนียมใน ปริมาณ 0.2, 1 และ 3 wt% ภายใต้สภาวะอากาศ ที่อุณหภูมิ ที่แตกต่างกัน คือ 200, 300, 350 องศาเซลเซียส พบว่า สภาพการตอบสนองดีที่สุดที่อุณหภูมิ 350 องศาเซลเซียส ในเซนเซอร์ทุกตัว ดังรูป 3.68 (a) เป็นการ ทดสอบเซนเซอร์ที่อุณหภูมิ 200 องศาเซลเซียส พบว่าเมื่อมีการเจือรูติเนียมลงไป สามารถปรับปรุงค่าการ ตอบสนองได้ดีขึ้น และในปริมาณการเจือรูติเนียมสูงที่สุดคือ 3 wt% แสดงค่าสภาพความไวสูงสุด (S=8.6) และ เวลาในการตอบสนองเร็วที่สุด ประมาณ 16 วินาที ที่ความเข้มข้นของแก๊สไฮโดรเจนสูงสุด คือ 10000 ppm จะ เห็นว่าการตอบสนองต่อแก๊สของเซนเซอร์ที่ทำจากทินไดออกไซด์บริสุทธิ์ และมีการเจือในปริมาณที่น้อย คือ 0.2 และ 1 wt% นั้น มีการตอบสนองที่ช้ามากที่อุณหภูมิ 200 องศาเซลเซียส นี้ ซึ่งมีเวลาในการตอบสนอง ประมาณ 178, 70 และ 22 วินาที ตามลำดับ ในทางตรงกันข้ามกัน พบว่า อุณหภูมิในการทดลองที่ 300 และ 350 องศาเซลเซียส ดังรูป 3.68 (b) และ 3.68 (c) ตามลำดับนั้น จะแสดงสภาพความไวของเซนเซอร์ที่สูงกว่า และ เวลาในการตอบสนองที่ดีกว่า อุณหภูมิ 200 องศาเซลเซียส ที่อุณหภูมิ 350 องศาเซลเซียสนั้น พบว่า เมื่อ มีการเจือรูติเนียมลงไปในปริมาณ 0.2 wt% จะแสดงผลของการตอบสนองต่อแก๊สไฮโดรเจนได้ไว และ เร็วกว่า เมื่อมีการเจือรูติเนียมในปริมาณ 1 และ 3 wt% อย่างเห็นได้ชัด ค่าสภาพความไวของเซนเซอร์ที่เจือรูติเนียมใน ปริมาณ 0.2 wt% นั้น มีค่าประมาณ 27 และเวลาในการตอบสนองที่รวดเร็วมากขึ้น คือ 6 วินาที ที่ความเข้มข้น ของแก๊สไฮโดรเจนสูงสุดที่ 10000 ppm จะเห็นได้อย่างชัดเจนเลยว่า เมื่อมีการเจือรูติเนียมลงไปในทินได ออกไซด์ พบว่า อุณหภูมิมีผลเป็นอย่างมากในการตอบสนองต่อแก๊สไฮโดรเจน และเมื่ออุณหภูมิเปลี่ยนปริมาณ การเจือก็มีผลเช่นเดียวกัน สามารถอธิบายได้จากหลักการให้ความร้อนแก่เซนเซอร์ เนื่องจากเมื่อมีการทดสอบ ที่อุณหภูมิต่ำกว่า คือ 200 องศาเซลเซียสนั้น จะเห็นว่า เมื่อมีการเจือรูติเนียมในปริมาณสูงสุดคือ 3 wt% นั้น ทำให้ค่สภาพความไวในการตอบสนองได้สูงสุด ทั้งนี้เนื่องจาก อนุภาครูติเนียมยังคงไม่รวมตัวกันเป็นก้อน หยาบมากขึ้น เนื่องจากอุณหภูมิยังไม่สูงพอที่จะเกิดการรวมตัวกันได้ อนุภาคจึงยังไม่เพิ่มขนาดมากเกินไป แต่ เมื่อมีการทดสอบเซนเซอร์ที่อุณหภมิสูงขึ้นคือ 300 และ 350 องศาเซลเซียสนั้น จะพบว่า เมื่อมีการเจือใน ปริมาณมากที่สุดกลับมีผลของการตอบสนองต่ำที่สุด เนื่องจากว่า การกระจายตัวของอนุภาค รูติเนียมนั้น เกิด การรวมกลุ่มกันเป็นก้อน ทำให้อนุภาครูติเนียมมีขนาดที่ใหญ่ขึ้น ซึ่งทำให้ความสามารถในการตอบสนองลดลง อย่างเห็นได้ชัดเมื่อเทียบกับเซนเซอร์ที่มีการเจือด้วยรูติเนียมในปริมาณที่น้อยกว่า


รูป 3.68 กราฟความสัมพันธ์ระหว่างสภาพความไวในการตอบสนองและเวลาในการตอบสนองของเซนเซอร์ที่ เตรียมได้จากอนุภาคนาโนทินไดออกไซด์บริสุทธิ์ (S0) และเจือด้วยรูติเนียม ในปริมาณ 0.2 wt%, 1 wt% และ 3 wt% (S0.2, S1 และ S3) ภายใต้สภาวะการทดสอบต่อแก๊สไฮโดรเจนในอากาศที่อุณหภูมิ (a) 200, (b) 300 และ (c) 350 องศาเซลเซียส

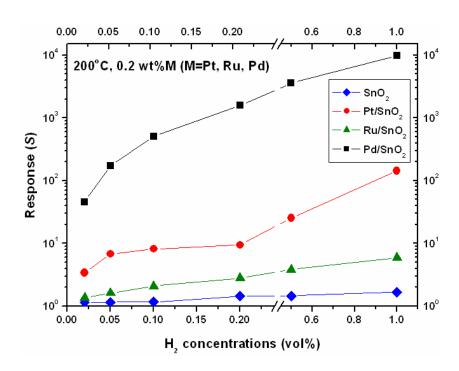
3.2.4.2 สัณฐานวิทยาของเซนเซอร์

โครงสร้างภายหลังการทดสอบเซนเซอร์ สามารถวิเคราะห์ได้ดังรูป 3.69 ซึ่งแสดงถึงภาพถ่าย ภาคตัดขวางของเซนเซอร์ภายหลังการทดสอบการตอบสนอง และ โครงสร้างแน่นตัวระดับไมครอนของซับสเต รทชนิดอะลูมินาที่เคลือบด้วยความหนาของฟิล์มทดสอบที่เตรียมได้ ภายหลังการทดสอบ สามารถวิเคราะห์ ความหนาของฟิล์มได้ประมาณ 10 โมโครเมตร ซึ่งมีลักษณะที่ค่อนข้างแน่นตัวและมีรูพรุนและรูป 3.70 เป็น การวิเคราะห์องค์ประกอบของธาตุทั้งหมด ในการเตรียมเซนเซอร์โดยการกระจายตัวของรังสีเอกซ์ชนิดแบบ เส้น ของตัวอย่างเซนเซอร์ที่มีการตอบสนองได้ดีที่สุด คือ เซนเซอร์ที่มีการเจือด้วยรูติเนียมในปริมาณ 0.2 wt% พบว่าองค์ประกอบของธาตุทุกตัวจะพบได้จากการวิเคราะห์โดยเทคนิคนี้ ไม่ว่าจะเป็นธาตุที่ประกอบกันเป็น ซับสเตรท และธาตุที่เตรียมได้จากเทคนิคเฟลมสเปรย์ไพโรลิซิสนั่นเอง

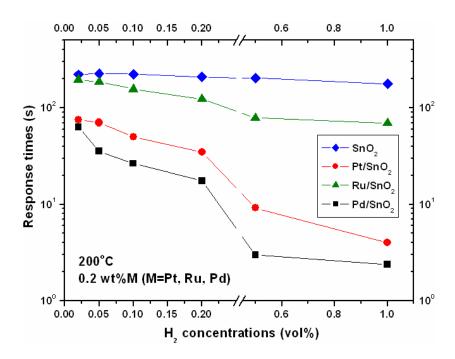
รูป 3.69 ภาพถ่าย SEM ของภาคตัดขวางรอยต่อระหว่างซับสเตรทชนิดอะลูมินา และ ความหนาของฟิล์ม ตอบสนองชนิดทินไดออกไซด์เจือด้วยรูติเนียมปริมาณ 0.2 wt% มีค่าประมาณ 10 โมโครเมตร ซึ่งมีลักษณะที่ ค่อนข้างแน่นตัวและมีรูพรุน ภาพแทรกแสดงถึงขนาดและสัณฐานวิทยาของอนุภาคที่เปลี่ยนไปภายหลังจาก การเตรียมเซนเซอร์ และ ทดสอบการตอบสนองต่อแก๊สประเภทต่าง ๆ



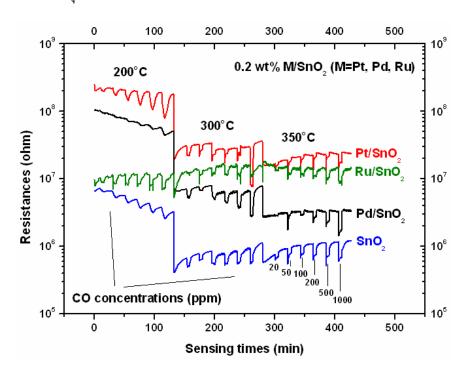
รูป 3.70 องค์ประกอบของชาตุทั้งหมดในการเตรียมเซนเซอร์โดยการกระจายตัวของรังสีเอกซ์ชนิดแบบเส้น ของตัวอย่างเซนเซอร์ที่มีการตอบสนองได้ดีที่สุด คือ เซนเซอร์ที่มีการเจือด้วยรูติเนียมในปริมาณ 0.2 wt%

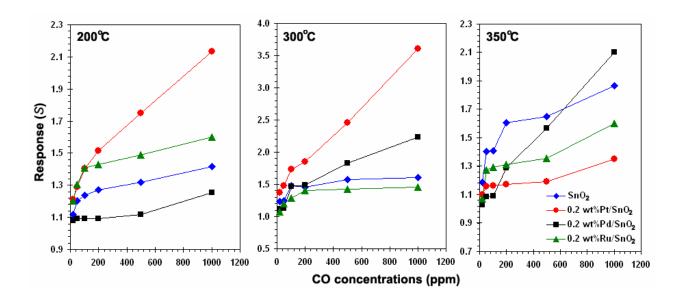

3.2.5. ประสิทธิภาพของเซนเซอร์

3.2.5.1 ประสิทธิภาพของเซนเซอร์ต่อแก๊สไฮโดรเจน


ในการศึกษาผลของการเจือด้วยโลหะมีตระกูลทั้งสามชนิดในงานวิจัยครั้งนี้ ได้แก่ แพลตินัม โดยตัวอย่างแก๊สที่ให้ความสนในการทดสอบการตอบสนองเพื่อทราบถึง รูติเนียม แพลเลเดียม ประสิทธิภาพของเซนเซอร์ ได้แก่ แก๊สไฮโดรเจน ที่อุณหภูมิการทดสอบแตกต่างกัน พบว่า ปริมาณการเจือ, อุณหภูมิการทดสอบเซนเซอร์ และ ชนิดของตัวเจือมีผลอย่างมากในการพัฒนาคุณสมบัติการตอบสนองของ เซนเซอร์ในส่วนของสภาพความไวในการตอบสนอง และ เวลาในตอบสนอง โดยที่ตัวเจือแต่ละชนิดมีผลอย่าง มากในส่วนของการพัฒนาคุณสมบัติดังกล่าวได้เป็นอย่างดี จากงานวิจัยนี้ ทำให้ทราบว่า ปริมาณการเจือที่ เหมาะสมมากที่สุดในการพัฒนาคุณสมบัติเซนเซอร์ต่อการตอบสนองแก๊สไฮโดรเจน ได้แก่ ปริมาณการเจือ 0.2 ของโลหะมีตระกูลทั้งสามชนิด แสดงผลการตอบสนองสูงที่สุดและมีค่าเพิ่มมากขึ้นเมื่อมีปริมาณแก๊ส ไฮโดรเจนเข้ามาทดสอบสูงขึ้นในแนวเชิงเส้น อีกทั้ง ยังพบว่า เซนเซอร์ที่มีการเจือด้วยแพลตินัม แพลเลเดียมนั้น จะมีแสดงการตอบสนองได้สูงสุดที่อุณหภูมิต่ำสุด คือ 200 องศาเซลเซียส แต่ในส่วนของ รูติ เนียมนั้น แสดงการตอบสนองได้สูงสุดที่อุณหภูมิในการทดสอบ คือ 350 องศาเซลเซียส ดังนั้น จึงมีการ เปรียบเทียบประสิทธิภาพของตัวเจือที่มีผลต่อการพัฒนาคุณสมบัติของเซนเซอร์ต่อแก๊สไฮโดรเจนได้สูงสุด ดัง รูป 3.74 โดยแสดงถึงการเปลี่ยนแปลงค่าความต้านทานของเซนเซอร์ที่มีการเจือด้วยโลหะมีตระกูลต่างชนิดกัน ภายใต้การเปรียบเทียบอุณหภูมิการทดสอบ และ ปริมาณการเจือที่เท่ากัน คือ 200 องศาเซลเซียส 0.2 wt% ตามลำดับ พบว่า เซนเซอร์ทินไดออกไซด์ที่มีการเจือด้วยแพลเลเดียมจะมีอัตราการเปลี่ยนแปลงความต้านทาน ที่สูงกว่าอย่างเห็นได้ชัดเจน เมื่อเปรียบเทียบการเปลี่ยนความต้านทานของเซนเซอร์ทินไดออกไซด์บริสุทธิ์ที่มี การตอบสนองต่ำมาก และ เซนเซอร์ที่มีการเจือด้วยแพลตินัม และ รูติเนียม ซึ่งแสดงผลการตอบสนองที่ลด ต่ำลงไป ตามลำดับ เห็นได้ว่า แพลเลเดียมมีคุณสมบัติที่ดีเยี่ยมในการตอบสนองต่อแก๊สไฮโดรเจนที่อุณหภูมิต่ำ อีกทั้งยังเป็นโลหะมีตระกูลที่มีความเหมาะสมมากที่สุดที่จะนำมาประยุกต์ใช้ในอุตสาหกรรมเซนเซอร์ ที่ต้องการ การตรวจวัดแก๊สไฮโดรเจนช่วงความเข้มข้นสูง จากการวิเคราะห์การเปลี่ยนแปลงความต้านทานดังรูป 3.71 สามารถวิเคราะห์ค่าปัจจัยทางเซนเซอร์ได้ ในส่วนของสภาพความไว แสดงได้ดังรูป 3.72 และ เวลาในการ ตอบสนอง แสดงได้ดังรูป 3.73 ซึ่งมีความแตกต่างกันอย่างเห็นได้ชัดเมื่อมีการเจือด้วยโลหะมีตระกูลต่างชนิด ้กัน จากการศึกษาสภาพความไวของเซนเซอร์ พบว่า มีการตอบสนองต่อแก๊สไฮโดรเจนได้สูงสุดเมื่อมีการเจือ ้ด้วยแพลเลเดียม อีกทั้ง ในส่วนของเวลาในการตอบสนองยังมีการตอบสนองที่รวดเร็วมากเมื่อเทียบกับในกรณี ที่ไม่มีการเจือ และ เจือด้วยแพลตินัม และ รูติเนียม ดังนั้น เซนเซอร์ที่ประดิษฐ์จากอนุภาคนาโนทินไดออกไซด์ เจือด้วยแพลเลเดียมในปริมาณต่ำสุด ถือได้ว่า เป็นเซนเซอร์ที่มีประสิทธิภาพมากที่สุดในการตรวจจับแก๊ส ไฮโดรเจนได้เป็นอย่างดี และ รวดเร็ว สำหรับงานวิจัยนี้

รูป 3.71 การเปลี่ยนแปลงความต้านทานของเซนเซอร์ทินไดออกไซด์เจือด้วยแพลตินัม, แพลเลเดียม และ รูติ เนียม ปริมาณต่ำสุด 0.2 wt% ตอบสนองต่อแก๊สไฮโดรเจนที่ค่าความเข้มข้น 200 ppm - 10,000 ppm ภายใต้ อุณหภูมิการทดสอบต่ำสุดคือ 200 องศาเซลเซียส

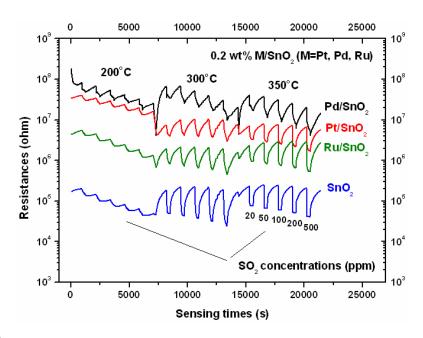

รู**ป 3.72** สภาพความไวของเซนเซอร์ทินไดออกไซด์เจือด้วยแพลตินัม, แพลเลเดียม และ รูติเนียม ปริมาณ ต่ำสุด 0.2 wt% ตอบสนองต่อแก๊สไฮโดรเจนที่ค่าความเข้มข้น 200 ppm - 10,000 ppm ภายใต้อุณหภูมิการ ทดสอบต่ำสุดคือ 200 องศาเซลเซียส


ร**ูป 3.73** เวลาในการตอบสนองของเซนเซอร์ทินไดออกไซด์เจือด้วยแพลตินัม, แพลเลเดียม และ รูติเนียม ปริมาณต่ำสุด 0.2 wt% ตอบสนองต่อแก๊สไฮโดรเจนที่ค่าความเข้มข้น 200 ppm - 10,000 ppm ภายใต้ อุณหภูมิการทดสอบต่ำสุดคือ 200 องศาเซลเซียส

3.2.5.2 ประสิทธิภาพของเซนเซอร์ต่อแก๊สคาร์บอนมอนอกไซด์

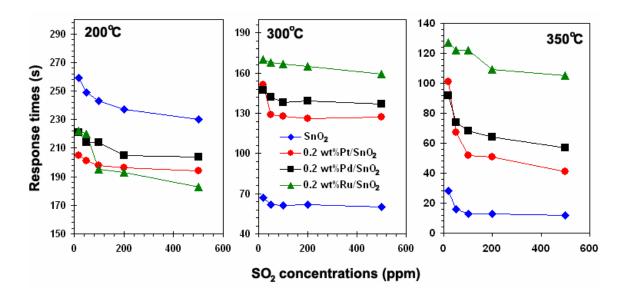
ในการวิเคราะห์ประสิทธิภาพของเซนเซอร์ที่ตอบสนองต่อแก๊สคาร์บอนมอนอกไซด์นั้น ได้ทำการ วิเคราะห์การตอบสนองของเซนเซอร์ตัวอย่างชนิดทินไดออกไซด์บริสุทธิ์ และ เจือด้วยโลหะมีตระกูลทั้งสาม ชนิด ได้แก่ แพลตินัม แพลเลเดียม และ รูติเนียม ในปริมาณ 0.2 wt% ภายใต้อุณหภูมิการทดสอบช่วง 200-ในการทดสอบการตอบสนองได้พิจารณาจากความต้านทานที่เปลี่ยนแปลงไป องศาเซลเซียส เซนเซอร์ทำการตอบสนองต่อแก๊สคาร์บอนมอนอกไซด์ ได้เกิดปฏิกิริยาบนพื้นผิวของวัสดุ เกิดการเปลี่ยนแปลง คุณสมบัติทางด้านไฟฟ้า จากงานวิจัย พบว่า เซนเซอร์มีการตอบสนองต่อแก๊สคาร์บอนมอนอกไซด์ในปริมาณ ้ต่ำ พิจารณาได้จากการเปลี่ยนค่าความต้านทานมีค่าน้อย เมื่อทำการทดสอบที่ความเข้มข้นของแก๊สในช่วง 20-1,000 ppm พบว่ายังคงมีการตอบสนองต่ำ พิจารณาดังรูป 3.74 แต่พบว่า เซนเซอร์ค่อนข้างมีความเสถียรคง ์ ตัว เนื่องจากมีการคืนกลับสู่สภาพความต้านทานเดิมได้คงตัวที่ตำแหน่งความต้านทานมาตรฐานเริ่มต้น เมื่อมี การทดสอบที่อุณหภูมิสูงมากขึ้น โดยรวมแล้วการตอบสนองจะมีค่าเพิ่มขึ้นเมื่ออุณหภูมิในการทดสอบเซนเซอร์ มีค่าสูงขึ้น แต่เมื่อมีการเจือโลหะมีตระกูลลงไปในปริมาณดังกล่าว พบว่า แนวโน้มส่วนใหญ่เห็นได้อย่างชัดเจน ว่าเซนเซอร์ไม่สามารถพัฒนาการตอบสนองต่อแก๊สให้เพิ่มขึ้นได้ เมื่อเทียบกับ การตอบสนองต่อแก๊สไฮโดรเจน ในส่วนของสภาพความไวของเซนเซอร์ แสดงดังรูป 3.75 พบว่า เมื่อมีการเจือด้วยแพลตินัมในปริมาณ 0.2 สามารถพัฒนาคุณสมบัติทางด้านเซนเซอร์ในส่วนของสภาพความไวในการตอบสนองได้สูงสุดที่ อุณหภูมิ 300 องศาเซลเซียส ซึ่งเป็นอุณหภูมิที่เหมาะสมที่สุดในการตอบสนองต่อแก๊สประเภทนี้ อีกทั้งยัง พบว่า เมื่อทดสอบที่อุณหภูมิสูงขึ้น เซนเซอร์ที่มีการเจือด้วยแพลเลเดียมมีแนวโน้มที่สามารถเพิ่มสภาพความ ไวของเซนเซอร์ได้ ดังนั้นจะเห็นได้อย่างชัดเจนเลยว่า ผลของการเจือด้วยโลหะมีตระกูลต่างชนิดกันจะสามารถ แสดงผลการตอบสนองที่ดีที่สุดภายใต้สภาวะอุณหภูมิที่ต่างกัน และเมื่อศึกษาผลการเจือด้วยรูติเนียมแล้ว การ ตอบสนองไม่มีความแตกต่างกันมาก การตอบสนองมีค่าค่อนข้างคงตัวในทุกอุณหภูมิทดสอบ ส่วนการพิจารณา เวลาในการตอบสนองนั้น แสดงดังรูป 3.76 พบว่า เมื่อไม่มีการเจือด้วยโลหะมีตระกูลใด ๆ เซนเซอร์ทินได ออกไซด์บริสุทธิ์จะมีแนวโน้มการตอบสนองช้าเฉลี่ยในช่วง 2-3 นาที ในทุกอุณหภูมิการทดสอบเซนเซอร์ และ ยังเห็นได้ว่า เมื่อมีการเจือด้วยแพลตินัมลงไปในเซนเซอร์จะทำให้ลดเวลาในตอบสนองอย่างเห็นได้ชัด มีการ ตอบสนองเร็วประมาณ 6 วินาที ภายใต้อุณหภูมิการทดสอบที่ 300 องศาเซลเซียส ซึ่งสอดคล้องกับอุณหภูมิ ทดสอบที่แสดงสภาพความไวของเซนเซอร์ได้สูงสุดด้วย สรุปได้ว่า ประสิทธิภาพของเซนเซอร์ทินไดออกไซด์ที่ เจือด้วยโลหะมีตระกูลทั้งสามชนิดนั้น ในส่วนของเวลาในการตอบสนองถือว่ายังมีประสิทธิภาพที่ดี เนื่องจากมี การตอบสนองเร็วต่อแก๊สคาร์บอนมอนอกไซด์ ซึ่งอาจจะมีการพัฒนาปัจจัยทางด้านนี้ได้ดีขึ้นกว่าเดิม จากการ เปลี่ยนปริมาณการเจือให้เหมาะสม ซึ่งอาจจะช่วยลดเวลาการตอบสนองให้เร็วมากขึ้น และเพิ่มประสิทธิภาพให้ เซนเซอร์ใด้ ในทางตรงกันข้าม สภาพความไว ยังถือว่า เซนเซอร์ยังคงมีประสิทธิภาพต่ำ เนื่องจากมีการ ตอบสนองได้น้อยไม่เกิน 10 อีกทั้งยังตอบสนองที่ค่าความเข้มข้นไม่ต่ำมาก ดังนั้นจึงควรมีการพัฒนาปัจจัย ทางด้านนี้เพิ่มมากขึ้นโดยการเปลี่ยนชนิดของตัวเจือ หรือ ปริมาณความเข้มข้นของตัวเจือให้มีความเหมาะสม มากยิ่งขึ้น ซึ่งจะทำให้เซนเซอร์มีประสิทธิภาพต่อการตอบสนองต่อแก๊สชนิดนี้ได้ดีมากขึ้นในเชิงของการนำไป ประยุกต์ใช้ได้จริงในระบบอุตสาหกรรมต่อไป

รูป 3.74 การเปลี่ยนแปลงความต้านทานของเซนเซอร์ทินไดออกไซด์เจือด้วยแพลตินัม, แพลเลเดียม และ รูติ เนียม ปริมาณต่ำสุด 0.2 wt% ตอบสนองต่อแก๊สคาร์บอนมอนอกไซด์ที่ค่าความเข้มข้น 20 ppm – 1,000 ppm ภายใต้อุณหภูมิการทดสอบช่วง 200-350 องศาเซลเซียส

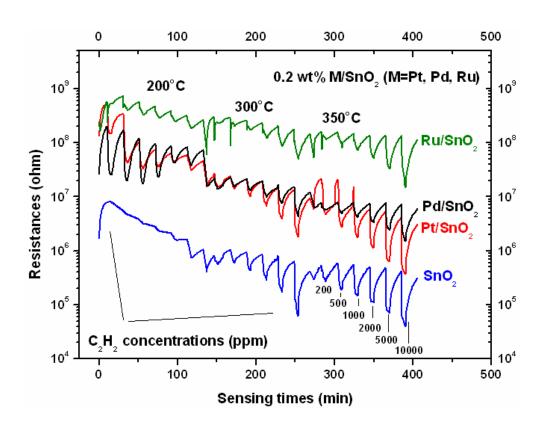

รู**ป 3.75** สภาพความไวของเซนเซอร์ทินไดออกไซด์เจือด้วยแพลตินัม, แพลเลเดียม และ รูติเนียม ปริมาณ ต่ำสุด 0.2 wt% ตอบสนองต่อแก๊สคาร์บอนมอนอกไซด์ที่ค่าความเข้มข้น 20 ppm – 1,000 ppm ภายใต้ อุณหภูมิการทดสอบช่วง 200-350 องศาเซลเซียส

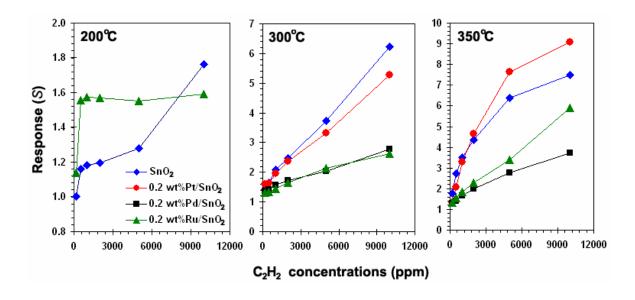

รูป 3.76 เวลาในการตอบสนองของเซนเซอร์ทินไดออกไซด์เจือด้วยแพลดินัม, แพลเลเดียม และ รูติเนียม ปริมาณต่ำสุด 0.2 wt% ตอบสนองต่อแก๊สคาร์บอนมอนอกไซด์ที่ค่าความเข้มข้น 20 ppm – 1,000 ppm ภายใต้อุณหภูมิการทดสอบช่วง 200-350 องศาเซลเซียส

3.2.5.3 ประสิทธิภาพของเซนเซอร์ต่อแก๊สซัลเฟอร์ใดออกไซด์

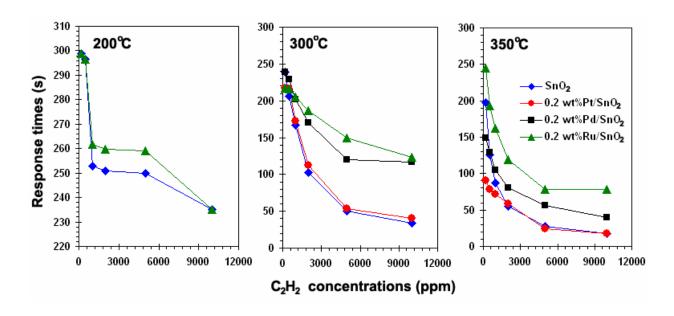

ในการวิเคราะห์ประสิทธิภาพของเซนเซอร์ที่ตอบสนองต่อแก๊สซัลเฟอร์ไดออกไซด์นั้น ได้ทำการ วิเคราะห์การตอบสนองของเซนเซอร์ตัวอย่างชนิดทินไดออกไซด์บริสุทธิ์ และ เจือด้วยโลหะมีตระกูลทั้งสาม ชนิด ได้แก่ แพลตินัม แพลเลเดียม และ รูติเนียม ในปริมาณ 0.2 wt% ภายใต้อุณหภูมิการทดสอบช่วง 200-350 องศาเซลเซียส ในการทดสอบการตอบสนอง ได้พิจารณาจากความต้านทานที่เปลี่ยนแปลงไปเช่นกัน เมื่อ เซนเซอร์ทำการตอบสนองต่อแก๊สคาร์บอนมอนอกไซด์ ได้เกิดปฏิกิริยาบนพื้นผิวของวัสดุ เกิดการเปลี่ยนแปลง คุณสมบัติทางด้านไฟฟ้า จากงานวิจัย พบว่า เซนเซอร์มีการตอบสนองต่อแก๊สแก๊สซัลเฟอร์ไดออกไซด์ใน ถึงแม้จะมีการเจือด้วยโลหะมีตระกูลทั้งสามชนิด พิจารณาได้จากการเปลี่ยนค่าความ ์ ต้านทานมีค่าน้อย เมื่อทำการทดสอบที่ความเข้มข้นของแก๊สในช่วง 20-500 ppm พบว่ายังคงมีการตอบสนอง ้ต่ำ พิจารณาดังรูป 3.77 เซนเซอร์ค่อนข้างมีความเสถียรคงตัวเมื่อทดสอบที่อุณหภูมิสูงมากขึ้น แต่การคืนกลับ สู่สภาพความต้านทานเดิมยังไม่คงตัวที่ตำแหน่งความต้านทานมาตรฐานเริ่มต้น เมื่อมีการทดสอบที่อุณหภูมิสูง มากขึ้น แต่เมื่อมีการเจือโลหะมีตระกูลลงไปในปริมาณดังกล่าว พบว่า แนวโน้มส่วนใหญ่เห็นได้อย่างชัดเจนว่า เซนเซอร์ไม่สามารถพัฒนาการตอบสนองต่อแก๊สให้เพิ่มขึ้นได้ เมื่อเทียบกับ การตอบสนองต่อแก๊สไฮโดรเจน อีกทั้งโลหะมีตระกูลที่เจือลงไปในในเซนเซอร์แสดงการตอบสนองต่ำกว่าในกรณีไม่มีการเจือ อย่างเห็นได้ชัด ใน ส่วนของสภาพความไวของเซนเซอร์ แสดงดังรูป 3.78 พบว่า เมื่อมีการเจือด้วยแพลตินัม แพลเลเดียม และ รูติ เนียม ในปริมาณ 0.2 wt% นั้น ต่างไม่สามารถพัฒนาคุณสมบัติทางด้านเซนเซอร์ในส่วนของสภาพความไวใน การตอบสนองเลย โดยที่เซนเซอร์ทินไดออกไซด์บริสุทธิ์ได้แสดงค่าการตอบสนองสูงสุดที่อุณหภูมิ 300 องศา เซลเซียส ซึ่งเป็นอุณหภูมิที่เหมาะสมที่สุดในการตอบสนองต่อแก๊สของเซนเซอร์ทินไดออกไซด์บริสุทธิ์ อีกทั้ง ยังพบว่า เมื่อทดสอบที่อุณหภูมิสูงขึ้น เซนเซอร์สภาพความไวลดด่ำลง ดังนั้นจะเห็นได้อย่างชัดเจนเลยว่า ผล ของการเจือด้วยโลหะมีตระกูลต่างชนิดกันไม่สามารถพัฒนาผลการตอบสนองให้ดีขึ้นได้ ภายใต้สภาวะอุณหภูมิ ที่ต่างกัน ส่วนการพิจารณาเวลาในการตอบสนองนั้น แสดงดังรูป 3.79 พบว่า ที่อุณหภูมิต่ำสุด โลหะมีตระกูล สามารถพัฒนาเวลาในกาตอบสนองให้ลดต่ำลงได้ แต่อย่างไรก็ตาม เมื่อเทียบกับสภาพความไวที่ตอบสนอง แล้ว ถือว่าเซนเซอร์ยังมีความไม่เหมาะสมที่อุณหภูมิ 200 องศาเซลเซียส แต่เมื่อมีการทดสอบที่อุณหภูมิสูงขึ้น ที่ 300 และ 350 องศาเซลเซียส พบว่า เซนเซอร์ทินไดออกไซด์มีการตอบสนองได้รวดเร็วที่สุด และเมื่อมีการ เจือด้วยโลหะมีตระกูลลงไปทั้งสามชนิด กลับไม่สามารถช่วยพัฒนาเวลาการตอบสนองให้เร็วขึ้นได้ เวลาในการ ตอบสนองที่รวดเร็วที่สุดมีค่าประมาณ 12 วินาที สำหรับเซนเซอร์ทินไดออกไซด์บริสุทธิ์ที่อุณหภูมิการทดสอบ สูงสุดคือ 350 องศาเซลเซียส และพฤติกรรมของเซนเซอร์มีความเสถียรมากกว่าอุณหภูมิต่ำ ประสิทธิภาพของเซนเซอร์ทินไดออกไซด์ที่เจือด้วยโลหะมีตระกูลทั้งสามชนิดนั้น ในส่วนของเวลาในการ ตอบสนองถือว่ายังมีประสิทธิภาพที่ไม่ดี เนื่องจากมีแนวโน้มที่ยังไม่สามารถพัฒนาการการตอบสนองให้รวดเร็ว ต่อแก๊สซัลเฟอร์ไดออกไซด์ ซึ่งอาจจะมีการพัฒนาปัจจัยทางด้านนี้ได้ดีขึ้นกว่าเดิม จากการเปลี่ยนปริมาณการ เจือให้เหมาะสม หรือ เปลี่ยนชนิดของตัวเจือ ซึ่งอาจจะช่วยลดเวลาการตอบสนองให้เร็วมากขึ้น ในทางเดียวกัน สภาพความไว ยังถือว่า เซนเซอร์ยังคงมีประสิทธิภาพต่ำ เนื่องจากมีการตอบสนองได้น้อยไม่เกิน 10 อีกทั้งยัง ตอบสนองที่ค่าความเข้มข้นอยู่ในพิสัยการวัดที่สูง ดังนั้นจึงควรมีการพัฒนาปัจจัยทางด้านนี้เพิ่มมากขึ้นโดยการ เปลี่ยนชนิดของตัวเจือ หรือ ปริมาณความเข้มข้นของตัวเจือให้มีความเหมาะสมมากยิ่งขึ้น เช่นกัน ซึ่งจะทำให้ เซนเซอร์มีประสิทธิภาพต่อการตอบสนองต่อแก๊สชนิดนี้ได้ดีมากขึ้น ในเชิงของการนำไปประยุกต์ใช้ได้จริงใน ระบบอุตสาหกรรมต่อไป

รูป 3.77 การเปลี่ยนแปลงความต้านทานของเซนเซอร์ทินไดออกไซด์เจือด้วยแพลตินัม, แพลเลเดียม และ รูติ เนียม ปริมาณต่ำสุด 0.2 wt% ตอบสนองต่อแก๊สซัลเฟอร์ไดออกไซด์ที่ค่าความเข้มข้น 20 ppm – 500 ppm ภายใต้อุณหภูมิการทดสอบช่วง 200-350 องศาเซลเซียส


รูป 3.78 สภาพความไวของเซนเซอร์ทินไดออกไซด์เจือด้วยแพลตินัม, แพลเลเดียม และ รูติเนียม ปริมาณ ต่ำสุด 0.2 wt% ตอบสนองต่อแก๊สซัลเฟอร์ไดออกไซด์ที่ค่าความเข้มขัน 20 ppm – 500 ppm ภายใต้อุณหภูมิ การทดสอบช่วง 200-350 องศาเซลเซียส

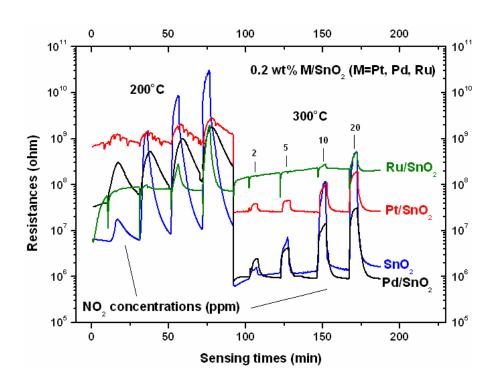

รู**ป 3.79** เวลาในการตอบสนองของเซนเซอร์ทินไดออกไซด์เจือด้วยแพลตินัม, แพลเลเดียม และ รูติเนียม ปริมาณต่ำสุด 0.2 wt% ตอบสนองต่อแก๊สซัลเฟอร์ไดออกไซด์ที่ค่าความเข้มข้น 20 ppm – 500 ppm ภายใต้ อุณหภูมิการทดสอบช่วง 200-350 องศาเซลเซียส

3.2.5.4 ประสิทธิภาพของเซนเซอร์ต่อแก๊สอะเซทิลีน

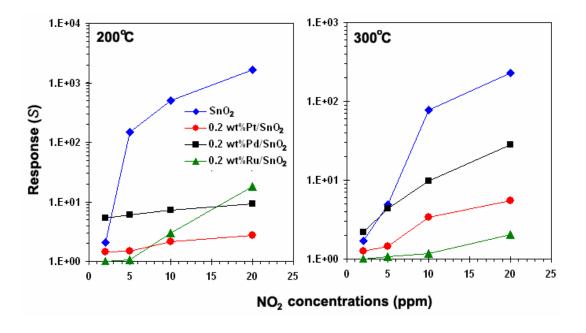

ในการวิเคราะห์ประสิทธิภาพของเซนเซอร์ที่ตอบสนองต่อแก๊สอะเซทิลีนนั้น ได้ทำการวิเคราะห์การ ตอบสนองของเซนเซอร์ตัวอย่างชนิดทินไดออกไซด์บริสุทธิ์ และ เจือด้วยโลหะมีตระกูลทั้งสามชนิด ได้แก่ แพล ์ ตินัม แพลเลเดียม และ รูติเนียม ในปริมาณ 0.2 wt% ภายใต้อุณหภูมิการทดสอบช่วง 200-350 องศาเซลเซียส ในการทดสอบการตอบสนอง ได้พิจารณาจากความต้านทานที่เปลี่ยนแปลงไปเช่นกัน เมื่อเซนเซอร์ทำการ ตอบสนองต่อแก๊สอะเซทิลีน ได้เกิดปฏิกิริยาบนพื้นผิวของวัสดุ เกิดการเปลี่ยนแปลงคุณสมบัติทางด้านไฟฟ้า จากงานวิจัย พบว่า เซนเซอร์มีการตอบสนองต่อแก๊สซัลเฟอร์ไดออกไซด์ในปริมาณต่ำเช่นกัน ถึงแม้จะมีการ ้เจือด้วยโลหะมีตระกูลทั้งสามชนิด พิจารณาได้จากการเปลี่ยนค่าความต้านทานมีค่าน้อย เมื่อทำการทดสอบที่ ความเข้มข้นของแก๊สในช่วง 200-10,000 ppm พบว่ายังคงมีการตอบสนองต่ำ พิจารณาดังรูป 3.80 เซนเซอร์ มีความเสถียรไม่คงตัวเมื่อทดสอบที่อุณหภูมิสูงทั้ง 3 ค่า การคืนกลับสู่สภาพความต้านทานเดิมยังไม่คงตัวที่ ้ตำแหน่งความต้านทานมาตรฐานเริ่มต้น เมื่อมีการทดสอบที่อุณหภูมิสูงมากขึ้น แต่เมื่อมีการเจือโลหะมีตระกูล ลงไปในปริมาณดังกล่าว พบว่า แนวโน้มส่วนใหญ่เห็นได้ว่าเซนเซอร์ไม่สามารถพัฒนาการตอบสนองต่อแก๊สให้ เพิ่มขึ้นได้อย่างชัดเจน เมื่อเทียบกับ การตอบสนองต่อแก๊สไฮโดรเจน ในหัวข้อที่ได้กล่าวมา อีกทั้งโลหะมี ตระกูลที่เจือลงไปในในเซนเซอร์โดยส่วนใหญ่แล้ว ได้แสดงการตอบสนองต่ำกว่าในกรณไม่มีการเจือ ที่อุณหภูมิ ์ ต่ำ อย่างเห็นได้ชัด ในส่วนของสภาพความไวของเซนเซอร์ แสดงดังรูป 3.81 พบว่า เมื่อมีการเจือด้วยแพล ์ ตินัม แพลเลเดียม และ รูติเนียม ในปริมาณ 0.2 wt% นั้น ต่างไม่สามารถพัฒนาคุณสมบัติทางด้านเซนเซอร์ใน ส่วนของสภาพความไวในการตอบสนองเลย ในกรณที่มีการทดสอบที่อุณหภูมิ 200 และ 300 องศาเซลเซียส โดยเฉพาะอย่างยิ่งการตอบสนองของเซนเซอร์ที่อุณหภูมิ 200 องศาเซลเซียส การตอบสนองของเซนเซอร์เมื่อ มีการเจือด้วยแพลตินัม และ แพเลเดียม รูปแบบการเปลี่ยนแปลงความต้านทานแสดงความไม่คงตัว เนื่องจาก เมื่อมีทดสอบภายใต้ปริมาณความเข้มข้นต่ำเซนเซอร์ต้องมีการตอบสนองที่ต่ำกว่า เมื่อมีปริมาณความเข้มข้น ของแก๊สที่สูงขึ้น แต่จะเห็นได้ว่า รูปแบบการตอบสนองมีค่าไม่คงตัว จึงไม่สามารถคำนวณหาปัจจัยทางด้าน การตอบสนองของเซนเซอร์ได้อย่างแม่นยำ ในส่วนของสภาพความไวและเวลาในการตอบสนอง แต่เมื่อมีการ ทดสอบที่อุณหภูมิสูงขึ้น รูปแบบการเปลี่ยนแปลงความต้านทานมีค่าคงตัวมากขึ้น ประพฤติตัวตามหลักการ เกิดปฏิกิริยาการตอบสนองต่อแก๊สได้ดีขึ้น ทำให้สามารถวิเคราะห์หาค่าสภาพความไวและเวลาในการ ตอบสนองได้แม่นยำและคงตัวมากขึ้น โดยที่เซนเซอร์ทินไดออกไซด์บริสุทธิ์ได้แสดงค่าการตอบสนองสูงสุดที่ อุณหภูมิ 350 องศาเซลเซียส และ เมื่อเจือด้วยแพลตินัมในปริมาณ 0.2 wt% ก็สามารถพัฒนาสภาพความไวให้ สูงมากขึ้นได้ที่อุณหภูมิ 350 องศาเซลเซียส เช่นกัน ในทางตรงกันข้าม เมื่อทำการทดสอบที่อุณหภูมิต่ำกว่า การเจือด้วยโลหะมีตระกูลไม่มีผลต่อการพัฒนาคุณสมบัติของเซนเซอร์ โดยเฉพาะการเจือด้วยแพลเลเดียม และ รูติเนียม นั้น เห็นได้ว่าทุกอุณหภูมิการตอบสนอง ไม่สามารถเพิ่มค่าสภาพความไวของเซนเซอร์ได้เลย ส่วนการพิจารณาเวลาในการตอบสนองนั้น แสดงดังรูป 3.82 พบว่า เซนเซอร์ยังมีการตอบสนองได้ซ้าทั้งใน กรณีที่มีและไม่มีการเจือด้วยโลหะมีตระกูล ภายใต้การทดสอบที่อุณหภูมิต่ำ คือ 200 และ 300 องศาเซลเซียส แต่เมื่อมีการทดสอบที่อุณหภูมิสูงขึ้นที่ 350 องศาเซลเซียส พบว่า เซนเซอร์ทินไดออกไซด์บริสุทธิ์ และ เซนเซอร์ทินไดออกไซด์ที่มีการเจือด้วยแพลตินัมปริมาณ 0.2 wt% นั้น ต่างมีการตอบสนองได้รวดเร็วที่สุด เหมือนกัน แสดงเวลาในการตอบสนองที่ค่าความเข้มข้นของแก๊สอะเซทิลีนสูงสุดที่ 10,000 ppm เท่ากับ 20 วินาที และเมื่อมีการเจือด้วยโลหะมีตระกูลอีก 2 ชนิด คือ แพลเลเดียม และ รูติเนียม ไม่สามารถช่วยพัฒนา เวลาการตอบสนองให้เร็วขึ้นได้ สรุปได้ว่า ประสิทธิภาพของเซนเซอร์ทินไดออกไซด์ที่เจือด้วยโลหะมีตระกูลทั้ง สามชนิดนั้น ในส่วนของเวลาในการตอบสนอง ถือว่ายังมีประสิทธิภาพที่ไม่ดี เนื่องจากมีแนวโน้มการใช้เวลาใน การตอบสนองยังไม่สามารถพัฒนาการการตอบสนองให้รวดเร็วต่อแก๊สซัลเฟอร์ไดออกไซด์ได้ดีเป็นพิเศษ เมื่อ เทียบกับเซนเซอร์ทินไดออกไซด์บริสุทธิ์ ซึ่งอาจจะมีการพัฒนาปัจจัยทางด้านนี้ได้ดีขึ้นกว่าเดิม จากการเปลี่ยน ปริมาณการเจือให้เหมาะสม หรือ เปลี่ยนชนิดของตัวเจือ ซึ่งอาจจะช่วยลดเวลาการตอบสนองให้เร็วมากขึ้น ในทางเดียวกัน สภาพความไว ยังถือว่า เซนเซอร์ยังคงมีประสิทธิภาพต่ำ เนื่องจากมีการตอบสนองได้น้อยไม่ ้ เกิน 10 คล้ายคลึงกับการตอบสนองต่อแก๊สซัลเฟอร์ใดออกไซด์ และ คาร์บอนมอนอกไซด์ อีกทั้งยังตอบสนอง ที่ค่าความเข้มข้นอยู่ในพิสัยการวัดที่สูงมากแล้ว แต่การตอบสนองยังคงต่ำมาก ดังนั้นจึงควรมีการพัฒนาปัจจัย ทางด้านนี้เพิ่มมากขึ้นโดยการเปลี่ยนชนิดของตัวเจือ หรือ ปริมาณความเข้มข้นของตัวเจือให้มีความเหมาะสม มากยิ่งขึ้น เช่นกัน ซึ่งจะทำให้เซนเซอร์มีประสิทธิภาพต่อการตอบสนองต่อแก๊สชนิดนี้ได้ดีมากขึ้นในเชิงของ การนำไปประยุกต์ใช้ได้จริง ในระบบการตวรจจับแก๊สติดไฟได้ ต่อไปในเชิงอุตสาหกรรม

รู**ป 3.80** การเปลี่ยนแปลงความต้านทานของเซนเซอร์ทินไดออกไซด์เจือด้วยแพลตินัม, แพลเลเดียม และ รูติ เนียม ปริมาณต่ำสุด 0.2 wt% ตอบสนองต่อแก๊สอะเซทิลีนที่ค่าความเข้มข้น 200 ppm – 10,000 ppm ภายใต้ อุณหภูมิการทดสอบช่วง 200-350 องศาเซลเซียส

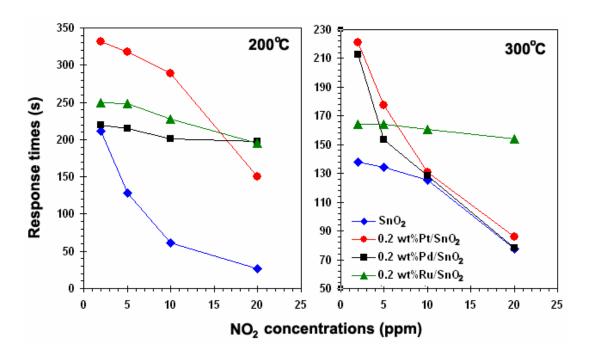
รู**ป 3.81** สภาพความไวของเซนเซอร์ทินไดออกไซด์เจือด้วยแพลตินัม, แพลเลเดียม และ รูติเนียม ปริมาณ ต่ำสุด 0.2 wt% ตอบสนองต่อแก๊สอะเซทิลีนที่ค่าความเข้มข้น 200 ppm – 10,000 ppm ภายใต้อุณหภูมิการ ทดสอบช่วง 200-350 องศาเซลเซียส



ร**ูป 3.82** เวลาในการตอบสนองของเซนเซอร์ทินไดออกไซด์เจือด้วยแพลตินัม, แพลเลเดียม และ รูติเนียม ปริมาณต่ำสุด 0.2 wt% ตอบสนองต่อแก๊สอะเซทิลีนที่ค่าความเข้มข้น 200 ppm – 10,000 ppm ภายใต้ อุณหภูมิการทดสอบช่วง 200-350 องศาเซลเซียส


3.2.5.5 ประสิทธิภาพของเซนเซอร์ต่อแก๊สไนโตรเจนไดออกไซด์

ในการวิเคราะห์ประสิทธิภาพของเซนเซอร์ที่ตอบสนองต่อแก๊สในโตรเจนไดออกไซด์นั้น ได้ทำการ วิเคราะห์การตอบสนองของเซนเซอร์ตัวอย่างชนิดทินไดออกไซด์บริสุทธิ์ และ เจือด้วยโลหะมีตระกูลทั้งสาม ชนิด ได้แก่ แพลตินัม แพลเลเดียม และ รูติเนียม ในปริมาณ 0.2 wt% ภายใต้อุณหภูมิการทดสอบ คือ 200 และ 300 องศาเซลเซียส ในการทดสอบการตอบสนอง ได้พิจารณาจากความต้านทานที่เปลี่ยนแปลงไปเช่นกัน เมื่อเซนเซอร์ทำการตอบสนองต่อแก๊สไนโตรเจนไดออกไซด์ ได้เกิดปฏิกิริยาบนพื้นผิวของวัสดุ โดยแก๊สในโตรเจนไดออกไซด์ถือไดว่าเป็นแก๊สเพียงชนิดเดียวใน เปลี่ยนแปลงคณสมบัติทางด้านไฟฟ้า งานวิจัยที่เป็นแก๊สทดสอบชนิดออกซิไดซ์ และ เป็นแก๊สพิษที่สำคัญในสภาวะแวดล้อมด้วยเช่นกัน จากงานวิจัย พบว่า เมื่อมีการทดสอบการตอบสนองค่าความเข้มข้นแก๊สในโตรเจนไดออกไซด์ต่ำ ในช่วง 2-20 ppm พบว่า เซนเซอร์ทินไดออกไซด์บริสุทธิ์มีการตอบสนองสูงมากภายใต้อุณหภูมิการทดสอบทั้งสองค่า กรุปแบบการเลปี่ยนแปลงค่าความต้านทานโดยมีพฤติกรรมการนำไฟฟ้าลดต่ำลง พิจารณาดังรูป 3.83 จึงทำให้ มีการเปลี่ยนแปลงในลักษณะความต้านทานที่เพิ่มขึ้นเมื่อมีการทดสอบต่อแก๊สไนโตรเจนไดออกไซด์ กว่านั้นพบว่า ถึงแม้จะมีการเจือด้วยโลหะมีตระกูลทั้งสามชนิด พบว่า ไม่สามารถเพิ่มประสิทธิภาพในการ ตอบสนองให้สูงมากขึ้นได้ พิจารณาได้จากการเปลี่ยนค่าความต้านทานมีค่าน้อยกว่าอย่างเห็นได้ชัดในแต่ละ อุณหภูมิการทดสอบ อีกหนึ่งลักษณะที่สังเกตได้คือเมื่อมีการทดสอบที่อุณหภูมิสูงมากขึ้น เซนเซอร์มีกาคืนกลับ สู่สภาพความเต้านทานเริ่มต้นได้เร็ว และ คงตัวมากกว่าที่อุณหภูมิต่ำหว่าคือ 200 องศาเซลเซียส ในพฤติกรรม ของเซนเซอร์ทินไดออกไซก์บริสุทธิ์ และมีการเจือด้วยโลหะมีตระกูลทั้งสามชนิดชนิด ในส่วนของสภาพความ


ไวของเซนเซอร์ แสดงดังรูป 3.84 พบว่า เมื่อมีการเจือด้วยแพลตินัม แพลเลเดียม และ รูติเนียม ในปริมาณ 0.2 wt% นั้น ต่างไม่สามารถพัฒนาคุณสมบัติทางด้านเซนเซอร์ในส่วนของสภาพความไวในการตอบสนองเลย ใน กรณีที่มีการทดสอบที่อุณหภูมิ 200 และ 300 องศาเซลเซียส การตอบสนองต่อแก๊สไนโตรเจนไดออกไซด์ของ เซนเซอร์ทินไดออกไซด์บริสุทธิ์มีค่าสูงสุดที่ค่าความเข้มข้นแก๊สสูงสุดคือ 20 ppm ประมาณ 1,640 ที่อุณหภูมิ การตอบสนอง 200 องศาเซลเซียส ในส่วนการตอบสนองของเซนเซอร์เมื่อมีการเจือด้วยแพลตินัม และ แพเล เดียม และ รูติเนียม แสดงค่าความไวที่ต่ำกว่ามาก อย่างเห็นได้ชัดเมื่อเปรียบเทียบกับในกรณีไม่มีการเจือ แนวโน้มของการเปลี่ยนแปลงสภาพความไวพบว่า มีค่าลดต่ำลงเมื่อมีการทดสอบที่อุณหภูมิสูงขึ้นในกรณี เซนเซอร์ทินไดออกไซด์บริสุทธิ์ และ มีแนวโน้มเพิ่มขึ้นเมื่อมีการทดสอบที่อุณหภูมิสูงขึ้น ในกรณีเซนเซอร์ที่มี การเจือด้วยโลหะมีตระกูล ส่วนการพิจารณาเวลาในการตอบสนองนั้น แสดงดังรูป 3.85 พบว่า เซนเซอร์ยังมี การตอบสนองได้ค่อนข้างช้า ถึงแม้จะมีสภาพความไวที่สูงมากก็ตาม ทั้งในกรณที่มีและไม่มีการเจือด้วยโลหะมี ตระกูล ภายใต้การทดสอบที่อุณหภูมิทั้งสองค่า เซนเซอร์ทินไดออกไซด์แสดงการตอบสนองได้รวดเร็วที่สุดที่ อุณหภูมิ 200 องศาเซลเซียส มีค่าประมาณ 26 วินาที แต่เมื่อมีการทดสอบที่อุณหภูมิสูงขึ้นที่ 350 องศา เซลเซียส พบว่า เซนเซอร์ทินไดออกไซด์บริสุทธิ์ และ เซนเซอร์ทินไดออกไซด์ที่มีการเจือด้วยแพลตินัม และ แพลเลเดียม ปริมาณ 0.2 wt% นั้น แสดงค่าเวลาในการตอบสนองใกล้เคียงกัน ดังนั้นในการเจือด้วยโลหะมี ตระกูลทั้ง 3 ชนิด คือ แพลตินัม, แพลเลเดียม และ รูติเนียม ต่างก็ไม่สามารถช่วยพัฒนาเวลาการตอบสนองให้ เร็วขึ้นได้ ซึ่งสอดคล้องกับค่าสภาพความไวอย่างสัมพันธ์กัน สรุปได้ว่า ประสิทธิภาพของเซนเซอร์ทินได ออกไซด์ที่เจือด้วยโลหะมีตระกูลทั้งสามชนิดนั้น ในส่วนของเวลาในการตอบสนองถือว่ายังมีประสิทธิภาพที่ไม่ดี เนื่องจากมีแนวโน้มการใช้เวลาในการตอบสนองนั้น ยังไม่สามารถพัฒนาการการตอบสนองให้รวดเร็วต่อแก๊ส ในโตรเจนไดออกไซด์ได้ดีเป็นพิเศษ เมื่อเทียบกับทินไดออกไซด์บริสุทธิ์ ซึ่งอาจจะมีการพัฒนาปัจจัยทางด้านนี้ ได้ดีขึ้นกว่าเดิม จากการเปลี่ยนปริมาณการเจือให้เหมาะสม หรือ เปลี่ยนชนิดของตัวเจือ ซึ่งอาจจะช่วยลดเวลา การตอบสนองให้เร็วมากขึ้น ในส่วนของ สภาพความไว ถือว่า เซนเซอร์มีประสิทธิภาพค่อนข้างสูง เนื่องจาก เมื่อมีการทดสอบในสภาวะความเข้มข้นต่ำมาก แต่ก็ยังคงมีการตอบสนองต่อแก๊สได้สูง แต่ควรมีการพัฒนา ้ปัจจัยทางด้านนี้เพิ่มมากขึ้นโดยการเปลี่ยนชนิดของตัวเจือ หรือ ปริมาณความเข้มข้นของตัวเจือให้มีความ เหมาะสมมากยิ่งขึ้น เพื่อช่วยในการปรับปรุงพฤติกรรมของเซนเซอร์ เช่น ความคงตัวของเซนเซอร์ที่อุณหภูมิ ปรับปรุงเวลาในการคืนกลับสู่สภาพเดิมให้รวดเร็วมากขึ้น ซึ่งจะทำให้เซนเซอร์มีประสิทธิภาพต่อการ ตอบสนองต่อแก๊สชนิดนี้ได้ดีมากขึ้นในเชิงของการนำไปประยุกต์ใช้ได้จริงในสภาวะแวดล้อมที่มีการไหลปะปน ของแก๊สพิษประเภทนี้ ในระบบการตวรจจับในเชิงอุตสาหกรรมต่อไป

ร**ูป 3.83** การเปลี่ยนแปลงความต้านทานของเซนเซอร์ทินไดออกไซด์เจือด้วยแพลตินัม, แพลเลเดียม และ รูติ เนียม ปริมาณต่ำสุด 0.2 wt% ตอบสนองต่อแก๊สไนโตรเจนไดออกไซด์ที่ค่าความเข้มข้น 2 ppm – 20 ppm ภายใต้อุณหภูมิการทดสอบคือ 200 และ 350 องศาเซลเซียส

รู**ป 3.84** สภาพความไวของเซนเซอร์ทินไดออกไซด์เจือด้วยแพลตินัม, แพลเลเดียม และ รูติเนียม ปริมาณ ต่ำสุด 0.2 wt% ตอบสนองต่อแก๊สไนโตรเจนไดออกไซด์ที่ค่าความเข้มข้น 2 ppm – 20 ppm ภายใต้อุณหภูมิ การทดสอบคือ 200 และ 350 องศาเซลเซียส

รูป 3.85 เวลาในการตอบสนองของเซนเซอร์ทินไดออกไซด์เจือด้วยแพลตินัม, แพลเลเดียม และ รูติเนียม ปริมาณต่ำสุด 0.2 wt% ตอบสนองต่อแก๊สไนโตรเจนไดออกไซด์ที่ค่าความเข้มข้น 2 ppm – 20 ppm ภายใต้ อุณหภูมิการทดสอบคือ 200 และ 350 องศาเซลเซียส

บทที่ 4

สรุปผลการทดลอง

4.1 การสังเคราะห์อนุภาคนาโนโดยวิธีเฟลมสเปรย์ไพโรลิซิส

จากการศึกษาถึงวิธีการสังเคราะห์, การหาลักษณะเฉพาะของอนุภาคนาโนทินไดออกไซด์บริสุทธิ์ และ เจือด้วยโลหะมีตระกูลทั้งหมด ได้แก่ แพลตินัม แพลเลเดียม และ รูติเนียม ในปริมาณในปริมาณการเจือที่ 0.2-3 wt% เพื่อนำไปใช้เป็นเซนเซอร์ในการตรวจจับแก๊สสภาวะแวดล้อมหลายชนิด พบว่า ได้ทำการสังเคราะห์ อนุภาคนาโนทินไดออกไซด์บริสุทธิ์และเจือด้วยโลหะมีตระกูลโดยวิธีเฟลมสเปรย์ไพโรลิซิส ซึ่งนับได้ว่าเป็นวิธีที่ ้มีข้อดีหลายประการ เป็นกระบวนการที่สามารถสังเคราะห์อนุภาคได้ในเวลาอันรวดเร็ว ในการเตรียมสารละลาย ตั้งต้นจะเตรียมที่ความเข้มขัน 0.5 โมลาร์ โดยใช้ ทินทูเอทิลเฮกซะโนเอท (Tin (II) ethylhexanoate) เป็นสาร ์ ตั้งต้นของตัวรองรับชนิดทินไดออกไซด์, แพลตินัมอะเซทิลอะซีโทเนต (Platinum (II) acetylacetonate) เป็น สารตั้งต้นสำหรับการสังเคราะห์การเจือด้วยแพลตินัม, แพลเลเดียมอะเซทิลอะซีโทเนต acetylacetonate) เป็นสารตั้งต้นสำหรับการสังเคราะห์การเจือด้วยแพลเลเดียม และ รูติเนียมอะเซทิลอะซีโท เนต (Ruthinium (II) acetylacetonate) เป็นสารตั้งต้นสำหรับการสังเคราะห์การเจือด้วยแพลเลเดียม โดยสาร ตั้งต้นที่ใช้ในการสังเคราะห์ทินไดออกไซด์จะอยู่ในรูปของเหลวหนืด และ สารตั้งต้นของสารเจือจะอยู่ในรูป ของแข็งทั้งหมด ดังนั้นจึงมีการมดสอบและเตรียมสารตั้งต้นให้เหมาะสมต่อการสังเคราะห์โดยทำการละลายใน ตัวทำละลาย 2 ชนิด คือ ไซลีน และ อะซิโตไนโตรท์ ในปริมาณที่เหมาะสม ในส่วนของการเจือด้วยแพลตินัม และรูติเนียมนั้นจะทำการละลายสารตั้งต้นโดยใช้ตัวทำละลายชนิดไซลีน สำหรับการเจือด้วยแพลเลเดียมได้ทำ การละลายสารตั้งต้นในตัวทำละลายผสมระหว่างไซลีนต่ออะซิโตไนไตรท์ด้วยอัตราส่วน 80 ต่อ 20 ร้อยละโดย ปริมาตร เพื่อสภาวะการละลายที่เหมาะสมที่สุดในการผสมเป็นเนื้อเดียวกันปราศจากตะกอน หรือ ความขุ่นของ สารละลายตั้งต้น จากนั้น สารละลายตั้งต้นถูกพ่นและเปลี่ยนสภาพจากสารละลายเฟสของเหลวเป็นผงละเอียด นาโนเฟสของแข็งได้ภายในขึ้นตอนเดียวโดยการควบคุมอุณหภูมิการสังเคราะห์ภายในเปลวไฟ กระบวนการและขั้นตอนของการก่อเกิดอนุภาค ในขั้นตอนสุดท้าย ผงละเอียดนาโนได้เกาะบนกระดาษกรอง สารตัวอย่างผงละเอียดนาโนทินไดออกไซด์บริสุทธิ์และเจือด้วยโลหะมีตระกูลในปริมาณ 0.2-3 wt% ทั้งหมดที่ สังเคราะห์ได้ ถูกนำไปตรวจสอบหาลักษณะเฉพาะโดยเทคนิคชั้นสูง ในขั้นตอนต่อไป

4.2 คุณสมบัติอนุภาคนาโน

การตรวจสอบลักษณะเฉพาะ ได้ทำการยืนยันเฟสที่สังเคราะห์ได้นั้น วิเคราะห์โดยการเลี้ยวเบนของ รังสีเอกซ์ พบว่าเป็นรูปแบบการเลี้ยวเบนรังสีเอกซ์ของทินไดออกไซด์ ซึ่งตรงกับข้อมูล JCPDS หมายเลข 77-447 และ ไม่พบเฟสของโลหะมีตระกูลทั้งสามชนิด เนื่องปริมาณที่เจือน้อยเกินไปจึงไม่สามารถตรวจสอบจาก การการเลี้ยวเบนของรังสีเอกซ์ได้ อีกทั้ง ขนาดของอนุภาคโลหะมีตระกูลที่ก่อตัวขึ้นในขั้นตอนสุดท้ายของการ สังเคราะห์มีขนาดที่เล็กกว่า 10 นาโนเมตร สามารถยืนยันจากผลงานที่มีมาก่อนอย่าสอดคล้องกัน ขนาดที่เล็ก

มากกว่า 10 นาโนเมตร ทำให้รูปแบบการเลี้ยวเบนของรังสีเอกซ์มีฐานของพีกเลี้ยวเบนที่กว่างมาก จนไม่ สามารถสังเกตพีคที่เกิดขึ้น จากรูปแบบการเลี้ยวเบนของรังสีเอกซ์ทำให้ทราบว่าความแหลมของพีกและความ เป็นผลึกสูงและเห็นได้เด่นชัดในพีกหลัก ๆ ขนาดของอนุภาคและสัณฐานวิทยาของอนุภาคนาโนทินไดออกไซด์ บริสุทธิ์ และ เจือด้วย รูติเนียมในปริมาณ 0.2-3 wt% นั้น เป็นพีกของทินไดออกไซด์ทั้งหมด ดังนั้นจึ้งมีการ วิเคราะห์โดยใช้กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) และ การวิเคราห์การกระจายตัวของรังสีเอกซ์ เพื่อทำการพิจารณาสัณฐานวิทยาอย่างหยาบและการยืนยันองค์ประกอบธาตุที่สังเคราะห์ขึ้นมาจาก กระบวนการเฟลมสเปรย์ไพโรลิซิส พบว่า อนุภาคมีขนาเที่เล็กกว่า 20 นาโนเมตร มีการเกาะกันเป็นกลุ่มก้อน แต่สามารถเห็นขนาดที่เด่นชัดได้ เนื่องจากผงละเอียดมีลักษณะเป็นทรงกลมเกาะตัวกันในทุกตัวอย่างของการ ้สังเคราะห์ มากไปกว่านั้น การวิเคราะห์การกระจายตัวของรังสีเอกซ์ยังสามารถยืนยันได้ว่า มีการเจือด้วยโลหะ มีตระกูลจริงในตัวอย่างของผงละเอียดที่มีการเจือด้วยโลหะมีตระกูล จากรูปแบบการกระจายตัวของรังสีเอกซ์ ชนิดสเปกตรัมและกระจายตัวแบบจุดอิเล็กตรอน สามารถพบการลดระดับชั้นพลังงานของธาตุองค์ประกอบ ทั้งหมดในระดับชั้นพลังงานที่แตกต่างกัน โดยเฉพาะ สเปกตรัมการคายตัวของพลังงานเฉพาะค่าของโลหะตัว เจือทั้งสามชนิด ดังนั้นจึงสามารถยืนยันการเจือในกระบวนการนี้ได้เป็นอย่างดี และในการเตรียมตัวอย่างในการ ปรากฏว่ามีสเปกตรัมของธาตุทุกชนิดของอนุภาคนาโนทินไดออกไซด์ที่ทำการหยดลงบนเทป ทองแดงและทำการเคลือบด้วยทองก่อนทำการวิเคราะห์ ดังนั้น เส้นสเปกตรัมจึงแสดงองค์ประกอบของธาตุทั้ง Sn, O, Pt, Pd, Ru, Cu และ Au โดยในบริเวณที่มีการวิเคราะห์ แสดงภาพถ่าย SEM ที่แสดงให้เห็นถึงขนาด ของอนุภาคนาโนทินไดออกไซด์ด้วย ในการวิเคราะห์ขนาดของอนุภาคด้วย SEM นั้นอาจไม่เพียงต่อการยืนยัน ขนาดและรูปร่างที่แท้จริงของอนุภาคได้ จึงได้มีการวิเคราะห์สัณฐานวิทยาและขนาดที่แท้จริงของอนุภาค ได้ วิเคราะห์โดยใช้กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (TEM) และ รูปแบบการเลี้ยวเบนของอิเล็กตรอน เพื่อ ยืนยันเฟสที่แท้จริง จากการวิเคราะห์สามารถพบโครงสร้างระดับนาโนทั้งศูนย์มิติ และ หนึ่งมิติ โดยลักษณะ สัณฐานวิทยาของอนุภาคนาโนทินไดออกไซด์จะมีลักษณะหลากหลายรูปร่าง มีการกระจายตัวดีกว่าการวิ เคราห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด สำหรับโครงสร้างระดับนาโนศูนย์มิติ อนุภาคที่วิเคราะห์ ได้บางตำแหน่งมีลักษณะเป็นทรงกลม, เป็นลักษณะที่เป็น 4 เหลี่ยม และ 6 เหลี่ยม อย่างชัดเจน ขนาดเฉลี่ย เล็กถึง 3-10 นาโนเมตร และ โครงสร้างระดับนาโนหนึ่งมิติ เช่น สัณฐานวิทยาแบบแท่ง มีขนาดความกว้าง เฉลี่ยในช่วง 5-10 นาโนเมตร และ ความยาวเฉลี่ยในช่วง 10-20 นาโนเมตร การที่สัณฐานวิทยาของอนุภาคนา โนทินไดออกไซด์มีหลายรูปแบบนั้น อาจจะเป็นผลมาจากการใช้เงื่อนไขในการสังเคราะห์โดยวิธีเฟลมสเปรย์ไพ โรลิซิส คือ เงื่อนไข 5/5 โดยสอดคล้องกับผลงานที่มีมาก่อนอย่างชัดเจน ว่าสามารถผลิตสัณฐานวิทยาได้หลาย รูปแบบ มากไปกว่านั้น ในส่วนของการวิเคราะห์ที่สำคัญมากในการยืนยันคุณสมบัตินาโนของวัสดุคือพื้นที่ผิว จำเพาะของวัสดุนาโน ได้ทำการวิเคราะห์ค่าพื้นที่ผิวจำเพาะโดยเทคนิคการดูดซับและคายตัวของแก๊ส ในโตรเจนเพื่อวิเคราห์หาค่าพื้นที่ผิวจำเพาะโดยวิธีการของบีอีที พบว่า เมื่อมีการเจือด้วยโลหะมีตระกูลทั้งสาม ชนิด แสดงผลสอดคล้องกันทุกชนิดของตัวเจือ พื้นที่ผิวจำเพาะเมื่อมีการเจือด้วยโลหะมีตระกูลทั้งสามชนิดใน ปริมาณต่ำสุดคือ 0.2 wt% แสดงค่าพื้นที่ผิวจำเพาะสูงสุด เนื่องจากมีการกระจายตัวของอนุภาคตัวเจือขนาด เล็กบนพื้นผิวของทินไดออกไซด์ ทำให้อัตราการเกาะกันเป็นกลุ่มก้อนมีค่าน้อย จึงทำให้อนุภาคโลหะมีตระกูล ไม่เกิดการเกาะกันเป็นกลุ่มก้อนอย่างหยาบ ในทางตรงกันข้ามกัน เมื่อมีการเจือที่สูงมากขึ้นจาก 0.5-3 wt%

พบว่า ค่าพื้นที่ผิวจำเพาะมีค่าลดลงอย่างเห็นได้ชัดในแนวเชิงเส้น เนื่องจากอนุภาคตัวเจือทั้งสามชนิดมีการ เกาะกันเป็นกลุ่มก้อนหยาบมาขึ้น เมื่อมีประมาณการเจือที่สูงขึ้น ส่งผลให้ขนาดของอนุภาคของสารเจือมีขนาด ที่ใหญ่ขึ้น จึงทำให้ค่าพื้นที่ผิวจำเพาะลดลง และเชื่อว่า คุณสมบัตินี้จะส่งผลต่อการตอบสนองแก๊สในการ ประยุกต์ใช้ทางด้านเซนเซอร์ได้โดยตรง เนื่องจากบริเวณแรกที่เกิดการตรวจจับแก๊สคือพื้นที่ผิวของวัสดุนั่นเอง

4.3 คุณสมบัติเซนเซอร์

ในการประยุกต์วัสดุนาโนในงานวิจัยนี้ ได้มุ่งเน้นถึงการทดสอบคุณสมบัติการตอบสนองของเซนเซอร์ ต่อแก๊สภาวะแวดล้อม โดยได้ทำการเตรียมเซนเซอร์ ภายหลังจากการวิเคราะห์หาลักษณะเฉพาะ อนุภาคนาโน ทินไดออกไซด์บริสุทธิ์และเจือด้วยโลหะมีตระกูลทั้งหมด 3 ชนิด ในปริมาณ 0.2-3 wt% วัสดุที่เตรียมได้ถูกใช้ เป็นองค์ประกอบหลักในการเตรียมเซนเซอร์เพื่อใช้ในการตรวจวัดแก๊ส ก่อนการทดสอบ เซนเซอร์โดยวิธีสาในโคตติง โดยใช้ผงละเอียดนาโนที่สังเคราะห์ได้โดยวิธีเฟลมสเปรย์ไพโรลิซิสผสมกัยสาร ผสมสารยึดเหนี่ยวชนิดเอทิลเซลลูโลสและตัวทำละลายชนิดแอลฟาเทอร์ไพนีออลในปริมาณที่เหมาะสม ทำการ ผสมสารดังกล่าวเป็นเวลา 30 นาทีต่อหนึ่งตัวอย่าง จะได้สารผสมลักษณะหนืด เพื่อง่ายต่อการขึ้นรูปฟิล์ม ตอบสนองบนซับสเตรทชนิดอะลูมินาถูกฉาบด้วยอิเล็กโทรดชนิดทอง โดยวิธีสปินโคตติง จากนั้นนำไปเผาเพื่อ กำจัดสารยึดเหนี่ยว หลังจากเตรียมเซนเซอร์แล้ว ได้นำเซนเซอร์ไปทดสอบสภาวะการตอบสนองต่อแก๊ส สภาวะแวดล้อมทั้งหมด 3 กลุ่ม รวม 7 ชนิด ได้แก่ กลุ่มแก๊สพิษ ประกอบด้วย ในโตรเจนไดออกไซด์ (2-20 ppm), คาร์บอนมอนอกไซด์ (20-1,000 ppm) และ ไฮโดนเจนซัลไฟด์ (0.5-10 ppm) สำหรับกลุ่มที่สอง ได้แก่ แก๊สที่ปล่อยออกจากกระบวนการผลิตจากระบบโรงงานอุตสาหกรรม ประกอบด้วย ซัลเฟอร์ไดออกไซด์ (20-500 ppm), แอมโมเนีย (5-200 ppm) และ กลุ่มสุดท้าย ได้แก่ แก๊สติดไฟได้ ประกอบด้วย ไฮโดรเจน และ อะเซทิลีน ความเข้มข้นสูง ช่วง 200-10,000 ppm ภายใต้สภาวะอากาศที่อุณหภูมิที่แตกต่างกันในช่วง 200-350 องศาเซลเซียส จากการทดสอบพบว่า เซนเซอร์ที่เตรียมได้จากทินไดออกไซด์บริสุทธิ์สามารถตอบสนอง ต่อแก๊สในโตรเจนออกไซด์ใด้สูงสุด ที่อุณหภูมิการทดสอบ 200 องศาเซลเซียส เมื่อเปรียบเทียบกับกีสอีก 6 ชนิด ซึ่งมีสภาพความไวที่ต่ำกว่าอย่างเห็นได้ชัด เวลาในการตอยสนองยังคงค่อนข้างยาวนาน มากกว่า 20 วินาที ในส่วนการคัดสรรจำเพาะ ถือว่า เซนเซอร์ทินไดออกไซด์มีการคัดสรรจำเพาะที่ดีเมื่อเทียบกับแก๊สชนิดื่น ที่มีการตอบสนองต่ำ จนสามารถพิจารณาการไม่ตอบสนองของเซนเซอร์ได้ ในส่วนของการศึกษาผลของการ เจือด้วยโลหะมีตระกูลทั้งสามชนิดได้แก่ แพลตินัม, แพลแลเดียม และ รูติเนียม ในปริมาณที่ต่างกันกันช่วง 0.2-3 wt% นั้น ในส่วนแรกได้ทำการศึกษาถึงชนิดสารเจือ และ ปริมาณที่เหมาะสมที่สุดในการเจือ โดยใช้แก๊ส ทดสอบตัวอย่างในการวิเคราะห์ คือ แก๊สไฮโดรเจน พบว่า ผลของการเจือด้วยโลหะมีตระกูลสามารถพัฒนา คุณสมบัติการตอบสนองของเซนเซอร์ได้ดีกว่าในกรณีไม่มีการเจือ ภายใต้อุณหภูมิทดสอบช่วง 200-350 องศา เซลเซียส เซนเซอร์มีการตอบสนองด้วยสภาพความไวที่สูงขึ้น และ เวลาในการตอบสนองที่รวดเร็วกว่าในกรณี ไม่มีการเจือ ปริมาณการเจือที่เหมาะสมที่สุดในการพัฒนาการตอบสนองได้สูงสุดคือ 0.2 wt% ทั้งสามชนิดของ ้ตัวเจือ และ ตัวเจือที่มีความเหมาะสมมากที่สุด ซึ่งแสดงสภาพความไว และ เวลาในการตอบสนองดีที่สุด คือ การเจือด้วยแพลเลเดียม ในปริมาณต่ำสุดคือ 0.2 wt% ค่าสภาพความไวของเซนเซอร์ที่เจือด้วยแพลเลเดียม มี ค่าสูงสุด ประมาณ 9,830 และ เวลาในการตอบสนองที่รวดเร็วมาก คือ 2.3 วินาที ที่ความเข้มข้นของแก๊ส

ไฮโดรเจนสูงสุดที่ 10000 ppm ภายใต้อุณหภูมิการทดสอบ 200 องศาเซลเซียส ในส่วนของการเจือด้วนแพล ตินัม แสดงผลในทำนองเดียวกับการเจอด้วยแพลเลเดียม ผลของการเจือในปริมาณลดลง สามารถลดอุณฆภูมิ ในการตอบสนองได้ แต่ในทางตรงกันข้าม เมื่อมีการเจือด้วยรูติเนียมนั้น ปริมาณการเจือไม่มีผลต่อการลด อุณหภูมิในการตอบสนองแต่อย่างใด โดยอุณหภูมิที่มีการตอบสนองสูงสุดได้แก่ 350 องศาเซลเซียส ส่วน ปริมาณการเจือน้อยที่สุดยังคงแสดงค่าสภาพความไว และ เวลาในการตอบสนองดีที่สุดเช่นเดิม

ในส่วนการพัฒนาการคัดสรรจำเพาะ ผลของการเจือด้วยโลหะมีตระกูล และ ประสิทธิภาพของ เซนเซอร์นั้น ได้ทำการทดสอบต่อแก๊สชนิด ไฮโดรเจน คาร์บอนมอนอกไซด์ ซัลเฟอร์ไดออกไซด์ อะเซทิลีน และ ในโตรเจนไดออกไซด์ โดยทำการวิเคราะห์หาผลของการเจือในการพัฒนาคุณวมบัติเซนเซอร์ และ ชนิด ของตัวเจือที่มีความเหมาะสมที่สุด โดยควบคุมปริมาณการเจือที่ 0.2 wt% จากการวิจัย พบว่า การเจือด้วยแพล ์ ตินัม แสดงผลการตอบสนองได้ดีที่สุด ต่อแก๊สคาร์บอนมอนอกไซด์ที่อุณหภูมิ 200 และ 300 องศาเซลเซียส, แก๊สซัลเฟอร์ไดออกไซด์ และ แก๊สอะเซทิลีนที่อุณหภูมิ 350 องศาเซลเซียส ในส่วน การเจือด้วยแพลเลเดียม แสดงผลการตอบสนองได้ดีที่สุด ต่อแก๊สไฮโดรเจนทุกอุณหภูมิการทดสอบ และ แก๊สตาร์บอมอนอกไซด์ซึ่ง แสดงผลของสภาพความไวใกล้เคียงกับเซนเซอร์มินไดออกไซด์บริสุทธิ์ที่อุณหภูมิ 350 องศาเซลเซียส ในส่วน ของการเจือด้วนรูติเนียม พบว่า ไม่สามารถแสดงผลการตอบสนองต่อเซนเซอร์ในทุกอุณหภูมิการทดสอบได้ ดีกว่า แพลตินัม และ แพลเลเดียม มากไปกว่านั้น สำหรับเซนเซอร์ทินไดออกไซด์บริสุทธิ์ แสดงผลการ ตอบสนองสูงสุด และ ดีกว่า เมื่อมีการเจือด้วยโลหะมีตระกูลทั้งสามชนิด ต่อแก๊สซัลเฟอร์ใดออกไซด์ และ แก๊ส อะเซทิลีนที่อุณหภูมิ 300 องศาเซลเซียส โดยเฉพาะอย่างยิ่ง ต่อแก๊สไนโตรเจนไดออกไซด์ ที่มีการตอบสนอง เมื่อเทียบกับในกรณที่มีการเจือด้วยโลหะมีตระกูลทั้งสามชนิด อย่างเห็นได้ชัดในทุกอุณหภูมิการ ทดสอบ ดังนั้น การศึกษาในส่วนของประสิทธิภาพของเซนเซอร์ต่อการตอบสนองต่อแก๊สสภาวะแวดล้อมนั้น ความเหมาะสมต่อการนำไปตรวจจับหรือการประยุกต์ใช้ อาจไม่ได้ขึ้นอยู่กับชนิดของตัวเจือ หรือ ปริมาณ สารเจือเสมอไป ดังนั้น การวิจัยในส่วนนี้ จึงมีประโยชน์อย่างมากในการคัดสรรจำเพาะเซนเซอร์ เพื่อใช้ในการ ตรวจจับเฉพาะแก๊สได้เป็นอย่างดี และ มีประสิทธิภาพสูงในการประยุกต์ในระบบอุตสาหกรรมต่อไป

4.4 การพัมนาเซนเซอร์ในอนาคต

ในการพัฒนาเซนเซอร์ในปัจจุบัน ถือได้ว่ามีบทบาทอย่างมากในการตรวจจับ หรือ ตรวจวัดปริมาณสิ่ง ปลอมปนในสภาวะแวดล้อม เนื่องจากมนุษย์เป็นทรัพยากรที่สำคัญมากที่สุด ดังนั้น ความปลอดภัยของการ ดำรงชีวิตของมนุษย์จึงมีความสำคัญ และ ต้องเฝ้าระวังเป็นอย่างมาก ความเจริญที่มีการเดิบโตอย่างต่อเนื่อง รวมถึงการพัฒนาเทคโนโลยีอุตสาหกรรมในปัจจุบัน และ เชื่อมโยงไปสู่อนาคต สามารถสร้างความก้าวหน้า ให้กับสังคมได้เป็นอย่างมาก แต่สิ่งที่ตามมา นั่นคือ มลภาวะที่เกิดขึ้น โดยอาจมีการควบคุม มีการกำจัดได้ แต่ หากมีการรั่วไหลปะปนในสภาวะแวดล้อม อาจส่งผลถึงมนุษย์ และ สิ่งมีชีวิตโดยตรง ดังนั้น การพัฒนาอุปกรณ์ การตรวจจับแก๊ส ไม่ว่าจะเป็นแก๊สพิษ แก๊สเสีย หรือ แก๊สติดไฟได้ ล้วนแต่เป็นแก๊สที่ต้องเฝ้าระวัง การพัฒนาจึงต้องมุ่งเน้นถึง เซนเซอร์ที่มีขนาดเล็ก สามารถตรวจจับแก๊สได้รวดเร็ว มีสภาพความไวในการตรวจจับแก๊ส มี การคัดสรรจำเพาะเฉพาะแก๊สที่ดี อีกทั้ง ยังต้องเป้นเซนเซอรีที่มีประสิทธิภาพสูง ใช้งานได้ยาวนาน ซึ่งถือว่า เป็นความท้าทายอย่างมากที่ต้องมีการศึกษาวิจัย ค้นคว้า เพื่อพัฒนาอุปรณ์อิเล็กทรอนิส์ชนิดนี้ ต่อไปในอนาคต

เอกสารอ้างอิง

- "GAS SENSORS" 2006. [ระบบออนไลน์], แหล่งที่มา
 http://www.geocities.com/thaikeramos/product/advance_product/gas_senser/gas_sensors2.html
- Chen Y, Zhu J, Zhu X, Ma G, Liu Z, Min N. Gas sensing properties and microstructure of SnO₂ nanocrystalline prepared by solid state reaction-thermal oxidation. *Mater Sci Eng B* 2003;
 99: 52-55.
- 3. Janata J. Principles of Chemical sensors: Electrochemical Sensors. *New York & London, Plenum Press*; 1989: pp. 228.
- 4. สุภาพ ชูพันธ์ และ นิกร มังกรทอง, รายงานวิจัยเรื่อง สมบัติการตรวจจับไอเอทานอลของ MoO_3 : SnO_2 ที่เจือด้วย Ag และ Au (Ethanol vapour sensing properties of Ag and Au doped MoO_3 : SnO_2), มหาวิทยาลัยเชียงใหม่ กันยายน 2547, หน้า 4-8.
- 5. Liu Y, Dong J, Hesketh P.J, Liu M, Synthesis and gas sensing properties of ZnO single crystal flakes. *J Mater Chem* 2005; **15**: 2316-2320.
- 6. B.R. Eggins, Chemical Sensors and Biosensors: Electrochemical Sensors, *England, John Wiley & Sons, LTD*; 2002: pp. 7.
- 7. Alkaya A, Kaplan R. Canbolat H. Hegedus S.S. A comparison of fill factor and recombination losses in amorphous solar cell on ZnO and SnO₂. *J Mater Chem* 2005; **15**: 1595-1599.
- 8. Gao T, Wang T.H. Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications. *Appl Phys A Mater Sci Proc* 2005; **80(7)**; 1451-1454.
- Neri G, Bonavata A, Micali G, Donato N, Deorsola F.A, Mossino P, Amato I, Benedetti B.D. Ethanol sensors based on Pt-doped tin oxide nanopowders synthesized by gel-comustion. Sensor Actuat B-Chem 2006; 117: 196-204.
- 10. Comini E, Faglia G, Sberveglieri G, Pan Z, Wang Z.L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. *Appl Phys Lett* 2002; **81**: 1869-1871.
- 11. Fang Y.K, Lee J.J. A tin oxide thin film sensor with high ethanol sensitivity. *Thin Solid Films* 1989; **169**: 51-56.
- 12. Li F, Xu J, Yu X, Chen L, Zhu J, Yang Z, Xin X. One-step solid-state reaction synthesis and gas sensing propety of tin oxide nanoparticles. *Sensor Actuat B-Chem* 2002; **81**: 165-169.
- 13. Frenzer G, Frantzen A, Sanders D, Simon U, Maier W.F. Wet chemical synthesis and screening of thick porous oxide films for resistive gas sensing applications. *Sensors* 2006; **6**: 1568-1586.

- 14. Esfandyarpour B, Mohajerzadeh S, Famini S, Khodadadi A, Soleimani E.A. High senitivity Pt-doped SnO₂ gas sensors fabricated using sol-gel solution on micromachined (1 0 0) Si substrates. *Sensor Actuat B-Chem* 2004; **100**: 190-194.
- 15. Ménini P, Parret F, Guerrero M, Soulantica K, Erades L, Maisonnat A, Chaudret B. CO response of a nanostructured SnO₂ gas sensor doped with palladium and platinum. *Sensor Actuat B-Chem* 2004; **103**: 111-114.
- Cirera A, Cabot A, Cornet A, Morante J.R. CO-CH₄ selectivity enhancement by in situ Pdcatalysed microwave SnO₂ nanoparticles for gas detectors using active filter. Sensor Actuat B-Chem 2001; 78: 151-160.
- 17. Kappler J, Tomescu A, Barsan N, Weimar U. CO consumption of Pd doped SnO₂ based sensors. *Thin Solid Films* 2001; **391**: 186-191.
- Tadeev A.V, Delabouglise G, Labeau M. Sensor properties of Pt doped SnO₂ thin films for detecting CO. *Thin Solid Films* 1999; 337: 163-165.
- Lim C.B, Oh S. Microstructure evolution and gas sensitivities of Pd-doped SnO₂-based sensor prepared by three different catalyst-addition processes. Sensor Actuat B-Chem 1996; 30: 223-231.
- 20. Rella R, Serra A, Siciliano P, Vasanelli L, De G, Licciulli A. CO sensing properties of SnO₂ thin films prepared by the sol-gel process. *Thin Solid Films* 1997; **304**: 339-343.
- 21. Nayral C, Viala E, Colliére V, Fau P, Senocq F, Maisonnat A, Chaudret B. Synthesis and use of a novel SnO₂ nanomaterial for gas sensing. *Appl Surf Sci* 2000; **164**: 219-226.
- 22. Wagner T, Kohl C.D, Fröba M, Tiemann M. Gas sensing properties of ordered mesoporous SnO₂. Sensors 2006; **6**: 318-323.
- 23. Chi-Hwan H, Sang-Do H, Singh I, Toupance T. Micro-bead of nano-crystalline F-doped SnO as a sensitive hydroen gas sensor. *Sensor Actuat B-Chem* 2005; **109(2)**: 264-269.
- 24. Mishra V.N, Agarwal R.P. Sensitivity, response and recovery time of SnO₂ based thick-film sensor array for H₂, CO, CH₄ and LPG. *Microelec J* 1998; **29**: 861-874.
- 25. Heilig A, Barsan N, Weimar U, Göpel W. Selectivity enhancement of SnO₂ gas sensors: simultaneous monitoring of resistances and temperatures. *Sensor Actuat B-Chem* 1999; 58: 302-309.
- 26. Morimitsu M, Ozaki Y, Suzuki S, and Matsunaga M. Effects of surface modification with platinum and ruthenium on temperature and humidity dependence of SnO₂-based CO gas sensor. *Sensor Actuat B-Chem* 2000; **67**: 184-188.

- 27. Lee S.W, Tsai P.P, Chen H. Comparison study of SnO₂ thin- and thick-film gas sensor. Sensor Actuat B-Chem 2000; **67**: 122-127.
- 28. Becker Th, Ahlers S, Braunmühl Chr. B.v, Müller G, Kiesewetter O. Gas sensing properties of thin- and thick-film tin-oxide material. *Sensor Actuat B-Chem* 2001; **77**: 55-61.
- 29. Dolbec R, El Khakani M.A, Serventi A.M, Saint-Jacques R.G. Influence of the nanostructural characteristics on the gas sensing properties of pulsed laser deposited tin oxide thin films. Sensor Actual B-Chem 2000; 93: 566-571.
- 30. Hahn S.H, Barsan N, Weimar E, Ejakov S.G, Visser J.H, Soltis R.E. CO sensing with SnO₂ thick film sensors: role of oxygen and water vapour. *Thin Solid Films* 2003; **436**: 17-24.
- 31. Werzinger O, Reinhardt G. CO-sensing properties of doped SnO₂ sensors in H₂-rich gases. Sensor Actuat B-Chem 2004; **103**: 104-110.
- 32. Ponce M.A, Castro M.S, Aldao C.M. Resistance and capacitance analysis of Pd-doped and undoped SnO₂ thick films sensors exposed to CO atmospheres. *Ceram Internat* 2006; **32**: 733-737.
- 33. Koziej D, Bârsan N, Shimanoe K, Yamazoe N, Szuber J, Weimar U. Spectroscopic insights into CO sensing of undoped and palladium doped tin dioxide sensors drived from hydrothermally treated tin oxide sol. Sensor Actuat B-Chem 2006; 118: 98-104.
- 34. Bahrami B, Khodadadi A, Kazemeini M, Mortzavi Y. Enhanced CO sensitivity and seletivity of gold nanoparticles-doped SnO₂ sensor in presence of propane and methane, *Sensor Actuat B-Chem* 2008; **133**: 352-356.
- 35. Korotcenkov G, Cho B.K, Gulina L, Tolstoy V. SnO₂ thin films modified by the SnO₂-Au nanocomposites: response to reducing gases. *Sensor Actuat B-Chem* 2009; *in press*.
- 36. Wang Y.D, Wu X.H, Su Q, Li Y.F, Zhou Z.L. Ammonia-sensing characteristics of Pt and SiO₂ doped SnO₂ materials. *Solid-State Elec* 2001; **4:**, 347-350.
- 37. Teeramongkonrasmee A, Sriyudthsak M. Methanol and ammonia sensing characteristics of sol-gel derived thin film gas sensor. *Sensor Actuat B-Chem* 2000; **66**: 256-259.
- 38. Jin C, Yamazaki T, Ito K, Kikuta T, Nakatani N. H₂S sensing property of porous SnO₂ sputtered films coated with various doping films. Vacuum 2006; **80**: 723-725.
- 39. Gong J, Chen Q, Lian M.R, Liu N.C, Stevenson R.G. Adami F, Micromachined nanocrystalline silver doped SnO₂ H₂S sensor. Sensor Actuat B-Chem 2006; **114**: 32-39.
- 40. Liu C.H, Zhang L, He Y.J. Properties and mechanism study of Ag doped SnO₂ thin films as H₂S sensors. *Thin Solid Films* 1997; **304**: 13-15.

- 41. Niranjan R.S, Patil K.R, Sainkar S.R, Mulla I.S. High H₂S-sensitive copper-doped tin oxide thin film. *Mater Chem Phys* 2003; **80**: 250-256.
- 42. Tianshu Z, Hing P, Li Y, Jiancheng Z. Selective detection of ethanol vapor and hydrogen using Cd-doped SnO₂-based sensors. *Sensor Actuat B-Chem* 1999; **60**: 208-215.
- 43. Katsuki A, Fukui K. H₂ selective as sensor based on SnO₂. Sensor Actuat B-Chem 1998; **52**: 30-37.
- 44. Han C.H, Han S.D, Singh I, Toupance T. Micro-bead of nano-crystalline F-doped SnO₂ as a sensitive hydrogen gas sensor. *Sensor Actuat B-Chem* 2005; **109**: 264-269.
- 45. Shukla S, Seal S, Ludwig L, Parish C. Nanocrystalline indium oxide-doped tin oxide thin film as low temperature hydrogen sensor. *Sensor Actuat B-Chem* 2004; **97**: 256-265.
- 46. Salehi A. Selectivity enhancement of indium-doped SnO₂ gas sensors. *Thin Solid Films* 2002; **416**: 260-263.
- 47. Ryzhikov A.S, Shatokhin A.N, Putilin F.N, Rumyantseva M.N, Gaskov A.M, Labeau M. Hydrogen sensitivity of SnO₂ thin films doped with Pt by laser ablation. *Surf Coat Technol* 2005; **107**: 387-391.
- 48. Niranjan R.S, Hwang Y.K, Kim D.-K, Jhung S.H, Chang J.-S, Mulla I.S. Nanostructured tin oxide: Synthesis and gas-sensing properties. *Mater Chem Phys* 2005; **92**: 384-388.
- 49. Shen Y, Yamazaki T, Liu Z, Jin C, Kikuta T, Nakatani N. Porous SnO₂ sputtered films with high H₂ sensitivity at low operation temperature. *Thin Solid Films* 2008; **516**: 5111-5117.
- 50. Shen Y, Yamazaki T, Liu Z, Meng D, Kikuta T. Hydrogen sensing properties of Pd-doped SnO₂ sputtered films with columnar nanostructure. *Sensor Actuat B-Chem* 2009; **517**: 6119-6123.
- 51. Shen Y, Yamazaki T, Liu Z, Meng D, Kikuta T, Nakatani N, Saito M, Mori M. Microstructure and H₂ gas sensing properties of undoped and Pd-doped SnO₂ nanowires. *Sensor Actuat B-Chem* 2009; **135**: 524-529.
- 52. Tiburcio-Silver A, Juárez A.S. SnO₂:Ga thin films as oxygen gas sensor. *Mater Sci Eng* 2004; **110**: 268-271.
- 53. Maffeïs T.G.G, Owen G.T, Penny M.W, Starke T.K.H, Clark S.A, Ferkel H, Wilks S.P. Nano-crystalline SnO₂ gas sensr response to O₂ and CH₄ at elevated temperature inestigated by XPS. *Surf Sci* 2002; **520**: 29-34.
- 54. Kaur J, Roy S.C, Bhatnagar M.C. Highly sensitive SnO₂ thin film NO₂ gas sensor operating at low temperatures. *Sensor Actuat B-Chem* 2007; 123; 1090-1095.

- 55. Ivanov P, Liobet E, Blanco F, Vilanova X, Gracia I, Cané C, Correig X. On the effects of the materials and the noble meal additives to NO₂ detection. *Sensor Actuat B-Chem* 2006, **118**, 311-317.
- 56. Hyodo T, Sasahara K, Shimizu Y, Egashira M. Preparation of macroporous SnO₂ films using PMMA microspheres and their sensing properties to NO_x and H₂. Sensor Actuat B-Chem 2005; **106**: 580-590.
- 57. Zampiceni E, Bontempi E, Sberveglieri G, Depero L.E. Mo influence on SnO₂ thin films properties. *Thin Solid Films* 2002; **418**: 16-20.
- 58. Safonova O.V, Delabouglise G, Chenevier B, Gaskov A.M, Labeau M. CO and NO₂ gas sensitivity of nanocrytalline tin dioxide thin films doped with Pd, Ru and Rh. *Mater Sci Eng B* 2002; **21**: 105-111.
- 59. Sauvan M, Pijolat C. Selectivity improvement of SnO₂ films by superficial metallic films. *Sensor Actuat B-Chem* 1999; **58**: 295-301.
- 60. Leo G, Rella R, Siciliano P, Capone S, Alonso J.C, Pankov V, Ortiz A. Sprayed SnO₂ thin films for NO₂ sensors. *Sensor Actuat B-Chem* 1999; **58**: 370-374.
- 61. Santos J, Serrini P, O'Beirm B, Manes L. A thin film SnO₂ gas sensor selective to ultra-low NO₂ concentrations in air. *Sensor Actuat B-Chem* 1997; **43**: 154-160.
- 62. Serrini P, Briois V, Horrillo M.C, Traverse A, Manes L. Chemical composition and crystalline structure of SnO₂ thin films used as gas sensors. *Thin Solid Films* 1997; **304**: 113-122.
- 63. Hockensmith C.M, Goldsby J.C, Kacik T. Thermal studies of new precursors to indium-tin oxides for use as sensor materials in the detection of No_x. *Thermochimica Acta* 1999; **340-341**: 315-322.
- 64. Kaur J, Kumar R, Bhatnagar M.C. Effect of indium-doped SnO₂ nanoparticles on NO₂ gas sensing properties. *Sensor Actuat B-Chem* 2007; **12(2)**: 478-484.
- 65. Teleki A, Pratsinis S.E, Kalyanasundaram K, Gouma P.I. Sensing of organic vapors by flame-made TiO₂ nanoparticles. *Sensor Actuat B-Chem* 2006; **119**, 683-690.
- 66. Liewhiran C, Phanichphant S. Influence of thickness on ethanol sensing characteristics of doctor-bladed thick film from flame-made ZnO nanoparticles. *Sensors* 2007; **7**: 185-201.
- 67. Liewhiran C, Phanichphant S. Improvement of flame-made ZnO nanoparticulate thick film morphology for ethanol sensing. *Sensors* 2007; **7**: 650-675.
- 68. Liewhiran C, Phanichphant S. Effects of palladium loading on the response of a thick film flame-made ZnO gas sensor for detection of ethanol vapor. *Sensors* 2007; **7**: 1159-1184.

- 69. Liewhiran C, Camenzind A, Teleki A, Pratsinis S.E, Phanichphant S. Doctor-bladed thick films of flame-made Pd/ZnO nanoparticlesfor ethanol sensing. *Curr Appl Phys* 2008; **8**: 336-339.
- 70. Sahm T, Mädler L, Gurlo A, Barsan N, Pratsinis S.E, Weimar U. Flame spray synthesis of tin dioxide nanoparticles for gas sensing. *Sensor Actuat B-Chem* 2004; **98**: 148-153.
- 71. Mädler L, Sahm T, Gurlo A, Grunwaldt J.D, Barsan N, Weimar U, Pratsinis S.E. Sensing low concentrations of CO using flame-spray-made Pt/SnO₂ nanoparticles. *J Nanopart Res* 2006; **8**: 783-796.
- 72. Mädler L, Roessler A, Pratsinis S.E, T, Gurlo A, Barsan N. Weimar U. Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO₂ nanoparticles. *Sensor Actuat B-Chem* 2006; **114**: 283-295.
- 73. ดร. รัตติกร ยิ้มนิรัญ (2546) เอกสารประกอบการสอนวิชา ว. วศ. 210404, *การประยุกต์ของวัสดุด้าน* ไฟฟ้า (Applications of Electromaterials) (หน้า 27-30) เชียงใหม่: สาขาวิชาวัสดุศาสตร์, ภาควิชา ฟิสิกส์, คณะวิทยาศาสตร์, มหาวิทยาลัยเชียงใหม่.
- 74. He Y, Li Y, Yu J, Qian Y. Chemical control synthesis of nanocrystalline SnO₂ by hydrothermal reaction. *Mater Lett* 1999; **40**: 23-26.
- 75. Cukrov L.M, Tsuzuki T, McCormick P.G. SnO₂ nanoparticles prepared by mechanochemical processing. *Scripta Mater* 2001; **44**: 1787-1790.
- 76. Cirera A, Vilà A, Cornet A, Morante J.R. Properties of nanocrystalline SnO₂ obtained by means of a microwave process. *Mater Sci Eng C* 2001; **15**: 203-205.
- 77. Toledo-Antonio J.A, Gutiérrez-Baez R, Sebastian P.J, Vázquez A. Thermal stability and structural deformation of rutile SnO₂ nanoparticles. *J Solid State Chem* 2003; **174**: 241-248.
- 78. Gu F, Wang S.F, Song C.F, Lü M.K, Qi Y.X, Zhou G.J, Xu D, Yuan D.R. Synthesis and luminescence properties of SnO₂ nanoparticles. *Chem Phys Lett* 2003, **372**, 451-454.
- 79. Michel E, Chaumont D, Stuerga D. SnO₂ thin films prepared by dip-coating from microwave synthesized colloidal suspensions. *J Colloid Interf Sci* 2003; **257**: 258-262.
- 80. Yang H, Hu Y, Tang A, Jin S, Qiu G. Synthesis of tin oxide nanoparticles by mechanochemical reaction. *J Alloys Compd* 2004; **363**: 271-274.
- 81. Qu D.M, Yan P.X, Chang J.B, Yan D, Liu J.Z, Yue G.H, Zhuo R.F, Feng H.T. Nanowires and nanowire-nanosheet junctions of SnO₂ nanostructures. *Mater Lett* 2007; **61**: 2255-2258.
- 82. Acarbas Ö, Suvaci E, Cogan A. Preparation of nanosized tin oxide (SnO₂) powder by homogeneous precipitation. *Ceram Int* 2007; **33**: 537-542.
- 83. Santato C, López C.M, Choi K.S. Synthesis and characterization of polycrystalline Sn and SnO₂ films with wire morphologies. *Electrochem Commun* 2007; **9**: 1519-1524.

- 84. Yang X, Wang L. Synthesis of novel haxagon SnO₂ nanosheets in ethanol/water solution by hydrothermal process. *Mater Lett* 2007; **61**: 3705-3707.
- 85. Legendre F, Poissonnet S, Bonnaillie P. Synthesis of nanostructured SnO₂ materials by reactive ball-milling. *J Alloys Compd* 2007; **434-435**: 400-404.
- 86. Sun H, Kang S.Z, Mu J. Synthesis of flowerlike SnO₂ quasi-squar submicrotubes from tin (II) oxalate precursor. *Mater Lett* 2007; **61**: 4121-4123.
- 87. Pratsinis S.E. Flame Aerosol synthesis of ceramic powders. *Prog Energy Comust Sci* 1998; **24**, 197-219.
- 88. Tani T, Mädler L, Pratsinis S.E. Homogeneous ZnO nanoparticles by flame spray pyrolysis. *J Nanopart Res* 2002; **4**: 337-343.
- 89. Mädler L, Kammler H.K, Mueller R, Pratsinis S.E. Controlled synthesis of nanostructured particles by flame spray pyrolysis. *J Aeros Sci* 2002; **33**: 369-389.
- 90. Mueller R, Mädler L, Pratsinis S.E. Nanoparticle synthesis at high production rates by flame spray pyrolysis. *Chem Eng Sci* 2003; **58**: 1969-1976.
- 91. Mädler L. Liquid-fed aerosol reactors for one-step synthesis of nano-structured particles. KONA 2004; 22: 107-120.
- 92. Wegner K, Stark W.J. Pratsinis S.E, Flame-nozzle synthesis of nanoparticles with closely controlled size, morhpology and crystallinity. *Mater Lett* 2002; **55**: 318-321.
- 93. Kammler H.K, Mädler L, Pratsinis S.E. Flame synthesis of nanoparticles. *Chem Eng Techmol* 2001; **24(6)**: 583-596.
- 94. Pratsinis S.E, Arabi-Katbi O, Megsridis C.M, Morrison Jr P.W, Tsantilis S, Kammler H.K. lame synthesis of spherical nanoparticles. *J Appl Phys* 2002; **343-346**, 511-518.
- 95. Height M.J, Mädler L, Krumeich F, Pratsinis S.E. Nanorods of ZnO made by flame spray pyrolysis. *Chem. Mater.* 2006; **18**: 572-578.
- 96. Height M.J, Pratsinis S.E, Mekasuwandumrong O, Praserthdam P. Ag-ZnO catalysts for UV-photodegradation of methylene blue. *Appl Catal B* 2005: **63**: 305-312.
- 97. Stark W.J, Pratsinis S.E. Aerosol flame reactors for manufacture of nanoparticles. *Powder Technol* 2002; **126**; 103-108.
- 98. Pratsinis S.E. Flame synthesis of nanosize particles: precise control of particle size. J. Aerosol Sci. 1996; **27**: S153-S154.
- 99. Strobel R, Grunwaldt J.D, Camenzinf A, Pratsinis S.E, Baiker A. Flame-made alumina supported Pd-Pt nanoparticles: structural properties and catalytic behavior in methane combustion. Catal Lett 2005; **104(1-2)**: 9-16.

- 100. Tamaekong N, Liewhiran C, Wisitsoraat A, Phanichphant S. Sensing characteristics of flame-spray-made Pt/ZnO thick films as H₂ gas sensor. Sensors 2009; **9**: 6652–6669.
- 101. Tamaekong N, Liewhiran C, Wisitsoraat A, Phanichphant S. Acetylene sensor based on Pt/ZnO thick films as prepared by flame spray pyrolysis. Sens. Actuators B 2011; 152: 155– 161.
- 102. Kruefu V, Liewhiran C, Wisitsoraat A, Phanichphant S. Selectivity of flame-spray-made Nb/ZnO thick films towards NO₂ gas. Sens. Actuators B 2011; **156**: 360–367.
- 103. Samerjai T, Tamaekong N, Liewhiran C, Wisitsoraat A, Tuantranont A, Phanichphant S. Selectivity towards H₂ gas by flame-made Pt-loaded WO₃ sensing films. Sens. Actuators B 2011; 157: 290–297.

ผลงานการวิจัย (Outputs)

ผลงานและชื่อวารสารวิชาการระดับนานาชาติที่ตีพิมพ์แล้วและอยู่ในระหว่างการตีพิมพ์ (outputs) ของงานวิจัย ตลอดทั้งโครงการ

ชื่อเรื่อง	สถานะและชื่อวารสารที่ตีพิมพ์/คาดว่าจะตีพิมพ์		
	ในปี พ.ศ. 2553-2555		
Gas Sensing Properties of Flame-spray-made	ตีพิมพ์แล้ว		
Ru/SnO ₂ Thick Films Fabricated from Spin	ปี 2553: Sensors : impact factor = 1.917 (ที่มา :		
Coated Nanoparticles Dependence of H ₂	Journal Citation Reports, 2011)		
response			
Semiconducting Metal Oxides as Sensors for	ตีพิมพ์แล้ว		
Environmentally Hazardous Gases	ปี 2554: Sensors and Actuators B Chem : impact		
	factor = 3.368 (ที่มา : Journal Citation Reports,		
	2011)		
Highly Selective Environmental Sensors Based	ตีพิมพ์แล้ว		
on Flame-spray-made SnO ₂ Nanoparticles	ปี 2555: Sensors and Actuators B Chem: impact		
	factor = 3.368 (ที่มา : Journal Citation Reports,		
	2011)		
The selectivity towards H ₂ gas of flame-spray-	กำลังรอการพิจารณา (Under review)		
made Pt-loaded SnO ₂ sensing films	ปี 2555-56: Sensors and Actuators B Chem :		
	impact factor = 3.368 (ที่มา : Journal Citation		
	Reports, 2011)		
Ultra-sensitive H ₂ sensors based on flame-spray-	กำลังรอการพิจารณา (Under review)		
made Pd-loaded SnO ₂ sensing films	ปี 2555-56: Sensors and Actuators B Chem :		
	impact factor = 3.368 (ที่มา : Journal Citation		
	Reports, 2011)		

ภาคผนวก

- 1. reprint หรือ manuscript และบทความสำหรับการเผยแพร่ ลำดับเอกสารแนบ ดังนี้
 - 1.1 Full paper : C. Liewhiran, N. Tamaekong, A. Wisitsora-at, S. Phanichphant, Gas Sensing Properties of Flame-spray-made Ru/SnO₂ Thick Films Fabricated from Spin Coated Nanoparticles Dependence of H₂ response, Sensors, 9, 2009, 8996-9010: impact factor = 1.917
 - 1.2 Full paper : K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsora-at, A. Tuantranont, S. Phanichphant, Semiconducting Metal Oxides as Sensors for Environmentally Hazardous Gases, Sensors and Actuators B Chem 160, 2011, 580-591: impact factor = 3.368
 - 1.3 Full paper : C. Liewhiran, N. Tamaekong, A. Wisitsora-at, S. Phanichphant, Highly Selective Environmental Sensors Based on Flame-spray-made SnO₂ Nanoparticles, Sensors and Actuators B Chem 163, 2012, 51-60: impact factor = 3.368
 - 1.4 Under review : C. Liewhiran, N. Tamaekong, A. Wisitsora-at, S. Phanichphant, The selectivity towards H₂ gas of flame-spray-made Pt-loaded SnO₂ sensing films, Sensors and Actuators B Chem 163, 2012, under review.*
 - 1.5 Under review : C. Liewhiran, N. Tamaekong, A. Wisitsora-at, S. Phanichphant, Ultra-sensitive H₂ sensors based on flame-spray-made Pd-loaded SnO₂ sensing films, Sensors and Actuators B Chem 163, 2012, under review.*

* เอกสารยืนยันการรอการพิจารณา ดังแนบ

- 2. กิจกรรมที่เกี่ยวข้องกับการนำผลงานจากโครงการไปใช้ประโยชน์ การไปเสนอผลงาน
 - Liewhiran C, Wisitsoraat A, Phanichphant S. Flame-spray-made Pt/SnO₂ films fabricated by spin coating: Structural and enhanced high-level H₂ response characteristics, The 8th Asian Conference on Chemical Sensors (ACCS2009), 11-14, November, 2009, EXCO, Daegu, Korea.

- Liewhiran C, Tamaekong N, Wisitsoraat A, Phanichphant S. Flame-spray-made Ru-doped SnO₂ Sensor for Hydrogen, Nanothailand 2010, 18-20, November, 2010, NANOTEC, NTSDA, Pathumthani, Thailand.
- Liewhiran C, Tamaekong N, Wisitsoraat A, Phanichphant S. The Monitoring of H₂S and SO2 Noxious Gases from Industrial Environment with Sensors Based on Flame-spray-made SnO₂ Nanoparticles, The 3rd German-Thai Symposium on Nanoscience and Nanotechnology (GTSNN 2011) GTSNN2011: GREEN NANOTECHNOLOGY FOR THE FUTURE, 13-16, September, 2011, Nakornrachasima, Thailand.
- Liewhiran C, Tamaekong N, Wisitsoraat A, Phanichphant S. Highly selective environmental sensors based on flame-spray-made SnO₂ nanoparticles, Pure and Applied Chemistry International Conference 2012 (PACCON 2012), 11-13, January, 2012, The Empress Concention Center, Chiang Mai, Thailand.
- Liewhiran C, Wisitsoraat A, Phanichphant S. Enhanced Sensing Performance of Noxious H₂S Sensor Based on Flame-spray-made Electroactived-Cu/SnO₂ Nanoparticles, IMCS 2012 –The 14th International Meeting on Chemical Sensors, 20-23, May, 2012, Nürnberg/Nuremberg, Germany
- ได้นำผลงานไปเสนองานการประชุมวิชาการในงานวันวิชาการมหาวิทยาลัยเชียงใหม่ "วิถีวิจัย: นวัตกรรม เพื่อเศรษฐกิจสร้างสรรค์และความยั่งยืน (Research path: Innovation for creative economy and sustainability" ครั้งที่ 6 ระหว่างวันที่ 25-26 พฤศจิกายน พ.ศ. 2553 ที่จังหวัดเชียงใหม่ ประเทศไทย โดยเสนอผลงานแบบโปสเตอร์ เรื่อง "The Processing of High Purity SnO₂ Nanoparticles by Flame Spray Pyrolysis for Use as the High Sensitive Sensor for Toxic and Flammable Gases"

การได้รับเชิญไปเป็นวิทยากร/ผู้เชี่ยวชาญในการพิจารณาบทความ (Reviewer)

January 2012 The co-chairman in PACCON 2012 conference, Thailand

The reviewer for abstracts and manuscripts acceptations of the Chiang Mai

Journal of Science

February 2012 The reviewer of the Sensors and Actuators B Chemical in Elsevier Publisher in

titled "Phase stability of noble metal loaded WO₃ for SO₂ sensor applications"

เอกสารแนบ

Article

H₂ Sensing Response of Flame-Spray-Made Ru/SnO₂ Thick Films Fabricated from Spin-Coated Nanoparticles

Chaikarn Liewhiran ¹, Nittaya Tamaekong ², Anurat Wisitsoraat ³ and Sukon Phanichphant ^{2,*}

- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50202, Thailand; E-Mail: chaikarn 1@yahoo.com
- Nanoscience Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50202, Thailand; E-Mail: doramon_koygy@hotmail.com
- National Electronics and Computer Technology Center, Pathumthani, 12120, Thailand; E-Mail: a.wisitsoraat@nectec.or.th
- * Author to whom correspondence should be addressed; E-Mail: sphanichphant@yahoo.com; Tel.: +66-81-882-7977; Fax: +66-53-892-277.

Received: 7 August 2009; in revised form: 21 October 2009 / Accepted: 22 October 2009 /

Published: 11 November 2009

Abstract: High specific surface area (SSA_{BET}: 141.6 m²/g) SnO₂ nanoparticles doped with 0.2-3 wt% Ru were successfully produced in a single step by flame spray pyrolysis (FSP). The phase and crystallite size were analyzed by XRD. The specific surface area (SSA_{BET}) of the nanoparticles was measured by nitrogen adsorption (BET analysis). As the Ru concentration increased, the SSA_{BET} was found to linearly decrease, while the average BET-equivalent particle diameter (d_{BET}) increased. FSP yielded small Ru particles attached to the surface of the supporting SnO₂ nanoparticles, indicating a high SSA_{BET}. The morphology and accurate size of the primary particles were further investigated by TEM. The crystallite sizes of the spherical, hexagonal, and rectangular SnO₂ particles were in the range of 3-10 nm. SnO₂ nanorods were found to range from 3-5 nm in width and 5-20 nm in length. Sensing films were prepared by the spin coating technique. The gas sensing of H₂ (500–10,000 ppm) was studied at the operating temperatures ranging from 200–350 °C in presence of dry air. After the sensing tests, the morphology and the cross-section of sensing film were analyzed by SEM and EDS analyses. The 0.2%Ru-dispersed on SnO₂ sensing film showed the highest sensitivity and a very fast response time (6 s) compared to a pure SnO₂ sensing film, with a highest H₂ concentration of 1 vol% at 350 °C and a low H₂ detection limit of 500 ppm at 200 °C.

Keywords: SnO₂; ruthenium; flame spray pyrolysis; H₂ sensor

1. Introduction

SnO₂ is one of the most promising materials for sensors and it has attracted the attention of scientists interested in gas sensing applications under atmospheric conditions. Semiconducting metal oxides in general, and SnO₂ in particular, have been investigated extensively for the purpose of practical applications such as gas leak detecting and environmental monitoring. It is a wide band gap (3.6 eV) n-type semiconductor and the best-understood prototype of oxide-based gas sensors for the detection of reducing gases (like CO [1-6], H₂ [6-12], SO₂ [13,14], NH₃ [15,16], H₂S [11,17], C₂H₅OH [18]) or oxidizing gases (like NO₂ [1,5,12], O₂ [19,20]) in air. The detection of H₂ gas in different industrial applications is especially important for safety reasons. The development of a gas sensor for 10–10,000 ppm of H₂ gas is also of high interest since H₂ is one of the main gases evolving under pyrolysis in the initial stage of combustion. H₂ gas leaks easily from gas lines and systems and is one of the most explosive gases.

The electrical properties of nanocrystalline SnO₂ strongly depend on crystallite size and surface state produced by gas adsorption which results in the space charge appearance and band modulation [5]. The flame aerosol synthesis method is one of the most promising routes for the formation of single and multi-component functional nanoparticles at low cost and high production rate from gases in a flame. The sizes of the particles range from a few to several hundred nanometers in diameter, depending on the material and process conditions. The FSP process was systematically investigated using an external-mixing gas-assisted atomizer supported by premixed methane and oxygen flamelets [21-23]. In flame reactors, the energy of the flame is used to drive chemical reactions of precursors resulting in clusters which further grow to nanoparticles by surface growth and/or coagulation and coalescence at high temperatures. Therefore, the FSP is a very promising technique for sensor material fabrication since it enables primary particle and crystal size control [21-24], which are important to improve the sensitivity, as well as the controlled in situ deposition of noble metal clusters [2]. FSP also has the advantage of allowing one to completely manufacture the nanopowder in a single high-temperature step without affecting the microstructure and noble metal particle size in a subsequent annealing process [25]. Moreover, the importance of the size control, the required large and easily accessible surface area (large pore size, no micropores) the desired high crystallinity, the efficiency of noble metal doping (i.e., Pt, Pd, and Ru) and competitive production rates put high demands on any chosen method of nanoparticle production for sensor materials.

The gas sensors based on SnO₂ and metal-doped SnO₂ nanostructures were found to be good candidates for detecting both reducing and oxidizing gases of various concentrations. Many researchers have reported that pure SnO₂ and metal-doped SnO₂ could be widely used to detect H₂ vapor [6-12]. A summary comparing gas sensing with pure SnO₂ and metal-doped SnO₂ prepared by several synthetic methods is shown in Table 1. The effect of catalytic Ru doping, as well as the sensing temperature, on the sensor characteristics of sensing films were reported. It has been shown that the sensor characteristics of sensing films are affected by the particles morphology, Ru doping levels, and

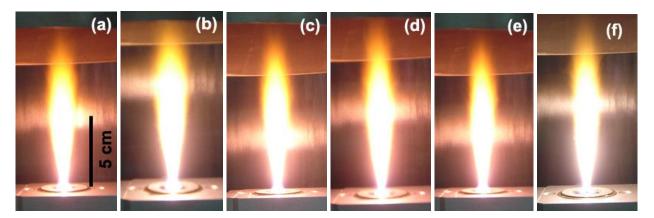
the operating temperatures, are all important parameters that affect the gas sensing properties in terms of high sensitivity, fast response and recovery time. FSP and spin coating technique have several advantages in producing the nano-sized particles and regular sensing films suitable for the gas sensor. Especially, the Ru additives increase the rate of specific reactions on the surface of SnO₂ grain due to spill-over effect of modification of surface energy states. Also, Ru metals were intentionally introduced for certain gases, promoting the receptor function and thus improving the sensing behaviors in terms of the selectivity and time factors. Therefore in the present study, it was of interest to apply FSP for a new production of Ru/SnO₂ nanoparticles for use as H₂ gas sensor.

Table 1. Summary on comparison of metal-doped SnO₂ with several methods for gas sensing.

Authors	Method	Doping level	Gas Concentration	Sensing performances
Sahm <i>et al</i> . [1]	FSP (nanopowders) Drop coating (sensors)	Pure SnO ₂	NO ₂ (10–5,000 ppb), CO (500–10,000 ppm), propanol (10–300 ppm)	NO ₂ ; Sensitivity: ~20 to 5,000 ppb at 220 °C
				Propanal; Sensitivity: ~300 to 150 ppm at 220 °C
Mädler et al. [2]	FSP (nanopowders) Thermophoretic deposition (sensors)	0.2 wt%Pt/SnO ₂	CO; 50 ppm	Sensitivity: 8 to 50 ppm at 350 °C
Salehi [9]	Evaporation, Chemical Vapor Deposition, Spray Pyrolysis, Sputtering	In/SnO ₂	H ₂ ; 500–3,000 ppm	Response to 7% H ₂ at 200 °C of 0.5 s
Ryzhikov et al. [10]	Magnetron Sputtering: Sensing film; Laser Ablation: Doping process	Pt/SnO ₂	H ₂ ; 20–20,000 ppm	Sensitivity: 630 to 1,000 ppm at 300 °C
Niranjan et al. [11]	Modified Pechini Route	0.2–0.7 wt%Ru/SnO ₂	H ₂ ; 700 vol ppm	0.6 wt%Ru/SnO ₂ Sensitivity: 150 at 275 °C Response time: 3 s at 275 °C Recovery time: 5–10 min at 275 °C

2. Experimental

2.1. Flame Synthesis of Nanopowders


The experimental setup for the synthesis of pure SnO₂, 0.2–3 wt%Ru/SnO₂ nanopowders by FSP is shown in Figure 1. The flame-spray-made (5/5) pure SnO₂ was designated as P0 while the SnO₂ nanopowders doped with 0.2, 0.6, 1, 2, and 3 wt%Ru were designated as P0.2, P0.6, P1, P2, and P3, respectively. Precursor solutions (0.5 M) were prepared by dissolving appropriate amounts of tin (II) 2-ethylhexanoate (Aldrich, 95%) and ruthenium (III) acetylacetonate (Aldrich, 97%) used as Sn and Ru precursors in xylene (Carlo Erba, 98.5%), respectively. In a typical run, the precursor mixture was fed into a nozzle at a constant feed rate of 5 mL/min using a syringe pump. At the end of the nozzle the precursor solution was dispersed by 4.30 L/min oxygen forming a spray with a pressure drop at the capillary tip kept constant at 1.5 bars by adjusting the orifice gap area. A sheath gas flow of 3.92 L/min of O₂ was issued concentrically around the nozzle to stabilize and contain the spray flame. The spray was ignited by supporting flamelets fed with oxygen (2.46 L/min) and methane (1.19 L/min) which are positioned in a ring around the nozzle outlet. The observed flame height was approximately 10-12 cm, and it increased slightly with increasing combustion enthalpy. The combustion enthalpies are directly dependent on the particular solvent, starting materials, and dopants used. Pure SnO₂ samples show an light orange and Ru doped samples show light pink color in the base and middle of the flame, and also light orange on the top of the flame, as shown in Figure 2. After evaporation and combustion of precursor droplets, particles are formed by nucleation, condensation, coagulation, coalescence, and Ru deposit on the SnO₂ support. Finally, the nanoparticles were collected on a glass microfibre filters (Whatmann GF/A, 25.7 cm in diameter) with the aid of a vacuum pump (Busch, Seco SV 1040C).

Vacuum Pump Ru deposited on the SnO₂ support Filter Housing Ru Nucleaton, Condensation with Glassfiber Filter SnO₂ Nanoparticles Nucleation, Condensation, Coagulation and Coalescence Vapor Spray Flame **Droplets** Evaporation Supporting Flame Spray Formation Liquid Precursor Sheath O₂ Flamlet CH₄ Precursor Liquid — Flamlet O₂ P

Dispersion O₂

Figure 1. Schematic of the FSP experimental set up for the synthesis of samples P0-P3.

Figure 2. Spray flame of: (a) pure SnO₂, (b–f) 0.2–3 wt% Ru/SnO₂ nanoparticles producing 5 ml/min of liquid precursor feed rate and dispersed by O₂ (5 l/min) at 1.5 bar pressure drop across the nozzle tip. The flame heights were observed ranging from 10–12 cm with slight increasing the combustion enthalpy and Ru concentrations.

2.2. Powder Characterizations

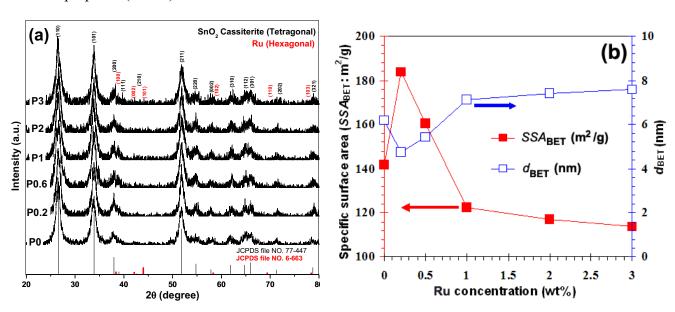
The powder phases were analyzed by X-ray diffraction (XRD) [Phillips X-'pert] using CuK α radiation (20 kV, 20 mA) with a scanning speed of 5°/minute. The specific surface areas of the nanopowders were obtained from BET measurements [Autosorb 1 MP, Quantachrome]. All samples were degassed at 120 °C for 2 h prior to analysis. The diameter of particles were calculated from $d_{\text{BET}} = 6/SSA_{\text{BET}}$ x ρ_{sample} , where SSA_{BET} is the specific surface area (m²/g), ρ_{samples} are the average density of SnO₂ ($\rho_{\text{SnO2}} = 6.85$ g/cm³ [1]) and the density of ruthenium ($\rho_{\text{Ru}} = 10.65$ g/cm³ taken into account for their weight content of different doping [26]). The accurate morphologies of the nanoparticles and cross-section structures of sensor were analyzed by TEM [JSM-2010, JEOL], SEM [JSM-6335F, JEOL], and EDS analyses.

2.3. Paste and Sensor Preparations

An appropriate quantity of 0.28 mL homogeneous mixed solution was prepared by stirring and heating at 80 °C for 12 hr with ethyl cellulose (Fluka, 30–70 mPa.s) as the temporary binder and terpineol (Aldrich, 90%) as a solvent. The liquid mixture was combined with 60 mg samples of the P0, P0.2, P1, and P3 nanopowders and mixed for 30 min to form a paste prior to spin-coating. The resulting paste was firstly spin-coated at 700 rpm for 10 s, and then subsequently at 3,000 rpm for 30 s on the Al_2O_3 substrates interdigitated with Au electrodes (0.5 × 0.5 cm) to deposit sensing films. The resulting substrates were annealed in an oven at 150 °C for 1 h with an annealing rate of 1 °C/min and at 400 °C for 1h with an annealing rate of 1 °C/min for binder removal prior to the sensing test [28].

2.4. Sensor Measurement

The sensor characteristics of sensing films were characterized toward the high concentration of H_2 gas (500–10,000 ppm). The flow through technique was used to test the gas-sensing properties of sensing films. A constant flux of synthetic air of 2 L/min as gas carrier was flown to mix with the


desired concentration of pollutants dispersed in synthetic air. All measurements were conducted in a temperature-stabilized sealed chamber at 20 °C under controlled humidity. The gas flow rates were precisely manipulated using a computer controlled multi-channel mass flow controller. The external NiCr heater was heated by a regulated DC power supply to different operating temperatures. The operating temperature was varied from 200 °C to 350 °C. The resistances of various sensors were continuously monitored with a computer-controlled system by voltage-amperometric technique with 10 V DC bias and current measurement through a picoammeter. The sensor was exposed to a gas sample for ~5 minutes for each gas concentration testing and then the air flux was restored for 15 minutes. The sensitivity (S) is defined in the following as the resistance ratio R_a/R_g [11,27-30], where R_a is the resistance in dry air, and R_g is the resistance in the test gas. The response time (T_{res}) is defined as the time required until 90% of the response signal is reached. The recovery time (T_{rec}) denotes the time needed until 90% of the original baseline signal is recovered. After the sensors fabricated using samples P0, P0.2, P1, and P3 had been tested with varied the operating temperatures, they were designated as S0, S0.2, S1, and S3, respectively. Finally, the morphologies, film thickness of sensing layers and elemental compositions were further analyzed by SEM and EDS line-scan mode analyses.

3. Results and Discussion

3.1. Nanopowder Properties

Figure 3(a) shows the XRD patterns of flame-spray-made pure SnO_2 and 0.2-3 wt%Pd/SnO₂ nanopowders. All samples were highly crystalline, and all peaks can be confirmed to be the cassiterite-tetragonal phase of SnO_2 , which matched well with the JCPDS file No. 77-447. Ru peaks were not found in these patterns (JCPDS file No. 6-663). It can be assumed that the amount of Ru concentration was very low, which affected the appearance of the Ru peaks.

Figure 3. (a) XRD and (b) BET data of flame-made (5/5) 0–3 wt%Ru/SnO₂ as-prepared (P0-P3).

The diffraction peak for 0.2 wt\% Ru/SnO₂ nanopowder was the broadest compared to other doping levels, suggesting relatively well-dispersed smaller Ru particles. As the Ru concentration increased, all peaks were slightly sharpened and increased in intensity, indicating that the poor-dispersion of larger Ru particles leads to rough agglomeration at higher Ru doping levels. These results were consistent with the BET data, as shown in Figure 3(b). The specific surface area (SSA_{BET}) drastically increased from $141.6~\text{m}^2/\text{g}$ (bare SnO_2) to $183.8~\text{m}^2/\text{g}$ (0.2 wt%Ru/SnO₂). When the Ru concentration increased (0.2 to 3 wt%Ru), the SSA_{BET} were found to linearly decrease (183.8 to 113.5 m²/g), with an increase in the average BET-equivalent particle diameter (d_{BET}) (bare SnO₂: 6.2 nm, 0.2–3 wt%Ru/SnO₂: 4.7 to 7.6 nm). This trend was consistent with Niranjan et al. [11] who studied the effect of Ru concentration on crystalline SnO₂ nanoparticles. To explain this result, it can be speculated as follows: during the processes of Ru particle formation and deposition on the particle support (SnO₂) in the flame, the Ru created a new nucleation center, which in turn changed the nucleation type from homogeneous to heterogeneous, and deteriorated the deposition formation leading to the agglomeration of the tiny Ru particles at high doping levels. This can be confirmed from the accurate morphology by TEM bright-field images. The FSP afforded small Ru particles attached to the surface of the supporting SnO₂ nanoparticles indicating a high SSA_{BET}. The well-dispersed flame-made 0.2 wt%Ru/SnO₂ nanoparticles were confined to the SnO₂ surface. The larger crystallite diameters indicate clumping and clusters of Ru, translating into a poor dispersion of the Ru nanoparticles on SnO₂ support which affected to the decrease of the SSA_{BET}. The SEM micrograph [Figure 4(a)] and the elemental compositions of the agglomerated nanoparticles formed with the sample with the highest Ru concentration (P3) are shown by the EDS spectra in Figure 4(b). Interestingly, the analyzed square regions [Figure 4(b)] were composed of the agglomerated nanoparticles, the copper grid, and gold sputtering prior to an analysis. The EDS spectra showed elemental compositions rich in copper (Cu), caused by the contamination of copper foil, poor gold (Au) caused by the contamination of gold sputtering which used to prepared the samples prior to an analyzing, tin (Sn), oxygen (O), and poor ruthenium (Ru) elements.

Figure 4. (a) SEM micrographs of P3 samples. The EDS spectra for the square region indicated in (b) P3 sample contain Ru deposited on SnO₂ support spin-coated on the Au/Al₂O₃ substrate.

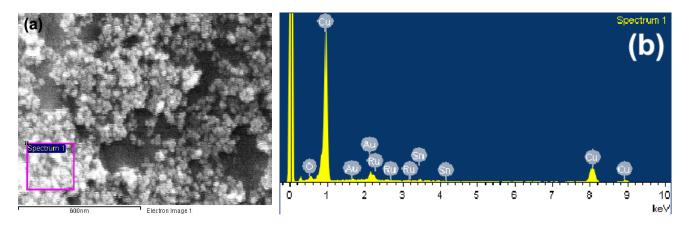
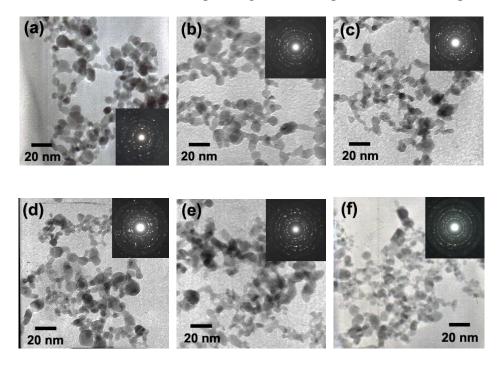
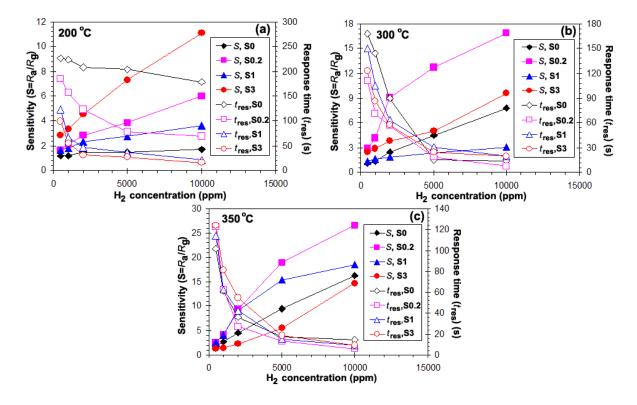



Figure 5 (a–f) show TEM bright-field images of P0-P3. The corresponding diffraction patterns are shown in the insets. The diffraction patterns illustrated spot patterns corresponding to the tetragonal-cassiterite structure of SnO₂, indicating the SnO₂ nanoparticles were highly crystalline, in good agreement with the XRD data. The TEM bright-field images of the FSP (5/5)-made nanoparticles, indicate polyhedral aggregates of primary particles. The morphologies of flame made (5/5) SnO₂ and 0.2–3 wt% Ru/SnO₂ nanoparticles contained mainly spherical particles, with diameters ranging from 3–10 nm, with occasional rectangular, hexagonal (3–10 nm) and rod-like (3–5 nm in width, and 5–20 nm in length) particles. Ru nanoparticles were not found in these micrographs. This is because Ru is very small when compared with the size of SnO₂ nano-support. The primary particle diameters observed by TEM were consistent with the $d_{\rm BET}$. From these data, it can be clearly seen that the amount of Ru concentrations would not affect to change the size of SnO₂ nanoparticles. We could assume this doping formation from the *Hume-Rothery* rules [31-33], which commonly used to explain the solid mixtures called solid solutions.

Figure 5. (a) shows TEM bright-field images of highly crystalline flame-made (5/5) SnO₂ nanoparticles (P0) and (b–f) 0.2–3 wt%Ru/SnO₂ nanoparticles (P0.2-P3) with the same magnifications. Insets show the corresponding diffraction patterns of the nanoparticles.

In the doping of materials, atoms of the solvent (host material; Sn) are successfully replaced by the solute-atoms (the doping atom; Ru) from their lattice positions (interstitial solid solutions are not discussed here). In the other words, one material gets dissolved in the other, without disturbing the crystal structure, except for lattice distortions (expansions or compressions). For the formation of solid solutions, according to the *Hume-Rothery* rules, some criteria have to be fulfilled: (1) the atomic radii of the solute (Ru = 178 pm) [34] and solvent (Sn = 145 pm) [34] atoms must differ by no more than 15% (~22.75%). If not, it is likely to have a low solubility. This is the first rule which must be considered. The atomic size factor was said to be unfavorable; (2) the solute and solvent should have similar electronegativity (Ru = 2.2, Sn = 1.8) [33], compared to the host. If the electronegativity


difference is too great, the metals will tend to form intermetallic compounds instead of solid solutions. Its solubility in the host would therefore be limited, because of the so-called electronegative valency effect; (3) a metal with lower valency is more likely to dissolve one which has a higher valency, than vice versa (relative valency effect). The valence electrons are the electrons in the last shell or energy level of an atom. Maximum solubility occurs when the solvent (Sn) [35] and solute (Ru) [36,37] have the same valency. Moreover, the thermodynamic instability of the lower oxidation states of Ru was discussed by Wiley et al. [36-38] to explain their inability to synthesize oxygen deficient Ru-bearing perovskites for catalysis. Although spectroscopic data indicated that other oxidation states (Ru2+, Ru3+, Ru⁵⁺) could exist in oxides, species other than Ru⁴⁺ generally occurred in mixed-valence phases dominated by Ru⁴⁺. Exceptions exist, however, and Ru⁵⁺ and even Ru⁷⁺ occurred in oxide compounds where there were essential structural constituents and the only Ru species. For this reason, a more precise generalization that Ru⁴⁺ was the lowest valence in oxides which was not induced by the special defect equilibrium. Metals with lower valency will tend to dissolve metals with higher valency; and (4) the crystal structures of solute (Ru = hexagonal) and solvent (Sn = tetragonal) must match. Thus the size of particles in the doped sample were not affected by Ru due to the fact that Ru could not get in solid solution into the unit cell of SnO₂ crystal structure.

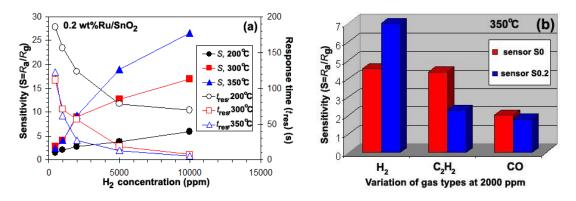
3.2. Gas Sensing Properties

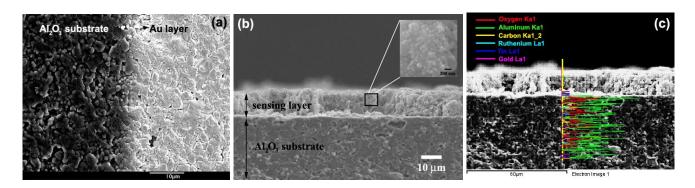
Figures 6(a-c) show the plot of sensitivity (S) and response times (T_{res}) versus hydrogen concentrations ranging from 500-10,000 ppm for the sensors S0, S0.2, S1, and S3 during a forward cycle at operating temperature ranging from 200-350 °C. It was found that the sensitivity increased with operating temperature to the maximum at 350 °C [Figure 6(c)]. Interestingly, the temperature of maximum sensitivity was found to shift towards lower Ru concentrations, which can be attributed to the effect of particles size and the specific surface area, as a result of a well-dispersed Ru incorporation into the SnO₂ matrix. At the operating temperature of 200 °C, the sensitivity of all Ru doping materials was seen to be higher than that of pure SnO₂. The sensitivity (filled symbols, left axis) increased and the response time (open symbols, right axis) decreased with increasing H₂ concentrations. Moreover, it was found that the highest Ru concentration (3 wt%) showed the best sensing performance in terms of sensitivity (S = 8.6) and response time. The response time of a 3 wt% Ru/SnO₂ sensor for 10,000 ppm at 200 °C was 16 s (open circles, right axis), which was better than pure SnO₂ (178 s) (open diamonds, right axis) and the other doping levels (0.2 wt% Ru/SnO₂ = 70 s (open rectangles, right axis), and 1 wt% Ru/SnO₂ = 22 s (open triangles, right axis)). On the other hand, both the operating temperatures of 300 °C and 350 °C had better sensing performance than 200 °C in terms of sensitivity (filled symbols, left axis) and faster response time (open symbols, right axis). Also, in the case of Ru doping the best performance was achieved at a sensor operating temperature of 350 °C. However, the situation was completely different when more Ru was added. Here, 1 wt% (300 °C) and 3 wt% Ru/SnO₂ (350 °C) also displayed evidently reduced sensing performance in terms of sensitivity. Note that these tests were performed with a set of four sensors placed in the chamber. The sensitivities of all sensors were found to increase rather linearly with increasing H2 concentrations. As the Ru concentration increased from 0.2 to 3 wt%Ru, the lowest Ru concentration (S0.2) the sensor behaviors improved in terms of the best sensitivity (to 10,000 ppm, S = 27) (filled rectangles, left axis) and very fast response

times ($T_{\text{res}} = 6 \text{ s}$) (open rectangles, right axis) at 350 °C, which evidently were better than S1, and S3. The sensor S0.2 showed very fast response to H_2 gas, whereas the response of the pure SnO_2 sensor (S0) was somewhat sluggish. Figures 6(b) and 6(c) indicate the dependence of the sensitivity on the Ru concentration at an operating temperature of 300 °C and 350 °C, respectively. The amount and distribution of Ru species in the SnO₂ support were important parameters governing the sensitivity, being maximum (S = 27) at 350 °C for a SnO₂ containing 0.2 wt% Ru. The sensitivity consistently increased with increasing H₂ concentration. The role of the Ru in enhancing the sensitivity and response rate of the sensor could be due to the electronic interaction between the sensitizer and the semi-conducting material. Ru acts as a catalyst and enhances the reaction rate, especially because $\chi_o - \chi_{Ru} < \chi_o - \chi_{Sn}$, where χ_o represents the electronegativity value (χ_o , χ_{Sn} , $\chi_{Ru} = 3.5$, 1.8, 2.2, respectively) [11]. Thus, when oxygen is adsorbed on the Ru zones of strong localization at elevated temperatures, the potential between the SnO₂ grains may be raised and as a result, the total resistance increases as compared with the sample without Ru. The decrease of the amount of Ru concentration leads to well-dispersed Ru on the SnO₂ surface arising from the chemisorbed oxygen species. Moreover, Figure 7(a) shows the response to high concentrations of H₂ (500–10,000 ppm) of sensors which were functionalized in situ with 0.2 wt% Ru. Doping the SnO₂ with 0.2 wt% Ru results in a much steeper calibration curve and the highest sensor signal compared to pure SnO₂ [see Figure 7(a)]. The higher sensor signal, and especially the higher sensitivity (i.e., the steeper response curve), demonstrate an enhanced sensor performance.

Figure 6. (a–c) Sensing performance in the terms of the sensitivity (filled symbols, left axis) and corresponding response times (open symbols, right axis) of pure SnO₂ (S0) sensors and doped with 0.2, 1, 3 wt% (S0.2, S1, S3) sensors as a function of H₂ concentration in dry air at (a) 200, (b) 300, and (c) 350 °C. The sensitivity increased and the response times decreased with increasing H₂ concentration.

Figure 7. (a) Sensing performance in the terms of the sensitivity (filled symbols, left axis) and corresponding response times (open symbols, right axis) of 0.2 wt%Ru/SnO₂ (S0.2) sensors as a function of H₂ concentration in dry air at 200 °C (circles), 300 °C (rectangles), and 350 °C (triangles). The sensitivity increased and the response times decreased with increasing H₂ concentration and operating temperature. (b) Selectivity histogram of pure SnO₂ and containing 0.2 wt%Ru for different gases (0.2%vol) at 350 °C.




Figure 6 shows the selectivity histogram for 0.2 vol% of different gases at an operating temperature of 350 °C. The sensors S0 and S0.2 exhibited similar selectivity towards the flammable H_2 and C_2H_2 gases and toxic CO gas. This can be attributed to the identical reducing behavior of both gas types. The S0.2 sensor has a good gas selectivity for 0.2 vol% H_2 of 7 at 350 °C. The sensitivity of S0.2 sensor of C_2H_2 and CO gases were 2.3 and 1.8 at 0.2 vol% H_2 at 350 °C. Thus, the gas sensitivity of S0.2 sensor was higher than that of C_2H_2 and CO gases. The H_2 selectivity of S0.2 sensor was substantially higher compared to pure SnO₂ gas sensor (S0). On the other hand, C_2H_2 and CO gases sensitivity/selectivity of S0.2 sensor was also evidently deteriorated compared to that of pure SnO₂ gas sensor (S0). Ru cannot improve the sensing performance and is unsuitable for use as dopant in SnO₂ sensor for both C_2H_2 and CO gases. This is because the absorption configurations of the gas molecules and the surface fragmentation reactions on the Ru sites are responsible for the similar sensitivity values towards all gases.

3.3. SEM-Film Thickness Sensing Layer

The microstructures of high density Al₂O₃ (dark view) substrate interdigitated with Au electrodes (bright view) was evidently seen as the phase boundaries in Figure 8(a). The cross-section, film thickness, and surface morphology of the sensing film layer (S0.2) after a sensing test at 200–350 °C were observed using SEM analysis as shown in Figure 8(b). The film thickness of sensing film was about 10 μm, which was of tremendous benefit to the H₂ gas sensing properties. The microstructure of high density Al₂O₃ substrate was visible. The square emphasized the investigation selected area at high magnification to an aggregated of primary particles after sensing test. The particle sizes of nanoparticles slightly changed after annealing and sensing test were also shown in the inset. In addition, the trends in the elemental composition of the agglomerated nanoparticles formed of sample P0.2 was shown by the EDS line scan mode in Figure 8(c). Interestingly, the analyzed regions composed of the nanoparticles, the copper grid, and gold sputtering prior to an analysis. The line scan across the agglomerate for sensor P0.2 is indicated in Figure 8(c). The elemental-line histograms are

shown as a series of solid lines corresponding to a rich in copper (Cu) caused by the contamination of copper grid, poor gold (Au), tin (Sn), oxygen (O), and ruthenium (Ru) elements. After annealing process, a denser film layer was formed. Regularities and preciseness in the film thickness stem from the spin coating technique.

Figure 8. (a) the phase boundaries of microstructures of high density Al_2O_3 (dark view, left) substrate interdigitated with Au electrodes (bright view, right), (b) The film thickness was approximately 10 μ m (P0.2) spin-coated onto Au/Al_2O_3 substrate (side view) cross-section after sensing at 350 °C in dry air (S0.2). The square emphasizes how the particle sizes are slightly changed after the annealing and sensing test was also shown in the inset and (c) EDS elemental-line scan analysis.

4. Conclusions

FSP was successfully performed for the synthesis of pristine SnO_2 and 0.2-3 wt% Ru/SnO_2 nanopowders for a H_2 gas sensing application. The effect of Ru content on the doping of SnO_2 nanoparticles can be assumed according to the *Hume-Rothery* rules. It was noticed that the Ru could not form into the crystal structure of SnO_2 in solid solution, thus the size of particles in the doped samples were not affected by the Ru atoms. The fabricated sensors were prepared by the spin coating technique. It can be concluded that the highest sensitivity and very fast responses to H_2 gas were obtained by the incorporation at the lowest concentration of Ru (0.2 wt%) and the highest operating temperature (350 °C). The response time was within 6 s for 1 vol% H_2 in presence of dry air. The 0.2 wt% Ru/SnO_2 sensor has good gas selectivity for 0.2 vol% H_2 at 350 °C.

Acknowledgements

The authors gratefully acknowledge the financial support from the Thailand Research Fund; the Office of Commission on Higher Education; PERCH-CIC; National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, through its program of Center of Excellence Network, Thailand and Service Center (EMRSc), Chiang Mai University, Thailand for experimental facilities and the NECTEC laboratory for the sensor experiments.

References and Notes

1. Sahm, T; Mädler, L.; Gurlo, A.; Barsan, N.; Pratsinis, S.E.; Weimar, U. Flame spray synthesis of tin dioxide nanoparticles for gas sensing. *Sens. Actuat. B-Chem.* **2004**, *98*, 148-153.

- 2. Mädler, L.; Roessler, A.; Pratsinis, S.E.; Sahm, T.; Gurlo, A.; Barsan, N.; Weimar, U. Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO₂ nanoparticles. *Sens. Actuat. B-Chem.* **2005**, *114*, 283-295.
- 3. Mädler, L.; Sahm, T.; Gurlo, A.; Grunwaldt J.-D.; Barsan, N.; Weimar, U.; Pratsinis, S.E. Sensing low concentrations of CO using flame-spray-made Pt/SnO₂ nanoparticles. *J. Nanopart. Res.* **2006**, *8*, 783-796.
- 4. Ponce, M.A.; Castro, M.S.; Aldao, C.M. Resistance and capacitance analysis of Pd-doped and undoped SnO₂ thick films sensors exposed to CO atmospheres. *Ceram. Inter.* **2006**, *32*, 733-737.
- 5. Safonova, O.V.; Rumyantseva, M.N.; Ryabova, L.I.; Labeau, M.; Delabouglise, G.; Gaskov, A.M. Effect of combined Pd and Cu doping on microstructure, electrical and gas sensor properties of nanocrystalline tin dioxide. *Mater. Sci. Eng.* **2001**, *B85*, 43-49.
- 6. Baik, N.S.; Sakai, G.; Miura, N.; Yamazoe, N. Hydrothermally treated sol solution of tin oxide for thin-film gas sensor. *Sens. Actuat. B-Chem.* **2000**, *63*, 74-79.
- 7. Katsuki, A.; Fukui, K. H₂ selective gas sensor based on SnO₂. Sens. Actuat. B-Chem. **1998**, 52, 30-37.
- 8. Chi-Hwan, H.; Sang-Do H.; Singh, I.; Toupance, T. Micro-bead of nano-crystalline F-doped SnO₂ as a sensitive hydrogen gas sensor H₂ selective gas sensor based on SnO₂. *Sens. Actuat. B-Chem.* **2005**, *109*, 264-269.
- 9. Salehi, A. Selectivity enhancement of indium-doped SnO₂ gas sensors. *Thin Solid Films* **2002**, 416, 260-263.
- 10. Ryzhikov, A.S.; Shatokhin, A.N.; Putilin, F.N.; Rumyantseva, M.N.; Gaskov, A.M.; Labeau, M. Hydrogen sensitivity of SnO₂ thin films doped with Pt by laser ablation. *Surf. Coat. Technol.* **2005**, *107*, 387-391.
- 11. Niranjan, R.S.; Hwang, Y.K.; Kim, D.-K.; Jhung, S.H.; Chang, J.-S.; Mulla, I.S. Nanostructured tin oxide: Synthesis and gas-sensing properties. *Mater. Chem. Phys.* **2005**, *92*, 384-388.
- 12. Hyodo, T.; Sasahara, K.; Shimizu, Y.; Egashira, M. Preparation of macroporous SnO₂ films using PMMA microspheres and their sensing properties to NO_x and H₂. *Sens. Actuat. B-Chem.* **2005**, *106*, 580-590.
- 13. Bukun, N; Vinokurov, A.; Vinokurova, M.; Derlyukova, L.; Dobrovolsky, Y.; Levchenko, A. Chemisorption and electrochemical reactions of SO₂ on modified SnO₂ electrodes. *Sens. Actuat. B-Chem.* **2005**, *106*, 153-157.
- 14. Lančok, J.; Santoni, A.; Penza, M.; Loreti, S.; Menicucci, I.; Minarini, C.; Jelinek, M. Tin oxide thin films prepared by laser-assisted metal-organic CVD: Structural and gas sensing properties. *Surf. Coat. Technol.* **2005**, *200*, 1057-1060.
- 15. Wang, Y.D.; Wu, X.H.; Su, Q.; Li, Y.F.; Zhou, Z.L. Ammonia-sensing characteristics of Pt and SiO₂ doped SnO₂ materials. *Solid-state Elec.* **2001**, *45*, 347-350.
- 16. Teeramonglonrasmee, A.; Sriyudthsak, M. Methanol and ammonia sensing characteristics of sol-gel derived thin film gas sensor. *Sens. Actuat. B-Chem.* **2000**, *66*, 256-259.

17. Jin, C.; Yamazaki, T.; Ito, K.; Kikuta, T.; Nakatani, N. H₂S sensing properties of porous SnO₂ sputerred films coated with various doping films. *Vacuum* **2006**, *80*, 723-725.

- 18. Rella, R.; Serra, A.; Siciliano, P.; Vasanelli, L.; De, G.; Licciulli, A.; Quirini, A. Tin oxide-based gas sensors prepared by the sol-gel process. *Sens. Actuat. B-Chem.* **1997**, *44*, 462-467.
- 19. Tiburcio-Silver, A.; Sánchez-Juárez, A. SnO₂:Ga thin films as oxygen gas sensor. *Mater. Sci. Eng.* **2004**, *110*, 268-271.
- 20. Maffeïs, T.G.G.; Owen, G.T.; Penny, M.W.; Starke, T.K.H.; Clark, S.A.; Ferkel, H.; Wilks, S.P. Nano-crystalline SnO₂ gas sensor response to O₂ and CH₄ at elevated temperature investigated by XPS. *Surf. Sci.* **2002**, *520*, 29-34.
- 21. Pratsinis, S.E. Flame aerosol synthesis of ceramic powders. *Prog. Energ. Combust.* **1998**, *24*, 197-219.
- 22. Mädler, L.; Kammler, H.K.; Mueller, R.; Pratsinis, S.E. Controlled synthesis of nanostructured particles by flame spray pyrolysis. *J. Aeros. Sci.* **2002**, *33*, 369-389.
- 23. Mueller, R.; Mädler, L.; Pratsinis, S.E. Nanoparticle synthesis at high production rates by flame spray pyrolysis. *Chem. Eng. Sci.* **2003**, *58*, 1969-1976.
- 24. Mädler, L.; Stark, W.J.; Pratsinis, S.E. Rapid synthesis of stable ZnO quantum dots. *J. Appl. Phys.* **2002**, *92*, 6537-6540.
- 25. Kammler, H.K.; Mädler, L.; Pratsinis, S.E. Flame synthesis of nanoparticles. *Chem. Eng. Tech.* **2001**, *24*, 583-596.
- 26. Lide, D. R. Properties of the elements and inorganic compounds, In *CRC Handbook of Chemistry and Physics*, 87th ed.; Taylor & Francis: New York, NY, USA, 2006; pp. 4-141.
- 27. Liewhiran, C.; Phanichphant, S. Influence of thickness on ethanol sensing characteristics of doctor-bladed thick film from flame-made ZnO nanoparticles. *Sensors* **2007**, *7*, 185-201.
- 28. Liewhiran, C.; Phanichphant, S. Improvement of flame-made nanoparticulate thick film morphology for ethanol sensing. *Sensors* **2007**, *7*, 650-675.
- 29. Liewhiran, C.; Phanichphant, S. Effects of palladium loading on the response of a thick film flame-made zno gas sensor for detection of ethanol vapor. *Sensors* **2007**, *7*, 1159-1184.
- 30. Liewhiran, C.; Phanichphant, S. Doctor-bladed thick films of flame-made Pd/ZnO nanoparticles for ethanol sensing. *Curr. Appl. Phys.* **2008**, *8*, 336-339.
- 31. Takeuchi, T.; Sato, H.; Mizutani, U. Investigation of Hume-Rothery stabilization mechanism from an initio band calculation for different electron compounds: Cu₅Zn₈ and Al-Mg-Zn, Al-Cu-Ru-Si approximants. *J. Alloy. Compd.* **2002**, *342*, 355-359.
- 32. Kreiner, G.; Moguilnikov, Y.; Burkhardt, U.; Schäpers, M. Hume-Rothery controlled formation of structurally complex alloy phases in the ternary Ga-Mg-Pd system. *J. Non-Cryst. Solids* **2004**, *334-335*, 17-22.
- 33. Tsai, A.-P. A test of Hume-Rothery rules for stable quasicrystals. *J. Non-Cryst. Solids* **2004**, 334-335, 317-222.
- 34. Clementi, E.; Raimondi, D.L.; Reinhardt, W.P. Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons. *J. Chem. Phys.* **1967**, *47*, 1300-1307.
- 35. Lide, D.R. Properties of solid, In *CRC Handbook of Chemistry and Physics*, 87th ed.; Taylor & Francis: New York, NY, USA, 2006; pp. 12-209.
- 36. Capobianco, C.J. Ruthenium solubility in hematite. Amer. Mineral. 1998, 83, 1152–1160.

37. Wiley, J.B.; Poeppelmeier, K.R. Reduction chemistry of platinum group metal perovskites. *Mater. Res. Bull.* **1991**, *26*, 1201-1210.

- 38. Kaim, W.; Sarkar, B. Mixed valency in ruthenium complexes-coordinative aspects. *Coordin. Chem. Rev.* **2007**, *251*, 584-594.
- © 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

Contents lists available at SciVerse ScienceDirect

Sensors and Actuators B: Chemical

journal homepage: www.elsevier.com/locate/snb

Semiconducting metal oxides as sensors for environmentally hazardous gases

K. Wetchakun^a, T. Samerjai^a, N. Tamaekong^a, C. Liewhiran^a, C. Siriwong^a, V. Kruefu^a, A. Wisitsoraat^b, A. Tuantranont^b, S. Phanichphant^{a,c,*}

- ^a Nanoscience Research Laboratory, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- ^b National Electronics and Computer Technology Center, Pathumthani 12120, Thailand
- ^c Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

ARTICLE INFO

Article history: Received 19 May 2011 Received in revised form 16 July 2011 Accepted 16 August 2011 Available online 22 August 2011

Keywords: Semiconducting metal oxides Gas sensors Environmentally hazardous gases

ABSTRACT

This article extensively reviews the recent development of semiconductor metal oxide gas sensors for environmentally hazardous gases including NO_2 , NO, N_2O , H_2S , CO, NH_3 , CH_4 , SO_2 and CO_2 . The gas sensing properties of differently-prepared metal oxides and loaded metal oxides towards nine environmentally hazardous gases have been individually compared and digested. Promising materials for sensitive and selective detection of each hazardous gas have been identified. For instance, unloaded WO_3 nanostructures are the most promising candidates for NO_2 sensing while metal catalyst loaded WO_3 and gold-loaded SnO_2 sensors are among the most effective for NO and N_2O sensing, respectively. Moreover, related gas-sensing mechanisms are comprehensively discussed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Due to elevated atmospheric pollution, effective and inexpensive systems for detection and quantification of environmentally hazardous gases have been progressively more important. Currently, standard air pollution measurements are still based on time-consuming and expensive analytical techniques such as optical spectroscopy and gas chromatography/spectroscopy. Gas sensors have been considered promising alternatives for environmental measurements due to their low cost, high sensitivity, fast response and direct electronic interface. However, their performances including accuracy, selectivity and reliability must be further improved to meet the requirements of standard air pollution measurement.

Over the past decades, several kinds of gas sensors have been developed based on different sensing materials and various transduction platforms. The main classes of gas-sensing materials include metal-oxide semiconductors, intrinsically conducting polymer, conducting polymer composite, metal-oxide/polymer composite and other novel materials. These materials can be applied on different transduction units including chemiresistive, surface acoustic wave (SAW), quartz crystal microbalance (QCM),

E-mail address: sphanichphant@yahoo.com (S. Phanichphant).

optical transducers and metal-oxide-semiconductor field-effect transistor (MOSFET) [1].

Among these, chemiresistive semiconducting metal oxides are among the most potential candidates due to their very low cost, high sensitivity, fast response/recovery time, simple electronic interface, ease of use, low maintenance and ability to detect large number of gases [2]. There are two main types of semiconducting metal oxide sensors including n-type whose majority carrier is electron (such as zinc oxide, tin dioxide, titanium dioxide, iron (III) oxide, etc.) and p-type whose majority carrier is hole (such as nickel oxide, cobalt oxide and few others) [3]. Majority of semiconducting metal oxides are n-type because electrons are naturally produced via oxygen vacancies. Potential applications of these chemical sensors include environmental monitoring, automotive emission monitoring and aerospace-vehicle health monitoring [4].

Chemiresistive semiconducting metal oxide gas sensors undergo resistance change upon exposure to reducing gases by the oxidative interactions with the negatively charged chemisorbed oxygen. The gas sensing characteristics such as gas response, responding speed, and selectivity are greatly influenced by the surface area, donor density, agglomeration, porosity, acid-base property of the sensing material, the presence of catalysts, and the sensing temperature [2]. The response of metal oxide sensor generally depends on film thickness and operating temperature. The response to particular gas can be greatly improved by adding a catalytic metal to the oxide but excessive loading can reduce response [5]. The grain size of the oxide also affects the response and selectivity to specific gases because grain boundaries are acting as electron scattering centers [6]. When the grain size (D) is twice smaller than

^{*} Corresponding author at: Materials Science Research Center, Faculty of Science, Chiang Mai, 239 Huaykaew Road, Suthep District, Changpuek, Chiang Mai 50200, Thailand. Tel.: +66 81 882 7977; fax: +66 53 892 277.

the electron depletion layer thickness (L) (D=2L), i.e. the depletion region extends over the entire grain, the sensor resistance would be quickly modulated by the change of depletion width due to gas interaction [7–9]. Thus, smaller grain metal oxide sensors would be more sensitive than larger ones. Consequently, nanocrystalline and nanostructured materials are great candidates for highly sensitive gas sensors.

Recently, a number of nanostructured materials such as quasi-1D metal oxides (Q1D-MOXs), carbon nanotubes, nanoparticles and nanoporous structures have been developed for gas-sensing applications. Q1D-MOXs have crystalline structures with well-defined chemical composition, surface terminations, free from dislocation and other extended defects. Q1D MOX nanostructures have a variety of morphologies including nanowires [10], core-shell nanowires [11], nanofibers [12], nanobelts [4], hierarchical hollow nanostructures [13], nanorods [14] and mesoporous films [15]. Q1D-MOX nanostructures exhibit several advantages with respect to their traditional thin/thick film counterparts including very large surface-to-volume ratio, dimensions comparable to the extension of surface charge region, superior stability owing to their high crystallinity [16], relatively simple preparation methods [17] and possible functionalization of their surfaces with target specific receptor species [18]. In addition, Q1D-MOX may exhibit physical properties which are significantly different from their coarse-grained polycrystalline counterparts because of their nanosized dimensions. Due to the increase of their specific surface area, surface effects are dominated, leading to the enhancement of surface related properties such as catalytic activity or surface adsorption, which are key properties for superior chemical sensors production.

There have been several review articles on theory, preparation, characterization and applications of semiconducting metal oxide gas sensors. However, there has been no article that reviews the properties and performances of semiconducting metal oxides towards a broad range of environmentally hazardous gases. This review article devotes to semiconducting metal oxide gas sensors for nine important environmentally hazardous gases including NO₂, NO, N₂O, H₂S, CO, NH₃, CH₄, SO₂ and CO₂. In addition, comparative performance and methods to achieve high selectivity and stability towards these gases are discussed.

2. Environmentally hazardous gases

Environmentally hazardous gases include toxic gases such as H_2S , CO and NH_3 , green house gases such as N_2O , CH_4 and CO_2 and special gases such as NO_2 , NO and SO_2 , which are both toxic and green house gases. A summary of the physical property, source of emission, toxicity and threshold limit value (TLV) of environmentally hazardous gases reported by the American Conference of Government Industrial Hygienists are shown in Table 1 . TLV is defined as the maximum concentration of a chemical allowable for repeated exposure without producing adverse health effects [19].

Nitrogen oxides (NO $_2$ and NO) are toxic gases produced through combustion chemical plants and automobiles. Among them, nitrogen dioxide (NO $_2$) is the most hazardous gas with TLV of 3 ppm. NO $_2$ also plays a major role in atmospheric reactions that produce ground-level ozone, a major component of smog [20]. In case of exhaust gases from power stations, the main component of airemitted NO $_2$ mixture is nitric oxide (NO, 90–95% in total) ranging from 0 to 4000 ppm [21]. NO is relatively less toxic compared to NO $_2$. However, NO also causes acid rains, photochemical smog and production of ozone. The detection and the emission control of nitrogen oxides are crucial means to reduce their noxious effects on environmental and human beings.

Hydrogen sulfide (H₂S) the most dangerous manure gas, is classified as a chemical asphyxiant because it chemically interacts immediately with blood's haemoglobin and blocks oxygen from being carried to body's vital organs and tissues [22]. It is produced from the anaerobic decomposition of organic materials such as manure. Its characteristic rotten-egg smell is easy to be detected at low concentrations. At higher concentrations, H₂S will paralyze the sense of smell giving someone a false sense of security and it will cause instant paralysis and death when the concentration exceeds TLV value. From the safety point of view, *in situ* detection and monitoring of H₂S is very important in petrochemical and coal manufacturing industries [23].

Carbon monoxide (CO) is a colorless toxic gas, with no odor, making it undetectable to humans. It is produced due to the incomplete combustion of fuels. It is commonly found in the emission in the emission of automobile exhaust. The gas has been shown to bind irreversibly to the iron center of haemoglobin, the oxygen transport molecule in blood. The irreversible binding means that oxygen can no longer be absorbed, which causes damage to human body by a reduction in cellular respiration and high levels of CO exposure results in death. TLV is sometimes reported elsewhere as immediately dangerous to life and health (IDLH) and the value for CO adopted by the National Air Quality Standards by the UK government in January 2000 is currently at a concentration of 10 ppm for 8 h of exposure [24]. Even at concentrations well below IDLH level, CO can have negative effects on human health.

Ammonia (NH₃) is a colorless gas with a characteristic pungent odor. Ammonia contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to food and fertilizers. Ammonia, either directly or indirectly, is also a building block for the synthesis of many pharmaceuticals. It is also used in cleaning products [25]. Despite its usefulness, ammonia is both caustic and hazardous to human especially when its concentration exceeds TLV value of 25 ppm.

Sulfur dioxide (SO₂) is a colorless gas [26]. It smells like burnt matches. It can be oxidized to sulfur trioxide, which in the presence of water vapor is readily transformed to sulfuric acid mist. SO₂ can be oxidized to form acid aerosols. SO₂ is a precursor to sulfates, which are one of the main components of respirable particles in the atmosphere. Health effects caused by exposure to high levels of SO₂ include breathing problems, respiratory illness, changing in the lung's defenses, worsening respiratory and cardiovascular disease. People with asthma or chronic lung or heart disease are the most sensitive to SO₂. It also damages trees and crops. SO₂ along with nitrogen oxides are the main precursors of acid rain. This contributes to the acidification of lakes and streams, accelerated corrosion of buildings and reduced visibility. SO₂ also causes formation of microscopic acid aerosols, which have serious health implications as well as contributing to climate change.

Carbon dioxide (CO₂) is a colorless, odorless non-flammable gas and is the most prominent greenhouse gas in Earth's atmosphere with contribution of 76% in the Earth's atmosphere besides methane (13%), nitrous oxide (6%) and fluorocarbon (5%) [20]. It is recycled through the atmosphere by the process photosynthesis, which makes human life possible. Photosynthesis is the process of green plants and other organisms transforming light energy into chemical energy. Light Energy is trapped and used to convert carbon dioxide, water and other minerals into oxygen and energy rich organic compounds [27]. Carbon dioxide is emitted into the air as human exhales, burns fossil fuels for energy and deforests the planet. Every year humans add over 30 billion tons of carbon dioxide in the atmosphere by these processes and it is up 30% since 1750.

Methane (CH₄) is an odorless, colorless flammable gas. It is used primarily as fuel to make heat and light. It is also used to manufacture organic chemicals. Methane can be formed by the decay of

 Table 1

 The physical property, source of emission, toxicity and threshold limit value (TLV) of environmentally hazardous gases.

Gas	Physical property	Source of emission	Toxicity or environmental impacts	TLV ^a	Reference
NO ₂	Reddish-brown gas with a pungent and irritating odor Able to form gaseous nitric acid and toxic organic nitrates	Produced by all combustion in air Produced from the transportation sectors and industrial processes	Irritating the lungs and lower resistance to respiratory infection Corrode metals, fade fabrics and degrade rubber and can damage tree and crops, resulting in substantial losses (when chemically	3 ppm	Air Quality Control, Ministry of Environment, Ontario [20]
NO	Nonflammable and an oxidizer Corrosive	Produced by all combustion in air	transformed to nitric acid Irritating to eyes and respiratory system Severe symptoms may be delayed (possible for several hours), cyanosis, increased difficulty in breathing, irregular respiration, lassitude and possible death due to pulmonary edema in untreated cases	25 ppm	Material Safety Data Sheet [72]
	Accelerates the combustion of				
N ₂ O	combustible material Colorless with a sweet odor	Produced from breaking down of nitrogen based fertilizer Released naturally from	Causing greenhouse effect	50 ppm	Hopwood and Cohen [73]
		oceans			
H ₂ S	Colorless, toxic and flammable gas	Occurring naturally in crude petroleum, natural gas, volcanic gases, hot springs	Damage in breathing system	10 ppm	Kaur et al. [66]
	Smells like rotten eggs	Produced from bacterial breakdown of organic matter or wastes Produced by human and animal Other sources from industrial activities include food processing, cooking ovens, craft paper mills, tanneries, and petroleum refineries			
СО	Colorless, odorless, tasteless, and non-irritating gas	A byproduct of the incomplete burning of gasoline, wood coal, oil, propane or any other substance that contains carbon Produced whenever combustion occurs (combustion engine)	Preventing oxygen from being absorbed into the bloodstream. Without sufficient oxygen in the bloodstream, vital organs will stop functioning	50 ppm	Hazard fact Sheet #1 [22]
NH ₃	Colorless gas with a pungent odor	Produced by the decomposition of animal manures	Irritates the eyes at levels in the range of 20–50 ppm	25 ppm	www.en.wikipedia.org/wiki/Ammonia [25]
CH ₄	Colorless and odorless gas	Generated by an aerobic digestion of organic material and if stored can be used as a fuel source for internal combustion engines	Non-toxic	1000 ppm	www.eoearth.org/article/Methane [74]
	Combustible gas		In covered and in-barn storages, methane can become trapped and the concentration can reach dangerously explosive levels		
SO ₂	Lighter than air Invisible gas with a nasty, sharp smell	Industrial activity as a main source	Irritates the nose, throat, and airways to cause coughing, wheezing, shortness of breath, or a tight feeling around the chest	5 ppm	Air quality fact sheet [26]

Table 1 (Continued)

Gas	Physical property	Source of emission	Toxicity or environmental impacts	TLV ^a	Reference
CO ₂	Easily form sulfuric acid, sulfurous acid and sulfate particles Colorless and odorless gas	Present in motor vehicle emissions (result of fuel combustion) All open flame, non-vented space, heaters also contribute carbon dioxide to the surrounding air as one of the products of combustion	Can create an oxygen deficiency and asphyxiation or suffocation	5000 ppm	www.eoearth.org/article/carbondioxide [75]
		Part of the ensiling process (during this respiration process, oxygen is converted to water and CO ₂)	Main cause of greenhouse effect		

Source: American Conference of Government Industrial Hygienists [76].

natural materials and is common in landfills, marshes, septic systems and sewers. Methane can form an explosive mixture in air at levels as low as 5%. Methane can also be found in coal gas. Methane is a powerful greenhouse gas produced both naturally and through human activities. Nitrous oxide (N_2O) also called laughing gas is extensively used for surgical operations as an anesthetic gas [28]. It is not toxic like NO_2 and NO but N_2O is a green house gas with very high global warming coefficient, which is about 300 times as large as that of CO_2 , causing serious ozone layer disruption. Environmental monitoring of greenhouse gases is essential to help slowdown global warming.

3. General gas-sensing mechanisms of semiconducting metal oxide sensors towards environmentally hazardous gases

Initially, oxygen is absorbed on the metal oxide surface when the film is heated in air. At lower temperatures, the surface reactions proceed too slowly to be useful. The adsorption of oxygen forms ionic species including O_2^- , O^- and O^{2-} , which have acquired electrons from the conduction band. The adsorption kinematics are explained by the following reaction paths [29–31]:

$$O_2(gas) \Leftrightarrow O_2(absorbed)$$
 (1)

$$O_2(absorbed) + e^- \Leftrightarrow O_2^-,$$
 (2)

$$0_2^- + e^- \Leftrightarrow 20^- \tag{3}$$

$$0^- + e^- \Leftrightarrow 0^{2-} \tag{4}$$

The oxygen ions O_2^- , O^- and O^{2-} are stable below $100\,^{\circ}$ C, between $100\,^{\circ}$ C and above $300\,^{\circ}$ C, respectively [32]. Correspondingly, they would be desorbed from the surface at temperatures of 80, 130 and $250\,^{\circ}$ C, respectively. The electron transfer from the conduction band to the chemisorbed oxygen results in the decrease in the electron concentration in the film. For n-type semiconducting metal oxide, an increase in the resistance of metal oxide film is observed. On the other hand, the resistance of p-type metal oxide is reduced. The operating temperature dependence of the sensing properties could result from changing of the adsorption and desorption rates of oxygen ions on metal-oxide surface [33].

Environmentally hazardous gases can be separated into two groups based on oxidizing and reducing effects. NO_2 , NO, N_2O and CO_2 gases are oxidizing while H_2S , CO, NH_3 , CH_4 and SO_2 gases are reducing. When metal oxide surfaces are exposed to oxidizing gas such as NO_2 , NO, N_2O and CO_2 , these gases react with the adsorbed O^- ions as well as adsorb directly on the surface of metal

oxide surface. The oxidizing reactions between metal oxide and these oxidizing gases follow the reaction paths [23,34–39]:

$$NO_2(gas) + e^- \rightarrow NO^{2-}(ads)$$
 (5)

$$NO^{2-}(ads) + O^{-}(ads) + 2e^{-} \rightarrow NO(gas) + 2O^{2-}(ads)$$
 (6)

$$NO(gas) + e^{-} \rightarrow NO^{-}(ads)$$
 (7)

$$2NO^-(ads) \rightarrow N_2(gas) + 2O^-(ads) \tag{8} \label{eq:8}$$

$$N_2O(gas) + e^- \rightarrow N_2O^-(ads) \tag{9}$$

$$N_2O^-(ads) \to N_2(gas) + O^-(ads)$$
 (10)

$$CO_2(gas) + e^- \rightarrow CO^{2-}(ads) \tag{11} \label{eq:11}$$

$$CO^{2-}(ads) + O^{-}(ads) + 2e^{-} \rightarrow CO(gas) + 2O^{2-}(ads)$$
 (12)

The adsorption of O^- is very interesting step in metal-oxide gas sensor, because the O^- ions assist the adsorbed oxidizing ions to take the electrons from the metal oxide surface. The concentration of electrons on the surface of metal oxide decreases and the resistance of n-type metal oxide layer increases accordingly. In contrast, the resistance of p-type metal oxide surface decreases because extracted electrons result in generation of holes in valence band. The gas-sensing response for n-type semiconducting oxide to oxidizing gas (S_{0x}^n) is normally defined as:

$$S_{\text{ox}}^{\text{n}} = \frac{R_{\text{og}}}{R_{\text{a}}} \tag{13}$$

On the other hand, the response for p-type semiconducting oxide to oxidizing gas (S_{0x}^p) is given by:

$$S_{\text{ox}}^{\text{p}} = \frac{R_{\text{a}}}{R_{\text{og}}} \tag{14}$$

where $R_{\rm og}$ and $R_{\rm a}$ are the electrical resistances of the sensors measured in the presence of oxidizing gas and pure dry air, respectively.

The response of the metal oxide sensor to oxidizing gas is relatively high due to adsorbed O⁻ ions at the temperature range of 250–350 °C. As the temperature increases, however, the dominant process becomes the adsorption of O⁻ ions, then the response of the metal oxide sensor decreases. Furthermore, progressive desorption of all species occurs and the response decreases at high temperature range. For these reasons, the response of metal oxide sensor tends to decreases as temperature increases.

When the metal oxide surface is exposed to reducing gases, the gas reacts with the chemisorbed oxygen thereby releasing electrons back to the conduction band. The overall reducing reactions

^a TLV, Threshold limit value.

between NH₃, H₂S, CO, SO₂ and CH₄ gases, and the chemisorbed oxygen species (O^- and O^{2-}) are given by [28,40–52]:

$$2NH_3 + 3O^-(ads) \rightarrow N_2 + 3H_2O + 3e^-$$
 (16)

$$2NH_3 + 3O^{2-}(ads) \rightarrow N_2 + 3H_2O + 6e^- \tag{17} \label{eq:17}$$

$$H_2S + 30^-(ads) \rightarrow H_2O + SO_2 + 3e^-$$
 (18)

$$H_2S + 3O^{2-}(ads) \rightarrow H_2O + SO_2 + 6e^-$$
 (19)

$$CO + O^{-}(ads) \rightarrow CO_2 + e^{-} \tag{20}$$

$$CO + O^{2-}(ads) \rightarrow CO_2 + 2e^-$$
 (21)

$$SO_2 + O^-(ads) \rightarrow SO_3 + e^-$$
 (22)

$$SO_2 + O^{2-}(ads) \rightarrow SO_3 + 2e^-$$
 (23)

$$CH_4 + 40^- (ads) \rightarrow 2H_2O + CO_2 + 4e^- \eqno(24)$$

$$CH_4 + 4O^{2-}(ads) \rightarrow 2H_2O + CO_2 + 8e^-$$
 (25)

As a result, the concentration of electrons on the surface of metal oxide increases and the resistance of n-type metal oxide layer decreases. In contrast, the resistance of p-type metal oxide surface increases because generated electrons recombine with holes, decreasing in the hole concentration. Thus, the gas-sensing response for n-type semiconducting oxide to reducing gas ($S_{\rm rd}^{\rm n}$) is defined as:

$$S_{\rm rd}^{\rm n} = \frac{R_{\rm a}}{R_{\rm rg}} \tag{26}$$

On the contrary, the response for p-type semiconducting oxide to reducing gas (S^p_{rd}) is given by:

$$S_{\rm rd}^{\rm p} = \frac{R_{\rm rg}}{R_{\rm a}} \tag{27}$$

where R_{rg} and R_a are the electrical resistances of the sensors measured in the presence of reducing gas and pure dry air, respectively.

In addition to the response, the gas-sensing characteristics of metal oxide semiconductor can be characterized by response and recovery times. The response time, $T_{\rm res}$ is typically defined as the time required to reach 90% of the steady response signal while the recovery times, $T_{\rm rec}$ denotes the time needed to recover 90% of the original baseline resistance [5]. However, only response value is considered meaningful for general comparison of different reports in the following section because it is derived from steady-state values while response or recovery time obtained from different works are not comparable because of different gas flow configurations.

4. Semiconducting metal oxides as environmentally hazardous gas sensors

The gas sensing properties of differently-prepared metal oxides and loaded metal oxides towards nine environmentally hazardous gases including NO₂, NO, N₂O, H₂S, CO, NH₃, CH₄, SO₂ and CO₂ are listed in Tables 2–10, respectively and individually discussed in following subsections.

4.1. Nitrogen dioxide sensors

Sensors for NO_2 detection have been the most widely studied because NO_2 is regarded as the most dangerous gas. Table 2 shows a summary of NO_2 gas-sensing properties of loaded/unloaded metal oxide semiconductors. From most reported data, unloaded WO_3 is demonstrated as the most promising metal oxide for NO_2 gas sensing. Nevertheless, its performances considerably depend on its structure and preparation method. The structure of modern WO_3 gas sensors may be classified into two main types, thick/thin films and nanoparticles.

Thick/thin WO₃ film gas sensors have been developed by many groups using various preparation methods. Following highlights important results achieved to date. WO₃ sensitive films fabricated by atmospheric plasma spraying technique with a heat-treatment gave the response of 77–450 ppb NO₂ at 130 °C [34]. In addition, the obtained WO₃ sensors were found to exhibit different sensing behaviors depending on operating temperature and NO₂ concentration. The electrical resistance of WO₃ sensor increased at low working temperature and high NO₂ concentration in humid air. On the other hand, the resistance decreased when NO₂ concentration was lower than 93 ppb and the working temperature was higher than 130 °C.

Shen et al. [53] reported the deposition of WO_3 thin films using reactive direct current magnetron sputtering with different discharge gas pressures. Gas sensing properties of WO_3 thin films in reaction to 1 ppm NO_2 gas and 1000 ppm H_2 gas were investigated at operating temperature in the range of 50– $300\,^{\circ}$ C. The peak response for NO_2 was found to be 460 at $200\,^{\circ}$ C.

Ghimbeu et al. [54] presented a simple and cost effective electrostatic spray deposition technique for the fabrication of WO $_3$ films to detect different pollutant gases. The films obtained from tungsten ethoxide as precursor produced good quality films in terms of microstructure and morphology. The films were able to detect very small amount of NO $_2$ (less than 1 ppm) at low operating temperature (150 °C). However, the sensor could be easily interfered by H $_2$ S: the films were highly sensitive to low H $_2$ S concentrations (10 ppm) at low operating temperature of 200 °C. The sensing films had relative selectivity to H $_2$ S in the presence of other gases (20 ppm SO $_2$ and 1 ppm NO $_2$).

 NO_2 sensors based on WO_3 nanoparticles have recently gained much attention and been reported by several researchers [15,34,35]. Tungsten oxide nanoparticles were synthesized and characterized using high resolution TEM by Heidari et al. [15]. The material was deposited on patterned alumina substrates through low frequency AC electrophoresis and used as NO_2 sensor, presenting a stable device sensitive to NO_2 in a dilute range. The highest response was 50-500 ppb at $200\,^{\circ}$ C. However, a lower response was seen at higher temperature due to decreased adsorption at those temperatures.

Meng et al. [35] prepared WO $_3$ nanoparticles using gas evaporation method with tungsten filament under low pressure of oxygen gas. With gas sensor made of WO $_3$ nanoparticles smaller than 100 nm, the highest response time to 1 ppm NO $_2$ was 4700 at 50 °C. The response of unloaded WO $_3$ nanoparticles to ppb level of NO $_2$ was also reported by Heidari et al. [15] and Zhang et al. [34], which were relatively lower than Meng's report. Thus, WO $_3$ nanoparticles prepared by gas evaporation method represent the best NO $_2$ reported to date.

Apart from WO₃, ZnO is another potential candidate for NO₂ sensing. Baratto et al. [55] reported the gas sensing properties of ZnO nanopowders synthesized by an aerosol method. Two different nanopowder morphologies, fibre-mats and cauliflower, were obtained. Both sensors showed high response against sub-ppm concentration of NO₂ at low operating temperature. At $100\,^{\circ}$ C, the fibre nanopowder showed a high response of 50 towards 0.4 ppm of NO₂, while that of cauliflower nanopowder was 8. The fibre-mats nanopowder sensor could detect 0.1 ppm of NO₂ with a relative response of 3 with no interference from CO or ethanol, which could be due to low working temperature.

Tamaekong et al. [56] reported the synthesis of unloaded ZnO by flame spray pyrolysis (FSP) for NO₂ sensing at 1, 5 and 10 ppm with response of 2.7, 6.2 and 11.8 respectively. Unloaded ZnO and Nb/ZnO nanoparticles containing 0.25, 0.5 and 1 mol% Nb were produced in a single step by FSP by Kruefu et al. [57]. The influence on a low dynamic range of Nb concentration on NO₂ response (0.1–4 ppm) of thick film sensor elements was studied at the

Table 2A summary on the gas sensing properties of unloaded/loaded metal oxide semiconductors for NO₂ gas.

Sensing material	Method	Gas concentration	Sensing performance	Reference
Unloaded WO ₃ nanorods/microspheres	Hydrothermal	20 ppm	Response: 525 to 20 ppm at 350 °C	[14]
Unloaded WO ₃	Low frequency AC electrophoretic deposition	50-500 ppb	Response: 50 to 500 ppb at 200 °C	[15]
Unloaded ZnO	DC magnetron reactive sputtering	5 ppm	Response: \sim 6 to 5 ppm at 300 $^{\circ}$ C	[28]
Unloaded WO₃	Atomspheric plasma spraying	0-450 ppb	Response: 77 to 450 ppb at 130 °C	[34]
Unloaded WO ₃	Evaporation of W filament	1 ppm	Response: 4700 to 1 ppm at 50 °C	[35]
Unloaded WO ₃	Reactive magnetron direct current sputtering	1 ppm	Response: \sim 460 to 1 ppm at 200 $^{\circ}$ C	[53]
Unloaded WO ₃	Electrostatic spray deposition	0.25–1 ppm	Response: 30 to 1 ppm at 150°C	[54]
1.67 wt% Pd/TiO ₂	Calcination of electrospun PVP/TiO ₂ /Pd composites	0.8–2.8 ppm	Response: 28 to 2.1 ppm NO ₂ at 180 °C	[77]
Unloaded ZnO	Hydrothermal	1 ppm	Response: \sim 1.8 to 1 ppm at 300 $^{\circ}$ C	[78]
0, 11 and 15 wt% WO ₃ /TiO ₂	Screen printing	0–300 ppm	Response: 145 (15 wt% WO ₃) to 500 ppm at 180 °C	[79]

Table 3A summary on the gas sensing properties of unloaded/loaded metal oxide semiconductors for NO gas.

Sensing material	Method	Gas concentration	Sensing performance	Reference
Unloaded WO ₃	Reactive RF-sputtering	0-440 ppm	Response: 40 at 250 °C;	[36]
Pt/WO ₃			Response: 70.4 at 150 °C;	
Pd/WO ₃			Response: 100.3 to 10 ppm at	
			200°C;	
Au/WO ₃			Response: 78 to 440 ppm at 200 °C	
Unloaded WO ₃	Commercial WO ₃ , spray method	40 ppm/300 °C	Response: 7.1 (commercial WO ₃)	[37]
Pb/WO ₃	Calcination of loaded-samples and infrared pressing	40 ppm/300 °C	Response: 10.6 (spray method)	
Ag/WO ₃			Response: 8.0;	
Sr/WO ₃			Response: 8.3 at 250° C and 21.5 at 300° C:	
La/WO ₃			Response: 12.8	
., .3			Response: 3.8	
ZnO-In ₂ O ₃ composites	Co-precipitation (powder)	7.8–19.5 ppm	Response: 60 to 19 ppm at 200 °C;	[64]
2 3 1	1 1 1 ,	**	65 to 10 ppm at 150 °C	
	Drop coating (sensors)		**	
Unloaded WO ₃	Screen printing	2–300 ppm	Response: \sim 3.7 to 163 ppm at 300 °C	[80]

operating temperatures ranging from 250–350 °C in the presence of dry air. The optimum Nb concentration was found to be 0.5 and 0.5 mol% Nb exhibited an optimum NO $_2$ response of \sim 1640 and a very fast response time (27 s) for NO $_2$ concentration of 4 ppm at 300 °C.

Another approach for the enhancement of gas-sensing especially towards NO_2 can be achieved by the use of organic materials [21,58–63]. For instance, ZnO nanowire incorporated with poly(3-hexylthiophene) (P3HT) by Saxena was reported to exhibit enhanced NO_2 selectivity, which could be attributed

 $\label{eq:continuous} \textbf{Table 4} \\ A \text{ summary on the gas sensing properties of unloaded/loaded metal oxide semiconductors for N_2O gas.} \\$

Sensing material	Method	Gas concentration	Sensing performance	Reference
Unloaded WO ₃	Coprecipitation	10-300 ppm	Response: 1.32 to 300 ppm at 450 °C	[8]
Unloaded SnO ₂	Coprecipitation	10-300 ppm	Response: 1.66 to 300 ppm at 450 °C	[8]
0.5 wt%-loaded (Sr, Ca, Ba,Bi,Sm)SnO ₂		10–300 ppm	Sr/SnO ₂ gave highest response of 4.3 to 300 ppm at 500 °C	
Unloaded ZnO		10–300 ppm	Response: 1.21 to 300 ppm at 450 °C	[8]
Au/SnO _x	ArF excimer laser-induced metal-organic CVD	10–100 ppm	Response: 11.5 to \sim 100 ppm at 210 $^{\circ}$ C	[81]
SnO_2 plasma treated thick film	Screen printing	10–100 ppm	Response: \sim 0.58 (O ₂ plasma) to 100 ppm at room temperature	[65]
Cubic spinel based nano-crystalline magnesium zinc ferrite	Precipitation	~1660 ppm	Response: 19% to \sim 1660 ppm at 300 $^{\circ}$ C	[82]

 Table 5

 A summary on the gas sensing properties of unloaded/loaded metal oxide semiconductors for H_2S gas.

Sensing material	Method	Gas concentration	Sensing performance	Reference
Unloaded In ₂ O ₃	Hydrothermal	50 ppm	Response: 125 at 268.5 °C to 50 ppm, recovery time of 7 s	[45]
Unloaded WO ₃	Electrostatic spray deposition	1–10 ppm	Response: 1200 to 10 ppm at 200 °C	[54]
Single crystal In ₂ O ₃ whiskers	Carbothermal	200 ppb-10 ppm	Response: 36 to 10 ppm at room temperature	[66]
0.05–2 wt% Cu/SnO ₂	Spray pyrolysis	1000 ppm	Response: 910 for 1.19 wt% Cu loading compared to 12 of unloaded SnO ₂ at 200 °C	[67]
16 nm Ag/SnO ₂	DC magnetron sputtering	1 ppm	Response: 5900 to 1 ppm at 200 °C	[83]
Unloaded WO ₃ , (Pt, Au, Au-Pt)-loaded WO ₃	RF sputtering micro-electro-mechanical system (MEMS)	1–50 ppm	Pt/WO ₃ gave highest response of 300 and 1250 to 10 ppm and 50 ppm at 220 °C, respectively	[84]
Unloaded ZnO	Electrostatic spray deposition (ESD)	1–12 ppm	Response: 1.8 to 12 ppm at 450°C	[85]

Table 6A summary on the gas sensing properties of unloaded/loaded metal oxide semiconductors for CO gas.

Sensing material	Method	Gas concentration	Sensing performance	Reference
Mesoporous In ₂ O ₃ nanofibers	Calcination of electrospun InOAc/PVA composites	100 ppm	Response: 500 at 300 °C to 100 ppm	[12]
Unloaded ZnO	DC magnetron reactive sputtering	100 ppm	Response: \sim 1.2 to 100 ppm at 400 $^{\circ}$ C	[28]
Unloaded WO ₃ (Pt, Pd, Au)-loaded WO ₃	Sol–gel (powders)	400–800 ppm	Pt/WO ₃ , Response: ~1 and 1.2 to 400 and 800 ppm at 450 °C, respectively	[40]
2-10 at% Nb/TiO ₂ 5-10 at% Cu/TiO ₂	Flame spray pyrolysis	50–750 ppm	2 at% Nb/TiO $_2$ gave highest response of 2.5 to 450 ppm at 400°C	[41]
Unloaded ZnO	Direct evaporation	50-500 ppm	Response: 7.8 to 100 ppm at 350 °C	[42]
0.2 wt% Pt/SnO ₂	FSP (nanopowders) Thermophoretic deposition	50 ppm	Response: 8 to 50 ppm at 350 °C	[46]
Mesopourous ZnO	Pyrolysis	2–10 ppm	Response: ~0.5 to 10 ppm at 350 °C	[47]
$In/Pd/SnO_2 = 5:1:50$	Sol-gel	1–50 ppm	Response: 20 to 50 ppm at 140 °C; 3 to 1 ppm	[48]
TiO ₂ nanofibers	Calcination of electrospun TiO ₂ /PVP composites	1–15 ppm	Response: 2.6 to 15 ppm at 200 °C	[68]

to the reduction of the organic materials by the metal oxide semiconductors [63].

4.2. Nitric oxide sensors

NO sensors have been relatively less studied compared to NO_2 sensors due to its less abundance and lower toxicity. Table 3 lists NO gas-sensing properties of loaded/unloaded metal oxide

semiconductors. Among metal oxides, WO₃ loaded with metal catalysts are among the most effective materials for NO gas sensing [36]. For instance, WO₃-based thin film NO_x sensors were fabricated by reactive RF-sputtering with evaporated activator layers of Pd, Pt, Au. The best performances were obtained at 150, 200, 250 and 300 °C for Pt/WO₃, Pd/WO₃, Au/WO₃ and unloaded WO₃, respectively. The activation of WO₃-sensors with noble metals enhanced sensor selectivity towards NO_x with respect to the reducing gases

Table 7 A summary on the gas sensing properties of unloaded/loaded metal oxide semiconductors for NH₃ gas.

Sensing material	Method	Gas concentration	Sensing performance	Reference
Unloaded TiO ₂	DC magnetron sputtering	5000 ppm	Response: 7000 to 500 ppm NH ₃ at 250 °C	[43]
5–15 wt% MWCNTs/SnO ₂	Spin coating/heat treatment	60-800 ppm	Response: 27 to 200 ppm (15 wt% MWCNTs) of NH ₃ at RT	[44]
h-WO ₃	Annealing	10-50 ppm	Response: 6 to 50 ppm NH ₃ at 300 °C	[69]
SnO ₂ –ZnO (0–15 wt% ZnO	Thick films	50 ppm/170-330 °C	Response: ~ 3 (10 wt% ZnO loaded SnO ₂) at 300 °C, 50 ppm Response time: ~ 2 s	[70]
ZnO hollow spheres	Thick films	25, 50 and 75 ppm	Response: 7.9, 11.1 and 20.4 to 25, 50 and 75 ppm at 220 °C	[71]
Unloaded WO3	RF sputtering (sensors)	10 ppm	Response: 0.5 to 10 ppm at 200 °C	[86]
LaCo _{0.8} Fe _{0.2} O ₃ 0.3 wt% Pd	Sol-gel citrate	50–500 ppm	Response: 0.95 (0.3 wt% Pd) to 200 ppm NH ₃ at 250 °C	[87]
Single nanowire SnO ₂	Vapor-solid growth method	25–100 ppm	Response: ~0.35 at 100 ppm, 260 °C	[88]

Table 8A summary on the gas sensing properties of unloaded/loaded metal oxide semiconductors for CH₄ gas.

Sensing material	Method	Gas concentration	Sensing performance	Reference
7 wt% Sb/ZnO	Screen printing	1000 ppm	Response: ~25 to 1000 ppm at 360 °C	[51]
SnO_2	Thin films on micromachined SOI wafers	1%/room temperature – 700°C	Response: ~23 at 500 °C to 1% Response time: 5–10 ms	[52]
SnO ₂ –ZnO (0–15 wt% ZnO)	Thick films	50 ppm/170–330°C	Response: $\sim 1 (10 \text{ wt% ZnO})$ loaded SnO_2) at $300 ^{\circ}\text{C}$ to 50 ppm Response time: $\sim 2 ^{\circ}\text{S}$	[70]
Unloaded WO ₃	RF-sputtering (sensors)	1000 ppm	Response: <0.5 to 1000 ppm at 300–500 °C	[86]
Unloaded SnO ₂ Pt/SnO ₂ Mo/SnO ₂ Cu/SnO ₂	Thin films on alumina substrates by CVD	1000 ppm/450−500°C	Response: 0.4 Response: 0.72 Response: 1.03 Response: 1.50 to 1000 ppm, 500 °C Response time: ~5 s	[89]

Table 9A summary on the gas sensing properties of unloaded/loaded metal oxide semiconductors for SO₂ gas.

Sensing material	Method	Gas concentration	Sensing performance	Reference
Unloaded WO ₃	Electrostatic spray deposition	20 ppm	Response: ∼3 to 20 ppm at 350 °C	[49]
Unloaded SnO ₂ and 0-1 wt% V ₂ O ₅ /SnO ₂	Simultaneous precipitation	5–100 ppm	Response: \sim 35 to 100 ppm at 350 °C for Unloaded SnO ₂ and Response: \sim 70 to 100 ppm at 350 °C for 0.15 wt% V_2O_5/SnO_2	[50]
Unloaded WO ₃	Pyrolysis	800 ppm	Response: 12 to 800 ppm at 400 °C	[90]
Pt-loaded WO ₃	RF magnetron sputtering on micro-hotplate substrate	1 ppm	Response: ~5.9 to 1 ppm at 200°C, 50 μm of electrode gap	[91]
Unloaded SnO ₂ and 1–4 at% Cu/SnO ₂	ESD technique	20 ppm	Response: ~1.0 to 20 ppm at 400°C to unloaded SnO ₂ and 1–4 at% Cu/SnO ₂	[92]
1 mol% Ni/SnO ₂	Pechini method	0–150 ppm	Sensor response: ~0.95 to 32 ppm to 1 mol% Ni/SnO ₂	[93]
Unloaded ZnO	A solution method	100 ppm	Response: <0.5 to 100 ppm at 300 °C	[94]

(CO, CH_4 , H_2 , SO_2 , H_2S and NH_3) and improved response/recovery times.

Chen et al. reported NO sensors based on WO₃ powders loaded with different promoters (Pb, Ag, Sr and La) [37]. Among the promoters tested, Ag/WO₃ showed the best NO response of 50 ppm over the temperature range of 150–350 °C. Ag promoter could dramatically enhanced sensitivity and decreased the optimal working temperature of the compressed WO₃ powder sensor. One of Ag promotion's roles was to provide metal surface for the conversion from NO to NO₂. Another role of Ag included the increase of oxygen defective WO_{3-x} sites at and near the interface between Ag particles and WO₃ particles as inferred from XRD and TEM analyses.

Other metal oxides have also been studied for NO sensing. Among them, In_2O_3 –ZnO composites synthesized by Lin et al. [64] were found to exhibit appreciable NO_x gas-sensing characteristics. Response to NO gas was reported to be 60 for 19 ppm NO at 200 °C

and 65 for 10 ppm NO at 150 $^{\circ}\text{C}$. Other sensors with lower responses are listed in Table 3.

4.3. Nitrous oxide sensors

There have been only few reports for the detection of N_2O as revealed in Table 4. Among metal oxides, loaded SnO_2 was reported to be the most sensitive to N_2O [23]. The N_2O response of SnO_2 loaded with 0.5 wt% SrO exhibited N_2O response 3 times as high as that of unloaded SnO_2 . It could detect N_2O in air in the concentration range of 10–300 ppm at $500\,^{\circ}C$. In addition, gold-loaded polycrystalline tin oxide (SnO_{χ}) grown by ArF excimer laser-induced metal organic chemical vapor deposition showed response of 11.5 to ~ 100 ppm N_2O at $210\,^{\circ}C$ [65]. Other N_2O sensors with lower responses are shown in Table 4.

Table 10A summary on the gas sensing properties of unloaded/loaded metal oxide semiconductors for CO₂ gas.

Sensing material	Method	Gas concentration	Sensing performances	References
BaTiO ₃ -CuO	RF-sputtering	500–5000 ppm	Response: 18 to 5000 ppm at 300 °C	[38]
Unloaded SnO ₂	Ultrasonic spray pyrolysis	1000 ppm	Response: 16.07 to 1000 ppm at 350 °C	[39]
WO ₃ -loaded TiO ₂	Screen printing	1000 ppm	Response: ~0.18% to 1000 ppm at 600 °C	[79]
Unloaded ZnO	Sputtering	Total pressure (N2 and CO2) of 8.5 mbar	Response: 2.17 at 100 °C	[95]
Co-loaded SnO ₂	Conventional spray pyrolysis	1000 ppm	Response: ~25% to 1000 ppm at 275 °C	[96]
La-coated SnO ₂	Coating and heat-treating	500–2500 ppm	Response: ~1.43 to 2500 ppm at 400 °C	[97]
SnO ₂ /Pd	D.C. sputtering	3000 ppm	Response: ~24% to 3000 ppm at 450 °C	[98]

4.4. Hydrogen sulfide sensors

Sensors for H₂S detection have also been widely studied and H₂S gas-sensing properties of unloaded/loaded metal oxide semiconductors are summarized in Table 5. A wide variety of metal oxides have been studied for H₂S sensing. Among these, In₂O₃ whiskers prepared by carbothermal method exhibited remarkable performances with capability to detect H₂S at ppb level at room temperature [66]. The response to 10 ppm H₂S was reported to be \sim 36. The results showed that single crystal whiskers were selective and could be used to sense very low concentrations (200 ppb) of H₂S. Unloaded In₂O₃ showed response of 125–50 ppm at 268.5 °C with a short recovery time of 7 s [45].

1.19 wt% Cu-loaded SnO₂ was reported to be another promising H₂S sensors having a high response of 910 for 1000 ppm H₂S, which is significantly higher than 12 for unloaded SnO₂ at an operating temperature of 200 °C [45]. The response for other gases such as CO, NH₃, ethanol and kerosene vapors was found to be negligible. Therefore, Cu-loaded SnO₂ was not only highly sensitive but also highly selective towards H₂S. WO₃ films produced by electrostatic spray deposition was also demonstrated to be another good H₂S sensors with a high response of 1200 to low concentrations of H₂S (10 ppm) at 200 °C [54]. The films also showed lower gas response to other gases (20 ppm SO₂ and 1 ppm NO₂) suggesting the possibility for selective detection of H₂S from a mixture comprising these three gases. The highest H₂S response of 5900 was recently obtained from a porous SnO₂ film catalyzed with 16 nm Ag nanoparticles at 200 °C [67]. The film was formed by DC magnetron sputtering, and coated with Ag activating film.

4.5. Carbon monoxide sensors

CO sensors have also been widely reported because CO is the most abundant toxic gas. Table 6 summarizes CO gas-sensing properties of unloaded/loaded metal oxide semiconductors. It can be seen from Table 6 that Pt/SnO₂ nanopowders [46], mesoporous ZnO [47], In/Pd/SnO₂ nanopowders [48] and TiO₂ nanofibers [68] could be potential candidates for CO sensors with high response at concentration well below TLV of CO (50 ppm).

Mädler et al. [46] reported the synthesis of Pt-loaded SnO_2 nanoparticles with different sizes and Pt loading content by FSP. The nanoparticles were used to fabricate semiconducting gas sensors for low level CO detection, i.e. CO concentration as low as 5 ppm in the absence and presence of water. It was found that a low Pt concentration (0.2 wt%) seemed to lead to a better dispersion of Pt. The sensors were proven to be suitable for low level CO detection (<10 ppm according to European legislation and <50 ppm according to US) with good stablility.

Wagner et al. [47] presented the synthesis and gas sensing properties for CO and NO₂ of mesoporous zinc oxide at concentration between 2 and 10 ppm at a relative humidity of 50%. In most countries the legal thresholds for long-term exposure to these gases without health damage are specified to 30 ppm CO and 5 ppm NO₂. The experiments showed that the mesoporous sensors exhibited significantly higher sensitivities to both gases than bulk ones and the sensors could detect CO and NO₂ at concentrations well below legal thresholds.

Zhang et al. [48] synthesized In/Pd-loaded SnO_2 via a sol-gel method and deposited on a SiO_2 coated silicon substrate with Pt electrodes. The In/Pd-loaded SnO_2 sensors showed excellent CO-sensing performances at a low operating temperature of $140\,^{\circ}$ C. The sensor could detect a very low CO concentration of 1 ppm (with a response value of 3). In addition, the response and recovery times were only 15 and 20 s, respectively. The results demonstrated that the sensor was a potential candidate for low level CO detection.

Titanium dioxide (TiO_2) nanofibers were fabricated by electrospinning a hybrid solution, which was a mixture of TiO_2 sol precursor, polymer, and solvent as reported by Park et al. [68]. The structure and CO sensing properties of TiO_2 nanofibers were investigated. By calcining at $600\,^{\circ}$ C, the polymeric components were decomposed and a multi-layered random network structure of TiO_2 nanofibers was obtained. Polycrystalline TiO_2 nanofibers were found to contain both tetragonal anatase and rutile TiO_2 phases. The diameter was ranging from 400 to 500 nm and the grain size was about 15 nm. The TiO_2 nanofibers-based sensor exhibited good response to CO concentration as low as 1 ppm at 200 $^{\circ}$ C.

4.6. Ammonia sensors

NH₃ sensors have also been widely reported because of its wide applications. Table 7 lists NH₃ gas-sensing properties of unloaded/loaded metal oxide semiconductors. It can be seen that there are several promising candidates for NH₃ sensors. A thin sensitive TiO_2 film deposited by a DC reactive magnetron sputtering onto a silicon substrate with interdigitated electrode was reported to be a highly sensitive NH₃ sensor with very high response of 7000 to 500 ppm ammonia at 250 °C and very good selectivity [43]. A $\text{SnO}_2/\text{MWCNTs}$ composite thin film fabricated by microelectronic thin film process was another promising NH₃ sensor with good response at room temperature (RT) [44]. The response to 200 ppm NH₃ at RT was ~27 for 15 wt% MWCNTs/SnO₂ sensor.

Szilagyi et al. [69] reported the preparation of hexagonal tungsten oxide (h-WO₃) sensor. h-WO₃ was found to be sensitive to various levels (10–50 ppm) of NH₃ with the shortest response and recovery times of 1.3 and 3.8 min, respectively at 50 ppm NH₃. At this NH₃ concentration, the sensor had significantly higher sensitivity than h-WO₃ materials prepared by other wet chemical methods.

The gas-sensing properties of the SnO_2 nanoparticles, ZnO microrods and the nanocomposite of SnO_2 nanoparticles loaded with 5–15 wt% ZnO microrods were investigated by Zhang et al. [70]. The gas-sensing properties of the SnO_2 nanoparticles were found to be greatly improved by loading with ZnO microrods. The sensing properties of the 10 wt% ZnO-loaded SnO_2 to trimethylamine (TMA), dimethylamine (DMA), CO, H_2 , NH_3 , LPG, NO_2 , benzene, toluene, ethanol, methanol, acetone, formaldehyde (HCHO), methylamine (MA) and water were examined. A response to 50 ppm NH_3 of ~ 3 and very short response time of ~ 2 s were obtained at 300 °C.

ZnO hollow spheres were successfully prepared using carbon microspheres as templates by Zhang et al. [71]. Gas sensor fabricated from as-prepared ZnO hollow spheres were tested to NH₃, NO₂ and other gases. Obtained results showed that ZnO hollow-sphere sensors exhibited different behaviors between NH₃ and NO₂. The optimum operating temperature for NH₃ was 220 °C, which was lower than that for NO₂ (240 °C). At 220 °C, the sensor showed the responses of 7.9, 11.1 and 20.4–25, 50 and 75 ppm NH₃, respectively. Other NH₃ sensors with relatively low responses can be found from Table 7.

4.7. Methane sensors

A number of metal oxide materials have been studied for CH₄ detection. However, only a few of them are found to be effective for CH₄ detection as illustrated in Table 8. Among these, SnO₂ thin films on micromachined silicon-on-insulator (SOI) wafer showed a good response of 23–1 vol.% CH₄ at $500\,^{\circ}$ C with very short response time of 5–10 ms [52]. ZnO:Sb based screen printed thick-film gas sensors for H₂, CO and CH₄ detections were fabricated by Dayan et al. [51]. Films were realized on an alumina substrate by mixing ZnO with lead borosilicate glass frits as a binder and Sb as a catalyst. 7 wt% Sb-loaded ZnO film showed a relatively high response

to 1000 ppm $\,$ CH $_4$ of 25 compared to that of unloaded ZnO at $\sim 300\,$ °C.

4.8. Sulfur dioxide sensors

Sensors for SO_2 detection have also been widely studied and SO_2 gas-sensing properties of unloaded/loaded metal oxide semiconductors are summarized in Table 9. Among these, Pt-loaded WO_3 and V_2O_5 -loaded SnO_2 are among the most promising candidates. Unloaded WO_3 film could detect SO_2 gas at 20 ppm with a response of ~ 3 at $350\,^{\circ}\mathrm{C}$ [49] and Pt loading could significantly enhance SO_2 detection with higher response to ~ 5.9 at lower SO_2 concentration and operating temperature of 1 ppm and $200\,^{\circ}\mathrm{C}$, respectively. For vanadium oxide loaded tin dioxide, the sensor could detect SO_2 at concentration down to 5 ppm for leak detection [50]. Such sensors were quite selective in the presence of other gases like SO_2 CO, SO_2 response can be found from Table 9.

4.9. Carbon dioxide sensors

A number of metal oxide materials have been studied for CO₂ detection. However, only a few of them are found to be sensitive for CO₂ detection as illustrated in Table 10. Among these, BaTiO₃–CuO mixed oxide and unloaded nanostructured SnO₂ thin films are considered promising candidates with relatively high CO₂ response. Semiconducting BaTiO₃–CuO mixed oxide thin films deposited by RF-sputtering on alumina substrate was used to detect CO₂ by mean of impedance measurement [38]. A good response to 5000 ppm CO₂ of 18 was obtained at 300 °C. Recently, unloaded nanostructured SnO₂ thin films on glass substrate prepared by ultrasonic spray pyrolysis showed a high response to 1000 ppm of CO₂ of 16 at 350 °C [39]. Other sensors with lower CO₂ responses can be found from Table 10.

5. Conclusions

In conclusion, semiconducting metal oxide gas sensors for nine important environmentally hazardous gases including NO2, NO, N₂O, H₂S, CO, NH₃, CH₄, SO₂, and CO₂ have been comprehensively reviewed. These gases are either toxic or green house gases. Among them, NO₂, NO, N₂O and CO₂ gases are oxidizing while H₂S, CO, NH₃, CH₄, and SO₂ gases are reducing. The gas sensing properties of differently-prepared metal oxides and loaded metal oxides towards nine environmentally hazardous gases have been individually compared and discussed. From the survey, unloaded WO3 nanostructures are the most promising candidates for NO₂ sensing while metal catalyst loaded WO3 and gold-loaded SnO2 sensors are among the most effective for NO and N2O sensing, respectively. As for H₂S detection, Cu-loaded SnO₂ are reported to be not only highly sensitive but also highly selective towards H₂S. For CO sensors, Pt-loaded SnO2 nanopowders, mesoporous ZnO, In/Pd/SnO₂ nanopowders, and TiO₂ nanofibers are among potential candidates. The most potential NH₃ sensor is found to be sputtered TiO₂ thin films with very high response and very good selectivity. For CH₄ detection, only a few of sensors including SnO₂ thin films and ZnO:Sb based screen printed thick-film are found to be effective. Among reported SO₂ sensors, Pt-loaded WO₃ and V₂O₅loaded SnO₂ are among the most promising candidates. Lastly, BaTiO₃-CuO mixed oxide and unloaded nanostructured SnO₂ thin films are considered promising candidates with relatively high CO₂ sensing response.

Acknowledgements

The National Research University under Thailand's Office of Higher Education Commission, Ministry of Education; the Graduate School; Department of Chemistry, Faculty of Science, Chiang Mai University, Thailand; the National Nanotechnology Center and the National Electronics and Computer Technology Center, Pathumthani, Thailand; the National Nanotechnology Center (NANOTEC), the National Science and Technology Development Agency (NSTDA), Ministry of Science and Technology, through its program of Center of Excellence Network, Thailand are gratefully acknowledged.

References

- K. Arshak, E. Moore, G.M. Lyons, J. Harris, S. Clifford, A review of gas sensors employed in electronic nose applications, Sens. Rev. 24 (2004) 181–198.
- [2] J.K. Choi, I.S. Hwang, S.J. Kim, J.S. Park, S.S. Park, U. Jeong, Y.C. Kang, J.-H. Lee, Design of selective gas sensors using electrospun Pd-doped SnO₂ hollow nanofibers, Sens. Actuators B: Chem. 150 (2010) 190–199.
- [3] T.C. Pearce, S.S. Schiffman, H.T. Nagle, J.W. Gardner, Handbook of Machine Olfaction, Wiley-VCH, Weinheim, 2003.
- [4] R.L. Vander Wal, G.W. Hunter, J.C. Xu, M.J. Kulis, G.M. Berger, T.M. Ticich, Metaloxide nanostructure and gas-sensing performance, Sens. Actuators B: Chem. 138 (2009) 113–119.
- [5] C. Liewhiran, S. Phanichphant, Effect of palladium loading on the response of a thick film flame-made ZnO gas sensor for detection of ethanol vapor, Sensors 7 (2007) 1159–1184.
- [6] E. Schaller, J.O. Bosset, F. Escher, Electronic noses and their application to food, Lebensm. Wiss. Technol. 31 (1998) 305–316.
- [7] G. Behr, W. Fliegel, Electrical properties and improvement of the gas response in multiple-doped SnO₂, Sens. Actuators B: Chem. 26 (1995) 33–37.
- [8] E. Kanazawa, G. Sakai, K. Shimanoe, Y. Kanmura, Y. Teraoka, N. Miura, N. Yamazoe, Metal oxide semiconductor N₂O sensor for medical use, Sens. Actuators B: Chem. 77 (2001) 72–77.
- [9] N. Yamazoe, New approaches for improving semiconductors gas sensors, Sens. Actuators B:Chem. 5 (1991) 7–19.
- [10] E. Comini, C. Baratto, G. Fagli, M. Ferroni, A. Vomiero, G. Sberveglieri, Quasione dimensional metal oxide semiconductor: Preparation, characterization and application as chemical sensors, Prog. Mater. Sci. 54 (2009) 1–67.
- [11] I.S. Hwang, S.-J. Kim, J.-K. Choi, J. Choi, H. Ji, G.T. Kim, Synthesis and gas sensing characteristics of highly crystalline ZnO-SnO₂ core-shell nanowires, Sens. Actuators B: Chem. 148 (2010) 595–600.
- [12] S.K. Lim, S.-H. Hwang, D. Chang, S. Kim, Preparation of mesoporous In₂O₃ nanofibers by electrospinning and their application as a CO gas sensor, Sens. Actuators B: Chem. 149 (2010) 28–33.
- [13] J.-H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: Overview, Sens. Actuators B: Chem. 140 (2009) 319–336.
- [14] Z. Liu, M. Myauci, T. Yamazaki, Y. Shen, Facile synthesis and NO₂ gas sensing of tungsten oxide nanorods assembled microspheres, Sens. Actuators B: Chem. 140 (2009) 514–519
- [15] E.K. Heidari, C. Zamani, E. Marzbanrad, B. Raissi, S. Nazarpour, WO₃-based NO₂ sensors fabricated through low frequency AC electrophoretic deposition, Sens. Actuators B: Chem. 146 (2010) 165–170.
- [16] Z.L. Wang, Characterizing the structure and properties of individual wire-like nanoentities, Adv. Mater. 12 (2000) 1295–1298.
- [17] A. Kolmakov, M. Moskovits, Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures, Annu. Rev. Mater. Res. 34 (2004) 151–180.
- [18] A. Kolmakov, The effect of morphology and surface doping on sensitization of quasi-1D metal oxide nanowire gas sensors, Proc. SPIE 6370 (2006), pp. 63700X63701-63700X63708.
- [19] The American Heritage[®] Medical Dictionary Copyright (2007), 2004 by Houghton Mifflin Company. Published by Houghton Mifflin Company.
- [20] Air Quality Ontario, Ministry of Environment, Ontario, Canada. www.airqualityontario.com/science/pollutants/nitrogen.cfm, 2010 (accessed 10.12.10).
- [21] J. Brunet, L. Spinelle, A. Pauly, M. Dubois, K. Guerin, M. Bouvet, C. Varenne, B. Lauron, A. Hamwi, All-organic device with integrated chemical filter dedicated to the selective measurement of NO₂ in air, Org. Electron. 11 (2010) 1223–1229.
- [22] Hazard fact Sheet #1, National Transit Institute, Rutger University. www.omafra.gov.on.ca/english/engineer/facts/04-087.htm, 2006 (accessed 10.12.10)
- [23] J. Gong, Q. Chen, M.-R. Lian, N.-C. Liu, R.G. Stevenson, F. Adami, Macromachined nanocrytalline silver doped SnO₂ H₂S sensor, Sens. Actuators B: Chem. 114 (2006) 32–39
- [24] AQS, Department of the Environment, Transport and the Regions, The Scottish Executive, The National Assembly for Wales and The Department of the Environment Northern Ireland, The Air Quality Strategy for England Scotland, Wales and Northern Ireland. 2000 (accessed 10.12.10).
- [25] Ammonia. www.en.wikipedia.org/wiki/Ammonia, 2010 (accessed 10.12.10).

- [26] Air quality fact sheet, Department of the Environment and Heritage, Australian Government, 2005 (accessed 10.12.10).
- [27] Encyclopedia Britannica Volume 25.
- [28] Y. Min, H.L. Tuller, S. Palzer, J.W. llenstein, H. Bo, Gas response of reactively sputtered ZnO films on Si-based micro-array, Sens. Actuators B: Chem. 93 (2003) 435-441.
- [29] A. Labidi, E. Gillet, R. Delamare, M. Maaref, K. Aguir, Ethanol and ozone sensing characteristics of WO₃ based sensors activated by Au and Pd, Sens. Actuators B: Chem. 120 (2006) 338-345.
- [30] R.S. Khadayate, M.T. Chaudhari, S.K. Disawal, P.P. Patil, Sensing behavior printed WO₃ thick films for four organic vapors, Invert. J. Sci. Technol. 2 (2009) 185–189.
- [31] P.P. Sahay, S. Tewari, Sprayed ZnO thin films for ethanol sensors, J. Mater. Sci. 40 (2005) 4791-4793.
- [32] T.V. Belysheva, L.P. Bogovtseva, E.A. Kazachkov, N.V. Serebryakova, Gas-sensing properties of doped In_2O_3 films as sensors for NO_2 in air, J. Anal. Chem. 58 (2003) 583-587.
- [33] A.Z. Sadek, S. Choopun, W. Wlodarski, S.J. Ippolito, K. Kalantar-zadeh, Characterization of ZnO nanobelt-based gas sensor for H₂, NO₂, and hydrocarbon sensing, IEEE Sens. J. 7 (2007) 919-924.
- [34] C. Zhang, M. Debliquy, A. Boudiba, H. Liao, C. Coddet, Sensing properties of atmospheric plasma-sprayed WO₃ coating for sub-ppm NO₂ detection, Sens. Actuators B: Chem. 144 (2010) 280-288.
- [35] D. Meng, T. Yamazaki, Y. Shen, Z. Liu, T. Kikuta, Preparation of WO_3 nanoparticles and application to NO₂ sensor, Appl. Surf. Sci. 256 (2009) 1050–1053. [36] M. Penza, C. Martucci, G. Cassano, NO_x gas sensing characteristics of WO₃ thin
- films activated by noble metals (Pd, Pt, Au) layers, Sens. Actuators B: Chem. 50 (1998) 52-59.
- L. Chen, S.C. Tsang, Ag doped WO₃-based powder sensor for the detection of NO gas in air, Sens. Actuators B: Chem. 89 (2003) 68–75.
- [38] J. Herrán, G.G. Mandaya, E. Castano, Semiconducting BaTiO₃ CuO mixed oxide thin films for CO₂ detection, Thin Solid Films 517 (2009) 6192–6197.
- [39] L.A. Patil, M.D. Shinde, A.R. Bari, V.V. Deo, Highly sensitive and quickly responding ultrasonically sprayed nanostructured SnO2 thin films for hydrogen gas sensing, Sens. Actuators B: Chem. 143 (2009) 270-277.
- [40] V. Srivastava, K. Jain, Highly sensitive NH_3 sensor using Pt catalyzed silica coating over WO_3 thick films, Sens. Actuators B: Chem. 133 (2008) 46–52.
- [41] A. Teleki, N. Bjelobrk, S.E. Pratsinis, Flame-made Nb- and Cu-doped TiO₂ sensors for CO and ethanol, Sens. Actuators B: Chem 130 (2008) 449-457.
- [42] H.M. Lin, S.J. Tzeng, P.J. Hsiau, W. Tsai, Electrode effects on gas sensing properties of nanocrystalline zinc oxide, Nanostruct. Mater. 10 (1998) 465-477
- [43] B. Karunagaran, P. Uthirakuma, S.J. Chung, S. Velumani, E.K. Suh, TiO₂ thin film gas sensor for monitoring ammonia, Mater. Charact. 58 (2007) 680–684.
 [44] N.V. Hieu, L.T.B. Thuya, N.D. Chien, Highly sensitive thin film NH₃ gas sen-
- sor operating at room temperature based on SnO₂/MWCNTs composite, Sens. Actuators B: Chem. 129 (2008) 888-895.
- [45] J. Xu, X. Wang, J. Shen, Hydrothermal synthesis of In_2O_3 for detecting H_2S in air, Sens. Actuators B: Chem. 115 (2006) 642–646.
- [46] L. Mädler, T. Sahm, A. Gurlo, J.D. Grunwaldt, N. Barsan, U. Weimar, S.E. Pratsinis, Sensing low concentrations of CO using flame-spray-made Pt/SnO₂ nanoparticles, J. Nanopart. Res. 8 (2006) 783-796.
- [47] T. Wagner, T. Waitz, J. Roggenbuck, M. Fröba, C.D. Kohl, M. Tiemann, Ordered mesoporous ZnO for gas sensing, Thin Solid Films 515 (2007) 8360-8363.
- [48] T. Zhang, L. Liu, Q. Qi, S. Li, G. Lu, Development of microstructure In/Pd-doped SnO₂ sensor for low-level CO detection, Sens. Actuators B: Chem. 139 (2009) 287-291
- [49] C.M. Ghimbeu, M. Lumbreras, J. Schoonman, M. Siadat, Electrosprayed metal oxide semiconductor films for sensitive and selective detection of hydrogen sulfide, Sensors 9 (2009) 9122-9132.
- [50] S. Das, S. Chakraborty, O. Parkash, D. Kumarb, S. Bandyopadhyay, S.K. Samudrala, A. Sena, H.S. Maiti, Vanadium doped tin dioxide as a novel sulfur dioxide sensor, Talanta 75 (2008) 385–389.
- [51] N.J. Dayan, S.R. Sainkar, R.N. Karekar, R.C. Aiyer, Formulation and characterization of ZnO:Sb thick-film gas sensors, Thin Solid Films 325 (1998) 254-258.
- [52] A. Friedberger, P. Kreisl, E. Rose, G. Müller, G.K. Uhner, J. Wöllenstein, H. Böttner, Micromechanical fabrication of robust low-power metal oxide gas sensors, Sens. Actuators B: Chem 93 (2003) 345-349.
- [53] Y. Shen, T. Yamazaki, Z. Liu, D. Meng, T. Kikuta, N. Nakatani, Influence of effective surface area on gas sensing properties of WO₃ sputtered thin films, Thin Solid Films 517 (2009) 2069-2072.
- [54] C.M. Ghimbeu, M. Lumbreras, M. Siadat, J. Schoonman, Detection of H₂S, SO₂, and NO2 using electrostatic sprayed tungsten oxide films, Mater. Sci. Semiconduct. Proc. 13 (2010) 1-8.
- [55] C. Baratto, G. Sberveglieri, A. Onischuk, B. Caruso, S.d. Stasio. Low temperature selective NO₂ sensors by nanostructured fibres of ZnO, Sens. Actuators B: Chem. 100 (2004) 261-265.
- [56] N. Tamaekong, C. Liewhiran, A. Wisitsoraat, S. Phanichphant, Flame-spray made unloaded zinc oxide film for gas sensing applications, Sensors 10 (2010) 7863-7873.
- [57] V. Kruefu, C. Liewhiran, A. Wisitsoraat, S. Phanichphant, Selectivity of flamespray-made Nb/ZnO thick films towards NO₂ gas, Sens. Actuators B: Chem. 156 (2011) 360-367.
- [58] N. Kılınç, D. Atilla, A.G. Gürek, Z.Z. Öztürk, V. Ahsen, Tetrakis (alkylthio)substituted lutetium bisphthalocyanines for sensing, Sens. Actuators B: Chem. 142 (2009) 73-81.
- [59] N. Padma, A. Joshi, A. Singh, S.K. Deshpande, D.K. Aswal, S.K. Gunta, I.V. Yakhmi, NO_2 sensors with room temperature operation and long term stability

- using copper phthalocyanine thin films, Sens. Actuators B: Chem. 143 (2009) 246-252
- [60] Md.W.K. Nomani, R. Shishir, M. Qazi, D. Diwan, V.B. Shields, M.G. Spencer, G.S. Tompa, N.M. Sbrockey, G. Koleya, Hightly sensitive and selective detection of NO₂ using epitaxial graphene on 6H–SiC, Sens. Actuators B: Chem. 150 (2010) 301-307.
- [61] S. Paul, M. Joseph, Polypyrrole functionalized with FePcTSA for NO2 sensor application, Sens. Actuators B: Chem. 140 (2009) 439-444.
- [62] F. Marinelli, A. Dell'Aquila, L. Torsi, J. Tey, G.P. Suranna, P. Mastrorilli, G. Romanazzi, C.F. Nobile, S.G. Mhaisalkar, N. Cioffi, F. Palmisano, An organic field effect transistor as a selective NOx sensor operated at room temperature, Sens. Actuators B: Chem. 140 (2009) 445-450.
- [63] V. Saxena, D.K. Aswal, M. Kaur, S.P. Koiry, S.K. Gupta, J.V. Yakhmi, Enhanced NO₂ selectivity of hybrid poly(3-hexylthiophene): ZnOnanowire thin films, Appl. Phys. Lett. 90 (2007), pp. 043516-043511-043516-043513.
- [64] C.Y. Lin, Y.Y. Fang, C.W. Lin, J.J. Tunney, K.C. Ho, Fabrication of NO_x gas sensors using In₂O₃-ZnO composite films, Sens. Actuators B: Chem. 146 (2010) 28-34.
- [65] A. Chaturvedi, V.N. Mishra, R. Dwivedi, S.K. Srivastava, Selectivity and response studies on plasma treated thick film tin oxide gas sensors, Microelectron. J. 31 (2000) 283-290.
- [66] M. Kaur, N. Jain, K. Sharma, S. Bhattacharya, M. Roy, A.K. Tyagi, S.K. Gupta, J.V. Yakhmi, Room-temperature H_2S gas sensing at ppb level by single crystal In_2O_3 whiskers, Sens. Actuators B: Chem. 133 (2008) 456–461.
- [67] R.S. Niranjan, K.R. Patil, S.R. Sainkar, I.S. Mulla, High H₂S-sensitive copperdoped tin oxide thin film, Mater. Chem. Phys. 80 (2003) 250-256.
- J.A. Park, J. Moon, S.-J. Lee, S.H. Kim, T. Zyung, H.Y. Chu, Structure and CO gas sensing properties of electrospun TiO2 nanofibers, Mater. Lett. 64 (2010) 255-257
- [69] I.M. Szilagyi, I., Wang, P.I. Gouma, C. Balazsi, I. Madarasz, G. Pokol, Preparation of hexagonal WO₃ from hexagonal ammonium tungsten bronze for sensing NH₃, Mater. Res. Bull. 44 (2009) 505-508.
- [70] W.H. Zhang, W.D. Zhang, Fabrication of SnO2-ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fishes, Sens. Actuators B: Chem. 134 (2008) 403–408. J. Zhang, S. Wang, Y. Wang, M. Xu, H. Xia, S. Zhang, W. Huang, X. Guo, S. Wu,
- ZnO hollow spheres: Preparation, characterization, and gas sensing properties, Sens. Actuators B: Chem. 139 (2009) 411-417.
- BOC gases, material safety data sheet, 1996.
- [73] N. Hopwood, J. Cohen, Greenhouse gases and society. www.umich.edu/~gs265/ society/greenhouse.htm, 2010. (accessed 10.12.10). [74] Methane. www.eoearth.org/article/Methane, 2010 (accessed 10.12.10).
- [75] Carbon dioxide. www.eoearth.org/article/cabondioxide, 2010 (accessed 10.12.10).
- [76] American Conference of Government Industrial Hygienists, www.acgih.org/.
- [77] J. Moon, J.A. Park, S.J. Lee, T. Zyung, I.D. Kim, Pd-doped TiO2 nanofibers networks for gas sensor applications, Sens. Actuators B: Chem. 149 (2010) 301-305
- [78] P.S. Cho, K.W. Kim, J.H. Lee, NO₂ sensing characteristics of ZnO nanorods prepared by hydrothermal method, J. Electroceram. 17 (2006) 975-978.
- [79] S.U. Jo, B.G. Kang, S. Heo, S. Song, Y.J. Kim, Gas sensing properties of WO₃ doped rutile TiO₂ thick film at high operating temperature, Curr. Appl. Phys. 9 (2009) e235-e238.
- [80] A.A. Tomchenko, V.V. Khatko, I.L. Emelianov, WO₃ thick-film gas sensors, Sens. Actuators B: Chem. 46 (1998) 8-14.
- [81] J. Lanćok, A. Santoni, M. Penza, S. Loreti, I. Menicucci, C. Minarini, M. Jelinek, Tin oxide thin films prepared by laser-assisted metal-organic CVD: Structural and gas sensing properties, Surf. Coat. Technol. 200 (2005) 1057-1060.
- K. Mukherjee, S.B. Majumder, Reducing gas sensing behavior of nano-
- crystalline magnesium-zinc ferrite powders, Talanta 81 (2010) 1826–1832. [83] C. Jin, T. Yamazaki, K. Ito, K.T.N. Nakatani, H₂S sensing property of porous SnO₂ sputtered films coated with various doping films, Vacuum 80 (2006)
- [84] W.H. Tao, C.H. Tsai, H₂S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining, Sens. Actuators B: Chem. 81 (2002) 237-247
- [85] C.M. Ghimbeu, I. Schoonman, M. Lumbreras, M. Siadat, Electrostatic spray deposited zinc oxide films for gas sensor applications, Appl. Surf. Sci. 253 (2007)
- [86] G. Sberveglieri, L. Depero, S. Groppelli, P. Nelli, WO₃ sputtered thin films for NO_x monitoring, Sens. Actuators B: Chem. 26 (1995) 89-92.
- G.N. Chaudharia, S.V. Jagtapa, N.N. Gedama, M.J. Pawar, V.S. Sangawarb, Sol gel synthesized semiconducting LaCo $_{0.8}$ Fe $_{0.2}$ O $_3$ -based powder for thick film NH $_3$ gas sensor, Talanta 79 (2009) 1136–1140.
- [88] D.C. Meier, S. Semancik, B. Button, E. Strelcov, A. Kolmakov, Coupling nanowire chemiresistors with MEMS microhotplate gas sensing platforms, Appl. Phys. Lett. 91 (2007) 063118.
- [89] M. Sauvan, C. Pijolat, Selectivity improvement of SnO_2 films by superficial metallic films, Sens. Actuators B: Chem. 58 (1999) 295-301.
- [90] Y. Shimizu, N. Matsunga, T. Hyodo, M. Egashira, Improvement of SO₂ sensing properties of WO₃ by noble metal loading, Sens. Actuators B: Chem. 77 (2001)
- [91] M. Stankova, X. Vilanova, J. Calderer, E. Llobet, P. Ivanov, I. Gràcia, C. Cané, X. Correig, Detection of SO₂ and H₂S in CO₂ stream by means of $\mbox{WO}_3\mbox{-based}$ micro-hotplate sensors, Sens. Actuators B: Chem. 102 (2004) 219–225.

- [92] C.M. Ghimbeu, M. Lumbreras, M. Siadat, R.C. Landschoot, J. Schoonman, Electrostatic sprayed SnO₂ and Cu-doped SnO₂ films for H₂S detection, Sens. Actuators B: Chem. 133 (2008) 694-698.
- P. Hidalgo, R.H.R. Castro, A.C.V. Coelho, D. Gouve, Surface segregation and consequent SO₂ sensor response in SnO₂-NiO, Chem. Mater. 17 (2005) 4149-4153.
- [94] O. Lupan, L. Chow, G. Chai, A single ZnO tetrapod-based sensor, Sens. Actuators B: Chem. 141 (2009) 511-517.
- [95] P. Samarasekara, N. Yapa, N. Kumara, M. Perera, CO₂ gas response of sputtered zinc oxide thin films, Bull. Mater. Sci. 30 (2007) 113–116.
- [96] S.B. Patil, P.P. Patil, M.A. More, Acetone vapour sensing characteristics of cobalt-
- doped SnO₂ thin films, Sens. Actuators B: Chem. 125 (2007) 126–130. [97] D.H. Kim, J.Y. Yoon, H.C. Park, K.H. Kim, CO-sensing characteristics of SnO₂ thick film by coating lanthanum oxide, Sens. Actuators B: Chem. 62 (2000)
- [98] S. Majumder, S. Hussain, R. Bhar, A.K. Pal, Liquid petroleum gas sensor based on SnO₂/Pd composite films deposited on Si/SiO₂ substrates, Vacuum 81 (2007) 985-996.

Biographies

Khatcharin Wetchakun received B.Sc. in Physics from Thammasat University in 2005, M.S. degree in Materials Science from Chiang Mai University in 2007. She is currently a Ph.D. student of Nanoscience and Nanotechnology Program, the Graduate School, Chiang Mai University, Thailand. Her research focuses on the Nanoscience and Nanotechnology, the synthesis and characterization of metal oxides for applications in gas sensors and photocatalysts.

Thanittha Samerjai received her B.Sc. and M.S. from the Department of Chemistry, Chiang Mai University in 2006 and 2008, respectively. At present, she is a PhD student in Nanoscience and Nanotechnology Program, the Graduate School, Chiang Mai University. Her current research interests involve the development and application of gas sensing materials.

Nittaya Tamaekong received her B.Sc. in chemistry with first class honors from Maejo University in 2006. At present, she is a Ph.D. student at the Department of Chemistry, Chiang Mai University. Her current research interests involve the effect of metals on the gas sensing properties of metal oxide nanoparticles synthesized by flame spray pyrolysis.

Chaikarn Liewhiran received his B.Sc. in physics from Srinakharinwirot University in 2002, M.S. and Ph.D. degrees of materials science from Chiang Mai University in 2004 and 2006, respectively. He is currently a lecturer in the Department of physics and Materials Science, Chiang Mai University. His research interests focus on the nanoscience and nanotechnology, the fundamentals of physical and chemical synthesis of metal oxide and metal-ceramic nanoparticles and their applications in nanocomposites, and the development of novel nanomaterials in selective bio-and chemical gas sensing for environmental monitor-

Chawarat Siriwong received B.Sc. in Physics from Silpakorn University in 2005, M.S. degree in Materials Science and Ph.D. degree in Nanoscience and Nanotechnology Program, the Graduate School, Chiang Mai University in 2007 and 2010, respectively. He is currently a lecturer at Department of Physics, Faculty of Science, Silpakorn University. His research focuses on the Nanoscience and Nanotechnology, the fundamentals of nanoscaled synthesis and characterization of metal oxides for applications in gas sensors, photocatalysts and solar cell devices.

Viruntachar Kruefu received B.Sc. in Physics from Kasetsart University in 2002, M.S. degree in Materials Science from Chiang Mai University in 2004. She is currently a Ph.D. student of Nanoscience and Nanotechnology Program, the graduate School, Chiang Mai University, Thailand. Her research focuses on the Nanoscience and Nanotechnology, the fundamentals of nanoscaled synthesis and characterization of metal oxides for applications in gas sensors, photocatalysts and characterization of conducting polymer for solar cell devices.

Anurat Wisitsoraat received his Ph.D., M.S. degrees from Vanderbilt University, TN, USA, and B.Eng. degree n electrical engineering from Chulalongkorn University, Bangkok, Thailand in 2002, 1997, and 1993, respectively. His research interests include microelectronic fabrication, semiconductor devices, electronic and optical thin film coating, gas sensors, and micro-electromechanical systems (MEMS).

Adisorn Tuantranont received the B.S. degree in electrical engineering from King Mongkut's Institute of Technology Ladkrabang, Thailand in 1995, and the M.S. and Ph.D. degrees in electrical engineering from the University of Colorado at Boulder in 2001. Since 2001, he has been the director of the Nanoelectronics and MEMS Laboratory, National Electronic and Computer Technology Center (NECTEC), Pathumthani, Thailand. His research interests are in the area of microelectro-mechanical systems (MEMS), nanoelectronics, lab-on-a-chip technology and printed electronics. He has authored more than 50 refereed journals, 150 proceedings, and holds five patents. He also received the Young Technologist Award in 2004 from

the Foundation for the Promotion of Science and Technology under the patronage of H.M. the King, Thailand.

Sukon Phanichphant is an associate professor in chemistry at Department of Chemistry, Faculty of Science, Chiang Mai University, since 1977. Currently she is the senior researcher at the Materials Science Research Center, Faculty of Science, Chiang Mai University. Her research interests include synthesis and characterization of nanomaterials for use in medical and sensor applications as well as synthesis and characterization of conducting polymer for light-emitting devices.

Contents lists available at SciVerse ScienceDirect

Sensors and Actuators B: Chemical

journal homepage: www.elsevier.com/locate/snb

Highly selective environmental sensors based on flame-spray-made SnO₂ nanoparticles

C. Liewhiran a,b,d,*, N. Tamaekongb, A. Wisitsoraatc, S. Phanichphantb,d

- ^a Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50202, Thailand
- ^b Nanoscience Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50202, Thailand
- ^c Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Klong Luang, Pathumthani 12120, Thailand
- ^d Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50202, Thailand

ARTICLE INFO

Article history:
Received 8 July 2011
Received in revised form
26 December 2011
Accepted 28 December 2011
Available online 5 January 2012

Keywords: SnO₂ Flame spray pyrolysis Selectivity Toxic gas Flammable gas

ABSTRACT

Flame-spray-made SnO_2 thick films fabricated by spin coating method were studied for toxic and flammable gas-sensing applications. From physical characterization by X-ray diffraction, Brunauer–Emmett–Teller analysis, scanning and transmission electron microscopy, SnO_2 nanoparticles were found to have non-agglomerated spherical, hexagonal, rectangle (3–10 nm), and rod-like (3–5 nm in width and 5–20 nm in length) morphologies with large specific surface area of 141.6 m²/g. The sensing films were prepared by spin coating on Al_2O_3 substrate with interdigitated Au electrode. The sensing films were tested toward some important toxic (NO_2 , CO, SO_2) and flammable (H_2 , C_2H_2) gases. It was found that SnO_2 sensing film showed excellent response and selectivity for NO_2 at a low operating temperature of 200 °C. In addition, the response linearly increased and the response time drastically decreased with increasing gas concentration. Therefore, the spin-coated flame–spray-prepared SnO_2 sensor is one of the most promising candidates for highly sensitive and selective detection of noxious NO_2 gas.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Environmental controlling system for most risky areas is oriented toward the regulation, precise investigation and control of noxious gases in the atmosphere. Since the first report of semiconductor gas sensors in 1962 [1], they have been extensively researched for detecting small amounts of inflammable and toxic gases in air. For environmental and safety purposes, effective gas sensors were highly required for accurate monitoring of poisonous and hazardous gases such as CO, SO₂ and NO₂ in domestic as well as industrial areas. SnO₂ has constantly gained attention from many engineers and scientists interested in gas sensing under atmospheric conditions. SnO₂ gas sensors are in high demand for many applications including environmental monitoring, prevention of leakage and incomplete combustion [1-27]. SnO₂ is a wide band gap (3.6 eV) n-type semiconductor [1,26] and the best-understood prototype of oxide-based gas sensors for the detection of toxic gases e.g. CO [2–7], SO_2 [9–11], NO_X [2,6,11–20] or flammable gases e.g. C₂H₂ [21], H₂ [8,22–29] under an atmosphere.

E-mail address: chaikarn_l@yahoo.com (C. Liewhiran).

Owing to focalized risk and hazards, the detections of flammable gases like H_2 and acetylene (C_2H_2) are a subject of growing importance in both domestic and industrial environments. In particular, the detection of H_2 gas is very important for several industrial applications due to safety reasons. H_2 is one of the most flammable and explosive gases that can easily leak from gas sources and systems. The development of a gas sensor for 10-10,000 ppm of H_2 is also of high interest since H_2 is one of the main gases evolving under pyrolysis in the initial stage of combustion [26].

Regarding toxic gases, CO monitoring is critical for combustion process control in machine as well as for safety and environmental purposes. SO₂ is another highly toxic and common air pollutant and its monitoring is also very important. The needs to monitor these pollutions in urban agglomerates or in the working atmosphere have kept increasing. Specifically, NO2 is a highly toxic and major component of the outdoor air pollutions. It is also very significant because of its destructive effects on human's respiratory system. Furthermore, air pollution by nitrogen oxide (NO_x) including NO and NO₂ have become an important environmental issue. In fact, NO₂ associated with other pollutants like volatile organic compounds (VOCs) is responsible for the formation of ozone [13] in lower atmosphere and smog in urban areas while chemical reaction of between NO₂ and water vapor causes the nitric acid rain. Therefore, the development of the gas sensor to detect NO₂ in a low range of concentrations for environmental monitoring has become increasingly important.

^{*} Corresponding author at: Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50202, Thailand. Tel.: +66 81 408 2324; fax: +66 53 892 271.

The major problem of SnO_2 -based sensors is the lack of relative selectivity [1,15], which occurs because chemisorbed oxygen ions (responsible for controlling the conductivity on the sensing surface and grain boundary) reacts with a wide range of gases. The presence of reducing gases increases the sensing film conductance while the existence of the oxidizing gases decreases it. Hence, the range of applications of these gas sensors is limited due to their poor selectivity, response and response time. The sensor response and selectivity may be improved by employing nanostructures in sensor design. However, selective-nanomaterials produced by most currently available synthetic approaches tend to undergo aggregation into large clusters, thus reducing their accessibility and compromising properties associated with their nanoscale dimensions [1].

Flame aerosol synthesis or flame spray pyrolysis (FSP) is one of the most promising routes for the formation of single and multi-component functional nanoparticles at low cost and high production rate [30]. The sizes of the particles can be ranging from a few to several hundred nanometers in diameter, depending on the material and process conditions. The FSP process has been systematically investigated using an external-mixing gasassisted atomizer supported by premixed methane and oxygen flamelets [30–32]. Since it enables primary particle and crystal size control at nanometer scale, it is thus a very promising technique for sensor material fabrication. Furthermore, it bears the unique advantage that nanopowders can be completely manufactured in a single high-temperature step and particle structure and size will not be affected in a subsequent annealing process [30,31]. Also, the importance of size control, required large and easily accessible surface area (large pore size) and desired high crystallinity put high requirements on the method of nanoparticles production for sensor materials. Therefore, it is interesting to apply flame spray pyrolysis (FSP) for production of nanoparticles to be used in environmental gas sensors. In the present study, the applicability of FSP in synthesis of SnO₂ nanoparticles for environmental gas sensing is presented. The aim is to demonstrate that the FSP process in general can be successfully applied for sensor material production and to specifically evaluate the selectivity performance of the environmental gas sensors.

2. Experimental

2.1. Synthesis and characterizations of SnO₂ nanopowder

The experimental set up for the synthesis of unloaded SnO₂ nanopowder by FSP is shown in Fig. 1. Precursor solution (0.5 M) was prepared by dissolving appropriate amount of tin(II) 2ethylhexanoate (Aldrich, 95%) as Sn precursor in xylene (Carlo Erba, 98.5%). The precursor mixture was fed into a nozzle at a constant feeding rate of 5 ml/min using a syringe pump. At the end of the nozzle, the precursor solution was dispersed by 4.3 l/min of oxygen forming a spray with a pressure drop at the capillary tip kept constant at 1.5 bars by adjusting the orifice gap area. A sheath O₂ flow of 3.921/min was supplied concentrically around the nozzle to stabilize and control the spray flame. The spray was ignited by supporting flamelets fed with oxygen (2.461/min) and methane (1.191/min), which were positioned in the ring around the nozzle outlet. A stable light orange spray flame was formed when igniting the precursor spray having a visible flame height of approximately 10 cm. After evaporation and combustion of precursor droplets, particles were formed by nucleation, condensation, coagulation and coalescence. Finally, the nanoparticles were collected on a glass microfibre filters (Whatmann GF/A, 25.7 cm in diameter) with an aid of a vacuum pump (Busch, So SV 1040C).

The nanopowder phase was analyzed by X-ray diffraction (XRD) [Phillips X-'pert] using Cu K α radiation (20 kV, 20 mA) with

a scanning speed of 5°/min. Using the standard matching approach, the crystalline phase and size of the particles were identified. The corresponding grain sizes were then calculated from the measured full width at half maximum (FWHM) of XRD peaks using the Sherrer's equations [33]. The Brunauer-Emmett-Teller (BET) specific surface area (SSABET) was measured by nitrogen adsorption at 78 K [Autosorb 1 MP, Quantachrome] after degassing at 120 °C for 2 h prior to analysis in nitrogen. Assuming uniform spherical particles within an aggregate, the average equivalent diameter of the primary particles was calculated from the relationship: $d_{\text{BET}} = 6/SSA_{\text{BET}} \times \rho_{\text{SnO}_2}$, where SSA_{BET} was the specific surface area (m²/g) and ρ_{SnO_2} was the average density ($\rho_{SnO_2} = 6.85 \, \text{g/cm}^3$ [2]). After gas-sensing measurement, the morphologies and cross-section of sensor structures were examined by transmission electron microscopy (TEM) [JSM-2010, JEOL] and scanning electron microscopy (SEM) [JSM-6335F, JEOL].

2.2. Paste and sensor preparations

An appropriate quantity of 0.28 ml homogeneously mixed solution of ethyl cellulose (Fluka, 30–70 mPa s) as a temporary binder and terpineol (Aldrich, 90%) as a solvent was prepared by stirring and heating at $80\,^{\circ}\text{C}$ for $12\,\text{h}$. The liquid mixture was combined with $60\,\text{mg}$ of SnO_2 nanopowders and blended for $30\,\text{min}$ to form a paste prior to spin coating. To deposit the sensing film, the resulting paste was spin-coated at $700\,\text{rpm}$ for $10\,\text{s}$ and at $3000\,\text{rpm}$ for $30\,\text{s}$ on the Al_2O_3 substrates with interdigitated Au electrodes $(0.5\,\text{cm}\times0.5\,\text{cm})$. For binder removal prior to the sensing test, the coated substrates were annealed in an oven at $150\,^{\circ}\text{C}$ for $1\,\text{h}$ and at $400\,^{\circ}\text{C}$ for $1\,\text{h}$ with a heating rate of $1\,^{\circ}\text{C/min}$ [34-38].

2.3. Gas-sensing measurement

The gas-sensing characteristics of SnO₂ sensing films were characterized over high concentration ranges for CO (20-1000 ppm), SO_2 (20-500 ppm), H_2 (500-10,000 ppm), and C₂H₂ (500–10,000 ppm). In contrast, it was tested specifically within a low concentration range for NO₂ (2-20 ppm). The standard flow through technique was used to test the gas-sensing properties of SnO₂ films. A constant flux of synthetic air of 21/min as gas carrier was flowed to mix with desired concentration of pollutants dispersed in synthetic air. All measurements were conducted in a temperature-stabilized sealed chamber at 20 °C under controlled humidity. The gas flow rates were precisely manipulated using a computer controlled multi-channel mass flow controller. An external NiCr heater was heated by a regulated DC power supply to different operating temperatures between 200 °C and 300 °C. The resistances of various sensors were continuously monitored with a computer-controlled system by voltage-amperometric technique with 10 V DC bias and current measurement through a picoammeter. The sensor was exposed to a gas sample for \sim 5 min for each gas concentration testing and then the air flux was restored for 15 min.

The response (S) are defined as the resistance ratio, $R_{\rm g}/R_{\rm a}$ [2,11–20] for oxidizing gases and $R_{\rm a}/R_{\rm g}$ [2–7,11,22–27,38] for reducing gases, where $R_{\rm a}$ is the resistance in dry air with the absence of analyte gas and $R_{\rm g}$ is the resistance in the presence of analyte gas. The response time ($T_{\rm res}$) is defined as the time required until 90% of the response signal is reached while the recovery time ($T_{\rm rec}$) denotes the time needed until 90% of the original baseline signal is recovered [34–38]. It should be noted that 100% of the response signal is taken as the maximum response upon gas exposure due to sensors' sluggish responses at some conditions especially at a low operating temperature. Thus, the response here differs from the standard response time and it will only be used to

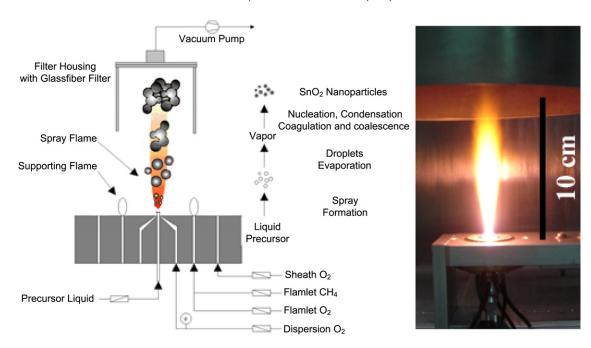


Fig. 1. Schematic of the FSP experimental set up and flame appearance for the synthesis of SnO_2 nanoparticles. Spray flame of SnO_2 was performed using 5 ml/min of liquid precursor feed rate and dispersion by O_2 (5 l/min) at 1.5 bar pressure drop across the nozzle tip. The light orange flame height was observed to be approximately 10 cm.

compare different sensors within the conditions of these experiments. After the gas-sensing measurement, the morphologies and film thickness of sensing layers were further analyzed by SEM analysis.

3. Results and discussion

3.1. Particles properties

Fig. 2 shows the XRD patterns of flame-spray-made pure $\rm SnO_2$ nanoparticles. It can be seen that the nanoparticles is highly crystalline and all peaks can be confirmed to be the cassiterite-tetragonal phase of $\rm SnO_2$ from their excellent matching to the JCPDS file No. 77-447 [symmetrical group: $\rm P_{42/mnm}$] with lattice constants of a=b=0.4735 nm and c=0.3185 nm. The average grain sizes ($d_{\rm XRD,ave}$) were calculated using Sherrer's equation [33] for comparison with the average BET-equivalent particle diameter ($d_{\rm BET}$). The estimated particle sizes were estimated from dominant peaks of (110), (102), and (211) planes to be 2.9 nm, 11.1 nm, and 10.6 nm, respectively. Fig. 3 illustrates the TEM bright-field

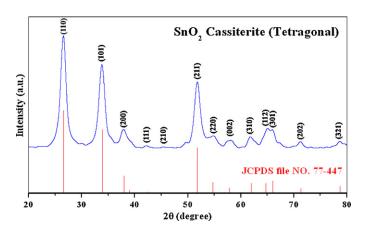


Fig. 2. XRD patterns of flame-spray-made SnO₂ nanoparticles.

image of flame-spray-made unloaded SnO_2 nanoparticles. The corresponding electron diffraction pattern is shown in the inset. From the TEM bright-field image, SnO_2 primary nanoparticles are polyhedral, non-agglomerated and well dispersed. In addition, flame-spray-made SnO_2 nanoparticles are mainly spherical with typical diameters ranging from 3 to 10 nm and occasionally rectangular, hexagonal (3–10 nm) and rod-like (3–5 nm in width, and 5–20 nm in length). From the measured SSA_{BET} for SnO_2 nanoparticles of $141.6 \, \text{m}^2/\text{g}$, the average BET-equivalent particle diameter is determined to be $6.2 \, \text{nm}$. The particle diameters from BET and TEM analyses are in good agreement and are in the same range as XRD grain sizes ($d_{BET} = 6.2 \, \text{nm}$, $d_{TEM} = 3-10 \, \text{nm}$, $d_{XRD,ave} = 3-11 \, \text{nm}$). The small primary particle size and correspondingly large specific

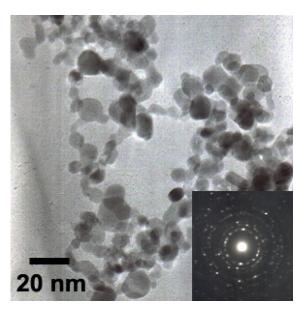
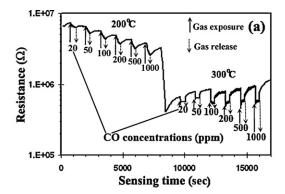
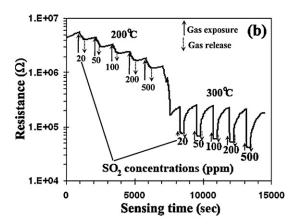




Fig. 3. TEM bright-field image of flame-spray-made SnO_2 nanoparticles. Non-agglomerated particles can be observed. The corresponding electron diffraction pattern was shown in the inset.

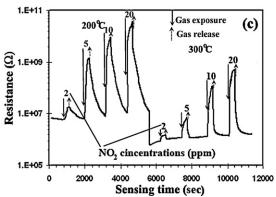


Fig. 4. Change in resistance of SnO $_2$ sensor upon exposure to (a) CO, (b) SO $_2$ and (c) NO $_2$ in forward cycle at 200 $^\circ$ C and 300 $^\circ$ C.

surface area of flame-spray-made SnO₂ nanoparticles are highly preferred properties for gas-sensing.

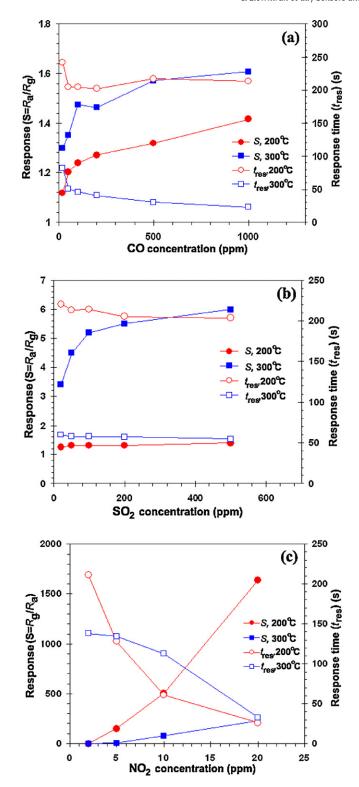
3.2. Gas sensing properties

3.2.1. Sensing of toxic gases (CO, SO₂, NO₂)

Fig. 4 shows the change in resistance of sensors under exposure to toxic gases at high (CO and SO₂) and low (NO₂) concentration ranges at the operating temperature of 200 °C and 300 °C during forward cycle. It can be seen that the resistances decrease (Fig. 4(a): CO, Fig. 4(b): SO₂) and increase drastically (Fig. 4(c): NO₂) during the gas exposure with increasing gases concentrations, which are typical n-type semiconducting behaviors toward reducing and oxidizing gases, respectively. As the CO and SO₂ gas concentrations and the operating temperatures increases, the trends of responses to CO and SO₂ gases of SnO₂ sensor are increased correspondingly while the response times are almost constant. It is caused by the sensing mechanism of reducing gases. The behavior may be explained

by taking into account the fact that the oxide surface is populated by a variety of physisorbed and chemisorbed molecules. The presence of these species modulates the electrical behavior of the active layer in the response to reducing and oxidizing gases [13,16–18]. At the sensing temperature of 200 °C and 300 °C, the oxygen species composed of O $^-$ and O $_2^-$ are dominant in the sensing mechanism. Firstly, it is generally accepted that CO adsorption on the sensing surface involves large electrostatic states [4] and produces electrons leading to an increase in conductivity. CO reacts with oxygen adsorbed on the SnO $_2$ sensing surface according to the reaction [4] (Eq. (1)):

$$CO(g) + O_{ads}^{-} \rightarrow CO_2 + e^{-} \tag{1}$$


On the other hands, NO_2 is well known to be an oxidizing gas and then, as expected for most of the n-type metal oxide semiconductors, a decrease of the current and increase of resistance are evidently observed for all NO_2 concentrations [13,14,18]. NO_2 can be absorbed or interact with the adsorbed oxygen on the SnO_2 sensing layer according to the reaction [18] (Eq. (2)):

$$NO_2(gas) + e^- \rightarrow NO + O_{ads}^-$$
 (2)

This reaction reduces the electron concentration near the sensing surface and consequently the resistance of the layer increases. The gas sensor performance is usually evaluated by passing a continuous flow of balancing air containing the analyte gas over the sensing layer. Nevertheless, this method plays an important role in providing a constant reaction rate as the adsorption and desorption coefficients strongly depend on the flow parameter. Specifically, when the sensor is exposed to NO₂ gas, NO₂ molecules can diffuse more quickly to react with oxygen species on the surface of SnO₂ nanoparticles. As a result, the change in resistance of SnO₂ sensor would reach the maximum in a shorter response times for NO₂ when compared to the other gases. When NO₂ concentrations is varied from 2 to 20 ppm at the operating temperatures of 200 °C and 300 °C, the response times of the sensor are increased with decreasing NO₂ concentrations.

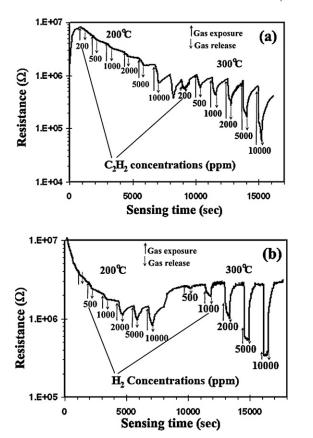
Fig. 5 shows the plot of response (S) and response times (T_{res}) for the SnO₂ sensor versus concentrations of CO (200–1000 ppm, Fig. 5(a)) SO_2 (20–500 ppm, Fig. 5(b)) and NO_2 (2–20 ppm, Fig. 5(c)) from forward cycles at operating temperatures of 200 °C and 300 °C. In Fig. 5, it is clear that the responses (filled symbols, left axis) increase and the response times (open symbols, right axis) decrease with increasing analyte concentrations for all gases. For both CO and SO₂ (Fig. 5(a) and (b)), it can be seen that the sensor has better sensing performances at 300 °C than 200 °C with higher response (filled symbols, left axis) and shorter response time (open symbols, right axis). On the other hand, the best NO_2 sensing performance in terms of the response (S = 1640) and response time (26 s) are obtained at high concentration (20 ppm) and low operating temperature (200 °C) while the response (S = 230) and response time (33 s) to the same concentration at 300 $^{\circ}$ C are considerably poorer (Fig. 5(c)). It is clear that the extreme sensor response to NO₂ (20 ppm) evidently manifests the drastic three-orders of magnitude change in resistance and it can still moderately respond at a low concentration of 2 ppm (Figs. 4(c) and 5(c)). While the reduced CO and SO₂ sensing reveals very low response at 20 ppm, oxidized NO₂ sensing offers much higher response at the same concentration, enabling more accurate detection of the small leakage in an atmosphere. The SnO₂ sensor shows very fast response to CO whereas the responses to SO₂ and NO₂ are somewhat sluggish. The recovery times for these gases (not shown) are quite long within 3-10 min. This is due possibly to slow desorption of gas species from highly porous SnO₂

Therefore, sensor structure, gas concentration, operating temperature and gas type are all important parameters governing the sensing performance. Our observed results are consistent

Fig. 5. Response (filled symbols) and corresponding response time (open symbols) of SnO₂ sensors as a function of (a) CO, (b) SO₂ and (c) NO₂ concentrations in dry air at 200 °C and 300 °C.

with Sahm et al. [2] who reported CO, NO_2 and propanol gas sensors fabricated by drop coating of flame-made SnO_2 nanoparticles. The sensors were tested with high concentrations of CO (500–10,000 ppm) and propanol (10–300 ppm) and low concentration of NO_2 (10–5000 ppb). The NO_2 response was reported to be \sim 20 at 5000 ppb and 220 °C. The SnO_2 sensor could quickly respond to NO_2 at low temperature and low concentration in the range

of ppbs. Moreover, Mädler et al. [3] mentioned the CO gas sensors made by thermophoretic deposition of flame-made unloaded SnO_2 and $0.2\%\,Pt/SnO_2$ nanoparticles. The thickness of sensing film deposited for $150\,s$ was about $30\pm3\,\mu m$. While the unloaded SnO_2 sensor gave a low response of 2.5–50 ppm CO at $400\,^{\circ}\text{C}$ under ambient controlled humidity of 50% r.h. (at $20\,^{\circ}\text{C}$), the $0.2\%\,Pt/SnO_2$ sensor exhibited relatively high CO response of 8–50 ppm CO in dry air at $350\,^{\circ}\text{C}$ with good reproducibility. Thus, Pt loading enhanced the CO sensing performance.


Furthermore, Sharma et al. [13] reported SnO_2 thin film sensor could provide good response to NO_2 (1–50 ppm) at low operating temperature of $100\,^{\circ}$ C. The sensor was characterized with several gases including NH_3 , CH_4 , liquid petroleum gas (LPG), H_2 and H_2S . The SnO_2 sensor was found to be highly selective toward NO_2 and exhibited larger resistance increase after interaction with NO_2 at a $100\,^{\circ}$ C. In addition, NO_2 sensing by SnO_2 hollow-sphere sensors was presented by Zhang et al. [16]. They reported the effect of the calcination temperature on their crystallite size and gas sensing properties. It was found that the SnO_2 hollow spheres calcined at $450\,^{\circ}$ C with crystallite size of $12.7\,\mathrm{nm}$ were the most sensitive to NO_2 . The sensor exhibited relatively high selectivity for NO_2 against ethanol, gasoline, acetone, CCl_4 and NH_3 when operated at $160\,^{\circ}$ C.

Moreover, Karthigeyan et al. [17] studied the effect of theoretical work function on NO₂ response of SnO₂ films at low temperatures under different humidity conditions. The films were evaluated in wet air containing different concentrations of NO2. The sensor showed a good response to NO2 with the work function change of about 100 mV toward 5 ppm of NO_2 at 130 °C. In addition, the influence of humidity on the response of SnO2 sensing film was found to be very low. The high response to 5 ppm of NO₂ suggested an opportunity to study the sensor characteristics at ppb-level concentrations. Finally, Starke et al. [18] reported SnO₂ sensors fabricated using laser ablated nanocrystalline metal oxide as potential NO₂ detectors with particular emphasis on their potential cross sensitivity to NO. The investigation focused on the advantageous performances in terms of the response, selectivity, and response time when responded to a low concentration range for environmental monitoring. The results indicated that it could be used for NO₂ detection with great selectivity at low operating temperature. Therefore, the SnO₂ sensor has been one of the most suitable candidates for the efficient detection of toxic gases especially NO2 at a low operating temperature.

3.2.2. Sensing of flammable gases (C_2H_2 and H_2)

The C₂H₂ and H₂ gas sensing were performed at different operating temperatures of 200 °C and 300 °C in the forward cycle. The changes in resistance under exposure to C₂H₂ and H₂ are shown in Fig. 6(a) and (b). The results show a typical characteristic for a rutile-SnO₂ as an n-type semiconductor whose resistance decreases upon exposure to reducing gases. It is seen that the sensor evidently exhibits relatively high response to C2H2 and H2 at the operating temperature of 300°C with detection limits of 200 ppm and 500 ppm for C₂H₂ and H₂, respectively. Furthermore, the resistances are drastically decreased with increasing operating temperature and gas concentration. It can be observed that the sensor can constantly recover to its original baseline (R_a) upon H₂ release at 300 °C (Fig. 6(b)) whereas slight drifts in the original baseline are seen for the C2H2 case (Fig. 6(a)). The results confirm that there is no phase transformation from n-type to ptype semiconductors or grain growth, which might occur at a higher temperature. In addition, the recovered stabilization toward flammable gases is improved at higher operating temperature.

Fig. 7(a) and (b) shows the relationship between the response (filled symbols, left axis) and response time (open symbols, right axis) versus operating temperature and gas concentrations of C_2H_2 and H_2 , respectively. It demonstrates that the response to

Fig. 6. Change in resistance of SnO₂ sensor upon exposure to (a) C_2H_2 and (b) H_2 in forward cycle at 200 °C and 300 °C.

10,000 ppm of C_2H_2 is slightly lower than that to 10,000 ppm of H_2 and both responses decrease rapidly with decreasing gas concentrations. At the lower operating temperature of $200\,^{\circ}\text{C}$, the SnO_2 sensor has approximately the same response to 10,000 ppm C_2H_2 and H_2 of ~ 1.7 , which is considerably lower than those at $300\,^{\circ}\text{C}$ (S=6.3 for C_2H_2 and S=7.8 for H_2). Thus, the increase of operating temperature is beneficial for responses toward C_2H_2 and H_2 . The response times for C_2H_2 and H_2 decrease nonlinearly with concentration at $200\,^{\circ}\text{C}$ (open circles, right axis) and $300\,^{\circ}\text{C}$ (open rectangles, right axis) operating temperature. At the lower operating temperature of $200\,^{\circ}\text{C}$, the response times for 10,000 ppm of C_2H_2 and H_2 are $235\,\text{s}$ and $78\,\text{s}$, respectively and they are significantly reduced to $34\,\text{s}$ and $14\,\text{s}$, respectively, at the higher operating temperature of $300\,^{\circ}\text{C}$ while the recovery times (not shown) are quite long ranging from 4 to $10\,\text{min}$.

These results show that the higher temperature results in the higher and faster response for both gases. This phenomenon can be explained by the variation of saturation time and mean residence period of C₂H₂ and H₂ molecules on the film surface [39]. At low temperature, the thermal energy of adsorbed C2H2 and H2 species are low, leading to long response and recovery times. As the temperature increases, the thermal energy increases accordingly and the time required for C₂H₂ and H₂ molecules to completely cover the film surface decreases. Moreover, SnO2 is a nonstoichiometric oxide having oxygen vacancies and electron donor states [21,39]. Normally, O₂ molecules are dissociated and chemisorbed on the surface of SnO₂. Chemisorption causes electron transfer from the conduction band to the chemisorbed oxygen, which results in the decrease of sensor conductance. C₂H₂ and H₂ are both reducing gases, which can react with adsorbed oxygen and release the electrons from the oxygen back into the conduction band, leading to the decrease of the sensor resistance, thus generating electrical signals.

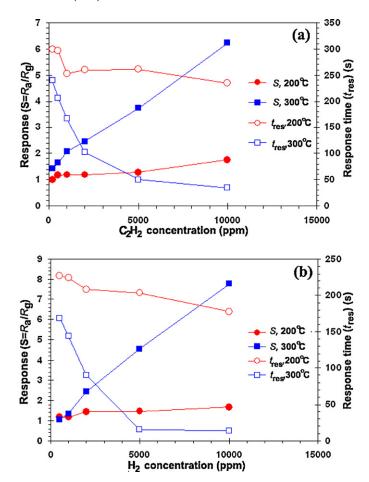
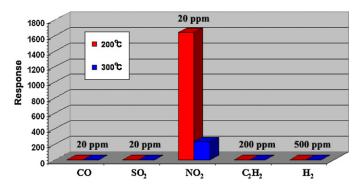



Fig. 7. Response (filled symbols) and corresponding response time (open symbols) of SnO_2 sensors as a function of (a) C_2H_2 and (b) H_2 concentrations in dry air at $200\,^{\circ}C$ and $300\,^{\circ}C$.

From the data, the SnO₂ sensor is unsuitable for the flammable gas sensing due to its low response at relatively high gas concentrations. The sensing improvement may be carried out by incorporation of catalysts and electronic dopants. In comparison with literatures, Qi et al. [21] reported electrical response to C₂H₂ from unloaded SnO₂ and Sm₂O₃/SnO₂ sensor. It was found that the response increased and reached its maximum at 180°C and then decreased rapidly with increasing temperature. At the optimum operating temperature of 180 °C, 6 wt% Sm₂O₃/SnO₂ sensor showed the maximum response of about 63.8, which was higher than that of unloaded SnO₂ (3.8), indicating that the addition of Sm₂O₃ was beneficial for C₂H₂ sensing. In addition, Bamsaoud et al. [28] studied H₂ and acetone vapor sensing from nano-particulate SnO₂ based resistive films. The sensor was tested in low concentration ranges of H_2 (0.1–1 and 1–10 ppm) and a high sensitivity of 200×10^{-3} /ppm was obtained at 265 °C in the lowest concentration range of H₂ (0.1-1 ppm). The selectivity for H₂ against relative humidity, CO₂, CO and LPG gases was reported to be quite high. The sensor showed nearly zero response to 300 ppm of CO₂ and high response to 11 ppm of acetone vapor at 200 °C. Thus, they could be used as H₂ sensor at the operating temperature of 265 °C and as an acetone sensor at the operating temperature of 200 °C. Moreover, the influence of SnO₂ morphology on gas sensing properties was reported by Lingmin et al. [29]. The one-dimensional (1D) SnO₂ nanocrystals were synthesized by thermal evaporation method with modifying technological parameters and the responses to C₂H₅OH, CO, H₂ and CH_4 were studied at operating temperatures ranging from 150 $^{\circ}\text{C}$ to 350 °C. It was concluded that excellent gas-sensing response from

Fig. 8. The selectivity histogram of SnO_2 sensor for environmental monitoring including the toxic gases (CO, SO_2 , NO_2) and flammable gases (C_2H_2 , H_2) at low concentration of 20 ppm for toxic gases and high concentrations of 200 ppm and 500 ppm for C_2H_2 and H_2 , respectively, at the operating temperatures of $200\,^{\circ}C$ and $300\,^{\circ}C$.

 SnO_2 nanowires sensors could be attributed to its large aspect ratio, good thermal stability and multimodel porosity.

3.3. Environmental selectivity

Resistive gas sensors with metal oxide layers are frequently used for monitoring environmental gases particularly toxic gases in air due to their high response and good long term stability. The cross sensitivities of the sensor toward different concentrations of

CO, SO₂, NO₂, C₂H₂ and H₂ were measured at 200 °C and 300 °C (Fig. 8). The sensor evidently shows much less response to CO, SO₂, C₂H₂ and H₂ than to NO₂, indicating high selectivity for NO₂. The selectivity experiment for SnO2 sensing film was carried out by monitoring changes in resistance upon exposure to several gases in both high and low concentration ranges. The toxic gases (CO, SO₂ and NO₂) and flammable gases (H₂ and C₂H₂) were comparatively tested at the concentrations of 20 ppm for CO, SO₂, NO₂, 500 ppm for H_2 and 200 ppm for C_2H_2 at the operating temperature of 200 °C. The flammable gases were tested at relatively high concentrations because their responses were negligible at the low concentration of 20 ppm. From Fig. 8, the SnO₂ sensor is evidently highly selective toward NO₂ as it exhibits much higher resistance increase after interaction with NO₂ gas molecules at the low operating temperature of 200 °C. On the other hand, there are much small decreases in the sensor resistance upon exposure to other interfering gases including toxic gases (CO and SO₂) and flammable gases (H₂ and

A summary of gas-sensing performance of unloaded SnO_2 prepared by various synthetic methods is shown in Table 1. It can be seen that spin-coated FSP-prepared SnO_2 film in the present work exhibits much better NO_2 selectivity than those prepared by sputtering and other FSP-prepared SnO_2 films deposited by drop coating and thermophoretic deposition but it still has lower NO_2 selectivity than SnO_2 hollow nanosphere prepared by hydrolyzation and screen printing. The sensor characteristics including response and response/recovery time of sensing films can considerably be

Table 1Summary of gas-sensing performances of unloaded SnO₂ materials prepared by various synthetic methods.

Authors	Methods	Materials Gas conc.	Sensing performances			
				Response (S)	$t_{ m res}$	Selectivity
Sahm et al. [2]	FSP (nanopowders)	Pure SnO ₂	NO ₂	NO ₂ ; ~20 to 5000 ppb at 220 °C	-	NO ₂ ; $S \sim 20$ to 5000 ppb
	Drop coating (sensors)		(10–5000 ppb), CO (500–10,000 ppm), propanol (10–300 ppm)			
			-	Propanal; ~300 to 150 ppm at 220 °C		
Mädler et al. [3]	FSP (nanopowders) Thermophoretic deposition (sensors)	0.2 wt%Pt/SnO ₂	CO; 50 ppm	8–50 ppm at 350°C	-	=
Sharma [13]	RF sputtering	SnO ₂	NO ₂ ; 1–50 ppm	Response to $2.9 \times 10^4 \text{ NO}_2$ at $100 ^{\circ}\text{C}$ of 1.6min	1.6 min	NO ₂ ; $S = 2.9 \times 10^4$ to 5000 ppb
			NH ₃ ; 200 ppm CH ₄ ; 200 ppm H ₂ ; 200 ppm LPG; 200 ppm H ₂ S; 200 ppm			Other gases; S < 100
Zhang et al. [16]	Hydrolyzation (nanopowders)	SnO ₂ hollow-sphere	NO ₂ ; 5–100 ppm	Response to NO ₂ at 160 °C	90 s	NO_2 ; $S = 2471$ to 50 ppm
	Screen printing (sensors)	(12.7 nm)	Ethanol; 50 ppm Methanol; 50 ppm	-	(5 ppm)	••
			Gasoline; 50 ppm Acetone; 50 ppm CCl ₄ ; 50 ppm	1150; 5 ppm 2031; 20 ppm	20 s (20 ppm)	Other gases; <i>S</i> < 10
			NH ₃ ; 50 ppm	2471; 50 ppm 2229; 100 ppm	10 s (50 ppm)	
			RH = 20–35%		5 s (100 ppm)	
Present work	FSP (nanopowders) Spin coating	Pure SnO ₂	NO ₂ ; 2–20 ppm	Response to 20 ppm of NO ₂	20 ppm of NO ₂	NO ₂ ; 200 °C, 20 ppm
	(sensors)		CO; 20–1000 ppm SO ₂ ; 20–500 ppm	~1640, 200 °C ~230, 300 °C	26 s, 200 °C 33 s, 300 °C	S = 1640
			H ₂ ; 500–10,000 ppm C ₂ H ₂ ; 500–10,000 ppm			Other gases; S < 10

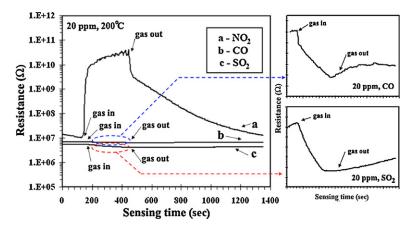


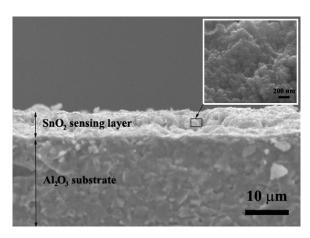
Fig. 9. The change in resistance versus time plot of different toxic gases at 20 ppm concentration for flame-spray-made SnO₂ sensing film at 200 °C.

affected by the particle morphology, size and distribution as well as operating temperature. The main advantage of FSP includes ability to produce well-controlled nanosized particles with high crystallinity structure suitable for gas sensing. However, the differences between our result and those of other flame-spray-made SnO₂ films suggest that the method for deposition of FSP nanoparticles on substrate is also very important. Spin coating technique used in this work has produced better results than other methods including drop coating and thermophoretic deposition. A plausible reason is that spin coating can produce uniform porous film with high particle density, resulting in relatively larger specific surface area and higher gas adsorption.

The selectivity results can be further explained from the adsorption and desorption mechanisms of NO $_2$ at the surface of SnO $_2$ sensing film. Theoretically, NO $_2$ oxidizing molecules trap free electrons from the surface after adsorption, resulting in an increase of sensor resistance. At a low operating temperature (200 $^{\circ}$ C), the predominant oxygen species on the SnO $_2$ surface are still O $_2$ – but NO $_2$ gas molecules interact directly with Sn ionic sites instead of reacting with O $_2$ – species [19,20]. SnO $_2$ responds to NO $_2$ gas according to the following reactions (Eq. (3)) [19]:

$$NO_2 + Sn^{2+adsorption} (Sn^{3+} - NO_2^{-}) \xrightarrow{desorption} (Sn^3 - O^{-}) + NO$$
 (3)

NO2 gas molecules adsorb on the surface of SnO2 sensor and attact available Sn sites and form NO2- species by taking away electrons from the conduction band of SnO₂. The reduction in the charge carrier concentration in the conduction band of SnO₂ results in an increase of sensor resistance (R_g) as observed in Fig. 4(c). However, this process will undergo a reversible oxidizing interaction at Sn sites available on the surface of SnO₂ film [13,20]. Therefore, the resistance in the NO_2 gas (R_g) depends upon the availability of Sn sites on the surface of SnO₂ layer, which in turn are influenced by the presence of physisorbed oxygen. During the recovery state, these adsorbed NO₂⁻ species desorbs as NO gas molecules leaving chemisorbed oxygen species behind (Eq. (3)). These oxygen species have trapped electrons, hence the SnO₂ surface is still deficient of free electrons and the original value of the resistance in dry air (R_a) is not yet regained. Subsequently, the chemisorbed oxygen species left behind on the SnO₂ surface are released as O₂ gas according to (Eq. (4)) [13]:


$$2(Sn^{3+} - O^{-}) \xrightarrow{\text{desorption}} 2Sn^{2+} + O_2$$
 (4)

The entire process takes a long time and hence quite slow recovery taking approximately 3–8 min is observed at a low operating temperature (Fig. 7(c)). However, the recovery process for SnO_2 thin film sensor becomes faster with increasing temperature because electron-transfer reactions (Eqs. (3) and (4)) are thermally

activated [13,19,20]. The operating temperature plays an important role in controlling the productivity of free electrons and oxygen species. For NO₂ oxidizing gas, lower temperature results in less free electrons and oxygen species, leading to the lower conductivity. As observed from Fig. 9, the change of resistance curve in the logarithm scale is rapidly changing upon exposure and release of NO₂ (20 ppm) while the curves are slowly turning after exposure and release of CO (20 ppm) and SO₂ (20 ppm). In addition, it is obvious from the left logarithm scale plot that CO and SO₂ responses are negligible compared to NO₂. The response to NO₂ is very high with a value of 1640, while the responses to CO and SO₂ are only 1.12 and 1.25, respectively. Thus, the sensor is much more sensitive to NO₂ than to CO and SO₂. It can be concluded that the flame-spraymade SnO₂ sensor has a high selectivity for NO₂ against other toxic and flammable gases.

3.4. Cross-section of sensing film

The cross-section, film thickness, and surface morphology of the SnO_2 sensing layer after annealing and sensing at $200\,^{\circ}C$ and $300\,^{\circ}C$ were examined using SEM analysis as shown in Fig. 10. It can be seen that the film thickness of sensing film is approximately $5\,\mu m$ (side view), which benefits tremendously to gas-sensing properties. The SnO_2 sensing layer is crack-free and contains very high density nanoparticles. The regularity in the film thickness stems from the uniformity of binder-powder mixing, spin coating and binder removal annealing process. After annealing and repeated

Fig. 10. SEM micrographs of SnO_2 sensing film spin-coated on an Al_2O_3 substrate with interdigitated Au electrodes after annealing at $400\,^{\circ}C$ and gas-sensing measurement at $200\,^{\circ}C$ and $300\,^{\circ}C$ in dry air. The film thickness was approximately $5\,\mu$ m

gas-sensing measurement at 200 °C and 300 °C, a denser film layer was observed as seen in Fig. 10.

4. Conclusions

In conclusion, highly selective and sensitive sensors for environmental monitoring were fabricated by spin coating of flame-spray-made SnO₂ nanoparticles. The sizes and dimensional structures (outer diameter of nanoparticles and 2D film thickness) played an important role in increasing the specific surface area of sensing layer. The nanoparticles were found to have a high specific surface area (SSA_{BET}: 141.6 m²/g), which could significantly enhance surface ionization reaction from adsorption and desorption of oxygen and gas species. The continuous sensing film was achieved leading to the connectivity of nanoparticles' properties. The SnO₂ sensor was tested to toxic gases (CO, SO₂, NO₂), and flammable gases (C₂H₂, H₂) with different concentration ranges. The SnO₂ sensor exhibited much higher response and selectivity to NO_2 (to 20 ppm, S = 1640) against other gases at low concentration and low operating temperature of 200 °C. From the results, the sensor could constantly recover to its original baseline, confirming that there was no phase transformation from n-type to p-type semiconductors or grain growth, which might occur at a higher temperature. In addition, the recovered stabilization toward gases was improved at higher operating temperature. Moreover, the extreme sensor response to NO₂ (20 ppm) evidently manifested the drastic three-orders of magnitude change in resistance and it could still moderately respond at a low concentration of 2 ppm. Therefore, the SnO₂ sensor was one of the most suitable candidates for the efficient detection of NO2 at low ppm-level and low operating temperature.

Acknowledgments

The authors gratefully acknowledge the financial support from the Thailand Research Fund (TRF); the National Research University Project under the Office of the Higher Education Commission, Ministry of Education, The Materials Science Research Center, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Thailand and National Electronics and Computer Technology Center, Pathumthani, Thailand are also gratefully acknowledged.

References

- [1] Y. Chen, J. Zhu, X. Zhu, G. Ma, Z. Liu, N. Min, Gas sensing properties and microstructure of SnO₂ nanocrystalline prepared by solid state reactionthermal oxidation, Mater. Sci. Eng. B 99 (2003) 52–55.
- [2] T. Sahm, L. M\u00e4dler, A. Gurlo, N. B\u00e4rsan, S.E. Pratsinis, U. Weimar, Flame spray synthesis of tin dioxide nanoparticles for gas sensing, Sens. Actuators B: Chem. 98 (2004) 148–153.
- [3] L. Mädler, A. Roessler, S.E. Pratsinis, T. Sahm, A. Gurlo, N. Barsan, U. Weimar, Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO₂ nanoparticles, Sens. Actuators B: Chem. 114 (2005) 283–295.
- [4] L. Mädler, T. Sahm, A. Gurlo, J.-D. Grunwaldt, N. Barsan, U. Weimar, S.E. Pratsinis, Sensing low concentrations of CO using flame-spray-made Pt/SnO₂ nanoparticles, J. Nanopart. Res. 8 (2006) 783–796.
- [5] M.A. Ponce, M.S. Castro, C.M. Aldao, Resistance and capacitance analysis of Pd-doped and undoped SnO₂ thick films sensors exposed to CO atmospheres, Ceram. Int. 32 (2006) 733–737.
- [6] O.V. Safonova, M.N. Rumyantseva, L.I. Ryabova, M. Labeau, G. Delabouglise, A.M. Gaskov, Effect of combined Pd and Cu doping on microstructure, electrical and gas sensor properties of nanocrystalline tin dioxide, Mater. Sci. Eng. B 85 (2001) 43–49
- [7] N.S. Baik, G. Sakai, N. Miura, N. Yamazoe, Hydrothermally treated sol solution of tin oxide for thin-film gas sensor, Sens. Actuators B: Chem. 63 (2000) 74–79.
- [8] V.N. Mishra, R.P. Agarwal, Sensitivity, response and recovery time of SnO₂ based thick-film sensor array for H₂, CO, CH₄ and LPG, Microelectr. J. 29 (1998) 861–874.

- [9] N. Bukun, A. Vinokurov, M. Vinokurova, L. Derlyukova, Y. Dobrovolsky, A. Levchenko, Chemisorption and electrochemical reactions of SO₂ on modified SnO₂ electrodes, Sens. Actuators B: Chem. 106 (2005) 153–157.
- [10] J. Lančok, A. Santoni, M. Penza, S. Loreti, I. Menicucci, C. Minarini, M. Jelinek, Tin oxide thin films prepared by laser-assisted metal-organic CVD: structural and gas sensing properties, Surf. Coat. Technol. 200 (2005) 1057–1060.
- [11] J. Kaur, S.C. Roy, M.C. Bhatnagar, Highly sensitive SnO₂ thin film NO₂ gas sensor operating at low temperature, Sens. Actuators B: Chem. 123 (2007) 1090–1095.
- [12] T. Hyodo, K. Sasahara, Y. Shimizu, M. Egashira, Preparation of macroporous SnO₂ films using PMMA microspheres and their sensing properties to NO_x and H₂, Sens. Actuators B: Chem. 106 (2005) 580–590.
- [13] A. Sharma, M. Tomar, V. Gupta, SnO₂ thin film sensor with enhanced response for NO₂ gas at lower temperatures, Sens. Actuators B: Chem. 156 (2) (2011) 743–752.
- [14] C. Cobianu, C. Savaniu, A. Arnautu, R. Iorgulescu, D. Dascalu, G. Leo, M. Mazzer, R. Rella, P. Siciliano, S. Capone, L. Vasanelli, A SnO₂ microsensor device for subppm NO₂ detection, Sens. Actuators B: Chem. 58 (1999) 552–555.
- [15] M. Sauvan, C. Pijolat, Selectivity improvement of SnO₂ films by superficial metallic films, Sens. Actuators B: Chem. 58 (1999) 295–301.
- [16] J. Zhang, S. Wang, Y. Wang, Y. Wang, B. Zhu, H. Xia, Z. Guo, S. Zhang, W. Huang, S. Wu, NO₂ sensing performance of SnO₂ hollow-sphere sensor, Sens. Actuators B: Chem. 135 (2009) 610–617.
- [17] K. Karthigeyan, R.P. Gupta, K. Scharnagl, M. Burgmair, M. Zimmer, S.K. Sharma, I. Eisele, Low temperature NO₂ sensitivity of nano-particulate SnO₂ film for work function sensor, Sens. Actuators B: Chem. 78 (2001) 69–72.
- [18] T.K.H. Starke, G.S.V. Coles, H. Ferkel, High sensitivity NO₂ sensors for environmental monitoring produced using laser ablated nanocrystalline metal oxides, Sens. Actuators B: Chem. 85 (2002) 239–245.
- [19] J. Kaur, S.C. Roy, M.C. Bhatnagar, Effect of indium doped SnO₂ nanoparticles on NO₂ gas sensing properties, Sens. Actuators B: Chem. 126 (2007) 478–484.
- [20] B. Ruhland, T. Becker, G. Muller, Gas kinetic interactions of nitrous oxides with SnO₂ surfaces, Sens. Actuators B: Chem. 50 (1998) 85–94.
 [21] Q. Qi, T. Zhanga, X. Zheng, H. Fan, L. Liu, R. Wang, Y. Zeng, Electrical response of
- [21] Q. Qi, T. Zhanga, X. Zheng, H. Fan, L. Liu, R. Wang, Y. Zeng, Electrical response of Sm₂O₃-doped SnO₂ to C₂H₂ and effect of humidity interference, Sens. Actuators B: Chem. 34 (2008) 36–42.
- [22] B. Yea, R. Konishi, T. Osaki, S. Abe, H. Tanioka, K. Sugahara, Analysis of the sensing mechanism of tin dioxide thin film gas sensors using the change of work function in flammable gas atmosphere, Appl. Surf. Sci. 100/101 (1996) 365–369.
- [23] A. Katsuki, K. Fukui, H₂ selective gas sensor based on SnO₂, Sens. Actuators B: Chem. 52 (1998) 30–37.
- [24] H. Chi-Hwan, H. Sang-Do, I. Singh, T. Toupance, Micro-bead of nano-crystalline F-doped SnO₂ as a sensitive hydrogen gas sensor H₂ selective gas sensor based on SnO₂, Sens. Actuators B: Chem. 109 (2005) 264–269.
- [25] A. Salehi, Selectivity enhancement of indium-doped SnO₂ gas sensors, Thin Solid Films 416 (2002) 260–263.
- [26] A.S. Ryzhikov, A.N. Shatokhin, F.N. Putilin, M.N. Rumyantseva, A.M. Gaskov, M. Labeau, Hydrogen sensitivity of SnO₂ thin films doped with Pt by laser ablation, Surf. Coat. Technol. 107 (2005) 387–391.
- [27] R.S. Niranjan, Y.K. Hwang, D.-K. Kim, S.H. Jhung, J.-S. Chang, I.S. Mulla, Nanos-tructured tin oxide: synthesis and gas-sensing properties, Mater. Chem. Phys. 92 (2005) 384–388.
- [28] S.F. Bamsaoud, S.B. Rane, R.N. Karekar, R.C. Aiyer, Nano particulate SnO₂ based resistive films as a hydrogen and acetone vapour sensor, Sens. Actuators B: Chem. 153 (2011) 382–391.
- [29] Y. Lingmin, F. Xinhui, Q. Lijun, M. Lihe, Y. Wen, Dependence of morphologies for SnO₂ nanostructures on their sensing property, Sens. Actuators B: Chem. 257 (2011) 3140–3144.
- [30] S.E. Pratsinis, Flame aerosol synthesis of ceramic powders, Prog. Energy Combust. 24 (1998) 197–219.
- [31] L. Mädler, H.K. KammLer, R. Mueller, S.E. Pratsinis, Controlled synthesis of nanostructured particles by flame spray pyrolysis, J. Aerosol Sci. 33 (2002) 369–389.
- [32] R. Mueller, L. M\u00e4dler, S.E. Pratsinis, Nanoparticle synthesis at high production rates by flame spray pyrolysis, Chem. Eng. Sci. 58 (2003) 1969–1976.
- [33] B.D. Cullity, Structure of Polycrystalline Aggregates: Elements of X-ray Diffraction, second ed., Addison-Wesley, Massachusetts, 1978, p. 284.
- [34] C. Liewhiran, S. Phanichphant, Influence of thickness on ethanol sensing characteristics of doctor-bladed thick film from flame-made ZnO nanoparticles, Sensors 7 (2007) 185–201.
- [35] C. Liewhiran, S. Phanichphant, Improvement of flame-made nanoparticulate thick film morphology for ethanol sensing, Sensors 7 (2007) 650-675.
- [36] C. Liewhiran, S. Phanichphant, Effects of palladium loading on the response of a thick film flame-made Zno gas sensor for detection of ethanol vapor, Sensors 7 (2007) 1159–1184.
- [37] C. Liewhiran, S. Phanichphant, Doctor-bladed thick films of flame-made Pd/ZnO nanoparticles for ethanol sensing, Curr. Appl. Phys. 8 (2008) 336–339.
- [38] C. Liewhiran, N. Tamaekong, A. Wisitsoraat, S. Phanichphant, H₂ sensing response of flame-spray-made Ru/SnO₂ thick films fabricated from spin-coated nanoparticles, Sensors 9 (2009) 8996–9010.
- [39] J.H.C.V. Hooff, Formation of paramagnetic surface species during the oxidation of nonstoichiometric TiO₂(A), SnO₂, and ZnO, J. Catal. 11 (1968) 277–279.

Biographies

Chaikarn Liewhiran received his B.Sc. from Srinakharin-wirot University in 2002 on Physics, M.S. and Ph.D. degrees of Materials Science from the Chiang Mai University in 2004 and 2006, respectively. He was currently a lecturer in the Department of Physics and Materials Science at Chiang Mai University until the present. His research program focuses on the Nanoscience and Nanotechnology, the fundamentals of Physical and Chemical synthesis of metal oxide and metal-ceramic nanoparticles and their applications in nanocomposites, and the development of novel nanomaterials in selective bio- and chemical gas sensing for environmental monitoring.

Nittaya Tamaekong received her B.Sc. with first class honors from Mae Jo University in 2006 in Chemistry. She received the doctoral degree in Chemistry, Chiang Mai University in 2011. Currently is a staff member at Program in Materials Science, Faculty of Science, Maejo University, Chiang Mai. Her current research interests involve the applications of metal-loaded semiconductor metal oxides synthesized by Flame Spray Pyrolysis.

Anurat Wisitsoraat received his Ph.D., M.S. degrees from Vanderbilt University, TN, USA, and B.Eng. degree in Electrical Engineering from Chulalongkorn University, Bangkok, Thailand in 2002, 1997, and 1993, respectively. His research interests include microelectronic fabrication, semiconductor devices, electronic and optical thin film coating, gas sensors, and micro-electromechanical systems (MEMS).

Sukon Phanichphant is an Associate Professor in Chemistry at Department of Chemistry, Faculty of Science, Chiang Mai University, since 1977. Currently she is the senior researcher at the Materials Science Research Center, Faculty of Science, Chiang Mai University. Her research interests include synthesis and characterization of nanoparticles for use in medical and sensor applications as well as synthesis and characterization of conducting polymer for light-emitting devices.