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บทสรปุสาํหรบัผูบ้ริหาร 
 
 
 เน่ืองจากความต้องการใช้พลงังานไฟฟ้าที่เพิม่สูงขึ้นอย่างต่อเน่ือง ทําให้ต้องมกีาร
พฒันาระบบไฟฟ้าให้มปีระสทิธิภาพและสามารถส่งจ่ายพลงังานไฟฟ้าได้อย่างต่อเน่ืองและ
เพยีงพอต่อความต้องการดงักล่าว แต่การขยายตวัของระบบไฟฟ้าถูกจํากดัด้วยปจัจยัหลาย
ประการ เช่น เงนิลงทุน ผลกระทบต่อสิง่แวดลอ้ม และขอ้จํากดัภายในระบบไฟฟ้าเอง ดว้ยเหตุ
น้ีจงึไดม้กีารพฒันาอุปกรณ์ควบคุมระบบส่งจ่ายไฟฟ้ากระแสสลบัแบบยดืหยุ่นได ้หรอืเรยีกว่า 
อุปกรณ์ควบคุมแฟ็คทส ์นํามาประยกุตใ์ชค้วบคุมการไหลของกําลงัไฟฟ้าและเพิม่ความสามารถ
ในการถ่ายโอนกาํลงัไฟฟ้าในระบบไฟฟ้ากาํลงั แต่การเลอืกใชง้านและควบคุมอุปกรณ์ดงักล่าวมี
ความซบัซอ้นและอาจสง่ผลกระทบต่อระบบไฟฟ้าไดห้ากตดิตัง้และควบคุมไมเ่หมาะสม 

งานวจิยัน้ีจงึไดพ้ฒันาวธิกีารคาํนวณเชงิววิฒันาการแบบผสมผสาน โดยมพีืน้ฐานจาก
วธิกีารโปรแกรมเชงิววิฒันาการ การคน้หาแบบทาบู และการจาํลองการอบอ่อน เพื่อหาวธิกีาร
จดัวางอุปกรณ์ควบคุมแฟ็คทสท์ีม่คีวามเหมาะสมทีสุ่ด โดยพจิารณาจาก ชนิด จาํนวน ตําแหน่ง 
และขนาด ของอุปกรณ์ควบคุมแฟ็คทสห์ลายชนิด ที่จะถูกใชง้านในระบบไฟฟ้ากําลงัเพื่อเพิม่
ความสามารถในการถ่ายโอนกําลงัไฟฟ้าใหไ้ดม้ากทีสุ่ด และลดกําลงัไฟฟ้าสูญเสยีใหน้้อยทีสุ่ด
พรอ้มกนั โดยไม่ส่งผลกระทบต่อขอ้จํากดัของระบบไฟฟ้าเดมิ ปญัหาการหาค่าเหมาะสมทีสุ่ด
ของการจัดวางอุปกรณ์ควบคุมแฟ็คทส์ ได้ถูกสร้างเป็นสมการฟงัก์ชันวัตถุประสงค์ทาง
คณิตศาสตร ์และหาคาํตอบโดยใชอ้ลักอรทิมึการคาํนวณเชงิววิฒันาการแบบผสมผสานทีไ่ดถู้ก
พฒันาขึน้ ผลทีไ่ดจ้ากการทดสอบกบัระบบทดสอบมาตรฐานและระบบไฟฟ้าจรงิของประเทศ
ไทย รวมถงึการเปรยีบเทยีบกบัวธิกีารวเิคราะหด์ว้ยวธิกีารอื่น แสดงใหเ้หน็ว่าการเลอืกใช ้การ
จดัวาง และการควบคุมอุปกรณ์ควบคุมแฟ็คทสห์ลายชนิดดว้ยวธิกีารทีนํ่าเสนอในงานวจิยั ทํา
ให้สามารถเพิม่ความสามารถในการถ่ายโอนกําลงัไฟฟ้าและลดกําลงัไฟฟ้าสูญเสยีในระบบ
ไฟฟ้าเดิมได้มากกว่าวิธีการอื่น นําไปสู่การใช้ประโยชน์ระบบไฟฟ้ากําลังที่มีอยู่เดิมให้มี
ประสทิธภิาพและสมรรถภาพเพิม่มากขึน้ 
 ผลลพัธจ์ากงานวจิยัไดร้บัการตรวจสอบและยอมรบัใหต้พีมิพล์งในวารสารวชิาการระดบั
นานาชาติ ที่มีคณะผู้ทรงคุณวุฒิเป็นผู้พิจารณาจํานวน 1 บทความ นอกจากน้ียงัได้มีการ
เชื่อมโยงกบันกัวจิยัทัง้ภายในและต่างประเทศ รวมถงึมกีารขยายขอบเขตงานวจิยัเพื่อเชื่อมโยง
กบัสาํนกังานนโยบายและแผนพลงังาน กระทรวงพลงังาน ในการพฒันานกัวจิยัรุน่ใหม ่ในระดบั
นักศกึษาปรญิญาโทและเอก โดยมผีลการศกึษาและงานวจิยัทีไ่ดนํ้าเสนอต่อทีป่ระชุมวชิาการ
ระดบันานาชาต ิรวมถงึบทความตพีมิพเ์ผยแพร่ในวารสารการประชุมวชิาการระดบันานาชาติ
จํานวน 5 บทความ ตลอดช่วงเวลาทีผู่ด้ําเนินการวจิยัไดร้บัการสนับสุนจาก สํานักงานกองทุน
สนบัสนุนการวจิยั สาํนกังานคณะกรรมการการอุดมศกึษา และมหาวทิยาลยัเชยีงใหม ่
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Abstract 
 
 
Project Code : MRG5380012 

Project Title : Applications of Multi-type FACTS Controllers for Power Transfer 
Capability Enhancement of Thailand Electrical Power System Using 
Hybrid Evolutionary Computation Technique 

Investigator : Dr.Peerapol  Jirapong,  Chiang Mai University 

E-mail Address : jirapong@chiangmai.ac.th 

Project Period : 15 June 2010 – 14 June 2012 

With the advent of flexible AC transmission system (FACTS), FACTS devices 
are used to provide flexible control of power flows over designated transmission routes 
and increase power transfer capability of transmission networks. The extent of these 
benefits depends upon where these devices are placed and how they are controlled in 
the systems. This research proposes a new hybrid evolutionary algorithm (HEA) based 
on evolutionary programming (EP), tabu search (TS), and simulated annealing (SA) to 
determine the optimal allocation of multi-type FACTS controllers to simultaneously 
maximize the electrical power transfer capability and minimize system real power loss of 
power transactions in power systems. The optimally placed optimal power flow with 
FACTS controllers is formulated as a combined objective function including power 
transfer capability and system power loss to evaluate the feasible maximum power 
transfer value. The HEA approach simultaneously searches for types, number, 
locations, and parameters of FACTS controllers, real power generations in a source 
area, real power loads in a sink area, and generation bus voltages to solve the optimal 
power flow with FACTS problem. Test results on the test systems and practical 
Thailand power systems indicate that optimally placed FACTS controllers by the HEA 
could enhance power transfer far more than those from EP, TS, hybrid TS/SA, and 
improved EP algorithms, leading to much efficient utilization of the existing Thailand 
transmission systems. 
 
Keywords: Evolutionary Algorithm; FACTS Controllers; Power Transfer Capability; 

Optimal Power Flow 
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Chapter 1 
 
 
 

Introduction 
 
 
 
 

1.1 Background 
 
In competitive electric power markets and open access transmission systems, 
electric utilities have to operate closer to their limits, causing unpredictable line 
loading, voltage variations, and stability problems. To solve these difficulties, 
flexible AC transmission system (FACTS) devices have been used to increase 
power transfer capability of transmission networks and provide direct control of 
power flows over designated transmission routes, resulting in a lower system loss, 
stability enhancement, operating cost reduction, and fulfilled contractual 
requirements (Edris et al., 1998). The extent of these benefits depends upon where 
these devices are placed and how they are controlled in the systems, which in turn 
requires efficient methodologies to solve the optimally placed FACTS problem. 
This is an important aspect in the context of growing energy demand and the 
emergence of energy trading markets. 

Available transfer capability (ATC) is used as a market signal of the 
capability of a transmission network to deliver electric energy in deregulated 
power systems. ATC is defined as a measure of the transfer capability remaining 
in a physical transmission network for further commercial activity over and above 
already committed uses (NERC, 1996). It is required to be calculated for each 
control area and posted on a public communication system called open access 
same time information system (OASIS) to enhance the open access transmission 
network and make competition reasonable and effective (FERC, 1996a; FERC, 
1996b). Mathematically, ATC is defined as the total transfer capability (TTC) less 
the transmission reliability margin (TRM), less the sum of the capacity benefit 
margin (CBM) and existing transmission commitments. TTC is the main 
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component of the ATC calculation, which is defined as the amount of electric 
power that can be transferred over the transmission network in a reliable manner 
while meeting all of a specific set of defined pre- and post-contingency system 
conditions. TRM and CBM are two transmission margins considering the inherent 
uncertainty and reliability in the transmission system. 

Accurate determination of ATC is essential to maximize utilization of the 
existing transmission network while maintaining system security. Underestimated 
ATC may lead to under-utilization of transmission systems, while overestimated 
ATC could lower system reliability. Wide varieties of mathematical methods such 
as: i) linear ATC (LATC) method (Ejebe et al., 2000), ii) continuation power flow 
(CPF) (Ejebe et al., 1998), iii) repetitive power flow (RPF) (Gravener and 
Nwankpa, 1999), and iv) dynamic ATC (Kumar et al., 2004) have been developed 
for ATC computations. In addition, optimal power flow (OPF)-based methods, 
which can be implemented by many optimization techniques such as interior point 
algorithm (Dai et al., 2000), sequential quadratic programming (SQP) (Shaaban et 
al., 2003), and transfer-based security constrained OPF (TSCOPF) (Ou and Singh, 
2002) have been proposed to calculate ATC with various degrees of success.  

These methods require convexity of objective function to obtain the 
optimal solution. However, the OPF-based ATC calculation is generally non-
linear and non-convex optimization problem and, as a result, many local solutions 
may exist especially in power systems with embedded FACTS controllers (Wong 
et al., 2003). FACTS parameters are additional control variables which can not be 
solved effectively by conventional optimization methods because these parameters 
will change the admittance matrix. Moreover, the ability of interconnected 
transmission networks to reliably transfer electric power is limited by physical and 
electrical characteristics including line thermal limits, voltage limits, and stability 
limits (NERC, 1996). The limiting condition on some portions of the systems can 
shift among these constraints as the network operating conditions change over 
time. Such variations further complicate the ATC computation. Therefore, 
conventional techniques may converge to local solutions or diverge altogether 
(Lai, 1998). 

With the advent of evolutionary computation (EC) techniques, many 
heuristic methods e.g. genetic algorithm (GA) and evolutionary programming 
(EP) are efficiently applied for solving the optimal FACTS placement problems to 
determine global or near global optimum solution. These algorithms are not 
sensitive to starting points and are capable of handling non-convex optimization 
problems. A GA combined with CPF method is used to determine the optimal 
placement of thyristor-controlled series capacitor (TCSC) for maximizing TTC 
(Feng and Shrestha, 2001). The GA is used to search for the optimal location and 
parameter of TCSC while CPF is used to evaluate the TTC value with the 
optimally placed TCSC subject to thermal and voltage limits. For the optimal 
placement of multi-type FACTS controllers, a floating point GA is used to 
simultaneously search for locations, types, and parameters of TCSC, static var 
compensator (SVC), thyristor-controlled phase shifting transformer (TCPST), and 



 3

thyristor-controlled voltage regulator (TCVR) (Gerbex et al., 2001). The 
optimization strategy based on RPF method is performed to determine the 
maximum system loadability subject to thermal and voltage limits. However, 
using CPF and RPF may lead to a conservative TTC value because these methods 
do not result in the optimal generation, loading, and generator bus voltages. 

Furthermore, the optimally placed OPF with FACTS controllers is a mixed 
integer non-linear programming (MINLP) problem with continuous and discrete 
variables. Solving MINLP problems is difficult for two reasons. Firstly, the 
presences of non-linearity in the objective and constraint function imply non-
convexity in MINLP problems with multiple local solutions, which are still far 
from the global solution. Secondly, the presence of both continuous and discrete 
variables in a large combinatorial problem, combining the mixed-integer 
programming (MIP) and non-linear programming (NLP) significantly increase the 
complexity of MINLP problems. Therefore, the optimally placed OPF with 
FACTS problem may not be effectively solved by either conventional methods or 
a single EC technique. 

Since the initiative of FACTS concept in the late 1980s (Hingorani, 
1988a), FACTS controllers have provided strategic benefits for power system 
planning and operation. In addition to ATC enhancement (Ou and Singh, 2001; 
Xiao et al., 2003), FACTS controllers have been effectively used to control power 
flow especially for controlling reactive power flow over designated transmission 
routes. One of the main aims of reactive power control is to provide appropriate 
placement of FACTS controllers to minimize power loss of transmission networks 
(Baskarana and Palanisamy, 2006). The problems of reactive power control with 
FACTS controllers using conventional optimization methods and artificial 
intelligence (AI) techniques have been studied and widely reported in the 
literature. Moreover, sensitivity index approaches have been commonly used to 
determine suitable locations of FACTS controllers for minimizing power loss 
(Preedavichit and Srivastava, 1998) and maximizing ATC (Leonidaki et al., 2001; 
Orfanogianni and Bacher, 2003). However, these methods may not lead to the 
optimal solution because of dependency to system topology and loading 
conditions.  

To achieve the main objectives of FACTS controllers utilization and deal 
with the complicated combinatorial optimization problem, this research proposes a 
novel hybrid evolutionary algorithm (HEA) based on evolutionary programming 
(EP), tabu search (TS), and simulated annealing (SA) to determine the optimal 
placement of multi-type FACTS controllers to simultaneously maximize ATC and 
minimize system real power loss of power transactions between different control 
areas in deregulated power systems. 
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1.2 Statement of the Problem 
 
ATC computations present a major challenge for power system engineers. Wide 
varieties of mathematical methods have been proposed for ATC calculations with 
various degrees of success. There are still issues associated with their 
implementation. 
 

1. The LATC method takes account only of thermal limits on line flows. 
Ignoring voltage and reactive power effects may lead to unacceptable error 
especially in a stressed system with insufficient reactive power support and 
voltage control. 
 

2. To increase a certain power transfer, CPF and RPF methods use a common 
loading factor for a specific cluster of generators and loads, which may 
lead to a conservative ATC value since the optimal generation, loading, 
and generator bus voltages are ignored. 
 

3. The applications of dynamic ATC methods are limited to the evaluation of 
a large scale non-linear programming problem that results in a problem 
formulation of huge dimension. 
 

4. OPF-based ATC determinations mostly take only line thermal and voltage 
limits into consideration. However, the limiting condition of transmission 
network can shift among thermal, voltage, and stability limits. Ignoring 
any one of these constraints may lead to unsecured system operation.  
 

5. OPF-based ATC determination is generally non-linear and non-convex 
optimization problem and, as a result, many local solutions may exist 
especially in power systems with embedded FACTS controllers. 
Therefore, conventional optimization methods may converge to local 
optimal solutions or diverge altogether. 

 
In addition to the ATC computation aspect, determination of the optimally 

placed OPF with FACTS problem is an essential topic in power system operation 
and planning studies. A number of issues associated with this optimization 
problem are listed as follows: 
 

1. The optimally placed OPF with FACTS is a MINLP problem, which may 
not be solved effectively by conventional optimization methods or a single 
EC technique. 
 

2. Sensitivity index approaches that provide suitable locations of FACTS 
controllers may not lead to the optimal solution because of dependency to 
system topology and loading conditions. 
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3. A number of EC techniques combined with conventional methods have 
been proposed to solve the optimal FACTS allocation problems. 
Nevertheless, the obtained results are far from the optimal solutions due to 
the use of OPF with local search algorithms. 
 

4. For a simple system with a number of FACTS controllers, many 
optimization techniques have been adequately reported. However, for 
more complicated power systems with multiple and multi-type FACTS 
controllers, a few techniques have been developed for solving the 
optimization problems. 
 

5. Even though a combined objective function including ATC maximization 
and power loss minimization is not new, it is treated as one of the most 
important problems in using FACTS controllers. 

 
 

1.3 Objectives 
 
The main objectives of the study are as follows: 

 
1. To develop an efficient HEA approach for determining ATC of power 

transactions in deregulated power systems, considering thermal, voltage, 
and stability limits. 
 

2. To apply the HEA approach for determining the optimal placement of 
multiple and multi-type FACTS controllers to simultaneously maximize 
ATC and minimize system real power loss of the power transactions 
without violating system constraints. 
 

3. To compare the effectiveness of the HEA approach to CPF, EP, TS, hybrid 
TS/SA, and improved EP (IEP) methods. 

 
 

1.4 Scope and Limitations 
 
The scope and limitations of the study are as follows: 

 
1. Dynamic properties, and dynamic stability limits of FACTS controllers are 

out of scope of the research. 
 

2. Five optimization techniques including EP, TS, hybrid TS/SA, IEP, and 
HEA are considered. The proposed optimization methods are developed in 
MATLAB programming language. 
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3. The modified IEEE 24-bus reliability test system (RTS), modified IEEE 
30-bus system, modified IEEE 118-bus system, and the modified Thai 
power 160-bus system are used as test systems. 
 

4. The proposed HEA approach has capabilities to: 
 

i. determine ATC of bilateral and multilateral transactions, 
ii. incorporate thermal limits, voltage limits, voltage and angle 

stability limits, and FACTS controllers steady-state operating limits 
into system constraints, 

iii. accommodate other constraints including the most critical single 
contingency outage condition, 

iv. simultaneously maximize ATC and minimize system real power 
loss, 

v. incorporate multiple and multi-types FACTS controllers into the 
OPF problem,  

vi. perform sequential run on one computer or parallel run on multiple 
computers. 

 
 

1.5 Structure of the Report 
 
The organization of this report is as follows: Statement of the problem and 
objectives of the research are presented in Chapter 1. In Chapter 2, a review of 
literature related to ATC determination, FACTS controllers, OPF problems, and 
heuristic optimization techniques is presented. In Chapter 3, the OPF-based ATC 
determination is formulated as an optimization problem. The HEA approach is 
proposed to solve the optimization problem. In Chapter 4, the HEA method is 
proposed to determine the optimal placement of multi-type FACTS controllers to 
simultaneously maximize ATC and minimize power loss. Test results from the 
HEA are compared with those from EP, TS, TS/SA, and IEP methods. Lastly, 
Chapter 5 gives the conclusion of this research.  
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Chapter 2 
 
 
 

Literature Review 
 
 
 
 
This chapter presents a literature review of available transfer capability, FACTS 
controllers, optimal power flow problems, and modern heuristic optimization 
techniques. 
 
 

2.1 Available Transfer Capability 
 
2.1.1 Principles and definitions of ATC 
 
The movement towards competitive electric power markets and open access 
transmission systems has added considerable emphasis to the interest in 
quantifying transmission transfer capability (NERC, 1995a; Williams, 1996). In 
1996, the North American Electric Reliability Council (NERC) published a 
technical report regarding available transfer capability (ATC) definitions and 
determination to provide a uniform framework for determining ATC and related 
terms (NERC, 1996). The report also provides ATC principles under which ATC 
values are to be calculated. All transmission provider and user entities are 
expected to abide by the following principles: 
 

1. ATC calculations must produce commercially viable results. 
 

2. ATC calculations must recognize time-variant power flow conditions and 
the effects of simultaneous transfers and parallel path flow throughout the 
network. 
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3. ATC calculations must recognize the dependency of ATC on the points of 
electric power injection, the directions of transfers, and the points of power 
extraction. 
 

4. Regional or wide-area coordination is necessary to develop and post 
information that reasonably reflects the ATC. 
 

5. ATC calculations must conform to regional, subregional, power pool, and 
individual system reliability planning and operating policies, criteria, or 
guides. 
 

6. The determination of ATC must accommodate reasonable uncertainties in 
system conditions and provide operating flexibility to ensure the secure 
operation. 

 
ATC is defined as a measure of the transfer capability remaining in a 

physical transmission network for further commercial activity over and above 
already committed uses (NERC, 1996). It is required to be calculated for each 
control area and posted on a public communication system called open access 
same time information system (OASIS) to enhance the open access transmission 
network and make competition reasonable and effective by providing a market 
signal of the capability of the transmission network to deliver electric energy in 
deregulated power systems (FERC, 1996a; FERC, 1996b).  

Mathematically, ATC is defined as the total transfer capability (TTC) less 
the transmission reliability margin (TRM), less the sum of the capacity benefit 
margin (CBM) and existing transmission commitments. TTC is the amount of 
electric power that can be transferred over the interconnected transmission 
network in a reliable manner while meeting all of a specific set of defined pre- and 
post-contingency system conditions. TRM is the amount of transmission transfer 
capability necessary to ensure that the interconnected transmission network is 
secure under a reasonable range of uncertainties in system conditions. CBM is the 
amount of transmission transfer capability reserved by load serving entities to 
ensure access to generation from interconnected systems to meet generation 
reliability requirements. 

 
 
2.1.2 Considerations in ATC computations 
 
ATC calculation is a complicated task involving determination of TTC and two 
margins, TRM and CBM. Accurate determination of ATC is essential to 
maximize utilization of the existing transmission networks while maintaining 
system security. Underestimating ATC may lose business opportunities, while 
overestimating it can compromise system reliability. Wide varieties of 
mathematical methods have been proposed to determine ATC with various 
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degrees of success. Methods based on AC load flow models are slower than 
methods using DC load flow models but do allow for consideration of additional 
system limits and more accurate accounting of the operation guides and control 
actions that accompany the increasing transfers. Moreover, the ability of 
interconnected transmission networks to reliably transfer electric power is limited 
by physical and electrical characteristics including thermal limits, voltage limits, 
and stability limits (NERC, 1996). The limiting condition on some portions of the 
systems can shift among these constraints as the network operating conditions 
change over time. Such variations further complicate the ATC computation (Gisin 
et al., 1999; Ilic et al., 1997). 

Sauer (1997) presents several concepts for dealing with the technical 
challenges of ATC computation, such as definition of a base case, specification of 
contingencies, finding the maximum transfer, and interpretation of results. 
Various types of uncertainty and error that can impact ATC calculations and their 
use in power system operations are discussed in (Sauer, 1999; Sauer and Grijalva, 
1999). In addition, reactive power considerations in ATC computation are also 
presented in (Grijalva and Sauer, 1999).  

Both TRM and CMB, which account for uncertainties and reliability of 
power systems, are seldom mentioned in the papers associated with ATC 
computation. Sauer (1998) propose four methods for calculating TRM. The first 
method is based on repeated computation of TTC using variations in the base case 
data. The second one is a single repeat computation of the TTC using limitations 
reduced by a fixed percentage (i.e. 4%). The next one is simply to reduce the TTC 
by a fixed percentage (i.e. 5%). The last method is a probabilistic approach using 
statistical forecast error and other systematic reliability concepts. CBM can be 
determined either by deterministic or probabilistic methods (NERC, 1999; 
Othman et al., 2006), both of which are used in reliability evaluation. Ou and 
Singh (2002) propose two methods for incorporating CBM into ATC. In one 
method, CBM is subtracted from TTC directly to derive the ATC, while in the 
other method CBM is taken as firm transfers. Moreover, test results from the 
study indicate that ignoring CBM will lead to a considerable risk of losing transfer 
or generation unreliability. 

Transmission management in deregulated power systems is another issue 
facing system operators to provide optimal power transactions (Christie et al., 
2000; Fang and David, 1999). Dispatch methodologies including pool, bilateral, 
and multilateral transactions for open access transmission systems are presented in 
(David, 1998a; David, 1998b; Hamoud, 1999). ATC determinations of power 
transactions between different control areas have to conform to these concepts. 
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2.1.3 Determination of ATC 
 
ATC calculations are generally based on computer simulations of the operation of 
interconnected transmission networks under a specific set of assumed operating 
conditions. Wide varieties of mathematical methods have been developed for 
calculating ATC, which can be summarized into four types as follows: 
 

1. Linear approximation method based on DC power flow model 
considering only thermal limits. 
 

2. Continuation power flow method based on AC power flow model 
considering thermal, voltage, and voltage stability limits. 
 

3. Stability-constrained ATC method based on time domain simulations 
with dynamic model considering stability limits. 
 

4. Optimal power flow method based on AC power flow model considering 
thermal and voltage limits. 

 
 
A. Linear approximation method 
 
Linear method is based on linear incremental power flow approximation, which 
calculates network sensitivity indices to determine the transfer capabilities of 
power systems. Initial concepts for applying sensitivity index to transfer capability 
calculations are presented in (Greene et al., 1997). Christie et al. (2000) propose a 
power transfer distribution factor (PTDF) based on DC load flow for ATC 
determination. In addition, Ejebe et al. (2000) also propose a linear ATC (LATC) 
method, which calculates three sets of linear sensitivity indices including PTDF, 
line outage distribution factor (LODF), and generator outage distribution factor 
(GODF) for calculating ATC values. For each ATC case, power transfer is non-
simultaneous because it only considers power transfer from a single source to a 
single sink. Greene et al. (2002) present a network sensitivity index approach for 
the first order sensitivity of the transfer capability with respect to the variation of 
any parameters. This method uses the sensitivity of transfer capability margins to 
calculate ATC.  

These methods are attractive because the network sensitivity indices are easy 
to calculate and they quickly provide estimated ATC values. However, these 
methods are based on dc load flow, considering only thermal limits. Ignoring 
voltage and reactive power effects may lead to unacceptable error especially in a 
stressed system with insufficient reactive power support and voltage control. 
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B. Continuation power flow and Repetitive power flow methods 
 
Continuation power flow (CPF) is a general method for finding the maximum 
value of a scalar parameter in a linear function of changes in real power at a set of 
buses in a power flow problem (Ajjarapu and Christy, 1992). CPF method traces 
the power flow solution curve, starting at a base load, leading to the steady-state 
voltage stability limit or the maximum loading point of power systems. The main 
advantage of CPF is that it can overcome the singularity of the Jacobian matrix 
near the saddle-node bifurcation point, or the critical point (Chiang et al., 1995). 
Originally introduced for determining maximum loadability, CPF is adaptable 
without change in principle for ATC computation. In (Ejebe et al., 1998), a CPF 
method with adaptive localization is proposed to calculate ATC considering 
reactive power and voltage stability effects.  

In (Gravener and Nwankpa, 1999), a repetitive power flow (RPF) 
technique is proposed to calculate ATC. The RPF method, based on a generalized 
search method, repeatedly solves conventional power flow equations, where the 
successive power flow solutions are conducted to establish the maximum transfer 
capability. RPF enables transfers by increasing the complex load with uniform 
power factor at every load buses in a sink area, and by increasing the injected real 
power at generator buses in a source area in incremental steps until limits are 
incurred. A generalized search algorithm is implemented to first find the thermal 
limit of non-simultaneous transfers between those two control areas. Once the 
thermal limit of the transfers is determined, AC contingency checking for the 
voltage limit is performed.  

For both CPF and RPF methods, the total load in the sink area is taken as 
TTC value of the power transaction. However, to increase a certain power 
transfer, CPF and RPF methods use a common loading factor for a specific cluster 
of generators and loads, which may lead to a conservative TTC value because 
these methods do not result in the optimal generation, loading, and generator bus 
voltages. 

 
 
C. Stability-constrained ATC method 
 
Dynamic ATC is concerned with calculating the maximum increase in power 
transfers such that the transient response remains stable and viable. There are a 
number of constraints on transient behavior considered in dynamic ATC such as 
saddle node bifurcation, loss of stability mechanisms associated with phase angle 
behavior, and electromechanical swing modes (DeMarco, 1998; Tuglie et al., 
1999). 

Hiskens et al. (1998) and Hiskens et al. (2000) propose an iterative approach 
for computing dynamic ATC. This method uses trajectory sensitivities and a set of 
differential-algebraic-discrete equations for the power system model. The 
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application of this method is limited to the evaluation of a single free parameter 
that can be used to yield marginally stable trajectories and computational 
complexity for application to large systems. In (Yuan et al., 2003), a dynamic 
ATC problem is formulated as an OPF-based optimization problem by integrating 
transient stability constraints into conventional steady-state ATC determination. 
An interior point algorithm is used to solve the optimization problem. The 
application of this method is limited to the evaluation of a large scale non-linear 
programming problem, which results in a problem formulation of huge dimension. 
An application of bifurcation criteria for ATC calculation with bilateral and 
multilateral power transactions is developed by Kumar et al. (2004). The Hopf 
bifurcation limit is used for determining dynamic ATC while the saddle node 
bifurcation and bus voltage limits are used for static ATC determination. 

 
 
D. Optimal power flow-based methods 
 
In this category, ATC determination is formulated as OPF problems which can be 
implemented by many optimization techniques such as conventional OPF 
calculations and artificial intelligence (AI) techniques. 
 
 
Conventional OPF calculations 
 
Conventional security constrained OPF (SCOPF) methods are commonly used to 
solve the OPF-based ATC problem to maximize power transfer capability 
between two control areas, assuming all OPF optimized parameters can be 
centrally dispatched (Bresesti et al., 2002; Hur et al., 2001). To overcome the 
deficiency of the conventional SCOPF, a transfer-based SCOPF (TSCOPF) is 
developed in (Ou and Singh, 2002). It is assumed that only OPF optimized 
parameters involving the selected source and sink area can be dispatched, which 
can be satisfied in deregulated power systems. 

A sequential quadratic programming (SQP) algorithm (Shaaban et al., 
2000a; Shaaban et al., 2003) and a Bender decomposition method (Shaaban et al., 
2001) are propose to determine TTC values considering reactive power and 
voltage limits. The objective function is to maximize power transfers between 
specific generators and loads subject to constraints of load flow equations and 
system operating limits. Linear programming (LP) (Berizzi et al., 2000) and non-
linear programming (Tuglie et al., 2000) methods are also used to solve the OPF-
based ATC problem. Even though LP method is fast and reliable, the power flow 
equations are largely simplified, which may result in unacceptable results. The 
non-linear programming approach has some disadvantages associated with the 
insecure convergence properties and algorithmic complexity. 
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Dai et al. (2000) propose a direct interior point algorithm to calculate 
maximum loadability and minimum load curtailment. The algorithm can only be 
used to compute ATC values from one generation company to a customer. In 
(Xiao et al., 2001) a hybrid stochastic technique is proposed to calculate ATC of 
prescribed interfaces in transmission networks. 

These methods require convexity of objective function to obtain the 
optimal solution. However, the OPF problem is generally non-linear and non-
convex optimization problem and, as a result, many local solutions may exist. 
Therefore, conventional optimization methods may converge to local optimal 
solutions or diverge altogether. Moreover, these methods consider only thermal 
and voltage limits. Ignoring power system stability limits may lead to unsecured 
system operation. 

 
 
Artificial intelligence techniques 
 
A multi-layer feed-forward neural network approach is used to calculate ATC 
values by Luo et al. (2000). The inputs for the neural network are generator status, 
line status, and load status and the output is the transfer capability. Quickprop 
algorithm is used to train the neural network. Test results show that the proposed 
method can determine power transfer capability between system areas with 
variations in load levels and the status of generator and transmission lines.  

In the advent of modern heuristic techniques, evolutionary computation 
(EC) methods such as GA and EP are implemented to solve the OPF-based ATC 
problem. Shaaban et al. (2000b) propose a GA approach to determine TTC values 
of prescribed point-to-point power transactions on a 4-bus test system. In 
(Ongsakul and Jirapong, 2004), an EP approach combined with Newton-Raphson 
(NR) power flow method is used for calculating TTC values of power transactions 
between different control areas. To improve the robustness of the existing EC 
techniques, an improved EP (IEP) approach is proposed in (Ongsakul and 
Jirapong, 2005) to calculate TTC values. Test results on a modified IEEE 30-bus 
system from the proposed method are compared favourably with those from 
LATC, RPF, and EP methods. 
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2.2 Flexible AC Transmission System 
 
 
2.2.1 Principles and definitions of FACTS 
 
Flexible AC Transmission System (FACTS) is an evolving technology-based 
solution envisioned to help electric utilities to deal with changes in modern power 
system planning and operation. The main objectives of FACTS controllers are as 
follows (Lai, 2001): 
 

1. To provide direct control of power flow over designated transmission 
routes 
 

2. To increase the power transfer capability of transmission networks. 
 
According to the IEEE definitions (Edris et al., 1997), FACTS and FACTS device 
(controller) are defined as follows: 
 

 FACTS: Alternating current transmission systems incorporating power 
electronic-based and other static controllers to enhance controllability and 
increase power transfer capability. 
 

 FACTS device: A power electronic-based system and other static 
equipment that provide control of one or more AC transmission system 
parameters. 

 
FACTS controllers can be categorized into four types according to the connection 
and operating criteria as follows (Hingorani and Gyugyi, 1999): 
 

1. Shunt connected controllers: battery energy storage system (BESS), 
static synchronous compensator (STATCOM), and static var compensator 
(SVC). 
 

2. Series connected controllers: thyristor controlled series capacitor 
(TCSC), thyristor switched series capacitor (TSSC), phase angle regulator 
(PAR), and static synchronous series compensator (SSSC). 
 

3. Combined shunt and series connected controllers: thyristor controlled 
phase shifter (TCPS) or thyristor controlled phase shifting transformer 
(TCPST), and unified power flow controller (UPFC). 
 

4. Other controllers: thyristor controlled voltage limiter (TCVL). 
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TCSC, SVC and UPFC are the main commercially available FACTS 
controllers. TCSC is a series compensation component which consists of a series 
capacitor bank shunted by thyristor controlled reactor. With the firing control of 
the thyristor, it can change its apparent reactance smoothly and rapidly (Mathur 
and Varma, 2002). SVC is a shunt compensation component which can be used as 
a shunt connected static var generator or absorber, whose output is adjusted to 
exchange capacitive or inductive current so as to control specific parameters of 
electrical power systems. UPFC is a novel power transmission controller. UPFC 
provides a full control of transmission parameters, voltage, line impedance, and 
phase angle. It allows real-time control and dynamic compensation of 
interconnected transmission systems. 

Nowadays FACTS technologies have been moving ahead at an increasing 
pace. Very significant long-term benefits of FACTS controllers are now 
recognized on a worldwide basis (Hingorany, 1998a; Hingorany, 1998b). To 
extend these benefits, many researchers have developed methodologies for 
incorporating FACTS controllers into power system operation. The following 
sections provide an overview of previous works on power flow calculation and 
optimal power flow control with FACTS controllers.  

 
 
2.2.2 Power flow calculations with FACTS controllers 
 
Determination of load flow solutions in the presence of FACTS controllers is 
essential in power system operation and planning studies. Incorporating FACTS 
models in load flow algorithms can be either dynamic or static. 
 
 
A. Dynamic models of FACTS controllers 
 
Dynamic models of various FACTS controllers for voltage and angle stability 
studies are developed in (Canizares and Faur, 1999; Canizares, 2000). These 
models are based on the assumption that voltages and currents are sinusoidal, 
balanced, and operated near fundamental frequency. However, they have several 
limitations, especially when studying large system changes according to these 
FACTS controllers. 
 
 
B. Static models of FACTS controllers 
 
Static or steady-state models of FACTS controllers can be classified into 
decoupled model and coupled model. 
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Decoupled model 
 
In a decoupled model, FACTS controllers are replaced with fictitious PQ- and 
PV-bus (Niaki and Iravani, 1996). Standard load flow calculations are then carried 
out to determine the load flow solution of the system with the above 
modifications. Esquivel and Acha (1997) and Esquivel et al. (2000) consider 
FACTS control parameters as independent variables and their values are found 
through traditional load flow iterative process. These methods result in the 
modification of Jacobian matrix structure to incorporate the additional 
independent variables. It is found that the convergence pattern of these methods is 
very sensitive to the initial value of FACTS control parameters (Gotham and 
Heydt, 1998). In addition, the modified load flow algorithm may not converge, 
particularly when voltage magnitudes are significantly less than rating (Haque and 
Yam, 2003). 
 
 
Coupled model 
 
A coupled model consists of two major models: voltage source model (VSM) and 
power injection model (PIM). The VSM is formulated as a series or shunt inserted 
voltage source according to the device’s operating principle (Gyugyi, 1999; Padhy 
and Moamen, 2005). It can represent the corresponding device in a more intuitive 
way. However, it destroys the symmetrical characteristics of admittance matrix 
(Han, 1982). Moreover, trigonometric functions involved will inevitably lead to 
an oscillation of power flow control (Noroozian and Andersson, 1993). Derived 
from the VSM, the PIM is proposed by Han (1982). With the conversion of 
inserted voltage source to power injections to the related busses, the PIM is 
allowed to keep the symmetry of admittance matrix. According to this advantage, 
the applications of this model are extended to nearly all FACTS controllers and 
are widely spread in most of the literature of operation and control of FACTS-
equipped power systems (Armin and Goran, 1998; Singh and David, 2001a; 
Verma et al., 2001b; Xiao et al., 2003). 
 
 
2.2.3 Optimal power flow with FACTS controllers 
 
A. Optimal power flow control with FACTS controllers 
 
Power flow control aims at controlling active and reactive power flows through 
certain transmission lines and bus voltage magnitudes at specified levels. When 
FACTS controllers are integrated in OPF problem, the power flow control of 
specific lines is treated as the constraints. Many conventional optimization 
methods and metaheuristic techniques such as Newton method (Perez et al., 
1998), LP method (Ge and Chung, 1999), GA (Leung and Chung, 2000), and a 
hybrid TS/SA approach (Ongsakul and Bhasaputra, 2002) are successfully used to 
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solve OPF with FACTS controllers to minimize generation costs. In recent years, 
power loss minimization and power transfer capability enhancement utilizing 
multi-type FACTS controllers have received significant attention because these 
aspects enhance competition and efficiently utilize the existing power systems. A 
review of literature focused on these two kinds of objective functions is 
summarized in this section. 
 
 
Minimize power loss 
 
Conventional optimization methods are commonly used to solve the OPF with 
FACTS controllers. Noroozian et al. (1997) demonstrate the application of UPFC 
for OPF control through numerical examples. Test results indicate that UPFC has 
the capability of regulating the power flow and minimizing the power losses 
simultaneously. Chung and Shaoyun (1998) propose an algorithm to solve the 
OPF with UPFC. The problem is decomposed into an active power OPF (APOPF) 
subproblem which is solved by LP to minimize the total production cost and a 
reactive power OPF (RPOPF) subproblem which is solved by successive quadratic 
programming (QP) to minimize the total active power loss. In (Xiao et al., 2002), 
a predictor-corrector primal-dual interior point linear programming (PCPDIPLP) 
is developed for solving an OPF with multi-type FACTS controllers. The 
objective function is to minimize the total mismatch of control targets of active 
and reactive power flows over designated transmission lines. 

On the other hand, modern heuristic optimization techniques such as GA 
(Paterni et al., 1999) are also successfully used to solve the optimization problem. 
Lai and Ma (1995) proposed an EP approach coupled with P-Q decoupled power 
flow to solve the OPF with FACTS controllers to minimize real power loss and 
keep power flows in their secure limits. UPFC is used as a phase shifter and/or 
series compensator to regulate both angles and magnitude of bus voltages. A GA 
approach is also proposed to solve the same optimization problem in (Lai and Ma, 
1996). A micro GA combined with fuzzy logic (FGA) is developed in (Baskarana 
and Palanisamy, 2006) for solving OPF with TCSC, TCPAR, UPFC, and SVC to 
minimize power loss. Test results from the proposed method are compared 
favorably with those from GA alone. 

 
 
Maximize power transfer capability 
 
Ou and Singh (2001) propose a general procedure based on RPF method to 
maximize TTC with FACTS controllers installed in power systems. Test results 
on a 4-bus test system indicate that TCSC is more effective than SVC in 
improving TTC. In (Liu et al., 2002), a transportation model combined with 
matrix computational technique is proposed to evaluate the impact of TCSC on 
TTC enhancement. However, the proposed method has a disadvantage of accuracy 



 18

related to the reactive power flow in the solution. Moreover, a stochastic 
programming technique (Xiao et al., 2000) and a PCPDIPLP method (Xiao et al., 
2003) are also proposed to maximize ATC in the OPF with multi-type FACTS 
controllers. The OPF-based ATC enhancement model is formulated to achieve the 
maximum power transfer by controlling multi-type FACTS controllers while 
increasing all the complex loads and generations in current situation using a scalar 
loading factor. Test results demonstrate the effective of SVC, TCPS, and UPFC 
on ATC enhancement. 
 
 
B. Optimal placement of FACTS controllers to control power flow 
 
The optimally placed OPF with FACTS controllers is a combinatorial 
optimization problem, which is determining the optimal types, locations, and 
parameters of FACTS controllers in the OPF problem. Many optimization 
techniques such as a decomposition-coordination method combined with network 
compensation technique (Lie and Deng, 1997), LP-based method (Oliveira et al., 
1999), GA (Cai et al., 2004), a real power flow performance index combined with 
SQP (Singh and David, 2001b; Singh et al., 2001), and a hybrid TS/SA approach 
(Bhasaputra and Ongsakul, 2006) are effectively used to determine the optimal 
placement of FACTS controllers to minimize system operating costs. On the other 
hands, wide varieties of mathematical methods have been made on the optimal 
placement of FACTS controllers to minimize system power loss and maximize 
power transfer capability, which can be summarized in the following paragraphs. 
 
 
Minimize power loss 
 
Preedavichit and Srivastava (1997) and Preedavichit and Srivastava (1998) 
propose an algorithm to minimize system real power loss in an optimal reactive 
power dispatch (ORPD) with FACTS controllers. A sensitivity based method is 
used to determine suitable locations of SVC, TCSC, and TCPAR. The ORPD with 
fixed FACTS problem is solved by a successive QP algorithm. In (Yu and Lusan, 
2004), a generalized decomposition method is proposed to determine the optimal 
placement of FACTS controllers based on multiple time periods to maximize 
social welfare with real power losses considered. Test results indicate that 
transmission losses can affect the optimal FACTS placement. 
 
 
Maximize power transfer capability 
 
Sensitivity index approaches are commonly used to determine approximate 
locations of FACTS controllers for power transfer capability enhancement. 
However, these methods may not lead to the optimal solution because of 
dependency to system topology and loading conditions. A sensitivity approach 
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based on the real power flow performance index is developed in (Verma et al., 
2001a) for finding suitable locations of TCSC and TCPAR to enhance TTC. Test 
results indicate that the FACTS controllers should be placed on the most sensitive 
lines. Schnurr and Wellssow (2001) propose a sensitivity analysis based on the 
generation shift distribution factor (GSDF) to determine possible locations of 
FACTS controllers to maximize ATC. Moreover, Orfanogianni and Bacher (2003) 
propose a sensitivity method to find suitable locations of TCSC and UPFC to 
maximize power transfers from a group of generating plants or exporting areas to 
a consumption bus or importing area. 

To overcome the deficiency of the sensitivity index approaches, a few 
conventional optimization techniques and a number of heuristic techniques have 
been developed. Sharma et al. (2005) propose a mixed integer linear programming 
approach to determine the optimal location of TCPAR and TCSC to enhance 
system loadability. The proposed method is based on DC load flow equations. A 
parallel TS (PTS) algorithm is developed in (Mori and Goto, 2000) for 
determining the optimal locations and parameters of UPFC to simultaneously 
maximize incremental load rate and minimize transmission loss. A two-phased 
optimization technique is implemented to deal with the allocation of UPFC using 
TS and handle tuning up the parameters using PTS. Feng and Shrestha (2001) 
propose a GA approach combined with CPF to determine the optimal placement 
of TCSC to maximize TTC. GA is used as the optimization tool to determine the 
location and parameter of TCSC and CPF is used to determine TTC values.  

In (Gerbex et al., 2001), a GA approach is used to determine the optimal 
locations, types, and parameters of TCSC, TCPST, TCVR, and SVC to maximize 
system loadability. Test results show that the simultaneous use of several kinds of 
controllers is the most efficient solution to increase the system loadability. 
Farahmand et al. (2004) propose a GA combined with RPF to determine optimal 
location of SVC to improve voltage profile and maximize TTC. Moreover, a self-
adaptive evolutionary programming (SAEP) is developed in (Hao et al., 2004) for 
determining the optimal locations and parameters of UPFC to maximize the 
system loadability. 

 
 

2.3 Optimal Power Flow 
 
Optimal power flow (OPF) is an optimization problem of power system operation, 
which is expressed as the maximization or minimization of an objective function 
subject to equality and inequality constraints which define the boundaries of 
technical feasibility. An OPF solution gives the optimal active and reactive power 
dispatch for a static power system condition. Computationally, it is a very 
demanding non-linear programming problem, due to a large number of variables 
and in particular to the much larger number and types of limit constraints (Alsac 
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and Stott, 1974; Stott, 1974). Moreover, the presence of discrete control variables 
such as FACTS parameters further complicates the OPF solution. 

Since the OPF was successfully implemented by Dommel and Tinney 
(1968), it has been widely used in power system planning and operation. As the 
power industry moves into a more competitive environment, uses of the OPF 
become increasingly more important in maximizing the capability of the existing 
power systems. Considerable amounts of research toward the development of 
different optimization methods have been done, especially in the last three 
decades (Momoh et al., 1997). These approaches are mainly classified into 
conventional optimization methods and artificial intelligence (AI) techniques. 

 
 
2.3.1 Conventional optimization methods 
 
The main existing optimization methods for solving OPF problems are 
conventional methods such as non-linear programming (NLP) (Dommel and 
Tinney, 1968), quadratic programming (QP) (Reid and Hasdorf, 1973), gradient 
method (Alsac and Stott, 1974), linear programming (LP) method (Stott and 
Marinho, 1979), Newton method (Sun et al., 1984), mixed integer programming 
(MIP) (Contaxis et al., 1986), and interior point (IP) method (Clements et al., 
1991; Momoh et al., 1992; Momoh and Zhu, 1999). Each method has its own 
advantages and disadvantages, but all of them have their own capabilities for 
solving OPF problems. 

Conventional optimization methods have been widely used to solve OPF 
problems. However, they are not guaranteed to converge to the global optimum of 
the general non-convex OPF problem. There are some empirical evidences on the 
uniqueness of the OPF solution within the domain of interest (Papalexopoulos et 
al., 1989). Moreover, these methods rely on convexity to obtain the global optimal 
solution and as such are forced to simplify relationships to ensure convexity. 
Several disadvantages of traditional optimization techniques are summarized in 
the following paragraph. 

NLP deals with problems involving non-linear objective function and 
system constraints. This method has many drawbacks such as insecure 
convergence properties and algorithmic complexity (Abido and Bakhashwain, 
2005). QP is a special form of NLP whose objective function is quadratic with 
linear constraints. This method has some disadvantages associated with the 
piecewise quadratic cost approximation (Bakirtzis et al., 2002). The gradient and 
Newton methods have some drawbacks such as the convergence characteristic, 
which is sensitive to the initial condition and they suffer from the difficulty in 
handling inequality constraints (Sood, 2007). LP treats problems with constraints 
and objective function formulated in linear forms. The input-output function is 
expressed as a set of linear functions, which may lead to loss of accuracy (Devaraj 
and Yegnanarayana, 2005). MIP is a particular type of LP whose constraint 
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equations involve variables restricted to being integers. This method is known to 
exhibit numerical difficulties when penalty factors become extremely large 
(Abido, 2002a; Abido, 2002b). IP-based methods have been reported as 
computationally efficient, however, if the step size is not chosen properly, the sub-
linear problem may have a solution that is infeasible in the original    non-linear 
domain (Yan and Quintana, 1999). In addition, IP-based methods suffer from bad 
initial, termination, and optimality criteria and, in most cases, are unable to solve   
non-linear and quadratic objective functions (Momoh and Zhu, 1999). For more 
discussions on these techniques, a comprehensive survey is presented in (Momoh 
et al., 1999a; Momoh et al., 1999b). 

 
 
2.3.2 Artificial intelligence optimization techniques 
 
Artificial intelligence (AI) techniques, which promise a global optimum solution, 
or nearly so, have in recent years emerged as a complement tool to conventional 
approaches (Bansal et al., 2003). Recent attempts to overcome the limitations of 
conventional optimization methods, many AI techniques such as neural network 
(Nguyen, 1995), evolutionary computation, and heuristic optimization techniques 
have been employed to solve OPF problems. A brief review of these algorithms is 
summarized in this section. 
 
 
A. Genetic algorithm (GA) 
 
GA is a heuristic search based on natural evolution theory. GA-based approaches 
are successfully used to solve OPF problems with various objectives such as 
economic dispatch (ED) (Bakirtzis et al., 1994), minimize power loss (Lai and 
Ma, 1996), generator unit commitment (UC) (Swarup and Yamashiro, 2003), and 
minimize total system cost (Osman et al., 2004). 
 
 
B. Evolutionary programming (EP) 
 
EP is a general global optimization algorithm based on the natural evolution 
theory similar to GA. However, EP works on real value coded strings rather than 
binary strings used by GA. EP-based methods are used to solve economic dispatch 
(ED) problems for units with non-smooth fuel cost functions (Yang et al., 1996) 
and also applied to the environmentally-constrained ED problems to minimize the 
emissions and power production cost subject to the emission constraints (Wong 
and Yuryevich, 1998). An EP approach is also used to solve the optimal reactive 
power planning (Lee and Fang, 1998). Moreover, an EP enhanced by the gradient 
information to increase the speed of search in the neighborhood area to candidate 
solutions is used to solve OPF problems in (Yuryevich and Wong, 1999). 
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C. Evolutionary strategy (ES) 
 
ES is mainly applied to solve various optimization problems with continuously 
changeable parameters. An ES approach is used to solve the reactive power 
dispatch problem in (Gomes and Saavedra, 2002). The ES algorithm is improved 
by the control of mutations and by using of Cauchy-based mutation rather than the 
classical Gaussian mutation. In addition, a hybrid ES is proposed to solve reactive 
power dispatch problem to minimize the total real power transmission losses (Das 
and Patvardhan, 2003). 
 
 
D. Tabu search (TS) 
 
TS is a higher level heuristic algorithm called metaheuristic for solving 
combinatorial optimization problems. TS is characterized by its ability to avoid 
the entrapment in local optimal solution and prevent cycling by using flexible 
memory of search history. TS-based approaches are successfully used to solve 
many OPF problems (Abido, 2002b; Kulvorawanichpong and Sujitjorn, 2002; Lin 
et al., 2002). 
 
 
E. Simulated annealing (SA) 
 
Based on the annealing process in the statistical mechanics, SA is used to solve 
the OPF problem simultaneously composed by the load flow and economic 
dispatch (Sepulveda and Lazo, 2002; Wong and Fung, 1993). The main drawback 
of SA procedure is that the annealing procedure is very CPU consuming although 
its convergence has been theoretically improved. To enhance the performance of 
SA, the mean field theory (MFT) which aims at approximating the SA with a set 
of deterministic equations, is introduced in (Chen et al., 1997).  
 
 
F. Particle swarm optimization (PSO) 
 
PSO is an efficient and reliable evolutionary-based approach which combines 
social psychology principles in socio-cognition human agents and evolutionary 
computations. PSO-based methods are used for solving OPF problems with 
various objectives such as fuel cost minimization, voltage profile improvement, 
and voltage stability enhancement (Abido, 2002a; Jeyakumar et al., 2006; 
Yoshida et al., 2000). 

In addition, an extensive list of references to works in evolutionary 
algorithm is presented in (Miranda et al., 1998). It is indicated that the vast 
majority of the applications use GA. However, the interest in the use of other 
techniques is rising fast. Moreover, the applications of hybrid algorithms in the 
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solution of multi-objective optimization problems have generated significant 
research interest in recent years. A number of hybrid algorithms have been 
developed and are being continuously improved to achieve better performance. 

 
 

2.4 Heuristic Optimization Techniques 
 
Several heuristic tools have evolved in the last decades that facilitate solving 
many optimization problems that are previously difficult or impossible to solve. 
These tools include GA, EP, TS, SA, PSO, etc. Reports of applications of each of 
these methods have been widely published. Recently, these new heuristic 
techniques have been combined among themselves and with other traditional 
approaches to solve complicated optimization problems. Principles of the main 
heuristic optimization techniques are summarized in this section.  
 
 
2.4.1 Classification of heuristic optimization techniques 
 
A. Evolutionary computation 
 
Natural evolution is a hypothetical population-based optimization process. 
Simulating this process on a computer results in stochastic optimization 
techniques that can often outperform conventional optimization methods when 
applied to difficult real-world problems. EC-based techniques have received 
significant attention during the last decade, although the origins can be traced 
back to the late 1950’s (Fogel, 2000). EC is a general adaptable concept for 
problem solving, especially well suited for solving difficult optimization 
problems. The main advantage of evolutionary search compared to other 
approaches lies in the gain of flexibility and adaptability to the task at hand, in 
combination with robust performance and global search characteristics (Back et 
al., 1997).  

The majority of current implementations of evolutionary algorithms 
descend from three strongly related but independently developed approaches: 
genetic algorithms (GA), evolutionary programming (EP), and evolution strategies 
(ES). The main differences of the three approaches lie in the representation of 
individuals, the design of the variation operators, and the selection mechanism. 

 
 
Genetic algorithms 
 
GA, introduced by Holland (1962) and subsequently studied by Goldberg (1985) 
and others such as Koza (1989) and Eshelman and Schaffer (1993), is a heuristic 
search based on natural evolution theory. GA works on binary strings of candidate 
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solutions. It can discover optimal point for complicated and uncertain area by 
evolving its genetic material during the search process (Holland, 1975). The 
crossover, mutation, and selection mechanisms are used in the evolution. It can 
deal with non-smooth, discontinuous, and non-differentiable objectives as well as 
constraints. However, Wright (1991), Back (1993), and Lai et al. (1997) indicate 
that the binary representation has some disadvantages. The coding function may 
introduce an additional multimodality, thus making the combined objective 
function more complex than the original problem. 
 
 
Evolutionary programming 
 
EP, introduced by Fogel (1962) and extended by Burgin (1974), Fogel (1994), 
Eiben et al. 1999, and others, is a stochastic optimization strategy similar to GA, 
which places emphasis on the behavioral linkage between parents and their 
offspring, rather than seeking to emulate specific genetic operators as observed in 
nature. EP is a useful method of optimization when other techniques such as 
gradient descent or direct analytical discovery are not possible. Combinatorial and 
real-valued function optimization problems are well suited for EP (Fogel, 2000). 
 
 
Evolution strategies 
 
ES, developed by Rechenberg (1973) and extended by Herdy (1992), Ostermeier 
(1992), and others, employs real-coded variables and, in its original form, it relied 
on mutation as the search operator. It has evolved to share many features with GA. 
The major similarity between these two types of algorithms is that they maintain 
populations of potential solutions and use a selection mechanism for choosing the 
best individuals from the population. The main differences are as follows: ES 
operate directly on floating point vectors while classical GA operates on binary 
strings. GA relies mainly on recombination to explore the search space, while ES 
uses mutation as the dominant operator. In addition, ES is an abstraction of 
evolution at individual behavior level, stressing the behavioral link between an 
individual and its offspring, while GA maintains the genetic link. 
 
 
B. Particle swarm optimization 
 
PSO is a new methodology in evolutionary algorithm that is somewhat similar to 
GA in that the system is initialized with a population of random solutions (Abido, 
2002a). Unlike other algorithms, each potential solution, called a particle, is 
assigned a randomized velocity and then flown through the problem hyperspace. 
PSO has been found to be extremely effective in solving a wide range of 
engineering problems. It is easy to implement and it solves problems very quickly. 
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C. Ant colony search algorithm 
 
Ant colony search algorithms mimic the behavior of real ants. It is known that real 
ants are capable of finding shortest path from food sources to the nest without 
using visual cues. They are also capable of adapting to changes in the 
environment, for example, finding a new shortest path once the old one is no 
longer feasible due to a new obstacle (Dorigo et al., 2006). The studies by 
ethnologists reveal that these capabilities are essentially due to what is called 
pheromone trails which ants use to communicate information among individuals 
regarding path and to decide where to go. Ants deposit a certain amount of 
pheromone while walking, and each ant probabilistically prefers to follow a 
direction rich in pheromone rather than a poorer one. 
 
 
D. Tabu search 
 
TS is a gradient-descent search with memory (Abido, 2002b). The memory 
preserves a number of previously visited states along with a number of states that 
might be considered unwanted. This information is stored in a tabu list. The 
definition of a state, the area around it and the length of the tabu list are critical 
design parameters. In addition to these tabu parameters, two extra parameters are 
often used: aspiration and diversification. Aspiration is used when all the 
neighboring states of the current state are included in the tabu list. In that case, the 
tabu obstacle is overridden by selecting a new state. Diversification adds 
randomness to this otherwise deterministic search. If the tabu search is not 
converging, the search is reset randomly. 
 
 
E. Simulated annealing 
 
SA is based on local search in which each movement is accepted if it improves the 
system energy. Other possible solutions are also accepted according to a 
probabilistic criterion. Such probabilities are based on the annealing process and 
they are obtained as a function of the system temperature (Wong and Fung, 1993). 
In a large combinatorial optimization problem, an appropriate perturbation 
mechanism, cost function, solution space, and cooling schedule are required to 
find an optimal solution with SA. 
 
 
2.4.2 The structure of an evolutionary algorithm 
 
Evolutionary algorithms mimic the process of natural evolution, which is the 
driving process for the emergence of complex and well-adapted organic 
structures. Evolution is the result of the interplay between the creation of new 
genetic information and its evaluation and selection. A single individual of a 
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population is affected by other individuals of the population, as well as by the 
environment. The better an individual performs under these conditions, the greater 
is the chance for the individual to live for a longer while and generate offspring. 
This neo-Darwinian model of organic evolution is reflected by the structure of the 
following general evolutionary algorithm (Back et al., 1997). 
 
Main algorithm: 

0t ; 
initialize )(tP ; 

evaluate )(tP ; 

while not terminate do 
)(tP = variation )]([ tP ; 

evaluate )]([ tP ; 

)1( tP = select ])([ QtP  ; 

1 tt ; 
end 

 
In this algorithm, ( )P t  denotes a population of   individuals at 

generation t . Q  is a special set of individuals that might be considered for 

selection, e.g., ( )Q P t . An offspring population ( )P t  of size   is generated by 
means of variation operators such as recombination or mutation from the 
population ( )P t . The offspring individuals are then evaluated by calculating the 
objective function values for each of the solutions represented by individuals in 

( )P t , and selection based on the fitness values is performed to drive the process 

toward better solutions. It should be noted that  =1 is possible, thus including so-
called steady-state selection schemes, if used in combination with ( )Q P t . 
Furthermore, by choosing 1    , an arbitrary value of the generation gap is 
adjustable, such that the transition between strictly generational and steady-state 
variants of the algorithm is also taken into account by the formulation offered 
here. It should also be noted that   , i.e., a reproduction surplus, is the normal 
case in nature. 
 
 

2.5 Mixed-Integer Nonlinear Programming 
 
Mixed integer nonlinear programming (MINLP) refers to mathematical 
programming with continuous and discrete variables and nonlinearities in the 
objective function and constraints. The general form of a MINLP is: 

 minimize  f(x, y) 
 subject to  g(x, y)   0 
   x  X 
   y  Y  
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The function f(x, y) is a nonlinear objective function and g(x, y) a nonlinear 
constraint function. The variables x, y are the decision variables, where y is 
required to be integer valued. X and Y are bounding-box-type restrictions on the 
variables. MINLP problems are precisely so difficult to solve, because they 
combine all the difficulties of both of their subclasses: the combinatorial nature of 
mixed integer programs (MIP) and the difficulty in solving nonconvex nonlinear 
programs (NLP). Methods for solving MINLP include innovative approaches and 
related techniques taken and extended from MIP. Outer Approximation (OA) 
methods (Duran and Grossmann, 1986), Branch-and-Bound (BB) (Quesada and 
Grossmann, 1992), Extended Cutting Plane methods (Westerlund and Petersson, 
1995), and Generalized Bender’s Decomposition (GBD) (Geoffrion, 1972) for 
solving MINLP have been discussed in the literature since the early 1980’s.  

BB starts out forming a pure continuous NLP problem by dropping the 
integrality requirements of the discrete variables. In addition, OA and GBD 
require the successive solution of a related MIP problem. Both algorithms 
decompose the MINLP into an NLP subproblem that has the discrete variables 
fixed and a linear MIP master problem. The main difference between GBD and 
OA is in the definition of the MIP master problem. OA relies on linearizations, 
effectively reducing each subproblem to a smaller feasible set, whereas the master 
MIP problem generated by GBD is given by a dual representation of the 
continuous space. 
 
 

2.6 Conclusion 
 
ATC calculation is a complicated task involving determination of TTC and two 
margins, TRM and CBM. Wide varieties of mathematical methods have been 
proposed for ATC calculations with various degrees of success. Methods based on 
OPF receive significant attention because of flexibility of objective function, 
which can be implemented by many optimization techniques. For the optimally 
placed OPF with FACTS problem, it is a MINLP problem with continuous and 
discrete variables. Conventional optimization methods could not be solved 
MINLP problem effectively. Therefore, AI techniques are used to solve the 
MINLP problem for better solutions than those from conventional methods. 

In the next chapter, a new hybrid evolutionary algorithm based on EP, TS, 
and SA is proposed to solve the OPF-based ATC problem. The algorithm is based 
on full ac OPF solution to account for the effects of active and reactive power 
flows, voltage limits, and line flow limits. The real power output of generators in 
source area, real and reactive load in sink area, and bus voltage of generators can 
be adjusted to obtain the maximum transfer capability. Test results from the 
proposed HEA approach are compared with those from LATC, CPF, EP, TS, 
hybrid TS/SA, and IEP methods. 
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Chapter 3 
 
 
 

Optimal Power Flow-Based 
Available Transfer Capability 
Determination 
 
 
 
 
In this chapter, ATC determination is formulated as an OPF problem. The 
objective function is to maximize power transfers between different control areas 
constrained by load flow equations and system operating limits. A novel hybrid 
evolutionary algorithm (HEA) is proposed to solve the optimization problem. Test 
results on three test systems from the proposed method are compared with those 
from LATC, CPF, EP, TS, hybrid TS/SA, and IEP methods. 
 
 

3.1 OPF-Based ATC Problem Formulation 
 
3.1.1 Objective function 
 
An ATC function in (3.1) is used as an objective function of the OPF-based ATC 
determination. The optimal solution provides a feasible ATC value that can be 
transferred from a specific set of generators in a source area to loads in a sink area 
within real and reactive power generation limits, line thermal limits, voltage 
limits, and voltage and angle stability limits. State variables are dependent 
variables of NR power flow. Output variables which account for solutions of the 
proposed optimization methods are parts of the state variables. 
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Maximize F ATC TTC TRM CBM          (3.1) 

 
Subject to 

 

1

cos( ) 0
N

Gi Di i j ij ij i j
j

P P VV Y   


            (3.2) 

1

sin( ) 0
N

Gi Di i j ij ij i j
j

Q Q VV Y   


            (3.3) 

min max
Gi Gi GiP P P    i NG         (3.4) 

min max
Gi Gi GiQ Q Q    i NG         (3.5) 

min max
i i iV V V    i N         (3.6) 

max
Li LiS S    i NL         (3.7) 

1iVCPI     i N         (3.8) 

crit
ij ij     i NL         (3.9) 

 
Where 
F   objective function, 
ATC   available transfer capability, 
TTC   total transfer capability, 
TRM   transmission reliability margin, 
CBM   capacity benefit margin, 
 
Input Variables 

,ij ijY    magnitude and angle of the ij th element in bus admittance matrix, 
min max,Gi GiP P  lower and upper limits of real power generation at bus i, 
min max,Gi GiQ Q  lower and upper limits of reactive power generation at bus i, 
min max,i iV V  lower and upper limits of voltage magnitude at bus i, 
max
LiS   ith line or transformer loading limit, 
crit
ij   critical angle difference between bus i and j , 

,N NL   number of buses and branches, 

NG   number of generator buses, 
 
 
 
 



 30

State Variables 

1 1,G GP Q  real and reactive power generations at slack bus, 

,i jV V   voltage magnitudes of bus i and j , 

,i j    voltage angles of bus i and j , 

 
Output Variables 

,Gi GiP Q  real and reactive power generations at bus i, 

,Di DiP Q  real and reactive loads at bus i, 

| |LiS   ith line or transformer loading, 

iVCPI   voltage collapse proximity indicator at bus i, and 

| |ij   angle difference between bus i and j . 

 
Voltage collapse proximity indicator (VCPI) in (3.8) is used to directly 

determine voltage collapse conditions within voltage stability limits. VCPI is a 
general constraint which could be static and dynamic. In addition, it provides 
accurate voltage collapse conditions without solving dynamic equations which 
consumes more computation time. Based on the optimal impedance solution of an 
equivalent 2-bus system in Figure 3.1, VCPI at a load bus i is defined as the ratio 

of the Thevenin’s equivalent impedance, ii iZ  , looking into the port between 

bus i and ground, and the impedance of the load at bus i, i iZ  (Chebbo et al., 

1992). The load at bus i can be increased to the maximum value at the voltage 

collapse point or critical point when iiZ  is equal to iZ  as shown in Figure 3.2. 

Therefore, for the maximum power transfer to a load at bus i without violating 
voltage stability limits, VCPI at the load bus i in (3.10) must equal to or less than 
one. 
 

1ii
i

i

Z
VCPI

Z
          (3.10) 

 
 

 
Figure 3.1  An equivalent 2-bus system. 

E

Source Load

Vii iZ 

i iZ 
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Figure 3.2  Power-voltage curve. 
 
 

Angle stability constraints considered can be either steady-state (Singh et 
al., 2001) or dynamic (Yuan et al., 2003). This research considers only steady-
state angle stability constraint. Critical angle displacement in (3.9) is used as a 
criterion to determine steady-state angle stability limit. The system stability limit 
is defined in term of the stability margin in (3.11). The amount of margin, which 
is desirable in a given situation, is dependent on many factors. For a reasonable 
level of typical heavy line loading situations, it is assumed that the stability 
margin is in the range of 30-35% as shown in Figure 3.3. Therefore, the angle 
difference between buses i and j  across a transmission line is kept within a 
critical angle difference, which is 44o as recommended in (Dunlop et al., 1979; 
Taylor, 1994). 
 

max rated

max

Stability margin 100 %
P P

P


       (3.11) 

 
Where 

maxP    maximum power transfer ability of a system and 

ratedP    operating level of power transfer. 

 
Voltage and angle stability limits are treated as OPF constraints in (3.8) 

and (3.9), respectively. During the optimization, inequality constraints of state 
variables including bus voltage magnitudes, real power generation at slack bus, 
reactive power generation, line or transformer loading, angle and voltage stability 
limits are enforced using a penalty function in (3.12) (Wood and Wollenberg, 
1996). 
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Figure 3.3  Power-angle curve. 
 
 

1 ,
1 1 1 1 1
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 
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(3.12) 

max 2 max

min 2 min

min max

( ) if

( ) ( ) if

0 if

x x x x

h x x x x x

x x x

  
  
  

     (3.13) 

 
Where 

min max,x x  lower and upper limits of variable x , 

pk  penalty weighting coefficient. By experiments, the penalty 

coefficient is set to 106 since the lower coefficient value results in 
an oscillation of HEA solution. The suggested range of penalty 
coefficient is between 103-106 (Wood and Wollenberg, 1996). 

 
 
3.1.2 ATC determination 
 
ATC calculation in (3.1) involves determination of TTC and two margins, TRM 
and CBM. Mathematically, ATC is defined in (3.14). 
 
ATC = TTC – TRM – CBM        (3.14) 
 

To determine ATC value of a power transaction between different control 
areas, an interconnected power system is divided into three kinds of areas: source 
or sending area, sink or receiving areas, and external areas. An area can be defined 
in an arbitrary fashion. It may be an individual electric system, power pool, 

0

Prated/Pmax

Total system 
angular

displacement

Steady-state stability margin
1.0

180o44o 90o

0.65 ~ 0.70

Critical angle difference
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control area, subregion, etc (Yuan et al., 2003). Two types of transactions (Kumar 
et al., 2004) are considered. 
 
 
Bilateral transaction 
 
A bilateral transaction is made directly between a seller and a buyer. The seller 
injects a certain amount of power at one generator bus and the buyer receives this 
power at the other load bus. Each bilateral transaction between a seller at bus i 
and a buyer at bus j  satisfies the power balance equation in (3.15). 
 

0Gi DjP P           (3.15) 

 
Where 

GiP  real power generation at bus i and  

D jP  real power load at bus j . 

 
 
Multilateral transaction 
 
A multilateral transaction trading among several parties is arranged by a 
scheduling coordinator. Mathematically, a multilateral transaction involving 
several sellers and buyers can be expressed in (3.16). To facilitate the multilateral 
transaction, a weighting factor or a relative participation factor of generators 
involved on seller bus side and loads on sink bus side is set to 1.0. The 
optimization methods simultaneously search for the maximum allowable 
individual generation and load in each areas. Using pre-specified participation 
factors, HEA will converge faster due to the reduced search space, but it may lead 
to a lower ATC value. 
 

0Gi Dj
i S j B

P P
 

           (3.16) 

 
Where 
S   set of sellers who sell the power to buyers and 
B   set of buyers who buy the power from the sellers. 
 

To define a specific power transaction from a source to a sink area without 
curtailing existing ones, it is assumed that in each area, generators belong to the 
same owner and loads belong to the same load serving entity. The utility in a sink 
area wants to import power from source area. Only generations in the source area 
and loads in the sink area are adjusted to create a generation excess in the source 
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area and an increasing load in the sink area, thereby automatically resulting in an 
electric power transfer from the source to the sink area These differential 
adjustments in each area’s generation and load levels are increased until 
equipment or system limit is reached, or a transfer test level is achieved, taking 
into account the system thermal, voltage, and stability effects. 
 
 
3.1.3 TTC determination 
 
TTC is the maximum electric power that can be transferred over the network in a 
reliable manner. It is the main component of the ATC computation. The OPF-
based ATC determination defined in (3.1) enables transfers by increasing the 
complex load with uniform power factor at every load buses or a group of load 
buses in a sink area, ND_SNK, and increasing the injected real power at generator 
buses in a source area, NG_SCE, until a system limit is incurred. The total real 
power load in the sink area is used in the objective function to determine the 
maximum feasible TTC value similar to that defined in the CPF and RPF 
methods. Therefore, TTC is defined in (3.17). 
 

_

1

ND SNK

Di
i

TTC P


          (3.17) 

 
 
3.1.4 TRM determination 
 
TRM is the amount of transmission transfer capability necessary to ensure that the 
transmission network is secure under a reasonable range of uncertainties in system 
conditions. For TTC determination considering TRM, load uncertainty is taken 
into consideration as random load increased within 2% of base case values in 
every load flow evaluations. Considering base case configuration, let TTC0 be the 
maximum amount of power transfer without contingency constraints. Similarly, 
let TTCk be the maximum amount of power transfer under the contingency k. 
Therefore, a feasible contingency TTC value considering TRM is given in (3.18). 
 
TTC=Min{TTC0 , TTC1 , …, TTCk}      (3.18) 
 

The contingency k to be analyzed will depend on the pre-specified 
contingency ranking. If the number of contingencies goes up to ensure more 
reliable transfers, the transfer capability will obviously be smaller. For a large 
power system, contingency screening and ranking techniques may be used to find 
those critical contingencies whose unavailability will have the largest effect on 
transfer capability for a particular area to area transfer. In this research, only the 
outage of the largest generator in each area and the outage of tie lines are included 
in the contingency list. 
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3.1.5 CBM determination 
 
CBM is the amount of transmission transfer capability reserved by load serving 
entities to ensure access to generation from interconnected systems to meet 
generation reliability requirements. Allocation of CBM to individual areas can be 
determined either by deterministic or probabilistic methods (NERC, 1995b; 
NERC, 1999). This research considers CBM determination based on single area 
generation reliability evaluation using a probabilistic method proposed in (Ou and 
Singh, 2002). For hourly load model, loss of load expectation (LOLE) < 2.4 hour 
per year is selected as a reliability criterion. To meet the specific reliability 
criterion, additional installed capacity is required. This additional capacity is 
considered as the CBM. To incorporate CBM into ATC, CBM is subtracted from 
TTC directly.  

The generation model required in the loss of load approach is known as a 
capacity outage probability table, which is an array of capacity level and 
cumulative probability. The cumulative probability of a particular capacity outage 
state of X  MW after a unit of capacity C  MW and forced outage rate U  is 
added is given in (3.19) (Billinton and Allan, 1996). The expression is initialized 
by setting ( )P X =1.0 for X 0 and ( )P X =0 otherwise.  

 
( ) (1 ) ( ) ( ) ( )P X U P X U P X C          (3.19) 

 
Where ( )P X  and ( )P X  are cumulative probabilities of the capacity outage state 
of X  MW before and after the unit are added, respectively.  
 

LOLE index can be obtained using daily peak load variation curve 
depicted in Figure 3.4. The total LOLE made by capacity outage kO  in the study 

interval is calculated in (3.20). 
 

1
1

( )
n

k k k
k

LOLE t t P


         (3.20) 

 
Where 
n  number of unit states, 

kt  number of time units that an outage kO  would result in a loss of load,  

kP  cumulative outage probability for capacity state kO , and 

kO  magnitude of the kth outage in the system capacity outage probability  

table. 
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   (a)      (b) 

Figure 3.4  Time periods (a) before and (b) after CBM is added. 
 
 
 

3.2 Hybrid Evolutionary Algorithm for OPF-Based 
ATC Determination 

 
To improve the robustness of evolutionary computation techniques, a new hybrid 
evolutionary algorithm (HEA) integrating EP, TS, and SA methods is proposed. 
The HEA starts with random generation of initial individuals in multi-populations 
and then the mutation and reassignment are proceeded until the best individual, 
which has the highest fitness, is found (Jirapong and Ongsakul, 2007a). The HEA 
approach has special features and merits described as follows: 
 

1. Multiple population search with various mutation operators is designed to 
enhance search diversity and improve population update, providing higher 
quality of solutions than those from single population search. 
 

2. Reassignment strategy is carried out to fuse and exchange the search 
information of all subpopulations so that premature convergence caused by 
consistency of individuals in a single population will be alleviated. 
 

3. Selection with a probabilistic updating strategy based on TS and annealing 
schedule of SA is applied to avoid dependency on fitness function and to 
avoid being trapped in local optimal solutions. 
 

4. The algorithm can easily facilitate parallel implementation on parallel 
computers to reduce the elapsed time without sacrificing the quality of 
solution. 
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The HEA approach is used to simultaneously search for real power 
generations in a source area excluding slack bus, generation bus voltages, and real 
power loads in a sink area for determining the optimal solutions of the objective 
function defined in (3.1). A procedure to determine ATC value using the HEA is 
shown in Figure 3.5. A flowchart of the HEA is depicted in Figure 3.6, which can 
be explained as follows: 
 
 

 

Figure 3.5  Flow chart of ATC determination using the HEA approach. 
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Figure 3.6  Flow chart of OPF-based ATC determination using the HEA approach. 
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Representation of solution 
 
An individual in a population represents a candidate of OPF solution. Each 
individual consists of OPF control variables coded by real number. The coded 
control variables employed in the algorithm are real power generation output of all 
generator buses in the source area, voltage magnitudes of all generator buses 
including slack bus, and real power demand of all load buses in the sink area. The 
pth individual in a population is represented by a trial solution vector in (3.21).  
 

[ , , ]p Gi Gi DjS P V P         (3.21) 

 
Where 

pS   trial solution vector of the pth individual, 

GiP   real power generation at bus i in the source area, 

GiV   voltage magnitude of generator at bus i including slack bus, and 

D jP   real power load at bus j  in the sink area. 

 
 
Space division 
 
Space division strategy is used to divide the whole population size P into M 
subpopulations according to the number of mutation operators used. Therefore, 
the search process can be performed in parallel to enhance performance of 
exploration and speed of convergence.  
 
 
Initialization 
 
Each element of the trial vector is initialized randomly within its search space by 
using uniform random number distribution ranging over the feasible limits of each 
control variable in (3.22). 
 

min max min( )i i i ix x u x x           (3.22) 

 

Where  

ix   ith element of the individual in a population, 
min max,i ix x  lower and upper limits of the ith element of the individual, and 

u   uniform random number in the interval [0,1]. 
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Power flow solution 
 
During iterations, a full AC Newton-Raphson (NR) power flow analysis is used to 
check the feasibility of each individual solution. If the power flow of any 
individuals fails to converge, such individuals will be removed and replaced by 
new randomly created individuals. 
 
 
Fitness function 
 
Fitness function is used to measure the optimality or quality of each candidate 
solution with respect to the objective being optimized. The objective function in 
(3.1) is taken as the fitness function of the HEA approach. 
 
 
Cooling schedule procedure 
 
The initial temperature of each subpopulation is determined from the objective 
value of the best and the worst individual, and the probability of accepting the 
worst individual with respect to the best individual expressed in (3.23). After 
reassignment strategy, the temperature is cooled down by the temperature 
annealing function or cooling schedule in (3.24). 
 

max min

0,

( )

ln
m m

m
r

F F
T

p


          (3.23) 

( 1)
, 0,

r
r m mT T           (3.24) 

 
Where 

0,mT   initial temperature of the mth subpopulation, 
min max,m mF F  objective value of the worst and best individuals in the mth  

subpopulation, 

rp  probability of accepting the worst individual with respect to the 

best individual, 

,r mT  annealing temperature of the mth subpopulation after the rth 

reassignment, 
   rate of cooling, and 
r   iteration counter of reassignment strategy. 
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Mutation 
 
In different subpopulations, different mutation operators are used to create new 
offspring subpopulation so that many hybrid operators are applied to enhance the 
search diversity. Two mutation operators including Gaussian and Cauchy are 
applied. A set of trial solution vectors, SS(Scurr), is generated by perturbing the 
current solution vector, Scurr, using the uniform probability distribution function. 
Each element of the offspring is calculated in (3.25). If any mutated value exceeds 
its limits, it will be recalculated until it is within the limits. Mutation intensifies 
with the increasing number of iterations. The term ( 1)ra   in (3.26) is employed to 
reduce mutation step size when the iteration number is increased. The reason is to 
diversify the search at the beginning and intensify when the iteration counter is 
increased. 
 

, , .k i k i k i mx x              (3.25) 

( 1) max min
, , ( )r

k i r m i iT a x x            (3.26) 

 
Where 

,k ix    ith element of the kth offspring individual, 

,k ix   ith element of the kth parent individual, 

,k i   mutation step size for the ith element of the kth individual, 

m   mutation operator of the mth subpopulation e.g. N(0,1), C(0,1), 

N(0,1)  Gaussian random number with mean 0 and standard deviation 1, 
C(0,1)  Cauchy random number, 
a   positive number slightly less than one, and 

max min,i ix x  subinterval’s or interval’s upper and lower limits of ith element of 

the individual. 
 
 
Tabu list 
 
Tabu list is used to prevent the entrapment in local optima. It is a finite length 
first-in first-out structure, which records a set of current best solutions visited. 
Tabu list may be viewed as a ‘meta-heuristic’ superimposed on other heuristic 
methods. It is designed to jump local optima and prevent the cycling movement. A 
new trial solution vector classified as tabu is placed on top of the list and the 
oldest trial vector is taken out from the list. 
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Aspiration criterion 
 
Aspiration criterion is a rule used to override a tabu restriction. If a certain move 
is forbidden by tabu restriction, the aspiration criterion, when satisfied, can make 
this move allowable. The aspiration criterion in (3.27) adopts a probabilistic 
acceptance criterion of SA. When the probabilistic acceptance criterion is higher 
than a uniform randomly generated variable in the interval [0,1], the tabu 
restriction is overruled.  

,
,

1

1 exp( / )k m
r m

p
T


 

       (3.27) 

 
Where 

,k mp  probabilistic acceptance criterion of the kth offspring individual 

within the mth subpopulation, and 
Δ difference of objective values between the kth offspring individual 

and its corresponding parent individual, i.e. the kth parent 
individual. 

 
If mkp , =1, the kth offspring individual of the mth subpopulation will be 

selected to be a new parent individual for next generation. Otherwise, a uniform 
random number, U, in the interval [0,1] is generated and compared to mkp , . If mkp ,

>U, the kth offspring individual will be accepted, otherwise, their corresponding 
parent will be selected. 
 
 
Reassignment strategy 
 
To perform the reassignment strategy, tournament scheme is used to select new 
current parent population from the combined population of current parent 
(S1,curr,…, SM,curr) and new offspring (S1,new,…, SM,new) individuals of all 
subpopulations. Each individual in the combined population is assigned a weight 
value according to the competition in (3.28). Each individual has to compete with 
Nt randomly-selected individuals in one-by-one basis. If the individual wins a 
selected opponent, it will obtain one from this competition. Otherwise, it will 
obtain zero. The summation of scores from Nt competitions is a competition score, 
wk, of the kth individual. After sorting the combined population of 2M individuals 
in the descending order of weight values, each new current parent solution 
individual of all subpopulations will be randomly selected from a set of the first 
Mth sorted best solution individuals. 
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1

1 if

0 otherwise

Nt
k r

k
t

F F
w




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
        (3.28) 

 
Where 

kw   weight value of kth individual in combined population, 

kF   fitness value of kth individual in combined population, 

rF   fitness value of rth opponent randomly selected from the combined  

population based on 2 1r M u      ,  

Nt  number of competitors. 
 
 
Termination criteria 
 
There are three termination criteria used in the proposed HEA approach. It will 
stop whenever any one of three criteria is met. The first termination criterion is set 
as the maximum number of generations of each subpopulation and the second 
termination criterion is the number of reassignment required. The algorithm will 
be stopped if there is no improvement of the best fitness within 50 generations as 
the third termination criterion. In addition, these criteria are applied to all the 
methods for a fair comparison. 
 
 

3.3 Evolutionary Computation Methods for ATC 
Determination  

 
3.3.1 Evolutionary programming 
 
Based on EP approach (Lai, 1998), an EP-based algorithm proposed for solving 
the OPF-based ATC determination is depicted in Figure 3.7. Main components of 
the algorithm are described as follows: 
 
Representation of solution 
 
Each individual consists of OPF control variables coded by real number. The pth 
individual in a population is represented by a trial vector in (3.29).  
 

[ , , ]p Gi Gi DjS P V P         (3.29) 
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Initialization 
 
Each element of the trial vector is initialized randomly within its search space by 
using uniform random number in (3.30). 
 

min max min( )i i i ix x u x x           (3.30) 

 
 
Power flow solution 
 
During iterations, a full AC NR power flow analysis is used to check the 
feasibility of each individual solution.  
 
 
Fitness function 
 
The objective function in (3.1) is taken as the fitness function of the EP approach. 
 
 
Mutation 
 
Each element of the offspring individual is mutated by using the Gaussian 
mutation operator in (3.31). 
 

 

Figure 3.7  Flow chart of OPF-based ATC determination using the EP approach. 
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2
, , .(0, )k i k i k ix x N            (3.31) 

max
max min

, max
( ) gk

k i i i

F F
x x a

F


 
   

 
      (3.32) 

 
Where 

2
.(0, )k iN   Gaussian random number with a mean of 0 and a standard 

deviation of ,k i , 

kf    fitness value of the kth individual, 

maxf    the maximum fitness of the parent population, and 

g    iteration counter. 
 
 
Selection 
 
Each individual in the combined population of parent and offspring individuals is 
assigned a weight value according to the tournament scheme competition in 
(3.33). A set of the first Pth sorted best weight values individuals from the 
combined population of 2P individuals will be selected as a new current parent 
population. 
 

1

1 if

0 otherwise
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
        (3.33) 

 
 
Termination criterion 
 
There are two termination criteria used in the EP algorithm. It will stop whenever 
any one of two criteria is met. The first termination criterion is set as the 
maximum number of generations. The algorithm will be stopped if there is no 
improvement of the best fitness within 50 generations as the second termination 
criterion. 
 
 
 
3.3.2 Tabu search 
 
Based on TS approach (Abido, 2002b), a TS-based algorithm proposed for solving 
the OPF-based ATC determination is shown in Figure 3.8. Main components of 
the algorithm are described as follows: 
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Representation of solution 
 
Each individual consists of OPF control variables coded by real number. The pth 
individual in a population is represented by a trial vector in (3.34).  
 

[ , , ]p Gi Gi DjS P V P         (3.34) 

 
 
Initialization 
 
Each element of the trial vector is initialized randomly within its search space by 
using uniform random number in (3.35). 
 

min max min( )i i i ix x u x x           (3.35) 

 
 
Power flow solution 
 
During iterations, a full AC NR power flow analysis is used to check the 
feasibility of each individual solution. 
 
 
Perturbation 
 
A set of trial neighbourhood solution vectors is generated by perturbing the 
current solution vector using the uniform probability distribution function in 
(3.36).  

max min
, ,

1
( )k i k i i ix x u x x

g
             (3.36) 

 
 
Tabu list 
A new trial solution vector classified as tabu is placed on top of the list and the 
oldest trial vector is taken out from the list.  
 
 
Aspiration criterion 
 
The aspiration criterion is used to override the tabu status of a move if this move 
yields a solution which has better objective function value than the aspiration 
level, which is the objective value of current trial solution vector from previous 
iteration. 
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Termination criterion 
 
There are two termination criteria in the TS approach similar to those used in the 
EP approach. 
 

 

Figure 3.8  Flow chart of OPF-based ATC determination using the TS approach. 
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3.3.3 Hybrid tabu search and simulated annealing 
 
A hybrid TS/SA approach is a hybrid algorithm of TS and SA by using TS as the 
main algorithm (Bhasaputra and Ongsakul, 2006). The perturbation of the TS/SA 
imitates from SA algorithm and the aspiration criterion is adapted by using 
probabilistic acceptance criterion of SA instead of aspiration level of TS. The 
cooling schedule of SA is also applied in the perturbation. The hybrid TS/SA 
algorithm shown in Figure 3.9 can be described as follows: 
 
 
Representation of solution 
 
Each individual consists of OPF control variables coded by real number. The pth 
individual in a population is represented by a trial vector in (3.37).  
 

[ , , ]p Gi Gi DjS P V P         (3.37) 

 
 
Initialization 
 
Each element of the trial vector is initialized randomly within its search space by 
using uniform random number in (3.38). 
 

min max min( )i i i ix x u x x           (3.38) 

 
 
Power flow solution 
 
During iterations, a full AC NR power flow analysis is used to check the 
feasibility of each individual solution. 
 
 
Cooling schedule 
 
The initial temperature of each subpopulation is determined in (3.39). The 
temperature is cooled down by the temperature annealing function or cooling 
schedule in (3.40).  
 

max min

0,

( )

ln
m m

m
r

F F
T

p


          (3.39) 

( 1)
, 0,

r
r m mT T           (3.40) 
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Perturbation 
 
Each element of the offspring individual is generated by using the uniform 
probability distribution function in (3.41). 
 

max min
, , , ( )k i k i r m i ix x T u x x            (3.41) 

 
 
Tabu list 
 
The tabu list utilized in the hybrid TS/SA approach is the same as that used in the 
TS algorithm. 
 
 
Aspiration criterion 
 
The aspiration criterion employed adopts a probabilistic acceptance criterion of 
SA similar to that used in the TS approach as shown in (3.42). 
 

,
,

1

1 exp( / )k m
r m

p
T


 

       (3.42) 

 
 
Termination criterion 
 
There are two termination criteria in the hybrid TS/SA approach similar to those 
used in the EP approach. 
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Figure 3.9  Flow chart of OPF-based ATC determination using the TS/SA. 
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3.3.4 Improved evolutionary programming 
 
An IEP approach is a hybrid algorithm of EP and SA by using EP as the main 
algorithm (Jirapong and Ongsakul, 2007b). Based on IEP approach, an IEP-based 
algorithm for solving the OPF-based ATC determination is shown in Figure 3.10. 
Main components of the algorithm are described as follows: 
 
 
Representation of solution 
 
Each individual consists of OPF control variables coded by real number. The pth 
individual in a population is represented by a trial vector in (3.43).  
 

[ , , ]p Gi Gi DjS P V P         (3.43) 

 
 
Space division 
 
Space division strategy is used to divide the search space into subspaces. The 
division can be made in a certain way. For example, if there are two 
subpopulations, the fist control variable’s interval ranging from its minimum limit 
to its maximum limit can be divided equally into two subintervals while the 
interval of other control variables will be used throughout their feasible range. 
 
 
Initialization 
 
Each element of the trial vector is initialized randomly within its search space by 
using uniform random number in (3.44). 
 

min max min( )i i i ix x u x x           (3.44) 

 
 
Power flow solution 
 
During iterations, a full AC NR power flow analysis is used to check the 
feasibility of each individual solution. 
 
 
Fitness function 
 
The objective function in (3.1) is taken as the fitness function of the IEP 
algorithm. 
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Figure 3.10  Flow chart of OPF-based ATC determination using the IEP approach. 
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Cooling schedule 
 
The initial temperature of each subpopulation is determined in (3.45). The 
temperature is cooled down by the temperature annealing function in (3.46).  
 

max min

0,

( )

ln
m m

m
r

F F
T

p


          (3.45) 

( 1)
, 0,

r
r m mT T           (3.46) 

 
 
Mutation 
 
Two mutation operators including Gaussian and Cauchy are applied for each 
subpopulation. Each element of the offspring individual is determined in (3.47). 
 

, , .k i k i k i mx x              (3.47) 

( 1) max min
, ( )r

k i i ia x x           (3.48) 

 
 
Selection 
 
Each offspring individual is accepted to be a new parent individual for next 
generation according to its probabilistic acceptance criterion. The probabilistic 
acceptance criterion of the kth offspring individual can be expressed in (3.49). 
 

 )/exp(,1min ,, mrmk Tp         (3.49) 

 
 
Reassignment strategy 
 
The individuals of all subpopulations are merged and then the whole population 
will be randomly divided to form new subpopulations. 
 
 
Termination criteria 
 
The termination criteria utilized in the IEP algorithm are similar to those used in 
the HEA approach. 
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3.4 Continuation Power Flow for TTC Determination 
 
Continuation power flow (CPF) method enables transfers by increasing the 
complex load with uniform power factor at every load buses in the sink area and 
increasing the injected real power at generator buses in the source area in 
incremental steps until limits are incurred. Mathematically, TTC determination 
using CPF method can be expressed as follows: 
 
Maximize          (3.50) 
 
Subject to 
 

1

cos( ) 0
N

Gi Di i j ij ij i j
j

P P VV Y   


          (3.51) 

1

sin( ) 0
N

Gi Di i j ij ij i j
j

Q Q VV Y   


          (3.52) 

min max
i i iV V V    i N       (3.53) 

max
Li LiS S    i NL       (3.54) 

 
Where  
  scalar parameter representing the increase in bus load or 

generation. 
0   corresponds to no transfer (base case) and 

max   corresponds to the maximum transfer, 

,Gi GiP Q  real and reactive power generations at bus i, 

,Di DiP Q  real and reactive loads at bus i, 

,i jV V   voltage magnitudes at bus i and j , 

,i j    voltage angles of bus i and j , 

,ij ijY    magnitude and angle of the ij th element in bus admittance matrix, 
min max,i iV V  lower and upper limits of voltage magnitude at bus i, 
max
LiS   ith line or transformer loading limit, 

| |LiS   ith line or transformer loading, 

N   number of buses, 
NL  number of branches, and 
 
 
 



 55

Real power generations in source area, and real and reactive loads in sink area are 
changed in (3.55) – (3.57). 
 

0 (1 )Gi Gi GiP P k            (3.55) 

0 (1 )Di Di DiP P k            (3.56) 

0 (1 )Di Di DiQ Q k            (3.57) 

 
Where 

0
G iP   base case real power generation at bus i in source area, 
0 0,Di DiP Q  base case real and reactive loads at bus i in sink area, and 

,Gi Dik k  constant values used to specify the change rate in generation and 

load. 
 

According to (3.55) – (3.57), generations in the source area and loads in 
the sink area are increased in successive steps with constant power factor until a 
system limit is reached, or a transfer test level is achieved. The maximum real 
power which can be delivered from the source area to the sing area through the 
transmission network is defined as TTC value of the power transaction. 
 
 

3.5 Simulation Results of ATC determination 
 
The modified IEEE 6-bus system, modified IEEE 30-bus system, and the 
modified IEEE 24-bus reliability test system (RTS) are used to demonstrate the 
ATC determination using the proposed HEA method. The HEA is implemented 
using MATLAB version 6.5 on an AMD Athlon64 X2 3600+ computer with 1.0 
GB memory. Loads are modelled as constant power factor loads. Power System 
Analysis Toolbox (PSAT) (Milano, 2005) and Power World Simulator Software 
are used to perform the CPF and LATC analysis, respectively. 
 
 
3.5.1 The modified IEEE 6-bus system 
 
The modified IEEE 6-bus system in Figure 3.11 is utilized to illustrate the TTC 
determination with stability limits. Thermal and voltage limits checking are 
enabled for all TTC determinations. TRM and CBM are not considered in the 
ATC determination. Five different combinations of power transactions including 
three bilateral transactions (from bus 1 to bus 4, 5, and 6) and one multilateral 
transaction (from bus 1-3 to bus 4-6) are considered.  
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A. TTC determination using LATC and CPF methods 
 
For the transaction from bus 1 to 4, using LATC method, TTC value is 1,019.64 
MW and the transmission branch that causes the limit is line 1-4. Using CPF 
method, TTC value is 693.36 MW and the limiting condition is the expected 
voltage stability limit, if further transfers take place. CPU time of the LATC and 
CPF are 1.85 sec and 3.97 sec, respectively. LATC method calculates linear 
sensitivity factors for determining power transfer capability taking into account 
only thermal limits on line flows. Therefore, TTC value from LATC may be 
higher than that from CPF, which takes thermal, voltage, and voltage stability 
limits into consideration. 

Test results of other transactions shown in Table 3.1 indicate that, ignoring 
voltage, reactive power, and stability effects, LATC method determines higher 
TTC values than those from CPF method, which may lead to unacceptable error in 
a stressed system with insufficient reactive power support and voltage control. 
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Figure 3.11  Diagram of the modified IEEE 6-bus system. 
 
 
 

Table 3.1  TTC Results of the Modified IEEE 6-bus System Using LATC and 
CPF Methods 

Transaction LATC CPF 
From To TTC (MW) Limit TTC (MW) Limit 
Bus 1 Bus 4 1,019.64 Line 1-4 693.36 Vcrit 
Bus 1 Bus 5 1,237.20 Line 1-5 624.55 Vcrit 
Bus 1 Bus 6 1,271.32 Line 1-2 612.79 Vcrit 

Bus 1-3 Bus 4-6 2,307.55 Line 3-6 1,507.53 Vcrit 
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B. TTC determination using EP and HEA methods 
 
In Table 3.2, for all bilateral transactions, the proposed HEA method can 
determine the same TTC values and binding conditions as those from the CPF and 
EP methods. However, for multilateral transaction, using HEA method, TTC is 
2,013.17 MW, which is 33.54% and 0.28% more than those from CPF and EP 
methods, respectively. The limiting component is line 3-6, if expected further 
transfers take place, similar to the binding condition of the EP method. The 
optimal solutions of the multilateral transaction are shown in Table 3.3 and a rapid 
HEA convergence characteristic of the transaction is shown in Figure 3.12. 
 
 
 

Table 3.2  TTC Results of the Modified IEEE 6-bus System Using EP and HEA 
Methods 

Transaction EP HEA 
From To TTC (MW) Limit TTC (MW) Limit 
Bus 1 Bus 4 693.36 Vcrit 693.36 Vcrit 
Bus 1 Bus 5 624.55 Vcrit 624.55 Vcrit 
Bus 1 Bus 6 612.79 Vcrit 612.79 Vcrit 

Bus 1-3 Bus 4-6 2,007.53 Line 3-6 2,013.17 Line 3-6 
 
 
Table 3.3  Optimal Solutions of Bilateral Transaction on the Modified IEEE 6-bus 

System 

Parameter CPF EP HEA 
VG1  (p.u.) 1.05 /0.0 1.05 /0.0 1.05 /0.0 
VG2  (p.u.) 1.05  /-50.85 1.05  /-18.39 1.05  /-21.50 
VG3  (p.u.) 1.07 /-57.12 1.07 /-23.77 1.07 /-29.00 
PG1  (MW) 1234.74 832.27 878.78 
PG2  (MW) 358.93 995.57 999.82 
PG3  (MW) 430.72 761.38 723.55 
PD4  (MW) 502.51 681.19 692.01 
PD5  (MW) 502.51 626.40 592.26 
PD6  (MW) 502.51 699.94 728.91 
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Figure 3.12  HEA convergence characteristic. 

 
 
Table 3.4  TTC Results and CPU Times of Bilateral Transaction on the Modified 

IEEE    6-bus System 

TTC (MW) EP HEA 
Best 2007.53 2013.17 

Average 2006.34 2012.01 
Worse 2001.60 2009.77 

Standard Deviation 1.93 1.15 
Average CPU Time (min) 0.23 0.38 

 
 

To increase a certain power transfer, CPF uses a common loading factor 
for a specific cluster of generators and loads. For all bilateral transactions, CPF 
can give the same TTC values as those from EP and HEA methods. However, for 
the multilateral transaction, using a common loading factor may lead to a 
conservative TTC value. Since the objective function is to maximize the power 
transfer from source to sink areas, EP and HEA can optimize generation and 
loading in each area resulting in the maximum transfer capability. 

The comparison of TTC results from 20 runs shown in Table 3.4 indicate 
that HEA method gives better solutions than EP method because HEA uses the 
probabilistic updating strategy of SA to avoid the dependence on fitness function 
and to escape from the entrapment in local optimum solutions that can occur with 
EP. Furthermore, the variation of HEA best solutions is smaller as evidenced by a 
smaller standard deviation than EP, leading to a more stable HEA approach. 
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3.5.2 The modified IEEE 30-bus system 
 
The modified IEEE 30-bus system in Figure 3.13 has three areas with two 
generators in each area. Generators in each area are assumed to belong to the same 
company and the loads belong to the same load serving entity. Five different 
combinations of power transactions including T1 (from bus 1 to 10), T2 (from bus 
2 to 12), T3 (from area 1 to 2), T4 (from area 2 to 3), and T5 (from area 3 to 1) are 
considered.  
 

 

Figure 3.13  Diagram of the modified IEEE 30-bus system. 
 

 

         (a) SHEA    (b) PHEA 

Figure 3.14  Implementation of HEA on (a) sequential and (b) parallel 
computations. 

 Area 1

Area 3

Area 2
Gen 1 Gen 2

Gen 3

Gen 4
Gen 5

Gen 6

1 2

3 4

56 78

28
14

15

12

119 16

26

25 22

27 29 30

21 24

10 23

20

17

13

19

18

Subpop1Subpop1

Reassignment

Subpop1

Reassignment

Master Slave

Subpop2

Subpop2



 60

In this case study, CPF, EP, and HEA methods are used to determine TTC 
values of the predefined power transactions. To speed up the HEA approach, 
parallel implementation of HEA (PHEA) using 2 CPUs as shown in Figure 3.14 is 
utilized and test results are compared to those from sequential HEA (SHEA). 

For the transaction T1, using CPF method, TTC value is 17.48 MW. The 
limiting condition is line flow limit at line 22-21, if expected further transfers take 
place. Using EP method, TTC is 24.68 MW and the limiting condition is line flow 
limit at line 22-21 similar to the binding condition of the CPF method. Using 
SHEA method, TTC value is 39.79 MW, which is 127.63% and 61.22% more 
than those from the CPF and EP methods, respectively. The limiting condition is 
generation upper limit at bus 1. Using PHEA method, TTC value is 39.77 MW, 
and the limiting component is similar to the binding condition of the SHEA 
method.  

For the transaction T3, using CPF method, TTC value is 60.71 MW. The 
limiting condition is line flow limit at line 22-21, if expected further transfers take 
place. Using EP method, TTC is 102.65 MW and the limiting component is line 
27-25. Using SHEA method, TTC value is 114.86 MW, which is 89.19% and 
11.89% more than those from the CPF and EP methods, respectively. The limiting 
component is line 27-25, similar to the binding condition of the EP method. Using 
PHEA method, TTC is 115.35 MW and the limiting component is line 27-25, 
similar to the binding condition of the EP and SHEA methods. Test results of 
other transactions shown in Table 3.5 indicate that TTC values from CPF are more 
conservative than those from the EP and HEA-based methods. To increase a 
certain power transfer, CPF uses a common loading factor for a specific cluster of 
generators and loads. Therefore, CPF does not lead to the optimal generation, 
loading, and generator bus voltages. 

The comparisons of TTC results and CPU times evaluated by EP, SHEA, 
and PHEA methods from 20 runs are shown in Table 3.6. Test results indicate that 
the SHEA and PHEA methods can obtain better solutions on the best, average, 
and the worst solutions than those from EP method. The HEA-based algorithms 
use the probabilistic updating strategy of SA to avoid the dependence on fitness 
function and to escape from the entrapment in local optimum solutions that can 
occur with EP algorithm. Furthermore, the variation of the SHEA and PHEA best 
solutions are smaller as evidenced by a smaller standard deviation than EP, 
leading to a more stable HEA approach. 

CPU times of SHEA and PHEA methods are higher than that from EP 
because the best solution of HEA-based algorithm is obtained based on its 
acceptance probability, which depends on the improvement of the offspring’s 
objective value and the annealing procedure of SA algorithm. In addition, the 
reassignment strategy of HEA-based method requires additional computing effort. 
However, PHEA method can easily facilitate parallel implementation, reducing 
elapsed time without sacrificing the quality of solution. The elapsed time 
including the communication overhead of PHEA is reduced by 32.89%. 
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Table 3.5  TTC Results of the Modified IEEE 30-bus System 

Transaction 
CPF EP SHEA PHEA 

TTC Limit TTC Limit TTC Limit TTC Limit 
(MW)  (MW)  (MW)  (MW)  

T1 17.48 Line 22-21 24.68 Line 22-21 39.79 PG 1 39.77 PG 1 
T2 43.61 Line 23-15 59.51 Line 23-15 60.62 Line 23-15 60.77 Line 23-15
T3 60.71 Line 22-21 102.65 Line 27-25 114.86 Line 27-25 115.35 Line 27-25
T4 79.87 Line 22-21 91.90 Line 6-8 96.90 Line 27-25 95.43 Line 6-8 
T5 87.02 Line 22-21 124.76 Line 27-25 191.05 Line 27-25 191.47 Line 27-25

 
 

Table 3.6  TTC Results and CPU Times of the Transaction T3 on the Modified 
IEEE      30-bus System 

TTC (MW) EP SHEA PHEA 
Best 102.65 114.86 115.35 

Average 101.70 113.57 113.91 
Worst 100.20 112.12 113.62 

Standard Deviation 1.32 1.10 1.13 
Average CPU Time (min) 1.08 2.28 1.53 

 
 
3.5.3 The modified IEEE 24-bus RTS 
 
The modified IEEE 24-bus RTS is used to demonstrate ATC calculation using the 
proposed HEA method. The modified test system is partitioned into 3 areas as 
shown in Figure 3.15. A multilateral transaction from area 1 to 2 with contingency 
constraints is considered. Only the outage of the largest generator in each area and 
the outage of tie lines are included in the contingency list. ATC results without 
and with considering TRM from the proposed HEA approach are compared to 
those from EP, TS, TS/SA and IEP methods. 
 
 
A. ATC Calculation without considering TRM 
 
Base case TTC using HEA method is 718.89 MW. Considering the pre-specified 
contingency constraints as shown in Table 3.7, contingency TTC value using 
HEA approach is 632.09 MW without violating network constraints, which is 
0.59%, 1.05%, 0.44%, and 0.14% higher than those from EP, TS, TS/SA, and IEP 
methods, respectively. In addition, the TTC value is decreased by 12.07% 
compared to that without contingency constraints. The critical contingency case is 
the interconnected line 14-11 between those two areas outage. It is evident that 
neglecting the effects of contingency constraints on TTC evaluation will 
inevitably lead to insecure system operation. To meet the specific reliability 
criterion, which is LOLE < 2.4 hour/year, area 1 needs to import 60 MW from 
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area 2. Therefore, CBM for the critical contingency case is 60 MW. ATC value 
using HEA method is 572.09 MW, which is 0.65%, 1.16%, 0.48%, and 0.16% 
higher than those from EP, TS, TS/SA, and IEP methods, respectively.  

Test results in Table 3.8 indicate that single-population search of EP, TS, 
and TS/SA is less effective than multi-population search of IEP and HEA 
methods. Even though CPU times of IEP and HEA methods are higher than those 
from EP, TS and TS/SA because the best solutions of IEP and HEA are obtained 
based on the acceptance probability, which depends on the improvement of the 
offspring’s objective value and the annealing procedure of SA algorithm. In 
addition, the reassignment strategy requires additional computing effort. However, 
both IEP and HEA methods can easily facilitate parallel implementation using 
more than 2 CPUs, reducing elapsed time without sacrificing the quality of 
solution. 

 

 

 
Figure 3.15  Diagram of the modified IEEE 24-bus RTS. 
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Table 3.7  ATC Results of Multilateral Transaction on the Modified IEEE 24-bus 
RTS Without Considering TRM 

Case 
TTC Level (MW) 

EP TS TS/SA IEP HEA 
Normal 714.03 712.48 716.41 714.62 718.89 

Largest gen. in area 1 outage 711.46 711.69 713.09 713.80 716.78 
Largest gen. in area 2 outage 711.67 711.59 715.74 714.71 717.24 

Line 21-22 outage 713.07 709.00 714.11 716.77 717.84 
Line 17-22 outage 715.79 708.99 717.33 717.22 720.09 
Line 19-20 outage 691.93 697.69 709.37 710.76 713.50 
Line 14-11 outage 628.38 625.54 629.34 631.18 632.09 

Contingency TTC Value (MW) 628.38 625.54 629.34 631.18 632.09 
CBM of the contingency case 60.00 60.00 60.00 60.00 60.00 

ATC Value (MW) 568.38 565.54 569.34 571.18 572.09 
 
 

Table 3.8  ATC Results and CPU Times of Multilateral Transaction on the 
Modified IEEE 24-bus RTS Without Considering TRM 

TTC Value (MW) EP TS TS/SA IEP HEA 
Best 628.38 625.54 629.34 631.18 632.09 

Average 618.49 614.57 615.48 618.66 624.32 
Worst 567.63 587.53 584.94 566.47 607.81 

Standard Deviation 16.88 13.83 12.74 15.5 10.01 
CPU Time (minute) 0.65 0.65 0.63 1.04 0.99 

 
 

To compare the convergence characteristic, IEP and HEA approaches 
utilize a probabilistic updating strategy based on annealing schedule of SA, 
resulting in more generations required and slower convergence characteristic than 
EP, TS and TS/SA methods as shown in Figure 3.16. However, the convergence 
speed of HEA is improved by introducing a flexible memory of search history of 
TS to prevent cycling and to avoid entrapment in local optima compared to IEP 
algorithm. 
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Figure 3.16  Convergence characteristic of solutions. 
 
 

B. ATC Calculation considering TRM 
 
Base case TTC with TRM using HEA method is 715.33 MW. Considering the 
pre-specified contingency constraints as shown in Table 3.9, contingency TTC 
value using HEA approach is 626.18 MW without violating network constraints, 
which is 0.35%, 0.55%, 0.32%, and 0.33% higher than those from EP, TS, TS/SA, 
and IEP methods, respectively. In addition, the TTC value is decreased by 12.46% 
compared to that without contingency constraints. The critical contingency case is 
the interconnected line 14-11 between those two areas outage. CBM for the 
critical contingency case is 60 MW. Therefore, ATC value using HEA method is 
566.18 MW, which is 0.39%, 0.61%, 0.35%, and 0.37% higher than those from 
EP, TS, TS/SA, and IEP methods, respectively. Test results indicate that HEA 
approach can effectively re-dispatch real power generations except slack bus in a 
source area, increment of real power loads in a sink area, and optimal setting of 
generation bus voltages. Even though test results show a marginal improvement of 
HEA over the other optimization methods, the higher ATC for power transfer of 
HEA than the other methods could lead to a substantial cost savings of daily 
energy trading between different control areas. 

Comparisons of TTC results and CPU times evaluated by EP, TS, TS/SA, 
IEP, and HEA methods from 20 runs are shown in Table 3.10. The proposed HEA 
method can obtain better results on the best, average, and the worst TTC values 
than those from the other optimization methods because HEA approach uses the 
selection mechanism with a probabilistic updating strategy based on TS and SA 
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algorithms to avoid dependency on fitness function and to escape from the 
entrapment in local optimal solutions.  

 
 
 
 
Table 3.9  ATC Results of Multilateral Transaction on the Modified IEEE 24-bus 

RTS Considering TRM 

Case 
TTC Level (MW) 

EP TS TS/SA IEP HEA 
Normal 706.44 708.39 708.82 711.90 715.33 

Largest gen. in area 1 outage 707.58 701.93 711.76 708.77 711.57 
Largest gen. in area 2 outage 710.76 710.86 714.91 711.98 714.31 

Line 21-22 outage 705.07 706.43 706.52 712.24 705.07 
Line 17-22 outage 712.05 705.18 708.83 713.34 713.53 
Line 19-20 outage 679.50 688.83 691.56 697.95 700.09 
Line 14-11 outage 623.99 622.76 624.19 624.12 626.18 

Contingency TTC Value (MW) 623.99 622.76 624.19 624.12 626.18 
CBM of the contingency case 60.00 60.00 60.00 60.00 60.00 

ATC Value (MW) 563.99 562.76 564.19 564.12 566.18 
 
 
 

Table 3.10  ATC Results and CPU Times of Multilateral Transaction on the 
Modified IEEE 24-bus RTS Considering TRM 

TTC Value (MW) EP TS TS/SA IEP HEA 
Best 623.99 622.76 624.19 624.12 626.18 

Average 616.91 567.96 606.05 599.82 617.23 
Worst 558.4 561.59 567.21 580.31 605.15 

Standard Deviation 17.53 15.45 18.86 16.39 6.41 
CPU Time (minute) 0.65 0.64 0.53 0.81 0.78 

 
 
 

Table 3.11  Comparison Between Without and With Considering TRM            
(Considering Contingency and CBM) 

Method 
ATC (MW) 

without TRM with TRM Difference 
EP 568.38 563.99 - 0.77 % 
TS 565.54 562.76 - 0.49 % 

TS/SA 569.34 564.19 - 0.90 % 
IEP 571.18 564.12 - 1.24 % 

HEA 572.09 566.18 - 1.03 % 
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Table 3.12  Comparison Between Without and With Considering Contingency 
Constraints (Considering TRM and CBM) 

Method 
ATC (MW) 

without contingency with contingency Difference 
EP 646.44 563.99 - 12.75 % 
TS 648.39 562.76 - 13.21 % 

TS/SA 648.82 564.19 - 13.04 % 
IEP 651.90 564.12 - 13.47 % 

HEA 655.33 566.18 - 13.60 % 
 
 

Table 3.13  Comparison Between Without and With Considering CBM            
(Considering Contingency and TRM) 

Method 
ATC (MW) 

without CBM with CBM Difference 
EP 623.99 563.99 - 9.62 % 
TS 622.76 562.76 - 9.63 % 

TS/SA 624.19 564.19 - 9.61 % 
IEP 624.12 564.12 - 9.61 % 

HEA 626.18 566.18 - 9.58 % 
 
 

From the comparison between without and with considering TRM as 
shown in Table 3.11, test results show that the effect of TRM on ATC value is 
quite small but contingency constraints and CBM have more effect on ATC value 
than TRM as shown in Table 3.12 and 3.13. Test results indicate that without 
considering contingency constraints or CBM may lead to unsecured power 
systems or cause risk of having generation unreliability. 
 
 

3.6 Conclusion 
 
In this chapter, the HEA approach is effectively implemented to determine ATC 
values of power transfers between different control areas constrained by load flow 
equations and system operating limits. Test results on three test systems from the 
proposed method are compared favourably with those from the other heuristic 
methods. It is indicated that the HEA can effectively re-dispatch real power 
generations except slack bus in a source area, increment of real power loads in a 
sink area, and optimal setting of generation bus voltages, leading to an efficient 
utilization of the existing power systems. In the next chapter, the HEA approach is 
proposed to determine the optimal placement of multi-type FACTS controllers to 
simultaneously maximize ATC and minimize system real power loss of power 
transfers in deregulated power systems.  
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Chapter 4 
 
 
 

Optimal Placement of Multi-
Type FACTS controllers for 
Available Transfer Capability 
Enhancement 
 
 
 
 
In this chapter, the HEA approach is proposed to determine the optimal 
placement of multi-type FACTS controllers to simultaneously maximize ATC and 
minimize system real power loss of power transfers in deregulated power systems. 
The optimally placed OPF with FACTS controllers is formulated as a MINLP 
problem. A combined objective function including ATC and system real power 
loss is used to evaluate the feasible maximum ATC value and minimum power loss 
within real and reactive power generation limits, line thermal limits, voltage 
limits, stability limits, and FACTS controllers steady-state operating limits. Four 
types of FACTS controllers are included: TCSC, TCPS, UPFC, and SVC. Test 
results on three test systems from the proposed method are compared with those 
from EP, TS, TS/SA, and IEP methods. 
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4.1 OPF with Multi-Type FACTS Problem Formulation 
 
4.1.1 Objective function 
 
The optimally placed OPF with FACTS controllers is formulated as a MINLP 
problem with continuous and discrete variables. Real power generations, 
generator bus voltages, real power loads, and FACTS parameters are continuous 
variables. Type, location, and number of FACTS components are discrete 
variables of the MINLP problem. A combined objective function including ATC 
and system real power loss functions in (4.1) is used to evaluate the feasible ATC 
value that can be transferred from a specific set of generators in a source area to 
loads in a sink area within real and reactive power generation limits, line thermal 
limits, voltage limits, steady-state stability limits, and FACTS controllers 
operating limits. 
 

Maximize  
1

( )
N

Gi Di
i

F ATC P P


           (4.1) 

Subject to 
 

        
( ) ( )

1 1 1
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k k j
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  

          
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    (4.3) 
min max

Gi Gi GiP P P    i NG           (4.4) 
min max
Gi Gi GiQ Q Q    i NG           (4.5) 
min max

i i iV V V    i N           (4.6) 
max

Li LiS S    i NL           (4.7) 

1iVCPI     i N           (4.8) 
crit

ij ij     i NL           (4.9) 
min max
Si Si SiX X X           (4.10) 
min max
Pi Pi Pi             (4.11) 
min max

Ui Ui UiV V V           (4.12) 
min max
Ui Ui Ui             (4.13) 
min max

Vi Vi ViQ Q Q           (4.14) 
max0 CFk CFkn n           (4.15) 

0 orklocation N NL          (4.16) 

Where 
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F   objective function, 
ATC   available transfer capability, 
 
Input Variables 

min max,Gi GiP P  lower and upper limits of real power generation at bus i, 
min max,Gi GiQ Q  lower and upper limits of reactive power generation at bus i, 
min max,i iV V  lower and upper limits of voltage magnitude at bus i, 
max
LiS   ith line or transformer loading limit, 
crit
ij   critical angle difference between bus i and j , 

min max,Si SiX X  lower and upper limits of TCSC at line i, 
min max,Pi Pi   lower and upper limits of TCPS at line i, 
min max,Ui UiV V  lower and upper limits of UPFC at line i, 
min max,Ui Ui   lower and upper limits of UPFC at line i, 
min max,Vi ViQ Q  injected reactive power of SVC at bus i, 

max
CFkn   maximum allowable number of FACTS components, 

N   number of buses, 
NL  number of branches, 
NG   number of generator buses, 
 
State Variables 

1 1,G GP Q  real and reactive power generations at slack bus, 

,i jV V   voltage magnitudes at bus i and j , 

,i j    voltage angles of bus i and j , 

 
Output Variables (continuous and discrete variables) 

,Gi GiP Q  real and reactive power generations at bus i, 

,Di DiP Q  real and reactive loads at bus i, 

,ij ijY    magnitude and angle of the ij th element in bus admittance matrix, 

( )Pi PkP   injected real power of TCPS at bus i, 

( )Pi PkQ   injected reactive power of TCPS at bus i, 

( , )Ui Uk UkP V   injected real power of UPFC at bus i, 

( , )Ui Uk UkQ V   injected reactive power of UPFC at bus i, 

( )ij SY X  magnitude of the ijth element in bus admittance matrix with TCSC 

included 
( )ij SX  angle of the ijth element in bus admittance matrix with TCSC 

included, 
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| |LiS   ith line or transformer loading, 

iVCPI   voltage collapse proximity indicator at bus i, 

| |ij   angle difference between bus i and j , 

SiX   reactance of TCSC at line i, 

Pi   phase shift angle of TCPS at line i, 

UiV   voltage magnitude of UPFC at line i, 

Ui   voltage angle of UPFC at line i, 

ViQ   injected reactive power of SVC at bus i, 

( )m i   number of TCPS connected at bus i, 
( )n i   number of UPFC connected at bus i, 

CFkn  integer value of number of FACTS components,  

{0,1,2,..., }CFkn n , and 

klocation  integer value of line or bus location of FACTS type k. 

 
VCPI is used to directly determine voltage collapse conditions within 

voltage stability limits. For every iteration, VCPI at a load bus i in (4.8) must 
equal to or less than one. Critical angle displacement is used as a criterion to 
determine steady-state angle stability limit. The angle difference between buses i 
and j  across a transmission line is kept within a critical angle difference, which is 
44o. Voltage and angle stability limits are treated as OPF constraints in (4.8) and 
(4.9), respectively. During the optimization, inequality constraints of state 
variables including real power generation at slack bus, reactive power generation, 
bus voltage magnitudes, line or transformer loading, angle and voltage stability 
limits are enforced using a penalty function in (4.17). 
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          (4.17) 
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h x x x x x

x x x

  
  
  

     (4.18) 

Where 

1GP   real power generations at slack bus, 

pk   penalty weighting coefficient, 6
p 10k  , and 

min max,x x  lower and upper limits of variable x . 
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4.1.2 ATC determination 
 
ATC calculation is defined in (4.19).  
 
ATC = TTC – TRM – CBM       (4.19) 
 

To determine ATC value of a power transaction between different control 
areas, an interconnected power system is divided into three kinds of areas: source 
or sending area, sink or receiving areas, and external areas. Two types of 
transactions including bilateral and multilateral transactions are considered. Each 
bilateral transaction satisfies the power balance relationship in (4.20). A 
multilateral transaction involving several sellers and buyers can be expressed in 
(4.21). 
 

0Gi DjP P           (4.20) 

0Gi Dj
i S j B

P P
 

           (4.21) 

 
Where 

GiP   real power generation at bus i, 

D jP   real power load at bus j , 

S   set of sellers who sell the power to buyers, and 
B   set of buyers who buy the power from the sellers. 
 
 
4.1.3 TTC determination 
 
To determine TTC values of a power transaction between different control areas, 
the optimization methods enable transfers by increasing the complex load with 
uniform power factor at every load buses or a group of load buses in a sink area 
and increasing the injected real power at generator buses in a source area until a 
system limit is incurred. The total real power load in the sink area is used in the 
objective function to determine the maximum feasible TTC value. Therefore, TTC 
is defined in (4.22). 
 

_

1

ND SNK

Di
i

TTC P


          (4.22) 

 
Where 

_ND SNK  number of load buses in a sink area. 
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4.1.4 TRM and CBM determination 
 
For TTC determination considering TRM, load uncertainty is taken into 
consideration as random load increased within 2% of base case values in every 
load flow evaluations. Contingency analysis is also considered in the TRM 
determination. Only the outage of the largest generator in each area and the outage 
of tie lines are included in the contingency list. CBM determination is based on 
single area generation reliability evaluation using a probabilistic method. For 
hourly load model, LOLE < 2.4 hour per year is selected as a reliability criterion. 
To incorporate CBM into ATC, CBM is subtracted from TTC directly. 
 
 

4.2 Modeling of FACTS controllers 
 
Four types of FACTS controllers are included: thyristor-controlled series 
compensator (TCSC), thyristor-controlled phase shifter (TCPS), unified power 
flow controller (UPFC), and static var compensator (SVC). The TCSC is modeled 
by the adjustable series reactance. The TCPS, UPFC, and SVC are modeled using 
the power injection (PI) model (Ongsakul and Bhasaputra, 2002). 
 
 
4.2.1 Thyristor controlled series compensator 
 
TCSC is modeled by the adjustable series reactance SX  as shown in Figure 4.1. 

TCSC is integrated in the OPF problem by modifying system line data. A new line 
reactance is given in (4.23). 
 

new ij SX X X          (4.23) 

 
 

 
Figure 4.1  Model of TCSC. 

 
 
 
 
  

SjX ijij jXR 
j
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The power flow equations of the line with a new line reactance are given as 
follows: 
 

2 ( cos sin )ij i ij i j ij ij ij ijP V G VV G B           (4.24) 

2 ( sin cos )ij i ij i j ij ij ij ijQ V B VV G B            (4.25) 

2 ( cos sin )ji j ij i j ij ij ij ijP V G VV G B           (4.26) 

2 ( sin cos )ji j ij i j ij ij ij ijQ V B VV G B            (4.27) 

 
Where 

2 2
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ij

ij new

R
G

R X
 


  and 

2 2
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X
B

R X

 


. 

 
 
4.2.2 Thyristor controlled phase shifter 
 
The static model and power injection model of a TCPS placed in a line connected 
between bus i and j are shown in Figure 4.2. The injected real and reactive power 
at bus i and j of the line having a phase shifter are as follows: 
 

2 2 ( sin cos )is i ij i j ij ij ij ijP V K G VV K G B         (4.28) 

2 2 ( cos sin )is i ij i j ij ij ij ijQ V K B VV K G B         (4.29) 

( sin cos )js i j ij ij ij ijP V V K G B          (4.30) 

( cos sin )js i j ij ij ij ijQ V V K G B          (4.31) 

Where 
tan pK  . 

 

 
(a)    (b) 

Figure 4.2  (a) Model of TCPS.  (b) Power injection model of TCPS. 

iV
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4.2.3 Unified power flow controller 
 
The static model and power injection model of a UPFC placed in a line connected 
between bus i and j are shown in Figure 4.3. The injected real and reactive power 
of UPFC at bus i and j are as follows: 
 

2 2 cos( ) ( cos( ) sin( ))is U ij i U ij U i j U ij U j ij U jP V G VV G V V G B              

          (4.32) 

( sin( ) cos( ))is i q i U ij U i ij U iQ V I V V G B            (4.33) 

( cos( ) sin( ))js j U ij U j ij U jP V V G B           (4.34) 

( sin( ) cos( ))js j U ij U j ij U jQ V V G B            (4.35) 

 
 

 
(a)    (b) 

Figure 4.3  (a) Model of UPFC.  (b) Power injection model of UPFC. 
 
 
4.2.4 Static var compensator 
 
SVC is modeled as shunt-connected static var generator or absorber with the value 

VQ  as shown in Figure 4.4. 

 

 

Figure 4.4  Model of SVC. 
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4.3 Hybrid Evolutionary Algorithm for Optimal 
Placement of FACTS controllers 

 
The HEA approach is a hybrid algorithm of EP, TS, and SA. HEA balances the 
explosion by dividing the population into subpopulations. Multiple mutation 
operators are employed to enhance the search diversity. The selection mechanism 
with Tabu list and probabilistic updating strategy based on annealing schedule of 
SA is utilized to avoid being trapped in local optimum. Reassignment strategy for 
individuals is designed for every subpopulation to fuse information and enhance 
population diversity. The HEA approach is used to simultaneously search for real 
power generations in a source area excluding slack bus, generation bus voltages, 
real power loads in a sink area, and optimal placement of multi-type FACTS 
controllers for determining the optimal solutions of the objective function defined 
in (4.1). A flowchart of the HEA approach is shown in Figure 4.5, which can be 
explained as follows: 
 
 
Representation of solution 
 
An individual in a population represents a candidate of OPF solution. Each 
individual consists of OPF control variables coded by real number. The pth 
individual in a population is represented by a trial solution vector in (4.36). There 
are four types of FACTS controllers with maximum allowable nCFk component for 
each type, which is assigned as input data. The placement configuration depicted 
in Figure 4.6 is represented by three parameters: nCFk, locationk, and parameterk 
given in (4.37). For FACTS type k{1,2,3,4} representing placement 
configuration of TCSC, TCPS, UPFC and SVC, respectively, the number of 
FACTS component type k, nCFk={0,1,...,n}. More specifically, there is either no 
FACTS type k if nCFk=0 or a number of FACTS type k if nCFk  0. Therefore, 
number of FACTS components, locations, and parameters of each type of FACTS 
controllers are simultaneously searched by the HEA. Note the searched locations 
and parameters of FACTS type k is valid only when nCFk  0. 
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Figure 4.5  Flow chart of the HEA approach for OPF with FACTS problem. 



 77

 

Figure 4.6  Structure of the trial solution vector of multi-type FACTS placement. 
 
 

[ , , , ]p Gi Gi Dj kS P V P Loc        (4.36) 

[ , , ]k CFk k kLoc n location parameter       (4.37) 

 
Where 

pS   trial solution vector of the pth individual, 

GiP   real power generation at bus i in the source area, 

GiV   voltage magnitude of generator at bus i including slack bus,  

D jP   real power load at bus j  in the sink area, 

kLoc  allocation vector of FACTS device type k, where k=1,…,4 

representing placement configuration of TCSC, TCPS, UPFC and 
SVC, respectively, 

CFkn   number of FACTS components, }2,1,0{CFkn ,  

klocation  line or bus location of FACTS type k, and 

kparameter  parameter settings of FACTS type k. 
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Space division 
 
Space division strategy is used to divide the whole population size P into M 
subpopulations according to the number of mutation operators used. Therefore, 
the search process can be performed in parallel to enhance performance of 
exploration and speed of convergence.  
 
 
Initialization 
 
Each element of the trial vector is initialized randomly within its search space by 
using uniform random number distribution ranging over the feasible limits of each 
control variable in (4.38). 
 

min max min( )i i i ix x u x x           (4.38) 

 

Where  

ix   ith element of the individual in a population, 
min max,i ix x  lower and upper limits of the ith element of the individual, and 

u   uniform random number in the interval [0,1]. 
 
 
Power flow solution 
 
During iterations, a full AC NR power flow analysis is used to check the 
feasibility of each individual solution. If the power flow of any individuals fails to 
converge, such individuals will be removed and replaced by new randomly 
created individuals. 
 
 
Fitness function 
 
Fitness function is used to measure the optimality or quality of each candidate 
solution with respect to the objective being optimized. The objective function in 
(4.1) is taken as the fitness function of the HEA approach. 
 
 
Cooling schedule procedure 
 
The initial temperature of each subpopulation expressed in (4.39) is determined 
from the objective value of the best and the worst individual, and the probability 
of accepting the worst individual with respect to the best individual. After 
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reassignment strategy, the temperature is cooled down by the temperature 
annealing function or cooling schedule in (4.40). 
 

max min

0,

( )

ln
m m

m
r

F F
T

p


          (4.39) 

( 1)
, 0,

r
r m mT T           (4.40) 

 
Where 

0,mT   initial temperature of the mth subpopulation, 
min max,m mF F  objective value of the worst and best individuals in the mth 

subpopulation, 

rp  probability of accepting the worst individual with respect to the 

best individual, 

,r mT  annealing temperature of the mth subpopulation after the rth 

reassignment, 
   rate of cooling, and 
r   iteration counter of reassignment strategy. 
 
 
Mutation 
 
In different subpopulations, different mutation operators are used to create new 
offspring subpopulation so that many hybrid operators are applied to enhance the 
search diversity. Two mutation operators including Gaussian and Cauchy are 
applied. A set of trial solution vectors, SS(Scurr), is generated by perturbing the 
current solution vector using the uniform probability distribution function. Each 
element of the offspring is calculated in (4.41). If any mutated value exceeds its 
limits, it will be recalculated until it is within the limits. Mutation intensifies with 
the increasing number of iterations. 
 

, , .k i k i k i mx x              (4.41) 

( 1) max min
, , ( )r

k i r m i iT a x x            (4.42) 

 
Where 

,k ix    ith element of the kth offspring individual, 

,k ix   ith element of the kth parent individual, 

,k i   mutation step size for the ith element of the kth individual, 

m   mutation operator of the mth subpopulation e.g. N(0,1), C(0,1), 
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N(0,1)  Gaussian random number with mean 0 and standard deviation 1, 
C(0,1)  Cauchy random number, 
a   positive number slightly less than one, and 

max min,i ix x  subinterval’s or interval’s upper and lower limits of ith element of 

the individual. 
 
 
Tabu list 
 
Tabu list is a finite length first-in first-out structure, which records a set of current 
best solutions visited. Tabu list may be viewed as a ‘meta-heuristic’ superimposed 
on another heuristic method. Tabu list is used to prevent the entrapment in local 
optima. It stores movement of solution and forbids backtracking to previous 
movement. A new trial solution vector classified as tabu is placed on top of the list 
and the oldest trial vector is taken out from the list. 
 
 
Aspiration criterion 
 
Aspiration criterion is a rule used to override a tabu restriction. If a certain move 
is forbidden by tabu restriction, the aspiration criterion, when satisfied, can make 
this move allowable. The aspiration criterion in (4.43) adopts a probabilistic 
acceptance criterion of SA. When the probabilistic acceptance criterion is higher 
than a uniform randomly generated variable in the interval [0,1], the tabu 
restriction is overruled.  

,
,

1

1 exp( / )k m
r m

p
T


 

       (4.43) 

 
Where 

,k mp  probabilistic acceptance criterion of the kth offspring individual 

within the mth subpopulation, and 
Δ difference of objective values between the kth offspring individual 

and its corresponding parent individual, i.e. the kth parent 
individual. 

 
If mkp , =1, the kth offspring individual of the mth subpopulation will be 

selected to be a new parent individual for next generation. Otherwise, a uniform 
random number, U, in the interval [0,1] is generated and compared to mkp , . If mkp ,

>U, the kth offspring individual will be accepted, otherwise, their corresponding 
parent will be selected. 
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Reassignment strategy 
 
To perform the reassignment strategy, tournament scheme is used to select new 
current parent population from the combined population of current parent 
(S1,curr,…, SM,curr) and new offspring (S1,new,…, SM,new) individuals of all 
subpopulations. Each individual in the combined population is assigned a weight 
value according to the competition in (4.44). Each individual in the combined 
population has to compete with Nt randomly-selected individuals in one-by-one 
basis. If the individual wins a selected opponent, it will obtain one from this 
competition. Otherwise, it will obtain zero. The summation of scores from Nt 

competitions is a competition score, wk, of the kth individual. After sorting the 
combined population of 2M individuals in the descending order of weight values, 
each new current parent solution individual of all subpopulations will be randomly 
selected from a set of the first Mth sorted best solution individuals. 
 

1

1 if

0 otherwise

Nt
k r

k
t

F F
w




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
        (4.44) 

 
Where 

kw   weight value of kth individual in combined population, 

kF   fitness value of kth individual in combined population, 

rF   fitness value of rth opponent randomly selected from the combined  

population based on 2 1r M u      ,  

Nt  number of competitors. 
 
 
Termination criteria 
 
There are three termination criteria used in the proposed HEA approach. It will 
stop whenever any one of three criteria is met. The first termination criterion is set 
as the maximum number of generations of each subpopulation and the second 
termination criterion is the number of reassignment required. The algorithm will 
be stopped if there is no improvement of the best fitness within 50 generations as 
the third termination criterion. In addition, these criteria are applied to all the 
methods for a fair comparison. 
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4.4 Evolutionary Computation Methods for Optimal 
Placement of FACTS controllers 

 
 
4.4.1 Evolutionary programming 
 
Based on EP approach, an EP-based algorithm proposed for solving the optimally 
placed OPF with FACTS problem can be described as follows: 
 
 
Representation of solution 
 
Each individual consists of OPF control variables coded by real number. The pth 
individual in a population is represented by a trial vector in (4.45).  
 

[ , , , ]p Gi Gi Dj kS P V P Loc        (4.45) 

 
 
Initialization 
 
Each element of the trial vector is initialized randomly within its search space by 
using uniform random number in (4.46). 
 

min max min( )i i i ix x u x x           (4.46) 

 
 
Power flow solution 
 
During iterations, a full AC NR power flow analysis is used to check the 
feasibility of each individual solution.  
 
 
Fitness function 
 
The objective function in (4.1) is taken as the fitness function of the EP approach. 
 
 
Mutation 
 
Each element of the offspring individual is mutated by using the Gaussian 
mutation operator in (4.47). 
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      (4.48) 

 
Where 

2
.(0, )k iN   Gaussian random number with a mean of 0 and a standard 

deviation of ,k i , 

kf    fitness value of the kth individual, 

maxf    the maximum fitness of the parent population, and 

g    iteration counter. 
 
 
Selection 
 
Each individual in the combined population is assigned a weight value according 
to the tournament scheme competition in (4.49). A set of the first Mth sorted best 
weight values individuals from the combined population of 2M individuals will be 
selected as a new current parent population. 
 

1
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0 otherwise
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
        (4.49) 

 
 
Termination criterion 
 
There are two termination criteria used in the EP. It will stop whenever any one of 
two criteria is met. The first termination criterion is set as the maximum number 
of generations. The algorithm will be stopped if there is no improvement of the 
best fitness within 50 generations as the second termination criterion. 
 
 
4.4.2 Tabu search 
 
Based on TS approach, an TS-based algorithm proposed for solving the optimally 
placed OPF with FACTS problem can be described as follows: 
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Representation of solution 
 
Each individual consists of OPF control variables coded by real number. The pth 
individual in a population is represented by a trial vector in (4.50).  
 

[ , , , ]p Gi Gi Dj kS P V P Loc        (4.50) 

 
 
Initialization 
 
Each element of the trial vector is initialized randomly within its search space by 
using uniform random number in (4.51). 
 

min max min( )i i i ix x u x x           (4.51) 

 
 
Power flow solution 
 
During iterations, a full AC NR power flow analysis is used to check the 
feasibility of each individual solution. 
 
 
Perturbation 
 
A set of trial neighborhood solution vectors is generated by perturbing the current 
solution vector using the uniform probability distribution function in (4.52).  
 

max min
, ,

1
( )k i k i i ix x u x x

g
             (4.52) 

 
 
Tabu list 
 
A new trial solution vector classified as tabu is placed on top of the list and the 
oldest trial vector is taken out from the list.  
 
 
Aspiration criterion 
 
The aspiration criterion is used to override the tabu status of a move if this move 
yields a solution which has better objective function value than the aspiration 
level, which is the objective value of current trial solution vector from previous 
iteration. 
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Termination criterion 
 
There are two termination criteria in the TS approach similar to those used in the 
EP approach. 
 
 
4.4.3 Hybrid tabu search and simulated annealing 
 
Based on hybrid TS/SA approach, an TS/SA-based algorithm proposed for 
solving the optimally placed OPF with FACTS problem can be described as 
follows: 
 
 
Representation of solution 
 
Each individual consists of OPF control variables coded by real number. The pth 
individual in a population is represented by a trial vector in (4.53).  
 

[ , , , ]p Gi Gi Dj kS P V P Loc        (4.53) 

 
 
Initialization 
 
Each element of the trial vector is initialized randomly within its search space by 
using uniform random number in (4.54). 
 

min max min( )i i i ix x u x x           (4.54) 

 
Power flow solution 
 
During iterations, a full AC NR power flow analysis is used to check the 
feasibility of each individual solution. 
 
Cooling schedule 
 
The initial temperature of each subpopulation is determined in (4.55). The 
temperature is cooled down by the temperature annealing function or cooling 
schedule in (4.56).  
 

max min
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Perturbation 
 
Each element of the offspring individual is generated by using the uniform 
probability distribution function in (4.57). 
 

max min
, , , ( )k i k i r m i ix x T u x x            (4.57) 

 
 
Tabu list 
 
The tabu list utilized in the hybrid TS/SA approach is the same as that used in the 
TS algorithm. 
 
 
Aspiration criterion 
 
The aspiration criterion employed adopts a probabilistic acceptance criterion of 
SA as shown in (4.58). 
 

,
,

1

1 exp( / )k m
r m

p
T


 

       (4.58) 

 
 
Termination criterion 
 
There are two termination criteria in the hybrid TS/SA approach similar to those 
used in the EP approach. 
 
 
4.4.4 Improved evolutionary programming 
 
Based on IEP approach, an EP-based algorithm proposed for solving the optimally 
placed OPF with FACTS problem can be described as follows: 
 
 
Representation of solution 
 
Each individual consists of OPF control variables coded by real number. The pth 
individual in a population is represented by a trial vector in (4.59).  
 

[ , , , ]p Gi Gi Dj kS P V P Loc        (4.59) 
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Space division 
 
Space division strategy is used to divide the search space into subspaces. The 
division can be made in a certain way. For example, if there are two 
subpopulations, the fist control variable’s interval ranging from its minimum limit 
to its maximum limit can be divided equally into two subintervals while the 
interval of other control variables will be used throughout their feasible range. 
 
 
Initialization 
 
Each element of the trial vector is initialized randomly within its search space by 
using uniform random number in (4.60). 
 

min max min( )i i i ix x u x x           (4.60) 

 
 
Power flow solution 
 
During iterations, a full AC NR power flow analysis is used to check the 
feasibility of each individual solution. 
 
 
Fitness function 
 
The objective function in (4.1) is taken as the fitness function of the IEP 
algorithm. 
 
 
Cooling schedule 
 
The initial temperature of each subpopulation is determined in (4.61). The 
temperature is cooled down by the temperature annealing function in (4.62).  
 

max min
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F F
T
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
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( 1)
, 0,

r
r m mT T           (4.62) 

 
 
Mutation 
 
Two mutation operators including Gaussian and Cauchy are applied for each 
subpopulation. Each element of the offspring individual is determined in (4.63). 
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, , .k i k i k i mx x              (4.63) 

( 1) max min
, ( )r

k i i ia x x           (4.64) 

 
Selection 
 
The probabilistic acceptance criterion of the kth offspring individual can be 
expressed in (4.65). 
 

 )/exp(,1min ,, mrmk Tp         (4.65) 

 
Reassignment strategy 
 
The individuals of all subpopulations are merged and then the whole population 
will be randomly divided to form new subpopulations. 
 
Termination criteria 
 
The termination criterions utilized in the IEP algorithm are similar to those used in 
the HEA approach. 
 
 

Table 4.1  Parameter Setting of the Optimization Methods 

Test Systems Parameter Setting Value EP TS TS/SA IEP HEA 
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s P-pop size 30 30 30 30 30 
M-subpop - - - 2 2 

Nt 20 - - 20 20 
Tabu size - 20 20 - 20 

Kp 106 106 106 106 106

pr - - 0.01 0.01 0.01 
  - - 0.8 0.8 0.8 
a - - - 0.9 0.9 

Gmax 400 400 400 10 10 
Rmax - - - 40 40 
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P-pop size 40 40 40 40 40 
M-subpop - - - 2 2 

Nt 20 - - 20 20 
Tabu size - 20 20 - 20 

Kp 106 106 106 106 106

pr - - 0.01 0.01 0.01 
  - - 0.8 0.8 0.8 
a - - - 0.9 0.9 

Gmax 600 600 600 10 10 
Rmax - - - 60 60 
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4.5 Simulation Results of Optimal Placement of FACTS 
controllers 

 
The modified IEEE 30-bus, 24-bus, 118-bus, and the modified practical Thai 
power 160-bus systems are used to demonstrate the optimal placement of multi-
type FACTS controllers for ATC enhancement using the proposed HEA method. 
The HEA is implemented using MATLAB version 6.5 on an AMD Athlon64 X2 
3600+ computer with 1.0 GB memory. Parameter settings of the HEA are shown 
in Table 4.1. The reactance limit of TCSC is 0 XSi  60% of line reactance; phase 
shifting angle limit of TCPS is -π/4 αPi  π/4 radian; voltage limit of UPFC is 0 
VUi  0.1 p.u.; angle limit of UPFC is -π  αUi  π radian; and reactive power 
injection limit of SVC is -10QVi  10 MVAr. Loads are modeled as constant 
power factor loads. 
 
 
4.5.1 The modified IEEE 30-bus system 
 
The modified IEEE 30-bus system in Figure 4.7 is partitioned into three areas with 
two generators in each area. TRM and CBM are not included in the ATC 
determination. Three transactions including one bilateral transaction and two 
multilateral transactions are considered. A multilateral transaction from area 1 to 2 
is presented in section A. In addition, a bilateral transaction from bus 2 to 21 and a 
multilateral transaction from area 1 to 3 are presented in section B. 
 
 
A. Optimal placement of FACTS controllers using loss sensitivity index, EP, 

and HEA  
 
In this section, four methods are used to solve the optimally placed OPF with 
FACTS problem to simultaneously maximize ATC and minimize power loss as 
shown in Table 4.2. For method I and II, the loss sensitivity index proposed in 
(Preedavichit and Srivastava, 1998; Verma et al., 2001) is used to determine the 
suitable locations of multi-type FACTS controllers. EP and HEA methods are 
used to determine parameter settings of FACTS controllers and the objective 
function defined in (4.1). For method III and IV, the EP and HEA are used to 
simultaneously determine the locations, types, and parameters of FACTS 
controllers and the objective function.  
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Figure 4.7  Diagram of the modified IEEE 30-bus system. 

 
 

Table 4.2  Optimization Methods for the Modified IEEE 30-bus System 

Method 
FACTS controllers 

Objective Function 
Location Type & Parameters 

I Loss Index EP EP 
II Loss Index HEA HEA 
III EP EP EP 
IV HEA HEA HEA 

 
Table 4.3  Base Case TTC Values Without FACTS controllers of the Transaction            

From Area 1 to 2 on the Modified IEEE 30-bus System 

Method TTC (MW) Loss (MW) Limit condition 
CPF 60.71 3.18 Line 22-21 
EP 102.65 6.00 Line 27-25 

HEA 114.86 7.25 Line 27-25 

 
Table 4.4  TTC Values With Optimally Placed FACTS controllers of the 

Transaction From Area 1 to 2 on the Modified IEEE 30-bus System 

Method 
TTC Loss Limit FACTS Location 

(MW) (MW) Condition TCSC TCPS UPFC SVC 
I 162.63 11.67 Line 27-25 Line 2-6 Line 12-15 Line 22-24 Bus 18
II 189.15 12.41 Line 27-25 Line 2-6 Line 12-15 Line 22-24 Bus 18
III 174.31 10.71 Line 27-25 Line 15-23 Line 12-15 Line 27-30 Bus 20
IV 197.52 11.96 Line 27-25 Line 10-20 Line 12-15 Line 4-12 Bus 17

 Area 1

Area 3

Area 2
Gen 1 Gen 2

Gen 3

Gen 4
Gen 5

Gen 6

1 2

3 4

56 78

28
14

15

12

119 16

26

25 22

27 29 30

21 24

10 23

20

17

13

19

18
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Base case TTC without FACTS controllers are calculated using CPF 
method. Power System Analysis Toolbox (PSAT) (Milano, 2005) is used to 
perform the CPF analysis. For the transaction from area 1 to 2, using CPF method, 
TTC value without FACTS controllers is 60.71 MW as shown in Table 4.3. The 
expected limiting condition is line flow limit at line 22-21, if further transfers take 
place. Using EP method, TTC is 102.65 MW and the limiting condition is the line 
flow limit at line 27-25. Using HEA method, TTC is 114.86 MW, which is 
89.19% and 11.89% more than those from the CPF and EP methods, respectively. 
The limiting component is line 27-25, similar to the binding condition of the EP 
method. 

For method IV, HEA has optimally placed each type of FACTS controllers 
to simultaneously maximize TTC and minimize loss. The TTC is 197.52 MW 
without violating system limits, which is increased by 71.97% compared to that 
without FACTS controllers. In addition, the TTC value is 21.45%, 4.43%, and 
13.32% higher than those from method I, II, and III, respectively. For either 
method II and IV, optimally placed OPF with FACTS controllers by HEA could 
also significantly enhance TTC values far more than those from EP approach in 
method I and II.  

Test results in Table 4.4 indicate that the loss sensitivity index is mainly 
used to determine the locations of FACTS controllers to minimize the total system 
real power losses. This method is easy to calculate and computationally fast. 
However, it may not lead to the optimal solution because of the dependency to 
system topology and loading conditions. The placement of FACTS controllers 
using the loss sensitivity index (method I and II) gives conservative TTC values 
and a higher power losses than those from EP and HEA (method III and IV) 
because sensitivity approach does not result in the optimal locations of FACTS 
controllers, leading to a loss of business opportunities. 

 
 
B. Optimal placement of FACTS controllers using EP, TS, TS/SA, IEP and 

HEA methods  
 
In this case study, two transactions including a bilateral transaction from bus 2 to 
21 and a multilateral transaction from area 1 to 3 are considered. Test results from 
HEA are compared to those from EP, TS, hybrid TS/SA, and IEP methods.  

For bilateral transaction with optimally placed FACTS controllers using 
HEA method, TTC value is 43.65 MW without violating system constraints, 
which is increased by 89.62% compared to that without FACTS controllers shown 
in Table 4.5. In addition, the TTC value is 41.45%, 51.04%, 40.72%, and 10.39% 
more than those from EP, TS, TS/SA, and IEP methods, respectively. 

For multilateral transaction with optimally placed FACTS controllers 
using HEA method, TTC value is 111.92 MW, which is increased by 40.59% 
compared to that without FACTS controllers. In addition, the TTC value is 
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23.65%, 10.66%, 7.66%, and 7.51% more than those from EP, TS, TS/SA, and 
IEP, respectively. The optimal placements of FACTS controllers are shown in 
Table 4.6. 

Comparisons of TTC results and average CPU times from 20 runs are 
shown in Table 4.7. The reported CPU time is the total computation time of HEA 
approach from starting to ending including the NR power flow of all individuals. 
The HEA can obtain better results on the best, average, and the worst TTC values 
than those from the other methods because HEA uses the selection mechanism 
with a probabilistic updating strategy based on SA and tabu list to avoid 
dependency on fitness function and to escape from the entrapment in local optimal 
solutions. To compare the convergence characteristic, IEP and HEA utilize a 
probabilistic updating strategy based on annealing schedule of SA, resulting in 
more generations required and slower convergence characteristic than EP, TS, and 
TS/SA methods as shown in Figure 4.8. 

 

Figure 4.8  Convergence characteristic of solutions.
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Table 4.5  TTC Values With Bilateral and Multilateral Transactions on the Modified IEEE 30-bus System 

Method 
Bilateral Transaction Multilateral Transaction 

Without FACTS With FACTS Without FACTS With FACTS 
TTC (MW) Loss (MW) TTC (MW) Loss (MW) TTC (MW) Loss (MW) TTC (MW) Loss (MW) 

EP 23.02 2.63 30.86 2.67 79.48 4.03 90.51 4.98 
TS 23.02 2.63 28.90 2.78 78.84 4.23 101.14 5.71 

TS/SA 23.02 2.63 31.02 2.89 79.44 3.97 103.96 5.79 
IEP 23.02 2.63 39.54 1.89 79.45 3.99 104.10 4.17 

HEA 23.02 2.63 43.65 2.15 79.61 3.98 111.92 5.85 
 
 

Table 4.6  Optimal Placement of Multi-Type FACTS controllers of Multilateral Transaction on the Modified IEEE 30-bus System 

Method 
TCSC TCPS UPFC SVC 

nCF1 location1 XS (pu) nCF2 location2 P (rad) nCF3 location3 U (rad), VU (pu) nCF4 location4 QV (MVAr) 
EP 1 Line 24-25 0.017 1 Line 1-2 0.058 1 Line 2-6 2.579, 0.068 1 Bus 21 8.174 
TS 1 Line 15-23 0.023 1 Line 2-4 0.010 1 Line 10-21 0.724, 0.038 1 Bus 25 0.474 

TS/SA 1 Line 8-28 0.051 1 Line 1-2 0.019 1 Line 2-4 2.014, 0.051 1 Bus 28 1.968 
IEP 0 - - 1 Line 6-9 0.092 1 Line 9-10 1.458, 0.041 1 Bus 25 0.287 

HEA 0 - - 1 Line 6-8 0.013 1 Line 6-7 1.737, 0.059 1 Bus 24 6.353 
 
 

Table 4.7  TTC Results and CPU Times on the Modified IEEE 30-bus System 

Method 
Bilateral Transaction with FACTS Multilateral Transaction with FACTS 

TTC Standard CPU Time TTC Standard CPU Time 
Best Average Worst Deviation (min) Best Average Worst Deviation (min) 

EP 30.86 27.14 22.91 3.08 1.13 90.51 84.33 75.41 4.87 2.00 
TS 29.34 27.15 22.93 2.81 1.17 101.14 86.25 76.96 8.99 1.85 

TS/SA 31.02 26.87 22.95 2.57 0.91 103.96 97.33 81.04 7.55 1.55 
IEP 39.54 32.23 26.12 5.40 1.52 104.10 93.32 73.72 9.76 2.88 

HEA 43.65 34.05 26.50 5.38 1.51 111.92 102.56 88.78 5.58 2.72 
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C. Optimal placement of FACTS controllers with three different objective 
functions 

 
In this case study, two transactions including a bilateral transaction from bus 1 to 
21 and a multilateral transaction from area 1 to 2 with three different objective 
functions: i) maximize TTC, ii) minimize power loss, and iii) simultaneously 
maximize TTC and minimize loss, are considered. 

For bilateral transaction from bus 1 to 21 without FACTS controllers in 
Table 4.8, base case load at bus 21 is 17.50 MW. To maximize TTC using HEA 
method, TTC value is 40.447 MW without violating system constraints, which is 
1.29%, 0.84%, 0.31%, and 0.58% more than those from EP, TS, TS/SA, and IEP 
methods, respectively. To minimize system power loss without curtailing the 
existing generations and loads, only generator bus voltages are optimized using 
HEA, TTC value and power loss are 17.50 MW and 2.045 MW, which are similar 
to those of the other methods. To simultaneously maximize TTC and minimize 
loss using HEA, TTC is 40.449 MW, which is 0.85%, 0.55%, 0.38%, and 0.58% 
more than those from EP, TS, TS/SA, and IEP, respectively. 

HEA has optimally placed each type of FACTS controllers to 
simultaneously maximize TTC and minimize loss. The TTC is 154.061 MW 
without violating system limits, which is increased by 280.88% compared to that 
without FACTS controllers. In addition, the TTC value is 22.25%, 21.54%, 
20.91%, and 15.04% higher than those from EP, TS, TS/SA, and IEP methods, 
respectively. For either TTC maximization or loss minimization only, optimally 
placed OPF with FACTS controllers by HEA could also significantly enhance the 
TTC value and reduce system power loss far more than OPF without FACTS 
controllers.  

For multilateral transaction from area 1 to 2 without FACTS controllers in 
Table 4.9, base case load at area 2 is 56.20 MW. To simultaneously maximize 
TTC and minimize loss using HEA method, TTC value is 125.930 MW, which is 
0.21%, 0.12%, 0.10%, and 0.17% higher than those from EP, TS, TS/SA, and IEP 
methods, respectively. For either TTC maximization or loss minimization only, 
HEA approach can also effectively re-dispatch real power generations except 
slack bus in a source area, increment of real power loads in a sink area, and 
optimal setting of generation bus voltages. 

HEA has optimally placed each type of FACTS controllers with maximum 
allowable one component for each type of FACTS controllers to simultaneously 
maximize TTC and minimize loss. The TTC is 191.379 MW, which is increased 
by 51.97% compared to that without FACTS controllers. In addition, the TTC 
value is 40.68%, 20.60%, 18.40%, and 15.61% higher than those from EP, TS, 
TS/SA, and IEP methods, respectively. The optimal placements of multi-type 
FACTS controllers of the power transaction are shown in Table 4.10. 
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Table 4.8  Test Results With Bilateral Transaction on the Modified IEEE 30-bus System 

Method 

Without FACTS controllers With FACTS controllers 

Maximize TTC Minimize Loss 
Max.TTC & 

Min.Loss 
Maximize TTC Minimize Loss 

Max.TTC & 
Min.Loss 

TTC Loss TTC Loss TTC Loss TTC Loss TTC Loss TTC Loss 
EP 39.932 4.594 17.500 2.045 40.110 4.613 125.531 3.921 17.500 1.296 126.021 3.914 
TS 40.111 4.634 17.500 2.045 40.229 4.688 126.274 3.725 17.500 1.281 126.755 3.793 

TS/SA 40.322 4.785 17.500 2.045 40.297 4.686 127.113 3.880 17.500 1.258 127.415 3.715 
IEP 40.213 4.655 17.500 2.045 40.217 4.659 128.675 3.176 17.500 1.154 133.919 2.827 

HEA 40.447 4.734 17.500 2.045 40.449 4.732 147.322 4.152 17.500 1.096 154.061 3.607 
 
 

Table 4.9  Test Results with Multilateral Transaction on the Modified IEEE 30-bus System 

Method 

Without FACTS controllers With FACTS controllers 

Maximize TTC Minimize Loss 
Max.TTC & 

Min.Loss 
Maximize TTC Minimize Loss 

Max.TTC & 
Min.Loss 

TTC Loss TTC Loss TTC Loss TTC Loss TTC Loss TTC Loss 
EP 124.994 6.421 56.200 2.029 125.663 6.035 133.694 6.001 56.200 1.144 136.040 3.980 
TS 125.553 6.140 56.200 2.029 125.781 5.916 157.054 6.438 56.200 1.105 157.389 6.449 

TS/SA 125.808 6.287 56.200 2.029 125.806 5.793 158.482 6.465 56.200 1.101 161.642 6.971 
IEP 125.451 6.248 56.200 2.029 125.716 5.967 158.904 7.057 56.200 0.998 165.545 6.351 

HEA 125.629 6.043 56.200 2.029 125.930 5.738 185.095 7.426 56.200 0.968 191.379 7.474 
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Table 4.10  Optimal Placement of FACTS controllers of Multilateral Transaction on the Modified IEEE-30 bus System                       
(Simultaneously Maximize TTC and Minimize Loss) 

Method 
TCSC TCPS UPFC SVC 

Location Parameter Location Parameter Location Parameter Location Parameter 

EP Line 12-16 XS=0.0044 p.u. Line 2-6 P =0.0016 rad Line 6-8 
VU=0.0247 p.u. 
U=1.1091 rad 

Bus 16 QV=1.504 MAVr 

TS Line 14-15 XS=0.0017 p.u. Line 12-14 P =0.0236 rad Line 12-15 
VU=0.0489 p.u. 
U=0.9440 rad 

Bus 17 QV=2.360 MAVr 

TS/SA Line 12-15 XS=0.0173 p.u. Line 6-8 P =0.0585 rad Line 2-6 
VU=0.0391 p.u. 
U=0.8280 rad 

Bus 17 QV=4.011 MAVr 

IEP Line 27-30 XS=0.0274 p.u. Line 9-10 P =0.0198 rad Line 10-17 
VU=0.0568 p.u. 
U=0.4461 rad 

Bus 14 QV=3.118 MAVr 

HEA Line 12-15 XS=0.0118 p.u. Line 10-20 P =0.0463 rad Line 10-17 
VU=0.0677 p.u. 
U=0.6103 rad 

Bus 8 QV=7.786 MAVr 

 
 

Table 4.10  TTC Results and CPU Times of Multilateral Transaction on the Modified IEEE 30-bus System                                    
(Simultaneously Maximize TTC and Minimize Loss) 

Method 
Without FACTS controllers With FACTS controllers 

TTC (MW) Standard CPU Time TTC (MW) Standard CPU Time 
Best Average Worst Deviation (min.) Best Average Worst Deviation (min.) 

EP 125.663 124.205 121.891 1.48 0.71 136.040 129.790 121.937 5.46 3.11 
TS 125.781 125.339 124.796 0.31 0.62 157.389 142.263 125.554 12.68 2.58 

TS/SA 125.781 125.339 124.796 0.31 0.62 157.389 142.263 125.554 12.68 2.58 
IEP 125.716 125.349 124.840 0.32 0.77 165.545 142.758 130.716 10.55 4.26 

HEA 125.930 125.351 124.923 0.31 0.75 191.379 170.497 156.352 9.83 4.17 
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To compare the convergence characteristic, IEP and HEA approaches 
utilize a probabilistic updating strategy based on annealing schedule of SA, 
resulting in more generations required and slower convergence characteristic than 
EP, TS, and TS/SA methods. In addition, the convergence speed of HEA is 
improved by introducing a flexible memory of search history of TS to prevent 
cycling and to avoid entrapment in local optima compared to IEP algorithm. 

Comparisons of TTC results and CPU times evaluated by EP, TS, TS/SA, 
IEP, and HEA methods from 20 runs are shown in Table 4.11. The proposed HEA 
method can obtain better results on the best, average, and the worst TTC values 
than those from the other optimization methods because HEA approach uses the 
selection mechanism with a probabilistic updating strategy based on TS and SA 
algorithms to avoid dependency on fitness function and to escape from the 
entrapment in local optimal solutions. Furthermore, the variation of the HEA best 
solution is smaller as evidenced by a smaller standard deviation, leading to a more 
stable HEA algorithm. 
 
 
4.5.2 The modified IEEE 24-bus RTS 
 
The modified IEEE 24-bus RTS in Figure 4.9 is partitioned into three areas. A 
multilateral transaction from area 1 to 2 with contingency constraints is 
considered. Only the outage of the largest generator in each area and the outage of 
tie lines are included in the contingency list. For the transaction with optimally 
placed FACTS controllers using HEA method, normal case TTC value is 906.03 
MW, which is increased by 26.70% compared to that without FACTS controllers 
shown in Table 4.12.  

Considering the pre-specified contingency constraints, contingency TTC 
value using HEA is 814.69 MW without violating network constraints, which is 
increased by 30.10% compared to that without FACTS controllers. The critical 
contingency case is the interconnected line 19-20 outage between those two areas. 
In addition, the TTC value is decreased by 12.46% compared to that without 
contingency constraints. It is evident that neglecting the effects of contingency 
constraints on TTC evaluation will inevitably lead to insecure system operation. 

To meet the specific reliability criterion, which is LOLE<2.4 hour/year, 
area 1 needs to import 60 MW and 40 MW from area 2 and 3, respectively. CBM 
for the critical contingency case is 60 MW. Therefore, ATC value using HEA 
method is 754.69 MW, which is 20.87%, 22.78%, 13.48%, and 4.43% higher than 
those from EP, TS, TS/SA, and IEP, respectively. Test results indicate that HEA 
can effectively re-dispatch real power generations except slack bus in the source 
area, increase real power loads in the sink area, and optimally set of generation 
bus voltages. Table 4.13 shows the optimal placement of FACTS controllers of 
the contingency TTC values. 
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Test results indicate that single-population search of EP, TS, and TS/SA is 
less effective than multi-population search of IEP and HEA methods. Even though 
the HEA requires slightly higher computing time, for planning horizon, the quality 
of solutions is far more important. In addition, the elapsed time can be further 
reduced by dividing into multiple subsolutions using more than 2 CPUs. 

 
 

 

Figure 4.9  Diagram of the modified IEEE 24-bus RTS. 
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Table 4.12  ATC Values of Multilateral Transaction on the Modified IEEE 24-bus RTS 

Case 
TTC level (MW) without FACTS controllers TTC level (MW) with FACTS controllers 

EP TS TS/SA IEP HEA EP TS TS/SA IEP HEA 
Normal 706.44 708.39 708.82 711.90 715.33 794.18 788.84 803.24 905.24 906.03 

Largest gen. in area 1 outage 707.58 701.93 711.76 708.77 711.57 781.33 833.64 752.83 883.60 974.04 
Largest gen. in area 2 outage 710.76 710.86 714.91 711.98 714.31 739.02 715.19 748.41 826.32 835.38 

Line 21-22 outage 705.07 706.43 706.52 712.24 705.07 784.12 833.43 838.15 915.83 965.51 
Line 17-22 outage 712.05 705.18 708.83 713.34 713.53 809.09 791.53 803.96 914.19 916.15 
Line 19-20 outage 679.50 688.83 691.56 697.95 700.09 721.88 720.96 725.06 782.65 814.69 
Line 14-11 outage 623.99 622.76 624.19 624.12 626.18 684.39 674.66 765.89 859.61 913.47 

Contingency TTC Value (MW) 623.99 622.76 624.19 624.12 626.18 684.39 674.66 725.06 782.65 814.69 
ATC Value (MW) 563.99 562.76 564.19 564.12 566.18 624.39 614.66 665.06 722.65 754.69 

 
 

Table 4.13  Optimal Placement of FACTS controllers of Multilateral Transaction on the Modified IEEE 24-bus RTS 

Method 
TCSC TCPS UPFC SVC 

nCF1 location1 XS (pu) nCF2 location2 P (rad) nCF3 location3 U (rad), VU (pu) nCF4 location4 QV (MVAr) 
EP 1 Line 15-24 0.007 1 Line 14-16 0.075 1 Line 12-13 -0.619, 0.001 1 Bus 22 9.160 
TS 1 Line 10-12 0.021 1 Line 15-21 0.021 1 Line 15-24 0.377, 0.028 1 Bus 15 3.873 

TS/SA 1 Line 16-17 0.013 1 Line 8-10 0.025 1 Line 12-13 -1.339, 0.012 1 Bus 5 1.382 
IEP 1 Line 18-21 0.005 1 Line 6-10 0.006 1 Line 16-17 1.900, 0.046 1 Bus 1 6.332 

HEA 1 Line 7-8 0.021 1 Line 15-24 0.016 1 Line 15-16 0.610, 0.017 1 Bus 5 5.332 
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4.5.3 The modified IEEE 118-bus system 
 
The modified IEEE 118-bus system consists of 54 generator buses and 186 
branches. The system is partitioned into 9 areas as shown in Figure 4.10. The 
system data are modified as follows: Real power generation upper limit at bus 69 
is 1,000 MW. Reactive power generation upper limit at bus 34, 70, and 103 is 80 
MVAr. Reactive power generation lower limit at bus 19, 32, 34, 102, and 105 is -
22 MVAr. Thermal limit at line 65-66 is 300 MVA. A multilateral transaction 
from area 6 to 3 with contingency constraints is considered. Only the outage of the 
largest generators in each area and the outage of tie lines are included in the 
contingency list. Base case load at area 6 is 406.00 MW and system real power 
loss is 132.863 MW. 

Base case TTC without FACTS controllers using HEA method is 710.57 
MW. Considering the pre-specified contingency constraints as shown in Table 
4.14, contingency TTC value using HEA approach is 461.03 MW without 
violating network constraints, which is 4.89%, 5.25%, 0.91%, and 0.57% higher 
than those from EP, TS, TS/SA, and IEP, respectively. In addition, the TTC value 
is decreased by 35.12% compared to that without contingency constraints. The 
critical contingency case is the interconnected line 42-49 between those two areas 
outage. It is evident that neglecting the effects of contingency constraints on TTC 
evaluation will inevitably lead to insecure system operation. 

 
 

 

Figure 4.10  Control areas of the modified IEEE 118-bus system. 
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Table 4.14  TTC Level and Contingency TTC Values of Multilateral Transaction on the Modified IEEE 118-bus System 

Case 
TTC level (MW) without FACTS controllers TTC level (MW) with FACTS controllers 

EP TS TS/SA IEP HEA EP TS TS/SA IEP HEA 
Normal 701.61 703.68 706.17 707.27 710.57 706.81 718.21 721.27 720.01 725.17 

Largest gen. in area 6 outage 656.24 663.68 673.95 669.84 677.84 674.11 687.29 687.29 690.45 695.08 
Largest gen. in area 3 outage 694.29 694.98 703.40 706.12 708.50 708.67 705.20 712.88 723.36 733.64 

Line 38-65 outage 481.08 483.31 483.38 483.68 487.13 486.75 484.96 487.94 498.87 513.62 
Line 42-49 outage 439.55 438.05 456.87 458.40 461.03 481.07 475.87 497.45 493.48 520.76 
Line 44-45 outage 664.59 651.42 655.80 661.85 666.56 671.73 661.08 668.70 683.75 688.79 

Contingency TTC Value 439.55 438.05 456.87 458.40 461.03 481.07 475.87 487.94 493.48 513.62 
 

Table 4.15  Optimal Placement of Multi-Type FACTS controllers of Contingency TTC Value With FACTS controllers on the Modified IEEE 
118-bus System 

Method 
TCSC TCPS UPFC SVC 

Location Parameter Location Parameter Location Parameter Location Parameter 
EP Line 23-24 XS=0.0266 p.u. Line 34-43 P =0.0415 rad Line 37-39 VU=0.0340 p.u., U= 1.1032 rad Bus 18 QV=4.745 MAVr 
TS Line 8-30 XS=0.0485 p.u. Line 90-91 P =0.0240 rad Line 37-39 VU=0.0461 p.u., U= 1.3518 rad Bus 42 QV=4.276 MAVr 

TS/SA Line 19-20 XS=0.0102 p.u. Line 66-67 P =0.0302 rad Line 83-85 VU=0.0101 p.u., U= 1.2415 rad Bus 88 QV=2.931 MAVr 
IEP Line 51-52 XS=0.0495 p.u. Line 99-100 P =0.0385 rad Line 37-39 VU=0.0473 p.u., U= 1.4463 rad Bus 97 QV=2.307 MAVr 

HEA Line 30-38 XS=0.0535 p.u. Line 39-40 P =0.0607 rad Line 42-49 VU=0.0084 p.u., U= 1.4457 rad Bus 84 QV=2.819 MAVr 

 
Table 4.16  TTC Results and CPU Times of Multilateral Transaction Without Contingency Constraints on the Modified IEEE 118-bus System 

Method 
Without FACTS controllers With FACTS controllers 

TTC (MW) Standard CPU Time TTC (MW) Standard CPU Time 
Best Average Worst Deviation (min.) Best Average Worst Deviation (min.) 

EP 701.61 699.48 697.71 1.97 3.47 706.81 704.11 699.75 2.69 7.99 
TS 703.68 691.67 676.98 14.60 3.45 718.21 708.80 698.97 3.58 9.82 

TS/SA 706.17 697.64 688.95 7.71 2.74 721.27 713.66 709.13 10.15 8.25 
IEP 707.27 700.34 695.27 6.22 6.97 720.01 706.47 698.58 11.78 16.32 

HEA 710.57 706.03 700.76 3.92 6.83 725.17 716.61 710.50 7.64 12.63 
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HEA has optimally placed each type of FACTS controllers to 
simultaneously maximize TTC and minimize loss. Base case TTC with optimally 
placed FACTS controllers is 725.17 MW, which is increased by 2.05% compared 
to that without FACTS controllers. Considering contingency constraints, 
contingency TTC value using HEA is 513.62 MW, which is increased by 11.41% 
compared to that without FACTS controllers. The critical contingency case is the 
interconnected line 38-65 outage between those two areas. In addition, the TTC 
value is 6.77%, 7.93%, 5.26%, and 4.08% higher than those from EP, TS, TS/SA, 
and IEP, respectively. Table 4.15 shows the optimal placement of multi-type 
FACTS controllers of the contingency TTC values. 

Test results in Table 4.16 indicate that single-population search of EP, TS, 
and TS/SA is less effective than multi-population search of IEP and HEA 
methods. Even though the HEA approach requires slightly higher computing time, 
for planning horizon, the quality of solutions is far more important. In addition, 
the elapsed time can be further reduced by dividing into multiple subsolutions 
using more than 2 CPUs. 

 
 
4.5.4 The modified Thai power 160-bus system 
 
A modified practical Thai power 160-bus system shown in Figure 4.11 is the 
reduced network of the Thai power system considering only 500 kV, 230 kV and 
115 kV transmission systems. The lower voltage transmission systems are 
considered as lumped loads. The system consists of 42 generating plants, 82 load 
buses, and 185 branches. A multilateral transaction from area 6 to 7 without 
contingency constraints is considered. To meet the specific reliability criterion, 
which is LOLE < 2.4 hour/year, area 6 needs to import 30 MW from area 7. 
Therefore, CBM of the transaction is 30 MW.  

For the transaction without FACTS controllers, base case load at area 7 is 
56.20 MW. In Table 4.17, to simultaneously maximize ATC and minimize loss 
using HEA method, ATC value is 360.45 MW, which is 24.03%, 25.11%, 0.50%, 
and 0.34% higher than those from EP, TS, TS/SA, and IEP methods, respectively. 

The HEA approach has optimally placed multi-type FACTS controllers 
with maximum allowable one and two components for each type. Using HEA 
method, the ATC value with maximum allowable two components for each type 
of FACTS is 448.34 MW, which is increased by 24.38% compared to that without 
FACTS controllers. In addition, the ATC value is 14.29%, 14.05%, 5.90%, and 
5.69% higher than those from EP, TS, TS/SA, and IEP methods, respectively. The 
optimal placements of FACTS controllers are shown in Table 4.18. Test results in 
Table 4.19 indicate that HEA is far more effective to search for the best, average, 
and worst solutions compared to the others methods. 
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Figure 4.11.  Diagram of the modified Thai power 160-bus system. 
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Table 4.17  ATC Values of the Modified Thai Power 160-bus System 

Method ATC values (MW) without FACTS 
ATC values (MW) with maximum allowable nCFK=1 

for each type of FACTS 
ATC values (MW) with maximum allowable nCFK=2 

for each type of FACTS 
EP 273.85 348.98 384.25 
TS 269.93 324.29 385.33 

TS/SA 358.64 383.01 421.87 
IEP 359.21 400.86 422.83 

HEA 360.45 433.02 448.34 
 

Table 4.18  Optimal Placement of FACTS controllers With Maximum Allowable nCFK=2 for Each Type of FACTS of Multilateral Transaction      
on the Modified Thai Power 160-bus System 

Method 
TCSC TCPS UPFC SVC 

nCF1 location1 XS (pu) nCF2 location2 P (rad) nCF3 location3 U (rad) VU (pu) nCF4 location4 QV (MVAr) 

EP 1 Line 47-14 0.009 1 Line 150-82 0.059 0 - - - 2 
Bus 55 
Bus 64 

1.214 
2.562 

TS 1 Line 75-49 0.060 1 Line 55-29 0.004 2 
Line 81-87 
Line 71-82 

1.989 
1.995 

0.058 
0.064 

1 Bus 63 9.321 

TS/SA 1 Line 75-124 0.088 1 Line 86-134 0.052 1 Line 88-136 0.223 0.067 2 
Bus 100 
Bus 124 

4.394 
2.687 

IEP 1 Line 100-147 0.051 1 Line 82-90 0.098 0 - - - 2 
Bus 74 
Bus 94 

5.761 
1.126 

HEA 1 Line 159-40 0.005 2 
Line 52-85 
Line 67-68 

0.068 
0.003 

1 Line 79-148 1.156 0.100 1 Bus 96 3.309 

 

Table 4.19  ATC Results and CPU Times of Multilateral Transaction on the Modified Thai Power 160-bus System 

Method 
With maximum allowable nCFK=2 for each type of FACTS 

ATC (MW) Standard CPU Time 
Best Average Worst Deviation (min.) 

EP 384.255 371.609 357.711 14.28 15.09 
TS 385.332 382.274 368.666 12.36 14.29 

TS/SA 421.867 399.174 373.091 24.56 12.87 
IEP 422.829 400.625 373.864 26.11 28.76 

HEA 448.343 424.603 389.605 25.73 27.01 
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4.6 Conclusion 
 
In this chapter, the HEA approach could efficiently and effectively determine the 
optimal placement of multi-type FACTS controllers to simultaneously maximize 
ATC and minimize system power losses of power transactions in deregulated 
power systems, resulting in higher ATC values than those from EP, TS, hybrid 
TS/SA, and IEP algorithms. In addition, test results indicate that optimally placed 
OPF with multi-type FACTS controllers by the HEA approach could enhance the 
ATC values far more than OPF without FACTS controllers, under normal and 
contingency conditions. 
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Chapter 5 
 
 
 

Conclusion 
 
 
 
 
In this research, the proposed HEA approach is effectively implemented to 
determine ATC values of power transfers between different control areas 
constrained by load flow equations and system operating limits, resulting in higher 
ATC values than those from EP, TS, hybrid TS/SA, and IEP methods. It is 
indicated that the HEA can effectively re-dispatch real power generations except 
slack bus in a source area, increment of real power loads in a sink area and 
optimal setting of generation bus voltages, leading to an efficient utilization of the 
existing power systems. This is because the mechanisms of hybrid’s components 
prevent the cycling movement, can jump from local optima, and make good 
decision movement. Moreover, the algorithm can consider additional voltage and 
angle stability limits, resulting in a higher trading level of energy transactions in 
secured power systems. 

FACTS controllers are integrated in electrical power systems to provide 
direct control of power flow over designated transmission routes, and to increase 
the power transfer capability of transmission networks. However, the extent of 
these benefits depends upon where these devices are placed and how they are 
controlled in the systems. When multi-type FACTS controllers are considered in 
OPF-based ATC determination, the problem is extended to the optimal placement 
of multi-type FACTS problem, which is a MINLP problem with continuous and 
discrete variables. The combined objective function including ATC maximization 
and system real power loss minimization is considered in the new problem 
formulation. 
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The HEA approach could efficiently and effectively determine the optimal 
placement of multi-type FACTS controllers to simultaneously maximize ATC and 
minimize system power loss of power transactions in deregulated power systems, 
resulting in higher ATC values than those from EP, TS, hybrid TS/SA, and IEP 
algorithms. In addition, test results on the modified IEEE 24-bus, 30-bus, 118-bus, 
and Thai power 160-bus systems indicate that optimally placed OPF with multi-
type FACTS controllers by the HEA approach could enhance the ATC values far 
more than OPF without FACTS controllers, under normal and contingency 
conditions, leading to a higher trading level of energy transactions in a normal 
secured system. 
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Research Output 
 
 
 
 

ผลลพัธท่ี์ได้จากโครงการวิจยั 
 

ไดด้ําเนินการส่งบทความ เพื่อตพีมิพล์งในวารสารวชิาการนานาชาต ิInternational 
Journal of Energy Optimization and Engineering (IJEOE) ทีม่ขี ัน้ตอนการตรวจสอบ
ตน้ฉบบั (peer review) จากคณะกรรมการผูท้รงคุณวุฒ ิซึง่หลงัจากทีไ่ดแ้กไ้ขบทความตาม
ขอ้เสนอแนะของคณะกรรมการผูท้รงคุณวุฒแิลว้เสรจ็ มผีลการพจิารณา ไดร้บัการตอบรบั
เพื่อตีพิมพ์บทความลงในวารสารดงักล่าว โดยมีผู้วิจยัเป็นชื่อแรกในบทความ และได้
ประกาศเกยีรตคิุณของนักวจิยัทีป่รกึษา รวมถงึสาํนักงานกองทุนสนับสนุนการวจิยั (สกว.) 
และมหาวทิยาลยัเชยีงใหมไ่วใ้นบทความ ดงัแสดงใน Appendix  
 
Jirapong, P. (in press). FACTS devices allocation for power transfer capability 
enhancement and power system losses reduction. International Journal of Energy 
Optimization and Engineering. 
 
 
การนําผลงานวิจยัไปใช้ประโยชน์ 
 
 เพื่อเป็นการขยายผลการวิจัย และนําผลการศึกษาที่ได้ไปประยุกต์ใช้ให้เกิด
ประโยชน์มากยิง่ขึน้ ในระหว่างที่ดําเนินการวจิยั ผูว้จิยัไดม้กีารเชื่อมโยงกบันักวจิยัทัง้
ภายในและต่างประเทศโดยการแลกเปลี่ยนข้อมูลการวิจยั และการนําเสนอผลงานวิจยั 
รวมถงึมกีารขยายขอบเขตงานวจิยัเพื่อเชื่อมโยงกบั สํานักงานนโยบายและแผนพลงังาน 
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กระทรวงพลงังาน ในการพฒันานกัวจิยัรุน่ใหม ่ในระดบับณัฑติยศ์กึษา ทัง้ระดบัปรญิญาโท
และปรญิญาเอก โดยมผีลการศึกษาและงานวจิยัที่ได้นําเสนอต่อที่ประชุมวชิาการระดบั
นานาชาติ รวมถึงบทความตีพมิพ์เผยแพร่ในวารสารการประชุมวชิาการระดบันานาชาติ
จํานวนทัง้สิ้น 5 บทความ ตลอดช่วงเวลาที่ผู้ดําเนินการวิจยัได้รบัการสนับสุนจาก 
สํานักงานกองทุนสนับสนุนการวิจัย สํานักงานคณะกรรมการการอุดมศึกษา และ
มหาวทิยาลยัเชยีงใหม่ ดงัมรีายละเอยีดแสดงใน Appendix ซึง่ประกอบดว้ยผลงานตพีมิพ์
เผยแพร ่ดงัน้ี 
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นอกจากน้ียงัได้มกีารนําขอ้มูลจากการศึกษา และผลงานวจิยัไปใช้เป็นส่วนหน่ึง
ของการเรยีน-การสอน ในกระบวนวชิา EE252723 Computational Techniques in Power 
System Analysis และ EE252724 Electrical Energy Technology ในระดบับณัฑติยศ์กึษา 
ของ คณะวศิวกรรมศาสตร ์มหาวทิยาลยัเชยีงใหม ่อกีดว้ย 
 
 
การเช่ือมโยงทางวิชาการกบันักวิชาการอ่ืน ๆ ทัง้ในและต่างประเทศ 
 
ในระหว่างทีด่ําเนินการศกึษาวจิยั ไดม้กีารเชื่อมโยงทางวชิาการกบันักวชิาการท่านอื่น ๆ 
ดงัน้ี 
- การตดิต่อเพื่อขอรบัและแลกเปลี่ยนขอ้มูลระบบไฟฟ้ากําลงั กบัหน่วยงานของการ
ไฟฟ้าทีเ่กีย่วขอ้ง และนกัวชิาการทา่นอื่น ๆ 
- เขา้รว่มงานประชุมทางวชิาการเรื่อง Thailand Smart Grid Smart Utility 2010 ซึง่
จดัขึน้ทีโ่รงแรม รามา การเ์ดน้, กรุงเทพ ในระหว่างวนัที ่24 – 25 พฤศจกิายน 2553 เพื่อ
พบปะและแลกเปลีย่นความรูก้บันกัวชิาการทา่นอื่น ๆ  
- เขา้ร่วมงานสมันา การผลกัดนัผลงานวจิยัสู่การนําไปใชป้ระโยชน์ ซึง่จดัขึน้ที ่หอ้ง 
อาวุธ ศรศุีกร ีมหาวทิยาลยัเชยีงใหม ่ในวนัที ่18 พฤษภาคม 2554  
- เขา้ร่วมการประชุมวชิาการระดบันานาชาติ เพื่อนําเสนอผลงานและแลกเปลี่ยน
ความรูก้บันกัวชิาการทา่นอื่น ๆ จากทัง้ในและต่างประเทศ ในชว่งปี พ.ศ. 2553 - 2555 
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ABSTRACT 
In this paper, a hybrid evolutionary algorithm (HEA) is proposed to determine the optimal 
placement of multi-type flexible AC transmission system (FACTS) devices to simultaneously 
maximize the total transfer capability (TTC) and minimize the system real power loss of 
power transfers in deregulated power systems. Multi-objective optimal power flow (OPF) 
with FACTS devices including TTC, power losses, and penalty functions is used to evaluate 
the feasible maximum TTC value and minimum power loss within real and reactive power 
generation limits, thermal limits, voltage limits, stability limits, and FACTS devices 
operation limits. Test results on the modified IEEE 30-bus system indicate that optimally 
placed OPF with FACTS by the HEA approach could enhance TTC far more than those from 
evolutionary programming (EP), tabu search (TS), hybrid tabu search and simulated 
annealing (TS/SA), and improved evolutionary programming (IEP) algorithms, leading to 
much efficient utilization of the existing transmission systems. 
 
Keywords: total transfer capability; flexible AC transmission system; hybrid evolutionary 
algorithm; optimal power flow; evolutionary optimization 
 
 
INTRODUCTION 
 
In competitive electric power markets, electric utilities have to operate closer to their limits, 
causing unpredictable line loading, voltage variations, and stability problems. Flexible AC 
transmission system (FACTS) devices are used to provide direct control of power flows over 
designated transmission routes and increase power transfer capability of the transmission 
networks, resulting in a lower system loss, stability enhancement, operating cost reduction, 
and fulfilled contractual requirements (Hingorani & Gyugyi, 1999). The extent of these 
benefits depends upon where these devices are placed and how they are controlled in the 
systems, which in turn requires efficient methodologies to solve the optimal FACTS 
placement problems. This is an important aspect in the context of growing energy demand 
and the emergence of energy trading markets. 

Available transfer capability is a measure of the transfer capability remaining in a 
physical transmission network for further commercial activity over and above already 
committed uses (Maliszewski, Rozier & Cummings, 1996). Electrical power transfer 
capability calculation is required for each control area and posted on a public communication 
system for open-access of a transmission network to deliver electric energy (Withnell, Leahy 
& Coleman, 1996). Mathematically, available transfer capability is defined as the total 
transfer capability (TTC) less the transmission reliability margin, less the sum of existing 
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transmission commitments and the capacity benefit margin. TTC is defined as the amount of 
electric power that can be transferred over the transmission network in a reliable manner 
while meeting all of a specific set of defined pre- and post-contingency system conditions 
(Maliszewski, Rozier & Cummings, 1996). Transmission reliability margin and capacity 
benefit margin are two transmission margins considering the inherent reliability and 
uncertainty in the transmission system. 

Accurate determination of TTC is essential to maximize utilization of the existing 
transmission network while maintaining system security. Underestimated TTC may lead to 
under-utilization of transmission system, while overestimated TTC could lower system 
reliability. Wide varieties of mathematical methods such as: 1) linear method based on linear 
incremental DC load flow approximation considering only thermal limits (Ejebe, Waight, 
Nieto & Tinney, 2000), 2) continuation power flow based on the continuation method to trace 
load flow solution curve through the maximum loading point (Ejebe et al., 1998), 3) 
repetitive power flow based on repeated load flow calculations to establish the maximum 
transfer capability (Gravener & Nwankpa, 1999), and 4) a bifurcation approach for assessing 
dynamic TTC considering transient stability limits (Kumar, Srivastava & Singh, 2004) have 
been developed for TTC computations. In addition, optimal power flow (OPF) based 
methods, which can be implemented by traditional optimization techniques have been 
proposed to calculate TTC with various degrees of success (Ou & Singh, 2002; Shaaban, Li, 
Yan, Ni & Wu, 2003).  

These methods require convexity of objective function to obtain the optimal solution. 
However, the OPF problem is generally nonlinear and nonconvex optimization problem and, 
as a result, many local solutions may exist especially in power systems with embedded 
FACTS devices (Wong, Yuryevich & Li, 2003). FACTS parameters are additional control 
variables that cannot be effectively solved by conventional optimization methods because 
these parameters will change the admittance matrix. Therefore, conventional techniques may 
converge to local optimal solutions or diverge altogether (Lai, 1998). 

In recent years, power transfer capability enhancement (Ou & Singh, 2001; Xiao, 
Song, Liu & Sun, 2003) and power losses reduction (Chung & Shaoyun, 1998) using multi-
type FACTS devices are significant because of competition enhancement and efficient 
existing transmission system utilization. Sensitivity index approaches have been commonly 
used to determine suitable locations of FACTS devices for maximizing TTC (Verma, Singh 
& Gupta, 2001) or minimizing power losses (Preedavichit & Srivastava, 1998). However, 
these methods may not lead to the optimal solution because of dependency to system 
topology and loading conditions. 

With the advent of evolutionary computation, genetic algorithm combined with 
continuation power flow method is used to determine the optimal placement of thyristor-
controlled series capacitor (TCSC) for maximizing TTC (Feng & Shrestha, 2001). Genetic 
algorithm is used to search for the optimal location and parameter of TCSC while 
continuation power flow is used to evaluate the TTC value with the optimally placed TCSC 
subject to thermal and voltage limits. For the optimal placement of multi-type FACTS 
devices, floating point genetic algorithm is used to simultaneously search for locations, types, 
and parameters of TCSC, static var compensator (SVC), thyristor-controlled phase shifter 
(TCPS), and thyristor-controlled voltage regulator (Gerbex, Cherkaoui & Germond, 2001). 
The optimization strategy based on repetitive power flow method is performed to determine 
the maximum system loadability subject to thermal and voltage limits. However, using 
continuation and repetitive power flow methods may lead to a conservative TTC value 
because these methods do not result in the optimal generation, loading, and generator bus 
voltages. Furthermore, optimally placed OPF with FACTS problem is generally a 
combinatorial optimization problem (Cai, Erlich & Stamtsis, 2004), which may not be 
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effectively solved by either conventional methods or a single evolutionary computation 
technique. 

In this paper, a new hybrid evolutionary algorithm (HEA) is proposed to determine 
the optimal placement of multi-type FACTS devices to simultaneously maximize TTC and 
minimize power losses of power transactions between different control areas without 
violating system constraints. The proposed algorithm is tested on the modified IEEE 30-bus 
system. Test results are compared with those from evolutionary programming (Wong, 
Yuryevich & Li, 2003), tabu search (Abido, 2002), hybrid tabu search and simulated 
annealing (Ongsakul & Bhasaputra, 2002), and improved EP (Jirapong & Ongsakul, 2009) 
algorithms. 
 
 
PROBLEM FORMULATION 
 
Multi-objective OPF with FACTS devices including TTC, system real power losses, and 
penalty functions in (1) is used to evaluate the feasible TTC value that can be transferred 
from a specific set of generators in a source area to loads in a sink area within real and 
reactive power generation limits, thermal limits, voltage limits, steady-state stability limits, 
and FACTS devices operation limits. Real and reactive power balance equations with the 
expression of FACTS devices parameters are shown in (2) and (3), respectively. Four types 
of FACTS devices are included: SVC, TCSC, TCPS, and unified power flow controller 
(UPFC). TCSC is modeled by the adjustable series reactance. TCPS and UPFC are modeled 
using the injected power model (Ongsakul & Bhasaputra, 2002). SVC is modeled as shunt-
connected static var generator or absorber. 
 

Maximize  
_

1 1
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ND SNK N
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Where 



 133

F  multi-objective function, 
PF  penalty function, 
 
Input Variables 

min max,Gi GiP P  lower and upper limits of real power generation at bus i (kW), 
min max,Gi GiQ Q  lower and upper limits of reactive power generation at bus i (kVAr), 
min max,i iV V  lower and upper limits of voltage magnitude at bus i (pu), 
max
LiS   ith line or transformer loading limit (kVA), 
crit
ij   critical angle difference between bus i and j (degree), 

min max,Si SiX X  lower and upper limits of TCSC at line i (pu), 
min max,Pi Pi   lower and upper limits of TCPS at line i (rad), 
min max,Ui UiV V  lower and upper voltage limits of UPFC at line i (pu), 
min max,Ui Ui   lower and upper angle limits of UPFC at line i (rad), 
min max,Vi ViQ Q  lower and upper limits of SVC at bus i (kVAr), 

N, NL  number of buses and branches, 
NG  number of generator buses, 
ND_SNK number of load buses in a sink area, 
 
State Variables 
Vi , Vj  voltage magnitudes at bus i and j (pu), 
δi , δj  voltage angles of bus i and j (degree), 
PG1 , QG1 real and reactive power generations at slack bus (kW), 
 
Output Variables 
PGi , QGi real and reactive power generations at bus i (kW), 
PDi , QDi real and reactive loads at bus i (kW), 
PPi(αPk) injected real power of TCPS at bus i (kW), 
QPi(αPk) injected reactive power of TCPS at bus i (kVAr), 
PUi(VUk , αUk) injected real power of UPFC at bus i (kW), 
QUi(VUk , αUk) injected reactive power of UPFC at bus (kVAr), 
Yij(XS)  magnitude of ijth element in bus admittance matrix with TCSC included (pu), 
θij(XS)  angle of the ijth element in bus admittance matrix with TCSC included (rad), 
m(i)  number of injected power from TCPS at bus i, 
n(i)  number of injected power from UPFC at bus i, 
|SLi|  ith line or transformer loading (kVA), 
VCPIi  voltage collapse proximity indicator at bus i, 
|δij|  angle difference between bus i and j (degree), 
XSi  reactance of TCSC at line i (pu), 
αPi  phase shift angle of TCPS at line i (rad), 
VUi , αUi voltage magnitude (pu) and angle (rad) of UPFC at line i, and 
QVi  injected reactive power of SVC at bus i (kVAr). 
 
 

Voltage collapse proximity indicator is used to directly determine voltage collapse 
conditions within voltage stability limits. A procedure for calculating the indicator can be 
found in (Han, Zheng, Tian & Hou, 2009). Angle stability constraints considered can be 
either static or dynamic (Canizares, 2000; Yuan, Kubokawa, Nagata & Sasaki, 2003). This 



 134

paper considers only static angle stability constraint. Critical angle displacement is used as a 
criterion to determine angle stability limit. For a reasonable level of typical heavy line 
loading situations, it is assumed that the angle difference between bus i and j across a 
transmission line is kept within a critical angle difference which is 44o as recommended in 
(He, Kolluri, Mandal Galvan, 2004). Voltage and angle stability limits are treated as OPF 
variables in (8) and (9), respectively. During the optimization, inequality constraints are 
enforced using a penalty function in (15). 
 

   1 ,
1 1 1 1
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                (16) 

 
Where 
kp penalty coefficient for real power generation at slack bus, 
kq penalty coefficient for reactive power generation of all PV buses and slack 

bus, 
kv penalty coefficient for bus voltage magnitude, 
ks penalty coefficient for line loading, 
kd penalty coefficient for angle difference, and 
xmin, xmax lower and upper limits of variable x. 
 
 
Two types of transactions (Kumar, Srivastava & Singh, 2004) are considered: 

Bilateral transaction: A bilateral transaction is made directly between a seller and a 
buyer. The seller injects a certain amount of power at one generator bus and the buyer 
receives this power at the other load bus. Mathematically, each bilateral transaction satisfies 
the power balance relationship in (17). 

 

0Gi DjP P                      (17) 

 
Multilateral Transaction: A multilateral transaction trading among several parties is 

arranged by a scheduling coordinator. Mathematically, a multilateral transaction involving 
several sellers and buyers can be expressed in (18). 
 

0Gi Dj
i S j B

P P
 

                      (18) 

 
Where 
PGi real power generation at bus i in a source area (kW), 
PDj real power load at bus j in a sink area (kW), 
S set of sellers who sell the power to buyers,  
B set of buyers who buy the power from sellers. 
 

Considering base case configuration, let TTC0 be the maximum amount of power 
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transfer without contingency constraints. Similarly, let TTCk be the maximum amount of 
power transfer under the contingency k. Therefore, a feasible contingency TTC value is given 
in (19). The limiting condition on some portions of the systems can shift among thermal, 
voltage, and voltage and angle stability limits as the network operating conditions change 
over time, which is illustrated in Figure 1. TTC must be evaluated from the most restrictive of 
these limitations. 
 
TTC = Min{TTC0 , TTC1 , …, TTCk}                 (19) 
 
 

 
Figure 1.  Limits to TTC 

 
 
COMPUTATIONAL INTELLIGENCE 
 
Computational intelligence is a set of nature-inspired computational methodologies and 
approaches to address complex problems to which traditional methodologies are ineffective 
or infeasible. The main advantage of using intelligence search lies in the gain of flexibility 
and adaptability to the task at hand, in combination with robust performance and global 
search characteristics. The majority of current implementations of computational intelligence 
algorithms descend from three strongly related but independently developed approaches: 
evolutionary programming, tabu search, and simulated annealing. 
 
Evolutionary Programming 
Evolutionary programming (EP) is originally developed as a stochastic optimization method 
in the area of evolutionary computation, which uses the mechanics of evolution to produce 
optimal solutions to a given problem. The EP algorithm starts with random generation of 
initial individuals in a population and then the mutation and selection are preceded until the 
best individual, which has the highest fitness, is found (Ongsakul and Jirapong, 2004). 
Tabu Search 
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Tabu search (TS) is a higher level heuristic algorithm called metaheuristic for solving 
combinatorial optimization problems (Abido, 2002). It is an iterative improvement procedure 
that startsfrom any initial solution and attempts to determine a better solutionOpposite to 
randomizing approaches such as simulated annealing where randomness is widely used, TS is 
characterized by its ability to avoid the entrapment in local optimal solution and prevent 
cycling by using flexible memory of search history (Kamboj and Sengupta, 2009). TS uses a 
local or neighborhood search procedure to iteratively move from one potential solution to an 
improved solution, until some stopping criterion has been satisfied 
 
Simulated Annealing 
Simulated annealing (SA) is a generic probabilistic metaheuristic based on the annealing 
process in the statistical mechanics for solving optimization problems. The SA strategy starts 
with a high temperature giving a high probability to accept non-improving movements. The 
temperature and probability levels diminish as long as the algorithm advances to the optimal 
solution. Therefore, SA has the ability to escape from local minima by accepting non-
improving energy solutions during the first and medium stages of the algorithm (Sepulveda 
and Lazo, 2003). The main drawback of SA procedure is that the annealing procedure is very 
time consuming. 
 
 
Several computational intelligence techniques have evolved in the last decades that facilitate 
solving many optimization problems that are previously difficult or impossible to solve. 
Recently, new evolutionary computation and heuristic techniques have been combined 
among themselves and with other traditional approaches to solve complicated optimization 
problems. Principles of some hybrid algorithms are summarized in the following section. 
 
Hybrid Tabu Search and Simulated Annealing 
A hybrid tabu search and simulated annealing (TS/SA) approach is a hybrid algorithm of TS 
and SA by using TS as the main algorithm (Bhasaputra and Ongsakul, 2006). The 
perturbation of the TS/SA imitates from SA algorithm and the aspiration criterion is adapted 
by using probabilistic acceptance criterion of SA instead of aspiration level of TS. The 
cooling schedule of SA is also applied in the perturbation. 
 
Improved Evolutionary Programming 
An improved evolutionary programming (IEP) is a hybrid algorithm of EP and SA by using 
EP as the main algorithm (Jirapong and Ongsakul, 2009). IEP balances the explosion by 
dividing the population into subpopulations. Multiple mutation operators are employed to 
enhance the search diversity. The selection mechanism with probabilistic updating strategy 
based on annealing schedule of SA is utilized to avoid being trapped in local optimum. 
Reassignment strategy for individuals is designed for every subpopulation to fuse information 
and enhance population diversity. 
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HYBRID EVOLUTIONARY ALGORITHM 
 
To improve the robustness of conventional evolutionary computation and metaheuristic 
techniques (Back, Hammel & Schwefel, 1997; Bansal, Bhatti & Kothari, 2003), a new hybrid 
evolutionary algorithm (HEA) approach integrating EP, TS, and SA algorithms is proposed. 
The HEA has special features and merits described as follows: 
 
1) Multiple population search with various mutation operators is designed to enhance 

search diversity and improve population update, providing higher quality of solutions 
than those from single population search. 

2) Reassignment strategy is carried out to fuse and exchange the search information of 
all subpopulations so that premature convergence caused by consistency of 
individuals in a single population will be alleviated. 

3) Selection with a probabilistic updating strategy based on TS and annealing schedule 
of SA is applied to avoid dependency on fitness function and to avoid being trapped 
in local optimal solutions. 

4) The algorithm can easily facilitate parallel implementation on parallel computers to 
reduce the elapsed time without sacrificing the quality of solution. 

 
The HEA is used to simultaneously search for real power generations in a source area 

excluding slack bus, generation bus voltages, real power loads in a sink area, and optimal 
placement of multi-type FACTS devices for determining the feasible TTC value. A flowchart 
of the HEA approach is shown in Figure 2, which can be explained as follows:  
 
Representation of Solution 
Each individual consists of OPF control variables coded by real number. The whole 
population P is divided into M subpopulations according to the number of mutation operators 
used. The pth individual in a population is represented by a trial vector in (20). There are four 
types of FACTS devices with allowable maximum nCFk component for each type, which is 
assigned as input data. The placement configuration is represented by three parameters: nCFk, 
locationk, and parameterk given in (21). For FACTS type k {1,2,3,4} representing 
placement configuration of TCSC, TCPS, UPFC and SVC, respectively, the number of 
FACTS component type k, nCFk={0,1,...,n}. More specifically, there is either no FACTS type 
k if nCFk=0 or a number of FACTS type k if nCFk  0. Therefore, number of FACTS 
components, locations, and parameters of each type of FACTS devices are simultaneously 
searched by the HEA. Note the searched locations and parameters of FACTS type k is valid 
only when nCFk  0. 
 

[ , , , ]p Gi Gi Dj kS P V P Loc                   (20) 

[ , , ]k CFk k kLoc n location parameter                  (21) 

 
Where 
Sp  trial solution vector of the pth individual, 
VGi  voltage magnitude of generator at bus i including slack bus, 
Lock  allocation vector of FACTS device type k, 
nCFk  number of FACTS components, nCFk ={0,1,...,n}, 
locationk line or bus location of FACTS type k, and 
parameterk parameter settings of FACTS type k. 
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Figure 2.  A flowchart of the HEA approach 
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Initialization 
Each element of the trial vector is initialized randomly within its search space using uniform 
random number in (22). 
 

min max min( )i i i ix x u x x                      (22) 
 
Where  
xi   ith element of the individual in a population, 

min max,i ix x  lower and upper limits of the ith element of the individual, and 
u   uniform random number in the interval [0,1]. 
 
Power Flow Solution 
During iterations, a full AC Newton-Raphson power flow analysis is used to check the 
feasibility of each individual solution. 
 
Fitness Function 
The extended objective function in (1) is taken as the fitness function of the HEA approach. 
 
Cooling Schedule Procedure 
The initial temperature of each subpopulation is determined in (23). The temperature is 
cooled down by the temperature annealing function in (24). 
 

max min
0, ( ) / lnm m m rT F F p                     (23) 

( 1)
, 0,

r
r m mT T                      (24) 

 
Where 
T0,m   initial temperature of the mth subpopulation, 

min max,m mF F  objective value of the worst and the best individuals in the mth subpopulation, 
pr   probability of accepting the worst individual with respect to the best 

individual, 
Tr,m   annealing temperature of the mth subpopulation after the rth reassignment, 
λ   rate of cooling, and 
r   iteration counter of reassignment strategy. 
 
Mutation 
In different subpopulations, different mutation operators are used to create new offspring 
subpopulation so that many hybrid operators are applied to enhance the search diversity. Two 
mutation operators including Gaussian and Cauchy are applied. Each element of the offspring 
is calculated in (25). 
 

, , .k i k i k i mx x                         (25) 
( 1) max min

, , ( )r
k i r m i iT a x x                      (26) 

 
Where 

,k ix     ith element of the kth offspring individual, 
xk,i   ith element of the kth parent individual, 
σk,i   mutation step size for the ith element of the kth individual, 
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ξm   mutation operator of the mth subpopulation e.g. N(0,1), C(0,1), etc., 
N(0,1)  Gaussian random number with mean 0 and standard deviation 1, 
C(0,1)  Cauchy random number, 
a    positive number slightly less than one,  

max min,i ix x  subinterval’s or interval’s upper and lower limits of the ith element of the 
individual. 

 
Tabu List  
Tabu list is a finite length one-in one-out first-in first-out structure, which records a set of 
current best solutions visited. A new trial vector is placed on top of the list and the oldest trial 
vector is taken out of the list. 
 
Aspiration Criterion  
The aspiration criterion in (27) adopts a probabilistic acceptance criterion of SA. When the 
probabilistic acceptance criterion is higher than a uniform randomly generated variable in the 
interval [0,1], the tabu restriction is overruled. 
 

, ,1 / (1 exp( / ))k m r mp T                     (27) 
Where 
pk,m   probabilistic acceptance criterion of the kth offspring individual within the mth 

subpopulation, and 
Δ   difference of objective values between the kth offspring individual and its 

corresponding parent individual, i.e. the kth parent individual. 
 
Reassignment Strategy 
Tournament scheme is used to select new current parent population from the combined 
population of current parent (S1,curr,…,SM,curr) and new offspring (S1,new,…,SM,new) individuals 
of all subpopulations. Each individual in the combined population is assigned a weight value 
according to the competition in (28). 
 

1

1 if

0 otherwise

Nt
k r

k
t

F F
w




 


                   (28) 

 
Where 
wk   weight value of kth individual in combined population, 
Fk   fitness value of kth individual in combined population, 
Fr   fitness value of rth opponent randomly selected from the combined population 

based on 2 1r M u      , and 

Nt   number of competitors. 
 
After sorting the combined population of 2M individuals in the descending order of weight 
values, each new current parent solution individual of all subpopulations will be randomly 
selected from a set of the first Mth sorted best solution individuals. 
 
Termination Criteria 
There are three termination criteria in the proposed HEA approach. The first termination 
criterion is set as the maximum number of generations of each subpopulation and the second 
termination criterion is the number of reassignment required. The algorithm will be stopped if 
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there is no improvement of the best fitness within 50 generations as the third termination 
criterion. 
 
 
CASE STUDY AND TEST RESULTS 
 
The modified IEEE 30-bus system is used to demonstrate the optimal placement of multi-
type FACTS devices using the HEA approach. The HEA is implemented using MATLAB 
version 6.5 on an AMD Athlon64 X2 3600+ computer with 1.0 GB memory. Parameter 
settings of the proposed algorithm suggested in (Lai, 1998) are utilized. Test results from 
HEA are compared to those from EP (Wong, Yuryevich & Li, 2003), TS (Abido, 2002), 
hybrid TS/SA (Ongsakul & Bhasaputra, 2002), and IEP (Jirapong & Ongsakul, 2009) 
methods. The reactance limit of TCSC in p.u. is 0 60%SiX   of line reactance; phase 

shifting angle limit of TCPS is 4 4Pi      radian; voltage limit of UPFC is 

0 0.1UiV   p.u.; angle limit of UPFC is Ui      radian; and reactive power injection 

limit of SVC is 10 10ViQ    MVAr. Loads are modeled as constant power factor loads. 

The modified IEEE 30-bus system in Figure 3 is partitioned into three areas with two 
generators in each area (Zimmerman, Sanchez & Gan, 2007). Two transactions including a 
bilateral transaction from bus 2 to 21 and a multilateral transaction from area 1 to 3 are 
considered.  
 

 
Figure 3.  Diagram of the modified IEEE 30-bus system 
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Bilateral Transaction 
For the bilateral transaction with optimally placed FACTS devices using HEA method, TTC 
value is 43.65 MW without violating system constraints, which is increased by 89.62% 
compared to that without FACTS devices shown in Table 1. In addition, the TTC value is 
41.45%, 51.04%, 40.72%, and 10.39% more than those from EP, TS, TS/SA, and IEP 
methods, respectively. 
 
 
Table 1.  TTC values on the modified IEEE 30-bus system 

Method 
Bilateral Transaction Multilateral Transaction 

Without FACTS With FACTS Without FACTS With FACTS 
TTC (MW) Loss (MW) TTC (MW) Loss (MW) TTC (MW) Loss (MW) TTC (MW) Loss (MW) 

EP 23.02 2.63 30.86 2.67 79.48 4.03 90.51 4.98 
TS 23.02 2.63 28.90 2.78 78.84 4.23 101.14 5.71 

TS/SA 23.02 2.63 31.02 2.89 79.44 3.97 103.96 5.79 
IEP 23.02 2.63 39.54 1.89 79.45 3.99 104.10 4.17 

HEA 23.02 2.63 43.65 2.15 79.61 3.98 111.92 5.85 

 
 
 
Multilateral Transaction 
For the multilateral transaction with optimally placed FACTS devices using HEA method, 
TTC value is 111.92 MW, which is increased by 40.59% compared to that without FACTS 
devices. In addition, the TTC value is 23.65%, 10.66%, 7.66%, and 7.51% more than those 
from EP, TS, TS/SA, and IEP, respectively. The optimal placements of FACTS devices are 
shown in Table 2.  
 
 
Table 2.  Optimal placement of FACTS devices of multilateral transaction  

Method 
TCSC TCPS UPFC SVC 

nCF1 location1 XS 
(pu) 

nCF2 location2 P 
(rad) 

nCF3 location3 U (rad),  
VU (pu) 

nCF4 location4 QV 
(MVAr) 

EP 1 
Line No. 

24-25 
0.017 1 

Line No. 
1-2 

0.058 1 
Line No. 

2-6 
2.579, 0.068 1 

Bus No. 
21 

8.174 

TS 1 
Line No. 

15-23 
0.023 1 

Line No. 
2-4

0.010 1 
Line No. 

10-21
0.724, 0.038 1 

Bus No. 
25 

0.474 

TS/SA 1 
Line No. 

8-28 
0.051 1 

Line No. 
1-2 

0.019 1 
Line No. 

2-4 
2.014, 0.051 1 

Bus No. 
28 

1.968 

IEP 0 
- 
 

- 1 
Line No. 

6-9
0.092 1 

Line No. 
9-10

1.458, 0.041 1 
Bus No. 

25 
0.287 

HEA 0 
- 
 

- 1 
Line No. 

6-8 
0.013 1 

Line No. 
6-7 

1.737, 0.059 1 
Bus No. 

24 
6.353 

 
 
 
Comparisons of TTC results and average CPU times from 20 runs are shown in Table 3. The 
reported CPU time is the total computation time of HEA approach from starting to ending 
including the Newton-Raphson power flow of all individuals. The HEA can obtain better 
results on the best, average, and the worst TTC values than those from the other methods. 
Furthermore, the variation of the HEA best solution is smaller as evidenced by a smaller 
standard deviation, leading to a more stable HEA approach. To compare the convergence 
characteristic, IEP and HEA utilize a probabilistic updating strategy based on annealing 
schedule of SA, resulting in more generations required and slower convergence characteristic 
than EP, TS, and TS/SA methods as shown in Figure 4. 
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Table 3.  Optimal TTC values with FACTS devices and CPU times  

Method 

Bilateral Transaction with FACTS Multilateral Transaction with FACTS 

TTC Standard 
Deviation 

CPU 
Time 

TTC Standard 
Deviation 

CPU 
Time 

Best Average Worst (min) Best Average Worst (min) 
EP 30.86 27.14 22.91 3.08 1.13 90.51 84.33 75.41 4.87 2.00 
TS 29.34 27.15 22.93 2.81 1.17 101.14 86.25 76.96 8.99 1.85 

TS/SA 31.02 26.87 22.95 2.57 0.91 103.96 97.33 81.04 7.55 1.55 
IEP 39.54 32.23 26.12 5.40 1.52 104.10 93.32 73.72 9.76 2.88 

HEA 43.65 34.05 26.50 5.38 1.51 111.92 102.56 88.78 5.58 2.72 

 

 

 
Figure 4.  Convergence characteristic of solutions 

 
 
CONCLUSION 
 
The proposed HEA method could efficiently and effectively determine the optimal placement 
of multi-type FACTS devices to simultaneously maximize TTC and minimize system power 
losses of power transactions in deregulated power systems, resulting in higher TTC values 
than those from EP, TS, hybrid TS/SA, and IEP algorithms. In addition, test results indicate 
that optimally placed OPF with multiple and multi-type FACTS devices by the HEA 
approach could enhance the TTC values far more than OPF without FACTS devices, leading 
to a higher trading level of energy transactions in a normal secured system. 
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