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Abstract

Project Code : MRG5380012

Project Title : Applications of Multi-type FACTS Controllers for Power Transfer
Capability Enhancement of Thailand Electrical Power System Using

Hybrid Evolutionary Computation Technique
Investigator : Dr.Peerapol Jirapong, Chiang Mai University
E-mail Address : jirapong@chiangmai.ac.th

Project Period : 15 June 2010 — 14 June 2012

With the advent of flexible AC transmission system (FACTS), FACTS devices
are used to provide flexible control of power flows over designated transmission routes
and increase power transfer capability of transmission networks. The extent of these
benefits depends upon where these devices are placed and how they are controlled in
the systems. This research proposes a new hybrid evolutionary algorithm (HEA) based
on evolutionary programming (EP), tabu search (TS), and simulated annealing (SA) to
determine the optimal allocation of multi-type FACTS controllers to simultaneously
maximize the electrical power transfer capability and minimize system real power loss of
power transactions in power systems. The optimally placed optimal power flow with
FACTS controllers is formulated as a combined objective function including power
transfer capability and system power loss to evaluate the feasible maximum power
transfer value. The HEA approach simultaneously searches for types, number,
locations, and parameters of FACTS controllers, real power generations in a source
area, real power loads in a sink area, and generation bus voltages to solve the optimal
power flow with FACTS problem. Test results on the test systems and practical
Thailand power systems indicate that optimally placed FACTS controllers by the HEA
could enhance power transfer far more than those from EP, TS, hybrid TS/SA, and
improved EP algorithms, leading to much efficient utilization of the existing Thailand

transmission systems.

Keywords: Evolutionary Algorithm; FACTS Controllers; Power Transfer Capability;

Optimal Power Flow
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Chapter 1

Introduction

1.1 Background

In competitive electric power markets and open access transmission systems,
electric utilities have to operate closer to their limits, causing unpredictable line
loading, voltage variations, and stability problems. To solve these difficulties,
flexible AC transmission system (FACTS) devices have been used to increase
power transfer capability of transmission networks and provide direct control of
power flows over designated transmission routes, resulting in a lower system loss,
stability enhancement, operating cost reduction, and fulfilled contractual
requirements (Edris et al., 1998). The extent of these benefits depends upon where
these devices are placed and how they are controlled in the systems, which in turn
requires efficient methodologies to solve the optimally placed FACTS problem.
This is an important aspect in the context of growing energy demand and the
emergence of energy trading markets.

Available transfer capability (ATC) is used as a market signal of the
capability of a transmission network to deliver electric energy in deregulated
power systems. ATC is defined as a measure of the transfer capability remaining
in a physical transmission network for further commercial activity over and above
already committed uses (NERC, 1996). It is required to be calculated for each
control area and posted on a public communication system called open access
same time information system (OASIS) to enhance the open access transmission
network and make competition reasonable and effective (FERC, 1996a; FERC,
1996b). Mathematically, ATC is defined as the total transfer capability (TTC) less
the transmission reliability margin (TRM), less the sum of the capacity benefit
margin (CBM) and existing transmission commitments. TTC is the main



component of the ATC calculation, which is defined as the amount of electric
power that can be transferred over the transmission network in a reliable manner
while meeting all of a specific set of defined pre- and post-contingency system
conditions. TRM and CBM are two transmission margins considering the inherent
uncertainty and reliability in the transmission system.

Accurate determination of ATC is essential to maximize utilization of the
existing transmission network while maintaining system security. Underestimated
ATC may lead to under-utilization of transmission systems, while overestimated
ATC could lower system reliability. Wide varieties of mathematical methods such
as: i) linear ATC (LATC) method (Ejebe et al., 2000), ii) continuation power flow
(CPF) (Ejebe et al., 1998), iii) repetitive power flow (RPF) (Gravener and
Nwankpa, 1999), and iv) dynamic ATC (Kumar et al., 2004) have been developed
for ATC computations. In addition, optimal power flow (OPF)-based methods,
which can be implemented by many optimization techniques such as interior point
algorithm (Dai et al., 2000), sequential quadratic programming (SQP) (Shaaban et
al., 2003), and transfer-based security constrained OPF (TSCOPF) (Ou and Singh,
2002) have been proposed to calculate ATC with various degrees of success.

These methods require convexity of objective function to obtain the
optimal solution. However, the OPF-based ATC calculation is generally non-
linear and non-convex optimization problem and, as a result, many local solutions
may exist especially in power systems with embedded FACTS controllers (Wong
et al., 2003). FACTS parameters are additional control variables which can not be
solved effectively by conventional optimization methods because these parameters
will change the admittance matrix. Moreover, the ability of interconnected
transmission networks to reliably transfer electric power is limited by physical and
electrical characteristics including line thermal limits, voltage limits, and stability
limits (NERC, 1996). The limiting condition on some portions of the systems can
shift among these constraints as the network operating conditions change over
time. Such variations further complicate the ATC computation. Therefore,
conventional techniques may converge to local solutions or diverge altogether
(Lai, 1998).

With the advent of evolutionary computation (EC) techniques, many
heuristic methods e.g. genetic algorithm (GA) and evolutionary programming
(EP) are efficiently applied for solving the optimal FACTS placement problems to
determine global or near global optimum solution. These algorithms are not
sensitive to starting points and are capable of handling non-convex optimization
problems. A GA combined with CPF method is used to determine the optimal
placement of thyristor-controlled series capacitor (TCSC) for maximizing TTC
(Feng and Shrestha, 2001). The GA is used to search for the optimal location and
parameter of TCSC while CPF is used to evaluate the TTC value with the
optimally placed TCSC subject to thermal and voltage limits. For the optimal
placement of multi-type FACTS controllers, a floating point GA is used to
simultaneously search for locations, types, and parameters of TCSC, static var
compensator (SVC), thyristor-controlled phase shifting transformer (TCPST), and



thyristor-controlled voltage regulator (TCVR) (Gerbex et al.,, 2001). The
optimization strategy based on RPF method is performed to determine the
maximum system loadability subject to thermal and voltage limits. However,
using CPF and RPF may lead to a conservative TTC value because these methods
do not result in the optimal generation, loading, and generator bus voltages.

Furthermore, the optimally placed OPF with FACTS controllers is a mixed
integer non-linear programming (MINLP) problem with continuous and discrete
variables. Solving MINLP problems is difficult for two reasons. Firstly, the
presences of non-linearity in the objective and constraint function imply non-
convexity in MINLP problems with multiple local solutions, which are still far
from the global solution. Secondly, the presence of both continuous and discrete
variables in a large combinatorial problem, combining the mixed-integer
programming (MIP) and non-linear programming (NLP) significantly increase the
complexity of MINLP problems. Therefore, the optimally placed OPF with
FACTS problem may not be effectively solved by either conventional methods or
a single EC technique.

Since the initiative of FACTS concept in the late 1980s (Hingorani,
1988a), FACTS controllers have provided strategic benefits for power system
planning and operation. In addition to ATC enhancement (Ou and Singh, 2001;
Xiao et al., 2003), FACTS controllers have been effectively used to control power
flow especially for controlling reactive power flow over designated transmission
routes. One of the main aims of reactive power control is to provide appropriate
placement of FACTS controllers to minimize power loss of transmission networks
(Baskarana and Palanisamy, 2006). The problems of reactive power control with
FACTS controllers using conventional optimization methods and artificial
intelligence (Al) techniques have been studied and widely reported in the
literature. Moreover, sensitivity index approaches have been commonly used to
determine suitable locations of FACTS controllers for minimizing power loss
(Preedavichit and Srivastava, 1998) and maximizing ATC (Leonidaki et al., 2001,
Orfanogianni and Bacher, 2003). However, these methods may not lead to the
optimal solution because of dependency to system topology and loading
conditions.

To achieve the main objectives of FACTS controllers utilization and deal
with the complicated combinatorial optimization problem, this research proposes a
novel hybrid evolutionary algorithm (HEA) based on evolutionary programming
(EP), tabu search (TS), and simulated annealing (SA) to determine the optimal
placement of multi-type FACTS controllers to simultaneously maximize ATC and
minimize system real power loss of power transactions between different control
areas in deregulated power systems.



1.2

Statement of the Problem

ATC computations present a major challenge for power system engineers. Wide
varieties of mathematical methods have been proposed for ATC calculations with
various degrees of success. There are still issues associated with their
implementation.

1.

The LATC method takes account only of thermal limits on line flows.
Ignoring voltage and reactive power effects may lead to unacceptable error
especially in a stressed system with insufficient reactive power support and
voltage control.

To increase a certain power transfer, CPF and RPF methods use a common
loading factor for a specific cluster of generators and loads, which may
lead to a conservative ATC value since the optimal generation, loading,
and generator bus voltages are ignored.

The applications of dynamic ATC methods are limited to the evaluation of
a large scale non-linear programming problem that results in a problem
formulation of huge dimension.

OPF-based ATC determinations mostly take only line thermal and voltage
limits into consideration. However, the limiting condition of transmission
network can shift among thermal, voltage, and stability limits. Ignoring
any one of these constraints may lead to unsecured system operation.

OPF-based ATC determination is generally non-linear and non-convex
optimization problem and, as a result, many local solutions may exist
especially in power systems with embedded FACTS controllers.
Therefore, conventional optimization methods may converge to local
optimal solutions or diverge altogether.

In addition to the ATC computation aspect, determination of the optimally

placed OPF with FACTS problem is an essential topic in power system operation
and planning studies. A number of issues associated with this optimization
problem are listed as follows:

1.

The optimally placed OPF with FACTS is a MINLP problem, which may
not be solved effectively by conventional optimization methods or a single
EC technique.

Sensitivity index approaches that provide suitable locations of FACTS
controllers may not lead to the optimal solution because of dependency to
system topology and loading conditions.



3. A number of EC techniques combined with conventional methods have
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been proposed to solve the optimal FACTS allocation problems.
Nevertheless, the obtained results are far from the optimal solutions due to
the use of OPF with local search algorithms.

For a simple system with a number of FACTS controllers, many
optimization techniques have been adequately reported. However, for
more complicated power systems with multiple and multi-type FACTS
controllers, a few techniques have been developed for solving the
optimization problems.

Even though a combined objective function including ATC maximization

and power loss minimization is not new, it is treated as one of the most
important problems in using FACTS controllers.

Objectives

The main objectives of the study are as follows:

1. To develop an efficient HEA approach for determining ATC of power
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transactions in deregulated power systems, considering thermal, voltage,
and stability limits.

To apply the HEA approach for determining the optimal placement of
multiple and multi-type FACTS controllers to simultaneously maximize
ATC and minimize system real power loss of the power transactions
without violating system constraints.

To compare the effectiveness of the HEA approach to CPF, EP, TS, hybrid
TS/SA, and improved EP (IEP) methods.

Scope and Limitations

The scope and limitations of the study are as follows:

1. Dynamic properties, and dynamic stability limits of FACTS controllers are

out of scope of the research.

Five optimization techniques including EP, TS, hybrid TS/SA, IEP, and
HEA are considered. The proposed optimization methods are developed in
MATLAB programming language.



3. The modified IEEE 24-bus reliability test system (RTS), modified IEEE
30-bus system, modified IEEE 118-bus system, and the modified Thai
power 160-bus system are used as test systems.

4. The proposed HEA approach has capabilities to:

Vi.

determine ATC of bilateral and multilateral transactions,
incorporate thermal limits, voltage limits, voltage and angle
stability limits, and FACTS controllers steady-state operating limits
into system constraints,

accommodate other constraints including the most critical single
contingency outage condition,

simultaneously maximize ATC and minimize system real power
loss,

incorporate multiple and multi-types FACTS controllers into the
OPF problem,

perform sequential run on one computer or parallel run on multiple
computers.

1.5 Structure of the Report

The organization of this report is as follows: Statement of the problem and
objectives of the research are presented in Chapter 1. In Chapter 2, a review of
literature related to ATC determination, FACTS controllers, OPF problems, and
heuristic optimization techniques is presented. In Chapter 3, the OPF-based ATC
determination is formulated as an optimization problem. The HEA approach is
proposed to solve the optimization problem. In Chapter 4, the HEA method is
proposed to determine the optimal placement of multi-type FACTS controllers to
simultaneously maximize ATC and minimize power loss. Test results from the
HEA are compared with those from EP, TS, TS/SA, and IEP methods. Lastly,
Chapter 5 gives the conclusion of this research.



Chapter 2

Literature Review

This chapter presents a literature review of available transfer capability, FACTS
controllers, optimal power flow problems, and modern heuristic optimization
techniques.

2.1 Awvailable Transfer Capability

2.1.1 Principles and definitions of ATC

The movement towards competitive electric power markets and open access
transmission systems has added considerable emphasis to the interest in
quantifying transmission transfer capability (NERC, 1995a; Williams, 1996). In
1996, the North American Electric Reliability Council (NERC) published a
technical report regarding available transfer capability (ATC) definitions and
determination to provide a uniform framework for determining ATC and related
terms (NERC, 1996). The report also provides ATC principles under which ATC
values are to be calculated. All transmission provider and user entities are
expected to abide by the following principles:

1. ATC calculations must produce commercially viable results.
2. ATC calculations must recognize time-variant power flow conditions and

the effects of simultaneous transfers and parallel path flow throughout the
network.



3. ATC calculations must recognize the dependency of ATC on the points of
electric power injection, the directions of transfers, and the points of power
extraction.

4. Regional or wide-area coordination is necessary to develop and post
information that reasonably reflects the ATC.

5. ATC calculations must conform to regional, subregional, power pool, and
individual system reliability planning and operating policies, criteria, or
guides.

6. The determination of ATC must accommodate reasonable uncertainties in
system conditions and provide operating flexibility to ensure the secure
operation.

ATC is defined as a measure of the transfer capability remaining in a
physical transmission network for further commercial activity over and above
already committed uses (NERC, 1996). It is required to be calculated for each
control area and posted on a public communication system called open access
same time information system (OASIS) to enhance the open access transmission
network and make competition reasonable and effective by providing a market
signal of the capability of the transmission network to deliver electric energy in
deregulated power systems (FERC, 1996a; FERC, 1996b).

Mathematically, ATC is defined as the total transfer capability (TTC) less
the transmission reliability margin (TRM), less the sum of the capacity benefit
margin (CBM) and existing transmission commitments. TTC is the amount of
electric power that can be transferred over the interconnected transmission
network in a reliable manner while meeting all of a specific set of defined pre- and
post-contingency system conditions. TRM is the amount of transmission transfer
capability necessary to ensure that the interconnected transmission network is
secure under a reasonable range of uncertainties in system conditions. CBM is the
amount of transmission transfer capability reserved by load serving entities to
ensure access to generation from interconnected systems to meet generation
reliability requirements.

2.1.2 Considerations in ATC computations

ATC calculation is a complicated task involving determination of TTC and two
margins, TRM and CBM. Accurate determination of ATC is essential to
maximize utilization of the existing transmission networks while maintaining
system security. Underestimating ATC may lose business opportunities, while
overestimating it can compromise system reliability. Wide varieties of
mathematical methods have been proposed to determine ATC with various



degrees of success. Methods based on AC load flow models are slower than
methods using DC load flow models but do allow for consideration of additional
system limits and more accurate accounting of the operation guides and control
actions that accompany the increasing transfers. Moreover, the ability of
interconnected transmission networks to reliably transfer electric power is limited
by physical and electrical characteristics including thermal limits, voltage limits,
and stability limits (NERC, 1996). The limiting condition on some portions of the
systems can shift among these constraints as the network operating conditions
change over time. Such variations further complicate the ATC computation (Gisin
etal., 1999; llic et al., 1997).

Sauer (1997) presents several concepts for dealing with the technical
challenges of ATC computation, such as definition of a base case, specification of
contingencies, finding the maximum transfer, and interpretation of results.
Various types of uncertainty and error that can impact ATC calculations and their
use in power system operations are discussed in (Sauer, 1999; Sauer and Grijalva,
1999). In addition, reactive power considerations in ATC computation are also
presented in (Grijalva and Sauer, 1999).

Both TRM and CMB, which account for uncertainties and reliability of
power systems, are seldom mentioned in the papers associated with ATC
computation. Sauer (1998) propose four methods for calculating TRM. The first
method is based on repeated computation of TTC using variations in the base case
data. The second one is a single repeat computation of the TTC using limitations
reduced by a fixed percentage (i.e. 4%). The next one is simply to reduce the TTC
by a fixed percentage (i.e. 5%). The last method is a probabilistic approach using
statistical forecast error and other systematic reliability concepts. CBM can be
determined either by deterministic or probabilistic methods (NERC, 1999;
Othman et al., 2006), both of which are used in reliability evaluation. Ou and
Singh (2002) propose two methods for incorporating CBM into ATC. In one
method, CBM is subtracted from TTC directly to derive the ATC, while in the
other method CBM is taken as firm transfers. Moreover, test results from the
study indicate that ignoring CBM will lead to a considerable risk of losing transfer
or generation unreliability.

Transmission management in deregulated power systems is another issue
facing system operators to provide optimal power transactions (Christie et al.,
2000; Fang and David, 1999). Dispatch methodologies including pool, bilateral,
and multilateral transactions for open access transmission systems are presented in
(David, 1998a; David, 1998b; Hamoud, 1999). ATC determinations of power
transactions between different control areas have to conform to these concepts.



2.1.3 Determination of ATC

ATC calculations are generally based on computer simulations of the operation of
interconnected transmission networks under a specific set of assumed operating
conditions. Wide varieties of mathematical methods have been developed for
calculating ATC, which can be summarized into four types as follows:

1. Linear approximation method based on DC power flow model
considering only thermal limits.

2. Continuation power flow method based on AC power flow model
considering thermal, voltage, and voltage stability limits.

3. Stability-constrained ATC method based on time domain simulations
with dynamic model considering stability limits.

4. Optimal power flow method based on AC power flow model considering
thermal and voltage limits.

A. Linear approximation method

Linear method is based on linear incremental power flow approximation, which
calculates network sensitivity indices to determine the transfer capabilities of
power systems. Initial concepts for applying sensitivity index to transfer capability
calculations are presented in (Greene et al., 1997). Christie et al. (2000) propose a
power transfer distribution factor (PTDF) based on DC load flow for ATC
determination. In addition, Ejebe et al. (2000) also propose a linear ATC (LATC)
method, which calculates three sets of linear sensitivity indices including PTDF,
line outage distribution factor (LODF), and generator outage distribution factor
(GODF) for calculating ATC values. For each ATC case, power transfer is non-
simultaneous because it only considers power transfer from a single source to a
single sink. Greene et al. (2002) present a network sensitivity index approach for
the first order sensitivity of the transfer capability with respect to the variation of
any parameters. This method uses the sensitivity of transfer capability margins to
calculate ATC.

These methods are attractive because the network sensitivity indices are easy
to calculate and they quickly provide estimated ATC values. However, these
methods are based on dc load flow, considering only thermal limits. Ignoring
voltage and reactive power effects may lead to unacceptable error especially in a
stressed system with insufficient reactive power support and voltage control.
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B. Continuation power flow and Repetitive power flow methods

Continuation power flow (CPF) is a general method for finding the maximum
value of a scalar parameter in a linear function of changes in real power at a set of
buses in a power flow problem (Ajjarapu and Christy, 1992). CPF method traces
the power flow solution curve, starting at a base load, leading to the steady-state
voltage stability limit or the maximum loading point of power systems. The main
advantage of CPF is that it can overcome the singularity of the Jacobian matrix
near the saddle-node bifurcation point, or the critical point (Chiang et al., 1995).
Originally introduced for determining maximum loadability, CPF is adaptable
without change in principle for ATC computation. In (Ejebe et al., 1998), a CPF
method with adaptive localization is proposed to calculate ATC considering
reactive power and voltage stability effects.

In (Gravener and Nwankpa, 1999), a repetitive power flow (RPF)
technique is proposed to calculate ATC. The RPF method, based on a generalized
search method, repeatedly solves conventional power flow equations, where the
successive power flow solutions are conducted to establish the maximum transfer
capability. RPF enables transfers by increasing the complex load with uniform
power factor at every load buses in a sink area, and by increasing the injected real
power at generator buses in a source area in incremental steps until limits are
incurred. A generalized search algorithm is implemented to first find the thermal
limit of non-simultaneous transfers between those two control areas. Once the
thermal limit of the transfers is determined, AC contingency checking for the
voltage limit is performed.

For both CPF and RPF methods, the total load in the sink area is taken as
TTC value of the power transaction. However, to increase a certain power
transfer, CPF and RPF methods use a common loading factor for a specific cluster
of generators and loads, which may lead to a conservative TTC value because
these methods do not result in the optimal generation, loading, and generator bus
voltages.

C. Stability-constrained ATC method

Dynamic ATC is concerned with calculating the maximum increase in power
transfers such that the transient response remains stable and viable. There are a
number of constraints on transient behavior considered in dynamic ATC such as
saddle node bifurcation, loss of stability mechanisms associated with phase angle
behavior, and electromechanical swing modes (DeMarco, 1998; Tuglie et al.,
1999).

Hiskens et al. (1998) and Hiskens et al. (2000) propose an iterative approach
for computing dynamic ATC. This method uses trajectory sensitivities and a set of
differential-algebraic-discrete equations for the power system model. The
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application of this method is limited to the evaluation of a single free parameter
that can be used to yield marginally stable trajectories and computational
complexity for application to large systems. In (Yuan et al., 2003), a dynamic
ATC problem is formulated as an OPF-based optimization problem by integrating
transient stability constraints into conventional steady-state ATC determination.
An interior point algorithm is used to solve the optimization problem. The
application of this method is limited to the evaluation of a large scale non-linear
programming problem, which results in a problem formulation of huge dimension.
An application of bifurcation criteria for ATC calculation with bilateral and
multilateral power transactions is developed by Kumar et al. (2004). The Hopf
bifurcation limit is used for determining dynamic ATC while the saddle node
bifurcation and bus voltage limits are used for static ATC determination.

D. Optimal power flow-based methods

In this category, ATC determination is formulated as OPF problems which can be
implemented by many optimization techniques such as conventional OPF
calculations and artificial intelligence (Al) techniques.

Conventional OPF calculations

Conventional security constrained OPF (SCOPF) methods are commonly used to
solve the OPF-based ATC problem to maximize power transfer capability
between two control areas, assuming all OPF optimized parameters can be
centrally dispatched (Bresesti et al., 2002; Hur et al., 2001). To overcome the
deficiency of the conventional SCOPF, a transfer-based SCOPF (TSCOPF) is
developed in (Ou and Singh, 2002). It is assumed that only OPF optimized
parameters involving the selected source and sink area can be dispatched, which
can be satisfied in deregulated power systems.

A sequential quadratic programming (SQP) algorithm (Shaaban et al.,
2000a; Shaaban et al., 2003) and a Bender decomposition method (Shaaban et al.,
2001) are propose to determine TTC values considering reactive power and
voltage limits. The objective function is to maximize power transfers between
specific generators and loads subject to constraints of load flow equations and
system operating limits. Linear programming (LP) (Berizzi et al., 2000) and non-
linear programming (Tuglie et al., 2000) methods are also used to solve the OPF-
based ATC problem. Even though LP method is fast and reliable, the power flow
equations are largely simplified, which may result in unacceptable results. The
non-linear programming approach has some disadvantages associated with the
insecure convergence properties and algorithmic complexity.
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Dai et al. (2000) propose a direct interior point algorithm to calculate
maximum loadability and minimum load curtailment. The algorithm can only be
used to compute ATC values from one generation company to a customer. In
(Xiao et al., 2001) a hybrid stochastic technique is proposed to calculate ATC of
prescribed interfaces in transmission networks.

These methods require convexity of objective function to obtain the
optimal solution. However, the OPF problem is generally non-linear and non-
convex optimization problem and, as a result, many local solutions may exist.
Therefore, conventional optimization methods may converge to local optimal
solutions or diverge altogether. Moreover, these methods consider only thermal
and voltage limits. Ignoring power system stability limits may lead to unsecured
system operation.

Artificial intelligence techniques

A multi-layer feed-forward neural network approach is used to calculate ATC
values by Luo et al. (2000). The inputs for the neural network are generator status,
line status, and load status and the output is the transfer capability. Quickprop
algorithm is used to train the neural network. Test results show that the proposed
method can determine power transfer capability between system areas with
variations in load levels and the status of generator and transmission lines.

In the advent of modern heuristic techniques, evolutionary computation
(EC) methods such as GA and EP are implemented to solve the OPF-based ATC
problem. Shaaban et al. (2000b) propose a GA approach to determine TTC values
of prescribed point-to-point power transactions on a 4-bus test system. In
(Ongsakul and Jirapong, 2004), an EP approach combined with Newton-Raphson
(NR) power flow method is used for calculating TTC values of power transactions
between different control areas. To improve the robustness of the existing EC
techniques, an improved EP (IEP) approach is proposed in (Ongsakul and
Jirapong, 2005) to calculate TTC values. Test results on a modified IEEE 30-bus
system from the proposed method are compared favourably with those from
LATC, RPF, and EP methods.
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2.2

Flexible AC Transmission System

2.2.1 Principles and definitions of FACTS

Flexible AC Transmission System (FACTS) is an evolving technology-based
solution envisioned to help electric utilities to deal with changes in modern power
system planning and operation. The main objectives of FACTS controllers are as
follows (Lai, 2001):

1. To provide direct control of power flow over designated transmission

routes

2. To increase the power transfer capability of transmission networks.

According to the IEEE definitions (Edris et al., 1997), FACTS and FACTS device
(controller) are defined as follows:

FACTS: Alternating current transmission systems incorporating power
electronic-based and other static controllers to enhance controllability and
increase power transfer capability.

FACTS device: A power electronic-based system and other static
equipment that provide control of one or more AC transmission system
parameters.

FACTS controllers can be categorized into four types according to the connection
and operating criteria as follows (Hingorani and Gyugyi, 1999):

1. Shunt connected controllers: battery energy storage system (BESS),

static synchronous compensator (STATCOM), and static var compensator
(SVC).

Series connected controllers: thyristor controlled series capacitor
(TCSC), thyristor switched series capacitor (TSSC), phase angle regulator
(PAR), and static synchronous series compensator (SSSC).

Combined shunt and series connected controllers: thyristor controlled
phase shifter (TCPS) or thyristor controlled phase shifting transformer
(TCPST), and unified power flow controller (UPFC).

4. Other controllers: thyristor controlled voltage limiter (TCVL).

14



TCSC, SVC and UPFC are the main commercially available FACTS
controllers. TCSC is a series compensation component which consists of a series
capacitor bank shunted by thyristor controlled reactor. With the firing control of
the thyristor, it can change its apparent reactance smoothly and rapidly (Mathur
and Varma, 2002). SVC is a shunt compensation component which can be used as
a shunt connected static var generator or absorber, whose output is adjusted to
exchange capacitive or inductive current so as to control specific parameters of
electrical power systems. UPFC is a novel power transmission controller. UPFC
provides a full control of transmission parameters, voltage, line impedance, and
phase angle. It allows real-time control and dynamic compensation of
interconnected transmission systems.

Nowadays FACTS technologies have been moving ahead at an increasing
pace. Very significant long-term benefits of FACTS controllers are now
recognized on a worldwide basis (Hingorany, 1998a; Hingorany, 1998b). To
extend these benefits, many researchers have developed methodologies for
incorporating FACTS controllers into power system operation. The following
sections provide an overview of previous works on power flow calculation and
optimal power flow control with FACTS controllers.

2.2.2 Power flow calculations with FACTS controllers

Determination of load flow solutions in the presence of FACTS controllers is
essential in power system operation and planning studies. Incorporating FACTS
models in load flow algorithms can be either dynamic or static.

A. Dynamic models of FACTS controllers

Dynamic models of various FACTS controllers for voltage and angle stability
studies are developed in (Canizares and Faur, 1999; Canizares, 2000). These
models are based on the assumption that voltages and currents are sinusoidal,
balanced, and operated near fundamental frequency. However, they have several
limitations, especially when studying large system changes according to these
FACTS controllers.

B. Static models of FACTS controllers

Static or steady-state models of FACTS controllers can be classified into
decoupled model and coupled model.
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Decoupled model

In a decoupled model, FACTS controllers are replaced with fictitious PQ- and
PV-bus (Niaki and Iravani, 1996). Standard load flow calculations are then carried
out to determine the load flow solution of the system with the above
modifications. Esquivel and Acha (1997) and Esquivel et al. (2000) consider
FACTS control parameters as independent variables and their values are found
through traditional load flow iterative process. These methods result in the
modification of Jacobian matrix structure to incorporate the additional
independent variables. It is found that the convergence pattern of these methods is
very sensitive to the initial value of FACTS control parameters (Gotham and
Heydt, 1998). In addition, the modified load flow algorithm may not converge,
particularly when voltage magnitudes are significantly less than rating (Haque and
Yam, 2003).

Coupled model

A coupled model consists of two major models: voltage source model (VSM) and
power injection model (PIM). The VSM is formulated as a series or shunt inserted
voltage source according to the device’s operating principle (Gyugyi, 1999; Padhy
and Moamen, 2005). It can represent the corresponding device in a more intuitive
way. However, it destroys the symmetrical characteristics of admittance matrix
(Han, 1982). Moreover, trigonometric functions involved will inevitably lead to
an oscillation of power flow control (Noroozian and Andersson, 1993). Derived
from the VSM, the PIM is proposed by Han (1982). With the conversion of
inserted voltage source to power injections to the related busses, the PIM is
allowed to keep the symmetry of admittance matrix. According to this advantage,
the applications of this model are extended to nearly all FACTS controllers and
are widely spread in most of the literature of operation and control of FACTS-
equipped power systems (Armin and Goran, 1998; Singh and David, 2001a;
Verma et al., 2001b; Xiao et al., 2003).

2.2.3 Optimal power flow with FACTS controllers
A. Optimal power flow control with FACTS controllers

Power flow control aims at controlling active and reactive power flows through
certain transmission lines and bus voltage magnitudes at specified levels. When
FACTS controllers are integrated in OPF problem, the power flow control of
specific lines is treated as the constraints. Many conventional optimization
methods and metaheuristic techniques such as Newton method (Perez et al.,
1998), LP method (Ge and Chung, 1999), GA (Leung and Chung, 2000), and a
hybrid TS/SA approach (Ongsakul and Bhasaputra, 2002) are successfully used to
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solve OPF with FACTS controllers to minimize generation costs. In recent years,
power loss minimization and power transfer capability enhancement utilizing
multi-type FACTS controllers have received significant attention because these
aspects enhance competition and efficiently utilize the existing power systems. A
review of literature focused on these two kinds of objective functions is
summarized in this section.

Minimize power loss

Conventional optimization methods are commonly used to solve the OPF with
FACTS controllers. Noroozian et al. (1997) demonstrate the application of UPFC
for OPF control through numerical examples. Test results indicate that UPFC has
the capability of regulating the power flow and minimizing the power losses
simultaneously. Chung and Shaoyun (1998) propose an algorithm to solve the
OPF with UPFC. The problem is decomposed into an active power OPF (APOPF)
subproblem which is solved by LP to minimize the total production cost and a
reactive power OPF (RPOPF) subproblem which is solved by successive quadratic
programming (QP) to minimize the total active power loss. In (Xiao et al., 2002),
a predictor-corrector primal-dual interior point linear programming (PCPDIPLP)
is developed for solving an OPF with multi-type FACTS controllers. The
objective function is to minimize the total mismatch of control targets of active
and reactive power flows over designated transmission lines.

On the other hand, modern heuristic optimization techniques such as GA
(Paterni et al., 1999) are also successfully used to solve the optimization problem.
Lai and Ma (1995) proposed an EP approach coupled with P-Q decoupled power
flow to solve the OPF with FACTS controllers to minimize real power loss and
keep power flows in their secure limits. UPFC is used as a phase shifter and/or
series compensator to regulate both angles and magnitude of bus voltages. A GA
approach is also proposed to solve the same optimization problem in (Lai and Ma,
1996). A micro GA combined with fuzzy logic (FGA) is developed in (Baskarana
and Palanisamy, 2006) for solving OPF with TCSC, TCPAR, UPFC, and SVC to
minimize power loss. Test results from the proposed method are compared
favorably with those from GA alone.

Maximize power transfer capability

Ou and Singh (2001) propose a general procedure based on RPF method to
maximize TTC with FACTS controllers installed in power systems. Test results
on a 4-bus test system indicate that TCSC is more effective than SVC in
improving TTC. In (Liu et al., 2002), a transportation model combined with
matrix computational technique is proposed to evaluate the impact of TCSC on
TTC enhancement. However, the proposed method has a disadvantage of accuracy
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related to the reactive power flow in the solution. Moreover, a stochastic
programming technique (Xiao et al., 2000) and a PCPDIPLP method (Xiao et al.,
2003) are also proposed to maximize ATC in the OPF with multi-type FACTS
controllers. The OPF-based ATC enhancement model is formulated to achieve the
maximum power transfer by controlling multi-type FACTS controllers while
increasing all the complex loads and generations in current situation using a scalar
loading factor. Test results demonstrate the effective of SVC, TCPS, and UPFC
on ATC enhancement.

B. Optimal placement of FACTS controllers to control power flow

The optimally placed OPF with FACTS controllers is a combinatorial
optimization problem, which is determining the optimal types, locations, and
parameters of FACTS controllers in the OPF problem. Many optimization
techniques such as a decomposition-coordination method combined with network
compensation technique (Lie and Deng, 1997), LP-based method (Oliveira et al.,
1999), GA (Cai et al., 2004), a real power flow performance index combined with
SQP (Singh and David, 2001b; Singh et al., 2001), and a hybrid TS/SA approach
(Bhasaputra and Ongsakul, 2006) are effectively used to determine the optimal
placement of FACTS controllers to minimize system operating costs. On the other
hands, wide varieties of mathematical methods have been made on the optimal
placement of FACTS controllers to minimize system power loss and maximize
power transfer capability, which can be summarized in the following paragraphs.

Minimize power loss

Preedavichit and Srivastava (1997) and Preedavichit and Srivastava (1998)
propose an algorithm to minimize system real power loss in an optimal reactive
power dispatch (ORPD) with FACTS controllers. A sensitivity based method is
used to determine suitable locations of SVC, TCSC, and TCPAR. The ORPD with
fixed FACTS problem is solved by a successive QP algorithm. In (Yu and Lusan,
2004), a generalized decomposition method is proposed to determine the optimal
placement of FACTS controllers based on multiple time periods to maximize
social welfare with real power losses considered. Test results indicate that
transmission losses can affect the optimal FACTS placement.

Maximize power transfer capability
Sensitivity index approaches are commonly used to determine approximate
locations of FACTS controllers for power transfer capability enhancement.

However, these methods may not lead to the optimal solution because of
dependency to system topology and loading conditions. A sensitivity approach
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based on the real power flow performance index is developed in (Verma et al.,
2001a) for finding suitable locations of TCSC and TCPAR to enhance TTC. Test
results indicate that the FACTS controllers should be placed on the most sensitive
lines. Schnurr and Wellssow (2001) propose a sensitivity analysis based on the
generation shift distribution factor (GSDF) to determine possible locations of
FACTS controllers to maximize ATC. Moreover, Orfanogianni and Bacher (2003)
propose a sensitivity method to find suitable locations of TCSC and UPFC to
maximize power transfers from a group of generating plants or exporting areas to
a consumption bus or importing area.

To overcome the deficiency of the sensitivity index approaches, a few
conventional optimization techniques and a number of heuristic techniques have
been developed. Sharma et al. (2005) propose a mixed integer linear programming
approach to determine the optimal location of TCPAR and TCSC to enhance
system loadability. The proposed method is based on DC load flow equations. A
parallel TS (PTS) algorithm is developed in (Mori and Goto, 2000) for
determining the optimal locations and parameters of UPFC to simultaneously
maximize incremental load rate and minimize transmission loss. A two-phased
optimization technique is implemented to deal with the allocation of UPFC using
TS and handle tuning up the parameters using PTS. Feng and Shrestha (2001)
propose a GA approach combined with CPF to determine the optimal placement
of TCSC to maximize TTC. GA is used as the optimization tool to determine the
location and parameter of TCSC and CPF is used to determine TTC values.

In (Gerbex et al., 2001), a GA approach is used to determine the optimal
locations, types, and parameters of TCSC, TCPST, TCVR, and SVC to maximize
system loadability. Test results show that the simultaneous use of several kinds of
controllers is the most efficient solution to increase the system loadability.
Farahmand et al. (2004) propose a GA combined with RPF to determine optimal
location of SVC to improve voltage profile and maximize TTC. Moreover, a self-
adaptive evolutionary programming (SAEP) is developed in (Hao et al., 2004) for
determining the optimal locations and parameters of UPFC to maximize the
system loadability.

2.3 Optimal Power Flow

Optimal power flow (OPF) is an optimization problem of power system operation,
which is expressed as the maximization or minimization of an objective function
subject to equality and inequality constraints which define the boundaries of
technical feasibility. An OPF solution gives the optimal active and reactive power
dispatch for a static power system condition. Computationally, it is a very
demanding non-linear programming problem, due to a large number of variables
and in particular to the much larger number and types of limit constraints (Alsac
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and Stott, 1974; Stott, 1974). Moreover, the presence of discrete control variables
such as FACTS parameters further complicates the OPF solution.

Since the OPF was successfully implemented by Dommel and Tinney
(1968), it has been widely used in power system planning and operation. As the
power industry moves into a more competitive environment, uses of the OPF
become increasingly more important in maximizing the capability of the existing
power systems. Considerable amounts of research toward the development of
different optimization methods have been done, especially in the last three
decades (Momoh et al., 1997). These approaches are mainly classified into
conventional optimization methods and artificial intelligence (Al) techniques.

2.3.1 Conventional optimization methods

The main existing optimization methods for solving OPF problems are
conventional methods such as non-linear programming (NLP) (Dommel and
Tinney, 1968), quadratic programming (QP) (Reid and Hasdorf, 1973), gradient
method (Alsac and Stott, 1974), linear programming (LP) method (Stott and
Marinho, 1979), Newton method (Sun et al., 1984), mixed integer programming
(MIP) (Contaxis et al., 1986), and interior point (IP) method (Clements et al.,
1991; Momoh et al., 1992; Momoh and Zhu, 1999). Each method has its own
advantages and disadvantages, but all of them have their own capabilities for
solving OPF problems.

Conventional optimization methods have been widely used to solve OPF
problems. However, they are not guaranteed to converge to the global optimum of
the general non-convex OPF problem. There are some empirical evidences on the
uniqueness of the OPF solution within the domain of interest (Papalexopoulos et
al., 1989). Moreover, these methods rely on convexity to obtain the global optimal
solution and as such are forced to simplify relationships to ensure convexity.
Several disadvantages of traditional optimization techniques are summarized in
the following paragraph.

NLP deals with problems involving non-linear objective function and
system constraints. This method has many drawbacks such as insecure
convergence properties and algorithmic complexity (Abido and Bakhashwain,
2005). QP is a special form of NLP whose objective function is quadratic with
linear constraints. This method has some disadvantages associated with the
piecewise quadratic cost approximation (Bakirtzis et al., 2002). The gradient and
Newton methods have some drawbacks such as the convergence characteristic,
which is sensitive to the initial condition and they suffer from the difficulty in
handling inequality constraints (Sood, 2007). LP treats problems with constraints
and objective function formulated in linear forms. The input-output function is
expressed as a set of linear functions, which may lead to loss of accuracy (Devaraj
and Yegnanarayana, 2005). MIP is a particular type of LP whose constraint
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equations involve variables restricted to being integers. This method is known to
exhibit numerical difficulties when penalty factors become extremely large
(Abido, 2002a; Abido, 2002b). IP-based methods have been reported as
computationally efficient, however, if the step size is not chosen properly, the sub-
linear problem may have a solution that is infeasible in the original  non-linear
domain (Yan and Quintana, 1999). In addition, IP-based methods suffer from bad
initial, termination, and optimality criteria and, in most cases, are unable to solve
non-linear and quadratic objective functions (Momoh and Zhu, 1999). For more
discussions on these techniques, a comprehensive survey is presented in (Momoh
et al., 1999a; Momoh et al., 1999b).

2.3.2 Artificial intelligence optimization techniques

Artificial intelligence (Al) techniques, which promise a global optimum solution,
or nearly so, have in recent years emerged as a complement tool to conventional
approaches (Bansal et al., 2003). Recent attempts to overcome the limitations of
conventional optimization methods, many Al techniques such as neural network
(Nguyen, 1995), evolutionary computation, and heuristic optimization techniques
have been employed to solve OPF problems. A brief review of these algorithms is
summarized in this section.

A. Genetic algorithm (GA)

GA is a heuristic search based on natural evolution theory. GA-based approaches
are successfully used to solve OPF problems with various objectives such as
economic dispatch (ED) (Bakirtzis et al., 1994), minimize power loss (Lai and
Ma, 1996), generator unit commitment (UC) (Swarup and Yamashiro, 2003), and
minimize total system cost (Osman et al., 2004).

B. Evolutionary programming (EP)

EP is a general global optimization algorithm based on the natural evolution
theory similar to GA. However, EP works on real value coded strings rather than
binary strings used by GA. EP-based methods are used to solve economic dispatch
(ED) problems for units with non-smooth fuel cost functions (Yang et al., 1996)
and also applied to the environmentally-constrained ED problems to minimize the
emissions and power production cost subject to the emission constraints (WWong
and Yuryevich, 1998). An EP approach is also used to solve the optimal reactive
power planning (Lee and Fang, 1998). Moreover, an EP enhanced by the gradient
information to increase the speed of search in the neighborhood area to candidate
solutions is used to solve OPF problems in (Yuryevich and Wong, 1999).
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C. Evolutionary strategy (ES)

ES is mainly applied to solve various optimization problems with continuously
changeable parameters. An ES approach is used to solve the reactive power
dispatch problem in (Gomes and Saavedra, 2002). The ES algorithm is improved
by the control of mutations and by using of Cauchy-based mutation rather than the
classical Gaussian mutation. In addition, a hybrid ES is proposed to solve reactive
power dispatch problem to minimize the total real power transmission losses (Das
and Patvardhan, 2003).

D. Tabu search (TS)

TS is a higher level heuristic algorithm called metaheuristic for solving
combinatorial optimization problems. TS is characterized by its ability to avoid
the entrapment in local optimal solution and prevent cycling by using flexible
memory of search history. TS-based approaches are successfully used to solve
many OPF problems (Abido, 2002b; Kulvorawanichpong and Sujitjorn, 2002; Lin
et al., 2002).

E. Simulated annealing (SA)

Based on the annealing process in the statistical mechanics, SA is used to solve
the OPF problem simultaneously composed by the load flow and economic
dispatch (Sepulveda and Lazo, 2002; Wong and Fung, 1993). The main drawback
of SA procedure is that the annealing procedure is very CPU consuming although
its convergence has been theoretically improved. To enhance the performance of
SA, the mean field theory (MFT) which aims at approximating the SA with a set
of deterministic equations, is introduced in (Chen et al., 1997).

F. Particle swarm optimization (PSO)

PSO is an efficient and reliable evolutionary-based approach which combines
social psychology principles in socio-cognition human agents and evolutionary
computations. PSO-based methods are used for solving OPF problems with
various objectives such as fuel cost minimization, voltage profile improvement,
and voltage stability enhancement (Abido, 2002a; Jeyakumar et al., 2006;
Yoshida et al., 2000).

In addition, an extensive list of references to works in evolutionary
algorithm is presented in (Miranda et al., 1998). It is indicated that the vast
majority of the applications use GA. However, the interest in the use of other
techniques is rising fast. Moreover, the applications of hybrid algorithms in the
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solution of multi-objective optimization problems have generated significant
research interest in recent years. A number of hybrid algorithms have been
developed and are being continuously improved to achieve better performance.

2.4 Heuristic Optimization Techniques

Several heuristic tools have evolved in the last decades that facilitate solving
many optimization problems that are previously difficult or impossible to solve.
These tools include GA, EP, TS, SA, PSO, etc. Reports of applications of each of
these methods have been widely published. Recently, these new heuristic
techniques have been combined among themselves and with other traditional
approaches to solve complicated optimization problems. Principles of the main
heuristic optimization techniques are summarized in this section.

2.4.1 Classification of heuristic optimization techniques
A. Evolutionary computation

Natural evolution is a hypothetical population-based optimization process.
Simulating this process on a computer results in stochastic optimization
techniques that can often outperform conventional optimization methods when
applied to difficult real-world problems. EC-based techniques have received
significant attention during the last decade, although the origins can be traced
back to the late 1950’s (Fogel, 2000). EC is a general adaptable concept for
problem solving, especially well suited for solving difficult optimization
problems. The main advantage of evolutionary search compared to other
approaches lies in the gain of flexibility and adaptability to the task at hand, in
combination with robust performance and global search characteristics (Back et
al., 1997).

The majority of current implementations of evolutionary algorithms
descend from three strongly related but independently developed approaches:
genetic algorithms (GA), evolutionary programming (EP), and evolution strategies
(ES). The main differences of the three approaches lie in the representation of
individuals, the design of the variation operators, and the selection mechanism.

Genetic algorithms
GA, introduced by Holland (1962) and subsequently studied by Goldberg (1985)

and others such as Koza (1989) and Eshelman and Schaffer (1993), is a heuristic
search based on natural evolution theory. GA works on binary strings of candidate
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solutions. It can discover optimal point for complicated and uncertain area by
evolving its genetic material during the search process (Holland, 1975). The
crossover, mutation, and selection mechanisms are used in the evolution. It can
deal with non-smooth, discontinuous, and non-differentiable objectives as well as
constraints. However, Wright (1991), Back (1993), and Lai et al. (1997) indicate
that the binary representation has some disadvantages. The coding function may
introduce an additional multimodality, thus making the combined objective
function more complex than the original problem.

Evolutionary programming

EP, introduced by Fogel (1962) and extended by Burgin (1974), Fogel (1994),
Eiben et al. 1999, and others, is a stochastic optimization strategy similar to GA,
which places emphasis on the behavioral linkage between parents and their
offspring, rather than seeking to emulate specific genetic operators as observed in
nature. EP is a useful method of optimization when other techniques such as
gradient descent or direct analytical discovery are not possible. Combinatorial and
real-valued function optimization problems are well suited for EP (Fogel, 2000).

Evolution strategies

ES, developed by Rechenberg (1973) and extended by Herdy (1992), Ostermeier
(1992), and others, employs real-coded variables and, in its original form, it relied
on mutation as the search operator. It has evolved to share many features with GA.
The major similarity between these two types of algorithms is that they maintain
populations of potential solutions and use a selection mechanism for choosing the
best individuals from the population. The main differences are as follows: ES
operate directly on floating point vectors while classical GA operates on binary
strings. GA relies mainly on recombination to explore the search space, while ES
uses mutation as the dominant operator. In addition, ES is an abstraction of
evolution at individual behavior level, stressing the behavioral link between an
individual and its offspring, while GA maintains the genetic link.

B. Particle swarm optimization

PSO is a new methodology in evolutionary algorithm that is somewhat similar to
GA in that the system is initialized with a population of random solutions (Abido,
2002a). Unlike other algorithms, each potential solution, called a particle, is
assigned a randomized velocity and then flown through the problem hyperspace.
PSO has been found to be extremely effective in solving a wide range of
engineering problems. It is easy to implement and it solves problems very quickly.
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C. Ant colony search algorithm

Ant colony search algorithms mimic the behavior of real ants. It is known that real
ants are capable of finding shortest path from food sources to the nest without
using visual cues. They are also capable of adapting to changes in the
environment, for example, finding a new shortest path once the old one is no
longer feasible due to a new obstacle (Dorigo et al., 2006). The studies by
ethnologists reveal that these capabilities are essentially due to what is called
pheromone trails which ants use to communicate information among individuals
regarding path and to decide where to go. Ants deposit a certain amount of
pheromone while walking, and each ant probabilistically prefers to follow a
direction rich in pheromone rather than a poorer one.

D. Tabu search

TS is a gradient-descent search with memory (Abido, 2002b). The memory
preserves a number of previously visited states along with a number of states that
might be considered unwanted. This information is stored in a tabu list. The
definition of a state, the area around it and the length of the tabu list are critical
design parameters. In addition to these tabu parameters, two extra parameters are
often used: aspiration and diversification. Aspiration is used when all the
neighboring states of the current state are included in the tabu list. In that case, the
tabu obstacle is overridden by selecting a new state. Diversification adds
randomness to this otherwise deterministic search. If the tabu search is not
converging, the search is reset randomly.

E. Simulated annealing

SA is based on local search in which each movement is accepted if it improves the
system energy. Other possible solutions are also accepted according to a
probabilistic criterion. Such probabilities are based on the annealing process and
they are obtained as a function of the system temperature (Wong and Fung, 1993).
In a large combinatorial optimization problem, an appropriate perturbation
mechanism, cost function, solution space, and cooling schedule are required to
find an optimal solution with SA.

2.4.2 The structure of an evolutionary algorithm
Evolutionary algorithms mimic the process of natural evolution, which is the
driving process for the emergence of complex and well-adapted organic

structures. Evolution is the result of the interplay between the creation of new
genetic information and its evaluation and selection. A single individual of a
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population is affected by other individuals of the population, as well as by the
environment. The better an individual performs under these conditions, the greater
is the chance for the individual to live for a longer while and generate offspring.
This neo-Darwinian model of organic evolution is reflected by the structure of the
following general evolutionary algorithm (Back et al., 1997).

Main algorithm:
t=0;
initialize P(1);
evaluate P(t);
while not terminate do
P'(t) = variation [P(t)];
evaluate [P'(t)];
P(t+1)=select [P'(t)uQ];
t=t+1;
end

In this algorithm, P(t) denotes a population of g individuals at
generation t. Q is a special set of individuals that might be considered for
selection, e.g., Q = P(t) . An offspring population P’(t) of size A is generated by
means of variation operators such as recombination or mutation from the
population P(t). The offspring individuals are then evaluated by calculating the
objective function values for each of the solutions represented by individuals in
P’(t), and selection based on the fitness values is performed to drive the process
toward better solutions. It should be noted that A=1 is possible, thus including so-
called steady-state selection schemes, if used in combination with Q =P(t).
Furthermore, by choosing 1< A < u, an arbitrary value of the generation gap is

adjustable, such that the transition between strictly generational and steady-state
variants of the algorithm is also taken into account by the formulation offered
here. It should also be noted that 1 > x, i.e., a reproduction surplus, is the normal

case in nature.

2.5 Mixed-Integer Nonlinear Programming

Mixed integer nonlinear programming (MINLP) refers to mathematical
programming with continuous and discrete variables and nonlinearities in the
objective function and constraints. The general form of a MINLP is:

minimize f(x,y)

subject to g(x,y) <0
Xe X
yeVY
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The function f(x, y) is a nonlinear objective function and g(x, y) a nonlinear
constraint function. The variables x, y are the decision variables, where y is
required to be integer valued. X and Y are bounding-box-type restrictions on the
variables. MINLP problems are precisely so difficult to solve, because they
combine all the difficulties of both of their subclasses: the combinatorial nature of
mixed integer programs (MIP) and the difficulty in solving nonconvex nonlinear
programs (NLP). Methods for solving MINLP include innovative approaches and
related techniques taken and extended from MIP. QOuter Approximation (OA)
methods (Duran and Grossmann, 1986), Branch-and-Bound (BB) (Quesada and
Grossmann, 1992), Extended Cutting Plane methods (Westerlund and Petersson,
1995), and Generalized Bender’s Decomposition (GBD) (Geoffrion, 1972) for
solving MINLP have been discussed in the literature since the early 1980’s.

BB starts out forming a pure continuous NLP problem by dropping the
integrality requirements of the discrete variables. In addition, OA and GBD
require the successive solution of a related MIP problem. Both algorithms
decompose the MINLP into an NLP subproblem that has the discrete variables
fixed and a linear MIP master problem. The main difference between GBD and
OA is in the definition of the MIP master problem. OA relies on linearizations,
effectively reducing each subproblem to a smaller feasible set, whereas the master
MIP problem generated by GBD is given by a dual representation of the
continuous space.

2.6 Conclusion

ATC calculation is a complicated task involving determination of TTC and two
margins, TRM and CBM. Wide varieties of mathematical methods have been
proposed for ATC calculations with various degrees of success. Methods based on
OPF receive significant attention because of flexibility of objective function,
which can be implemented by many optimization techniques. For the optimally
placed OPF with FACTS problem, it is a MINLP problem with continuous and
discrete variables. Conventional optimization methods could not be solved
MINLP problem effectively. Therefore, Al techniques are used to solve the
MINLP problem for better solutions than those from conventional methods.

In the next chapter, a new hybrid evolutionary algorithm based on EP, TS,
and SA is proposed to solve the OPF-based ATC problem. The algorithm is based
on full ac OPF solution to account for the effects of active and reactive power
flows, voltage limits, and line flow limits. The real power output of generators in
source area, real and reactive load in sink area, and bus voltage of generators can
be adjusted to obtain the maximum transfer capability. Test results from the
proposed HEA approach are compared with those from LATC, CPF, EP, TS,
hybrid TS/SA, and IEP methods.
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Chapter 3

Optimal Power Flow-Based
Avalilable Transfer Capability
Determination

In this chapter, ATC determination is formulated as an OPF problem. The
objective function is to maximize power transfers between different control areas
constrained by load flow equations and system operating limits. A novel hybrid
evolutionary algorithm (HEA) is proposed to solve the optimization problem. Test
results on three test systems from the proposed method are compared with those
from LATC, CPF, EP, TS, hybrid TS/SA, and IEP methods.

3.1 OPF-Based ATC Problem Formulation

3.1.1 Objective function

An ATC function in (3.1) is used as an objective function of the OPF-based ATC
determination. The optimal solution provides a feasible ATC value that can be
transferred from a specific set of generators in a source area to loads in a sink area
within real and reactive power generation limits, line thermal limits, voltage
limits, and voltage and angle stability limits. State variables are dependent
variables of NR power flow. Output variables which account for solutions of the
proposed optimization methods are parts of the state variables.
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Maximize F=ATC=TTC-TRM —-CBM (3.1)

Subject to
N
Py — Poi — D VV,Y, cos(6, =&, +6,) =0 (3.2)
j=1
N
Qs — Qi + Y VIV,Y; sin(g, -5, +5,) =0 (3.3)
j=1

PIM" < P, < PO Vie NG (3.4)

&N < Qg < Qe Vie NG (3.5)
Vimin SVI Svimax \vll c N (36)
S| < S VieNL (3.7)
VCPI, <1 VieN (3.8)
‘5”‘ <5 Vie NL (3.9)
Where
F objective function,
ATC available transfer capability,
TTC total transfer capability,
TRM transmission reliability margin,
CBM capacity benefit margin,
Input Variables
Y. 6, magnitude and angle of the ij th element in bus admittance matrix,
P, P lower and upper limits of real power generation at bus i,
QM QI lower and upper limits of reactive power generation at bus i,
VAR AL lower and upper limits of voltage magnitude at bus i,
S ith line or transformer loading limit,
s critical angle difference between bus i and j,
N, NL number of buses and branches,
NG number of generator buses,
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State Variables

P Qg real and reactive power generations at slack bus,
ViV, voltage magnitudes of bus i and j,
35,0, voltage angles of bus i and j,

Output Variables

P, Qg real and reactive power generations at bus i,

P, Qp; real and reactive loads at bus i,

|S, | ith line or transformer loading,

VCPI. voltage collapse proximity indicator at bus i, and
|5 | angle difference between bus i and j.

Voltage collapse proximity indicator (VCPI) in (3.8) is used to directly
determine voltage collapse conditions within voltage stability limits. VCPI is a
general constraint which could be static and dynamic. In addition, it provides
accurate voltage collapse conditions without solving dynamic equations which
consumes more computation time. Based on the optimal impedance solution of an
equivalent 2-bus system in Figure 3.1, VCPI at a load bus i is defined as the ratio

of the Thevenin’s equivalent impedance, Z;Zp;, looking into the port between

bus i and ground, and the impedance of the load at bus i, Z,Z¢, (Chebbo et al.,
1992). The load at bus i can be increased to the maximum value at the voltage
collapse point or critical point when Z; is equal to Z; as shown in Figure 3.2.

Therefore, for the maximum power transfer to a load at bus i without violating
voltage stability limits, VCPI at the load bus i in (3.10) must equal to or less than
one.

VCPI, =%sl (3.10)
4 I
E
2, 2P, V
() )
22
Source Load
N

Figure 3.1 An equivalent 2-bus system.
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Figure 3.2 Power-voltage curve.

Angle stability constraints considered can be either steady-state (Singh et
al., 2001) or dynamic (Yuan et al., 2003). This research considers only steady-
state angle stability constraint. Critical angle displacement in (3.9) is used as a
criterion to determine steady-state angle stability limit. The system stability limit
is defined in term of the stability margin in (3.11). The amount of margin, which
is desirable in a given situation, is dependent on many factors. For a reasonable
level of typical heavy line loading situations, it is assumed that the stability
margin is in the range of 30-35% as shown in Figure 3.3. Therefore, the angle
difference between buses i and j across a transmission line is kept within a

critical angle difference, which is 44° as recommended in (Dunlop et al., 1979;
Taylor, 1994).

Stability margin = @xloo % (3.11)
Where

P maximum power transfer ability of a system and

P.ied operating level of power transfer.

Voltage and angle stability limits are treated as OPF constraints in (3.8)
and (3.9), respectively. During the optimization, inequality constraints of state
variables including bus voltage magnitudes, real power generation at slack bus,
reactive power generation, line or transformer loading, angle and voltage stability
limits are enforced using a penalty function in (3.12) (Wood and Wollenberg,
1996).
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Figure 3.3 Power-angle curve.

PF =K, | h(P) + 2 (@) + 3 0%) + D (S, )+ 3 sy )+ D h(vept,)

(3.12)
(x=x™)? if x >x™
h(x)=¢ (x™-x)* ifx <x™ (3.13)
0 ifx™<x <x™
Where
XN xmax lower and upper limits of variable x,
k penalty weighting coefficient. By experiments, the penalty

coefficient is set to 10° since the lower coefficient value results in
an oscillation of HEA solution. The suggested range of penalty
coefficient is between 103-10° (Wood and Wollenberg, 1996).

3.1.2 ATC determination

ATC calculation in (3.1) involves determination of TTC and two margins, TRM
and CBM. Mathematically, ATC is defined in (3.14).

ATC=TTC-TRM -CBM (3.14)
To determine ATC value of a power transaction between different control
areas, an interconnected power system is divided into three kinds of areas: source

or sending area, sink or receiving areas, and external areas. An area can be defined
in an arbitrary fashion. It may be an individual electric system, power pool,
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control area, subregion, etc (Yuan et al., 2003). Two types of transactions (Kumar
et al., 2004) are considered.

Bilateral transaction

A bilateral transaction is made directly between a seller and a buyer. The seller
injects a certain amount of power at one generator bus and the buyer receives this
power at the other load bus. Each bilateral transaction between a seller at bus i
and a buyer at bus j satisfies the power balance equation in (3.15).

P.-P, =0 (3.15)

i Dj

Where
P, real power generation at bus i and
P real power load at bus j.

Dj

Multilateral transaction

A multilateral transaction trading among several parties is arranged by a
scheduling coordinator. Mathematically, a multilateral transaction involving
several sellers and buyers can be expressed in (3.16). To facilitate the multilateral
transaction, a weighting factor or a relative participation factor of generators
involved on seller bus side and loads on sink bus side is set to 1.0. The
optimization methods simultaneously search for the maximum allowable
individual generation and load in each areas. Using pre-specified participation
factors, HEA will converge faster due to the reduced search space, but it may lead
to a lower ATC value.

D Pi—> Py =0 (3.16)
ieS jeB

Where

S set of sellers who sell the power to buyers and

B set of buyers who buy the power from the sellers.

To define a specific power transaction from a source to a sink area without
curtailing existing ones, it is assumed that in each area, generators belong to the
same owner and loads belong to the same load serving entity. The utility in a sink
area wants to import power from source area. Only generations in the source area
and loads in the sink area are adjusted to create a generation excess in the source
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area and an increasing load in the sink area, thereby automatically resulting in an
electric power transfer from the source to the sink area These differential
adjustments in each area’s generation and load levels are increased until
equipment or system limit is reached, or a transfer test level is achieved, taking
into account the system thermal, voltage, and stability effects.

3.1.3 TTC determination

TTC is the maximum electric power that can be transferred over the network in a
reliable manner. It is the main component of the ATC computation. The OPF-
based ATC determination defined in (3.1) enables transfers by increasing the
complex load with uniform power factor at every load buses or a group of load
buses in a sink area, ND_SNK, and increasing the injected real power at generator
buses in a source area, NG_SCE, until a system limit is incurred. The total real
power load in the sink area is used in the objective function to determine the
maximum feasible TTC value similar to that defined in the CPF and RPF
methods. Therefore, TTC is defined in (3.17).

ND _SNK
TTIC= ) P, (3.17)

i=1

3.1.4 TRM determination

TRM is the amount of transmission transfer capability necessary to ensure that the
transmission network is secure under a reasonable range of uncertainties in system
conditions. For TTC determination considering TRM, load uncertainty is taken
into consideration as random load increased within 2% of base case values in
every load flow evaluations. Considering base case configuration, let TTC, be the
maximum amount of power transfer without contingency constraints. Similarly,
let TTCx be the maximum amount of power transfer under the contingency k.
Therefore, a feasible contingency TTC value considering TRM is given in (3.18).

TTC=Min{TTC,, TTCy, ..., TTC} (3.18)

The contingency k to be analyzed will depend on the pre-specified
contingency ranking. If the number of contingencies goes up to ensure more
reliable transfers, the transfer capability will obviously be smaller. For a large
power system, contingency screening and ranking techniques may be used to find
those critical contingencies whose unavailability will have the largest effect on
transfer capability for a particular area to area transfer. In this research, only the
outage of the largest generator in each area and the outage of tie lines are included
in the contingency list.
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3.1.5 CBM determination

CBM is the amount of transmission transfer capability reserved by load serving
entities to ensure access to generation from interconnected systems to meet
generation reliability requirements. Allocation of CBM to individual areas can be
determined either by deterministic or probabilistic methods (NERC, 1995b;
NERC, 1999). This research considers CBM determination based on single area
generation reliability evaluation using a probabilistic method proposed in (Ou and
Singh, 2002). For hourly load model, loss of load expectation (LOLE) < 2.4 hour
per year is selected as a reliability criterion. To meet the specific reliability
criterion, additional installed capacity is required. This additional capacity is
considered as the CBM. To incorporate CBM into ATC, CBM is subtracted from
TTC directly.

The generation model required in the loss of load approach is known as a
capacity outage probability table, which is an array of capacity level and
cumulative probability. The cumulative probability of a particular capacity outage
state of X MW after a unit of capacity C MW and forced outage rate U is
added is given in (3.19) (Billinton and Allan, 1996). The expression is initialized
by setting P’'(X)=1.0 for X <0 and P’(X) =0 otherwise.

P(X)=(1-U)P(X)+U)P'(X-C) (3.19)

Where P’(X) and P(X) are cumulative probabilities of the capacity outage state
of X MW before and after the unit are added, respectively.

LOLE index can be obtained using daily peak load variation curve
depicted in Figure 3.4. The total LOLE made by capacity outage O, in the study
interval is calculated in (3.20).

n

LOLE =) (t, —t._,)P, (3.20)
k=1

Where

n number of unit states,

t number of time units that an outage 0, would result in a loss of load,

k
P cumulative outage probability for capacity state O, , and

O, magnitude of the kth outage in the system capacity outage probability
table.
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Figure 3.4 Time periods (a) before and (b) after CBM is added.

3.2 Hybrid Evolutionary Algorithm for OPF-Based
ATC Determination

To improve the robustness of evolutionary computation techniques, a new hybrid
evolutionary algorithm (HEA) integrating EP, TS, and SA methods is proposed.
The HEA starts with random generation of initial individuals in multi-populations
and then the mutation and reassignment are proceeded until the best individual,
which has the highest fitness, is found (Jirapong and Ongsakul, 2007a). The HEA
approach has special features and merits described as follows:

1. Multiple population search with various mutation operators is designed to
enhance search diversity and improve population update, providing higher
quality of solutions than those from single population search.

2. Reassignment strategy is carried out to fuse and exchange the search
information of all subpopulations so that premature convergence caused by
consistency of individuals in a single population will be alleviated.

3. Selection with a probabilistic updating strategy based on TS and annealing
schedule of SA is applied to avoid dependency on fitness function and to
avoid being trapped in local optimal solutions.

4. The algorithm can easily facilitate parallel implementation on parallel

computers to reduce the elapsed time without sacrificing the quality of
solution.
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The HEA approach is used to simultaneously search for real power
generations in a source area excluding slack bus, generation bus voltages, and real
power loads in a sink area for determining the optimal solutions of the objective
function defined in (3.1). A procedure to determine ATC value using the HEA is
shown in Figure 3.5. A flowchart of the HEA is depicted in Figure 3.6, which can

be explained as follows:

Input system data and
define a power transaction

v

Solve base case power flow
(no transfer)

v

Perform the HEA approach
for solving the optimization problem

v

Compute TTC, TRM, and CBM

v

Compute ATC from
the optimal solution

Figure 3.5 Flow chart of ATC determination using the HEA approach.
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Figure 3.6 Flow chart of OPF-based ATC determination using the HEA approach.
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Representation of solution

An individual in a population represents a candidate of OPF solution. Each
individual consists of OPF control variables coded by real number. The coded
control variables employed in the algorithm are real power generation output of all
generator buses in the source area, voltage magnitudes of all generator buses
including slack bus, and real power demand of all load buses in the sink area. The
pth individual in a population is represented by a trial solution vector in (3.21).

S, = [Pei Veis PDj] (3.21)
Where

S, trial solution vector of the pth individual,

Ps; real power generation at bus i in the source area,

Vs voltage magnitude of generator at bus i including slack bus, and
Po,; real power load at bus j in the sink area.

Space division

Space division strategy is used to divide the whole population size P into M
subpopulations according to the number of mutation operators used. Therefore,
the search process can be performed in parallel to enhance performance of
exploration and speed of convergence.

Initialization

Each element of the trial vector is initialized randomly within its search space by
using uniform random number distribution ranging over the feasible limits of each
control variable in (3.22).

X, = XM+ u- (X" - x™") (3.22)
Where

X; ith element of the individual in a population,

XM, X lower and upper limits of the ith element of the individual, and

u uniform random number in the interval [0,1].
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Power flow solution

During iterations, a full AC Newton-Raphson (NR) power flow analysis is used to
check the feasibility of each individual solution. If the power flow of any
individuals fails to converge, such individuals will be removed and replaced by
new randomly created individuals.

Fitness function

Fitness function is used to measure the optimality or quality of each candidate
solution with respect to the objective being optimized. The objective function in
(3.1) is taken as the fitness function of the HEA approach.

Cooling schedule procedure

The initial temperature of each subpopulation is determined from the objective
value of the best and the worst individual, and the probability of accepting the
worst individual with respect to the best individual expressed in (3.23). After
reassignment strategy, the temperature is cooled down by the temperature
annealing function or cooling schedule in (3.24).

~ (meax _ mein)

Top=—""""> 3.23
0,m In pr ( )

Ton=A"""Tg, (3.24)

Where

Tom initial temperature of the mth subpopulation,

F™" FM™  objective value of the worst and best individuals in the mth
subpopulation,

P, probability of accepting the worst individual with respect to the
best individual,

Tim annealing temperature of the mth subpopulation after the rth
reassignment,

A rate of cooling, and

r iteration counter of reassignment strategy.
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Mutation

In different subpopulations, different mutation operators are used to create new
offspring subpopulation so that many hybrid operators are applied to enhance the
search diversity. Two mutation operators including Gaussian and Cauchy are
applied. A set of trial solution vectors, SS(S®"), is generated by perturbing the
current solution vector, S™", using the uniform probability distribution function.
Each element of the offspring is calculated in (3.25). If any mutated value exceeds
its limits, it will be recalculated until it is within the limits. Mutation intensifies
with the increasing number of iterations. The term a™® in (3.26) is employed to
reduce mutation step size when the iteration number is increased. The reason is to
diversify the search at the beginning and intensify when the iteration counter is
increased.

Xei = Xei+ 0y En (3.25)

O = Tr,m X a(r—l) . (Ximax _ Ximin) (326)

Where

X i ith element of the kth offspring individual,

X i ith element of the kth parent individual,

Oy mutation step size for the ith element of the kth individual,

& mutation operator of the mth subpopulation e.g. N(0,1), C(0,1),

N(0,1) Gaussian random number with mean 0 and standard deviation 1,

C(0,1) Cauchy random number,

a positive number slightly less than one, and

X" x ™" subinterval’s or interval’s upper and lower limits of ith element of
the individual.

Tabu list

Tabu list is used to prevent the entrapment in local optima. It is a finite length
first-in first-out structure, which records a set of current best solutions visited.
Tabu list may be viewed as a ‘meta-heuristic’ superimposed on other heuristic
methods. It is designed to jump local optima and prevent the cycling movement. A
new trial solution vector classified as tabu is placed on top of the list and the
oldest trial vector is taken out from the list.
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Aspiration criterion

Aspiration criterion is a rule used to override a tabu restriction. If a certain move
is forbidden by tabu restriction, the aspiration criterion, when satisfied, can make
this move allowable. The aspiration criterion in (3.27) adopts a probabilistic
acceptance criterion of SA. When the probabilistic acceptance criterion is higher
than a uniform randomly generated variable in the interval [0,1], the tabu
restriction is overruled.

1

= 3.27

Pl 1+exp(-A/T, ) (3:27)

Where

Pim probabilistic acceptance criterion of the kth offspring individual
within the mth subpopulation, and

A difference of objective values between the kth offspring individual
and its corresponding parent individual, i.e. the kth parent
individual.

If p,.,=1, the kth offspring individual of the mth subpopulation will be

selected to be a new parent individual for next generation. Otherwise, a uniform
random number, U, in the interval [0,1] is generated and compared to p, .. If p, |

>U, the kth offspring individual will be accepted, otherwise, their corresponding
parent will be selected.

Reassignment strategy

To perform the reassignment strategy, tournament scheme is used to select new
current parent population from the combined population of current parent
(St .., SMMY and new offspring (SM™..., SM™) individuals of all
subpopulations. Each individual in the combined population is assigned a weight
value according to the competition in (3.28). Each individual has to compete with
Nt randomly-selected individuals in one-by-one basis. If the individual wins a
selected opponent, it will obtain one from this competition. Otherwise, it will
obtain zero. The summation of scores from Nt competitions is a competition score,
W, of the kth individual. After sorting the combined population of 2M individuals
in the descending order of weight values, each new current parent solution
individual of all subpopulations will be randomly selected from a set of the first
Mth sorted best solution individuals.
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Nt {1 if F >F

W, = . (3.28)
10 otherwise

Where

W, weight value of kth individual in combined population,

F fitness value of kth individual in combined population,

F fitness value of rth opponent randomly selected from the combined

population based on r=| 2-M -u+1],
Nt number of competitors.

Termination criteria

There are three termination criteria used in the proposed HEA approach. It will
stop whenever any one of three criteria is met. The first termination criterion is set
as the maximum number of generations of each subpopulation and the second
termination criterion is the number of reassignment required. The algorithm will
be stopped if there is no improvement of the best fitness within 50 generations as
the third termination criterion. In addition, these criteria are applied to all the
methods for a fair comparison.

3.3 Evolutionary Computation Methods for ATC
Determination

3.3.1 Evolutionary programming

Based on EP approach (Lai, 1998), an EP-based algorithm proposed for solving
the OPF-based ATC determination is depicted in Figure 3.7. Main components of
the algorithm are described as follows:

Representation of solution

Each individual consists of OPF control variables coded by real number. The pth
individual in a population is represented by a trial vector in (3.29).

S, =[Ps.Vai: Pyl (3.29)
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Initialization

Each element of the trial vector is initialized randomly within its search space by
using uniform random number in (3.30).

max

X, = XM U (X" - x™") (3.30)

Power flow solution

During iterations, a full AC NR power flow analysis is used to check the
feasibility of each individual solution.

Fitness function

The objective function in (3.1) is taken as the fitness function of the EP approach.

Mutation

Each element of the offspring individual is mutated by using the Gaussian
mutation operator in (3.31).

< Initialization )

Solve power flow
and calculate fitness

‘ Set Gen =1 ‘

<

Mutate individuals in the
population

Solve power flow and
calculate fitness of new
individuals @@

‘ Selection ‘

ermination criterion
satisfied?

e )

Figure 3.7 Flow chart of OPF-based ATC determination using the EP approach.
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Xe . =X ; +N(0,6¢)) (3.31)

O = (XM —x™" (% + ag] (3.32)

N(0,0%)) Gaussian random number with a mean of 0 and a standard
deviation of &, ,,

f, fitness value of the kth individual,

f o the maximum fitness of the parent population, and
g iteration counter.

Selection

Each individual in the combined population of parent and offspring individuals is
assigned a weight value according to the tournament scheme competition in
(3.33). A set of the first Pth sorted best weight values individuals from the
combined population of 2P individuals will be selected as a new current parent
population.

1 ifF>F

Nt
W, = 3.33
‘ ;{0 otherwise (3.33)

Termination criterion

There are two termination criteria used in the EP algorithm. It will stop whenever
any one of two criteria is met. The first termination criterion is set as the
maximum number of generations. The algorithm will be stopped if there is no
improvement of the best fitness within 50 generations as the second termination
criterion.

3.3.2 Tabu search

Based on TS approach (Abido, 2002b), a TS-based algorithm proposed for solving
the OPF-based ATC determination is shown in Figure 3.8. Main components of
the algorithm are described as follows:
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Representation of solution

Each individual consists of OPF control variables coded by real number. The pth
individual in a population is represented by a trial vector in (3.34).

Sp = [PGi Vair PDj] (3.34)

Initialization

Each element of the trial vector is initialized randomly within its search space by
using uniform random number in (3.35).

max X_min) (335)

X, = X" +u-(x

Power flow solution

During iterations, a full AC NR power flow analysis is used to check the
feasibility of each individual solution.

Perturbation

A set of trial neighbourhood solution vectors is generated by perturbing the
current solution vector using the uniform probability distribution function in
(3.36).

X=X, L (x™ — x™™) (3.36)
' g

Tabu list
A new trial solution vector classified as tabu is placed on top of the list and the
oldest trial vector is taken out from the list.

Aspiration criterion
The aspiration criterion is used to override the tabu status of a move if this move
yields a solution which has better objective function value than the aspiration

level, which is the objective value of current trial solution vector from previous
iteration.
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Termination criterion

There are two termination criteria in the TS approach similar to those used in the

EP approach.
Initialization
Generate S

Solve power flow
and calculate F (S"”M’)

Qet ST = giitial
SJw.\-/ — Sini/iul
Set Gen=1

g

Perturbation
Generate a set of P trial-

curr:

solution vectors, SS(S°"}

Solve power flow

Calculate F(S,) , p=1,...P

Sort §'in descending based on F
Set k=1

Set Gen = Gent1
A

Is S, tabu ?

A

Add S, to the tabu list
Set S =,

Set k= k+1
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Set 5" = §,

NO Is k>P 92 YES

NO YES

Termination criterion
satisfied?

STOP >

Figure 3.8 Flow chart of OPF-based ATC determination using the TS approach.
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3.3.3 Hybrid tabu search and simulated annealing

A hybrid TS/SA approach is a hybrid algorithm of TS and SA by using TS as the
main algorithm (Bhasaputra and Ongsakul, 2006). The perturbation of the TS/SA
imitates from SA algorithm and the aspiration criterion is adapted by using
probabilistic acceptance criterion of SA instead of aspiration level of TS. The
cooling schedule of SA is also applied in the perturbation. The hybrid TS/SA
algorithm shown in Figure 3.9 can be described as follows:

Representation of solution

Each individual consists of OPF control variables coded by real number. The pth
individual in a population is represented by a trial vector in (3.37).

Sp =[Fsi:Vei Pyl (3.37)

Initialization

Each element of the trial vector is initialized randomly within its search space by
using uniform random number in (3.38).

X = X'min +Uu _(Ximax _ Ximin) (338)

Power flow solution

During iterations, a full AC NR power flow analysis is used to check the
feasibility of each individual solution.

Cooling schedule

The initial temperature of each subpopulation is determined in (3.39). The

temperature is cooled down by the temperature annealing function or cooling
schedule in (3.40).

~ (meax _ mein)

Tom = BT (3.39)
Ton=A"""Tg, (3.40)
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Perturbation

Each element of the offspring individual is generated by using the uniform
probability distribution function in (3.41).

Xll,i = Xyi "'Tr,m U '(Ximax - Ximin) (3-41)

Tabu list

The tabu list utilized in the hybrid TS/SA approach is the same as that used in the
TS algorithm.

Aspiration criterion

The aspiration criterion employed adopts a probabilistic acceptance criterion of
SA similar to that used in the TS approach as shown in (3.42).

1

= (3.42)
1+exp(-A/T, )

pk,m

Termination criterion

There are two termination criteria in the hybrid TS/SA approach similar to those
used in the EP approach.
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Figure 3.9 Flow chart of OPF-based ATC determination using the TS/SA.
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3.3.4 Improved evolutionary programming

An IEP approach is a hybrid algorithm of EP and SA by using EP as the main
algorithm (Jirapong and Ongsakul, 2007b). Based on IEP approach, an IEP-based
algorithm for solving the OPF-based ATC determination is shown in Figure 3.10.
Main components of the algorithm are described as follows:

Representation of solution

Each individual consists of OPF control variables coded by real number. The pth
individual in a population is represented by a trial vector in (3.43).

Sp =[Fsi Vais PDj] (3.43)

Space division

Space division strategy is used to divide the search space into subspaces. The
division can be made in a certain way. For example, if there are two
subpopulations, the fist control variable’s interval ranging from its minimum limit
to its maximum limit can be divided equally into two subintervals while the
interval of other control variables will be used throughout their feasible range.

Initialization

Each element of the trial vector is initialized randomly within its search space by
using uniform random number in (3.44).

X, = XM U (X" = x™") (3.44)

Power flow solution

During iterations, a full AC NR power flow analysis is used to check the
feasibility of each individual solution.

Fitness function

The objective function in (3.1) is taken as the fitness function of the IEP
algorithm.
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Figure 3.10 Flow chart of OPF-based ATC determination using the IEP approach.
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Cooling schedule

The initial temperature of each subpopulation is determined in (3.45). The
temperature is cooled down by the temperature annealing function in (3.46).

(meax _ mein)

Tom= _T (3.45)
Ton=A"""Tg, (3.46)
Mutation

Two mutation operators including Gaussian and Cauchy are applied for each
subpopulation. Each element of the offspring individual is determined in (3.47).

Xli,i =Xi T Oy § (3.47)

m

Gy =@ ("™ —x™) (3.48)

Selection

Each offspring individual is accepted to be a new parent individual for next
generation according to its probabilistic acceptance criterion. The probabilistic
acceptance criterion of the kth offspring individual can be expressed in (3.49).

P, =Min{LexpA/T, ) | (3.49)

Reassignment strategy

The individuals of all subpopulations are merged and then the whole population
will be randomly divided to form new subpopulations.

Termination criteria

The termination criteria utilized in the IEP algorithm are similar to those used in
the HEA approach.
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3.4 Continuation Power Flow for TTC Determination

Continuation power flow (CPF) method enables transfers by increasing the
complex load with uniform power factor at every load buses in the sink area and
increasing the injected real power at generator buses in the source area in
incremental steps until limits are incurred. Mathematically, TTC determination
using CPF method can be expressed as follows:

Maximize A (3.50)
Subject to
N
Psi — Py = D_VV,Y, cos(8, — 6, +5,) =0 (3.51)
j=1
N
Qs — Qo + D VV,Y; sin(g, -8, +3,) =0 (3.52)
j=1
VAL SAVARS AL VieN (3.53)
S, |< s VieNL (3.54)
Where
A scalar parameter representing the increase in bus load or
generation.

A =0 corresponds to no transfer (base case) and
A=A corresponds to the maximum transfer,

Py Qg real and reactive power generations at bus i,

P, Qui real and reactive loads at bus i,

ViV, voltage magnitudes at bus i and j,

5,0, voltage angles of bus i and j,

Y. 6, magnitude and angle of the ij th element in bus admittance matrix,

VARRAL lower and upper limits of voltage magnitude at bus i,

SHing ith line or transformer loading limit,
| Sy | ith line or transformer loading,

N number of buses,

NL number of branches, and
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Real power generations in source area, and real and reactive loads in sink area are
changed in (3.55) — (3.57).

PGi = P(; '(1+ A kGi) (3'55)

Poi = PE?i 1+ 4 kDi) (3.56)

Qoi ngi 1+ 2 -ky) (357)

Where

Pol base case real power generation at bus i in source area,

Po Qo base case real and reactive loads at bus i in sink area, and

Kai + Koi constant values used to specify the change rate in generation and
load.

According to (3.55) — (3.57), generations in the source area and loads in
the sink area are increased in successive steps with constant power factor until a
system limit is reached, or a transfer test level is achieved. The maximum real
power which can be delivered from the source area to the sing area through the
transmission network is defined as TTC value of the power transaction.

3.5 Simulation Results of ATC determination

The modified IEEE 6-bus system, modified IEEE 30-bus system, and the
modified IEEE 24-bus reliability test system (RTS) are used to demonstrate the
ATC determination using the proposed HEA method. The HEA is implemented
using MATLAB version 6.5 on an AMD Athlon64 X2 3600+ computer with 1.0
GB memory. Loads are modelled as constant power factor loads. Power System
Analysis Toolbox (PSAT) (Milano, 2005) and Power World Simulator Software
are used to perform the CPF and LATC analysis, respectively.

3.5.1 The modified IEEE 6-bus system

The modified IEEE 6-bus system in Figure 3.11 is utilized to illustrate the TTC
determination with stability limits. Thermal and voltage limits checking are
enabled for all TTC determinations. TRM and CBM are not considered in the
ATC determination. Five different combinations of power transactions including
three bilateral transactions (from bus 1 to bus 4, 5, and 6) and one multilateral
transaction (from bus 1-3 to bus 4-6) are considered.
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A. TTC determination using LATC and CPF methods

For the transaction from bus 1 to 4, using LATC method, TTC value is 1,019.64
MW and the transmission branch that causes the limit is line 1-4. Using CPF
method, TTC value is 693.36 MW and the limiting condition is the expected
voltage stability limit, if further transfers take place. CPU time of the LATC and
CPF are 1.85 sec and 3.97 sec, respectively. LATC method calculates linear
sensitivity factors for determining power transfer capability taking into account
only thermal limits on line flows. Therefore, TTC value from LATC may be
higher than that from CPF, which takes thermal, voltage, and voltage stability
limits into consideration.

Test results of other transactions shown in Table 3.1 indicate that, ignoring
voltage, reactive power, and stability effects, LATC method determines higher
TTC values than those from CPF method, which may lead to unacceptable error in
a stressed system with insufficient reactive power support and voltage control.

Figure 3.11 Diagram of the modified IEEE 6-bus system.

Table 3.1 TTC Results of the Modified IEEE 6-bus System Using LATC and
CPF Methods

Transaction LATC CPF
From To TTC (MW) Limit TTC (MW) Limit
Bus 1 Bus 4 1,019.64 Line 1-4 693.36 Vecrit
Bus 1 Bus 5 1,237.20 Line 1-5 624.55 Verit
Bus 1 Bus 6 1,271.32 Line 1-2 612.79 Verit
Bus 1-3 Bus 4-6 2,307.55 Line 3-6 1,507.53 Vecrit
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B. TTC determination using EP and HEA methods

In Table 3.2, for all bilateral transactions, the proposed HEA method can
determine the same TTC values and binding conditions as those from the CPF and
EP methods. However, for multilateral transaction, using HEA method, TTC is
2,013.17 MW, which is 33.54% and 0.28% more than those from CPF and EP
methods, respectively. The limiting component is line 3-6, if expected further
transfers take place, similar to the binding condition of the EP method. The
optimal solutions of the multilateral transaction are shown in Table 3.3 and a rapid
HEA convergence characteristic of the transaction is shown in Figure 3.12.

Table 3.2 TTC Results of the Modified IEEE 6-bus System Using EP and HEA

Methods
Transaction EP HEA
From To TTC (MW) Limit TTC (MW) Limit
Bus 1 Bus 4 693.36 Vecrit 693.36 Verit
Bus 1 Bus 5 624.55 Verit 624.55 Verit
Bus 1 Bus 6 612.79 Verit 612.79 Verit
Bus 1-3 Bus 4-6 2,007.53 Line 3-6 2,013.17 Line 3-6

Table 3.3 Optimal Solutions of Bilateral Transaction on the Modified IEEE 6-bus

System

Parameter CPF EP HEA
VG1 (p.u.) 1.05/0.0 1.05/0.0 1.05/0.0
VG2 (p.u.) 1.05 /-50.85 1.05 /-18.39 1.05 /-21.50
VG3 (p.u.) 1.07 /-57.12 1.07 [-23.77 1.07 /-29.00
PG1 (MW) 1234.74 832.27 878.78
PG2 (MW) 358.93 995,57 999.82
PG3 (MW) 430.72 761.38 723.55
PD4 (MW) 502.51 681.19 692.01
PD5 (MW) 502.51 626.40 592.26
PD6 (MW) 502.51 699.94 728.91
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Figure 3.12 HEA convergence characteristic.

Table 3.4 TTC Results and CPU Times of Bilateral Transaction on the Modified
IEEE 6-bus System

TTC (MW) EP HEA

Best 2007.53 2013.17

Average 2006.34 2012.01

Worse 2001.60 2009.77
Standard Deviation 1.93 1.15
Average CPU Time (min) 0.23 0.38

To increase a certain power transfer, CPF uses a common loading factor
for a specific cluster of generators and loads. For all bilateral transactions, CPF
can give the same TTC values as those from EP and HEA methods. However, for
the multilateral transaction, using a common loading factor may lead to a
conservative TTC value. Since the objective function is to maximize the power
transfer from source to sink areas, EP and HEA can optimize generation and
loading in each area resulting in the maximum transfer capability.

The comparison of TTC results from 20 runs shown in Table 3.4 indicate
that HEA method gives better solutions than EP method because HEA uses the
probabilistic updating strategy of SA to avoid the dependence on fitness function
and to escape from the entrapment in local optimum solutions that can occur with
EP. Furthermore, the variation of HEA best solutions is smaller as evidenced by a
smaller standard deviation than EP, leading to a more stable HEA approach.
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3.5.2 The modified IEEE 30-bus system

The modified IEEE 30-bus system in Figure 3.13 has three areas with two
generators in each area. Generators in each area are assumed to belong to the same
company and the loads belong to the same load serving entity. Five different
combinations of power transactions including T1 (from bus 1 to 10), T2 (from bus
210 12), T3 (from area 1 to 2), T4 (from area 2 to 3), and T5 (from area 3 to 1) are
considered.

hArea 1

Figure 3.13 Diagram of the modified IEEE 30-bus system.
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Figure 3.14 Implementation of HEA on (a) sequential and (b) parallel
computations.
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In this case study, CPF, EP, and HEA methods are used to determine TTC
values of the predefined power transactions. To speed up the HEA approach,
parallel implementation of HEA (PHEA) using 2 CPUs as shown in Figure 3.14 is
utilized and test results are compared to those from sequential HEA (SHEA).

For the transaction T1, using CPF method, TTC value is 17.48 MW. The
limiting condition is line flow limit at line 22-21, if expected further transfers take
place. Using EP method, TTC is 24.68 MW and the limiting condition is line flow
limit at line 22-21 similar to the binding condition of the CPF method. Using
SHEA method, TTC value is 39.79 MW, which is 127.63% and 61.22% more
than those from the CPF and EP methods, respectively. The limiting condition is
generation upper limit at bus 1. Using PHEA method, TTC value is 39.77 MW,
and the limiting component is similar to the binding condition of the SHEA
method.

For the transaction T3, using CPF method, TTC value is 60.71 MW. The
limiting condition is line flow limit at line 22-21, if expected further transfers take
place. Using EP method, TTC is 102.65 MW and the limiting component is line
27-25. Using SHEA method, TTC value is 114.86 MW, which is 89.19% and
11.89% more than those from the CPF and EP methods, respectively. The limiting
component is line 27-25, similar to the binding condition of the EP method. Using
PHEA method, TTC is 115.35 MW and the limiting component is line 27-25,
similar to the binding condition of the EP and SHEA methods. Test results of
other transactions shown in Table 3.5 indicate that TTC values from CPF are more
conservative than those from the EP and HEA-based methods. To increase a
certain power transfer, CPF uses a common loading factor for a specific cluster of
generators and loads. Therefore, CPF does not lead to the optimal generation,
loading, and generator bus voltages.

The comparisons of TTC results and CPU times evaluated by EP, SHEA,
and PHEA methods from 20 runs are shown in Table 3.6. Test results indicate that
the SHEA and PHEA methods can obtain better solutions on the best, average,
and the worst solutions than those from EP method. The HEA-based algorithms
use the probabilistic updating strategy of SA to avoid the dependence on fitness
function and to escape from the entrapment in local optimum solutions that can
occur with EP algorithm. Furthermore, the variation of the SHEA and PHEA best
solutions are smaller as evidenced by a smaller standard deviation than EP,
leading to a more stable HEA approach.

CPU times of SHEA and PHEA methods are higher than that from EP
because the best solution of HEA-based algorithm is obtained based on its
acceptance probability, which depends on the improvement of the offspring’s
objective value and the annealing procedure of SA algorithm. In addition, the
reassignment strategy of HEA-based method requires additional computing effort.
However, PHEA method can easily facilitate parallel implementation, reducing
elapsed time without sacrificing the quality of solution. The elapsed time
including the communication overhead of PHEA is reduced by 32.89%.
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Table 3.5 TTC Results of the Modified IEEE 30-bus System

CPF EP SHEA PHEA
Transaction TTC Limit TTC Limit TTC Limit TTC Limit
MW) (MW) (MW) (MW)

T1 17.48 Line 22-21 24.68 Line 22-21 39.79 PG1 39.77 PG1

T2 43.61 Line 23-15 59.51 Line 23-15 60.62 Line 23-15 60.77 Line 23-15

T3 60.71 Line 22-21 102.65 Line 27-25 114.86 Line 27-25 115.35 Line 27-25

T4 79.87 Line 22-21 9190 Line6-8 96.90 Line 27-25 95.43 Line 6-8

T5 87.02 Line 22-21 124.76 Line 27-25 191.05 Line 27-25 191.47 Line 27-25

Table 3.6 TTC Results and CPU Times of the Transaction T3 on the Modified
IEEE  30-bus System

TTC (MW) EP SHEA PHEA

Best 102.65 114.86 115.35

Average 101.70 113.57 113.91

Worst 100.20 112.12 113.62
Standard Deviation 1.32 1.10 1.13
Average CPU Time (min) 1.08 2.28 1.53

3.5.3 The modified IEEE 24-bus RTS

The modified IEEE 24-bus RTS is used to demonstrate ATC calculation using the
proposed HEA method. The modified test system is partitioned into 3 areas as
shown in Figure 3.15. A multilateral transaction from area 1 to 2 with contingency
constraints is considered. Only the outage of the largest generator in each area and
the outage of tie lines are included in the contingency list. ATC results without
and with considering TRM from the proposed HEA approach are compared to
those from EP, TS, TS/SA and IEP methods.

A. ATC Calculation without considering TRM

Base case TTC using HEA method is 718.89 MW. Considering the pre-specified
contingency constraints as shown in Table 3.7, contingency TTC value using
HEA approach is 632.09 MW without violating network constraints, which is
0.59%, 1.05%, 0.44%, and 0.14% higher than those from EP, TS, TS/SA, and IEP
methods, respectively. In addition, the TTC value is decreased by 12.07%
compared to that without contingency constraints. The critical contingency case is
the interconnected line 14-11 between those two areas outage. It is evident that
neglecting the effects of contingency constraints on TTC evaluation will
inevitably lead to insecure system operation. To meet the specific reliability
criterion, which is LOLE < 2.4 hour/year, area 1 needs to import 60 MW from
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area 2. Therefore, CBM for the critical contingency case is 60 MW. ATC value
using HEA method is 572.09 MW, which is 0.65%, 1.16%, 0.48%, and 0.16%
higher than those from EP, TS, TS/SA, and IEP methods, respectively.

Test results in Table 3.8 indicate that single-population search of EP, TS,
and TS/SA is less effective than multi-population search of IEP and HEA
methods. Even though CPU times of IEP and HEA methods are higher than those
from EP, TS and TS/SA because the best solutions of IEP and HEA are obtained
based on the acceptance probability, which depends on the improvement of the
offspring’s objective value and the annealing procedure of SA algorithm. In
addition, the reassignment strategy requires additional computing effort. However,
both IEP and HEA methods can easily facilitate parallel implementation using
more than 2 CPUs, reducing elapsed time without sacrificing the quality of
solution.

Figure 3.15 Diagram of the modified IEEE 24-bus RTS.
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Table 3.7 ATC Results of Multilateral Transaction on the Modified IEEE 24-bus

RTS Without Considering TRM

TTC Level (MW)

Case EP TS TSISA IEP  HEA

Normal 714.03 71248 716.41 714.62 718.89

Largest gen. in area 1 outage 71146 711.69 713.09 71380 716.78
Largest gen. in area 2 outage 711.67 71159 71574 71471 717.24
Line 21-22 outage 713.07 709.00 714.11 716.77 717.84

Line 17-22 outage 715.79 708.99 717.33 717.22 720.09

Line 19-20 outage 691.93 697.69 709.37 710.76 713.50

Line 14-11 outage 628.38 625.54 629.34 631.18 632.09
Contingency TTC Value (MW) 628.38 625.54 629.34 631.18 632.09
CBM of the contingency case 60.00 60.00 60.00 60.00 60.00
ATC Value (MW) 568.38 565.54 569.34 571.18 572.09

Table 3.8 ATC Results and CPU Times of Multilateral Transaction on the
Modified IEEE 24-bus RTS Without Considering TRM

TTC Value (MW) EP TS TS/SA IEP HEA
Best 628.38 62554  629.34 631.18 632.09
Average 618.49 614.57 615.48 618.66 624.32
Worst 567.63  587.53 58494  566.47  607.81
Standard Deviation 16.88 13.83 12.74 15.5 10.01
CPU Time (minute) 0.65 0.65 0.63 1.04 0.99

To compare the convergence characteristic, IEP and HEA approaches
utilize a probabilistic updating strategy based on annealing schedule of SA,
resulting in more generations required and slower convergence characteristic than
EP, TS and TS/SA methods as shown in Figure 3.16. However, the convergence
speed of HEA is improved by introducing a flexible memory of search history of
TS to prevent cycling and to avoid entrapment in local optima compared to IEP

algorithm.
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Figure 3.16 Convergence characteristic of solutions.

B. ATC Calculation considering TRM

Base case TTC with TRM using HEA method is 715.33 MW. Considering the
pre-specified contingency constraints as shown in Table 3.9, contingency TTC
value using HEA approach is 626.18 MW without violating network constraints,
which is 0.35%, 0.55%, 0.32%, and 0.33% higher than those from EP, TS, TS/SA,
and IEP methods, respectively. In addition, the TTC value is decreased by 12.46%
compared to that without contingency constraints. The critical contingency case is
the interconnected line 14-11 between those two areas outage. CBM for the
critical contingency case is 60 MW. Therefore, ATC value using HEA method is
566.18 MW, which is 0.39%, 0.61%, 0.35%, and 0.37% higher than those from
EP, TS, TS/SA, and IEP methods, respectively. Test results indicate that HEA
approach can effectively re-dispatch real power generations except slack bus in a
source area, increment of real power loads in a sink area, and optimal setting of
generation bus voltages. Even though test results show a marginal improvement of
HEA over the other optimization methods, the higher ATC for power transfer of
HEA than the other methods could lead to a substantial cost savings of daily
energy trading between different control areas.

Comparisons of TTC results and CPU times evaluated by EP, TS, TS/SA,
IEP, and HEA methods from 20 runs are shown in Table 3.10. The proposed HEA
method can obtain better results on the best, average, and the worst TTC values
than those from the other optimization methods because HEA approach uses the
selection mechanism with a probabilistic updating strategy based on TS and SA
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algorithms to avoid dependency on fitness function and to escape from the

entrapment in local optimal solutions.

Table 3.9 ATC Results of Multilateral Transaction on the Modified IEEE 24-bus
RTS Considering TRM

TTC Level (MW)

Case EP TS TSISA IEP  HEA

Normal 706.44 708.39 708.82 71190 715.33

Largest gen. in area 1 outage 70758 701.93 711.76 708.77 711.57
Largest gen. in area 2 outage 710.76 710.86 71491 71198 71431
Line 21-22 outage 705.07 706.43 706.52 712.24 705.07

Line 17-22 outage 712.05 705.18 708.83 713.34 713.53
Line 19-20 outage 679.50 688.83 691.56 697.95 700.09
Line 14-11 outage 623.99 622.76 624.19 624.12 626.18
Contingency TTC Value (MW) 623.99 622.76 624.19 624.12 626.18
CBM of the contingency case 60.00 60.00 60.00 60.00 60.00
ATC Value (MW) 563.99 562.76 564.19 564.12 566.18

Table 3.10 ATC Results and CPU Times of Multilateral Transaction on the

Modified IEEE 24-bus RTS Considering TRM

TTC Value (MW) TS TS/SA IEP HEA
Best 622.76 624.19 624.12 626.18
Average 567.96 606.05 599.82 617.23
Worst 561.59 567.21 580.31 605.15

Standard Deviation 15.45 18.86 16.39 6.41

CPU Time (minute) 0.64 0.53 0.81 0.78

Table 3.11 Comparison Between Without and With Considering TRM
(Considering Contingency and CBM)

ATC (MW)

Method without TRM with TRM Difference
EP 568.38 563.99 -0.77 %
TS 565.54 562.76 -0.49 %

TS/ISA 569.34 564.19 -0.90 %
IEP 571.18 564.12 -1.24%

HEA 572.09 566.18 -1.03 %
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Table 3.12 Comparison Between Without and With Considering Contingency
Constraints (Considering TRM and CBM)

Method . . ATC (MW) .
without contingency with contingency Difference
EP 646.44 563.99 -12.75%
TS 648.39 562.76 -13.21%
TS/ISA 648.82 564.19 -13.04 %
IEP 651.90 564.12 -13.47 %
HEA 655.33 566.18 - 13.60 %

Table 3.13 Comparison Between Without and With Considering CBM
(Considering Contingency and TRM)

ATC (MW)

Method without CBM with CBM Difference
EP 623.99 563.99 -9.62 %
TS 622.76 562.76 -9.63%

TS/SA 624.19 564.19 -9.61%
IEP 624.12 564.12 -9.61%

HEA 626.18 566.18 -9.58 %

From the comparison between without and with considering TRM as
shown in Table 3.11, test results show that the effect of TRM on ATC value is
quite small but contingency constraints and CBM have more effect on ATC value
than TRM as shown in Table 3.12 and 3.13. Test results indicate that without
considering contingency constraints or CBM may lead to unsecured power
systems or cause risk of having generation unreliability.

3.6 Conclusion

In this chapter, the HEA approach is effectively implemented to determine ATC
values of power transfers between different control areas constrained by load flow
equations and system operating limits. Test results on three test systems from the
proposed method are compared favourably with those from the other heuristic
methods. It is indicated that the HEA can effectively re-dispatch real power
generations except slack bus in a source area, increment of real power loads in a
sink area, and optimal setting of generation bus voltages, leading to an efficient
utilization of the existing power systems. In the next chapter, the HEA approach is
proposed to determine the optimal placement of multi-type FACTS controllers to
simultaneously maximize ATC and minimize system real power loss of power
transfers in deregulated power systems.
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Chapter 4

Optimal Placement of Multi-
Type FACTS controllers for
Available Transfer Capability
Enhancement

In this chapter, the HEA approach is proposed to determine the optimal
placement of multi-type FACTS controllers to simultaneously maximize ATC and
minimize system real power loss of power transfers in deregulated power systems.
The optimally placed OPF with FACTS controllers is formulated as a MINLP
problem. A combined objective function including ATC and system real power
loss is used to evaluate the feasible maximum ATC value and minimum power loss
within real and reactive power generation limits, line thermal limits, voltage
limits, stability limits, and FACTS controllers steady-state operating limits. Four
types of FACTS controllers are included: TCSC, TCPS, UPFC, and SVC. Test
results on three test systems from the proposed method are compared with those
from EP, TS, TS/SA, and IEP methods.
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4.1 OPF with Multi-Type FACTS Problem Formulation

4.1.1 Objective function

The optimally placed OPF with FACTS controllers is formulated as a MINLP
problem with continuous and discrete variables. Real power generations,
generator bus voltages, real power loads, and FACTS parameters are continuous
variables. Type, location, and number of FACTS components are discrete
variables of the MINLP problem. A combined objective function including ATC
and system real power loss functions in (4.1) is used to evaluate the feasible ATC
value that can be transferred from a specific set of generators in a source area to
loads in a sink area within real and reactive power generation limits, line thermal
limits, voltage limits, steady-state stability limits, and FACTS controllers
operating limits.

N
Maximize F=ATC-) (Py—Py) (4.1)
i=1
Subject to
m(i) n(i)
Pai = Poi + D P () + (Vi i) Zvvv 5)cos(6; (X)) =35 +6,)=0
k=1 k=1
4.2)
m(i) n(i)
QGl_QDi+ZQPi(aPk ZQUI VUk7aUk +Qy +ZVIVJYI1 )Sin(gij(xs)_é‘i +5j):O
k=1
(4.3)
PIN < P, < PO Vie NG (4.4)
Q" < Qg < QI Vie NG (4.5)
Vimin SVi SVimax vl c N (46)
S, |< s VieNL 4.7)
VCPI, <1 VieN (4.8)
‘ ‘_ S VieNL (4.9)
XIM< X < X0 (4.10)
™ <a, < a;]ax (4.11)
V <V, SV (4.12)
am'” < ay; < aLTIaX (413)
Q\;?ln < Qv| < Qmax (414)
0 < nge SNEE (4.15)
O <location, <N or NL (4.16)
Where
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F objective function,
ATC available transfer capability,

Input Variables
P, Pai™ lower and upper limits of real power generation at bus i,

in Qax lower and upper limits of reactive power generation at bus i,
VARRAL lower and upper limits of voltage magnitude at bus i,
SHing ith line or transformer loading limit,
5”““ critical angle difference between bus i and j,

xam o x &= lower and upper limits of TCSC at line i,
af", ap™  lower and upper limits of TCPS at line i,
Vit v lower and upper limits of UPFC at line i,

al", el lower and upper limits of UPFC at line i,

QU injected reactive power of SVC at bus i,
Nerx maximum allowable number of FACTS components,
N number of buses,
NL number of branches,
NG number of generator buses,

State Variables

P Qg real and reactive power generations at slack bus,
ViV, voltage magnitudes at bus i and j,
3,0, voltage angles of bus i and j,

Output Variables (continuous and discrete variables)

Py Qg real and reactive power generations at bus i,

Py, Qp; real and reactive loads at bus i,

Y. 6, magnitude and angle of the ij th element in bus admittance matrix,
P () injected real power of TCPS at bus i,

Qpi (o) injected reactive power of TCPS at bus i,

P, My ) injected real power of UPFC at bus i,
Qi My ) injected reactive power of UPFC at bus i,

Y; (Xs) magnitude of the ijth element in bus admittance matrix with TCSC
included

9,(Xs) angle of the ijth element in bus admittance matrix with TCSC
included,
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| Sy | ith line or transformer loading,

VCPI. voltage collapse proximity indicator at bus i,

|5 | angle difference between bus i and j,

X reactance of TCSC at line i,

O, phase shift angle of TCPS at line i,

V; voltage magnitude of UPFC at line i,

ay voltage angle of UPFC at line i,

Qui injected reactive power of SVC at bus i,

m(i) number of TCPS connected at bus i,

n(i) number of UPFC connected at bus i,

Nese integer value of number of FACTS components,
N €{0,42,...,n}, and

location, integer value of line or bus location of FACTS type k.

VCPI is used to directly determine voltage collapse conditions within
voltage stability limits. For every iteration, VCPI at a load bus i in (4.8) must
equal to or less than one. Critical angle displacement is used as a criterion to
determine steady-state angle stability limit. The angle difference between buses i
and j across a transmission line is kept within a critical angle difference, which is

44°. Voltage and angle stability limits are treated as OPF constraints in (4.8) and
(4.9), respectively. During the optimization, inequality constraints of state
variables including real power generation at slack bus, reactive power generation,
bus voltage magnitudes, line or transformer loading, angle and voltage stability
limits are enforced using a penalty function in (4.17).

PF =k, h(PGl)+§h(QGi)+ih(\/i)+ih(|su|)+ih(‘é}j’p‘)+ih(VCPli)

i=1

(4.17)
(x=x™)* if x >x™
h(x)=¢ (x™-x)* ifx <x™ (4.18)
0 ifx™<x <x™
Where
P, real power generations at slack bus,
K, penalty weighting coefficient, k| =10°, and
XM x M lower and upper limits of variable x.
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4.1.2 ATC determination
ATC calculation is defined in (4.19).
ATC=TTC-TRM -CBM (4.19)

To determine ATC value of a power transaction between different control
areas, an interconnected power system is divided into three kinds of areas: source
or sending area, sink or receiving areas, and external areas. Two types of
transactions including bilateral and multilateral transactions are considered. Each
bilateral transaction satisfies the power balance relationship in (4.20). A
multilateral transaction involving several sellers and buyers can be expressed in
(4.21).

Py — Py =0 (4.20)
D Pi—2 Py =0 (4.21)
ieS jeB

Where

Ps; real power generation at bus i,

P, real power load at bus j,

set of sellers who sell the power to buyers, and
set of buyers who buy the power from the sellers.

o w;m

4.1.3 TTC determination

To determine TTC values of a power transaction between different control areas,
the optimization methods enable transfers by increasing the complex load with
uniform power factor at every load buses or a group of load buses in a sink area
and increasing the injected real power at generator buses in a source area until a
system limit is incurred. The total real power load in the sink area is used in the
objective function to determine the maximum feasible TTC value. Therefore, TTC
is defined in (4.22).
ND _SNK
TTIC= ) P, (4.22)

i=1

Where
ND SNK  number of load buses in a sink area.
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4.1.4 TRM and CBM determination

For TTC determination considering TRM, load uncertainty is taken into
consideration as random load increased within 2% of base case values in every
load flow evaluations. Contingency analysis is also considered in the TRM
determination. Only the outage of the largest generator in each area and the outage
of tie lines are included in the contingency list. CBM determination is based on
single area generation reliability evaluation using a probabilistic method. For
hourly load model, LOLE < 2.4 hour per year is selected as a reliability criterion.
To incorporate CBM into ATC, CBM is subtracted from TTC directly.

4.2 Modeling of FACTS controllers

Four types of FACTS controllers are included: thyristor-controlled series
compensator (TCSC), thyristor-controlled phase shifter (TCPS), unified power
flow controller (UPFC), and static var compensator (SVC). The TCSC is modeled
by the adjustable series reactance. The TCPS, UPFC, and SVC are modeled using
the power injection (P1) model (Ongsakul and Bhasaputra, 2002).

4.2.1 Thyristor controlled series compensator
TCSC is modeled by the adjustable series reactance Xg as shown in Figure 4.1.

TCSC is integrated in the OPF problem by modifying system line data. A new line
reactance is given in (4.23).

Xnew = Xij - Xs (4-23)

Figure 4.1 Model of TCSC.
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The power flow equations of the line with a new line reactance are given as
follows:

21 ’ I o
P, =Vi°G| —V\V,(Gj cos 5; + B} sin5; ) (4.24)
i =—V°B —V\V,(G] sin §; — B} cos 5;) (4.25)
21 ' I o
P, =V G} -V\V,(Gj cos5; — Bjsing;) (4.26)
Q; =-V/Bj +V\V,(Gj sin 5, +Bj cos 5;) (4.27)
Where
R
Gj =z and
Rij + Xnew
~X
B’ — new
’ Ruz + X:ew

4.2.2 Thyristor controlled phase shifter

The static model and power injection model of a TCPS placed in a line connected
between bus i and j are shown in Figure 4.2. The injected real and reactive power
at bus i and j of the line having a phase shifter are as follows:

P, =-V’K’G; —V\V,K(G; sin 5, — B cos 5;) (4.28)
Q. =Vi’K?B; +V\V,K(G; cos 5, + By sin 5;) (4.29)
P, = -V\V,K(G; sin§; + B, cos ;) (4.30)
Q,, =-VV,K (G, coss; — B, sing,) (4.31)
Where
K=tane, .

i o ]

1:1/a, R; + JX; R, + iX,
—O .
Vi VJ Vi Sis = Pis + JQis Sjs = Pjs + Jst VJ
(a) (b)

Figure 4.2 (a) Model of TCPS. (b) Power injection model of TCPS.
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4.2.3 Unified power flow controller

The static model and power injection model of a UPFC placed in a line connected
between bus i and j are shown in Figure 4.3. The injected real and reactive power
of UPFC at bus i and j are as follows:

P, = —VUZGij -2V, G; cos(a, — &) +V Y, (G, cos(a, — ;) + By sin(ay, —6;))

(4.32)
Qi =Vil, +V\V, (G;sin(a, - 6;) + B cos(a, —6)) (4.33)
P. =VV, (G, cos(a, — &)~ By sin(e, —6,)) (4.34)
Qs =V Wy (G;sin(ey, — ;) + B, cos(a, —6,)) (4.35)

i ] [ i
I Vy |Zau| Rij+JXij I R+ X, I
I IS—P+'Q SP+'QI
Vi t q VJ Vi is — lis J is js T s J js VJ
(a) (b)

Figure 4.3 (a) Model of UPFC. (b) Power injection model of UPFC.

4.2.4 Static var compensator

SVC is modeled as shunt-connected static var generator or absorber with the value
Q, as shown in Figure 4.4.

.

Figure 4.4 Model of SVC.
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4.3 Hybrid Evolutionary Algorithm for Optimal
Placement of FACTS controllers

The HEA approach is a hybrid algorithm of EP, TS, and SA. HEA balances the
explosion by dividing the population into subpopulations. Multiple mutation
operators are employed to enhance the search diversity. The selection mechanism
with Tabu list and probabilistic updating strategy based on annealing schedule of
SA is utilized to avoid being trapped in local optimum. Reassignment strategy for
individuals is designed for every subpopulation to fuse information and enhance
population diversity. The HEA approach is used to simultaneously search for real
power generations in a source area excluding slack bus, generation bus voltages,
real power loads in a sink area, and optimal placement of multi-type FACTS
controllers for determining the optimal solutions of the objective function defined
in (4.1). A flowchart of the HEA approach is shown in Figure 4.5, which can be
explained as follows:

Representation of solution

An individual in a population represents a candidate of OPF solution. Each
individual consists of OPF control variables coded by real number. The pth
individual in a population is represented by a trial solution vector in (4.36). There
are four types of FACTS controllers with maximum allowable ncgx component for
each type, which is assigned as input data. The placement configuration depicted
in Figure 4.6 is represented by three parameters: ncgg, locationy, and parametery
given in (4.37). For FACTS type ke{1,2,3,4} representing placement
configuration of TCSC, TCPS, UPFC and SVC, respectively, the number of
FACTS component type k, nci={0,1,...,n}. More specifically, there is either no
FACTS type k if ncg=0 or a number of FACTS type k if ncrc=0. Therefore,
number of FACTS components, locations, and parameters of each type of FACTS
controllers are simultaneously searched by the HEA. Note the searched locations
and parameters of FACTS type k is valid only when ncgy = 0.
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Figure 4.5 Flow chart of the HEA approach for OPF with FACTS problem.
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Figure 4.6 Structure of the trial solution vector of multi-type FACTS placement.

S, =[Py Ve, Py, Loc, ] (4.36)

Loc, =[N, location, , parameter, ] (4.37)

Where

S, trial solution vector of the pth individual,

Psi real power generation at bus i in the source area,

Vs voltage magnitude of generator at bus i including slack bus,

Py, real power load at bus j in the sink area,

Loc, allocation vector of FACTS device type k, where k=1,...,4
representing placement configuration of TCSC, TCPS, UPFC and
SVC, respectively,

Nepe number of FACTS components, n.., €{0,1,2},

location , line or bus location of FACTS type k, and

parameter

parameter settings of FACTS type k.
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Space division

Space division strategy is used to divide the whole population size P into M
subpopulations according to the number of mutation operators used. Therefore,
the search process can be performed in parallel to enhance performance of
exploration and speed of convergence.

Initialization
Each element of the trial vector is initialized randomly within its search space by

using uniform random number distribution ranging over the feasible limits of each
control variable in (4.38).

Xi — Ximin +Uu _(Ximax _ Ximin) (438)
Where

X; ith element of the individual in a population,

X", X" lower and upper limits of the ith element of the individual, and

u uniform random number in the interval [0,1].

Power flow solution

During iterations, a full AC NR power flow analysis is used to check the
feasibility of each individual solution. If the power flow of any individuals fails to
converge, such individuals will be removed and replaced by new randomly
created individuals.

Fitness function

Fitness function is used to measure the optimality or quality of each candidate
solution with respect to the objective being optimized. The objective function in
(4.1) is taken as the fitness function of the HEA approach.

Cooling schedule procedure

The initial temperature of each subpopulation expressed in (4.39) is determined

from the objective value of the best and the worst individual, and the probability
of accepting the worst individual with respect to the best individual. After
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reassignment strategy, the temperature is cooled down by the temperature
annealing function or cooling schedule in (4.40).

~ (meax _ mein)

T =—2xm ' m / 4.39
0,m |n pr ( )

Ton=A"""Tg, (4.40)

Where

Tom initial temperature of the mth subpopulation,

F™ FM™  objective value of the worst and best individuals in the mth
subpopulation,

P, probability of accepting the worst individual with respect to the
best individual,

Tim annealing temperature of the mth subpopulation after the rth
reassignment,

A rate of cooling, and

r iteration counter of reassignment strategy.

Mutation

In different subpopulations, different mutation operators are used to create new
offspring subpopulation so that many hybrid operators are applied to enhance the
search diversity. Two mutation operators including Gaussian and Cauchy are
applied. A set of trial solution vectors, SS(S®"), is generated by perturbing the
current solution vector using the uniform probability distribution function. Each
element of the offspring is calculated in (4.41). If any mutated value exceeds its
limits, it will be recalculated until it is within the limits. Mutation intensifies with
the increasing number of iterations.

Xei = Xi Oy S (4.41)
Oyi= Tr,m ’ a(r—l) ’ (Ximax - Ximin) (442)
Where

Xi i ith element of the kth offspring individual,

Xy i ith element of the kth parent individual,

Oy mutation step size for the ith element of the kth individual,

& mutation operator of the mth subpopulation e.g. N(0,1), C(0,1),
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N(0,1) Gaussian random number with mean 0 and standard deviation 1,
C(0,1) Cauchy random number,

a positive number slightly less than one, and

X, XM subinterval’s or interval’s upper and lower limits of ith element of
the individual.

Tabu list

Tabu list is a finite length first-in first-out structure, which records a set of current
best solutions visited. Tabu list may be viewed as a ‘meta-heuristic’ superimposed
on another heuristic method. Tabu list is used to prevent the entrapment in local
optima. It stores movement of solution and forbids backtracking to previous
movement. A new trial solution vector classified as tabu is placed on top of the list
and the oldest trial vector is taken out from the list.

Aspiration criterion

Aspiration criterion is a rule used to override a tabu restriction. If a certain move
is forbidden by tabu restriction, the aspiration criterion, when satisfied, can make
this move allowable. The aspiration criterion in (4.43) adopts a probabilistic
acceptance criterion of SA. When the probabilistic acceptance criterion is higher
than a uniform randomly generated variable in the interval [0,1], the tabu
restriction is overruled.

1

= 4.43

Pl 1+exp(-A/T, ) (4.43)

Where

Pim probabilistic acceptance criterion of the kth offspring individual
within the mth subpopulation, and

A difference of objective values between the kth offspring individual
and its corresponding parent individual, i.e. the kth parent
individual.

If p, =1, the kth offspring individual of the mth subpopulation will be

selected to be a new parent individual for next generation. Otherwise, a uniform
random number, U, in the interval [0,1] is generated and compared to p, .. If p,

>U, the kth offspring individual will be accepted, otherwise, their corresponding
parent will be selected.

80



Reassignment strategy

To perform the reassignment strategy, tournament scheme is used to select new
current parent population from the combined population of current parent
(S*...., SMU™y and new offspring (S"™",..., S™™) individuals of all
subpopulations. Each individual in the combined population is assigned a weight
value according to the competition in (4.44). Each individual in the combined
population has to compete with Nt randomly-selected individuals in one-by-one
basis. If the individual wins a selected opponent, it will obtain one from this
competition. Otherwise, it will obtain zero. The summation of scores from Nt
competitions is a competition score, wy, of the kth individual. After sorting the
combined population of 2M individuals in the descending order of weight values,
each new current parent solution individual of all subpopulations will be randomly
selected from a set of the first Mth sorted best solution individuals.

W, :i{l if £, >F (4.48)
10 otherwise

Where

W, weight value of kth individual in combined population,

F fitness value of kth individual in combined population,

F fitness value of rth opponent randomly selected from the combined

population based on r =| 2-M -u+1],
Nt number of competitors.

Termination criteria

There are three termination criteria used in the proposed HEA approach. It will
stop whenever any one of three criteria is met. The first termination criterion is set
as the maximum number of generations of each subpopulation and the second
termination criterion is the number of reassignment required. The algorithm will
be stopped if there is no improvement of the best fitness within 50 generations as
the third termination criterion. In addition, these criteria are applied to all the
methods for a fair comparison.
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4.4 Evolutionary Computation Methods for Optimal
Placement of FACTS controllers

4.4.1 Evolutionary programming

Based on EP approach, an EP-based algorithm proposed for solving the optimally
placed OPF with FACTS problem can be described as follows:

Representation of solution

Each individual consists of OPF control variables coded by real number. The pth
individual in a population is represented by a trial vector in (4.45).

Sp =[P, Vg Py Loc, ] (4.45)

Initialization

Each element of the trial vector is initialized randomly within its search space by
using uniform random number in (4.46).

X, = XM+ u- (X" - x™") (4.46)

Power flow solution

During iterations, a full AC NR power flow analysis is used to check the
feasibility of each individual solution.

Fitness function

The objective function in (4.1) is taken as the fitness function of the EP approach.
Mutation

Each element of the offspring individual is mutated by using the Gaussian
mutation operator in (4.47).
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Xe . =X ; +N(0,6¢)) (4.47)

O = (XM —x™" (% + ag] (4.48)

N(0,0%)) Gaussian random number with a mean of 0 and a standard
deviation of &, ,,

f, fitness value of the kth individual,

f o the maximum fitness of the parent population, and
g iteration counter.

Selection

Each individual in the combined population is assigned a weight value according

to the tournament scheme competition in (4.49). A set of the first Mth sorted best

weight values individuals from the combined population of 2M individuals will be

selected as a new current parent population.
N1 if F,>F

W, = ! 4.49

“ Z{O otherwise (4.49)

t=1

Termination criterion

There are two termination criteria used in the EP. It will stop whenever any one of
two criteria is met. The first termination criterion is set as the maximum number
of generations. The algorithm will be stopped if there is no improvement of the
best fitness within 50 generations as the second termination criterion.

4.4.2 Tabu search

Based on TS approach, an TS-based algorithm proposed for solving the optimally
placed OPF with FACTS problem can be described as follows:
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Representation of solution

Each individual consists of OPF control variables coded by real number. The pth
individual in a population is represented by a trial vector in (4.50).

Sp = [PGi Vair PDj’ LOCk] (4.50)

Initialization

Each element of the trial vector is initialized randomly within its search space by
using uniform random number in (4.51).

max X_min) (451)

X, = x™ +u-(x !

Power flow solution

During iterations, a full AC NR power flow analysis is used to check the
feasibility of each individual solution.

Perturbation

A set of trial neighborhood solution vectors is generated by perturbing the current
solution vector using the uniform probability distribution function in (4.52).

X! =X, L (x™ — x™") (4.52)
' g

Tabu list

A new trial solution vector classified as tabu is placed on top of the list and the
oldest trial vector is taken out from the list.

Aspiration criterion

The aspiration criterion is used to override the tabu status of a move if this move
yields a solution which has better objective function value than the aspiration

level, which is the objective value of current trial solution vector from previous
iteration.
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Termination criterion

There are two termination criteria in the TS approach similar to those used in the
EP approach.

4.4.3 Hybrid tabu search and simulated annealing

Based on hybrid TS/SA approach, an TS/SA-based algorithm proposed for
solving the optimally placed OPF with FACTS problem can be described as
follows:

Representation of solution

Each individual consists of OPF control variables coded by real number. The pth
individual in a population is represented by a trial vector in (4.53).

Sp = [PGi Vair PDj’ LOCk] (4.53)

Initialization

Each element of the trial vector is initialized randomly within its search space by
using uniform random number in (4.54).

Xi — Ximin +u '(Ximax _ Ximin) (454)

Power flow solution

During iterations, a full AC NR power flow analysis is used to check the
feasibility of each individual solution.

Cooling schedule
The initial temperature of each subpopulation is determined in (4.55). The

temperature is cooled down by the temperature annealing function or cooling
schedule in (4.56).

~ (meax _ mein)

TO,m = T (455)
T, =A"2T,, (4.56)
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Perturbation

Each element of the offspring individual is generated by using the uniform
probability distribution function in (4.57).

max X_min ) (457)

’
Xei =Xpit T U (X

Tabu list

The tabu list utilized in the hybrid TS/SA approach is the same as that used in the
TS algorithm.

Aspiration criterion

The aspiration criterion employed adopts a probabilistic acceptance criterion of
SA as shown in (4.58).

1
1+ exp(—A/Tr’m)

Pim (4.58)
Termination criterion

There are two termination criteria in the hybrid TS/SA approach similar to those
used in the EP approach.

4.4.4 Improved evolutionary programming

Based on IEP approach, an EP-based algorithm proposed for solving the optimally
placed OPF with FACTS problem can be described as follows:

Representation of solution

Each individual consists of OPF control variables coded by real number. The pth
individual in a population is represented by a trial vector in (4.59).

S, =[Psi:Vai, Py, LoC, ] (4.59)
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Space division

Space division strategy is used to divide the search space into subspaces. The
division can be made in a certain way. For example, if there are two
subpopulations, the fist control variable’s interval ranging from its minimum limit
to its maximum limit can be divided equally into two subintervals while the
interval of other control variables will be used throughout their feasible range.

Initialization

Each element of the trial vector is initialized randomly within its search space by
using uniform random number in (4.60).

X = X'min +Uu _(Ximax _ Ximin) (460)

Power flow solution

During iterations, a full AC NR power flow analysis is used to check the
feasibility of each individual solution.

Fitness function

The objective function in (4.1) is taken as the fitness function of the IEP
algorithm.

Cooling schedule

The initial temperature of each subpopulation is determined in (4.61). The
temperature is cooled down by the temperature annealing function in (4.62).

(meax _ mein)

T —_ 4.61

0,m |n pr ( )
T, =A"2T,, (4.62)
Mutation

Two mutation operators including Gaussian and Cauchy are applied for each
subpopulation. Each element of the offspring individual is determined in (4.63).
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XI:,i =Xi T Oy & (4.63)

o = a’(r—l) X X_max _ X_min (464)
k,i i i

Selection

The probabilistic acceptance criterion of the kth offspring individual can be
expressed in (4.65).

Pem = min{], exp(—A/Tr,m)} (4.65)
Reassignment strategy

The individuals of all subpopulations are merged and then the whole population
will be randomly divided to form new subpopulations.

Termination criteria
The termination criterions utilized in the IEP algorithm are similar to those used in

the HEA approach.

Table 4.1 Parameter Setting of the Optimization Methods

Test Systems Parameter Setting Value EP TS TSISA IEP HEA
" P-pop size 30 30 30 30 30
& £ M-subpop - - - 2 2
w3z N 20 - - 20 20
w f Tabu size - 20 20 - 20
© 3 Ko 10°  10° 10° 10° 10°
= 8 Pr - - 0.01 0.01 0.01
g o A - - 0.8 0.8 0.8
o © a - - - 0.9 0.9
= Py Gmax 400 400 400 10 10
Rinax - - - 40 40
Lo P-pop size 40 40 40 40 40
I3 M-subpop - - - 2 2
—
W ., I\ 20 - - 20 20
iR Tabu size - 20 20 - 20
e Ky 10°  10° 10° 10° 10°
2E@ o - - 001 001 001
S 3 p) - - 08 0.8 08
E & a - - - 0.9 0.9
< é Gmax 600 600 600 10 10
Rinax - - - 60 60
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4.5 Simulation Results of Optimal Placement of FACTS
controllers

The modified IEEE 30-bus, 24-bus, 118-bus, and the modified practical Thai
power 160-bus systems are used to demonstrate the optimal placement of multi-
type FACTS controllers for ATC enhancement using the proposed HEA method.
The HEA is implemented using MATLAB version 6.5 on an AMD Athlon64 X2
3600+ computer with 1.0 GB memory. Parameter settings of the HEA are shown
in Table 4.1. The reactance limit of TCSC is 0< Xsi<60% of line reactance; phase
shifting angle limit of TCPS is -7/4 < api < 7/4 radian; voltage limit of UPFC is O<
Vui<0.1 p.u.; angle limit of UPFC is -z<ayi<z radian; and reactive power
injection limit of SVC is -10<Qyi<10 MVAr. Loads are modeled as constant
power factor loads.

4.5.1 The modified IEEE 30-bus system

The modified IEEE 30-bus system in Figure 4.7 is partitioned into three areas with
two generators in each area. TRM and CBM are not included in the ATC
determination. Three transactions including one bilateral transaction and two
multilateral transactions are considered. A multilateral transaction from area 1 to 2
is presented in section A. In addition, a bilateral transaction from bus 2 to 21 and a
multilateral transaction from area 1 to 3 are presented in section B.

A. Optimal placement of FACTS controllers using loss sensitivity index, EP,
and HEA

In this section, four methods are used to solve the optimally placed OPF with
FACTS problem to simultaneously maximize ATC and minimize power loss as
shown in Table 4.2. For method | and Il, the loss sensitivity index proposed in
(Preedavichit and Srivastava, 1998; Verma et al., 2001) is used to determine the
suitable locations of multi-type FACTS controllers. EP and HEA methods are
used to determine parameter settings of FACTS controllers and the objective
function defined in (4.1). For method Ill and 1V, the EP and HEA are used to
simultaneously determine the locations, types, and parameters of FACTS
controllers and the objective function.
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Figure 4.7 Diagram of the modified IEEE 30-bus system.

Table 4.2 Optimization Methods for the Modified IEEE 30-bus System

FACTS controllers

Method Cocation Type & Parameters Objective Function
I Loss Index EP EP
I Loss Index HEA HEA
Il EP EP EP
v HEA HEA HEA

Table 4.3 Base Case TTC Values Without FACTS controllers of the Transaction
From Area 1 to 2 on the Modified IEEE 30-bus System

Method TTC (MW) Loss (MW) Limit condition
CPF 60.71 3.18 Line 22-21
EP 102.65 6.00 Line 27-25
HEA 114.86 7.25 Line 27-25

Table 4.4 TTC Values With Optimally Placed FACTS controllers of the
Transaction From Area 1 to 2 on the Modified IEEE 30-bus System

TTC  Loss Limit FACTS Location

Method  \ iy (Mw) Condition — TCSC TCPS UPFC _ SVC

| 162.63 11.67 Line27-25 Line2-6 Line12-15 Line22-24 Bus 18
1 189.15 12.41 Line27-25 Line2-6 Line12-15 Line 22-24 Bus 18
Il 17431 10.71 Line 27-25 Line 15-23 Line 12-15 Line 27-30 Bus 20
v 19752 11.96 Line?27-25 Line10-20 Line12-15 Line4-12 Bus17
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Base case TTC without FACTS controllers are calculated using CPF
method. Power System Analysis Toolbox (PSAT) (Milano, 2005) is used to
perform the CPF analysis. For the transaction from area 1 to 2, using CPF method,
TTC value without FACTS controllers is 60.71 MW as shown in Table 4.3. The
expected limiting condition is line flow limit at line 22-21, if further transfers take
place. Using EP method, TTC is 102.65 MW and the limiting condition is the line
flow limit at line 27-25. Using HEA method, TTC is 114.86 MW, which is
89.19% and 11.89% more than those from the CPF and EP methods, respectively.
The limiting component is line 27-25, similar to the binding condition of the EP
method.

For method IV, HEA has optimally placed each type of FACTS controllers
to simultaneously maximize TTC and minimize loss. The TTC is 197.52 MW
without violating system limits, which is increased by 71.97% compared to that
without FACTS controllers. In addition, the TTC value is 21.45%, 4.43%, and
13.32% higher than those from method 1, I, and IlI, respectively. For either
method Il and IV, optimally placed OPF with FACTS controllers by HEA could
also significantly enhance TTC values far more than those from EP approach in
method I and I1.

Test results in Table 4.4 indicate that the loss sensitivity index is mainly
used to determine the locations of FACTS controllers to minimize the total system
real power losses. This method is easy to calculate and computationally fast.
However, it may not lead to the optimal solution because of the dependency to
system topology and loading conditions. The placement of FACTS controllers
using the loss sensitivity index (method I and Il) gives conservative TTC values
and a higher power losses than those from EP and HEA (method Il and 1V)
because sensitivity approach does not result in the optimal locations of FACTS
controllers, leading to a loss of business opportunities.

B. Optimal placement of FACTS controllers using EP, TS, TS/SA, IEP and
HEA methods

In this case study, two transactions including a bilateral transaction from bus 2 to
21 and a multilateral transaction from area 1 to 3 are considered. Test results from
HEA are compared to those from EP, TS, hybrid TS/SA, and IEP methods.

For bilateral transaction with optimally placed FACTS controllers using
HEA method, TTC value is 43.65 MW without violating system constraints,
which is increased by 89.62% compared to that without FACTS controllers shown
in Table 4.5. In addition, the TTC value is 41.45%, 51.04%, 40.72%, and 10.39%
more than those from EP, TS, TS/SA, and IEP methods, respectively.

For multilateral transaction with optimally placed FACTS controllers
using HEA method, TTC value is 111.92 MW, which is increased by 40.59%
compared to that without FACTS controllers. In addition, the TTC value is
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23.65%, 10.66%, 7.66%, and 7.51% more than those from EP, TS, TS/SA, and
IEP, respectively. The optimal placements of FACTS controllers are shown in
Table 4.6.

Comparisons of TTC results and average CPU times from 20 runs are
shown in Table 4.7. The reported CPU time is the total computation time of HEA
approach from starting to ending including the NR power flow of all individuals.
The HEA can obtain better results on the best, average, and the worst TTC values
than those from the other methods because HEA uses the selection mechanism
with a probabilistic updating strategy based on SA and tabu list to avoid
dependency on fitness function and to escape from the entrapment in local optimal
solutions. To compare the convergence characteristic, IEP and HEA utilize a
probabilistic updating strategy based on annealing schedule of SA, resulting in
more generations required and slower convergence characteristic than EP, TS, and
TS/SA methods as shown in Figure 4.8.
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Figure 4.8 Convergence characteristic of solutions.

92



Table 4.5 TTC Values With Bilateral and Multilateral Transactions on the Modified IEEE 30-bus System

Bilateral Transaction Multilateral Transaction
Method Without FACTS With FACTS Without FACTS With FACTS
TTC (MW) Loss (MW) TTC (MW) Loss (MW) TTC (MW) Loss (MW) TTC (MW) Loss (MW)

EP 23.02 2.63 30.86 2.67 79.48 4.03 90.51 4.98
TS 23.02 2.63 28.90 2.78 78.84 4.23 101.14 5.71
TS/SA 23.02 2.63 31.02 2.89 79.44 3.97 103.96 5.79
IEP 23.02 2.63 39.54 1.89 79.45 3.99 104.10 4.17
HEA 23.02 2.63 43.65 2.15 79.61 3.98 111.92 5.85

Table 4.6 Optimal Placement of Multi-Type FACTS controllers of Multilateral Transaction on the Modified IEEE 30-bus System

Method T_CSC T_CPS _ UPFC _ svC
Nce1 location; Xs(pu) nce, location,  ap (rad) Nces locations oy (rad), Vy (pu) Nces  locationy Qv (MVAI)
EP 1 Line 24-25 0.017 1 Line 1-2 0.058 1 Line 2-6 2.579, 0.068 1 Bus 21 8.174
TS 1 Line 15-23 0.023 1 Line 2-4 0.010 1 Line 10-21 0.724, 0.038 1 Bus 25 0.474
TS/SA 1 Line 8-28 0.051 1 Line 1-2 0.019 1 Line 2-4 2.014, 0.051 1 Bus 28 1.968
IEP 0 - - 1 Line 6-9 0.092 1 Line 9-10 1.458, 0.041 1 Bus 25 0.287
HEA 0 - - 1 Line 6-8 0.013 1 Line 6-7 1.737, 0.059 1 Bus 24 6.353
Table 4.7 TTC Results and CPU Times on the Modified IEEE 30-bus System
Bilateral Transaction with FACTS Multilateral Transaction with FACTS
Method TTC Standard CPU Time TTC Standard CPU Time
Best Average Worst Deviation (min) Best Average Worst Deviation (min)
EP 30.86 27.14 22.91 3.08 1.13 90.51 84.33 75.41 4.87 2.00
TS 29.34 27.15 22.93 2.81 1.17 101.14 86.25 76.96 8.99 1.85
TS/SA 31.02 26.87 22.95 2.57 0.91 103.96 97.33 81.04 7.55 1.55
IEP 39.54 32.23 26.12 5.40 1.52 104.10 93.32 73.72 9.76 2.88
HEA 43.65 34.05 26.50 5.38 1.51 111.92 102.56 88.78 5.58 2.72
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C. Optimal placement of FACTS controllers with three different objective
functions

In this case study, two transactions including a bilateral transaction from bus 1 to
21 and a multilateral transaction from area 1 to 2 with three different objective
functions: i) maximize TTC, ii) minimize power loss, and iii) simultaneously
maximize TTC and minimize loss, are considered.

For bilateral transaction from bus 1 to 21 without FACTS controllers in
Table 4.8, base case load at bus 21 is 17.50 MW. To maximize TTC using HEA
method, TTC value is 40.447 MW without violating system constraints, which is
1.29%, 0.84%, 0.31%, and 0.58% more than those from EP, TS, TS/SA, and IEP
methods, respectively. To minimize system power loss without curtailing the
existing generations and loads, only generator bus voltages are optimized using
HEA, TTC value and power loss are 17.50 MW and 2.045 MW, which are similar
to those of the other methods. To simultaneously maximize TTC and minimize
loss using HEA, TTC is 40.449 MW, which is 0.85%, 0.55%, 0.38%, and 0.58%
more than those from EP, TS, TS/SA, and IEP, respectively.

HEA has optimally placed each type of FACTS controllers to
simultaneously maximize TTC and minimize loss. The TTC is 154.061 MW
without violating system limits, which is increased by 280.88% compared to that
without FACTS controllers. In addition, the TTC value is 22.25%, 21.54%,
20.91%, and 15.04% higher than those from EP, TS, TS/SA, and IEP methods,
respectively. For either TTC maximization or loss minimization only, optimally
placed OPF with FACTS controllers by HEA could also significantly enhance the
TTC value and reduce system power loss far more than OPF without FACTS
controllers.

For multilateral transaction from area 1 to 2 without FACTS controllers in
Table 4.9, base case load at area 2 is 56.20 MW. To simultaneously maximize
TTC and minimize loss using HEA method, TTC value is 125.930 MW, which is
0.21%, 0.12%, 0.10%, and 0.17% higher than those from EP, TS, TS/SA, and IEP
methods, respectively. For either TTC maximization or loss minimization only,
HEA approach can also effectively re-dispatch real power generations except
slack bus in a source area, increment of real power loads in a sink area, and
optimal setting of generation bus voltages.

HEA has optimally placed each type of FACTS controllers with maximum
allowable one component for each type of FACTS controllers to simultaneously
maximize TTC and minimize loss. The TTC is 191.379 MW, which is increased
by 51.97% compared to that without FACTS controllers. In addition, the TTC
value is 40.68%, 20.60%, 18.40%, and 15.61% higher than those from EP, TS,
TS/ISA, and IEP methods, respectively. The optimal placements of multi-type
FACTS controllers of the power transaction are shown in Table 4.10.
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Table 4.8 Test Results With Bilateral Transaction on the Modified IEEE 30-bus System

Without FACTS controllers

With FACTS controllers

Method Maximize TTC Minimize Loss Ma>_<.TTC & Maximize TTC Minimize Loss Ma>_<.TTC &
Min.Loss Min.Loss
TTC Loss TTC Loss TTC Loss TTC Loss TTC Loss TTC Loss
EP 39.932 4,594 17.500 2.045 40.110 4.613 125,531 3.921 17.500 1.296 126.021 3.914
TS 40.111 4,634 17.500 2.045 40.229 4.688 126.274 3.725 17.500 1.281 126.755 3.793
TS/SA 40.322 4,785 17.500 2.045 40.297 4.686 127.113 3.880 17.500 1.258 127.415 3.715
IEP 40.213 4,655 17.500 2.045 40.217  4.659 128.675 3.176 17.500 1.154 133.919 2.827
HEA 40.447 4,734 17.500 2.045 40.449 4,732 147.322 4,152 17.500 1.096 154.061 3.607
Table 4.9 Test Results with Multilateral Transaction on the Modified IEEE 30-bus System
Without FACTS controllers With FACTS controllers
Method Maximize TTC Minimize Loss Ma>_<.TTC & Maximize TTC Minimize Loss Ma>_<.TTC &
Min.Loss Min.Loss
TTC Loss TTC Loss TTC Loss TTC Loss TTC Loss TTC Loss
EP 124.994 6.421 56.200 2.029 125.663 6.035 133.694 6.001 56.200 1.144 136.040 3.980
TS 125.553 6.140 56.200 2.029 125.781 5.916 157.054 6.438 56.200 1.105 157.389 6.449
TS/SA 125.808 6.287 56.200 2.029 125.806 5.793 158.482 6.465 56.200 1.101 161.642 6.971
IEP 125.451 6.248 56.200 2.029 125.716 5.967 158.904 7.057 56.200 0.998 165.545 6.351
HEA 125.629 6.043 56.200 2.029 125.930 5.738 185.095 7.426 56.200 0.968 191.379 7.474
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Table 4.10 Optimal Placement of FACTS controllers of Multilateral Transaction on the Modified IEEE-30 bus System
(Simultaneously Maximize TTC and Minimize Loss)

Method _ TCSC _ TCPS _ UPFC _ SVvC
Location Parameter Location Parameter Location Parameter Location Parameter
EP Line12-16  Xs=0.0044 p.u. Line 2-6 a =0.0016 rad Line 6-8 \2:‘:3%271 ";a‘é Bus16  Qu=1.504 MAVr
TS Linel4-15  Xe=0.0017pu.  Line12-14  ¢»=00236rad  Line12-15 v 00489pU g 00 522360 MAVK
' . P ,;=0.9440 rad e
TSISA  Line12-15  Xs=0.0173 p.u Line 6-8 ap =0.0585 rad Line 2-6 Vu=00391pu. g 00 524011 MAVY
' o P ,=0.8280 rad L
IEP Line 27-30 Xs=0.0274 p.u Line 9-10 o =0.0198 rad Line 10-17 Vu=0.0568 p.u. Bus 14 Qv=3.118 MAVr
S . P o,=0.4461 rad R
. _ . . Vy=0.0677 p.u. _
HEA Line 12-15 Xs=0.0118 p.u. Line 10-20 o =0.0463 rad Line 10-17 _ Bus 8 Qv=7.786 MAVr
0y=0.6103 rad
Table 4.10 TTC Results and CPU Times of Multilateral Transaction on the Modified IEEE 30-bus System
(Simultaneously Maximize TTC and Minimize Loss)
Without FACTS controllers With FACTS controllers
Method TTC (MW) Standard CPU Time TTC (MW) Standard CPU Time
Best Average Worst Deviation (min.) Best Average Worst Deviation (min.)
EP 125.663 124.205 121.891 1.48 0.71 136.040 129.790 121.937 5.46 3.11
TS 125.781 125.339 124.796 0.31 0.62 157.389 142.263 125.554 12.68 2.58
TS/ISA 125.781 125.339 124.796 0.31 0.62 157.389 142.263 125.554 12.68 2.58
IEP 125.716 125.349 124.840 0.32 0.77 165.545 142.758 130.716 10.55 4.26
HEA 125.930 125.351 124.923 0.31 0.75 191.379 170.497 156.352 9.83 4,17

96



To compare the convergence characteristic, IEP and HEA approaches
utilize a probabilistic updating strategy based on annealing schedule of SA,
resulting in more generations required and slower convergence characteristic than
EP, TS, and TS/SA methods. In addition, the convergence speed of HEA is
improved by introducing a flexible memory of search history of TS to prevent
cycling and to avoid entrapment in local optima compared to IEP algorithm.

Comparisons of TTC results and CPU times evaluated by EP, TS, TS/SA,
IEP, and HEA methods from 20 runs are shown in Table 4.11. The proposed HEA
method can obtain better results on the best, average, and the worst TTC values
than those from the other optimization methods because HEA approach uses the
selection mechanism with a probabilistic updating strategy based on TS and SA
algorithms to avoid dependency on fitness function and to escape from the
entrapment in local optimal solutions. Furthermore, the variation of the HEA best
solution is smaller as evidenced by a smaller standard deviation, leading to a more
stable HEA algorithm.

45.2 The modified IEEE 24-bus RTS

The modified IEEE 24-bus RTS in Figure 4.9 is partitioned into three areas. A
multilateral transaction from area 1 to 2 with contingency constraints is
considered. Only the outage of the largest generator in each area and the outage of
tie lines are included in the contingency list. For the transaction with optimally
placed FACTS controllers using HEA method, normal case TTC value is 906.03
MW, which is increased by 26.70% compared to that without FACTS controllers
shown in Table 4.12.

Considering the pre-specified contingency constraints, contingency TTC
value using HEA is 814.69 MW without violating network constraints, which is
increased by 30.10% compared to that without FACTS controllers. The critical
contingency case is the interconnected line 19-20 outage between those two areas.
In addition, the TTC value is decreased by 12.46% compared to that without
contingency constraints. It is evident that neglecting the effects of contingency
constraints on TTC evaluation will inevitably lead to insecure system operation.

To meet the specific reliability criterion, which is LOLE<2.4 hour/year,
area 1 needs to import 60 MW and 40 MW from area 2 and 3, respectively. CBM
for the critical contingency case is 60 MW. Therefore, ATC value using HEA
method is 754.69 MW, which is 20.87%, 22.78%, 13.48%, and 4.43% higher than
those from EP, TS, TS/SA, and IEP, respectively. Test results indicate that HEA
can effectively re-dispatch real power generations except slack bus in the source
area, increase real power loads in the sink area, and optimally set of generation
bus voltages. Table 4.13 shows the optimal placement of FACTS controllers of
the contingency TTC values.
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Test results indicate that single-population search of EP, TS, and TS/SA is
less effective than multi-population search of IEP and HEA methods. Even though
the HEA requires slightly higher computing time, for planning horizon, the quality
of solutions is far more important. In addition, the elapsed time can be further
reduced by dividing into multiple subsolutions using more than 2 CPUs.

Figure 4.9 Diagram of the modified IEEE 24-bus RTS.
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Table 4.12 ATC Values of Multilateral Transaction on the Modified IEEE 24-bus RTS

Case TTC level (MW) without FACTS controllers TTC level (MW) with FACTS controllers
EP TS TS/ISA IEP HEA EP TS TS/ISA IEP HEA
Normal 706.44 708.39 708.82 711.90 715.33 794.18 788.84 803.24 905.24  906.03
Largest gen. in area 1 outage 707.58 701.93 711.76 708.77 711.57 781.33 833.64 75283 883.60 974.04
Largest gen. in area 2 outage 710.76 710.86 714.91 711.98 714.31 739.02 71519 74841 826.32 835.38
Line 21-22 outage 705.07 706.43 706.52 712.24 705.07 784.12 833.43 838.15 915.83 965.51
Line 17-22 outage 712.05 705.18 708.83 713.34 713.53 809.09 79153 80396 91419 916.15
Line 19-20 outage 679.50 688.83 691.56 697.95 700.09 721.88 72096 725.06 782.65 814.69
Line 14-11 outage 623.99 622.76 624.19 624.12 626.18 684.39 67466 76589 859.61 913.47
Contingency TTC Value (MW) 623.99 622.76 624.19 624.12 626.18 684.39 674.66 725.06 782.65 814.69
ATC Value (MW) 563.99 562.76 564.19 564.12 566.18 624.39 614.66 665.06 722.65 754.69

Table 4.13 Optimal Placement of FACTS controllers of Multilateral Transaction on the Modified IEEE 24-bus RTS

Method T_CSC T_CPS _ UPFC _ svC
Ncry location; Xs (pU) Ncp2 location, op (rad)  Nces locations ay (rad), Vy (pu) Nces location, Qv (MVAI)
EP 1 Line 15-24 0.007 1 Line 14-16 0.075 1 Line 12-13 -0.619, 0.001 1 Bus 22 9.160
TS 1 Line 10-12 0.021 1 Line 15-21 0.021 1 Line 15-24 0.377,0.028 1 Bus 15 3.873
TS/SA 1 Line 16-17 0.013 1 Line 8-10 0.025 1 Line 12-13 -1.339, 0.012 1 Bus 5 1.382
IEP 1 Line 18-21 0.005 1 Line 6-10 0.006 1 Line 16-17 1.900, 0.046 1 Bus 1 6.332
HEA 1 Line 7-8 0.021 1 Line 15-24 0.016 1 Line 15-16 0.610, 0.017 1 Bus 5 5.332
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4.5.3 The modified IEEE 118-bus system

The modified IEEE 118-bus system consists of 54 generator buses and 186
branches. The system is partitioned into 9 areas as shown in Figure 4.10. The
system data are modified as follows: Real power generation upper limit at bus 69
is 1,000 MW. Reactive power generation upper limit at bus 34, 70, and 103 is 80
MVAr. Reactive power generation lower limit at bus 19, 32, 34, 102, and 105 is -
22 MVAr. Thermal limit at line 65-66 is 300 MVA. A multilateral transaction
from area 6 to 3 with contingency constraints is considered. Only the outage of the
largest generators in each area and the outage of tie lines are included in the
contingency list. Base case load at area 6 is 406.00 MW and system real power
loss is 132.863 MW.

Base case TTC without FACTS controllers using HEA method is 710.57
MW. Considering the pre-specified contingency constraints as shown in Table
4.14, contingency TTC value using HEA approach is 461.03 MW without
violating network constraints, which is 4.89%, 5.25%, 0.91%, and 0.57% higher
than those from EP, TS, TS/SA, and IEP, respectively. In addition, the TTC value
is decreased by 35.12% compared to that without contingency constraints. The
critical contingency case is the interconnected line 42-49 between those two areas
outage. It is evident that neglecting the effects of contingency constraints on TTC
evaluation will inevitably lead to insecure system operation.

Area 100
7

Figure 4.10 Control areas of the modified IEEE 118-bus system.
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Table 4.14 TTC Level and Contingency TTC Values of Multilateral Transaction on the Modified IEEE 118-bus System

Case TTC level (MW) without FACTS controllers TTC level (MW) with FACTS controllers
EP TS TS/SA IEP HEA EP TS TS/SA IEP HEA
Normal 701.61 703.68 706.17 707.27 710.57 706.81  718.21  721.27 72001  725.17
Largest gen. in area 6 outage 656.24 663.68 673.95 669.84 677.84 67411 687.29 68729 690.45  695.08
Largest gen. in area 3 outage 694.29 694.98 703.40 706.12 708.50 708.67 70520 712.88 72336  733.64
Line 38-65 outage 481.08 483.31 483.38 483.68 487.13 486.75  484.96  487.94  498.87  513.62
Line 42-49 outage 439.55 438.05 456.87 458.40 461.03 481.07 47587 49745 49348  520.76
Line 44-45 outage 664.59 651.42 655.80 661.85 666.56 671.73 661.08 668.70 683.75  688.79
Contingency TTC Value 439.55 438.05 456.87 458.40 461.03 481.07 475.87  487.94  493.48  513.62

Table 4.15 Optimal Placement of Multi-Type FACTS controllers of Contingency TTC Value With FACTS controllers on the Modified IEEE
118-bus System

TCSC TCPS UPFC SVvC

Method Location Parameter Location Parameter Location Parameter Location Parameter

EP Line 23-24  Xs=0.0266 p.u.  Line 34-43 o =0.0415rad Line 37-39 Vy=0.0340 p.u., ay=1.1032 rad Bus 18  Qy=4.745 MAVTr
TS Line 8-30  Xs=0.0485p.u. Line90-91 op=0.0240rad Line 37-39 Vy=0.0461 p.u., ay=1.3518 rad Bus42 Qy=4.276 MAVr
TS/ISA Line 19-20 Xs=0.0102 p.u.  Line 66-67 o =0.0302 rad Line 83-85 Vy=0.0101 p.u., ay=1.2415 rad Bus 88 Qy=2.931 MAVr
IEP  Line51-52 Xs=0.0495p.u. Line99-100 ¢p=0.0385rad Line 37-39 Vy=0.0473 p.u., ay=1.4463 rad Bus 97 Qy=2.307 MAVr
HEA Line30-38 Xs=0.0535p.u. Line39-40 ¢ =0.0607 rad Line 42-49 V,=0.0084 p.u., ay= 1.4457 rad Bus84 Qy=2.819 MAVr

Table 4.16 TTC Results and CPU Times of Multilateral Transaction Without Contingency Constraints on the Modified IEEE 118-bus System

Without FACTS controllers With FACTS controllers
Method TTC (MW) Standard CPU Time TTC (MW) Standard CPU Time

Best Average Worst Deviation (min.) Best Average Worst Deviation (min.)

EP 701.61 699.48 697.71 1.97 3.47 706.81 704.11 699.75 2.69 7.99
TS 703.68 691.67 676.98 14.60 3.45 718.21 708.80 698.97 3.58 9.82
TS/SA 706.17 697.64 688.95 7.71 2.74 721.27 713.66 709.13 10.15 8.25
IEP 707.27 700.34 695.27 6.22 6.97 720.01 706.47 698.58 11.78 16.32
HEA 710.57 706.03 700.76 3.92 6.83 725.17 716.61 710.50 7.64 12.63
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HEA has optimally placed each type of FACTS controllers to
simultaneously maximize TTC and minimize loss. Base case TTC with optimally
placed FACTS controllers is 725.17 MW, which is increased by 2.05% compared
to that without FACTS controllers. Considering contingency constraints,
contingency TTC value using HEA is 513.62 MW, which is increased by 11.41%
compared to that without FACTS controllers. The critical contingency case is the
interconnected line 38-65 outage between those two areas. In addition, the TTC
value is 6.77%, 7.93%, 5.26%, and 4.08% higher than those from EP, TS, TS/SA,
and IEP, respectively. Table 4.15 shows the optimal placement of multi-type
FACTS controllers of the contingency TTC values.

Test results in Table 4.16 indicate that single-population search of EP, TS,
and TS/SA is less effective than multi-population search of IEP and HEA
methods. Even though the HEA approach requires slightly higher computing time,
for planning horizon, the quality of solutions is far more important. In addition,
the elapsed time can be further reduced by dividing into multiple subsolutions
using more than 2 CPUs.

4.5.4 The modified Thai power 160-bus system

A modified practical Thai power 160-bus system shown in Figure 4.11 is the
reduced network of the Thai power system considering only 500 kV, 230 kV and
115 kV transmission systems. The lower voltage transmission systems are
considered as lumped loads. The system consists of 42 generating plants, 82 load
buses, and 185 branches. A multilateral transaction from area 6 to 7 without
contingency constraints is considered. To meet the specific reliability criterion,
which is LOLE < 2.4 hour/year, area 6 needs to import 30 MW from area 7.
Therefore, CBM of the transaction is 30 MW.

For the transaction without FACTS controllers, base case load at area 7 is
56.20 MW. In Table 4.17, to simultaneously maximize ATC and minimize loss
using HEA method, ATC value is 360.45 MW, which is 24.03%, 25.11%, 0.50%,
and 0.34% higher than those from EP, TS, TS/SA, and IEP methods, respectively.

The HEA approach has optimally placed multi-type FACTS controllers
with maximum allowable one and two components for each type. Using HEA
method, the ATC value with maximum allowable two components for each type
of FACTS is 448.34 MW, which is increased by 24.38% compared to that without
FACTS controllers. In addition, the ATC value is 14.29%, 14.05%, 5.90%, and
5.69% higher than those from EP, TS, TS/SA, and IEP methods, respectively. The
optimal placements of FACTS controllers are shown in Table 4.18. Test results in
Table 4.19 indicate that HEA is far more effective to search for the best, average,
and worst solutions compared to the others methods.
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Figure 4.11. Diagram of the modified Thai power 160-bus system.
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Table 4.17 ATC Values of the Modified Thai Power 160-bus System

Method ATC values (MW) without FACTS ATC values (MW) with maximum allowable ncex=1  ATC values (MW) with maximum allowable ncp=2

for each type of FACTS for each type of FACTS
EP 273.85 348.98 384.25
TS 269.93 324.29 385.33
TS/SA 358.64 383.01 421.87
IEP 359.21 400.86 422.83
HEA 360.45 433.02 448.34

Table 4.18 Optimal Placement of FACTS controllers With Maximum Allowable ncec=2 for Each Type of FACTS of Multilateral Transaction
on the Modified Thai Power 160-bus System

Method TCSC TCPS UPFC SvC
Ncr1 location; Xs (pU) nNcez location, op (rad) Nces locations ay (rad)  Vy(pu) nces location,  Qy (MVAT)
. . Bus 55 1.214
EP 1 Line 47-14 0.009 1 Line 150-82 0.059 0 - - - 2 BUs 64 2562
. . Line 81-87 1.989 0.058

TS 1 Line 75-49 0.060 1 Line 55-29 0.004 2 Line 71-82 1995 0.064 1 Bus 63 9.321
TS/SSA 1 Line75-124 0088 1 Line86-134 0052 1 Line8s-136 0223 0067 2 ousi00 4394
Bus 124 2.687
. . Bus 74 5.761
IEP 1 Line 100-147 0.051 1 Line 82-90 0.098 0 - - - 2 BUs 94 1126

. Line 52-85 0.068 .
HEA 1 Line 159-40 0.005 2 Line 67-68 0.003 1 Line 79-148 1.156 0.100 1 Bus 96 3.309

Table 4.19 ATC Results and CPU Times of Multilateral Transaction on the Modified Thai Power 160-bus System

With maximum allowable nce=2 for each type of FACTS

Method ATC (MW) Standard CPU Time
Best Average Worst Deviation (min.)
EP 384.255 371.609 357.711 14.28 15.09
TS 385.332 382.274 368.666 12.36 14.29
TS/SA 421.867 399.174 373.091 24.56 12.87
IEP 422.829 400.625 373.864 26.11 28.76
HEA 448.343 424.603 389.605 25.73 27.01

104



4.6 Conclusion

In this chapter, the HEA approach could efficiently and effectively determine the
optimal placement of multi-type FACTS controllers to simultaneously maximize
ATC and minimize system power losses of power transactions in deregulated
power systems, resulting in higher ATC values than those from EP, TS, hybrid
TS/SA, and IEP algorithms. In addition, test results indicate that optimally placed
OPF with multi-type FACTS controllers by the HEA approach could enhance the
ATC values far more than OPF without FACTS controllers, under normal and
contingency conditions.
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Chapter 5

Conclusion

In this research, the proposed HEA approach is effectively implemented to
determine ATC values of power transfers between different control areas
constrained by load flow equations and system operating limits, resulting in higher
ATC values than those from EP, TS, hybrid TS/SA, and IEP methods. It is
indicated that the HEA can effectively re-dispatch real power generations except
slack bus in a source area, increment of real power loads in a sink area and
optimal setting of generation bus voltages, leading to an efficient utilization of the
existing power systems. This is because the mechanisms of hybrid’s components
prevent the cycling movement, can jump from local optima, and make good
decision movement. Moreover, the algorithm can consider additional voltage and
angle stability limits, resulting in a higher trading level of energy transactions in
secured power systems.

FACTS controllers are integrated in electrical power systems to provide
direct control of power flow over designated transmission routes, and to increase
the power transfer capability of transmission networks. However, the extent of
these benefits depends upon where these devices are placed and how they are
controlled in the systems. When multi-type FACTS controllers are considered in
OPF-based ATC determination, the problem is extended to the optimal placement
of multi-type FACTS problem, which is a MINLP problem with continuous and
discrete variables. The combined objective function including ATC maximization
and system real power loss minimization is considered in the new problem
formulation.
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The HEA approach could efficiently and effectively determine the optimal
placement of multi-type FACTS controllers to simultaneously maximize ATC and
minimize system power loss of power transactions in deregulated power systems,
resulting in higher ATC values than those from EP, TS, hybrid TS/SA, and IEP
algorithms. In addition, test results on the modified IEEE 24-bus, 30-bus, 118-bus,
and Thai power 160-bus systems indicate that optimally placed OPF with multi-
type FACTS controllers by the HEA approach could enhance the ATC values far
more than OPF without FACTS controllers, under normal and contingency
conditions, leading to a higher trading level of energy transactions in a normal
secured system.
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FACTS Devices Allocation for
Power Transfer Capability Enhancement
and Power System Losses Reduction

Peerapol Jirapong
Department of Electrical Engineering, Chiang Mai University, Thailand

ABSTRACT

In this paper, a hybrid evolutionary algorithm (HEA) is proposed to determine the optimal
placement of multi-type flexible AC transmission system (FACTS) devices to simultaneously
maximize the total transfer capability (TTC) and minimize the system real power loss of
power transfers in deregulated power systems. Multi-objective optimal power flow (OPF)
with FACTS devices including TTC, power losses, and penalty functions is used to evaluate
the feasible maximum TTC value and minimum power loss within real and reactive power
generation limits, thermal limits, voltage limits, stability limits, and FACTS devices
operation limits. Test results on the modified IEEE 30-bus system indicate that optimally
placed OPF with FACTS by the HEA approach could enhance TTC far more than those from
evolutionary programming (EP), tabu search (TS), hybrid tabu search and simulated
annealing (TS/SA), and improved evolutionary programming (IEP) algorithms, leading to
much efficient utilization of the existing transmission systems.

Keywords: total transfer capability; flexible AC transmission system; hybrid evolutionary
algorithm; optimal power flow; evolutionary optimization

INTRODUCTION

In competitive electric power markets, electric utilities have to operate closer to their limits,
causing unpredictable line loading, voltage variations, and stability problems. Flexible AC
transmission system (FACTS) devices are used to provide direct control of power flows over
designated transmission routes and increase power transfer capability of the transmission
networks, resulting in a lower system loss, stability enhancement, operating cost reduction,
and fulfilled contractual requirements (Hingorani & Gyugyi, 1999). The extent of these
benefits depends upon where these devices are placed and how they are controlled in the
systems, which in turn requires efficient methodologies to solve the optimal FACTS
placement problems. This is an important aspect in the context of growing energy demand
and the emergence of energy trading markets.

Available transfer capability is a measure of the transfer capability remaining in a
physical transmission network for further commercial activity over and above already
committed uses (Maliszewski, Rozier & Cummings, 1996). Electrical power transfer
capability calculation is required for each control area and posted on a public communication
system for open-access of a transmission network to deliver electric energy (Withnell, Leahy
& Coleman, 1996). Mathematically, available transfer capability is defined as the total
transfer capability (TTC) less the transmission reliability margin, less the sum of existing
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transmission commitments and the capacity benefit margin. TTC is defined as the amount of
electric power that can be transferred over the transmission network in a reliable manner
while meeting all of a specific set of defined pre- and post-contingency system conditions
(Maliszewski, Rozier & Cummings, 1996). Transmission reliability margin and capacity
benefit margin are two transmission margins considering the inherent reliability and
uncertainty in the transmission system.

Accurate determination of TTC is essential to maximize utilization of the existing
transmission network while maintaining system security. Underestimated TTC may lead to
under-utilization of transmission system, while overestimated TTC could lower system
reliability. Wide varieties of mathematical methods such as: 1) linear method based on linear
incremental DC load flow approximation considering only thermal limits (Ejebe, Waight,
Nieto & Tinney, 2000), 2) continuation power flow based on the continuation method to trace
load flow solution curve through the maximum loading point (Ejebe et al., 1998), 3)
repetitive power flow based on repeated load flow calculations to establish the maximum
transfer capability (Gravener & Nwankpa, 1999), and 4) a bifurcation approach for assessing
dynamic TTC considering transient stability limits (Kumar, Srivastava & Singh, 2004) have
been developed for TTC computations. In addition, optimal power flow (OPF) based
methods, which can be implemented by traditional optimization techniques have been
proposed to calculate TTC with various degrees of success (Ou & Singh, 2002; Shaaban, Li,
Yan, Ni & Wu, 2003).

These methods require convexity of objective function to obtain the optimal solution.
However, the OPF problem is generally nonlinear and nonconvex optimization problem and,
as a result, many local solutions may exist especially in power systems with embedded
FACTS devices (Wong, Yuryevich & Li, 2003). FACTS parameters are additional control
variables that cannot be effectively solved by conventional optimization methods because
these parameters will change the admittance matrix. Therefore, conventional techniques may
converge to local optimal solutions or diverge altogether (Lai, 1998).

In recent years, power transfer capability enhancement (Ou & Singh, 2001; Xiao,
Song, Liu & Sun, 2003) and power losses reduction (Chung & Shaoyun, 1998) using multi-
type FACTS devices are significant because of competition enhancement and efficient
existing transmission system utilization. Sensitivity index approaches have been commonly
used to determine suitable locations of FACTS devices for maximizing TTC (Verma, Singh
& Gupta, 2001) or minimizing power losses (Preedavichit & Srivastava, 1998). However,
these methods may not lead to the optimal solution because of dependency to system
topology and loading conditions.

With the advent of evolutionary computation, genetic algorithm combined with
continuation power flow method is used to determine the optimal placement of thyristor-
controlled series capacitor (TCSC) for maximizing TTC (Feng & Shrestha, 2001). Genetic
algorithm is used to search for the optimal location and parameter of TCSC while
continuation power flow is used to evaluate the TTC value with the optimally placed TCSC
subject to thermal and voltage limits. For the optimal placement of multi-type FACTS
devices, floating point genetic algorithm is used to simultaneously search for locations, types,
and parameters of TCSC, static var compensator (SVC), thyristor-controlled phase shifter
(TCPS), and thyristor-controlled voltage regulator (Gerbex, Cherkaoui & Germond, 2001).
The optimization strategy based on repetitive power flow method is performed to determine
the maximum system loadability subject to thermal and voltage limits. However, using
continuation and repetitive power flow methods may lead to a conservative TTC value
because these methods do not result in the optimal generation, loading, and generator bus
voltages. Furthermore, optimally placed OPF with FACTS problem is generally a
combinatorial optimization problem (Cai, Erlich & Stamtsis, 2004), which may not be
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effectively solved by either conventional methods or a single evolutionary computation
technique.

In this paper, a new hybrid evolutionary algorithm (HEA) is proposed to determine
the optimal placement of multi-type FACTS devices to simultaneously maximize TTC and
minimize power losses of power transactions between different control areas without
violating system constraints. The proposed algorithm is tested on the modified IEEE 30-bus
system. Test results are compared with those from evolutionary programming (Wong,
Yuryevich & Li, 2003), tabu search (Abido, 2002), hybrid tabu search and simulated
annealing (Ongsakul & Bhasaputra, 2002), and improved EP (Jirapong & Ongsakul, 2009)
algorithms.

PROBLEM FORMULATION

Multi-objective OPF with FACTS devices including TTC, system real power losses, and
penalty functions in (1) is used to evaluate the feasible TTC value that can be transferred
from a specific set of generators in a source area to loads in a sink area within real and
reactive power generation limits, thermal limits, voltage limits, steady-state stability limits,
and FACTS devices operation limits. Real and reactive power balance equations with the
expression of FACTS devices parameters are shown in (2) and (3), respectively. Four types
of FACTS devices are included: SVC, TCSC, TCPS, and unified power flow controller
(UPFC). TCSC is modeled by the adjustable series reactance. TCPS and UPFC are modeled
using the injected power model (Ongsakul & Bhasaputra, 2002). SVC is modeled as shunt-
connected static var generator or absorber.

ND _ SNK N
Maximize F= > Py-Y.(Py—Py)-PF 1)
i=1 i=1
Subject to
m(i) n(i)
P, +ZPP, o)+ D Ry (Vi ) Zvvv 5)c0s(6; (Xs) =6, +5;) =0 )
k=1 i
m(|) n(i)
—Qy +ZQP| e )+ D Qi (Vo o )+ Q +ZVVY $)sin(6;(X)-6,+8,)=0 (3)
k=1

PO < Py, < PO Vie NG (4)
QI < Qg < QI Vie NG (5)
VALV SVALS VieN (6)
|SL|| <S VieNL )
VCPI, <1 VieN (8)
PAET VieNL 9)
Xm|n<x '<Xmax (10)
alr:nlm < ap; < aFr’nlax (11)
me <V, SV (12)
al" <oy < al™ (13)
Qi <Q Qi (14)

Where
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F
PF

multi-objective function,
penalty function,

Input Variables

min max
I:)Gi ' PGi
min max

Gi ' XGi

V_min ,Vimax

i
max
SLi
5crit
ij
min max
X Si X Si
min max
Opi 1 Up;
min max
VUi ’VUi
min max
Ay Ay
min max
Vi 1 XVi
N, NL
NG

ND_SNK

lower and upper limits of real power generation at bus i (kW),
lower and upper limits of reactive power generation at bus i (KVAr),
lower and upper limits of voltage magnitude at bus i (pu),

ith line or transformer loading limit (kVA),

critical angle difference between bus i and j (degree),

lower and upper limits of TCSC at line i (pu),

lower and upper limits of TCPS at line i (rad),

lower and upper voltage limits of UPFC at line i (pu),

lower and upper angle limits of UPFC at line i (rad),

lower and upper limits of SVC at bus i (KVAr),

number of buses and branches,
number of generator buses,
number of load buses in a sink area,

State Variables

Vi,V
5\ 6,
Pc1, Qa1

voltage magnitudes at bus i and j (pu),
voltage angles of bus i and j (degree),
real and reactive power generations at slack bus (kW),

Output Variables

Pai, Qi

Ppi , Qpi
Pri(ark)
Qpri(ark)
Pui(Vuk , auk)
Qui(Vuk , auk)
Yij(Xs)

8ii(Xs)

m(i)

n(i)

ISuil

VCPI;

|oij

Xsi

Opj

Vui , aui

Qui

real and reactive power generations at bus i (kW),

real and reactive loads at bus i (kW),

injected real power of TCPS at bus i (kW),

injected reactive power of TCPS at bus i (KVAr),

injected real power of UPFC at bus i (kW),

injected reactive power of UPFC at bus (kVAr),

magnitude of ijth element in bus admittance matrix with TCSC included (pu),
angle of the ijth element in bus admittance matrix with TCSC included (rad),
number of injected power from TCPS at bus i,

number of injected power from UPFC at bus i,

ith line or transformer loading (kVA),

voltage collapse proximity indicator at bus i,

angle difference between bus i and j (degree),

reactance of TCSC at line i (pu),

phase shift angle of TCPS at line i (rad),

voltage magnitude (pu) and angle (rad) of UPFC at line i, and

injected reactive power of SVC at bus i (KVAr).

Voltage collapse proximity indicator is used to directly determine voltage collapse
conditions within voltage stability limits. A procedure for calculating the indicator can be
found in (Han, Zheng, Tian & Hou, 2009). Angle stability constraints considered can be
either static or dynamic (Canizares, 2000; Yuan, Kubokawa, Nagata & Sasaki, 2003). This
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paper considers only static angle stability constraint. Critical angle displacement is used as a
criterion to determine angle stability limit. For a reasonable level of typical heavy line
loading situations, it is assumed that the angle difference between bus i and j across a
transmission line is kept within a critical angle difference which is 44° as recommended in
(He, Kolluri, Mandal Galvan, 2004). Voltage and angle stability limits are treated as OPF
variables in (8) and (9), respectively. During the optimization, inequality constraints are
enforced using a penalty function in (15).

NG N NL NL
PF =k h(Ps,)+k, 2 N(Qa ) +k, X 0(V) +k, D oh(|Sy])+ks D (|6 ) (15)
i=1 i=1 i=1 p=1
(x —x"™*)? if x >x™
h(x)=4 (x™-x)* if x <x™ (16)
0 if x™<x <x™
Where
Kp penalty coefficient for real power generation at slack bus,
Kq penalty coefficient for reactive power generation of all PV buses and slack
bus,
ky penalty coefficient for bus voltage magnitude,
Ks penalty coefficient for line loading,
Ka penalty coefficient for angle difference, and
X XM lower and upper limits of variable x.

Two types of transactions (Kumar, Srivastava & Singh, 2004) are considered:

Bilateral transaction: A bilateral transaction is made directly between a seller and a
buyer. The seller injects a certain amount of power at one generator bus and the buyer
receives this power at the other load bus. Mathematically, each bilateral transaction satisfies
the power balance relationship in (17).

Py — Py =0 (17)

Multilateral Transaction: A multilateral transaction trading among several parties is
arranged by a scheduling coordinator. Mathematically, a multilateral transaction involving
several sellers and buyers can be expressed in (18).

> Psi =D Py =0 (18)

ieS jeB

Where

Pai real power generation at bus i in a source area (KW),
Ppj real power load at bus j in a sink area (kW),

S set of sellers who sell the power to buyers,

B set of buyers who buy the power from sellers.

Considering base case configuration, let TTCy be the maximum amount of power
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transfer without contingency constraints. Similarly, let TTCy be the maximum amount of
power transfer under the contingency k. Therefore, a feasible contingency TTC value is given
in (19). The limiting condition on some portions of the systems can shift among thermal,
voltage, and voltage and angle stability limits as the network operating conditions change
over time, which is illustrated in Figure 1. TTC must be evaluated from the most restrictive of
these limitations.

TTC = Min{TTCy, TTCy, ..., TTC} (19)

Stability Limit

Voltage Limit

Power Flow (MW)

Total Transfer Capability

Time

Figure 1. Limitsto TTC

COMPUTATIONAL INTELLIGENCE

Computational intelligence is a set of nature-inspired computational methodologies and
approaches to address complex problems to which traditional methodologies are ineffective
or infeasible. The main advantage of using intelligence search lies in the gain of flexibility
and adaptability to the task at hand, in combination with robust performance and global
search characteristics. The majority of current implementations of computational intelligence
algorithms descend from three strongly related but independently developed approaches:
evolutionary programming, tabu search, and simulated annealing.

Evolutionary Programming

Evolutionary programming (EP) is originally developed as a stochastic optimization method
in the area of evolutionary computation, which uses the mechanics of evolution to produce
optimal solutions to a given problem. The EP algorithm starts with random generation of
initial individuals in a population and then the mutation and selection are preceded until the
best individual, which has the highest fitness, is found (Ongsakul and Jirapong, 2004).

Tabu Search
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Tabu search (TS) is a higher level heuristic algorithm called metaheuristic for solving
combinatorial optimization problems (Abido, 2002). It is an iterative improvement procedure
that startsfrom any initial solution and attempts to determine a better solutionOpposite to
randomizing approaches such as simulated annealing where randomness is widely used, TS is
characterized by its ability to avoid the entrapment in local optimal solution and prevent
cycling by using flexible memory of search history (Kamboj and Sengupta, 2009). TS uses a
local or neighborhood search procedure to iteratively move from one potential solution to an
improved solution, until some stopping criterion has been satisfied

Simulated Annealing

Simulated annealing (SA) is a generic probabilistic metaheuristic based on the annealing
process in the statistical mechanics for solving optimization problems. The SA strategy starts
with a high temperature giving a high probability to accept non-improving movements. The
temperature and probability levels diminish as long as the algorithm advances to the optimal
solution. Therefore, SA has the ability to escape from local minima by accepting non-
improving energy solutions during the first and medium stages of the algorithm (Sepulveda
and Lazo, 2003). The main drawback of SA procedure is that the annealing procedure is very
time consuming.

Several computational intelligence techniques have evolved in the last decades that facilitate
solving many optimization problems that are previously difficult or impossible to solve.
Recently, new evolutionary computation and heuristic techniques have been combined
among themselves and with other traditional approaches to solve complicated optimization
problems. Principles of some hybrid algorithms are summarized in the following section.

Hybrid Tabu Search and Simulated Annealing

A hybrid tabu search and simulated annealing (TS/SA) approach is a hybrid algorithm of TS
and SA by using TS as the main algorithm (Bhasaputra and Ongsakul, 2006). The
perturbation of the TS/SA imitates from SA algorithm and the aspiration criterion is adapted
by using probabilistic acceptance criterion of SA instead of aspiration level of TS. The
cooling schedule of SA is also applied in the perturbation.

Improved Evolutionary Programming

An improved evolutionary programming (IEP) is a hybrid algorithm of EP and SA by using
EP as the main algorithm (Jirapong and Ongsakul, 2009). IEP balances the explosion by
dividing the population into subpopulations. Multiple mutation operators are employed to
enhance the search diversity. The selection mechanism with probabilistic updating strategy
based on annealing schedule of SA is utilized to avoid being trapped in local optimum.
Reassignment strategy for individuals is designed for every subpopulation to fuse information
and enhance population diversity.
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HYBRID EVOLUTIONARY ALGORITHM

To improve the robustness of conventional evolutionary computation and metaheuristic
techniques (Back, Hammel & Schwefel, 1997; Bansal, Bhatti & Kothari, 2003), a new hybrid
evolutionary algorithm (HEA) approach integrating EP, TS, and SA algorithms is proposed.
The HEA has special features and merits described as follows:

1) Multiple population search with various mutation operators is designed to enhance
search diversity and improve population update, providing higher quality of solutions
than those from single population search.

2) Reassignment strategy is carried out to fuse and exchange the search information of
all subpopulations so that premature convergence caused by consistency of
individuals in a single population will be alleviated.

3) Selection with a probabilistic updating strategy based on TS and annealing schedule
of SA is applied to avoid dependency on fitness function and to avoid being trapped
in local optimal solutions.

4) The algorithm can easily facilitate parallel implementation on parallel computers to
reduce the elapsed time without sacrificing the quality of solution.

The HEA is used to simultaneously search for real power generations in a source area
excluding slack bus, generation bus voltages, real power loads in a sink area, and optimal
placement of multi-type FACTS devices for determining the feasible TTC value. A flowchart
of the HEA approach is shown in Figure 2, which can be explained as follows:

Representation of Solution

Each individual consists of OPF control variables coded by real number. The whole
population P is divided into M subpopulations according to the number of mutation operators
used. The pth individual in a population is represented by a trial vector in (20). There are four
types of FACTS devices with allowable maximum ncgc component for each type, which is
assigned as input data. The placement configuration is represented by three parameters: ncrx,
locationy, and parametery given in (21). For FACTS type k <{1,2,3,4} representing
placement configuration of TCSC, TCPS, UPFC and SVC, respectively, the number of
FACTS component type k, ncg={0,1,...,n}. More specifically, there is either no FACTS type
k if ncp=0 or a number of FACTS type k if ncex #0. Therefore, number of FACTS
components, locations, and parameters of each type of FACTS devices are simultaneously
searched by the HEA. Note the searched locations and parameters of FACTS type Kk is valid
only when ncg¢ # 0.

Sp = [PGi ’VGi | PDj 1 Lock] (20)
Loc, =[n.q,.location,, parameter, | (21)
Where

Sp trial solution vector of the pth individual,

Vi voltage magnitude of generator at bus i including slack bus,

Locy allocation vector of FACTS device type k,

Ncrk number of FACTS components, ncr ={0,1,...,n},

locationg line or bus location of FACTS type k, and

parameter,  parameter settings of FACTS type k.
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Figure 2. A flowchart of the HEA approach
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Initialization
Each element of the trial vector is initialized randomly within its search space using uniform
random number in (22).

X, = Ximin +U- (Ximax _ Ximin) (22)
Where

Xi ith element of the individual in a population,

XM, X" lower and upper limits of the ith element of the individual, and

u uniform random number in the interval [0,1].

Power Flow Solution
During iterations, a full AC Newton-Raphson power flow analysis is used to check the
feasibility of each individual solution.

Fitness Function
The extended objective function in (1) is taken as the fitness function of the HEA approach.

Cooling Schedule Procedure
The initial temperature of each subpopulation is determined in (23). The temperature is
cooled down by the temperature annealing function in (24).

Tom =—(Fa™ =F,™)/Inp, (23)

Tr,m — /1(!’—1) 'To,m (24)

Where

Tom initial temperature of the mth subpopulation,

F i E e objective value of the worst and the best individuals in the mth subpopulation,

Pr probability of accepting the worst individual with respect to the best
individual,

Trm annealing temperature of the mth subpopulation after the rth reassignment,

A rate of cooling, and

r iteration counter of reassignment strategy.

Mutation

In different subpopulations, different mutation operators are used to create new offspring
subpopulation so that many hybrid operators are applied to enhance the search diversity. Two
mutation operators including Gaussian and Cauchy are applied. Each element of the offspring
is calculated in (25).

Xei = Xei + 04 & (25)
Oyi = Tr,m .amb. (Ximax _ Ximin) (26)
Where

Xy, ith element of the kth offspring individual,

Xk.i ith element of the kth parent individual,

Ok mutation step size for the ith element of the kth individual,
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Em mutation operator of the mth subpopulation e.g. N(0,1), C(0,1), etc.,

N(0,1) Gaussian random number with mean 0 and standard deviation 1,

C(0,1) Cauchy random number,

a positive number slightly less than one,

x> xmn subinterval’s or interval’s upper and lower limits of the ith element of the
individual.

Tabu List

Tabu list is a finite length one-in one-out first-in first-out structure, which records a set of
current best solutions visited. A new trial vector is placed on top of the list and the oldest trial
vector is taken out of the list.

Aspiration Criterion

The aspiration criterion in (27) adopts a probabilistic acceptance criterion of SA. When the
probabilistic acceptance criterion is higher than a uniform randomly generated variable in the
interval [0,1], the tabu restriction is overruled.

Pem =1/ Q+exp(-A/T, ) (27)

Where

Pkm probabilistic acceptance criterion of the kth offspring individual within the mth
subpopulation, and

A difference of objective values between the kth offspring individual and its

corresponding parent individual, i.e. the kth parent individual.

Reassignment Strategy

Tournament scheme is used to select new current parent population from the combined
population of current parent (S*°",...,S™®™) and new offspring (S*"*,...,S™"*¥) individuals
of all subpopulations. Each individual in the combined population is assigned a weight value
according to the competition in (28).

el if F.>F
= ;{0 otherwise (28)
Where
W weight value of kth individual in combined population,
Fx fitness value of kth individual in combined population,
Fr fitness value of rth opponent randomly selected from the combined population
based on r=|2-M-u+1], and
N number of competitors.

After sorting the combined population of 2M individuals in the descending order of weight
values, each new current parent solution individual of all subpopulations will be randomly
selected from a set of the first Mth sorted best solution individuals.

Termination Criteria

There are three termination criteria in the proposed HEA approach. The first termination
criterion is set as the maximum number of generations of each subpopulation and the second
termination criterion is the number of reassignment required. The algorithm will be stopped if
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there is no improvement of the best fitness within 50 generations as the third termination
criterion.

CASE STUDY AND TEST RESULTS

The modified IEEE 30-bus system is used to demonstrate the optimal placement of multi-
type FACTS devices using the HEA approach. The HEA is implemented using MATLAB
version 6.5 on an AMD Athlon64 X2 3600+ computer with 1.0 GB memory. Parameter
settings of the proposed algorithm suggested in (Lai, 1998) are utilized. Test results from
HEA are compared to those from EP (Wong, Yuryevich & Li, 2003), TS (Abido, 2002),
hybrid TS/SA (Ongsakul & Bhasaputra, 2002), and IEP (Jirapong & Ongsakul, 2009)

methods. The reactance limit of TCSC in p.u. is 0< X, <60% of line reactance; phase
shifting angle limit of TCPS is —z/4<a, <z/4 radian; voltage limit of UPFC is
0<V,; £0.1 p.u.; angle limit of UPFC is —7 <¢;; <7 radian; and reactive power injection

limit of SVC is —10<Q, <10 MVAr. Loads are modeled as constant power factor loads.

The modified IEEE 30-bus system in Figure 3 is partitioned into three areas with two
generators in each area (Zimmerman, Sanchez & Gan, 2007). Two transactions including a
bilateral transaction from bus 2 to 21 and a multilateral transaction from area 1 to 3 are
considered.

Gen 1 Gen 2

Figure 3. Diagram of the modified IEEE 30-bus system
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Bilateral Transaction

For the bilateral transaction with optimally placed FACTS devices using HEA method, TTC
value is 43.65 MW without violating system constraints, which is increased by 89.62%
compared to that without FACTS devices shown in Table 1. In addition, the TTC value is
41.45%, 51.04%, 40.72%, and 10.39% more than those from EP, TS, TS/SA, and IEP
methods, respectively.

Table 1. TTC values on the modified IEEE 30-bus system

Bilateral Transaction Multilateral Transaction
Method Without FACTS With FACTS Without FACTS With FACTS
TTC (MW) Loss (MW) TTC (MW) Loss (MW) TTC (MW) Loss (MW) TTC (MW) Loss (MW)

EP 23.02 2.63 30.86 2.67 79.48 4.03 90.51 4.98
TS 23.02 2.63 28.90 2.78 78.84 4.23 101.14 571
TS/SA 23.02 2.63 31.02 2.89 79.44 3.97 103.96 5.79
IEP 23.02 2.63 39.54 1.89 79.45 3.99 104.10 4.17
HEA 23.02 2.63 43.65 2.15 79.61 3.98 111.92 5.85

Multilateral Transaction

For the multilateral transaction with optimally placed FACTS devices using HEA method,
TTC value is 111.92 MW, which is increased by 40.59% compared to that without FACTS
devices. In addition, the TTC value is 23.65%, 10.66%, 7.66%, and 7.51% more than those
from EP, TS, TS/SA, and IEP, respectively. The optimal placements of FACTS devices are
shown in Table 2.

Table 2. Optimal placement of FACTS devices of multilateral transaction

TCSC TCPS UPFC SVC
Method | ncry | locationg Xs ncez | location, op Nces | locations ay (rad), Nces | locations Qv
(pu) (rad) Vy (pu) (MVAr)

Line No. Line No. Line No. Bus No.

EP 1 2425 0.017 1 1.2 0.058 1 2.6 2.579, 0.068 1 21 8.174
Line No. Line No. Line No. Bus No.

TS 1 15.23 0.023 1 2.4 0.010 1 1021 0.724, 0.038 1 25 0.474
Line No. Line No. Line No. Bus No.

TS/ISA 1 8-28 0.051 1 1.2 0.019 1 24 2.014, 0.051 1 28 1.968
- Line No. Line No. Bus No.

IEP 0 - 1 6.9 0.092 1 9-10 1.458, 0.041 1 25 0.287
- Line No. Line No. Bus No.

HEA 0 - 1 6.8 0.013 1 6.7 1.737,0.059 1 24 6.353

Comparisons of TTC results and average CPU times from 20 runs are shown in Table 3. The
reported CPU time is the total computation time of HEA approach from starting to ending
including the Newton-Raphson power flow of all individuals. The HEA can obtain better
results on the best, average, and the worst TTC values than those from the other methods.
Furthermore, the variation of the HEA best solution is smaller as evidenced by a smaller
standard deviation, leading to a more stable HEA approach. To compare the convergence
characteristic, IEP and HEA utilize a probabilistic updating strategy based on annealing
schedule of SA, resulting in more generations required and slower convergence characteristic
than EP, TS, and TS/SA methods as shown in Figure 4.
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Table 3. Optimal TTC values with FACTS devices and CPU times

Bilateral Transaction with FACTS Multilateral Transaction with FACTS
Method TTC Standard C.PU TTC Standard C.PU
Deviation T'me Deviation T”?”e
Best Average Worst (min) Best Average Worst (min)
EP 30.86 27.14 22.91 3.08 1.13 90.51 84.33 75.41 4.87 2.00
TS 29.34 27.15 22.93 2.81 1.17 101.14 86.25 76.96 8.99 1.85
TSISA 31.02 26.87 22.95 2.57 0.91 103.96 97.33 81.04 7.55 1.55
IEP 39.54 32.23 26.12 5.40 1.52 104.10 93.32 73.72 9.76 2.88
HEA 43.65 34.05 26.50 5.38 1.51 111.92 102.56 88.78 5.58 2.72

120 T T T T T

=3
=3
2
'_
'_
40+ -
—— EP
Ar — = TE/EAN
-—=T5
--------- EP
D 1 | 1 1 I
0 50 100 150 200 250 300
Generation Mo
Figure 4. Convergence characteristic of solutions
CONCLUSION

The proposed HEA method could efficiently and effectively determine the optimal placement
of multi-type FACTS devices to simultaneously maximize TTC and minimize system power
losses of power transactions in deregulated power systems, resulting in higher TTC values
than those from EP, TS, hybrid TS/SA, and IEP algorithms. In addition, test results indicate
that optimally placed OPF with multiple and multi-type FACTS devices by the HEA
approach could enhance the TTC values far more than OPF without FACTS devices, leading
to a higher trading level of energy transactions in a normal secured system.
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Abstract— In this paper, hybrid tabu search and simulated
annealing (TSSA) with search space managing methods are
proposed to determine the optimal number and allocation of
FACTS controllers to enhance power transfer capability of
power transactions between generators and loads in power
systems. Particular optimal allocation includes optimal locations
and parameter settings. Two types of FACTS controllers
including thyristor-controlled series capacitor (TCSC) and static
var compensator (SVC) are used individually. The objective
fi ion is for d as maximizing total transfer capability
(TTC) and minimizing power losses. Power transfer capability
determinations are calculated based on the optimal power flow
(OPF) technique. Split and non-split search space managing
methods are used to improve the solution searching capability.
Test results on IEEE 118-bus system and the practical Electricity
Generating Authority of Thailand (EGAT) 58-bus system show
that the proposed hybrid TSSA with optimal number of FACTS
criteria and the split search space managing method give higher
TTC and less number of FACTS controllers than those from

1 Y progr (EP) and nom-split search space

method.

Keywords-comp s Evoluti y Comg g, Tabu Search,
Simulated Annealing, Flexible AC Transmission System, Load
Flow

L INTRODUCTION

Demands for electrical energy increase every year, so the
installation of new power plants, distributed generations, and
expanding transmission lines may respond to these increasing
demands. However, these utilities have some disadvantages
such as the pollution control, the high cost of installations and
operations, and the land acquisitions. In the other hand, using
Flexible AC Transmission System (FACTS) controllers
provide advantages such as none pollution, less cost of
installations and operations, and providing flexible control of
the existing transmission system.

FACTS controllers are power electronics based system and
other static equipment that have the capability of controlling
various electrical parameters in transmission networks. These
parameters can be adjusted to provide adaptability conditions
of transmission network. There are many types of FACTS
controllers such as thyristor-controlled series capacitor
(TCSC), static var compensator (SVC), thyristor controlled
phase shifting transformer (TCPST), and unified power flow
controller (UPFC) [1]. These FACTS controllers have been

Energy Policy and Planning Office (EPPO), Ministry of Energy, Thailand
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proved that they can be used to enhance system controllability
resulting in total transfer capability (TTC) enhancement and
minimizing power losses in transmission networks [2].

TTC is defined as an amount of electric power that can be
transferred over the interconnected transmission network in a
reliable manner while meeting all of a set of defined pre and
post-contingency system conditions [3]. TTC can be calculated
by several power flow solution methods such as linear ATC
(LATC) method [4], continuation power flow (CPF) method
[5], repetitive power flow (RPF) method [6], and optimal
power flow (OPF) based methods [7].

The maximum performance of using FACTS controllers to
increase TTC and minimize losses should be obtained by
choosing the optimal types, numbers, parameter settings, and
locations in transmission systems. Modem heuristics
optimization techniques such as genetic algorithm (GA),
evolutionary programming (EP), particle swarm optimization
(PSO), tabu search (TS), and simulated annealing (SA) are
successfully implemented to solve complicated optimization
problems efficiently and effectively [8]. The optimal allocation
of four types of FACTS controllers including TCSC, SVC,
TCPST, and UPFC using GA are presented in [9]. Simulation
results validate the efficiency of this approach in minimizing
the overall system cost function, including generation costs,
and investment costs of FACTS controllers. In [10], the
optimal allocations of four types of FACTS controllers are
determined by EP. Test results indicate that optimally placed
OPF with FACTS controllers by EP can enhance the TTC more
than OPF without FACTS controllers. In [11], PSO is used to
determine type, locations, and parameter of multi-type FACTS
controllers to achieve maximum benefit to cost ratio of TTC
enhancement and total FACTS installation cost. Three types of
FACTS controller including SVC, TCSC, and UPFC are used.
Test results indicate that optimally placed OPF with FACTS
controllers using PSO enhance higher power transfer capability
than those from EP. Moreover, PSO gives higher benefit to
cost ratio and faster convergence than EP for all transfer areas.
In [12], GA is used to determine locations, numbers, and
operating points of static synchronous compensator
(STATCOM) and static synchronous series compensator
(SSSC) in steady state simulation by two steps method. The
optimal points and numbers of FACTS controllers could serve
minimum fuel cost and active power losses.
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However, the conventional heuristic methods have some
limitations such as the almost used control variables have
chances to define to the local values which give the almost
local answer values and lots of CPU times consuming are used.
In this paper, the hybrid TSSA is used. The aims of merging
TS and SA are to solve these limitations. The proposed hybrid
TSSA is used with optimal number of FACTS controller
algorithm. Determination of the optimal numbers, locations,
and parameter settings of TCSC and SVC, to conduct power
transfer capability enhancement and minimize power losses are
also investigated. The IEEE 118-bus system and practical
Thailand 58-bus system from Electricity Generating Authority
of Thailand (EGAT) are used as the test systems.

II.  PROBLEM FORMULATION

To determine the optimal number and allocation of FACTS
controllers for TTC enhancement and power losses reduction,
the objective function is formulated as maximization of TTC
and minimization of power losses represent by (1). Power
transfer capability can be defined as TTC value, which is the
power that can be transferred from generators in source buses
to load buses in power systems subject to real and reactive
power generations limits, voltage limits, line flow limits, and
FACTS controllers operating limits. The sum of real power
loads in the load buses at the maximum power transfer is
defined as the TTC value. Two types of FACTS controllers
including TCSC and SVC are used. These FACTS controllers
are represented by the static model [13], [14].
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real power loads in the ith bus,
losses in line flows at ith line,
number of load buses,

number of lines,

real power generation at ith bus,
total number of buses,

voltage magnitude at ith bus,

voltage magnitude at jth bus,

magnitude of the element in jth bus
admittance matrix with TCSC included,

angle of the element in jth bus admittance
matrix with TCSC included,

voltage angles of ith bus,

voltage angles of jth bus,

reactive power generation at ith bus,
reactive power load at ith bus,

angle of the element in jth bus admittance
matrix,

fixed injected reactive power of SVC at ith
bus,
ith line or transformer loading,

vector of reactance of TCSC at ith line,
number of generators,

lower and upper limit of real power
generation at ith bus,

lower and upper limit of reactive power
generation at ith bus,

lower and upper limit of voltage magnitude
at ith bus,

ith line or transformer loading limit,

upper limits of reactance of TCSC at ith line,
and

upper limit of injected reactive power of
SVC at ith bus
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ITI.  PROPOSED ALGORITHM

A Hybrid Tabu Search and Simulated Annealing
Hybrid TSSA is proposed in [15] which is an integrated
approach between TS and SA by using TS as a main algorithm
[16]. The trial generated neighborhood solution of SA is
presented for generating neighborhood for TS. In addition, the
probabilistic acceptance criterion of SA is used [17]. The
general flowchart of hybrid TSSA is shown in Fig. 1. The main
components of the algorithm are briefly explained as follows.

1) Representation of Solution:

Each individual of trial neighborhood solution vectors in a
population composes of OPF control variables, which are
coded by real number. The kth individual in a population is
represented by a trial solution vector as (12).

V, =[Py Vs Pry» NFS, Loc;, FS, | (12)
where
P, real power generation at ith bus of generator
bus excluding slack bus,
Ve voltage magnitude of generator bus at ith bus
including slack bus,
Py real power load bus at ith bus of load bus,
NFS, ith FACTS controllers,
Loc; locations of #th FACTS controllers, and
FS, parameter of ith TCSC or the parameter of

ith SVC.

2) Initialization:
The initial population of trial neighborhood solution vectors
is initialized randomly by using (13).

X, =x™" +u (xl"“‘X —xmin ) (13)
where
X value of the ith element,
o e lower and upper limits of the th element, and
u uniform random in the interval [0,1].

3) Power flow solution:

During iterations, a power flow is performed for each
individual to evaluate objective function. A full Newton-
Raphson (NR) power flow analysis is used.

4) Fimess function:
The fitness function of the individual & can be computed by
using (14).

S =K *F 14

Start

| Tnitialize population and temperature | Step 1

Solving power flow and Step 2
compute the objective
|  Cocling schodule and Step 3
performing Perturbation
Step 4

Solving power flow and
compute the objective
No
Step 5
Update solution vestor ;
Update Tabu list

Check the
acceptance
criterion

Termination
criterion
Yes

Figure. 1. Flow chart of hybrid TSSA.

Step 6

Step 7

where

fe fitness function of kth individual, and
Kf arbitary constant, define as 1.

5) Perturbation:

The trial neighborhood solution vectors are generated by
perturbing the initial solution vector based on the uniform
probability distribution function. In addition, the upper limits of
FACTS parameters are used to limit the ranges of perturbation.
A trial neighborhood solution vector is randomly generated by:

{5 = S 4 (T, HUTF,) as
T, = r¥ g 16)
where
I8 initial temperature equals to 0.2,
T, temperature at iteration Ath,
k iteration counter,
r reducing rate equals to 0.9,
S;k’m) trial m neighborhood solution vector at
iteration kth,
S;k 0 initial solution vector at iteration kth,
U] diagonal matrix of uniform randomly
generated number between 0 and 1, and
F u

upper limit vector of FACTS controller
parameter.
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6) Acceptance Criterion:

The probabilistic acceptance criterion of SA is used instead
of aspiration level (AL) of TS. The acceptance criterion is
designed for decision movement of the current neighborhood
solution, which is in tabu list (TL). The probabilistic
acceptance criterion is given as follow:

. 1

= 17
P 1+exp(A/T,) an
where
o probabilistic  acceptance  criteria of  current
neighborhood solution vector at iteration kth,
A difference between the objective function of the
current neighborhood solution vector in the second set

(k,m)
{85773 and the best solution vector reached or
(F(S&)=F5)

&
(F (Sg ) objective function of solution vector Se s
Sk current neighborhood solution vector at iteration k,
and
Fy best objective function.

7) Termination criteria:

If the maximum generation number is reached, the iteration
process is terminated. Otherwise, the perturbation and
acceptance criterion will be reiterated until the criterion is
satisfied Evolutionary Programming

B. Evolutionary Programming

The EP algorithm starts with random generation of initial
individuals in a population and then mutation [18]. The
processes after mutation are competition and selection. The
main components of the algorithm are briefly explained as
follows.

1) Representation of Solution:
Each individual in a population composes of OPF control
variables, which are coded by real number. The kth individual
in a population is represented by a trial solution vector as (12).

2) Initialization:
The initial population is initialized randomly using sets of
uniform random number distribution ranging over the
limitation of each control variable as (13).

3)  Power flow solution:

During iterations, a power flow is performed for each
individual to evaluate objective function. A full Newton-
Raphson (NR) power flow analysis is used.

4) Fimess function:
The fitness function of the individual kth can be computed
by using (14).

5) Mutation:
A new population is generated by using guassian mutation
operator.

6) Selection:
The selection technique utilized is a tournament scheme.

7)  Termination criteria:
If the maximum generation number is reached, the iteration
process is terminated. Otherwise, the number and selection
process will be reiterated until the criterion is satisfied.

C. Optimal number of FACTS controllers

The algorithm of optimal number of FACTS controllers
shown in Fig. 2. The following index is calculating using
optimal value of objective function by using (18) and (19).

INC, AL (18)
AZ,

i-1
[az]=1z, -z 19
where

INC, index to check out the increasing number of

FACTS controller, subscript i denotes the
number of FACTS controller,

yAVA

2 optimal value of the objective function when

applying ith and i-1th FACTS controller, and
AZ.AZ.,

s variation of the objective value when the
number of FACTS controller is increased

from i-1 to i, This is increased when INC; is
greater than INC,_, and INC; is greater than
BestINC value, and

BestINC maximum value of INC.

The numbers of FACTS controller will be increased and
continue evaluating objective value until the stopping criteria is
reach.

D. Search space managing method

There are two methods used to manage search space of
FACTS controller operating point. The first method is
generally used with the default minimum and maximum
operating point of FACTS controllers.

The second method is used to split the search space of
operating point of FACTS controllers into # search spaces
depended on the number of FACTS controllers. If the number
of FACTS controller equals one, minimum and maximum
values of operating point are used by the initial value. If
number of FACTS controllers is greater than one, the search
space will be split.
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IV,

BegINC - INC,

Optimial number of FACTS contreller methed.

CASE STUDY AND EXPERIMENTAL RESULT

The TEEFE. 118-bus and Thailand 58-bus systems are used to
demonstrate the placement of FACTS controllers with optitnal
number ol FACTS controllers and search space managing
methods. Base case TTC is caleulated by wsing OPF
Maximum TTC are calculated with CP and hybrid TSSA. The
reactance limits of TCSC in pu is 0= X <01, reactive

power injection limit i3 0 < Oy, <10 Mvar. The population size

of EP and hybrid T'SSA arc sct to 30. The maximuin iteration
number is sct to 400. In all optimization problems. scveral

cascs in terms of using of FACTS controllers are considered
with TCSC and SV individually.

A The IELE 118-bus svstem

The IEEE 118-bus system consisting of 34 gencrating
plants, 64 load buses, and 186 lines shown in Fig. 3 1s used as a
test systenn. The system data can be found in [19]. Bus 69 is set
as swing bus which is framed in Fig. 3. Base case TTC of [EER
118-bus system squals 1433.00 MW,

In Table I, EP and hybrid TSSA with the split search space
managing method tend to give highor 1'7C than these results
from non-split managing mothod. Furthermore. the hyvbrid
TSSA gives higher TTC' than EP. The best, the average. and
the worst TTC values obtained from TCSC placement by using
hybrid TSSA wath split scarch space managing method are
297537 MW, 2708.51 MW, and 2390.86 MW, respectively.
Tor SVC placement, the best, the average, and the worst TTC
value are 2996.34 MW, 281547 MW, and 2589.63 MW,
respectively. The results show that the optimal numbcer and the
optimal allocation of SYC by using hybrid TSSA with the split
search space managing method gives higher TTC than TCSC.
The optimal number and the allocation of all FACTS
controllers are represented in Table I1

bigure 3. Diagram of the 26 118-bns system

TABLEI TTC RESULTSIROM EAUTE FACTS CONTROLLERS AND CPU TIME FROM TWO METHOD $ USING EP/IYBIID TS3A on IEEE 118-BUS SYSTEM
TTC (MW) EP Hybrid TSSA
with FCSC with $1¢° with TCS¢ with SV
Nem-split Split search | Non-split Split - search | Non-split Split - search | Non-split Spht  search
seurch space | spacemethod | search space | spoce method | search spave | space method | swarch space | space method
melbwd methwl methed method
Best 92230 293800 91805 296343 294559 297537 2937 41 299463
Average 236760 2389.09 2621.23 2037.92 259012 270851 281547
Warsi 2420.24 2405 01 240823 243238 252223 2390 80 258063
Standard 110,90 121,31 141,04 130,69 13115 13278
deviation
Avenge 40.29 40,28 40.27 40.27 30.12 0.0 A 3001
CPU Tinwe (niin}
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TABLE IL

CPTIMAL NUMBER &ND PARAMETER SETTING OF EACH FACTS CONTROLLER ON IEEE 118-BUS SYSTEM

Method EP Hybrid TSSA
Type of rcse SFC Fcsc sve
FACTS
Confrofler
Search spece | Non-split Split  search | Non-split Split  search | Non-split Split  search | Non-split Split search
e ging search space | spacemethod | search space | space method | search space | spacemethod | search space | space method
method method method method
Muszrber of 4 2 3 2 2 2 2 2
FACTS
Corifroilers
Line 1-2 Line 53-54 Bus 115 Bus 2 Line 12-16 Ling 15-19 Bus 10 Bus 21
Locution /00217 (puy | #0.00657 (puwy | /3.475 (Mvar) | /2197 (Mvar) | /00333 pu) | /0.0188 (pu) | /8.677 (Mvar) | /7.005 (Mvar)
/Parcmeterof | Ting4.5 Line 96-97 Bus 98 Bus 27 Line 18-19 Line 24-43 Bus 79 Bus 113
FACTS /00399 (puy | /0.0405 puy | /6.944 (Mvar) | /6.903 (Mvar) | /00847 (pu) | /0.0893 (pu) | 4.646 (Mvar) | /4.019 (Mvar)
ci Line 34-43 - Bus 36 - - - - -
/0.0731 (pu) 16,403 (Mvar)
Line 48-49 - -
100487 (pu)
B Thatland S5-bus systers higher TTC than TCSC. The optimal number and allocation

In this case study, a reduced practical test system from
EGAT 230 kV and 500 kV network is used as another test
system. For day-load case, the EGAT 58-bus system
consisting of 17 generating plants, 41 load buses, and 77
lines as shown in Fig. 4 is used [20]. Bus 1 is set as swing
bus which is framed in Fig. 4. Base case TTC of the system
equals 10261.50 MW.

In Table IIT, higher TTC values are obtained from EP and
hybrid TSSA with split search space managing method than
from the non-split search space managing method with
TCSC and SVC placement by individually. For TCSC
placement by using hybrid TSSA with split search space
managing method gives the best, the average, and the worst
TTC values are 1630598 MW, 15868.52 MW, and 15318.64
MW, respectively. For SVC placement by using hybrid
TSSA with TCSC and SVC placement by individually. For
TCSC placement by using hybrid TSSA with split search
space managing method gives the best, the average, and the
worst TTC values are 1630598 MW, 15868.52 MW, and
15318.64 MW, respectively. The results show that the
optimal number and the optimal allocation of SVC by using
TSSA with the split search space managing method gives

of all FACT'S controllers are showed in Table TV.

Figure4. Diagram ofthe EGAT 58-bus system

TABLE IIL TTC RESULTS FROM EACH FACTS CONTROLLERS AND CPU TIME FROM TWO METHODS USING EP/HYBRID TS/SA ON EGAT 58-BUS SYSTEM
TTC (MW) EP Hybrid TS/SA
with ICSC with SVC with FCSC with SVC
Non-split Split  search | Non-split Split  search | Non-split Split  search | Non-split Split search
search space | spacemethod | search space | space method | search space | space method | search space | space method
method method method method
Best 1511472 15541.64 1512327 15380.40 1620102 16305.98 16212.78 16521.14
Average 14185.15 14745.44 14597.84 1467474 15866.17 15868.52 15736.11 15559.92
Worst 1391146 14086.68 14326.79 14701.50 15267.12 1531864 1515545 15402.91
Standard 422.14 38991 309.21 31711 427.85 390.07 312.34 32281
deviation
Average 33.28 3327 3328 3328 19.38 19.37 19.37 19.37
CPU Time (min)
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TABLETIV.

OPTIMAL NUMBER AND PARAMETER SETTING OF EACH FACTS CONTROLLER ON EGAT 58-BUS SYSTEM

Method EP Hybrid TS/SA
Typeof TCSC SVC TCSC (ra) SVC Ofvar)
FACTS
Controller
Search space | Non-split Split  search | Non-split Split  search | Non-split Split  search | Non-split Split  search
managing search space | space method | search space | space method | search space | spacemethod | search space | spacemethod
method method method method
Number of 3 2 3 3 2 2 2 2
FACTS
Controller
Line 9-10 Line 41-42 Bus 38 Bus 8 Line 9-10 Line3-4 Bus3 Bus3
Location /00241 | /0.0073 uwy | /2159 (Mvar) | /1.545 (Mvar) | 70.0531 u) | /0.0082 puwy | /9.871 (Mvar) | /2.815 (Mvar)
/Parameter of [Tine4-11 Line 29-31 Bus 21 Bus12 Line 29-31 Line 51-52 Bus 20 Bus 46
FACTS /0.0494 () | /0.0596 (pu) | /3.157 (Mvar) | /5.203 (Mvar) | /0.0284 (pu) | /0.0701 (u) | /2.213 (Mvar) | /5.504 (Mvar)
Controller  Tineasas | - Bus 8 Bus 18 - - - -
/0.0212 (puy 16279 (Mvar) | /6.931 (Mvar)
V.  CONCLUSION [8] M. R. AlRashidi and M. E. El-Hawary, “Applications of
. . . . computational intelligence techniques for solving the revived optimal
_In this paper, proposed hybrid TSSA 13 used with the power flow problem,” Electric Power Systems Research, vol. 79,
optimal number of FACTS controllers’ algorithm and search issue 4, pp. 694-702, Apr. 2009.
space managjng methods comparing to EP. The results [9] L. I Cai and I Erlich, “Optimal choice and allocation of FACTS
indicate that optimal number of FACTS controllers, split ge"ices /;JSifllg ge“eﬁcp alg(’fghmsv” éﬂ ;’WC- Twelﬁlh 61"215(1)1;@"1
: : : Systems Application to Power Systems Conference,” pp. 1-6, .
search space managing methods, and hybrid TSSA .Wlth [10] W. Ongsakul and P. Jirapong, “Optimal allocation of FACTS devices
FACT_S COntrOHClTS can e_nh_ance TTC from base case. Higher to enhance total transfer capability using evolutionary programming,”
TTC is also obtained within less average CPU time by the in Proc. International Symposium on Circuits and Systems, vol. 5, pp.
hybrid TSSA than by EP with both non-split and split search 4175- 4178, JTapan, 2005.
space managing method. The optimal number method can be [11] 8. Chansarcewittaya and P. Jirapong, “Power Transfer Capability
used to reduce CPU time, compared to the increasing number enhancement with multitype FACTS controller Using Particle Swarm
of FACTS controller step by step. In addition, the overall Optimization”, in Proc. TENCON2010 -2010 IEEE Regionl0
ber of FACTS controllers from the split search space Conference, pp. 42-47, Fukuoka, Japan, Nov. 2010. s
num n . p X [12] S. Rahimzadeh, M. Tavakoli Bina and AH. Viki, “Simultaneouos
managing method is less than non-split search space application of multi-type FACTS devices to the restructed
managing method. Therefore, the installation of FACTS enviroment:achieving both optimal number and location,” IET
controllers with optimal number and optimal allocation are Generation, Transmission & Distribution, vol. 4, issue 3, pp. 349-
beneficial for the further expansion plans. 362, Mar. 2010. . . .
[13] P. Bhasaputra and W. Ongsakul, “Optimal power flow with multitype
FACTS devices by hybrid TS/SA approach,” in Prof IEEE
ACKNOWLEDGMENT Interational Conference on Industrial Technology 2002, pp. 285-
. . . . 290, Bangkok, Thailand, 2002.
T}_HS Worl_( is supported in part by the EnergY_POhCY and [14] P. Jirapong. and W. Ongsakul, “Optimal placement of multi-type
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Abstract-In this paper, evolutionary programming (EP) with
optimal maximum number of FACTS controller and search
space managing methods are proposed to determine the optimal
allocation of FACTS controllers to enhance power transfer
capability of power transactions between generators and load
buses. Particular optimal allocation includes optimal locations
and parameter settings. Two types of FACTS controllers
including thyristor-controlled series capacitor (TCSC) and static
var compensator (SVC) are used individually in this study. The
objective function is formulated as maxi total transfer
capability (TTC) and minimizing power losses. Power transfer
capability determinations are calculated based on the optimal
power flow (OPF) technique. Split and non-split search space
managing methods are used. Test results on IEEE 118-bus
system and the practical Electricity Generating Authority of
Thailand (EGAT) 58-bus system showed that EP with optimal
maximum number of FACTS and the proposed split search
space managing method gave higher TTC and less maximum
number of FACTS controllers than those from non-split method.
Therefore, the installation of FACTS controllers with optimal
maximum number and optimal allocation are beneficial for the
further expansion plans.

L INTRODUCTION

Demands for electrical energy increase every year, so the
installation of new power plants or distributed generations
may respond this increasing demand. Compared to Flexible
AC Transmission System (FACTS), these constructions have
some disadvantages such as the pollution control, the cost of
operation, and the land acquisitions. In the other hand, using
FACTS controllers provide advantages for transmission
system  because FACTS controllers require
discriminatory open access of transmission resources.

FACTS controllers are power electronics based system
and other static equipment that have the capability of
controlling various electrical parameters in transmission
networks. These parameters can be adjusted to provide
adaptability conditions of transmission network. There are
many types of FACTS controllers such as thyristor-controlled
series capacitor (TCSC) and static var compensator (SVC)
[1]. TCSC is connected in series with the line conductor to
compensate the inductive reactance of the line while SVC
serves generated or absorbed reactive power for transmission
networks. These FACTS controllers, therefore, give benefits
in increasing system transmission capability and power flow
control flexibility [2]. Moreover, it has been proved that
TCSC and SVC can be used to enhance system controllability

non-

978-1-61284-972-0/11/$26.00 ©2011 IEEE

resulting in total transfer capability (TTC) enhancement and
minimizing power losses in transmission networks [3].

TTC is defined as an amount of electric power that can be
transferred over the interconnected transmission network in a
reliable manner while meeting all of a set of pre-defined and
post-contingency system conditions [4]. TTC can be
calculated by several power flow solution methods such as 1)
linear ATC (LATC) method [5], 2) continuation power flow
(CPF) method [6], 3) repetitive power flow (RPF) method
[7], and 4) optimal power flow (OPF) based methods [8].

The maximum performance of using FACTS controllers to
increase TTC and minimize losses should be obtained by
choosing the types, numbers, parameter settings, and
locations in the transmission systems. The modern heuristics
optimization techniques such as genetic algorithm (GA),
evolutionary programming (EP), and particle swarm
optimization (PSO) are successfully implemented to solve
complex problems efficiently and effectively [9]. The optimal
choices and allocation of four types of FACTS controllers are
defined in [10]. Simulation results validate the efficiency of
this new approach in minimizing the overall system cost
function, ncluding generation costs, and investment costs of
the FACTS controllers. In [11], EP is used to determine the
optimal allocation of four types of FACTS controllers. Test
results indicated that optimally placed OPF with FACTS
controllers by EP can enhance the TTC more than OPF
without FACTS controllers. PSO is also used to optimize
location and parameters of FACTS controllers to achieve
minimum cost of installation of FACTS controllers and
improve system load ability [12]. Numbers of FACTS
controllers are increased manually and the results from the
study showed that both unified power flow controller (UPFC)
and TCSC yield maximum system load ability. UPFC gives
high cost of installation in TEEE 6, 30, and 118-bus test
systems but TCSC gives minimum cost in TNEB 69-bus
practical test system. In [13], GA is used to determine
locations, numbers, and operating points of FACTS
controllers. Static synchronous compensator (STATCOM)
and static synchronous series compensator (SSSC) are used in
steady state simulation by two steps method. The optimal
points and numbers of FACTS controllers could serve
minimum fuel cost and active power losses.
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In this paper, EP and proposed algorithm are used to
determine the optimal maximum numbers, locations, and
parameter settings of two types of FACTS controllers to
conduct power transfer capability enhancement and
minimizing power losses. The IEEE 118-bus system and
practical Thailand 58-bus system from Electricity Generating
Authority of Thailand (EGAT) are used as the test systems.

II. PROBLEM FORMUL ATION

Power transfer capability is marked as TTC value, which is
the power that can be transferred from all generators in source
buses to all load buses in transmission system subjected to
real and reactive power generations limits, voltage limits, line
flow limits, and FACTS controllers operation limits. Two
types of FACTS controllers including TCSC and SVC are
used. These FACTS controllers are represented by the static
model [14]. TCSC and SVC are modeled by the adjustable
series reactances and the injected power model, respectively.
The sum of real power loads in the load buses at the
maximum power transfer is defined as the TTC value. In all
optimization problems, several cases in terms of using of
FACTS controllers are considered with TCSC and SVC
individually [15].

The objective function of OFF with FACTS controllers is

represented by (1):
ND _BUY NL
maxF{ 2 BBy 2 E, - P |- hlx) (D)
i=1 i=1
R S

@

} - .
h(x)= Mg ify, <xm

0 folmin le < xlmax
Subject to

N
By = Py = Y VT (X,)o0s(0,(X,) -8 +8)=0  (3)
Jj=1

N
Qo — O + 2 VYL, (X )sin(0,(X,,) -8, +8)=0 (4
J=1
N
Py = Po = Y FVT, cos(9, —8,+8,)=0 ®
Jj=1
N N
Og ~0n + .0~ Y VT, 0086, -8 +8,)=0  (6)
i=1 Jj=1
Poin <P < pmx Vie NG @)
Q8" <0y <OB®  VieNG @®
ymin <y < pmax YieN (9)
| S, < Sma= Vie NL (10)

0=sXg =Xg™ (11)

00, <gm™ 12

where

Pr, real power loads in the ith bus,

phose base case real power loads in the ith load
bus,

P, the losses in line flows at ith line,

Pﬁm the base case losses in line flows at ith line,

ND BUS  number of load buses,

NL number of lines,

h(x,) penalty function of variable ith x,

L real power generation at ith bus,

N total number of buses,

14 voltage magnitude at ith bus,

v, voltage magnitude at jth bus,

Y, (X0 magnitude of the element in jjth bus
admittance matrix with TCSC included,

0,(X;) angle of the element in 7jth bus admittance
matrix with TCSC included,

S, voltage angles of ith bus,

S; voltage angles of jth bus,

O reactive power generation at ith bus,

On reactive power load at ith bus,

6, angle of the element in 7jth bus admittance
matrix,

O fixed injected reactive power of SVC at ith
bus,

|8y 1 ith line or transformer loading,

Xg vector of reactance of TCSC at 7th line,

NG number of generators,

PEin pmE ower and upper limit of real power
generation at ith bus,

omin gmex Jower and upper limit of reactive power
generation at ith bus,

pmn pm ower and upper limit of voltage magnitude
at ith bus,

ST ith line or transformer loading limit,

xg= upper limits of reactance of TCSC at ith
line, and

on™ upper limit of injected reactive power of
SVC at ith bus.
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1T PROPOSED ALGORITHM

A.  Evolutionary Programming

The EP algorithm [16] starts with random generation of
initial individuals in a population and then mutation. The
processes after mutation are competition and selection. The
best individual taken by the highest fitness value is found.
The main components of the algorithm are briefly explained
as follows.

1. Representation of Solution
Each individual in a population composes of OPF control
variables, which are coded by real number. The kth individual
in a population is represented by a trial solution vector as

13).

Vi =[BoVer PrsLoc,, FS, | (3
where
B,y real power generation at ith bus of
generator bus excluding slack bus,
Vey voltage magnitude of generator bus at ith

bus including slack bus,
P, real power load bus at ith bus of load bus,

locations of ith FACTS controllers, and
parameter of ith TCSC or the parameter of
ith SVC.

2. Initialization

The initial population is initialized randomly using sets of

uniform random number distribution ranging over the
limitation of each control variable as (14).

X, = xin ﬂt(xl"‘ax 7xl'"i") 14
where
X value of the ith element,
qui",quax lower and upper limits of the ith element,
and
u uniform random in the mterval [0,1].

3. Powerflow solution
During iterations, a power flow is performed for each
individual to evaluate objective function. A full Newton-
Raphson (NR) power flow analysis is used.

4. Fitress function
The fitness function of the individual ¥ can be computed by
using (15).

i =Kf*F (15)
where
1 fitness function of kth ndividual, and
Kf arbitary constant, defined as 1.

5 Mutation
A new population is generated by using Guassian mutation
operator. Each element of the new trial solution vector &, ¥,
is computed by using (16) and (17).

) 2
xy =3, + N (0,02 16)
in\[ Smax = 2
O, = (x,max - xlmm)[ m}}:nax +ad (17
where
x'p value of the ith element of the /th offsping
individual,
X value of the ith element of kth parent
individual,
N (0, 0'75,;) Guassian random number with a mean of
zero and standard deviation of o, ,,
xn e lower and upper limits of the ith element,
fitness value of the kth individual,
I3
Jmax maximum fitness of the parent population,
a positive constant slightly less than one, and
g generation counter.

6 Selection
The selection technique utilized is a tournament scheme,
which can be computed from (18) and (19).

i A/ s
’ {0 otherwise
1]
S = z Wy 19
£

where

Wy weight value of each opponent,

I fitness value of the kth individual,

I fitness of the rth opponent randomly
selected from the combined population
based on r=|2*P*u+1],

u uniform random in the interval [0,1],

P population size,

Sy total score of each kth individual, and

Nt number of the opponents.

7. Termination critevia
If the maximum generation number is reached, the iteration
process is terminated. Otherwise, the number and selection
process will be reiterated until the criterion is satisfied.
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B.  Optimal maximum number of FACTS controllers

The proposed algorithm shown in Fig. 1 is started for one
FACTS controller and having found the optimal solution.
Evaluation is continued by adding one of FACTS controller.
The number of controller is increased one by one and the
following index is calculating using optimal value of
objective function by using (20) and (21).
A%, 20
i1

AZ,|= 12~ 7,4

INC, =

@n

where
INC, index to check out the increasing number of
FACTS controller, subscript i denotes the
number of FACTS controller,

optimal value of the objective function
when applying ith FACTS controller, and

variation of the objective value when the

number of FACTS controller is increased
from i-1 to 7, This is increased when INC,

AZ,AZ,

is greater than INC,_; and INC, is greater
than BestINC value, and
BestINC maximum value of INC.

Start

Solving base case
power flow

v

Initialize population which contain
all variables and the number of
FACTS controller equals one

v

Solving power flow and compute
the objective function

Solving power flow and
compute the objective
function

Stop
criteria?

Is INC
increased?

Number of FACTS
controller is

No increased by one

ACTS cotrl
FACTS controller BestINC=ING,

Fig. 1. Flow chart of proposed algorithm.

The numbers of FACTS controller will be increased and
continue evaluating objective value until the stopping criteria
is reach.

C. Search space managing method

There are two methods used to manage search space of
FACTS controller operating point. The first method is
generally used with the default minimum and maximum
operating point of FACTS controllers. The second method is
used to split the search space of operating point of FACTS
controllers into n search spaces depended on the number of
FACTS controllers. If the number of FACTS controller
equals one, minimum and maximum values of operating point
are used by the initial value. If number of FACTS controllers
is greater than one, the search space will be split by the
methods shown in Fig. 2 and Fig. 3.

v CASE STUDY AND EXPERIMENTAL RESULT

The IEEE 118-bus and Thailand 58-bus systems are used to
demonstrate the maximum optimal number and placement of
FACTS controllers for simultaneously maximizing TTC and
minimizing power loss. Base case TTC is calculated by using
OPF with EP.

Number of
FACTS controller
equals one

Initial values
are used

Temp value equals
maximum value is
dividedbyn

v

For n equals one, minimum (1) equals
initial value and maximum (1) equals
temp value

v

For » is grater than one, minimum
(n) equals maximum value (n-1) and
maximum (n) equals minimum (n)
plustemp value

Fig. 2. Flow chart of splitting search space.

Operating point of
FACTS controller

Minimum Maximum

v [

Operating point of
FACTS controller

Minimum(1) Maximum(l) Minimum¢n) Maximum¢n)

Operating point of

FACTS controller
Fig. 3. Diagram of splitting of search space method.

4736

158




The reactance limits of TCSC in pu. is 0<X; <0.1 and
reactive power injection limit is 0<(Q,; <10Mvar. The
population size of EP is set to 30. The maximum iteration
number is set to 400. All test systems are evaluated 20 runs
with each type of FACTS controller.

A. The IEEE 118-bus system

The IEEE 118-bus system consisting of 54 generating
plants, 64 load buses, and 186 lines shown in Fig. 4 is used as
a test system. The system data can be found in [17]. Bus 69 is
set as swing bus which is framed in Fig. 4 . Base case TTC of
IEEE 118-bus system equals 1433.00 MW.

In Table I, the split search space managing method tends to
give higher TTC than the non-split managing method. The
best and the average TTC wvalues obtained from TCSC
placement are 2938.60 MW, and 2589.09 MW, respectively.
For SVC placement, the best, the average, and the worst TTC
value are 2965.43 MW, 2637.92 MW, and 2432.38 MW,
respectively. The results showed that the optimal number and
the optimal allocation of SVC with the split search space
managing method give higher TTC than TCSC. The optimal
number and the allocation of all FACTS controllers are
represented in Table IL.

FIG. 4. DIAGRAM OF THE IEEE 118-BUS SYSTEM.

TABLEI
TTC RESULTS FROM EACH FACTS CONTROLLERS AND CPU TIME FROM TWO
METHODS ONIEEE 118-BUS SYSTEM

TABLE II
OPTIMAL NUMBER AND PARAMETER SETTING OF EACH FACTS
CONTROLLER ON IEEE 118-BUS S YSTEM

TCSC (pu) SVC (Mvar)
1" method [ 2 method | 1¥method [ 2°"method
Number of 4 2 3 2
FACTS
Controller
Location Line 1-2 Line 53-54 Bus 115 Bus 2
/Parameter /0.0217 /000657 3.475 2.197
Line 4-5 Line 96-97 Bus 98 Bus 27
10.0399 /0.0405 /6.944 /6.903
Line 34-43 Bus 36
/0.0731 /6.403
Line 48-49
10,0487

The overall results from IEEE 118-bus system showed that
the optimal maximum number of SVC with the split search
space managing method give higher TTC than the TCSC
placement. Moreover, the averages CPU time obtained from
both search managing methods used are not different.

B. Thailand 58-bus system

In this case study, a reduced practical test system from
EGAT 230 kV and 500 kV network is used as another test
system. For day-load case, the EGAT 58-bus system
consisting of 17 generating plants, 41 load buses, and 77 lines
as shown in Fig. 5 is used [18]. Bus 1 is set as swing bus
which is framed in Fig. 5. Base case TTC of the system
equals 10261.50 MW,

In Table III, higher TTC values is obtained from split
search space managing method than from the non-split search
space managing method using TCSC and SVC placement by
individually. For TCSC placement, the best, the average, and
the worst TTC values are 15541.642 MW, 14745.439 MW,
and 14086.684 MW, respectively. For SVC placement, the
best, the average, and the worst TTC values are 15380.40
MW, 1467474 MW, and 14101.50 MW, respectively. The
results showed that the optimal number and the optimal
allocation of TCSC with the split search space managing
method give higher TTC than SVC, The optimal number and
allocation of all FACTS controllers are showed in Table I'V.

TABLE 111
TTC RESULTS FROM EACH FACTS CONTROLLERS AND CPU TIME FROM TWO
METHODS ON EGAT 58-BUS SYSTEM

TTC (MW) TCSC SVC TTC (MW) TCSC sSvVC
1"method | 2*" method | 1" method | 2" method 1" method | 2" method | 17 method [ 2" method
Best 2922.30 2938.60 2918.05 2965.43 Best 15114.72 15541.64 1512327 15380.40
Average 2567.66 2589.09 2621.23 2637.92 Average 14185.15 14745.44 1459784 14674.74
Worst 2420.24 2405.41 2405.23 243238 ‘Worst 13911.46 14086.68 14326.79 14101.50
Standard 123.70 146.96 121.34 144.04 Standard 422.14 369.91 30921 317.11
deviation deviation
Average 40.29 40.28 40.27 4027 Average 33.28 33.27 3328 33.28
CPU Time CPU Time
(min) (min)
4737
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FIG. 5. DIAGRAM OF THE EGAT 58-BUS SYSTEM

TABLE IV
OPTIMAL NUMBER AND PARAMETER SETTING OF EACH FACTS
CONTROLLER, ON EGAT 58-BUS SYSTEM

TCEC (pu) VT (dvar)
17 method 2™ method 17 method 2" method
Number of 3 2 3 3
FACT3
Controller
Location Line 9-10 Lmne4l42 Bus 38 Busg
fParameter /0.0241 .0073 /2159 /1543
Line4-11 Line29-31 Bus2l Bus 12
/0.0494 /0.0596 /3.157 /5.203
Line 4344 Busg Bus 18
/0.0212 16.279 16.931

The results from the EGAT 58-bus system indicated that
the optimal maximum number of TCSC with the split search
space managing method give higher TTC than SVC.

V. CONCLUSION

In this paper, the optimal maximum number of FACTS
controllers and search space managing methods are proposed.
The optimal maximum number method can be used to reduce
CPU time compared to the increasing number of FACTS
controller step by step. The split search space managing
method divides search space into sub spaces which reduces
the interval of operating point of FACTS controller. This
method results in the effectiveness to improve the searching
for optimal operating points of FACTS controllers. The
overall results form beth systems indicate that the proposed
algorithm and split search space managing method with
FACTS controllers can enhance TTC from base case and give
higher TTC than non-split search space managing method. In
addition, the overall number of FACTS controllers from the
split search space managing method is less than non-split
search space managing method.
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Abstract—Capacitor allocation In power transmission
systems have been considered to improve voltage profile and
reduce power loss. An evolutionary programming (EP) is a
computationally efficient methodology for the optimal capacitor
allocation in power transmission network. The method is chosen
due to its robusiness and its ability to handle many practical
constraints, explore all possible solutions, and find optimal

luti within r le time. This method is proposed to
determine the optimal allocation of capacitor for maximizing the
total tramsfer capability (TTC) and minimize power loss by
focusing on cost of capacitors and max TTC In systems.

Index Terms—capacitor placement, evolutionary
programming, loss minimization, optimization method, optimal
power flow.

[ INTRCDUCTICN

Capacitors have been commonly used to provide reactive
power compensation in transmission systerns. They minimize
power losses and maintain voltage profile within the
acceptable limits. In addition, they could be used to enhance
power transfer capability.

Optimal capacitor allocation is very much linked to the
placement of capacitors in transmission systems which are
essentially determination of the location, size, number and
type of capacitors to be placed in the systems. The capacitor
placement problem is a well-researched topic and has been
addressed by many authors in the past All the either
approaches differ from each other by way of their problem
formulation and the problem solution methods employed. In
most of these approaches, the objective finction is considered
as an unconstrained maximization of savings due to energy
loss reduction and peak power loss reduction against the
capacitor cost. Others have formulated the problem with some
variations of the above objective function. There have been
analytical approaches [1]-[4], numerical programming
methods  [5]-[7], and artificial intelligence(Al)-based
techniques [8]12] devised to solve this capacitor problem.
These study cases developed a procedure for optimizing the
net monetary saving associated with the reduction of power
loss by placing fixed and switched capacitors.

Evolutionary programming (EP) is a computational
optimization method, which uses the mechanic of evolution to

The th Electrical Engineering/ Electronics, Computer,
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find the optimal solution of complex optimization problems
[13]. It works by evolving a population of candidate toward
the solutions through the use of the mutation operator and
selection scheme. This algorithm can move over hills and
across valleys to discover an optimal point. Because of this,
EP is more robust than the existing direct search method. In
this paper, the EP algorithm is proposed to determine the
optimal allocation of capacitors. EP simultaneously searches
for capacitor locations, size, numbers and determine
maximum total transfer capability (TTC) value.

II. CAPACITOR ALLOCATON PROBLEM FORMULATION

Capacitor allocation is formulated as the optimal power
flow (OPF). OPF is a static, nonlinear optimization problem,
which calculates a set of optimum variables from the network
state, load data and system parameters. Optimal values are
computed in order to achieve a certain goal such as number,
size, and cost or power loss minimization subject to equality
and inequality constraints. The OPF problem can be
represented as (1)

max  f(x,u)
st glx,w) =0 (§)]
Alx,uw) <0

Where, [ is the objective function that typically includes
number, size, and cost in transmission systerns. g(x,u)
represents the load flow equations and h(x,#) represents
trangmission line limits and other security limits. The vector
of dependent and control variables are donated by x and u
respectively

OPF with capacitor is used to evaluate the feasible TTC
value of power transactions. TTC is a terminology that is used
to define the amount of electric power that can be transferred
over the interconnected transmission systems in a reliable
mamner [14]. There is a possibility to minimize the loss
associated with the reactive power flow through the branches.

The objective furction in (2) is to minimize cost, loss and
maximize the power that can be transferred from a specific set
of generators in a source area to loads in a sink area, subject to
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real and reactive power generation limits, voltage limits, line
flow limits, and capacitors limits. The systems constraints are
shown in (7) - (13).

The mathematical models of capacitors are used to perform
the steady—state studies. Therefore, capacitors are modeled
using the injected power model [15].

B
Maximize F=— 2)
c
N
B=Kx ZI[TDJ X(TFCyp, — Losspp )] (3
=
Ne
C= ?—':l(cms,i +CkVAR.J) (4)
N_SE
TIC= Z P (3
i=l
o
Loss =L B,
i=1 oss; (6)
subject to
P, - P, —EIV,.ij7 cos(d, -8, +8,)=0 @
”
Ou —Cn + 05 —EVIVj}’;j cos(6, -8, +5,)=0 ®
AR A Vie N ®
Py <P, < BT Vie NG (10
On" <05 <05 Yie NG (1)
Or" <0n s 05" 12)
S, < 5 Vie N, (13)

Where, F is objective function. B is benefit of energy transfer.
€ is sum of capacitor cost. TTC is a power transactions
between source and sink areas (kW). Loss is power loss in
system (KW). N_SNK is a number of load buses in sink area.
TD; is a j*™* of time duration (hr/year). K is a cost per power
loss (Baht/kWhr). P, is a power loss in system. N is the
number of load buses. Nc is the number of capacitor banks.
NG is the number of generators. N; is the number of branches.
C;s 18 an installation and maintenance cost of capacitor bank
in (Baht). Cppax 15 a cost of capacitor bank in (Baht/kVAr).
1 is the total number of load buses. {, j represents bus number.
V., V; are voltage magnitudes at bus { and j. Pg;, Qg; are real
and reactive power generations at bus {. Py, Qp; are real and
reactive loads at bus i. @Qy; is an injected reactive power of
capacitor at bus {. §;, 8; are voltage angles of bus { and j. §;; is
an angle of the i* element in bus admittance matrix. Yiisa
bus admittance matrix element. 5; is the apparent power flow
inn line, Vmin, ymax pmin pmax gmin gmax omin gmax cmax
are the lower and upper limits of the corresponding variables
respectively.
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Load duration curve in a year
(average assume to 3 ranges of time duration)
% of Fyand(d,

90
Eal
= W bwg. man
60— = g, muidivan
30—
P — g amin
30—
0 —

n —

0

TD3 Time (hr)

Fig 1 Load duration curve in a year

Calculation is performed using 1-year-operating-time data
of daily load curve. The applied of load duration curve aims to
find the best solution for fixed capacitors and maximize
power transfer capacity.

1-year-operating-time data are divided into 3 durations as
Fig. 1. Each has its own average Pp; and Qy; value. By the
way, load duration curve can be calculated every minute or
second. Calculation chart is shown in Fig. 2.

F.ead line and bus data

|Imtlahze population (nurmber, size, location) |

Apply mutation
Apply change

parameter by load
duration

Solve power flow of
new individuals

Competition of solution

Selection of solution

Record best solution
of generation

no

Termination criterion
satisfied 2

Find best solution

Fig. 2 Program flow chart
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IIT. EVOLUTIONARY PROGRANMMING

EP algorithm starts with random generation of initial
individuals in a population then mutation and selection are
preceded until the best individual reached. It is a kind of an
optimization algorithm. The main components of the
algorithm are explained as follows.

A. Representation of Solution

Each individual in a population composes of OPF control
variables, which are coded by real number. The &% individual
in a population is represented by a trial solution vector as (14).

VI =[Py, Pu.n.Loc,, O] (14

Where, Pg; is the real power generation at bus i in source area
excluding slack bus. Py; is the real power load at bus { in sink
area. # is number of capacitor installed. Loc, is bus number
of capacitor bank. Qy; is the parameter of capacitor bark.
B. Initiglization
The initial population is initialized randomly using sets of

uniform random number distribution ranging over the feasible
limits of each control variable as (15).

2= P b (el - P

13
Where, x; is the ** element of the individual in a population.
2B and x% gre the lower and upper limits of the %
element of the individual. « is a uniform random number in
the interval [0,1].
C. Power Flow Solution

During iterations, a power flow is performed for each
individual to cormpute its state variables. A full AC Newton-
Raphson (NS) power flow analysis is used.

D, Fitness Function

The fitness of the k% individual can be calculated by
using (16).
(16)
Where, f, is the fitness of the k™ individual Ky is an
arbitrary constant, and F is the objective function. The
generalized objective function in equation (2) is taken as
fitness finction of the algorithm (K¢ = 1).

E. Mutation

A new population is generated by using the Gaussian
mutation operator. Each element of the k* new trial solution
vector is computed by using (17) and (18).

Kpp = Az + N(0,67)

fk=Kf*F

(a7

Ty = (e — ) (fmelie 4 )

18

Where, 2. ; is the value of the i element of the &** offspring
individual. x,; is the value of the i** element of the k™
parent individual. N(0,07;) is a Guassian random number
with a mean of zero and standard deviation of gy ;. x/™" and
M2 gre the lower and upper limits of the i** element of the
k" parent individual. f,.. is the maximun fitness of the
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parent population. a is a positive number constant slightly less
than one and g is the iteration counter.

F. Selection
The selection technique utilized is a tournament schermne,
which can be expressed as (19) and (20).

“[Lif fex i
it {0 otherwise (2
N
S, = El W, (20)
+=1

Where, f, is the fitness of the k" individual in the combined
population. f. is the fitness of the r** opponent randomly
selected from the combined population based on
r=[2%P=su+1][x] is the greatest integer less than or
equal to x. u is a uniform random number in the interval [0,1]
and P is the population size.

G. Termination Criterion

If the maximum generation number is reached, the
iteration process is terminated. Otherwise, the mutation and
selection process will be reiterated until the criterion is
satisfied.

Iv. CASE STUDY AND RESULT

A modified ITEEE 30-bus system, shown in Fig. 3, is used
as a test system. Bus and line data can be found in [16]. In the
IEEE 30-bus , the reactive power injection limit of capacitor is
0 <@y <112 MVAr [17]. The result of calculation is
shown in Table I, Table IT, and Table I1L.

Fig. 3 Diagram of the IEEE 30-bus systern

TABLEI
TTC RESULTS, LOS3 AND CPU TIMES WITHOUT CAP
Witheut Cap. TR | Lossaam) (fg;if;i)
Best 137.10 5.16 113.07
Average 122.11 4.21 92.13
Worst 11896 3.33 72.81
Standard deviation 5.52 045 977
Average CPU time (min 183
Page 634
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TABLE D
TTC RESULTS, LOSS AND CPU TIME WITH CAP
With Cap ™ Lass Loss Cost IZS;;H
aew) | w) | @sanrr) |
Best 148.72 5.84 127.96 2.60
Average 133.52 4.49 98.23 2.26
W orst 12031 3.76 82.24 161
Btandard deviation 7.45 0.61 13.38 1.60
Average CPU time (nin) 246
TABLE IT
CAPACITOR LOCATION AND SIZE
Install Capacitor af bus Size qf the Capacitor
No. (DA
8 1.88
17 2.60
20 0.82
21 1.20
EP TTC with Cap
-
r’/——
i
095 (’ -
5 1s J |
g
T |
i
08 -
075 , , | , L
n e e RH v 4 an At 400
Cenarshar Ny

Fig. 4 Convergence characteristic of the fitness of the EP method.

All of the results calculate of 20 iterations, the results
indicate that optimally placed OPF with capacitors can
enhance TTC values of the systemn far more than OPF without
capacitors. Focusing on the best result of condition cases,
TTC without capacitor is 137.10 MW while loss is 5.16 MW
which differs 131.94 MW. TTC with capacitor is 148.72 MW
while loss is 5.84 MW which differs 142.88 MW. Result
shows TTC with capacitor is 8.29% better than without
capacitor. The fitness value at different generations is shown
in Fig. 4, there is no much improvement in the fitness value
from generation 150-250, which means the calculated solution
is the optimum value that fulfills all the constraints.

In this paper, it has been shown that placing the optimal
values of capacitors at proper locations in the system results in
a very good power transfer capability and extends the
reduction of power losses for more transfer power into system
which in turn contribute to the total costs. The optimal
solution improves the overall efficiency of power transfer
sy sterns.
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V. CONCLUSION

EP method has been used to find the optimal allocation of
capacitors in the power transmission systems. EP can
properly and effectively determine optimal locations and sizes
of capacitor. It is implemented to minimize cost of installation
and less loss cost. Test results from the test system indicate
that optimally placed OPF with capacitor by EP could
enhance the TTC value far more than OPF without capacitor.
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Abstract— In this paper, particle swarm optimization (PSO) is
proposed to determine the optimal allocation of multitype
FACTS controllers to enhance power transfer capability of
power transactions between source and sink areas in power
systems. The particularly optimal allocation includes optimal
types, locations, and parameter settings. Three types of FACTS
controllers including unified power flow controller (UPFC),
thyristor-controlled series capacitor (TCSC), and static var
compensator (SVC) are used in this study. The objective function
is formulated as maximizing the benefit to cost ratio. The benefits
mean increasing total transfer capability (TTC) with deducting
system losses while the cost are the investment of FACTS
controllers installation. Power transfer capability determinations
are calculated based on optimal power flow (OPF) technique.
Test results on the modified IEEE 30-bus system from PSO are
compared with those from evolutionary programming (EP). The
results show that PSO can be used to determine the optimal
allocation of multitype FACTS controllers. The optimally placed
OPF with FACTS controllers using PSO enhance higher power
transfer capability than those from EP. Moreover, PSO gives
higher benefit to cost ratio and faster convergence than EP for all
transfer areas. Therefore, this installation is worthwhile and
beneficial for the decisi King of investment costs and further
expansion plans.

Keywords-particle swarm optimization;
optimal allocation; power transfer capability

FACTS controller;

L INTRODUCTION

The demands for electrical power energy have increased
every year, so the installation of new power plants or
transmission networks can help these requirements. However,
there are some problems with these constructions, for
examples, environment and pollution control, the cost of
installation, and the land acquisition. The alternative solutions
to respond these increasing demands are to improve the
efficiency of power transfer capability in the power system
using Flexible AC Transmission System (FACTS) [1]. The
advantages of FACTS include less pollution, more acceptable
of people who lived in the installed area, and less cost of
installation. In addition, FACTS controllers” parameters can be
adjusted to provide adaptability for the future planning of the
transmission network.

978-1-4244-6890-4/10/$26.00 ©2010 IEEE

FACTS controllers are power electronics based system and
other static equipment that regulate control of one or more AC
transmission system parameters. There are many types of
FACTS controllers such as unified power flow controller
(UPFC), thyristor-controlled series capacitor (TCSC), and
static var compensator (SVC) [2]. It has been proved that these
FACTS controllers can be used to increase power transfer
capability and enhance system controllability resulting in
minimizing power losses in transmission network [3].

Total transfer capability (TTC) is defined as an amount of
electric power that can be transferred over the interconnected
transmission network in a reliable manner while meeting all of
a set of defined pre- and post-contingency system conditions
[4]. TTC can be calculated by several power flow solution
methods such as 1) linear ATC (LATC) method [5], 2)
continuation power flow (CPF) method [6], 3) repetitive power
flow (RPF) method [7], and 4) optimal power flow (OPF)
based methods [8].

The maximum performance of using FACTS controllers to
increase TTC and minimize system losses should be obtained
by choosing the suitable types, locations, and parameter
settings. In [9], Evolutionary Programming (EP) is used to
determine the optimal allocation of four types of FACTS
controllers. Test results indicated that optimally placed OPF
with FACTS controllers by EP can enhance the TTC more than
OPF without FACTS controllers. In [10], OPF using Genetic
Algorithm (GA) is used to considered the optimal allocations
of SVC. Test results showed that the purpose method can be
used to minimize the overall cost function, including
generation costs of power plants and investment costs. In [11],
both GA and Particle Swarm Optimization (PSO) are used to
optimize the parameters of TCSC. However, there are more
advantageous performances of the PSO than that of GA. PSO
seems to arrive at its final parameter values in fewer
generations than GA. PSO gives a better balanced mechanism
and better adaptation to the global and local exploration
abilities. Furthermore, it can be applied to solve various
optimization problems in electrical power system such as
power system stability enhancement [12] and capacitor
placement problems [13].
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In this paper, PSO is used to determine the optimal
locations, types, and parameter settings of multitype FACTS
controllers, leading to power transfer capability enhancement
and power losses reduction with less installation cost. The
modified TEEE 30-bus system is used as the test system.

1L

Power transfer capability is defined as TTC value, which is
the power that can be transferred from the set of generators in a
source area to loads ina sink area subjected to real and reactive
power generation limits, voltage limits, line flow limits, and
FACTS controllers operation limits. Three types of FACTS
controllers are included: UPFC, TCSC, and SVC. These
FACTS controllers are represented by the static model [14].
UPFC and SVC are modeled using the injected power model
while TCSC is modeled by the adjustable series reactances.
The sum of real power loads in the sink area at the maximum
power transaction is defined as the TTC value.

The objective function of OPF with multitype FACTS
controllers is represented by (1):

PROBLEM FORMULATION

Maximize F =§ Q)]
ND_SNK " NL 5
_ _
B=ATTC = g (P, — P& )—;(PLI —P') @
—h(x)
C=Clppc +Cresc *Copc 3
Cypre = 0.00035% —0.2691S +188.22
Crose =0.00158 071308 +153.75 @
Cope = 0.00035% 030518 +127.38
Co =x™ i >
(e ) =G —x) ifx <™ ®
0 if MR < x < M
Subject to
B

Fo =Py, +ZPM Vip» ten)

L7 ©

=Y V(X eos(8,(X,) -4 +8,)=0
Jj=1
n@)

Qi =00 + .0 Vi 00 + Qs

M M

+Y UV (X, )sin(6,(X,) -8 +8,)=0

J=1

By™ <P, <PE™ vie NG ®
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< O SOB™ Vie NG ©
Sy, sy Vie N (10)
|8, | SE™ Vie NL (11
0 Xy < XO 12)
0<V;, <y 13)
TS <@ 14
On" <0 SOp™ as)

where
Py real power loads in the sink area,
Pglm : base case real power loads in the sink area,
P the losses in line flows,
szm : the base case losses in line flows,
ND SNK : number of load buses in sink area,
NL: number of branches,
h(x): penalty function of variable x;,
S operating range of the FACTS controllers in
Myvar,

Py real power generation at bus 7,

By (Vig» 0y ) © injected real powers of UPFC at bus 7,

Vi voltage magnitude at bus 7,

v voltage magnitude at bus 7,

Y X) magnitude of the i th element in bus
admittance matrix with TCSC included,

0,(X,): angle of the 7 th element in bus admittance
matrix with TCSC included,

o8 voltage angles of bus 7,

8 voltage angles of bus j,

O reactive power generation at bus 7

On: reactive power load at bus 7

O Ve 0 ) © injected reactive powers of UPFC at bus 7,

Oy fixed injected reactive power of SVC at bus

1

X vector of reactance of TCSC at line i,

5 -
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|18, | i th line or transformer loading,
N: total number of buses,
NG : number of generators,

PRin_ PR Jower and upper limit of real power
generation at bus 7,

O™ ,05™ : lower and upper limit of reactive power
generation at bus 7,

ymin pmis Jower and upper limit of voltage magnitude

atbus 7,
S i th line or transformer loading limit,
xXg=: upper limits of reactance of TCSC at line 7,

pmin_pmax. Jower and upper limit of voltage magnitude
of UPFCatline 7,

o g lower and upper limit of voltage angle of
UPFC at line i, and

min max

L Op 0 lower and upper limit of injected reactive
power of SVCatbus 7,

IIT.  PARTICLE SWARM OPTIMIZATION

A. Ovewview of Particle Swarm Optimization

PSO is developed by Eberhart and Kenedy in 1995 [16]. It
is a form of swarm intelligence in which the behavior of a
biological social system like a flock of birds or a school of fish
is simulated. The PSO provides a population-based search
procedure in which individuals called particles change their
position. The position of each particle is represented in X-Y
plane with its position. Each particle physically moves to the
new position using velocity according to its own experience,
called Pbest , and according to the experience of a neighboring
particle, called Gbest, which made use of the best position
encountered by itself and its neighbor.

The modification of searching point is showed in Fig. 1 and
it can be represented by the concept of velocity. Velocity of
each particle can be modified by (16):

VU = w4 ¢ xrand, X(py,q —55) a6
+ ¢y Xrandy X(g,.,, =57)
where
vlk : velocity of particle 7 at iterations,
w: weight function,

¢ and ¢, :  weighting coefficients both equal to 2,

rand, and rand, : random number between O and 1,

K

5 current positions of particle i at iteration &,

Doosti - best position of particle i th up to the current
iteration, and

Shost | best overall position found by the particles

up to the current iteration.

Weight function is given by (17):

Wiax — Wi
W= Wy ——o— D iter a7
itery .«
where
Winax initial weight equal to 0.9,
Winin | final weight equal to 0.4,
itety,y maximum iteration number, and
iter : current iteration number.

A v ght

Figure 1. Concept of searching point by PSO

The first term of (16) is the previous velocity of the particle.
The second and third terms are utilized to change the velocity
of the particle. Without the second and third terms, the particle
will keep on “searching” in the same direction until it hits the
boundary. On the other hand, without first term, the velocity of
the “searching” particle is only determined by using its current
position and its best positions in history.

The new position can be modified by (18):
s = s v as)

The general flowchart of PSO is shown in Fig. 2, which can
be described as follows.

Step 1: Generation of initial condition of each particle.
Tnitial searching points (s°) and velocities (') of each
particle are usually random within the allowable range. The
current searching point is set to Pbest for each particle. The
best evaluated value of Pbest is set to Gbest, and the best
value is stored.
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Evaluation of searching
point of each particle
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Modification of each
searching point

Step 1

Step 2
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maximum
iteration?

Step 4

[ Stop

Figure 2. A general flowchart of PSO

Step 2: Evaluation of searching point of each particle. The
objective function value is calculated for each particle. If the
value is better than the current Pbest of the particle, the
Pbest value is replaced by the current value. If the best value
of Pbest is better than the current Gbest, Gbest 1s replaced
by the best value and the best value is stored.

Step 3: Modification of each search point. The current
searching point of each particle is changed using (16), (17), and
(18).

Step 4: Checking the exit condition. The current iteration

number reaches the pre-determined maximum iteration
number, then exits. Otherwise the process proceeds to step 2.

B. Optimal Power Flow with FACTS controllers by Particle
Swarm Optimization
PSO is used to determine the optimal allocation of
multitype FACTS controllers to maximize the objective
function. The proposed method is shown in Fig. 3, which can
be described as follows.

Step 1: Solving base case power flow. This step solves base
case power flow between selection source and sink areas. A
full ac Newton-Raphson (NR) power flow analysis is used.

Step 2: Initialize particles contain all variables. The ith

particle in a population is represented by a trial solution vector
as (19)

V:T =[Py Vo B L0C. X V0040 19

Loc; =[ Lo, Loc,, Loc, | (20)

where
Ve voltage magnitude at bus 7 in source area
excluding slack bus, and
Loc,: location vector of FACTS controllers type 7,

where i =1, 2, and 3, representing the line
location of TCSC and UPFC, and bus
location of SVC, respectively

Step 3: Solving power flow. This step solves power flow
between selection source and sink areas. A full ac Newton

Raphson (NR) power flow analysis is used by including
FACTS controllers static model and compute the objective

function. Then keep ¥, of the best objective value as Pbest
and Gbest . The fitness values are evaluated by using (21):

f=K,xF 1)

= )
I

| Solving base case power flow

'

Initialize particles
which contain all variables

'

Solving power flow
and compute the objective
function

—

Performing PSO algorithm for
new searching point

!

Solving power flow
and compute the objective
function

| Step 1

Step 2

Step 3

Step 4

Step 5

Reach
maximum
iteration?

Step 6

[ Stop

Figure 3. Flow chart of the propose algorithm
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Where f; 1s the fitness ol the 7 th particle. K, is an
arbitrary constant and £ is the objective function,
Step 4: Performing PSO algorithm for new searching poind,

All variables in (19) are modified to new searching point using
{16), {17). and (18}

TABLE I ORECTIVE VALUE FROM DIFFERENT POWER TRANSACTION

Step 50 Solving power flow, This step solves power flow
between selection somce and unk areas. A full ac Newlon-
Raphson (NR) power flow analysis is used by including
TACTS contrellers staie model and compute the objective
function. Then keep the 7 of best objective value as Pbest . If
new objective value is betler than the previous value then J7

1s stored as Gbesi . The fitness values are evaluated, too.

Step 6: Repeat Step 4-3 Until a stopping criterion is
satisfied or the maximum number of iterations is reached

V. CASE STUDY anD FXPERIMENTAL RESULT

The modilied IEEE 30-bus systemn Fig. 4 15 used as a test
system. Bus and line data can be Tound in [17]. The system has

Iranster | From | From | From | From | From | From
Area lTteZ | 1to3 | 2tol | 2103 | 30l | 302
Case
EP Waorst Q085 | 0111 | 0092 | G111 | 0.084 | 0.071
Method Best 118 | 0153 | 0.131 0175 | 0.135 | 0.094
Average 0099 | 0122 | 0111 0137 | 0116 | 0.034
Standard | G005 | 0.012 | 0012 | 0.022 | 0016 | 0.007
deviation
Average 2712 363 +.60 21 247 2
CPU
time
(miny
PSO Worst 2122 | 0147 | 0384 | 0138 | 0199 | 0138
Mcthed Best G204 | 0171 | 0577 | 0236 | 0320 | 0.178
Average 0155 | 0138 | 0352 [ 0.18¢ | 0349 | 0.167
Standard | G030 | 0.009 | D083 | 0.026 | 0.045 | 0.00G
devialion
Average 1.39 1.86 1.90 192 1.90 1.89
CPU
time
(in}

three areas with two generators in each area. lransactions
between dilTerent control arcas are studics. Tn the simulations,
one component of FACTS controllers for each type are used.
voltage and angle limits of UPFC are 0 </, <01 pu. and
—r <o, < radian, respectively,
TCSC s 0< ¥, <01 pu The reactive power injection of
SVUis 02 <10 Mvar, Lest result from PSO are compared
with the results form OPF with EP,

Ihe reactance limit of

The number ol particle of PSO and populalion size of TP
are set to 30, The max iteration number is set to 400. There are
siX power transaction form source to sink areas including from
area | to 2, from L to 3, from 2 to 1, from 2 to 3. from 3 to 1.
and from 3 (o 2. Table T showed the benelit te cost ratio and the
average CPU time of PSC and EP which can be calculated
from (1).

Hlen

Figure 4. Diagram of the modificd 1IEEE 30-bus svstem
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From ‘Table I, PSO gives higher the best benefit to cost
ratio thun TP in all transler arcas which are 42.13%, 10:.52%,
. and 47.19%. respectively. All of the
worst, the best, and average objechive values [rom PSOY are also
better than kP In addition, the average CPU time of PSO for
all transfer areas are less than EP

Table TT showed the best overall of TTC, lasses, Mvar ol
cach TACTS controller. and total cost ol mslallation which
obtained by PSO and EP. Yor all transfer areas, SO gives
lugher 11C values than those from EP. Lower total cost of
FACTS controllers oblamed by PSCQ i hall” of transler arcas
(between from-to area 1-2, 1-3, and 2-1). Therefore, the overall
henefil te cost ratio are mostly ablamed by PSO

‘The best optimal allocation of FACT'S controllers trom EP
and PSO is shown in Table 1TT. The overall results indicaie that
PSO can determine higher benefit to cost ratio than EP.
Furthermore, PSO gives faster convergenee characleristics ol

the fitness value than TP which 1s shown in Fig. 5.
1 T =
—~
s —P

g “tf
£

£08

5

=

P

©u

g

£

"0 0 W00 280 30 30 400
Gengretion ho

Figure 3. The convergence characteristic of the fitness of PSO and EP
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TABLE II. RESULTS FROM THE MODIFIED IEEE 30-BUS SYSTEM

Transfer EP Method PSO Method
From To rrc Losses UPFC rcsc svc Total rrc Losses UPFC rcsc sV Total
Area Area o) o) OMvar) (Mvar) (Mvar) Cost o) o) (Myvar) (Mvar) (Mvar) Cost
(Uss/ (wss’
Kvar) Kvar)
1 2 103.101 5.965 136.652 | 9.100 3.466 430.761 142.726 | 8.343 155.077 | 13.067 4.650 424360
1 3 127.711 5225 49.559 13.200 2.538 446.828 | 141.088 | 10.151 2.965 - 5.853 313.029
2 1 147.062 3.546 - 2.000 3.376 278.684 | 235.003 | 6370 77.396 - - 169.190
2 3 132.040 4.442 104.819 | 32.085 2.980 421.730 | 172.942 | 13.092 70.943 0.044 4.350 441.387
3 1 151.046 4.018 - 29.713 1.455 260.825 | 239.426 | 6.692 18.965 7.500 - 331.711
3 2 96.390 4.723 - 7.6 - 148418 | 137.444 | 11.443 75374 30.000 5.670 429.011
TABLEIIL PARAMETER OF FACTS CONTROLLERS
Transfer EP Method PSO Method
From To UPFC cse Ve UPFC rese Sve
Aree Area oy Vi Line X, Line 0, Bus &y Vy Line X, Line 0, Bus
1 2 0.3839 | 0.0801 | 9-10 0.0201 4-12 3.4660 | 8 0.5230 0.0420 | 6-8 0.0301 | 10-17 4.6500 | 21
1 3 2.0640 | 0.0529 | 9-10 0.0175 10-21 2.5380 | 28 1.0300 0.0122 | 5-7 - - 5.8530 [ 10
2 1 - - - 0.0416 10-22 33760 | 18 -2.0954 0.0553 | 6-8 - - - -
2 3 03795 | 0.0306 | 6-8 0.0360 12-15 2.9800 | 20 0.2388 0.0933 | 16-17 0.0443 | 10-21 4.0550 | 7
3 1 - - - 0.0768 5-7 1.4550 [ 30 1.2545 0.0788 | 6-8 0.0775 | 12-13 - -
3 2 - - - 0.0642 9-10 - - 0.7158 0.6530 | 10-21 0.0955 | 8-28 5.6700 [ 24
[9] W. Ongsakul and P. Jirapong, “Optimal allocation of FACTS devices
V. CONCLUSION to enhance total transfer capability using evolutionary programming,”
. . . . International Symposium on Circuits and Systems, Japan, 23-26 May,
In _thls paper, PSO is used to determine the optimal vol. 5, pp. 4175}i 4P1%8, 2005, > P Y
allocations of mul_tltype FACTS co_ntrollers. Test results fro_m [10] M. M. E. Metwally, A. A. E Emary, F. M. E Bendary, and M. L
the test system indicate that optimally placing OPF with Mosaad, “Optimal allocation of FACTS device in power system using
FACTS controllers by PSO can effectively and successfully ge&etic algorithm,” Power system Conference, 2008, MEPCON 2008,
enhance the power transfer capability compared to those 12" Intemational Middle-East, pp. 1-4.
from EP. Furthermore, PSO gives higher benefit to cost ratio, [11] S. Panda and N. P. Padhy, “Comparison of particle swarm
faster convergence, and less CPU time than EP for all optimization and genetic algorithm for FACTS-based controller
> 5 . design,” Applied Soft C: ting, vol 8, Issue 4, pp. 1418-1427, Sep.
transfer areas. Therefore, the installation of FACTS zoosg_ ipplied Soft Computing PP P
controllers_ Wlﬂ’l optimal all_ogatlon using PSQ are worthwhile [12] A.T. Al-Awami, . L. Abdel-Magid, and M. A. Abido, “A particle-
and beneficial for_the decision making of investment costs swarm-based approach of power system stability enhancement with
and further expansion plans. unified power flow controller,” International Joumal of Electrical
Power & Energy Systems, vol. 29, Issue 3, pp. 251-259, Mar. 2007.
[13] N. W. Oo, “A comparision study on particle swarm and evolutionary
REFERENCES particle swarm optimization using capacitor placement problem,” 2"
[1] N.G. Hingorani and L.Gyugyi, Understanding FACTS: Concepts and IEEE international Conference on Power and Energy (PECon08),
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ABSTRACT

In this paper, evolutionary programming (EP) is proposed
to determine the optimal choice and allocation of multi-
type distributed generations (DG) to enhance power
transfer capability and minimize system power losses of
power transactions between source and sink areas in
power systems. The optimal allocation includes the
optimal type, size, and location. Two types of DG
including photovoltaic (PV) and wind turbine (WT) are
used in this study. The objective function is formulated as
maximizing the benefit to cost ratio. The benefit means
increasing in total transfer capability (TTC) with
deducting system losses while the costs are the investment
and operating costs of the selected DG units. Power
transfer capability determinations are calculated based on
the optimal power flow (OPF) technique. Test results on
the modified IEEE 30-bus system show that the proposed
EP can determine the optimal choice and allocation of DG
to achieve the best TTC in the power system with the
highest benefit to cost ratio.

KEY WORDS
Distributed power generations, evolutionary
programming, optimal power flow, and optimal allocation

1. Introduction

Distributed generation (DG) is an electric power
generation unit connected directly to distribution
networks or on the customer site [1]. The technologies
adopted m DG comprise small gas turbines, micro-
turbines, fuel cells, wind, and solar energy, [2] etc. In
power systems, DG can provide benefits for the
consumers as well as for the utilities, especially in sites
where central generations are impracticable or where
there are deficiencies in the transmission systems [3]. The
optimal allocated DG units can be used to enhance power
transfer capability, reduce power system losses, improve
voltage profile, increase system reliability, reduce pollute
of emission, [4] etc.

Even though DG units have many benefits when
they are placed in power systems, the installation of DG
units at non-optimal places can result in an increase in

DOIL: 10.2316/P.2010.701-067
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system losses, implying in an increase in costs and,
therefore, having an effect opposite to the desired [5]-[6].
Since cost 1s an important role, the planner’s idea goal
will regard to the optimal solution that gives minimizing
overall cost within technical constraints [7]-[8]
Therefore, the problem of selection of the best places for
mnstallation and the preferable size of the DG units in
large power systems is of great importance. However, the
optimal choice and allocation of DG i a complex
combinatorial optimization problem.

There are many studies focus on selection of the
optimally placed DG units in power systems. In [9],
genetic algorithm (GA) has been proposed to determine
the optimal DG location. Sizing of the selected DG unit
has been done by optimal power flow (OPF). In [10], an
optimal proposed approach (OPA) is presented to
determine both optimal sitting and sizing of DG with
multi-system constraints to obtain a single or multi-
objectives considering composite technical and economic
benefit using GA. The linear programming (LP) is used
not only to confirm the optimization results obtained by
GA but also to mvestigate the influences of varying
ratings and locations of DG. Recently, metaheuristics
optimization techniques are used to obtain the optimal
placements and sizes of DG to minimize cost in
distribution utility when DG is presented [11]. However,
these methods cannot simultaneously determine the
optimal type, size, and location of DG units in the same
time. Therefore, the use of an optimization method
capable of indicating the best solution for a given power
system can be very useful for the system planning
engineer when dealing with the increase of DG units [12]-
[13].

At present, evolutionary programming (EP) [14]-
[15] has been suggested to overcome the above-
mentioned difficulties of conventional methods. In this
paper, EP is used to simultaneously determine the optimal
type, size, and location of multi-type DG to enhance
power transfer capability and minimize power losses with
less installation cost of power transactions in power
systems. Photovoltaic (PV) and wind turbine (WT) are
used in the study. The objective function is formulated as
maximizing the benefit to cost ratio. The modified IEEE
30-bus system is used as the test system.
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2. Problem Formulation
2.1 Objective Function

The OPF-based objective function with multi-type DG
including total transfer capability (TTC), system real
power losses, and DG installation costs in (1) is used to
evaluate the feasible TTC value that can be transferred
from a specific set of generators in a source area to loads
in a sink area within real and reactive power generation
limits, thermal limits, voltage limits, and DG operation
limits. Two types of DG are included: photovoltaic (PV)
and wind turbme (WT). They are represented by the static
model [16].

. B
Maximize F' = —

M
Ve
Where
I : objective function,
B : benefit from installation of DG units, and
TC  :total costs of DG installation.

The benefit means increasing in TTC with deducting
system losses as shown in (2). The sum of real power
loads in the sink area at the maximum power transaction
in each case is defined as the TTC value.

B =TTC - Loss
ND _ SNK NL (2)
base base
= Z (PD17PD1 )7 (PbipLx )
i=1 i=1

Where
TTC : total transfer capability,
Loss : system real power loss,
Py :real power load in sink area at bus ith,
P[b)?‘w : base case real power load in sink area at bus ith,
Py losses in the line flows at line ith,

base . . L.
PLi : base case losses in the line flows at line ith,
NL  : number of branches, and

ND _SNK : number of load bus in sink area.

The total cost (TC) is the cost function of investment
and operating costs of DG, which can be calculated in (3)
[16]. The technical and economic data of DG technologies
are shown in Table 1 [16].

ND_SNE
C= = > CPW-IC; -Ppgi
i=1  jeTech 1 J DGy
ND_SNE 3
+ 2 CPV, -OC; -Ppria;-8,746
i=1 je%ch 2 JDGy
Where

CPV; : cumulative present values related to fix cost,
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Table 1
Technical and economic data of DG technologies

T Ic oc Commercial ll-’l:tnt
Pe | (MW year) | (SMWh) size (KW) ?" /.,‘;r
PV 618,000 0.0 100 25
WT 206,000 10.9 200, 300 20
CPV, : cumulative present values related to variable cost,
7 : DG technologies used in the study,
ICj : investment cost of DG type jth,
OCJ. : operating cost of DG type jth,
Prait injected real power of DG at bus ith.
PDG,ij : capacity of the DG type ; at bus ith,

a; : plant factor of DG unit type j.

2.2 System Constraints

« Voltage Profile: The voltage of all buses should be
within the limits in (4) allowed by regulation.

Where
A voltage magnitude at bus ith,
Vimm : lower limit of voltage magnitude at bus ith, and

Vimax : upper limit of voltage magnitude at bus ith.

¢ Feeder Transmission Capacity Constraint: Power
flow through any feeder must comply with the thermal
capacity limit in (5).
max
|| < 8%

(%)
Where

|s U| : line loading at line ith, and

S line loading limit at line ith.

* Maximum Installed Capacity: The power generated
by DG must be less than or equal to meximum
nstalled capacity of DG units at each bus. This valued
is considered to be 8 MW according to the voltage
limits at 22 KV, in order to apply with Provincial
Electricity Authority (PEA) in Thailand.

max
PDG,i <Ppy (6)
Where
Frai injected real power of DG at bus ith, and
ngx maximum install capacity of DG unit.
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* Power Balance Constraint: The total power
generation of any generator buses and DG units must
be enough for the total load demand and the total
power losses, which can be determined in (7) and (8).

Foi = Fpi +Fpg; =0 M
Npg
]\; Pg + 21 PDGJ. =Ph+F (8)
g =
Where
Py :real power generation at bus ith,
Pp;  :real power load in sink area at bus ith,
Ppg;  real power generation from DG at bus ith,
> Pg : total power generation in the system,
N,
8

Py total load demand in the system,
Py total active power loss, and
Npg © total number of DG units.

3. Evolutionary Programming
3.1 Evolutionary Programming

EP is an optimization technique that searches for the
optimal solution by evolving a population of candidate
solution, starts with random generation of mitial
individual. Then, the mutation and selection are preceded
until the best individual is found. The structure of EP
algorithm is shown in Figure 1 [17]. The major steps of
the algorithm are explained as follows.

3.1.1 Initialization

The initial population consists of individuals and it is
created randomly. It is generated within a feasible range
of each control variable in (9).

©

Veetor repr

Decision varibles

Survivor
set

K individvals H
Competition
& Selection

Competing pool

Offspring
creation

Stop
criteria

Figure 1. Structure of the evolutionary programming

54

Where
x : ith element of the individual in a population,
x™ : lower limit of the ith element of the individual,

x:m : upper limit of the #h element of the individual, and

- uniform random number in the interval [0,1].

3.1.2 Mutation

Each individual is mutated to generate a new population
which 18 an offspring vector. The new population is
generated by the Gaussian random variable. The K parents
create K offspring, result from this step is 2X individual.
Each element is computed in (10) and (11).

%, =x,+N(0.0}) (10)

o, :(:@max xxmm)[MJr ag] a1
S
Where
x}‘cyx : ith element of the kth offspring individual,
X ith element of the kth parent individual,

N(O, c;x ) : Gaussian random number with mean 0

and standard deviation of @, , ,

a,, ‘standard deviation,

x:“m : lower limits of the ith element of the Kth parent
individual,

x™% . upper limits of the ith element of the Kth parent

individual,
: fitness of the Kth individual,

: maximum fitness of the parent population,

z
-
a :apositive number constant slightly less than one,

g iteration counter.

3.1.3 Competition

Fach individual n the combined population has to
compete with some other individuals to get chance to be
transcribed to the next generation. The best K individuals
with maximum fitness values are retained to be parents of
the next generation. A weight value is assigned to the
individual according to the competition in (12) and (13).

Nt
w, =W, 12)
=1
Y )
0 otherwise
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Where

w, weight value of Kth individual in combined
population,

f]C : fitness value of Kth individual in combined
population,

£ : fitness value of Rth opponent randomly selected

from the combined population, and

N, number of competitors.

3.1.4 Termination criterion
The termination criterion is set as the maximum number
of generations.

3.2 Algorithm of EP-based OPF

The EP-based OPF is used to simultaneously search for

real power generations in a source area excluding slack

bus, generation bus voltages, real power loads in a sink

area, and optimal placement of multi-type DG for

determining the feasible TTC value. A flowchart of the

proposed approach is shown in Figure 2, which can be

explained as follows.

* Step 1. Prepare bus data and line data.

* Step 2. Assume population size (popsize) and the
maximum number of generation (maxgen).

* Step 3. Set valid number of population counter to zero
(popimp = 0).

* Step 4. Each of OPF control variables of an individual
is initialized randomly using a trial solution vector as
(14).

vl =B, Vg By Loc,| (14)
Where
P : real power generation at bus ith in the source
area excluding slack bus,
v, o voltage magnitude of generator at bus ith
including the slack bus,
P real power load atbus ith in the sink area, and
Loc : type and location of DG: Loc, and Loc, is

bus number of PV and WT.

* Step 5. Run power flow using the Newton-Raphson
method (NR) to calculate power flow in each
transmission line of the system.

* Step 6. Check the system constraints, voltage profile,
feeder transmission capacity, maximum install
capacity, and power balance equations.

¢ Step 7. If all the constraints are satisfied, increment
poptmp by 1. If poptmp less than or equal to popsize
goto step 4, otherwise go to next step.
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l
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l
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Ts gencration is equal to
maximum mmber of
generations.

Figure 2. Flowchart of EP-based OPF

Step 8. Calculate fitness function of an individual
candidate in the population. The fitness function of
each individual is defined in (15).

S =K, xF (15)
Where

fk . fitness value of the Kth individual,
K/ . an arbitrary constant, and

F : objective function.

Step 9. Find and store maximum fitness of all valid
individual parents and corresponding generation
pattern.

Step 10. Set generation count, gencount =1.

Step 11. A new population is produced from the
existing population through the mutation operator

( x;c ), which is computed by (10) and (11).
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¢ Step 12. Check the x, in (10), It should be between
lower and upper limit. If individual is not in range, this
will be rejected.

« Step 13. Run power flow using the NR method for
each set of new OPF variables satisfying constraint of
step 12.

¢ Step 14. Check system constramts as mentioned in
step 6. If all the constraints are satisfied, the individual
of the new population becomes valid otherwise it
becomes invalid.

¢ Step 15, Find the maximum fitness among all vahd
individuals. If it is more than f,,,, store this fitness in
fuae and also store corresponding OPF variables.

«  Step 16. Increase the gencount byl. If it is less than or
equal to maxgen, select the best individuals for the
next population and go to step 11 otherwise go to next
step.

. StTp 17. Find the optimal solution among all
pepulation groups.

4, Case Study and Simulation Results

In the simulations, the maximum install capacity of
DG unit of PV and WT are 8.0 MW. The numbers of each
DG are imposed according with the power generation in
the system, quantity of each DG type up to three devices.
The EP is implemented using MATLAR version 6.5 on an
AMD Athlon X2 250 computer with 2.0 GB memory.

Figure 3. Diagram of the medified IEEE 30-bus system

The modified [EEE 30-bus system is used to demonstrate Table 2
the optimal choice and allocation of multi-type DG units P setting of EP
using the EP approach. The test system in Figure 3 from _EP parameter Value
A : el o ) S Population size: popsize 20
[18] 1s partitioned into three areas with two generators in ~ :
ok Htens, bux; st il e sdate from, [19], ik Maximum generation: maxgen 300
cach ‘“.L‘l’ uS, «dala .an & . 3 b Constant value: g 0.90
transactions between area 1, 2 and 3 are considered. The Number of competitors: ; 5
EP parameters used in the study are shown in Table 2. An arbitrary constant: K 1
Table 3
The transaction results when each DG type = 1.
Transfer Base case With DG multi-type =1 Photovoltaic Wind Turbine
From To TTC TTC Total cost Objective B Size B Size
Area Arca (MW) MW) ) function s ne. (MW) s ne. (MW)
1 2 84.500 130.925 164,485.26 0.268 3 6.247 25 6.708
1 3 56.200 70.811 6.875.57 1.971 26 2.486 24 0.280
2 1 48.500 70218 6.331.88 3224 13 5.880 22 0.258
2 3 56.200 75.519 32.534.76 0.566 16 7.803 27 1.327
3 1 48.500 67.681 109,343.54 0.162 25 7.425 11 4.459
3 2 34,500 108.297 30,214.62 0.754 9 5.858 17 1.232
Table 4
The transaction results when each DG type = 2
Transfer Base case With DG multi-type =2 Photovoltaic Wind Turbine
From To TTC TIC Objective Size Size
Aren ™MW W) Total cost ($) function Bus no. W) Bus no. W)
o N1=23 5.440 NI1=20 0.535
1 2 84.500 133.818 50,304.94 0.947 N2-26 7602 - 0.982
N1=22 3.489 0.815
R 5 N
1 3 56.200 106.996 45.868.26 1.031 N2-5 5495 0.941
N1=19 5.495 3.007
> 2
2 1 48.500 82.547 221.,698.00 0.145 N2=29 5.406 3008
N1=19 7.964 0.493
3 2 . 37.905. .
2 3 56.200 102.072 137.905.80 0.316 N2=12 0.502 4638
NI=27 3215 0.305
3 1 48.500 70.452 46,495.52 0.438 Nao1s e 17
o N1=2 1.303 0.423
3 2 84.500 113.905 27,660.03 1018 N2-% 6.255 0.283
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Table 5

The transaction results from area 1 to area 2 and each DG type=2.

Base a 3 . .
Test case With DG Photovoltaic Wind Turbine CPU time
no. TTC TTC Plogs Objective Ppe Size Size (min)
Total cost (§ q Bus no. Bus no.
ow | ow | aw ® | function | ovtw) ) aw)
Ni1=24 5.457 N1=13 0.279
1 84.50 138.407 4.372 125,084.27 0.415 12.170 N2=21 1.801 N2=6 4544 1.60
N1=23 5.440 N1=20 0.535
2 84.50 133.818 4.088 50,304.94 0.947 14.649 N2=26 7692 N2=12 0.082 2.65
N1=13 3.609 N1=10 1.279
3 84.50 98.796 2.179 153,469.65 0.095 15.770 N2=22 7181 N2=11 3901 1.69
N1=13 4.368 N1=14 0.119
4 84.50 119.260 3.844 172,770.14 0.186 11.897 N6 0.601 N2=20 6.808 1.62
Ni1=11 1.564 N1=3 3.022
5 84.50 126.240 3.814 177,019.93 0.228 12.877 2221 115 N2=13 L1177 1.66
N1=15 0.031 N1=21 1472
6 84.50 131.632 4.095 130,481.87 0.348 9.999 N2=5 6117 N2=23 2378 177
Table 6
The transaction results when each DG type = 3.

Transfer Base case With DG multi-type =3 Photovoltaic Wind Turbine
From To TTC TIC Total cost (5) Objective Bus no Size Bus o Size
Area Area MW) MW) function . (MW) . MWy

NI1=12 6.077 N1=17 0.093
1 2 84.500 170.685 279,431.60 0.293 N2=9 5.562 N2=18 5.520
N3=29 0.147 N3=15 0.076
Ni=6 4.040 N1=19 5.296
1 3 56.200 168.168 393,287.49 0.207 N2=8 5.760 N2=22 0.018
N3=9 6.949 N3=3 0.116
NI1=17 5.012 N1=10 0.116
2 1 48.500 98273 78,911.71 0.587 N2=30 4.156 N2=1 0.760
N3=8 1.250 N3=30 1.350
NI1=20 7.684 N1=26 0.331
2 3 56.200 110.985 124,347.30 0.421 N2=9 7.149 N2=10 0.833
N3=12 6.088 N3=23 2412
N1=14 3.642 N1=17 0.229
3 1 48.500 82.035 171,206.40 0.181 N2=30 6.154 N2=18 1.257
N3=26 2958 N3=10 3.782
NI1=28 2.515 N1=30 0.731
3 2 84.500 162.576 203,685.50 0.369 N2=21 1.667 N2=25 2725
N3=15 5.526 N3=16 0.664
2] is [58.36%, 70.20%, 81.62%, 45.26%, 34.80%],

Six transactions between area 1, 2, and 3 are shown
in Table 3. In each case, the total number of DG unit is set
as one device for each DG type. The maximum TTC
improvement is the power transaction from area 1 to 2.
The additional 46425 MW is increased in this
transaction. The real power from PV unit installed at bus
615 6.247 MW and the real power from WT unit mstalled
at bus 25 is 6.708 MW. The minimum TTC improvement
is the transaction from area 1 to 3. The additional capacity
of 14.611 MW is increased in this transaction. The real
power from PV at bus 26 is 2.486 MW and the real power
from WT at bus 24 15 0.280 MW.

Table 4 shows the six power transactions with the
quantity of each DG type is two devices. The maximum
TTC improvement is the power transaction from area 1 to
3. The additional 50.746 MW is increased in this
transaction, which is the additional of 90.38%. The real
powers from PV installed at bus 22 and 5 are 3.489 MW
and 2.495 MW, respectively and the real powers from WT
installed at bus 25 and 23 are 0.815 MW and 0.241 MW,
respectively. For the other transactions, the maximum
TTC improvement of the transaction [1-2, 2-1,2-3, 3-1, 3-
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respectively.

In addition, total real power loss is increased when
DG placed in the system. Loss in each simulation is
shown in Table 5. Table 5 shows the power transaction
from area 1 to area 2 when quantity of DG unit is set as
two devices. The additional power from the test number
one is increased from 84.500 MW to 138.407 MW. Total
real power loss is 4.372 MW when real power from DG is
12.170 MW. The real powers from PV are [5.457, 1.891]
MW at bus [24, 21] and the real powers from WT are
[0.279, 4544] MW at bus [13, 6] respectively. Even
though, the transaction number one has the maximum
TTC, the installation cost of DG increase as TTC. Then,
the optimal allocation is considered from objective
function. The best objective function value from Table 5
is 0.947 which come from the test number two. The
injected power is increased from 84.500 MW to 138.407
MW. Total real power loss in sink area is 4.088 MW and
real power from DG is 14.649 MW. The real powers from
PV at bus [23, 26] are [5.440, 6.692] MW and the real
powers from WT at bus [20, 12] are [0.535, 0.982] MW,
respectively.
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Figure 4. TTC result with different number of DG units

Table 6 shows the six transactions which the quantity
of each DG type is three devices. The maximum TTC
improvement is the power transferred from area 1 to 3.
The additional power in this transaction is 111.968 MW,
The real powers from PV at bus [6, 8. 9] are [4.040,
5760, 6.949] MW and the real powers from WT at bus
[14,30, 26] are [5.296, 0.018,0.116] MW, respectively

Figure 4 shows graph that compare results from base
case until total number of each DG type is three devices.
When number of DG is increased, the real power in the
test system is more transferred. From the results, the
transaction from area 1 to area 2 has the most TTC while
the transaction from area 3 to area 2 has nearby TTC
value in the transaction 1 to 2. Figure 5 shows the rapid
convergence characteristic of fitness of EP method.

5. Conclusion

In this paper, the proposed EP is implemented to
determine the optimal choice and allocation of multi-type
DG units to enhance power transfer capability of power
transfers between different control areas in power systems
constrained by real and reactive power generation limits,
thermal limits, voltage limits, and DG operation limits.
The OPF-based objective function with multi-type DG is
formulated as maximizing the benefit to cost ratio. The
benefit means increasing in TTC with deducting system
losses while the costs are the mvestment and operating
costs of DG.

Test results on the modified IEEE 30-bus system
show that the EP approach can simultancously determine
the optimal type, size, and location of photovoltaic and
wind turbine DG units to maximize TTC and minimize
power losses with the lowest cost. In addition, the test
results indicate that optimally placed OPF with multi-type
DG units by the EP approach could enhance the TTC
value far more than OPT without DG, leading to a higher
trading level of energy transactions in a normal secured
system.
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Figure 5. The convergence characteristic of the EP approach
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