Abstract

Project Code: MRG-5380022

Project Title : Rapid detection of extended-spectrum β -lactamase gene from Escherichia coli

and Klebsiella pneumoniae by loop-mediated isothermal amplification

Investigator: Krit Thirapanmethee Faculty of Pharmacy Mahidol University

E-mail Address : krit.thi@mahidol.ac.th

Project Period : 15 June 2010 – 14 June 2012

The objective of this study was to develop a rapid, sensitive, specific and inexpensive technique for detecting the extended-spectrum β-lactamases (ESBLs) gene in Escherichia coli and Klebsiella pneumoniae. ESBLs are a group of β-lactamase enzyme which is produced by Enterobacteriaceae. ESBLs are one of the important mechanisms causing multiple-resistance to most of beta-lactam antibiotics. The detection of ESBL-producing bacteria is necessary for identification, protection and treatment. Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method which can amplifies DNA at an isothermal condition. The ESBLsproducing E. coli and K. pneumoniae was isolated from Ramathibodi Hospital and confirmed by double-disk synergy test (DDST). Then, a set of specific oligonucleotide primers of LAMP for detection of blaction of blaction gene were designed based on blaction from E. coli (GenBank accession number AJ416345). The reaction was performed under isothermal temperature at 63°C for 60 mins. The amplicon showed ladder-like pattern of band sizes from 226bp of blactx-M9 DNA target. The LAMP was more sensitive than the PCR by 10,000 fold. The specificity of LAMP primers for bla_{CTX-} M9 detection was observed. The LAMP product was confirmed by restriction digestion with appropriate restriction enzymes. The sizes of the DNA fragments generated were 168, 177 and 250 bp for Mbol digestion and 165, 193, 229, 281 and 314 bp for Taql digestion in good agreement with the predicted size. Moreover, amplification can be visualized by addition of SYBR Green I. The solution mixture turned green in the presence of LAMP amplicon. On the other hand, the solution still remained orange when LAMP amplicon was absent.

In conclusion, the LAMP technique is a rapid procedure with high sensitivity and specificity for detecting ESBLs.

Keywords: extended-spectrum β -lactamases, *E. coli, K. pneumoniae*, ESBLs, loop-mediated isothermal amplification (LAMP)

บทคัดย่อ

รหัสโครงการ: MRG-5380022

ชื่อโครงการ: การตรวจสอบยีนที่สร้างเอนไซม์เบต้าแลคแตมเมสที่ออกฤทธิ์กว้างของเชื้อ

Escherichia coli และ Klebsiella pneumoniae อย่างรวดเร็วโดยวิธี loop-mediated isothermal amplification

ชื่อนักวิจัย: ดร. กฤษณ์ ถิรพันธุ์เมธี คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล

E-mail Address : krit.thi@mahidol.ac.th

ระยะเวลาโครงการ: 15 มิถุหายห 2553 – 14 มิถุหายห 2555

การศึกษานี้มีวัตถุประสงค์เพื่อพัฒนาเทคนิคที่มีความรวดเร็ว ความไว ความจำเพาะสูง และประหยัด เพื่อใช้ตรวจสอบยีนที่สร้างเอนไซม์ extended-spectrum β-lactamase (ESBL)ใน *Escherichia coli* และ Klebsiella pneumoniae เอนไซม์ชนิดนี้เป็นสาเหตุสำคัญของการดื้อยาปฏิชีวนะกลุ่มเบต้าแลคแตมซึ่งเป็น ปัญหาทางสาธารณสุขที่สำคัญทั่วโลก การพัฒนาวิธีที่ใช้ในการตรวจสอบเอนไซม์นี้จึงมีความสำคัญในการ จำแนก ป้องกัน และรักษา วิธี Loop-mediated isothermal amplification (LAMP) เป็นเทคนิคการเพิ่มจำนวน สารพันธุกรรมภายใต้อุณหภูมิคงที่ ที่รวดเร็ว มีความไว และความจำเพาะสูง เทคนิคนี้ถูกนำมาพัฒนาเพื่อใช้ ในการตรวจสอบยืนที่สร้างเอนไซม์ ESBLs งานวิจัยนี้ได้แยกเชื้อ E. coli และ K. pneumoniae ที่สร้าง ESBLs จากโรงพยาบาลรามาธิบดีและยืนยันการสร้าง ESBLs ด้วยวิธี double disk synergy test (DDST) จากนั้นจึงทำการออกแบบไพรเมอร์ของ LAMP ที่จำเพาะกับยืน *bla*_{CTX-M9} โดยใช้ลำดับเบสของยืน *bla*_{CTX-M9} จากเชื้อ *E. coli* (GenBank accession number AJ416345) เป็นต้นแบบ ผลิตภัณฑ์ของ LAMP ที่ได้ ภายใต้ อุณหภูมิ 63 องศาเซลเซียส เป็นเวลา 60 นาที่ มีลักษณะเป็น ladder ขนาด 226 คู่เบส เทคนิค LAMP มี ความไวสูงกว่าเทคนิค PCR ถึง 10,000 เท่า ไพรเมอร์ของ LAMP มีความจำเพาะในการตรวจหายีนที่สร้าง CTX-M9 ได้ดี ผลิตภัณฑ์ของ LAMP ถูกยืนยันด้วยการตัดด้วยเอนไซม์ตัดจำเพาะซึ่งมีขนาด 168 177 และ 250 คู่เบส สำหรับ Mbol และ 165 193 229 281 และ 381 คู่เบส สำหรับ Taql นอกจากนั้นเทคนิคนี้ยัง สามารถตรวจสอบได้ด้วยตาเปล่าโดยสังเกตการเปลี่ยนของสี SYBR green I ที่เติมลงไปภายหลังปฏิกิริยา โดยจะเปลี่ยนสีของ SYBR green I จากสีสัมเป็นสีเขียวเมื่อมีการเพิ่มปริมาณดีเอ็นเอ แต่จะยังคงเป็นสีสัมหาก ไม่มีการเพิ่มปริมาณดีเอ็นเอจากผลการทดลองสามารถสรุปได้ว่าเทคนิค เป็นเทคนิคที่มีความไว LAMP ความจำเพาะสูงราคาไม่แพงและสามารถพัฒนาเพื่อใช้ในการตรวจสอบยีนที่สร้างเอนไซม์ได้ภายในเวลา รวดเร็ว ดังนั้นเทคนิคนี้จึงเป็นเทคนิคที่มีความเหมาะสมต่อการตรวจหายืนที่สร้าง ESBL

คำหลัก: extended-spectrum β-lactamases, *E. coli, K. pneumoniae*, ESBLs, loop-mediated isothermal amplification (LAMP)