บทคัดย่อ

รหัสโครงการ : MRG5380030

ชื่อโครงการ : ผลกระทบของโลหะหนักชนิดต่างๆ ต่อการเปลี่ยนแปลงค่า pH ภายในเซลล์และ

ระดับความเครียดออกซิเดทีฟในยีสต์ Saccharomyces cerevisiae

ชื่อนักวิจัย: ดร. ชูวงศ์ เอื้อสุขอารี

ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

E-mail Address : choowong.aue@mahidol.ac.th

ระยะเวลาโครงการ : 2 ปี (มิ.ย. 2553 - มิ.ย. 2555)

แม้ว่าที่ผ่านมามีการศึกษาความเป็นพิษของโลหะหนักต่อเซลล์ประเภทยูแคริโอตอย่างกว้างขวาง กลไกการตอบสนองต่อโลหะหนักในระดับเซลล์ยังไม่เป็นที่ชัดเจน จากการศึกษาก่อนหน้านี้พบว่า H⁺-ATPase ที่แวคิวโอล (V-ATPase) ซึ่งทำหน้าที่หลักในการรักษาสมดุลของ pH ภายในเซลล์มีบทบาทในการทนทานต่อ แคดเมียมของเซลล์ด้วย ดังนั้นจึงเป็นไปได้ว่าโลหะหนัก เช่น แคดเมียม อาจก่อให้เกิดความเป็นกรดภายในเซลล์ และเซลล์จำเป็นต้องใช้ V-ATPase ในการปรับสมดุลของ pH ภายในเซลล์ จากผลการศึกษาของผู้วิจัยพบว่ายีสต์ สายพันธุ์กลายที่ขาด V-ATPase (สายพันธุ์กลาย vma) นอกจากจะไวต่อแคดเมียมแล้วยังไวต่อโคบอลต์ นิกเกิล และสังกะสี ในขณะที่สายพันธุ์กลาย $\Delta pma2$ ที่ขาดเอนไซม์ H^{\dagger} -ATPase ที่เยื่อหุ้มเซลล์ (P-ATPase) ไม่แสดง ความไวต่อโลหะหนักเหล่านี้ จากการศึกษาบทบาทของ V-ATPase และ P-ATPase ในการแพร่ของสารผ่านเยื่อ หุ้มเซลล์และการรักษาสมดุลของ pH พบว่าโลหะหนักส่งผลให้อัตราการแพร่ของสารผ่านเยื่อหุ้มเซลล์เพิ่มมากขึ้น และก่อให้เกิดการเปลี่ยนแปลงของค่า pH ทั้งภายในและภายนอกเซลล์ในสายพันธุ์ธรรมชาติ อย่างไรก็ตามแม้ว่า สายพันธุ์กลาย vma จะมีอัตราการแพร่ของสารผ่านเยื่อหุ้มเซลล์คล้ายกับสายพันธุ์ธรรมชาติ แต่ค่า pH ที่แวคิว โอลและไซโตพลาสซึมของสายพันธุ์กลาย vma กลับสูงกว่าสายพันธุ์ธรรมชาติทั้งในสภาวะที่มีและไม่มีโลหะหนัก ผลการทดลองนี้แสดงให้เห็นว่าค่า pH ที่ไซโตพลาสซึมไม่ใช่ปัจจัยที่ทำให้สายพันธุ์กลาย vma ไวต่อโลหะหนัก เนื่องจากที่ผ่านมามีรายงานว่าการทำงานของ V-ATPase จำเป็นต่อการป้องกันการเกิดความเครียดออกซิเดชั่น ด้วย ดังนั้นผู้วิจัยจึงได้ศึกษาบทบาทของ V-ATPase ในการปกป้องเซลล์จากความเครียดออกซิเดชั่นที่เกิดจาก โลหะหนัก พบว่าความไวต่อโลหะหนักและ $m H_2O_2$ ของสายพันธุ์กลาย $\it vma$ ถูกยับยั้งภายใต้สภาวะที่ไม่มีออกซิเจน และระดับ ROS ของสายพันธุ์กลาย vma ในสภาวะปกติมีค่าสูงกว่าสายพันธุ์ธรรมชาติ แม้ว่าระดับ ROS ของสาย พันธุ์กลาย vma มีค่าสูงขึ้นเมื่อสัมผัสกับโคบอลต์ นิกเกิลและสังกะสี แต่ปริมาณการสะสมก็มีค่าใกล้เคียงกับสาย พันธุ์ธรรมชาติ ดังนั้นผลการศึกษานี้จึงบ่งชี้ให้เห็นว่าบทบาทของ V-ATPase ในการทนทานต่อโลหะหนักอาจ ไม่ได้มีเพียงการปกป้องเซลล์จากความเครียดออกซิเดชันที่เกิดจากโลหะหนักเพียงเท่านั้น

คำหลัก : V-ATPase, โลหะหนัก, ค่า pH ภายในเซลล์, ความเครียดออกซิเดทีฟ, Saccharomyces cerevisiae

Abstract

Project Code: MRG5380030

Project Title: Effects of heavy metals on intracellular pH alteration and oxidative stress level in

Saccharomyces cerevisiae

Investigator: Choowong Auesukaree, Ph.D.

Department of Biology, Faculty of Science, Mahidol University

E-mail Address: choowong.aue@mahidol.ac.th

Project Period: 2 years (June 2010 – June 2012)

Although the toxicity of heavy metals to eukaryotic cells has been extensively studied, the mechanisms of cellular response to heavy metals have not been clearly understood. In a previous study, it was found that vacuolar H⁺-ATPase (V-ATPase) is required for Cd tolerance. Since V-ATPase is known to play an important role in maintaining intracellular pH homeostasis through vacuolar acidification, it may be possible that some metals, such as Cd, induce intracellular acidification, thereby requiring V-ATPase to cope. It was found that the *vma* mutants lacking subunits of V-ATPase, but not the $\Delta pma2$ mutant lacking minor plasma membrane H⁺-ATPase (P-ATPase), were sensitive to not only Cd but also Co, Ni, and Zn. To investigate the role of V-ATPase and P-ATPase in heavy metal tolerance, the effects of heavy metals on membrane permeability and pH homeostasis were examined. The results showed that heavy metals induced an increase in membrane permeability and alteration of both intracellular and extracellular pHs in the wild-type strain. Although the vma mutants exhibited similar membrane permeability to that of the wild-type strain, the vacuolar pHs and cytosolic pHs of the vma mutants were more alkaline than those of the wild-type strain; in both the presence, or absence, of heavy metals. These results suggest that the cytosolic pH does not account for metal sensitivity in the vma mutants. Since V-ATPase has been shown to be required for preventing oxidative stress, the additional role of V-ATPase in protecting cells from oxidative stress induced by heavy metal was examined. It was found that the sensitivity to all metals and the H₂O₂ of the *vma* mutants was suppressed under anaerobic conditions and the reactive oxygen species (ROS) levels of the vma mutants were higher than in the wild-type strain. Although, after exposure to Co, Ni, and Zn, the vma mutants exhibited increased ROS accumulation, the levels were similar to those of the wild-type strain. The results suggest that the roles of V-ATPase in metal tolerance may do more than protect cells from oxidative stress caused by metals.

Keywords: V-ATPase, heavy metal, intracellular pH, oxidative stress, Saccharomyces cerevisiae

EXECUTIVE SUMMARY

In this study, we determined the growth of the S. cerevisiae wild-type strain, the $\Delta vma2$ and

 $\Delta vma3$ mutants lacking V₀ and V₁ subunit of the vacuolar H⁺-ATPase, respectively, and the $\Delta pma2$ mutant lacking the minor plasma membrane H⁺-ATPases in the presence of four kinds of heavy metals, i.e. CdCl₂, CoCl₂, NiCl₂, and ZnCl₂. We found that the Δvma2 and Δvma3 mutants, but not the Δpma2 mutant, were sensitive to all heavy metals tested, indicating that the vacuolar H⁺-ATPase is involved in tolerance to these heavy metals. In order to address the role of V-ATPase in heavy metal tolerance, the impacts of heavy metals on membrane permeability, pH homeostasis, and ROS induction were tested. We found that the membrane permeability of the $\Delta vma2$ and $\Delta vma3$ mutants after exposure to Cd, Co, and Ni, except for Zn, were similar to those of the wild-type strain. These results suggested that the sensitivity to heavy metals of the vma mutants was not resulted from the effect on membrane permeability. However, our results revealed that heavy metals induced alteration of both intracellular and extracellular pHs. The vacuolar pHs of the vma mutants were more alkaline than that of the wild-type strain under both normal and heavy metal stress conditions. These results indicated that a loss of V-ATPase activity to translocate protons into vacuole causes an alkaline vacuole. Unexpectedly, the cytosolic pHs of the *vma* mutants were more alkaline than those of the wild-type strain, suggesting the important role of other H⁺-ATPase such as Pma1p in maintenance of intracellular pH in the yeast strain lacking V-ATPase activity and the cytosolic pH does not account for the sensitivity to heavy metals in the *vma* mutants. Since heavy metal has been reported to induce the chronic oxidative stress in the yeast cell, the accumulation of endogenous oxidative stress might be the primary cause of heavy metal toxicities. We found that the sensitivity to heavy metal stress of the *vma* mutants was suppressed under anaerobic condition, in which ROS production is unable to be activated. However, ROS accumulation in the *vma* mutants under Cd exposure was higher than the wild-type and $\Delta pma2$ strains. This suggests that V-ATPase may contribute to ROS defense during heavy metal stress, leading to reduced adverse physiological effects caused by Cd, but not Co, Ni and Zn, in the wild-type cells. Conclusively, this study showed the evidences for the effects of heavy metal on membrane permeability, intracellular pH homeostasis, and ROS generation in yeast cells. Variations and inconsistencies among each heavy metal treatment and yeast strains may be due to the fact that the effects of heavy metals on eukaryotic cells are complicated. Therefore, the undefined roles of V-ATPase in tolerance to heavy metal should be further investigated, especially the roles in ion homeostasis and ROS generation.