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Abstract

Project Code : MRG5380034

Project Title : Effect of Interaction between Internal Fluid and Pipe Wall on

Marine Riser Behavior

Investigator : Chainarong Athisakul, Ph.D.
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Department of Civil Engineering, Faculty of Engineering

King Mongkut’s University of Technology Thonburi

E-mail Address :  chainarong.ath@kmutt.ac.th

Project Period : 2 years (15 June 2010 — 14 June 2012)

The interaction between internal fluid and pipe wall of marine riser is thoroughly
addressed. The acceleration of the internal fluid has to be formulated firstly in terms of
the displacement of the riser and the internal fluid speed. This acceleration is used to
derive the inertia force of transported fluid inside the riser which may be experiencing
large displacement and large deformation. The model formulation of extensible marine
riser is developed based on the extensible elastica theory and the work-energy
principle. The finite element method is used to obtain the numerical solutions. The effect
of interaction between internal fluid and pipe wall on static and dynamic behaviors of the

extensible marine riser is presented.

Keywords : Marine Riser, Internal Fluid, Fluid and Pipe Wall Interaction
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Executive Summary

Research Significant and Problem Statement

The increasing demand on energy resources, especially in oil and gas, has driven the
offshore production into deepwater and ultra deepwater fields. At present, there are a lot
of deepwater offshore structures installed in all parts of the world. The new technologies
for deep offshore industry are required and developed continuously. One of a key

component for offshore production is the marine riser.

The marine riser is a vertical pipe that extends from the offshore platform down to the
well at the sea bed. There are two fundamental types of marine riser: drilling riser and
production riser. Drilling riser is used to contain drilling mud and cutting from the
borehole to the drilling platform, while production riser is used to transport hydrocarbons
from the seabed to the production platform. Nowadays, the oil and gas companies try to
develop new technologies for offshore production in over 2000 m of water. A damage of
the riser system causes a severe environmental pollution and a significant financial
consequence. Therefore, engineers and researchers must have a good understanding

of marine riser behaviors.

This report presents the effect of internal fluid and pipe wall interaction on static
behavior and dynamic properties of marine riser. The model formulation of an extensible
marine riser transporting fluid is developed by a variational approach. The finite element
method is used to determine the numerical solutions. The effect of axial extensibility on

large displacement and dynamic properties of marine riser are also investigated herein.

Objective of Research
The objectives of this research are as follows:
® To present the concepts of fluid flow inside the extensible marine riser.

® To develop the variational model formulation of the extensible marine riser

transporting fluid.

® To develop the finite element model for static and dynamic analysis of the

extensible marine riser transporting fluid.

® To investigate the effect of internal fluid and pipe wall interaction on static and

dynamic behaviors of marine riser.

iv



Research Methodology and Results

The kinematics of marine riser and internal fluid inside the extensible marine riser has
been addressed. The acceleration of the internal fluid has to be formulated firstly in
terms of the displacement of the riser and the internal fluid speed. The model
formulation of an extensible marine riser is developed by the variational approach based
on the elastica theory and the work-energy principle. The strain energy of the riser
composes of the strain energy due to large axial deformation, and bending. The large
axial strain is described by the total Lagrangian descriptor. The external virtual work of
the riser is composed of the virtual work done by the apparent weight, the

hydrodynamic forces, and the inertial forces.

The finite element method is used to obtain the numerical solutions. For nonlinear static
analysis, the system of finite element equations is solved by iterative numerical method.
The static configurations are used as the initial configuration for free vibration analysis
of marine riser. In this study, the linear free vibration of the marine riser is investigated.
The natural frequencies and their corresponding mode shapes are determined by

solving the boundary value problem. This problem is solved by the QR-algorithm.

The numerical examples in this report are presented in order to investigate the effect of
internal flow velocity on maximum displacement, maximum bending moment and
dynamic properties of marine riser. The results indicate that the increase in internal flow
velocity enlarges the riser displacement and changes the position of the maximum
displacement down to the seabed. The increase in velocity of transporting fluid
increases the maximum bending moment until the velocity reaches a value that induces
a peak value of maximum bending moment. Beyond this velocity, the maximum bending
moment no longer increases, but it is decreased. However, the maximum displacement
continuously increases and the riser tends to have divergence instability. The negative
flow velocity affects the nonlinear static behavior of the marine riser as same as the
positive flow velocity. The internal flow velocity has an insignificant effect on the axial
strain, the true-wall tension, and the apparent tension. The increase in internal flow
velocity reduces the natural frequencies and the structural stability of the marine riser.
The number of curvature for the mode shape of marine riser could be changed when
the internal flow velocity reaches the critical values. The effect of the internal flow can

be reduced by increasing the axial deformation.
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1. Introduction

1.1 Statement of the Problem

The increasing demand on energy resources, especially in oil and gas, has driven the
offshore production into deepwater and ultra deepwater fields. At present, there are a lot
of deepwater offshore structures installed in all parts of the world. The new technologies
for deep offshore industry are required and developed continuously. One of a key

component for offshore production is the marine riser.

The marine riser is a vertical pipe that extends from the offshore platform down to the
well at the sea bed. There are two fundamental types of marine riser: drilling riser and
production riser. Drilling riser is used to contain driling mud and cutting from the
borehole to the drilling platform, while production riser is used to transport hydrocarbons
from the seabed to the production platform. Nowadays, the oil and gas companies try to
develop new technologies for offshore production in over 2000 m of water. A damage of
the riser system causes a severe environmental pollution and a significant financial
consequence. Therefore, engineers and researchers must have a good understanding

of marine riser behaviors.

This report presents the effect of internal fluid and pipe wall interaction on static
behavior and dynamic properties of marine riser. The model formulation of an extensible
marine riser transporting fluid is developed by a variational approach. The finite element
method is used to determine the numerical solutions. The effect of axial extensibility on

large displacement and dynamic properties of marine riser are also investigated herein.

1.2 Literature Review

The analysis of marine riser has received considerable attention over the past several
years. The first riser was installed in Mohole Project in 1949. St. Denis and Armijo [1]
presented the first technical paper on dynamic analysis of the Mohole riser. From then
on, many other interesting papers have been published on marine riser problems to

increase the understanding of the static and dynamic behavior of the marine riser.

In the literature, there are many papers related to analysis of marine riser as reviewed
by Chakrabarti and Frampton [2], Ertas and Kozik [3], Jain [4] and Patel and Seyed [5].

A comprehensive review of the literature shows that the development of a model

1



formulation and computational technique is the main concern in riser analysis. The
internal fluid transportation is a main function of marine riser, however, the effect of
internal fluid and pipe wall interaction on the riser behavior has received a little

attention.

The effects of the internal fluid flow have been long investigated in many research
studies dealing with the pipe conveying fluid. The vibrations of straight and curved pipes
are presented in many papers, for example, Housner [6], Gregory and Paidoussis [7],
Paidoussis [8], and Doll and Mote [9]. They stated that the liquid flow in the curve pipe
would affect the tangential force. As a result, the internal flow can induce the flutter
instability or the snaking behavior of cantilever pipes, and can generate the divergence

instability or the statical buckling of simply supported pipes.

In the early of 1980s, many papers have investigated the effects of the internal flow on
the marine riser. They simplified that the internal flow induces only the friction force
acting on the pipe wall and this force is vanished from the equation of motion. This
simplification may not be sufficient for the large sagged pipes, because the internal
friction force does not act directly on the riser pipe. It transmits the internal pressure into
the pipe wall. This pressure reduces the internal tension of the marine riser [6-11]. In
addition, the internal flow generated not only the effects of the pressure, but also other

fictitious forces such as Coriolis and centrifugal forces.

The misconception of the internal flow effect has been dispelled in the end of 1980s
because many researchers in that period put their interest in this effect. Irani et al. [12]
presented the dynamic analysis of the riser with internal flow and nutation dampers.
They suggested that the steadily internal flow reduces the stiffness of the marine risers,

and provides a negative damping mechanism.

Patel and Seyed [13] presented a method for the analysis of the flexible risers subjected
to a time varying internal flow. They concluded that the effect of the slug flow is
significant for moderate to large water depths or in the large pressure area, and the slug

flow caused additional source of the cyclic fatigue loading.



Moe and Chucheepsakul [14] used the asymptotic method and finite element method to
obtain the natural frequencies of the flexible marine riser. They mentioned that the
natural frequencies of the pipes are reduced when the internal flow velocity increase.

This finding is also confirmed by Wu and Lou [15].

Chucheepsakul and Huang [16] investigated the effect of the steadily transported mass
on the two-dimensional riser. They reported that the internal flow induces additional
large displacements of the marine riser. At the state of low top-tensioning and low
elastic modulus, the high flow rate leads to the divergence instability of the marine riser
[17]. Chucheepsakul and Monprapussorn [18] investigated the nonlinear buckling of
marine elastica pipes/risers transporting fluid. They solved the boundary value problem
of the model by shooting optimization technique. Their results confirm that the effect of
the internal flow velocity is to increase the large displacement and the critical top
tension, and to decrease the critical pipe’s weight and the structural stability of the

marine pipes/risers.

Although the model formulations of the flexible marine riser transporting fluid have been
presented by several scholars [19-22], their model formulations have not yet considered
the geometric nonlinearity and the axial deformation of the marine riser. These themes
have been taken into account in large strain model formulations of the extensible
flexible marine pipes/risers by Chucheepsakul et al. [23]. This research aims to develop
this model formulation for investigating the effects of internal fluid and pipe wall

interaction on static and dynamic behavior of the extensible marine riser.

1.3 Objectives
The objectives of this research are as follows:
® To present the concepts of fluid flow inside the extensible marine riser.
® To develop the variational model formulation of the extensible marine riser
transporting fluid.
® To develop the finite element model for static and dynamic analysis of the
extensible marine riser transporting fluid.
® To investigate the effect of internal fluid and pipe wall interaction on static and

dynamic behaviors of marine riser.



1.4 Assumptions

The following assumptions are established in order to limit the scope of this study.

The material of the marine riser is linearly elastic.

At the undeformed state, the marine riser is straight, and has no residual

stresses.

The riser's cross sections remain circular after the change of cross-sectional

size due to the axial deformation effect.

Every cross-section remains plane perpendicular to the axis.
The effect of the shear strain is small and can be neglected.
The effect of torsion is not considered.

The marine riser connections are presumed to be homogeneous with the riser
body, and have the same properties.

The marine riser stiffness is determined from the cross-section of the riser only,
the contribution from the drilling pipe and the surrounding kill and choke lines

are not considered.

The internal and external fluids are inviscid, incompressible and irrotational.



2. Theoretical Concepts and Model Formulation

In this chapter, theory and model formulation of the extensible marine risers are
presented. A variational formulation is developed based on the extensible elastica
theory and the work-energy principle. The strain energy due to bending, axial stretching
and virtual work done by hydrostatic pressure and other external forces are involved in
the variational model. The virtual work done by inertial forces of the riser and internal
fluid are also included in the formulation. The outstanding feature of the model is the
flexibility of the independent variable that is used to define elastic curves of the riser.
The independent variable can be chosen between S,X,Yy, or z to make it suitable for

the particular problem.

2.1 Kinematics of Marine Riser

The riser configurations in each state can be described by using the position of the
riser’s centroidal line as shown in the figure (2.1). At the top end, the riser is connected
to the surface vessel with an appropriately tension (N, ) in order to prevent buckling
due to its self weight and environmental loads. A connection of riser at the top end is a
slip joint, which allows the relative motion between the moving surface vessel and the
stationary seabed. At the seabed, the riser is connected to a ball joint locating inside the
upper portion of the blowout preventer, or “BOP” stack. The horizontal offset of the

vessel measured from the bottom end is represented by X, (figure 2.1).

In this study, the two-dimensional Cartesian coordinate system is used to define
position, motion, and deformation of the riser's centroidal line. The Cartesian coordinate
system X,V with unit vector f, ] is used as the global coordinate. The local coordinate

system is represented by the tangential vector t and normal vector A.
The first configuration of the riser is the undeformed configuration, which is an ideal

configuration. The material point on the riser cross-section at the undeformed

configuration can be defined by the position vector ¥, as shown below.

F, =X, ()i +Y, ()] (2.1)



Current velocity
at mean sea level
V,

A

Vi

Y

Dynamic
configuration

Y

Undeformed
configuration

Y

Current profile »{ Y

y+Yy, )
v, =V, | YN
H[yH"'yb] Yo

Equilibrium
configuration

»X

~
_____

Figure 2.1 Three configuration states of an extensible marine riser.

The parameter « is used to define the riser configuration. This parameter is employed
in the formulation for the sake of generality. Therefore, the users can choose any
convenient coordinates such as X ,X,X,Y,.Ys,Y,Z,,Z,Z,5,,S;,S to define the
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centroidal curve instead of parameter « .

According to time independent loads (such as the apparent weight, the quasi-static load
due to current, and the tangential force due to internal flow rate), the riser configuration
is changed from the undeformed configuration to the equilibrium configuration. The
material point on the riser cross-section at the equilibrium configuration is defined by the

following position vector.
(@) =T, (@) +0,(@) = X, (@) + Y () ] (2.2)

The vector U («) represents a static displacement vector of marine riser, which is

measured from the undeformed state.

0, (a) =u (a)i +v,(a)] (2.3)



When the riser is excited by the time dependent load such as wave and unsteady flows
of transporting fluids, the riser will change its position from equilibrium to the dynamic
configuration. As shown in figure 2.1, the position vector of the material point on the

riser cross-section at the dynamic configuration is
P(a,t) =1, (@) + U, (@, t) = X(a, )i + Y(a 1) | (2.4)

The vector O4(a,t) represents the dynamic displacement vector of marine riser. It is

measured from the equilibrium configuration.
0, (a,t) =u, (@, )i +V, (o, 1) ] (2.5)

Therefore, the position vector for the displaced configuration can be expressed by the

following equations.

(y+V) ] (2.6 a)
(Yo +V)] (2.6 b)

By taking the first and second derivative to equation (2.6) with respect to time t, the

velocity \7P (a,t) and acceleration a8, (a,t) of the riser can be derived as follows.

F(a,t) = U, (a, )i +V, (a,1) ] (2.7)
F(a,t) =, (a, )i +¥, (a,1) ] (2.8)

Ve
é:P
The superscripts () denotes the partial derivative with respect to time t.

2.2 Axial Strain Definition

Based on the differential geometry of plane curve, the derivative of arc-length at the
undeformed state(s, ), the equilibrium state(s,), and the dynamic state (S) can be

expressed by the following equations.

S =A% + Yo (2.9)
S = X2+ Y7 = () +u) (v, +v.) (2.10)

s'=x?+y"? Z\/(Xé +u') 4+ (v V) :\/(x; U Uy (Y v ) @1)




Based on the mechanics of deformable body, the axial strain can be defined by the total

Lagrangian descriptor as follows

Total strain: g=—>=—-1=1+2, -1 (2.12a)
SO sO
S.—S, S,
Static strain: g =———=—-1=1+2L -1 (2.12b)
SO SO
s'—s,
Dynamic strain: &g =——— =\/1+ 2L, —\/l+ 2L, (2.12c)
SO

The Green strains (L,,L,) in equations (2.12) can be derived in the terms of riser

displacements as follows.

1 u/2 V/2

L = ,2[x;u’+ y(’)v’+—+—j (2.13a)
. 2 2
1 u!Z V!2

L :?(xgu; + Y.V, +?+?j (2.13b)
o

2.3 The Change of Differential Arc-length, Cross-Sectional Properties, and

Internal Flow Velocity due to the Large Axial Strain
The large axial strain of the riser cross-section leads to the change of differential arc-
length. Because the riser volume is conserved, the cross-sectional properties of the
riser also change from the original to the deformed quantity. Moreover, the internal flow
velocity is changed based on the continuity property of transporting fluid. Consequently,
the differential arc-length, the cross-sectional properties, and internal flow velocity at

each state are related to each other through the axial strain as follows.

® Differential Arc-length

The relations of large axial strain to the differential arc-length can be expressed as

g, =% _ 0 (2.14)
1+e, l+g

® Cross-Sectional Properties
If the large axial stain occurs on the riser, the differential arc-length is changed from its

original quantity. Therefore, the volumetric strain of the riser is expressed as



_ ’ 1
= dvp dVPO = APS -1= AP( +gt)—1 (215)

&,
' dv Po APo So APo

Since the riser volume is conserved, the volumetric strain of the riser becomes zero.
Therefore, the cross-sectional area of the riser in three states can be related to each

other as

Ao =A(1+5)=A(1+¢,) (2.16)

From equation (2.16), one can obtain the relationships of diameter ( D,,, D,,, D, ), and

moment of inertia (I, I, ) of the riser in each state as follows.

Dy, = Dpg/1+ &, =Dp 1+ ¢, (2.17)

Lo = lpe (L4 8,) =1, (1+&) (2.18)

® |nternal Flow Velocity
Based on the fluid mechanics [24], the continuity equation for incompressible fluid can

be expressed as

Ao = A5V, (5)= A (s DV (5.1) 219)

From equation (2.19), one can see that the internal flow velocity is not uniform but it
varies along the arc-length of the riser due to the change of the cross-sectional size. By

using equation (2.16), the internal flow velocity at three states can be related to each

other as
V, V,
V,y=—F8 =1 (2.20)
(1+e) (1+¢)
where V, ,V.,V, are the average velocity over a cross-section at undeformed,

equilibrium, and dynamic state, respectively.



2.4 Hydrodynamic Forces due to Current and Wave

Based on the Morison equation [25], the hydrodynamic forces can be expressed as

~ i C / vV
fH:{fH”}=0.5peDe{ D“7“|7”|}+pepkca{7,”}+pep\e{.H”} (2.21)
Ht ”CDt7t|7/t| e Vi

Viscous drag force Hydrodynamic Froude-Krylov
mass force force

follows.

where C, , and C,, represent the normal drag coefficient, and the tangential drag
coefficient, respectively. The constant C, is an added mass coefficient. The parameters
D, and A, represent the external diameter and the external cross-sectional area,
respectively. The relative current and wave velocities in normal and tangential directions
can be represented by y, =V, —V, and y, =V,, —U,, respectively. The parameters V,
and U, are the riser velocities in normal and tangential directions, respectively. The
parameters V|, ~and V,, represent the current and wave velocity in normal and

tangential directions, respectively.

In order to eliminates the absolute functions. The signum function is introduced

1 ify>0

Sgn(7)={_1 iy <0 (2.22)

By using the signum function, equation (2.21) can be arranged into the form as

1? — an - _ C; 0 Vn _ C:qn 0 vﬂ + Clgnvl-?n—i_C;/Ian (2 23)
" 0 CiJli) [ 0 Cullu) [CoVi+CiVy '

Added mass force Hydrodynamic damping Hydrodynamic excitation

*

where, the coefficients of equivalent normal damping Ceqn,

.
normal drag force Cg,,

£

tangential damping C_,

tangential drag force CJ,, and the equivalent coefficients of

added mass C, and inertia forces C,, are

C:qn - C;n [ZVHn _vn] ’ Cl;n = 0'5/09 DeCDn -Sgn (7n) (2.24 a-b)
Cew =Co[V U], C5 =0.50,D,7Cp, -s0n (7, (2.24 c-d)
C; = pe'%Ca’ Cl’\k/l = pep\aCM (224 e-f)

in which C,, =C_ +1 is the inertia coefficient.

10



With some manipulations, equation (2.23) can be transformed to an equation in the

Cartesian coordinate system as follows.

wefl- e el el
ny 0 C; y CequCeqy y

Added mass force Hydrodynamic damping force

CI;XVI-%X + 2CI;xylvHxVHy + C;)xyZVI-%y + C:AVHX (2 25)
CoVih, +2Ch, Vi Vi, +CoyVis + CuVy, '

Dxy Dxy.

Hydrodynamic excitation

where V,, and V,, are the components of current and wave velocities in x and y
direction. Since the current and wave are normally in the horizontal direction, the

components of current and wave velocities become
Vi =V, +V,, VHy =0 (2.26a-b)
The profile of current velocity V, =V_(Yy) is a polynomial function as shown below.
+
Ve =V [—y L ) (2.27)
Yo * Yo

where V,, is the current velocity at mean sea level, and Yy, and Yy, are defined in
figure (2.1). The degree n can be varied from 0 to1 depending on the current profile. In

this study, n=1/7 is employed for the tidal current profile [26].

The velocity of wave particle V,, can be determined based on the Airy’s wave theory.
According to the direction of x and y axes as indicated in figure 2.1, the horizontal

velocity of wave particle at any time t can be expressed as shown below [27].
VvV, =V,, cosao,t (2.28)

The wave frequency o, is defined by
o, =— (2.29)

where T is the wave period.

The velocity amplitude V,, is a function of y as

V,, =0, ] (2.30)

wa

11



This equation is used for deep water, (Y, +Y,)/42>0.5. The wave amplitude ¢, is
small in comparison with the wave length 4 and the water depth (yH + yb). The wave

amplitude is defined by

=— 2.31
=7 (2.31)

where H is the wave height. The wave number K is defined in term of the wave length
by

2z
s
According to equation (2.25), the coefficients of equivalent hydrodynamic damping force

k (2.32)

in X and Y direction are
Co =Clp C0s° 6+C
Coy =Cepnsin®0+C

* sin’ @ (2.33a)

eqt

* cos’ 6 (2.33b)

eqt

the coupling coefficients of equivalent hydrodynamic damping force in X—Y plane can
be expressed as
Ciay =(~Cogn +Ciy )sin O cos @ (2.34)

eqxy eqt
the coefficients of equivalent of drag force in X and Yy directions are

C;, =C: cos’0+C; sin®6 (2.35a)
Cp, =—Cp,sin° @ +Cyp, cos’ @ (2.35b)

and the coupling coefficients of drag force in X—Y plane can be expressed as

Cpy1 = —Cpy sindcos” §+Cp, sin® Ocosd (2.36a)
Cpy2 =Cpy sin? 8cosd+CF, sindcos’ 6 (2.36b)

For static analysis, the flow of external fluid is considered as a steady flow. Therefore,

the hydrodynamic forces can be reduced to

F f C: V2
fs = { ans} = { . Hz} (2.37)
Hts CDtsVHts
f = { fHXS} B {CBXSV&XS N ZCI;xylsVHstHys + CI;XyZSVijS}

o fL [ lervE +2Cr VLV, +Ch V2

Dys ™ Hys Dxy2s ¥ Hxs ™ Hys Dxyls © Hxs

(2.38)

Hys
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2.5 Fluid and Pipe Wall Interaction

The hydrostatic pressure due to the external fluid and internal fluid has an influence on
the axial tension inside the riser. The internal fluid flow inside the riser can induce the
instability of marine riser. Consequently, the effect of fluid and pipe wall interaction on
marine riser's behavior has to be carefully investigated. The theoretical concepts of fluid
and pipe wall interaction for analysis of marine riser can be briefly presented in this

section.

2.5.1 Hydrostatic pressure and concept of the apparent tension

Based on the Archimedes’ law and superposition technique [28], the real system of the
riser can be transformed to the apparent system as shown in figure 2.2. By using the
superposition technique, the forces on the real system of the riser in figure 2.2(a) can

be separated into two groups as shown in figures 2.2(b1) and 2.2(b2).

Because the Archimedes’ law can be applied directly only to pressure fields that are
completely closed, the missing pressures are added into both ends of the riser segment
in figure 2.2(c1). In order to balance the missing pressures, the same value of the
missing pressures have to be added into both ends of the riser segment in figure
2.2(c2). As a result in figure 2.2(c1), the pressure fields are closed and Archimedes’ law

is now applicable.

The enclosing external and internal pressure fields induce the buoyancy force w,, and
the internal fluid weight w,. Moreover, these pressure fields also induce the triaxial

stresses which provoke the axial force N.. [23]. Therefore, the pressure fields in figure

tri

2.2(c1) can be replaced by the apparent weight and the axial force N_. as shown in

tri

figure 2.2(d1). In which, the apparent weight that is the net weight per unit length of the

riser can be expressed in three deformation descriptor as
w, =(p,A, — A +PA )Y (2.39)

where PyiPe and p, are the densities of the riser, the external fluid, and the internal

fluid respectively.
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N

tri

=(2v-1)(p.A - PA)
(d1)

N

Balance
the missing press

(e) Total forces of the apparent system

ure

M
Ne:N+pe'%_piA1
(d2)

Figure 2.2 Transformation of the real system into the apparent system
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Based on the theory of elasticity [29], the axial force (N,;) that appears in figure

2.2(d1) can be expressed as
Ny =(2v=1)(p.A - PA) (2.40)

where p, is the external hydrostatic pressure around the riser, and p; is the internal
hydrostatic pressures in the riser. By the addition of the balance forces due to the
missing pressure on the riser segment in figure 2.2(c2), one obtains the effective
tension [28] which is the sum of the true wall tension N and balance forces as shown in

figure 2.2(d2). The expression of the effective tension is

N, =N+p.A - pA (2.41)

Finally, by adding the two groups of forces in figures 2.2(d1) and 2.2(d2), the apparent
system of marine riser can be depicted as figure 2.2(e). Consequently, the apparent

tension (N, ) can be derived as follows.
N,=N,+N, =N+2v(p,A-pA)=EAs (2.42)

2.5.2 Kinematics of the incompressible fluid flow inside the marine riser

The flow inside riser is assumed to be the one dimensional fully developed plug flow.
The flow is also simplified that all points of the internal fluid having a velocity V,
relative to the riser. Consequently, the absolute velocity of internal fluid flow can be
expressed as

Ve =V +Vt (2.43)

~ X2
t=2i+ (2.44)

w
w

Consequently, the velocity of transported fluid can be written in the normal and
tangential coordinates as

Ve = (Ut +V,0)+ Vit = (U, +Vip )T+, (2.45)
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where U,,and Vv, are the components of riser displacement vector in tangential and
normal directions, respectively.

The velocity of transported fluid can also be written in the fixed Cartesian coordinate as

v, = X N Ve | X5 K g (2.46)
ot ot "|oda Oa
Consequently,
_ 0 V., 0 s oA Dr
Vo= =+ —|(Xi+y])=— 2.47
F (ét s’ 80{]( yj> Dt (247)
where R = 2+Vﬂij is the material derivative for the fluid element. Therefore,
Dt (ot s da
— . X' |2 . y' ~
Ve =|:X+VFP ?}I +[y+vFP ?}j (2.48)

In a same manner, the acceleration of the internal fluid [30] is found to be

D(VF) _ D*r

a =
F Dt Dt?

(2.49)

Consequently,

3 = 62 (rP)_i_(Z\S/I':Pja;(Zi)_i_(VFP jz 82 (rP)+ \ﬁ_i_VFPVF’P _VFPS.,_VFZPS" a(?P) (250)
a

Fooat? s' ) 0a? s’ 52 s §® | da
— ~ o — e —_— —
(1) (2) (3) (4) (5) (6)

where term (1) is the acceleration of riser, term (2) is the coriolis acceleration, term (3)
is the centripetal acceleration, term (4) is the local acceleration due to unsteady flow,
term (5) is the convective acceleration due to non-uniform flow, and term (6) is the
relative accelerations due to local coordinate rotation and displacement. The magnitude
of V., is changed depend on the change of axial strain at each states as show in
equation (2.20), therefore V, =V, at the undeformed state, V., =V, at the equilibrium

state, and V, =V, at the displaced state.

According to the differential geometry of plane curve, one obtains following expressions.

B R f! . 07 X” !_Xl " X’ ) '
r'=s’ ,—:/cn,zcz—:y—'sy,—’:sme, L,:cose (2.51 a-e)
S S
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2p ¢ 9(st P
" r - - .

0 r2 = s’ kN +5", 0 = ( ):s’t+s’@-§:s’t+s‘s’xn (2.51 f-g)
o Oacot ot 0s ot

s's"=xX"+yy", =xX"+yYy' (2.51 h-i)

By using equations (2.51), the acceleration of transported fluid at the displaced state

can be written in the normal and tangential coordinates as follows.

a, =[ut +Vi—?+\/'. +Vi—\,/i}f+ U +2V$k+Vik [N (2.52)
S S

With some manipulations, the acceleration of transported fluid at the displaced state can

also be written in the fixed Cartesian coordinate as follows.

12 ' '
aF:{erK%—X,ij’ (ijy}v +( ij,%(%ji,}i
s s S S Dt /s
y Xy Y., (2 y?)., X’ DV, \y'|~
+{y+|:—( S}Sl jX +(?—Z7jy :|Vi _(:ijiz +(E]%}J (2.53)

By eliminating time dependent terms in equations (2.45), (2.48), (2.52), and (2.53), one

obtains the velocity and the acceleration of the transported fluid at equilibrium state in

the normal and tangential coordinates as
_ A V.V! . .
V. =Vt a :(&Jt + (Vi )R, (2.54 a,b)

and in the fixed Cartesian coordinate system as

\7 VISXS | + Vis ys' H 255
an — {{Ks ,ys }VISZ [VISVIS j_f}? +{ |:K5Xs :|V 2 [ IS, is J yr’s } J (2.56)
S Ss S Ss S Ss
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2.6 Variational Model Formulation

The model formulation used in this study is developed by the variational approach.
Theoretically, the strain energy includes those contributions from axial deformation and
bending deformation. The external virtual work of the riser system is composed of the
virtual works done by the effective weight, hydrodynamic loading and inertial forces of
the riser mass and the transported fluid mass. These expressions can be shown briefly

in the following subtopics.

2.6.1 Strain energy due to axial deformation
Based on the total Lagrangian description [23], the strain energy due to axial

deformation of the apparent system of the riser is

% EA g
U =J¢‘ds (2.57)
a o 2

Since the riser is a submerged structure, the effect of pressure fields from external and
internal fluid has to be considered [13,23,28]. Based on theory of elasticity, the total
axial strain ¢ for elastic isotropic riser can be expressed in terms of the true wall

tension N and fluid pressures by equation (2.58).

1

&, :K[N +2v(PAs— PiA,) | (2.58)

p

By rearranging the equation (2.58), the apparent tension can be written again as

N, =N+2v(p,A, - PA,) = EA& (2.59)

By taking the first variation to equation (2.57) and adopting equation (2.59), one obtains

the virtual strain energy due to axial deformation as shown below.

ouU =_|. N L5U’+N Lﬁv’ da (2.60)
a o a S/ a S/
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2.6.2 Strain energy due to bending
According to the total Lagrangian description, the strain energy due to bending can be

expressed as

(2.61)

s 2
Ub:J' M ds
02E Po

Based on the elastica theory of extensible risers/pipes [23], the moment-curvature

relation of the riser system can be written in the following form:
M =El, (1+¢)x (2.62)

By substituting equation (2.62) into Eq. (2.61), one obtains
t1
u, :J.EEI 2(1+&) ds (2.63)
0

The virtual strain energy due to bending is derived by taking a first variation of equation
(2.63) and changing variable dS to be da . The virtual strain energy due to bending
can be written as

sU, = j M 660'd e (2.64)

%o

By substituting equations (2.51) and (2.62) into equation (2.64), one obtains

SU, = I{B—’f(l,]csu"{—&é (ij— Bx%(l,ﬂéu'

a8 s S s?\s
Br ( jév”+[ BK‘Z(y’j+ BK%(i,Hav'}da (2.65)
s\ ¢ S S S

where B =El, (l+5) is the bending rigidity of the riser.
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2.6.3 External virtual work

The external virtual work of the riser is composed of the virtual work done by the
apparent weight, the hydrodynamic forces, and the inertial forces. The expressions of
these virtual works can be expressed in the fixed Cartesian coordinate system as

follows.

The virtual work done by the apparent weight of the riser can be expressed as

oW, = —j w,ovds = —J w,s'ovda (2.66)
0

%o

The virtual work done by hydrodynamic force can be expressed as follows

oW, = T [ f,S'ou+ nys’dv]da (2.67)

%

Based on the Newton’s second law, the inertial force from internal flow velocity is

defined as

F=—|masda (2.68)

The external virtual work done by the inertial forces of the riser and transporting fluid is

SW, = —_[[(mpapX +ma,, )s'su+(ma, + miaFy)s’év}da (2.69)

a

where m, is the mass of riser per unit length, m, is the mass of transported fluid per

unit length, a,,, and a, are the components of the riser acceleration vector (equation

px?
(2.8)), and a,, and a., are the components of the transporting fluid acceleration

vector (equation (2.53)).
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2.6.4 Total virtual work equation

Based on the virtual work principle, the total virtual work-energy of the riser system is
o =(6U, + 06U, )—(OW,, +SW,, + W, ) (2.70)

By substituting equations (2.60), (2.65), (2.66), (2.67), and (2.69) into equation (2.70),

one obtains the total virtual work equation as shown below.

(g sl
+ajo {—%(S )5 ”4{(N sz)%} BK%(%H&V’}da
_J'{s'[ fo =M, 2, —miaFX]éu} da

_I{S'[_Wﬁ Fry =My —maaFy]5V}da (2.71)

For static analysis of marine riser, the time dependent terms in equation (2.71) are

eliminated. Consequently, equation (2.71) can be reduced to

o, :T{Bs_f(s(y—éjau;'+[(N —B.? )(X j B [yfﬂau;}da
a ss ss Ss Ss Ss
T B, v y! s/ (X!
+j{ SZ‘ (sja {(NaS—BSKj)(SS}B S?[Ssﬂ&/ }da

+T—[anyS+ f X, — MYV, ]ﬁusda

+ J _{_ WS, _ X+ fL Yy +maxV.2 }5vsda (2.72)
1+e,

Equation (2.72) is used for calculating the static equilibrium configuration of marine
riser. This equation is suitable for the case of the applied top tension is specified and
the total arc-length of riser is an unknown. The arc-length of the riser depends on the
coordinate of the riser configuration and it can be determined by using equations (2.10)

and (2.14).
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2.6.5 Constraint equation and Modified total virtual work equation

In the case of the total arc-length is specified, the top tension that is sufficient to
maintain the equilibrium of riser is an unknown. The assumed top tension may be
guessed and then adjust the value until the arc-length reaches to the specified value.
However, this method is not efficient for numerical computation. Therefore, a better

technique, which is the Lagrange multiplier method, is used.

According to equation (2.10), the total arc-length of the riser can be calculated as

shown below.

IdS‘H yeHx }da:stotal (2.73)

In the procedure, a Lagrange multiplier is introduced in the constraint condition. When
the value of stretched arc-length (Stotal) is specified, this introduces the constraint

condition which is written as
g=I{ y +X }da—stotal=0 (2.74)

Based on the virtual work principle, the total virtual work of the riser system is equal to
zero when the riser system is in equilibrium. Therefore, equation (2.72) has to be
minimized to zero with the constraint equation (2.74). According to the Lagrange
multiplier technique, the unknown variable A is added to the system and the total

virtual work equation is modified as follows.
or =6r+5(A9) (2.75)

where 67 is the modified total virtual work. After performing variation of the second

term in equation (2.75), one obtains

J S’ S S, Sr2 S’
_x(x) N{(Na 8)( Lo |ov)ea
s \s S S S

{—s’[ frx — Mp8p, —Mag, [SU— s’[—Wa +f,, —mea,, - miaFy}év}da
+j{/{()s(—j Su’ +(y—j 5v’}}da +{H\/x’2 IVE } da-S,, J& -0  (276)

S
a
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3. Finite Element Model

Based on the theoretical formulation in chapter 2, there are several nonlinear terms in
the formulation. Because of this, one cannot evaluate the closed-form solution for
marine riser problems. Therefore, the numerical techniques are required to investigate
this complicate problem. In this study, the finite element method is used to evaluate the

numerical solutions in both static and dynamic problems.

3.1 Finite Element Model for Nonlinear Static Analysis

In general, the riser will vibrate around its static configuration which is commonly
nonlinear. Therefore, the nonlinear static solutions have to be evaluated before

calculating the dynamic properties of the riser.

Because the top end of the riser can slide through the slip joint, the total arc-length of
the riser measured from the seabed to the slip joint may not be known until the
equilibrium configuration is determined. Therefore, the discretization along the arc-length
may not be convenient to set up the boundary condition at the top end. In order to
eliminate this problem, the discretization of the riser element along the sea water level

is applied instead of the total unknown arc-length as shown in Fig. 3.1.

Ya

ysH

I I I I I I I N T N

Figure 3.1The discretization of the riser along the water depth.
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3.1.1The applied top tension is specified
For the case of the applied top tension is specified, the sea water level (ys) is used as
an independent variable (a). Therefore, the virtual work energy of the riser at

equilibrium state can be expressed as

14 175s 7
S

0 S S S

YH "y Yy
o= | 1B g {Nasxs_zssxsx X ]5ug Y, + [ [ fun + fuX - macV? gy,
s/ S 0
(3.1)

wherethe axial tension inside the riser can be determined by

YsH , , W
[ P R | A

Yso S

The large displacement of the riser (xs) is composed of two components. First is the
linear component (X, ), which can be directly calculated by linear interpolation. Second
is the nonlinear component (us), which is approximated by the fifth degree polynomial.

Hence, the large displacement of the riser can be written as shown below.

X, = Xy +Uq (3.3)
0, =[N, ]{d, ) (3.4)

Vanishing of the virtual work-energy functional expressed in equation (3.1) yields the

following system of nonlinear equilibrium equations (572':(672'/ od )5d =0).

HLN"J By, e {Nasxs_ZBszcsx;’xs}
14

SS

si

SN[ fo# fuX =~ pAKY ,S]}dys_o (3.5)

The effect of external moments at top and bottom end is taken into account by the

following natural boundary conditions.

x=0 x=L

MA MB

Ml M

=0 (3.6)
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The essential boundary conditions or geometric boundary conditions are up to the riser
supports. At top end, the riser is held by the slip joint that allows the riser to change its
length when the vessel heaves and moves laterally. At the seabed, the riser is
connected to a ball joint located inside the blowout preventer. Therefore, the boundary

conditions of the riser system are

(at bottom end, y, =0) u,=0,u’=0 (3.7a,b)

(attopend, y, =y, ) u,=0,u’=0,N_, =N, (3.7c-e)

Equation (3.5) is a system of nonlinear equations which requires a computer program to

find the solutions. The followings are the solution steps of the program.

1. Read the input data from the data file.

Assume the initial guessed values of all degrees of freedom.
Calculate the constant parameters.

Label node numbers for all elements.

Form the system of finite element equations by using equations (3.2)-(3.5).

@ g A~ v DN

Assemble the element equations to obtain the finite element model of the global
system.

7. Impose the boundary conditions of the problem, equations (3.6)-(3.7).

8. Solve the finite element model of the global system which is the system of
nonlinear equations. In this study, the subroutine DNEQNF, which is one of the
fortran routines in IMSL math library, is used to solve this system of nonlinear
equations. This routine uses a modified Powell hybrid algorithm and a finite-
difference approximation to the Jacobian[31]. The routine will correct and update
the guessed values of degrees of freedom and repeat steps 5-7 until the
stopping error criterion is satisfied.

9. Save the numerical results in the result files.

In this study, the computer program is written in the Fortran-90 language.
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3.1.2The total arc-length of the riser is specified
For the case of the total arc-length is specified, the Lagrange multiplier technique is

applied. The modified total virtual work equation is

e
0 s Ss ss

[ fin + FuXd —mic Vi | Su,dy,

1"7s "1

aa
H . % su; }dys (yf {(1—85)\/1+—X;2} dy, —Sm]& (3.8)

0

According to the virtual work principle, equation (3.8) is equal to zero for equilibrium

P 5d. + 97 V5120 (3.9)
od. £

position. Therefore,

Since 6d; and J4 are not equal to zero, thus

aﬁ* — yH [N"]T BSKS ! T TasX; BSKSXS S
(TQ)_HTJF[N] o -2 N dy,

S S S

Yy
_j[N]T f +thXs piAsKsViz)dys
0

+T{[N’] (M]}dy =0 (3.10)

0 SS
[‘Zj [j 1-g,)y/1+ Xy, - MJ (3.11)
0

Because equations (3.10) and (3.11) are the system of nonlinear equations, the iterative
procedure is used to obtain the numerical solutions. According to Taylor's series
approximation, equations (3.10) and (3.11) can be approximated by neglecting the

second-order terms as shown below

() NG 0 S\
Om L _Jom L ) O [9m | pq ] O OT L p 0 g (3.12)
od, od, ad; | ad, o4\ ad,
() NG N 0
om | _Jome | ) 0 [0m |l aqm SO [0m L a0 _g (3.13)
Y Y ad; \ o2 A
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where {Ad}n = {di””} —{di"}, AA™ = 29 _ 2™ and n = number of iteration.

Equations (3.12) and (3.13) can be arranged into the matrix form as follows

[[KNL]NXN {Ki}m} {{Adi}}: {—{Ri}} 1
(K0 AA R, '

The integer value N is the number of nodal displacements of the riser system. The
matrix [K,, ]is the assemblage of the matrices {azﬂ;/édiadj} from all elements. The
vector {Kﬂ} represents the assemblage of the element vectors {827[: /616di}. The
vector {Ri} is the element vectors {aﬁ;/édi}. The parameterR, is the value of
&7 /6. The increment vector of nodal displacements {Adi} and the increment value
AA are the unknown to be determined. By adding the increment vector {Adi} to {di}
and adding the value of A1to A, the adjusted values of {di} and A are obtained.
Use these values for computation the next iteration. Repeat this process until it is

terminated when {Adi} and A4 approach zero.

3.2Finite Element Model for Dynamic Analysis
The weak formulation of Equation (2.71) is employed for the dynamic analysis as well.
From o7 =0, hence Equation (2.71) may be decomposed into the following two

nonlinear equilibrium equations.

(e sz s b

o

I{Sé |: fHX _mpsapx _misan]5U}da =0 (3.15a)
J §v"+[(N —Bx )(Zj+ BK%(%H& '}da
Gj{s —w, + f, —m,a, —m.a |ovjda =0 (3.15b)
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For the vibrations with infinitesimal amplitudes, the axial force can be approximated by

S

S

XI ! IVI
Na = EAPs (85 +gd ) ~ Nas + EAPS (%J

(3.16)

By substituting Equations (2.8), (2.25), (2.53), and (3.16) into Equations (3.15a-b)

together with neglecting the higher order terms,eliminating the time-independent terms

and using the relation that

T
N N

IsmV2 y}5uda [ mV25u—} —J'(S—imisvizduj i,da
S s AT S

L S ,
— !
Xr Sr 1% [ SI i
j s;m. V.2 ovda = —SmiSViZcSvL —_[ =mV.>’6v Y da
’ ! / ! !
i S S sl o\s S
o Xu'+yV
§f=r—
S!
X”yI_Xy
SIS

2
| 5 (ys'z)u”—(xs'ys')v"}fu“r (Mo - :sV.s) su'lde

Eﬁf’s [(XQZ)U'JF(X'YQ) ']—Bsf [(Zx y.)u” +(y;2—x;2)v”]}5u’da

b (VY +V2)+Cp, [6u }da

eqxs equs Ms ¥ w

{
(- (
{HSQ :(mps+mi )u+m,sv,s[ X—SJ m, ( Sstv’}&]}da

“ [(mV.V/ m.x. DV, U
+J' Ss’ ( is '|25 IS]U'-F |s'Xs o :|5U}da+|: isVis U 5U:| =0
SS Ss SS a

0

s[CuC V+C

(3.17a)

(3.17b)

(3.17¢)

(3.17d)

(3.17e)

(3.17f)

(3.18a)
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_ 2
J s,B_S _(xs'ys')U"+(XS'2)V"}5v”+ (Na =MV )V 5l

Ty - X2 (2 yg)v”]}civ’da

s[Cvac +C!

eqys equs Dxyls

% i 12
+J {sg _(mps +m )V — m.sV.s[ ;ys]u +m|sVIS[S Z} Jw}a"vda

2
x4 ’ 2y, %
+I S; mISVIZSVIS V' + M Y Dvid ovida + m'sv—'své‘v =0 (3.18b)
s s, Dt s,

(2vV, +V; )]5v}da

S
(]

The solution form of the Equation (3.18a-b) can be obtained by separation of variables.

Therefore, the displacement vector is assumed as
T
i ={u, v :I:N(ys)]{dnd(t)} (3.19)
In Equation (3.19), the nodal degree of freedoms {dnd} is function of time only, i.e.

v, Vo vy} (3.20)

[N] { (3.21)
0 O 0 NSl N52 N53 0 O 0 N54 N55 N56

Note that, N, are the coefficients of the fifth order polynomial shape functions.
Based on the virtual displacements, o7 =0, Equations (3.18a-b) can be decomposed

into two equations of motion for riser elements. These equations can be rearranged into

the matrix form as

[ J{@haf + ([ [ D) {ua} [k Jeus} = {77} (3.22)
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where the element mass matrix is

10
12><12_J.{ 2.2 5 mps+m +C, )|:0 1}[N]2x12}dys

The element hydrodynamic damping is

e 0 T ' C: Xs Ce* Xys
[C :‘12><12 - I{[N]lzxz Ss {C*q Cfj ’ :I[N]mz}dys

0 eqxys eqys

The element hydrodynamic damping is

' '

, XX

Y T S!Z S!

e _ s s '
I:g ]12><12 - .[ [N]12><2 misvis XI 1 [ ]2><12 ys
0 s —
i 12
SS SS

The element stiffness matrix is

(K Lo =Lk [k o ki ]+ [ G

In which the bending stiffness matrix of fourth order derivative is

e
Koy 12><12 - J. { 1252 o

The bending stiffness matrix of third order derivative is

2x! 1-x?
b2 a2 .[{ IZXZ ’45 L 5'2 2 S’ }[N"]lez}dys
sg |1-x" -2
The axial stiffness matrix of the second order derivative is

CINE LSS ]
f

T EAy, X ey
{ 122 13 { x 1 }[N ]2x12}dys

(3.23)

(3.24)

(3.25)

(3.26)

(3.27a)

(3.27b)

(3.28a)
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The axial stiffness matrix of the first order derivative is

H mlSV|SV|S l 0
I:ktz 22 .[ { szz ( SrZ |:O 1:D[N]2X12 } dy, (3.28b)
0

The element hydrodynamic excitation vector is

{fe}=I[N]IMsg o st 5 o
i CDXVIS(ZVV V) s:sTtld

S

By assembling the element equations of motion, one obtains the equations of motion for

entire riser as

[M]{B,a}+([C° ]+ [G]){Dns} +[K]{Drs} = {F} (3.30)

The global nodal displacement {Dnd}, velocity {Dnd}, and {Dnd} vectors can be

obtained by assembling the element nodal displacement, therefore

CREDWCMNLRES EMNTHES M EECETeS

In the same manner, the total mass matrix is

[M]=Y [m] (3.32a)

[c]=> [c] (3.32b)

the total gyroscopic matrix is

nelem

[G]= le [o°] (3.32c)
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the total stiffness matrix is

nelem

[K]=>" [k] (3.32d)

i=1

and the total hydrodynamic excitation vector is

(Fl= Z {f} (3.32¢)

Note that, “nelem” is the abbreviation for the number of finite element.

Equation (3.30) is the system of nonlinear equation of motion for two-dimensional
marine riser system. The nonlinearity of the system is still occurred by the
hydrodynamic damping forces although the amplitude of the vibration is assumed to be

small. In order to solve this equation, the identity {Dnd} = {Dnd} has to be added into

the system of Equation (3.30). Therefore, the system of nonlinear equations of motion of

marine riser can be rearranged into matrix form

o mllor e crllonf =t
.. + . = (3.33)
0 M||D,, K C+G||Dy F
Equations (3.33) can be cast it the state form [32] as
(X} =[A]{ X} +[D]{F} =[A]{X,q} +{B} (3.34)

. T
where {X .}, = {Dnd Dnd} is the 2n — dimensional state vector, and

Al= 0 ! Bi= 0 3.35a,b
[ ]_ -M_lK -M-l(C+G) 2nx2n’ { }_ M_lF 2nx1 ( e )

are the 2nx2n real nonsymmetric coefficient matrix and the 2nx1 deterministic input
matrix respectively. It has to note that n is total degree of freedoms of the riser system

and [b] :[0 M'1]T.

2nxn
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The state equation (3.34) is used for the natural frequency analysis and for the

nonlinear vibration analysis. In this study, the natural frequency analysis is presented in

next section.

3.3Natural Frequency Analysis of Marine Riser
For natural frequency analysis of marine riser, the damping matrix [C]
hydrodynamic excitation vector {F} are neglected. Consequently, Equation

reduced to the free vibration equations in the standard state form
{Xnd} =[Al{ X}

and the 2nx2n real nonsymmetric coefficient matrix is reduced to

[A] |0 I
B -M-lK -M-le 2nx2n

The solution of Equation (3.36) has the exponential form

{Xnd} = eﬂt {xna}

The parameter A is the complex eigenvalues of Equation (3.38), i.e.
A=atiw

where @ is the frequency of the riser system and {Xna} is a constant 2n
vector. Inserting Equation (3.38) into Equation (3.36) and dividing though by

obtain the general algebraic eigenvalue problem as follow.

[Al{Xna} = 2{Xa}
The boundary conditions are imposed as follows

(i) At bottom end, y, =0.
Uy =v, =0, uy=vy=0
(iAttop end, y, =Y, .

_ _ r __ " __
Ug =V, =0, uj=vy=0

and the
(3.33) is

(3.36)

(3.37)

(3.38)

(3.39)

complex

e™ . one

(3.40)

(3.41a-b)

(3.42¢-d)
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In this study, the computer program for the eigenvalues and eigenvectors calculation is

written though the following steps.

1.

By using static solutions, one can evaluate the element mass matrix (Equation
(3.23)), the element gyroscopic matrix (Equation (2.24)), and the element
stiffness matrix (Equation (2.27)).

Assemble the element matrix from step 1 to obtain the global mass matrix, the
global gyroscopic matrix, and the global stiffness matrix (Equation (3.32a,c,d)).
Impose the boundary conditions of the problem (Equation (3.41)).

Form the coefficient matrix of Equation (3.37).

Solve the eigenvalue problem of Equation (3.40). In this study, the subroutine
DEVCRG, which is one of the fortran routine in IMSL math library, is used to
compute the eigenvalues and eigenvectors of real nonsymmetric matrix. This
routine uses the implicit double-shiffed QR algorithm [33] based on the
EISPACK routine HQR2 [34] to compute the eigenvalues and the eigenvectors.

Save the numerical results in the result files.
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4. Results and Discussions

4.1 Verification of Numerical Results

In order to validate the numerical results of this study, the special test cases of the two-

dimensional extensible marine riser transporting fluid [14, 35] have been presented. The

parameters used in this example are shown in Table 4.1. In Table 1, the natural

frequencies of the rigid production riser are shown and are compared with the analytical

solutions and the numerical solutions that were reported by Moe and Chucheepsakul

[14], and Monprapussorn et al. [35], respectively. The results from Table 4.1 indicate

that the numerical results obtained from this study are in good agreement with the

previous reports.

Table 4.1 Input parameters and the in-plane fundamental natural frequencies of the

rigid production riser transporting fluid with various speeds of internal flow

Input parameters used for the rigid production riser transporting fluid

1. Riser top tension (N,,) 476,200 N
2. Water depth (y,) 300 m
3. Excursion of the vessel in x direction (x,) Om

4. Excursion of the vessel in z direction (z,) om

5. Outside diameter (D,,) 0.26 m
6. Inside diameter (D,,) 0.20m
7. Density of riser (p,) 7850 kg/m’
8. Density of sea water (p,) 1025 kg/m®
9. Density of mud () 998 kg/m®
10. Young's modulus (E) 2.07x10™ N/m?
11. Poisson’s ratio (v) 0.50
12. Current velocity at mean sea level (v,,) 0 m/sec
13. Angle between current direction and x-direction 0°

14. Normal drag coefficient (c,,) 0.70
15. Tangential drag coefficient (c,,) 0.03
16. Added mass coefficient (c,) 1.00

Numerical results

Internal The in-plane fundamental natural frequencies of production riser (rad/sec)
flow Moe and Chucheepsakul Monprapussorn et al. This study
velocity (1988) (2007) (20 elements)
(V) (IAEBR) (EA) (3-D,EA)
(misec) | Analytical solution | Numerical EBR IBR EBR IBR
0 0.2878 0.2890 0.2891 0.3001 0.2892 0.2988
5 - - 0.2881 0.2994 0.2883 0.2980
10 0.2838 0.2853 0.2853 0.2972 0.2854 0.2957
15 - - 0.2804 0.2934 0.2805 0.2917
20 0.2706 0.2730 0.2731 0.2880 0.2732 0.2860
25 - - 0.2627 0.2809 0.2629 0.2783
30 0.2413 0.2478 0.2478 0.2717 0.2481 0.2684
35 - - 0.2224 0.2603 0.2230 0.2559

Note:

IA = Inextensible Analysis, EA = Extensible Analysis,

3-D = 3-D Analysis, EBR = Excluding Bending Rigidity, IBR = Including Bending Rigidity.
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4.2 Effect of Internal Flow Velocity on Maximum Displacement and

Maximum Bending Moment of Marine Riser

According to the validation of previous examples, the authors are confident that the
model formulation developed herein is applicable and give the sufficient accuracy of the
numerical results. In this subsection, the input parameters in Table 4.2 are used. The
applied top tension is kept to a constant value of 2,000 kN. The offset of the vessel is
equal to 540 m (30% of the sea depth). In general operation, the internal flow velocity in
a riser is usually less than 10 m/sec, however, the velocity of greater than this value is
used in numerical example as for demonstration purpose. The fluid is pumping up with
the consecutive positive internal flow velocities (flow up) from 0 m/s to 65 m/sec. The
case of the riser is subjected to negative internal flow velocities (flow down), which may

occurr in the drilling riser, are also considered.

Table 4.2 Input parameters for analysis of the marine water riser transporting fluid

Input parameters used for analysis of the marine riser transporting fluid
1. Riser top tension (N,,) 2,000-10,000 kN
2. Water depth (y,) 1,800 m

3. Offset of the vessel (%x,) 30%

4. Outside diameter (D, ) 0.25m

5. Inside diameter (D,,) 021 m

6. Density of riser (p,) 7850 kg/m®

7. Density of sea water (p,) 1025 kg/m®
8. Density of mud (p,) 998 kg/m®

9. Young's modulus (E) 2.07x10" N/m?
10. Poisson’s ratio (v) 0.30

11. Internal flow velocity (v,) 0-65 m/sec
12. Current velocity at mean sea level (v,,) 0.0 m/sec
13. Angle between current direction and x-axis 0°

14. Normal drag coefficient (c,,) 1.00

15. Tangential drag coefficient (c,,) 0.05

16. Added mass coefficient (c,) 1.00

Numerical results in Table 4.3 show maximum displacements, maximum moments and
their positions form seabed. The results indicate that the maximum displacement

increases as the internal flow velocity increases. Moreover, the increase in velocity of
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transporting fluid changes the position of the maximum displacement down to the

seabed.

The increase in velocity of transporting fluid increases the maximum bending moment
until the velocity reaches 60 m/s. Beyond this velocity the maximum bending moment
no longer increases, but decreases, however the maximum displacement continuously

increases and the riser tends to have a divergence instability.

Table 4.3 Maximum displacements and maximum bending moments of the marine

riser with 30% offset

Maximum y Maximum y
displacement @— Moment @—
(m) YH (N-m) Y

V.= 0m/s 150.00 0.31 | 50987.91 | 0.01
V.= 5mls 150.24 0.31 | 51213.73 | 0.01
V, =10 m/s 150.96 0.31 | 51902.48 | 0.01
V, =15 m/s 152.19 0.30 | 53089.55 | 0.01
V, =20 m/s 153.98 0.30 | 54839.83 | 0.01
V, =25 m/s 156.37 0.30 | 57258.90 | 0.01
V, =30 m/s 159.45 0.30 | 60516.14 | 0.01
Vi, =35m/s 163.42 0.29 | 64897.63 | 0.01
V, =40 m/s 168.45 0.28 | 70953.51 | 0.01
V, =45m/s 174.96 0.27 | 80037.28 | 0.01
V, =50 m/s 183.72 0.26 | 96943.84 | 0.01
V,, =55 m/s 196.54 0.25 |143487.92| 0.01
V., =60 m/s 221.63 021 [273943.80| 0.01
V,, =65 m/s 241.86 0.19 |[231910.60| 0.01

The effects of the negative flow velocity (flow down) on maximum displacement and
maximum bending moment are illustrated in figure 4.1 and figure 4.2 respectively.
These figures indicate that the negative flow velocity affects the nonlinear static
behavior of the marine riser as same as the positive flow velocity does. This result can

be explained as follows.

If the internal flow velocity has the opposite direction to the tangent of the centerline of

the riser, the absolute velocity of the riser can be expressed as
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— — ~ Dr
VF = Vp _VFPt :E (41)
o s oa

derivation, yields

—j is the material derivative for the fluid element. By direct

a, = = (4.2)

be

A _ o (rP ) _ 2VFP o° (rP) VFP i o° (rP) _VFP VFPVFIP VFPS.’ _VFZPS” a(?F’)
aF - 2 ' + ' 2 + ' + 12 + 12 13
ot ) S oaot \ S oo S S S S oo
(1) 2) (3) (4) (5) (6) )

(4.3)

By comparison with equation (2.50), there are three terms having a negative sign
namely terms (2), (4), and (6). At equilibrium state, the transported fluid has a steady
flow along the tangential line of the riser. Therefore, the time-dependent terms are
eliminated from equation (4.3). Consequently, the acceleration of the transported fluid is
combined with only the centripetal acceleration (term 3) and the convective acceleration

due to non-uniform flow (term 5). One obtains

S( 66(2 S'Z 80{ is s s S S

2 A2 (= —
~ V. o (T, V.V.! O(T, n V.V ).
ar, :(ij ( F’)+ Al P)=(V2K )n +[—'S,'5]t (4.4)
S
Equation (4.4) is identical to equation (2.54 b). As a result of this agreement, the
direction of the internal flow velocity has no effect on the nonlinear static behavior of the
marine riser but the increase in the absolute value of the internal flow velocity induces

the large displacement and reduces riser stability.

Moreover, the author also found that the fluid transportation has an insignificant effect
on axial strain, true-wall tension, and the apparent tension. The maximum value of the
internal flow velocity for this example is 65 m/s. If the internal flow velocity is larger than
65 m/s, the riser will buckle and collapse.
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4.3 The Couple Effect of Internal Flow Velocity and Axial Extensibility on

Maximum Displacement of Marine Riser

In this section, the couple effect of axial extensibility and internal flow on maximum
displacement of marine riser is presented. The data in Table 4.4 is utilized for this
example. In case of extensible riser, the flexural rigidity is small as compared with the
applied top tension. Therefore, the applied top tension (NaH )is used as the basis for
the parametric normalization. The following dimensionless parameters are introduced in

order to comprehend the effect of axial extensibility.

A EA A ! . R R
Eirv = —= ) Vio :Vio Mo , =0l My » Y = £, U :£ (4.5 a-e)
NaH NaH NaH L L

~

The parameter E;, is recognized as the lIrvine’s first parameter [36] in cable

w, L
NaH

mechanics. It is utilized to describe the effect of riser's extensibility. The high value of

~

E,, implied the low extensibility, but the low value of Eirvimplied the high extensibility
condition of the riser. The parameter \7io denotes the effect of the mean flow velocity of
transported fluid. The parameter @ is the nondimensional form of the natural frequency
(a)) of the riser. The parameter S/s represents the position of maximum displacement

from sea bed. The parameter U, is the nondimensional form of the lateral displacement

of the riser where the span length L= /X7 +V/, .

The combination effect of axial extensibility and internal flow on the maximum
displacement of extensible marine riser is shown in figures 4.3 and 4.4. It is evident that
the internal flow of transported fluid increases the lateral displacements. The internal
flow induces a tangential loading, which destabilizes the riser system. Consequently, the
divergent instability could be occurred when speed of internal flow reaches the value of

A

V, =0.3246 as shown in figure 4.4.

Figure 4.3 and 4.4 also shows that an increase in axial extensibility, by reducing Eirv

from 286.50 to 28.65, enlarges the lateral displacements due to the reduction of

bending stiffness. However, the turning point occurs when E,, is reduced passing
10.00 to 1.81. In this range, the increase in axial extensibility reduces the lateral

displacements.
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Table 4.4 The input data utilized for study the effect of axial extensibility and internal

flow on maximum displacement of marine riser.

Parameters Value
Offset of the vessel (x,) 70m
Water depth (y,,) 300 m
Normal drag coefficient (c,,) 0.70
Tangential drag coefficient (c,,) 0.03
Added mass coefficient (c,) 1.00
Current velocity at mean sea level (v,,) 0.20 m/s
Elastic modulus (E) 2.07x10" N/m?
Outside diameter (p,,) 0.26 m
Inside diameter (p,,,) 0.20m
Density of pipes/risers (p,) 7850 kg/m®
Density of sea water (p,) 1025 kg/m®
Density of internal fluid (p,) 998 kg/m®

U
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Figure 4.3 Effect of axial extensibility and internal flow on maximum displacement ()

of extensible marine risers and their positions from sea bed
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Figure 4.4 Effects of axial extensibility and internal flow on static configurations of

marine risers

The transition behavior is occurred due to the variation of the structural stiffness
domination from the bending stiffness domination to the pretensioned stiffness (Figure
4.3). The structural stiffness of the low extensible riser is governed by the bending strain

energy, and the riser behaves like a tensioned beam.

On the contrary, when the condition of high extensibility such as éiw =1.81 is applied,

the riser received high axial tension and the axial strain become large. In this case, the
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axial strain energy or the pretensioned stiffness becomes the main stiffness of riser as

well as the tensioned cable. For a moderate extensibility riser (10.00S E < 28.65),

v —
the riser has large amount of both axial strain energy and bending strain energy.
Consequently, the riser is under the coupled axial-bending stiffness domination and the
transition of tensioned beam behavior to tensioned cable behavior is occurred in this

state.

Form the above discussions, it can be found that the effect of axial extensibility of the
riser induces the lateral displacements when the bending stiffness controls. However,
the effect of axial extensibility of the riser reduces the lateral displacements when the

pretensioned stiffness controls.

4.4 Effect of Internal Flow Velocity on Dynamic Properties of Marine Riser
In this section, the properties of the deep water riser in Table 4.5 are used to show the
effect of internal flow velocity on dynamic properties of marine riser in different static
offsets. It is observed that the internal flow velocity induces the tangential load which
has the effect on the natural frequencies and the corresponding mode shapes of the

marine riser.

Table 4.5 The input data utilized for study the effect of internal flow velocity on dynamic

properties of marine riser.

Parameters Value
1. Riser top tension 340 kN
2. Water depth 300 m
3. Offset of the vessel 0%-20%
4. Outside diameter 0.25m
5. Inside diameter 0.21m
6. Density of riser 7850 kg/m’
7. Density of sea water 1025 kg/m®
8. Density of mud 998 kg/m°
9. Young's modulus 2.07x10™ N/m?
10. Poisson’s ratio 0.30
11. Internal flow velocity 0-20 m/sec
12. Current velocity at mean sea level 1.0 m/sec
13. Angle between current direction and x-axis 0°
14. Normal drag coefficient 1.00
15. Tangential friction coefficient 0.05
16. Added mass coefficient 1.00

43



1.38

1.36

1.34

1.32

1.301

1.284

natural frequencies (rad/sec)

1.264

1.244

1.22

y4 offset 0%
A Offset 10%
Yy

P
Equilit

) Offset 20%

N
" Equilibrium

Offset 0%
Offset 5%

Offset 10%

Offset 15%

0.96

0.94

0.92

0.90

0.884

natural frequencies (rad/sec)

rd ) )
The 3" mode of the In-plane oscillation I
N Offset 0% Offset 10%
! Offset 20%
/# Equilibrium Equil
- Jlibrium
.
Offset 0%
Offset 5%

Offset 10%

0.867 Offset 15%
0.84-| _—
The 2™ mode of the In-plane oscillation Offset 20%
0.82
"\ Offset 0% ,,Offset 10%
A
0.60 | Offset 20%
Eqilibrium ’.‘ N
-~~~ \7 Y i
[&] / Eqlilibrium |
D o058 N
— ‘
S
S
~— 0.56
[72]
2
e 0549
I Offset 0%
=
0,
D 0521 Offset 5%
h Offset 10%
S
S 0.50 Offset 15%
=
g
Offset 20%

0.48+

The 1° mode of the In-plane oscillation

T T T T T T T T T T >

2 4 6 8 10 12 14 16 18 20 22

V,(m/sec)

Figure 4.5 The effect of fluid transportation rate on in-plane natural frequencies and

mode shapes of the three-dimensional riser in various offsets
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The effect of internal flow velocity on in-plane natural frequencies of marine riser is
illustrated in figure 4.5. Figure 4.5 shows that the increase in velocity of internal fluid
reduces the in-plane natural frequencies of marine riser. If the internal flow velocity is
increased continuously, the natural frequencies will be closed to zero. The internal flow
velocity that induces the zero value of natural frequencies is called as the critical
velocity. However, the critical velocity of fluid transportation is generally higher than 20

m/s which is out of the practical range.

The mode shapes of in-plane oscillation are also illustrated in figure 4.5. This figure
shows that the velocity of internal fluid in the range of 0 to 20 m/s has an insignificant
effect on the mode shapes of in-plane oscillation. However, the shapes of in-plane
oscillation could change the number of curvature if the internal flow speed is

continuously increased and reach the critical value [31].
Figure 4.5 indicates that the increase in percent of static offset reduces the in-plane

natural frequencies of marine riser. The mode shapes of in-plane oscillation are slightly

different when the percent of static offset is increased.
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5. Conclusions

This report presents the effect of interaction between internal fluid and pipe wall on
large displacement and dynamic properties of marine riser. The kinematics of marine
riser and internal fluid are thoroughly addressed. The acceleration of the internal fluid
are derived in terms of the riser displacement and internal flow speed. The model
formulation of extensible marine riser is developed by the variational approach based on
the extensible elastica theory and the work-energy principle. The outstanding feature of
the model formulation presented in this report is the use of independent variable a to
provide the flexibility in the choice of parameters defining elastic curves. Therefore, the
formulation allows users to select independent variable that is suitable for their

applications.

The finite element method is used to obtain the numerical solutions. The effect of
internal flow on maximum displacement is investigated. It is observed that the maximum
displacement increases as the internal flow velocity increases. Moreover, the increase in
velocity of transporting fluid changes the position of the maximum displacement down to

the seabed.

The increase in velocity of transporting fluid increases the maximum bending moment
until the velocity reaches a value which gives a peak value of maximum bending
moment. Beyond this velocity the maximum bending moment no longer increases, but
decreases, however the maximum displacement continuously increases and the riser
tends to have a divergence instability. The direction of the internal flow velocity has no
effect on the nonlinear static behavior of the marine riser but the increase in the
absolute value of the internal flow velocity induces the large displacement and reduces
riser stability. The internal flow velocity has an insignificant effect on axial strain, true-

wall tension, and the apparent tension.

The couple effect of axial extensibility and internal flow on maximum displacement and
dynamic properties of extensible marine riser is also investigated. The results indicate
that the strength of low extensibility riser is dominated by bending stiffness of marine
riser. Consequently, the axial extensibility reduces the stability of the riser system. On

the contrary, the strength of the high extensibility riser is dominated by the pretensioned
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stiffness. Therefore, the high extensibility riser performs the tensioned cable behavior,
on which the axial extensibility increases the stability of the riser system. For the riser

with moderate extensibility, the riser is in the transition state.

The influence of internal flow on dynamic properties of three-dimensional extensible
marine riser is also presented. It is observed that the fluid transportation induces the
tangential force which has the effect on the natural frequencies of the riser. The fluid
transportation reduces the natural frequencies and the structural stability of the marine
riser. The shapes of in-plane oscillations could change the number of curvature when
the internal flow velocity reaches the critical values. The effect of the internal flow can

be reduced by increasing the axial deformation.
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are provided to demonstrate interesting effects of fluid transportation and axial deformation on large
displacements and dynamic properties of the three-dimensional extensible marine riser.
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1. Introduction

The marine riser is a flexible pipe that links the floating drilling/
production platform and the seabed. It is a very important structural
component used in offshore engineering operations. Over the past
several years, the analysis of marine riser has received considerable
attention. During the years 1960-1979, the model formulation of
marine riser was introduced with the simplified small deflection
model in the planar coordinate. Examples of this model can be found
in several works such as NESCO (1965), Fischer and Ludwig (1966),
Gosse and Barksdale (1969), Morgan (1972), Burke (1974), Young
et al. (1978), Kirk et al. (1979), and Daring and Huang (1979).

From 1980 to present, the model formulations have been
developed continually for the large displacement and nonlinear
dynamic analysis. Researchers have begun to focus on the three-
dimensional model formulations that can be used in deep ocean
operations. Felippa and Chung (1981) presented the nonlinear
static analysis of deep ocean mining pipe or riser suspended from
moving vessels with free end at the bottom. Bernitsas (1982)
developed a three-dimensional model formulation for large dis-
placement analysis of marine riser. According to this formulation,
the numerical solutions for static and dynamic analysis of three-
dimensional marine riser were presented by Bernitsas et al. (1985),
Kokarakis and Bernitsas (1987), and Bernitsas and Kokarakis
(1988). A variational model formulation for three-dimensional
analysis of inextensible marine riser was introduced by Huang and
Kang (1991). Chai et al. (2002) presented a three-dimensional
lump-mass formulation for static and dynamic analysis of a

* Corresponding author. Tel.: +66 2 470 9146; fax: +66 2 427 9063.
E-mail address: somchai.chu@kmutt.ac.th (S. Chucheepsakul).

0029-8018/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.oceaneng.2010.12.012

catenary riser. A rather general model formulation for three
dimensional analysis of flexible riser using an absolute coordinate
was presented by Chai and Varyani (2006).

A large strain formulation of two-dimensional marine riser
using two different coordinate systems, namely, Cartesian and
Natural coordinates, was presented by Chucheepsakul et al. (2003).
The large axial strain can be considered based on three different
definitions (total Lagrangian, updated Lagrangian, and Eulerian).
Their model formulation can be applied not only for large strain
analysis of flexible marine riser, but also for any kind of highly
flexible structures such as flexible pipe, marine cable, elastic rod,
elastic column, and elastic beam. Monprapussorn et al. (2007) used
this formulation to investigate the effect of internal pulsating flow
on static and dynamic behaviors of the extensible marine riser.
Athisakul and Chucheepsakul (2008) used this formulation for
analysis of variable-arc-length beam. Although there are many
excellent works that deal with the model formulation of marine
riser, the general model formulation that can be applied for large
deformation analysis of three-dimensional extensible marine riser
is rarely found.

The main purpose of this study is to present a variational model
formulation of three-dimensional extensible marine riser trans-
porting fluid. The strain energy due to large axial deformation,
bending and twisting are taken into account. A generalized
independent variable o is introduced to the model formulation
for the sake of generality. The following assumptions are used to
stipulate the present formulation:

1. The material of the marine riser is linearly elastic.
2. At the undeformed state, the marine riser is straight, and has no
residual stresses.


www.elsevier.com/locate/oceaneng
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3. The riser’s cross sections remain circular after the change of
cross-sectional size due to the effect of axial deformation.

4. The longitudinal strain is large, while the effect of the shear
strain is small and can be neglected.

5. Every cross-section remains plane perpendicular to the axis.

6. Radial lines of the sections remain straight.

The numerical examples of the special problems such as a
catenary cable, three-dimensional cable, and vertical riser are
considered. The effects of axial extensibility and internal flow on
large displacement and dynamic properties of three-dimensional
extensible marine riser are also presented in this paper.

2. Model formulation
2.1. Kinematics and deformation
Globally, the riser’s behavior may follow elementary beam or

rod theories, while locally, it can be considered as a cylindrical
shell. However, the length of the riser is very large as compared to

its cross-sectional diameter. Therefore, the riser is usually modeled
as a three-dimensional rod rather than three-dimensional shell and
the centroidal line of the riser is used to represent the overall riser
configurations in both static and dynamic states.

The centroidal line of the riser can be described by three
orthogonal coordinate systems. The fixed Cartesian coordinate
system x, y, z with unit vectors f,j,fc is used as a global coordinate.
The orthogonal coordinate system {,7,b and the cross-sectional
principal axes system X1, X5, X3 with unit vectors é,,é,,é3 are used as
the local coordinate.

The three states of the marine riser configurations are illustrated
by Fig. 1. The first configuration of the riser is the undeformed
configuration, which is an ideal configuration. This configuration
can be defined by the position vector r, as shown below:

To(00) = Xo(0)i + Yo ()] +Zo(a0)k 1

The parameter o, which is a scalar parameter, is used to define
the curve of riser's centroidal line. This parameter is employed
in the formulation for the sake of generality. Therefore, the para-
meter o can be represented any convenient coordinates such as
X0 X5 XY o0V Y ZorZsZ:S0,Ss,S Used to define the centroidal curve.

Fig. 1. Three configurations of a three-dimensional marine riser.



C. Athisakul et al. / Ocean Engineering 38 (2011) 609-620 611

The second configuration is the equilibrium configuration. At
this configuration, the riser is subjected to the time independent
loads such as the apparent weight, quasi-static load from the steady
current, and load due to the internal fluid flow. The position vector
of the point on the centroidal line of marine riser at equilibrium
state is

T5(0) = Fo(0) + Us(20) = Xs ()i +Y5(00)] + Zs(e0)k )
The vector ug(c) is a displacement vector of a point on the

equilibrium configuration measured with respect to the unde-
formed configuration

U (00) = U (00)i 4 Vs(o0)f +Ws(2)k 3)

If the riser at the equilibrium state is disturbed from wave and
unsteady flows of the transporting fluid, the riser will change its
position from equilibrium to displaced configuration. As shown in
Fig. 1, atany time t, the total displacement vector u (a,t) of the point
on the centroidal line of marine riser at the displaced state can be
expressed as

U (00,1) = Us(00) + Ug (0L, ) = (0L, )i+ V(oL )+ w(at, bk (4)
The vector uy(o,t) is a displacement vector of the point on the

displaced configuration measured with respect to the equilibrium

configuration and it is defined as

Uy (0, 1) = Ug(0t, B+ Va(o, b)) + wy(et, )k (5)
Therefore, the position vector for the displaced configuration

can be expressed by the following equations:

©(04,0) = 15(00) + Ug(0,) = (Xs + Ua)i + (Vs + Vo) +(Zs + W)k 6)

Based on the differential geometry, the differential arc-length
for the undeformed state (s,), the equilibrium state (ss), and the
displaced state (s) can be expressed by the following equations:

6 = \/X& +y& +2 7

5i = X2y 2422 =\ U (v U0+ (2 + W) ®)

o= \/x,z Y422 = \/(x(’,+u’)2+(y;,+v’)2+(zg,+w’)2 ©)

The curvature (x) and torsion (71) of the centroidal line of the
three-dimensional riser can be expressed as

do 1 274 2 wa /112 17t )
rczﬁzsj\/(xy—xy) +y'Z-yz')y +(X'2—Xx'2") (10)
dd) xf(y//z/// _y///Z//)_y/(x//Z///_X///Z//) +Z/(X//y/// _X///y//)
U=y = w2 o2 w2 an
S (X/y _xy//) +(y//z _y Z//) +(X//Z —X Z//)

where the infinitesimal angles d0 and d¢ are the angles between
successive tangents and successive binormals, respectively. The
superscript (') denotes the partial derivative with respect to
parameter o.

The orientation of the riser cross-section is defined by an angle
Y(s,t), which is the angle between the principal axis of the cross-
section (é;) and the principal normal of the centroidal curve (1) (see
Fig. 2). According to the assumption that the riser cross-section
remains plane and perpendicular to the axis of the riser, the
rotations of the riser cross-section around both principal axes
are sufficiently small and can be neglected. Thus, the rotation
vector of the riser’s cross-section can be defined as

U =yt = W@ +gt)t (12)
It has to be noted that the torsion of the riser is composed of the
torsion of the centerline curve (7;) and the rate of change of the

twisting angle (dy/ds). Therefore, the torsion of the riser can be
expressed as

d
r=r+ (13)

The velocity \7p(oc,t) and acceleration Sp(oc,t) of the riser can be
derived by differentiating Eq. (4) with respect to time (t). Therefore

V) = (0, 8) = Ug(0, )l +V4(0t, )] + W(ot, D)k (14)
a, = I(0,t) = il g0, )i+ V (00, )] + W (o, )k (15)

The angular velocity and angular acceleration can be expressed
as follows:

U =0t =40t (16)

U=y (bt =gt 7
The notation (-) denotes the partial derivative with respect to
time (t).

According to the updated Lagrangian description, the total,
static, and dynamic axial strains can be defined as follows:

Total strain : & = s ;S" =/ 14204—+/1-20; (18a)
S
, , S5—So So
Static strain : & = 7 = 175—, =1—+/1-2v; (18b)
S S
. . §'—Sg s
Dynamic strain : &5 = o = s—,—l =/14+2v4—1 (18¢)
S S

The updated Green strains (vs,v4) in each state in Eqs. (18) can be
derived in the terms of displacements of the riser as follows:

1 ) urZ er W’Z
uszE<x5u§+y§v§+z§w§—75—75—75 (19a)
1 u/Z v/2 W/Z
V= —y <x;ug +Yivy+Ziwg + zd + 7‘1 + Td (19b)
SS

2.2. Apparent weight and apparent tension

According to Chucheepsakul et al. (2003), the apparent weight
(W,) and the apparent tension (N,;) can be expressed as

W = (ppApS_peAes +0iAis)g (20)

Ng = Ne+Nyi = N+2V(peAes—pifis) = EApser 21

in which pp, pe, p; are densities of riser, external fluid, and internal
fluid, respectively, A, is the cross-sectional area of the riser, Aes, Ais
are the outside and inside cross-sectional areas of the riser,
respectively, p., p; are the external and internal pressures, respec-
tively, and v is Poisson’s ratio. The axial tension N is a true wall
tension of the riser.

2.3. Hydrodynamic forces due to current and wave

For slender structure such as marine riser, the hydrodynamic
forces due to current and wave can be computed by the following
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expression:

B fu 7CoeYe| Vel Ve

Fu={ fun §=05p,De{ ConVn|Vnl +PeAeCal Tn
ben CDbnybn ‘ybn ‘ ‘j}bn

Viscous drag force Hydrodynamic

mass force

Ve
+PeAeq Vi (22)
Van
U ————

Froude-Krylov

force

The coefficients Cp, Cpn, Cppn, and C, represent the tangential
friction, normal drag, binormal drag, and the added mass coeffi-
cients, respectively. The variables Vy, Vi, and Vyy, are the tangen-
tial, normal, and binormal velocities of currents and waves,
respectively. The relative velocities ), = Vy—1¢, y,, = Vun—Vn, and
Ybn = Vupn—Wp, represent the velocities of currents and waves
related to the riser velocity in tangential (u¢), normal (v,), and
binormal (W) directions, respectively.

2.4. Hydrodynamic forces due to fluid transportation

Based on the Newton’s law of momentum conservation, the
inertial force per unit length of the riser induced by the internal
fluid flow is written as

fi =mar (23)

where f; is the inertial force vector, m; is the transported mass per
unit length of the riser, and ar is the acceleration vector of the
transported fluid.

The acceleration of the transported fluid can be derived by
considering the kinematics of transported fluid inside the risers.
According to kinematics of transporting mass inside the moving
riser (Huang, 1993), the acceleration of transported fluid can be
expressed as

. F(T) N (2\4) 3 (ry) N (&)2 P (ry) N {V,.

ar =
F= "or2 s ) ouot T \s ) oo2

s S/Z B

3 | ou
(24

where V; is a relative velocity of the fluid inside the riser.

2.5. Virtual strain energy

According to the extensible elastica theory (Chucheepsakul
et al,, 2003), the virtual strain energy of the marine riser is written
as

U= / [NaOs'+Brc36' + Ctoy + Ctoy ] dot 25)
Jo

where B=EI,(1+¢4) is the bending rigidity, C=GJ,(1+¢g) is torsion
rigidity, ¥ is the twisting angle, s is the arc-length, ¢4 is the dynamic
strain, I, is the moment of inertia of the riser, J,, is the polar moment
of inertia of the riser. The expressions of the variation of s',0’ and ¢’
are given in Appendix A.

2.6. External virtual work

The external virtual work of the riser system is
OW = oWy, + 0Wh + oW, (26)

where W, oWy, and oW, are the virtual work done by the
apparent weight, hydrodynamic forces, and inertial forces of the
riser and transported fluid, respectively. In the Cartesian coordi-
nates, the expressions of these virtual works can be written as

Fig. 2. The orientation of the riser cross-section.
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follows:
oW, = f/was’évdoc 27
o
Wy = /.[fHXs’6u+nys’5v+szs’5w]doc (28)
Jo

oW, =— / [(Mp Apx + M;@,)S' OU+ (M Ay + M;A3)S OV
J oL

+(Mppz +Mya,)S W+ (P Jpt ) O] dor (29)

The components of the hydrodynamic forces vector (fux, fuy, frz)
can be derived by transforming Eq. (22) to the fixed Cartesian
coordinate system. The variables m, and m; represent the mass per
unit length of the riser and transporting fluid, respectively.

2.7. Total virtual work

In this study, the sea water level (y;) is used as an independent
variable (o). Based on the principle of virtual work, the riser system
is in equilibrium if the total virtual work energy of the riser system
is zero

57 = SU—SWyy— Wy —SW, = 0 (30)

Substituting Eqgs. (25), (27), (28), and (29) into Eq. (30) with
some manipulations, one obtains

X s” 8
5n=/ys{{Na<?>—B< , —3@< )>+Cmbx]5u
A4 y’ s”
+ _Na (S—) —B( 5 3—3 (S>>+Cﬂcby
r ’ 2 7
+ _Na (? —B( 5 5—3 <£) +Cﬂcbz]6w}dy5

(B o (B0
Vs s2ys \S s2oys \S'

B & (7 ,
tls2 53,3( )}5W }dys+ yS{Tél// }dys

ays
0
s

- / {Sl[fo*mpapx*mian]éu} dys

JYs
—/ {S'[—Wq +fry—mpayy —m;agy J6v} dys

— [ {S'fz—mpap—miagJow} dys + / {s’[pplplﬂ]é(lp)} dys=0
Vs s
(31)
The apparent tensionin Eq. (31) can be evaluated by considering

the equilibrium condition of forces applied on the riser element in
tangential direction. One obtains

Nar) =Natya+ [ [Broyicrs (ot

*mpapt*mial-‘tﬂ d}’s
JYs

(32)

where fy, is the hydrodynamic forces in the tangential direction, a,;
is the tangential acceleration of the riser, ag is the tangential
acceleration of transporting fluid. In this study, the finite element
method is used to solve the system of Egs. (31) and (32).

3. Finite element model

Because the top end of the riser can slide through the slip joint,
the total stretched arc-length of the riser measured from the seabed
to the slip joint may not be known until the equilibrium config-
uration is determined. Therefore, the discretization along the
unstretched arc-length may not be convenient to set up the

boundary condition at the top end. In order to eliminate this
problem, the discretization of the riser element along the sea water
level is applied instead of the total unknown arc-length as shown in
Fig. 3.

3.1. Nonlinear static analysis

In general, the riser will vibrate around its static configuration
which is commonly nonlinear. Therefore, the nonlinear static
solutions have to be evaluated before calculating the dynamic
properties of the riser. The hybrid finite element model formulation
for nonlinear static analysis of three-dimensional marine riser can
be derived by eliminating the time-dependent terms in Eq. (31).
One obtains

s¢ 0 (xs

571—/ -B K52X5/+ + CsTsKsbys | OU
s — b as S S Ss, er3 ays §LsivslUxs S
Z Kizg s @ (z
{Nas (Ss> Bs< s +Ss’3 ay: \s; + CsTsishys | Owé ¢ dys

Bs & (X Y 0 (Zs\ | »
+/{|: aYS (55>:| )+ —a—ys<g>}OWs}dys

{(Csts) 05} dys +/ {S's[—fxs + MiGExs]OUs} dys

Vs Vs

+/ {8's[—frizs + Mipzs10Ws} dys = 0 (33)

Vs

S

where x;=X,+Us, Zs=2,+W;s. The subscript (s) of each parameters in
Eq. (33) represents the static quantities. The nonlinear static

Fig. 3. The discretization of the riser along the water depth.
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displacement us; and ws are approximated by the fifth order
polynomial. It has to be noted that the static displacement ug
and w; are referenced to the fixed Cartesian coordinate x, y, z, and
the undeformed configuration of the riser is arbitrary. Therefore,
the axial static strain ¢; is approximated by the linear interpolation
and can be calculated from the constrain condition between Egs.
(21)and (32). According to Eq. (33), the derivative of torque is equal
to zero ((Csts) =0) and the rate of change of the static twisting angle
(dys/ds) can be found from Eq. (13). Therefore, the static twisting
angle can be calculated by the direct integration. Consequently, it is
not necessary to include the twisting angle to the displacement
vector. Therefore, the displacement vector can be expressed as

() ={us ws &} =[NgJ{dys) (34)

where the nodal displacements of each element are

{ans} = {uls u;s u;'s Wls W;S W;'_s gls : MZS u;,\' u;’x

The shape function matrix at the equilibrium state is
N51 N52 N53 0 0 0 0 ' Niﬁ
[NJ=o o0 o0 N, N, N, 0 0
0o 0 0 0 0 0 N, 0

The elements of shape function matrix are defined in Appendix
B. According to the calculus of variation, one can find

14 Ton®]
on® = |2~ 0dnsi =0 37)
i=1

adnsi

Since od,s; # 0, one obtains the system of nonlinear equations as

h BTx; NBTxs
OTts _ T T
= [NS']' < BTz »+[Ns]' < NBTz
adm's 0
L 0 0
fxs
+[N,]” fzs dys=0 (38)
EApses—Ngs
where
Bs o (x;) Bs (x{  xss¢
BTxs=— — (= | = —= — 39a
P52 ays \sé s?\ss 57 (392)

3 _ ’ " ’ " ’ " ! "
{dnd}_{ul uy, Uy v vy v W wp W Y,
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Bs 0 (z;) Bs (z¢ zisY
BTz;=—= — (= | === — 39b
ST s2ays\ss)  sZ\si 52 @5b)
NBTx, = Nog (55 ) —p, (/5% 8¢ 2 (% (390)
ST s *\Use 5% o \s
VAN BN
NBTzs = Ngs (Ss,> Bs< s; + S/? ou \s (39d)
Jfxs = $5[—frixs +MiApxs]—(CsTsKsbys)' (39e)
ffzs = si[—frazs + MiQpzs]—(CsTsKsbzs) (39f)
The boundary conditions of the riser system are
(atys=0) us=0, wy=0, Y,=0 (40a—c)
W;s Wgs 82\ } (35)
0 0 0
NJ'J' N56 0 (36)
0 0 N,
— _ _ _ NasH
(at ys =ysn) us=0, Ws;=0, Ng=Ngn, &=
EApsu
(40a—d)

The system of the nonlinear equations (Eq. (38)), which is
constrained by boundary conditions (Eq. (39)) is solved numeri-
cally by the iterative procedure (Monprapussorn et al., 2004).

3.2. Natural frequency analysis

The assumed dynamic displacements of each element are
approximated by

@ ={u ve wa Y} =INGIdu(0) @an

The nodal displacement vector {d,4} in Eq. (41) is a function of
time only and can be expressed as

H ’ 14 / " ! " ’ "
pUy Uy Uy Y, VoV, W, W, W, W, W, l/’z}
The shape function matrix [N(ys)], which is a function of ys, can be expressed as

Ny, Ny Ny 0 0 0 0 0 0 0
52

0 0 0 N, N, N, 0 0 0 0
V=557 0 0 N, N, N, 0
o 0 o0 0 0 0 0 0 0 N,
Ny, Ny Ny 0 0 0 0 0 0 0
0 0 0 N, N, N, 0 0 0 0
0o 0 0 0 0 0 N, N, N, 0
o 0 0 0 0 0 0 0 0 N,

(42)
0 0
0 0
0 0
N52 N53
(43)
0 0
0 0
0 0
N55 N56
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The elements of the above matrix are the fifth degree poly-
nomial shape functions, which is defined in Appendix B. Then,
substituting Eq. (41) into Eq. (31) together with some manipula-
tions, the equation of motion for free vibration analysis of three-
dimensional marine riser element can be written in the matrix form
as

[MC{d g} -+ [€°1(d g} +[K1{d,10) = (0} (44)

where [m°], [g°], and [K®] are the element mass matrix, the element
gyroscopic matrix, and the element stiffness matrix, which are
shown in Appendix C.

Then, assembling the element equations of motion (Eq. (44)),
one obtains the equation of motion for entire riser as

[MI{D ¢} +[GI{D g} + [KI{Dyq} = {0} (45)

where (D4} = S_"™(d,,4}is the global nodal displacement vector;

[M] = >'“Mme] is the total mass matrix; [G]= > "“M[g¢] is the
total gyroscopic matrix; [K]= S-'“MKk°] is the total stiffness
matrix. The abbreviation ‘nelem’ represents the number of finite
element.

In order to evaluate Eq. (45), the identity {D,q} = {Dnq} has to be
added into Eq. (45). Therefore, the equation of motion for entire
riser can be rearranged into the following form (Meirovitch, 1997):

I 07(Dy 0 -I71(Dpn 0
- . = 4
{0 MHDM}“LL( G]{Dnd {0} (46)
Eq. (46) can be cast in the state form as

{Xnda} = [Al{Xna} (47)

where {Xn4}ony1 = {Dng Dna }T is the 2n-dimensional state vector,
and the matrix [A] is the 2n x 2n real nonsymmetric coefficient
matrix. The matrix [A] can be expressed as follows:

0 I

A=]_mx —mc

(48)

2nx2n

The solution of Eq. (47) can be written in the following form:
{Xna} = "' {Xna} (49)

The parameter Z is a complex value and {X,,} is a 2n complex
vector. Substituting Eq. (49) into Eq. (47), one obtains the general
algebraic eigenvalue problem as follows:

[A]{Xnd} = /’L{Xﬂd} (50)
The general form of the eigenvalue 4 can be expressed as
l=o+iw (&)

where w represents the natural frequency of the riser system. The
eigenvalue problem of Eq. (50) can be solved numerically by the
implicit double-shifted QR algorithm based on the EISPACK routine
HQR2 (Smith et al., 1976).

4. Numerical examples

In this study, the computer program for large displacement
analysis and free vibration analysis of three-dimensional exten-
sible marine riser is developed in the Fortran-90 language. The
special test cases such as the configuration of catenary cable, the
free vibration analysis of three-dimensional cable (Henghold et al.,
1977), and the free vibration analysis of extensible marine riser
transporting fluid (Moe and Chucheepsakul, 1988) are presented in
order to verify the accuracy of the numerical results.

4.1. Catenary cable

The numerical approximation of the catenary cable configuration
can be evaluated by eliminating the bending and torsional rigidity
from Eq. (38). The cable weight is equal to 5 N/m. The axial tensions in
cable at top and bottom end are equal to 1574.32 and 1074.32 N,
respectively. Fig. 4 shows that the numerical solutions and shape of
cable are identical to those carried out by the exact formula.

Fig. 4. Configuration of the catenary cable.
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Table 1
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Comparisons of the first four dimensionless frequencies of an inclined extensible cable for a value of EA,/w,Ss=5000.

Ny

A=

E=

Undeformed

cross-sectional
area

Elastic modulus

Mode Dimensionless frequencies of cable (&)
Henghold Chucheepsakul This study (20 elements) %Difference from
et al. (1977) and Srinil (2002) Henghold et al. (1977)

Incline angle (0) is equal to 30°

1(0) 224 2.24 224 0.00

2 3.65 3.57 3.61 1.10

3(0) 4.53 445 4.48 1.10

4 (D) 6.30 6.01 6.07 3.65

Incline angle (0) is equal to 60°

1(0) 2.83 2.84 2.84 0.35

2 () 5.17 5.28 5.29 2.32

3(0) 5.67 5.63 5.64 0.53

4(D) 8.17 8.34 8.35 2.20

Table 2

Input parameters and the in-plane fundamental natural frequencies of the rigid production riser transporting fluid with various speeds of internal flow.

Input parameters used for the rigid production riser transporting fluid

. Riser top tension, Nqy
. Water depth, yy

Outside diameter, Depo

. Inside diameter, Djp,

. Density of riser, p,

. Density of sea water, p,
9. Density of mud, p;

10. Young’s modulus, E
11. Poisson'’s ratio, v

PNDU A WN =

. Excursion of the vessel in x-direction, xy
. Excursion of the vessel in z direction, zy

12. Current velocity at mean sea level, V.4
13. Angle between current direction and x-direction

14. Normal drag coefficient, Cp,

15. Tangential drag coefficient, Cp,

16. Added mass coefficient, C,

Numerical results
Internal flow

The in-plane fundamental natural frequencies of production riser (rad/sec)

476,200 N
300 m

Om

Om

0.26 m
0.20 m
7850 kg/m>
1025 kg/m>
998 kg/m>
2.07 x 10" N/m?
0.50

0 m/sec

00

0.70

0.03

1.00

velocity
(Vio)(m/s)
Moe and Chucheepsakul (1988) (IA,EBR) Monprapussorn et al. (2007) (EA) This study (20 elements) (3-D,EA)
Analytical Numerical EBR IBR EBR IBR
solution solution
0 0.2878 0.2890 0.2891 0.3001 0.2892 0.2988
5 - - 0.2881 0.2994 0.2883 0.2980
10 0.2838 0.2853 0.2853 0.2972 0.2854 0.2957
15 - - 0.2804 0.2934 0.2805 0.2917
20 0.2706 0.2730 0.2731 0.2880 0.2732 0.2860
25 - - 0.2627 0.2809 0.2629 0.2783
30 0.2413 0.2478 0.2478 0.2717 0.2481 0.2684
35 - - 0.2224 0.2603 0.2230 0.2559

Note: IA=inextensible analysis, EA=extensible abiicnalysis, 3-D=3-D analysis, EBR=excluding bending rigidity, IBR=including Bending Rigidity.
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4.2. Free vibration of three-dimensional cable

The special case of an inclined extensible cable subjected to its
uniform self-weight is presented. The cable is suspended in the air
with the incline angle (0) of 30° and 60°. Table 1 shows the in-plane
(I) and out-of-plane (O) dimensionless frequencies (& = w+/Ss/g)
for the first four modes of the cable with a value of cable stiffness to
weight ratio (EA,/w,Ss) of 5000. The FEM solutions for 20 elements
obtained in this study are in a very good agreement with the studies
of Henghold et al. (1977) and Chucheepsakul and Srinil (2002).

4.3. Free vibration of vertical riser transporting fluid

The parameters used and the natural frequencies of a vertical
riser transporting fluid are shown in Table 2. The natural frequen-
cies of the vertical riser are compared with the analytical solutions
and the numerical solutions that were reported by Moe and
Chucheepsakul (1988) and Monprapussorn et al. (2007), respec-
tively. The numerical results, which are obtained from this study,
are in good agreement with the previous report.

4.4. Effect of axial extensibility and internal flow on maximum
displacement of extensible marine riser

According to the validation of previous examples, the authors
are confident that the model formulation developed herein is
applicable and give the sufficient accuracy of the numerical results.
In this section, the couple effect of axial extensibility and internal
flow on maximum displacement of extensible marine riser is
presented.

The data in Table 3 is utilized for this example. In the case of
extensible riser, the flexural rigidity is small as compared with the
applied top tension. Therefore, the applied top tension (Ngy) is used
as the basis for the parametric normalization. The following
dimensionless parameters are introduced in order to comprehend
the effect of axial extensibility:

E. Wal EAp, o vy M A Mo
Ein = <NaH>V Nott" Vio =Vio NiaHy @ =wL Non'
oY oy _4s

s=TT0 A= (52a—e)

The parameter E;, is recognized as the Irvine’s first parameter
(Hover and Triantafyllou, 1999) in cable mechanics. It is utilized to

describe the effect of riser’ extensibility. The high value of Ej.,
implied the low extensibility, but the low value of E;, implied the
high extensibility condition of the riser. The parameter V;, denotes

Table 3
The input data utilized for study the effect of axial extensibility and internal flow on
maximum displacement of marine riser.

Parameters Value

Offset of the vessel (‘ /%2 +z§) 70m

Water depth, yy 300 m
Normal drag coefficient, Cp, 0.70
Tangential drag coefficient, Cp, 0.03

Added mass coefficient, C, 1.00
Current velocity at mean sea level, V.4 0.20 m/s
Elastic modulus, E 2.07 x 10" N/m?
Outside diameter, Dep, 0.26 m
Inside diameter, Dy, 0.20m
Density of pipes/risers, p, 7850 kg/m>
Density of sea water, p. 1025 kg/m>
Density of internal fluid, p; 998 kg/m>

the effect of the mean flow velocity of transported fluid. The
parameter @ is the nondimensional form of the natural frequency
(w) of the riser. The parameter y, represents the position of

maximum displacement from seabed. The parameter A is the
nondimensional form of the lateral displacement <As =/u? +w§>

of the riser where the span length L = /x% +y? +27.

The combination effect of axial extensibility and internal flow
on the maximum displacement of extensible marine riser is shown
in Fig. 5. It is evident that the internal flow of transported fluid
increases the lateral displacements. The internal flow induces a
tangential loading, which destabilizes the riser system. Conse-
quently, the divergent instability could be occurred when speed of
internal flow reaches the value of V;; = 0.3246 as shown in Fig. 5.

Fig. 5 also shows that an increase in axial extensibility, by
reducing E;, from 286.50 to 28.65, enlarges the lateral displace-
ments due to the reduction of bending stiffness. However, the
turning point occurs when E,, is reduced passing 10.00 to 1.81. In
this range, the increase in axial extensibility reduces the lateral
displacements.

The transition behavior is occurred due to the variation of the
structural stiffness domination from the bending stiffness dom-
ination to the pretensioned stiffness (Fig. 5). The structural stiffness
of the low extensibleriser is governed by the bending strain energy,
and the riser behaves like a tensioned beam.

On the contrary, when the condition of high extensibility such as
E;, = 1.81 is applied, the riser received high axial tension and the
axial strain become large. In this case, the axial strain energy or the
pretensioned stiffness becomes the main stiffness of riser as well as
the tensioned cable. For a moderate extensibility riser
(10.00 < E;,, < 28.65), the riser has large amount of both axial
strain energy and bending strain energy. Consequently, the riser is
under the coupled axial-bending stiffness domination and the
transition of tensioned beam behavior to tensioned cable behavior
is occurred in this state.

From the above discussions, it can be found that the effect of
axial extensibility of the riser induces the lateral displacements
when the bending stiffness controls. However, the effect of axial

Fig. 5. Effect of axial extensibility and internal flow on maximum displacement (As)
of extensible marine risers and their positions from seabed.
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extensibility of the riser reduces the lateral displacements when
the pretensioned stiffness controls.

4.5. Effect of axial extensibility and internal flow on natural
frequencies and mode shapes of extensible marine riser

Figs. 6 and 7 show that the increase in internal flow velocity

reduces the natural frequencies of the extensible marine riser. The

Fig. 6. Effect of axial extensibility on the out-of-plane natural frequencies of the
extensible marine riser.

Fig. 7. Effect of axial extensibility on the in-plane natural frequencies of the
extensible marine riser.

Fig. 8. Effect of axial extensibility on modal transition of the in-plane oscillation of
the extensible marine riser.

increase in axial extensibility reduces the values of out-of-plane
and in-plane natural frequencies when the bending stiffness
domination (E;, > 28.65) as shown in Figs. 6 and 7. This result
corresponds to the tensioned beam behavior (Hover and
Triantafyllou, 1999). Moreover, the shape of in-plane oscillation
does not change in this range.

On the contrary, the increase in axial extensibility increases the
values of out-of-plane and in-plane natural frequencies when the
pretensioned stiffness control (E;, < 1.81) as shown in Figs. 6 and 7.
This result corresponds to the tensioned string behavior. In this range,
the riser is very taut and the in-plane natural frequencies are close to
the out-of-plane natural frequencies as shown in Fig. 8. Same as the
three-dimensional marine cable (Chucheepsakul and Srinil, 2002), the
fundamental natural frequencies of the marine riser represent the
first mode of out-of-plane natural frequencies (Fig. 8).

In the transition state (1.812 < Ej, < 28.65), the extensible riser
behavior is changed from the tensioned beam to the tensioned
string behavior (Russell and Lardner, 1998). The shapes of in-plane
oscillation are changed by crossing from single curvature curve to
double curvature curve of from two curvatures curve to three
curvatures curve and so on as shown in Fig. 8. The avoided crossing
of the extensible riser is occurred due to the hybrid mode formation
between the in-plane oscillation and out-of-plane oscillation
(Burgess and Triantafyllou, 1988).

5. Conclusions

The three-dimensional model formulation of the extensible
marine riser is developed by variational approach based on the
extensible elastica theory and the work-energy principle. The
outstanding feature of the model formulation presented in this
work is the use of independent variable o to provide the flexibility
in the choice of parameters defining elastic curves. Therefore, the
formulation allows users to select independent variable that is
suitable for their applications.

Several of numerical examples are presented to verify the model
formulation. The finite element method is used to obtain the
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numerical solutions. The couple effect of axial extensibility and
internal flow on maximum displacement and dynamic properties
of three-dimensional marine riser are also investigated.

The results indicate that the strength of low extensibility riser is
dominated by bending stiffness of marine riser. Consequently, the
axial extensibility reduces the stability of the riser system. On the
contrary, the strength of the high extensibility riser is dominated by
the pretensioned stiffness. Therefore, the high extensibility riser
performs the tensioned cable behavior, on which the axial exten-
sibility increases the stability of the riser system. For the riser with
moderate extensibility, the riser is in the transition state. In this
state, the variation of riser extensibility could induce the avoided
crossing of the in-plane mode shapes due to the hybrid mode
formation between the in-plane and out-of-plane oscillation.
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Appendix A

According to Eqgs. (9)-(11), the variation of 5,0’ and ¢  can be

expressed as follows:
(5) ow' (A1)

55’:( >5u+( )5\/
Lo XNy [0 (VN5 [ 19 (7 i
o0'= LCS’Z oo (S’)}(su * [KS’Z oo 5’>}6V * {KS’Z oo (S’Héw

Kx’+ s" 0 (X
s"  ps3 oo \s

ow (A2)

o' = {3 S:(y”Z”’ -y’ )+ 3 ((x V=XYy" W +(X'2-x2")7 )]5
—+ F + (z X" — z”’x”)+ 5 ((y Z-yZ"Z' + X =y x" )X’ }
TZ, s’ " i /! I /! /! "z /1 r
+[S,+5(xy xy)+ ((yz —yzZ"y' +x'z xz)x)}
S v I /! Iay!! 2 It 7yl ’
5[(Zy —yZ") 2 {(X"y' —Xy" )Y +(X'z7—x'Z")z } ]| ou
S/ /11 11 /! i /! /! a
5[(xz —ZX")=2(0{ (' 2 -y 2"z —X"y' —xy" )X }| oV
S/ i s I 7 /! A i
~§[0’X XY =2 {-X'Z—XZ"W—(y'Z-yZ")y }|ow
+ S:S(ylz// —Z/y”)éu/” + :S(Z/X// —X/Z”)(sv”/ + %(x/y _y/x//)(swlll
(A3)
where
3= (5)%(x)? (A4)
Appendix B

The elements of shape function matrix are defined as follows:

Ngj =1— 10%S+15%§l 6%; (B1)
Nsy = ys— 6Ys 1g¥s 3¥s (B2)

h2 Tohs T hd

y: 3y: 3yi oy?
Nss =5 —on *2m2 =213 (B3)
N54:]0%53 —15yS +6%§ (B4)
Nss = 4%3+7ig 3%3 (B5)
5
Ny =1-% (B7)
lez% (B8)
Appendix C

The element mass matrix is
m* 0 0 0

o= [ AN o e o | bd
24x24= J) 24x45s) 0 0 m* 0 4524 ( AYs

0 0 0 pyws
(€D

Note that, m* = mps+ mjs + CaMes
The element gyroscopic matrix is

4 (o) -

nfo —() 4) of
[ge]24><24:/0 [NL34a(misVis) 8 s [N'lax24 ¢ dYs

0 0 0
(€2)
The element stiffness matrix is
K L4204 = [p1 K]+ [ K1+ [y KT+ [no K]+ [ K]+ [12K] (€3)

in which the bending stiffness matrix of the fourth order derivative
is

[b1K]24x24
(A+z3) —x4) -xz) 0
h B | —(x0) 2 +z22) —@) 0
_ NT DBs s s s s N, d
/0 A ) (@ +1) o |V w2a s
0 0 0 0

(€4

The bending stiffness matrix of the third order derivative is

[b2Kl24x24
p2Ki1s  b2Kias bakiss O
h k k k 0
_ NL. (1) | b2R21s b2R22s b2Ro3s N'lsos bl
/0 Nhaxa-1) p2K31s  b2Ksas paKazs O V'dax2s 1 &35
0 0 0 0
(C5)
where
p2ki1s = [2xs X5+ 2(x5 25 —X528 X524 (C6a)
BS 1\t 1 oapt
b2kazs = o7 [2(=28)25 =2 X{] (C6b)
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B ’ Iyt " ’
b2k33s = SS'; [—2(xs zs —X5 25 Yxs 25 —2(—25 )z5] (C6c)
BS ” 2 "yt /A 1 Ny ! o7
b2K12s = pakais = si7 [Xs (1—=x5" )+ (X' zg =525 )z5 +(—25 )sts}
(C6d)

BS ’ ’ 2 2 ’ ’
b2k13s = poka1s = o7 [(xs”zrx52§’ Wz —x§ )7(72§’)x5+xs”zs] (C6e)
S

B 4 ’ 1yl ’ 4 !yt
b2Kazs = paksas = S’; [(_Zé/ )(ZS’Z —1)—(x5' Zs —x525 )x5 —Xs sts] (C6f)
S

The axial stiffness matrix of the second order derivative is

1 00O
h Ngs  mgV2
v1Kl2ax24 = /0 IN4va ( s

0
0 [N'lax2a ¢ dys
0

010

S¢ Ss 0 0 1

0 0O

xf x; xizg O

h EAps | X} 1z 0

+/0 [N’]&MTé’S XS,Z, 2 Zi 0 [N'l4x24 ¢ dys (C7)
s s4s s s

0

0 0 O

The axial stiffness matrix of the first order derivative is

1 000
-h .
mVigVis\ [0 1 0 /
[v2Kl2ax24 = /0 [N 4xa (‘%) 001 0 [N4s24 ¢ dys
0 00O
(C8)
The torsional stiffness matrix of the fourth order derivative is
rikis 11k mikyss O
h k k k 0
! — N’ T T1™21s T1™22s T1™23s N’ d
frildhs.cs -/0 N T2t Tiks1s 11K3ps Tikazs O (N Jaaa 0 65
0 0 0 0
(€9)
The torsional stiffness matrix of the second order derivative is
0 0 0 T2K145
0 0 0 12k
K / N7 | INasnq v d
[r2K] L. [N34xa 0 0 0 T2k345 [N'4x24 ¢ dYs
rokars  1oKazs oKass  T2Kaas
(C10)
where
k _ Csz‘é/z k _ CS (Z/X// —x.zl )2 k _ CSX§/2
T1K11s = 3—5,9,{52' T1K205 = s—’?rc§ sXs —XsZs )"y T1K335 = —s’?;c§
(Cl1a—o¢)
T1k12s = 11ka15 = 5,975225” (25%5 25 X5) (C11d)
Ss's
CS " 1
r1k13s = 11ks1s = Tz(_xs zs') (Cl1e)
S S KS
CS 1l 1" ’ "
11Ka35 = 11K3p5 = —g - (Z6X5 =25 X5)(=X5) (C11f)
S S KS
Gzg v w Co(—x¢
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S S S S S S
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1. Introduction

At present, the technologies for exploration and production of
oil and gas in the ultra-deep water has currently been developed.
One of a key component for offshore production is the marine riser.
As the water depth for offshore operations is increasing, the riser
system becomes more important. A failure of the riser system
causes not only the severe environmental pollutions but also the
significant financial consequences. Therefore, the appropriate ap-
plied top tension corresponding to the riser configuration has to
be determined with more degree of accuracy.

In general, the riser is a long slender vertical structure connect-
ing between the floating production facility and subsea wellhead.
Therefore, the riser behaves like a flexible structure which can be
experienced large displacement. Since this problem is highly non-
linear, the nonlinear analysis technique is required. The nonlinear
analysis method of flexible structure has been developed continu-
ously over the past 50 years as found in literature [1-4].

Felippa and Chung [5,6] presented a static analysis procedure
for determination of nonlinear static equilibrium configurations
of marine riser. They modeled the riser as the three-dimensional
beam elements. The numerical solutions were obtained by using

* Corresponding author. Tel.: +66 2 470 9146; fax: +66 2 427 9063.
E-mail address: somchai.chu@kmutt.ac.th (S. Chucheepsakul).

0141-0296/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.engstruct.2011.08.031

the incremental load iterative procedure. McNamara et al. [7] used
the hybrid finite elements, which the axial force is independently
interpolated and combined with the corresponding axial displace-
ments, for static and dynamic analysis of flexible risers. Moe and
Arntsen [8] proposed an analytic model for static analysis of cate-
nary risers. The particular three-dimensional model formulations
and analysis techniques for deep water riser have been developed
by several investigators [9-15]. The development of flexible riser
modeling and analysis techniques was reviewed by Patel and
Seyed [16].

Most of research works mentioned above assumed that the total
length of riser is constant, therefore the total arc-length of the riser
is normally discretized to be a finite length and the riser configura-
tions are determined along the arc-length of riser. However, in
most cases, the top end of the riser can slip through the slip joint.
Consequently, the total stretched arc-length of the riser measured
from the seabed to the slip joint may not be known until the equi-
librium configuration is evaluated. Therefore, the use of the un-
stretched arc-length to be the independent variable may not
convenient to set up the boundary condition at the slip joint.

In order to reduce the complexity of the problem discussed
above, the vertical distance is used as the independent variable
instead of the unstretched arc-length [17]. This technique
eliminates a number of iterations that are required to adjust the to-
tal unstretched arc-length until the boundary conditions at the top
end are satisfied. Moreover, in finite element analysis, the
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discretization of the riser elements along the arc-length requires
more nodal variables than the discretization along the sea depth
[18]. Some other examples of research works, which were adopted
this technique for large displacement analysis, can be found in
Huang and Kang [19], Chucheepsakul et al. [20], Athisakul et al.
[21-23], Monprapussorn et al. [24,25], and Kaewunruen et al. [26].

For the case of the applied top tension is specified, the discret-
ization along the sea depth (y,) is suitable for the numerical solu-
tions. The stretched arc-length and unstretched arc-length can be
easily found by direct integration along the vertical coordinate of
the riser configurations. On the contrary, if the unstretched arc-
length is specified, the applied top tension will be adjusted to sat-
isfy the equilibrium and boundary conditions. A trial error in esti-
mating the proper value of the applied top tension may be used,
but it is a time consuming process. A better approach to solve this
constraint problem is to use the Lagrange multiplier method.

The purpose of this paper is to present the finite element meth-
od for large displacement and large deformation analysis of marine
riser with a constraint condition (a specified total unstretched arc-
length). The model formulation is developed by using the varia-
tional approach. The strain energy due to bending, axial stretching
and virtual work done by hydrostatic pressure and other external
forces are involved in the variational model. A Lagrange multiplier
is introduced in order to impose the constraint condition. The
numerical examples are provided to explain the physical meaning
of the Lagrange multiplier. The relations between the top tension
and the unstretched arc-length in different water depth and static
offset are investigated herein.

2. Strain-displacement relations

The marine riser configurations and the infinitesimal elements
of marine riser in three states of the riser configurations are de-
picted in Fig. 1. The parameters ds,, dss, and ds represent the differ-
ential arc-lengths at undeformed, equilibrium, and displaced
configurations, respectively.

According to the updated Lagrangian description, the motions
and deformations of riser body are described with respect to the
equilibrium position. Therefore, the definition of the total axial
strain, static strain, and dynamic strain can be defined as shown
in Table 1.

Based on the differential geometry of curve in plane, the differ-
ential arc-lengths in three states of the riser configurations can be
defined as follows.

At the undeformed state, the differential arc-length is defined
by

ds, = \/X2 + y2dor = (1 - &)/x2 + y2da (1)

at the equilibrium state, the differential arc-length is defined by

ds, = \/x2 +y2do =/ (e, + )" + (v, + v2)°do 2)

and at the displaced state, the differential arc-length is defined by

ds = /x? +y?do = \/(xg +u) 4y, + v)da
= (1 +&0)\/x2 + y2do 3)

where u and v represent the displacement in x and y directions,
respectively. The subscript (o) refers to the undeformed position.
The subscript (s) denotes the static equilibrium position. The super-
script (') represents the derivative of the parameter with respect to
the independent variable o.

Fig. 1. (a) Three states of marine riser configurations. (b) The infinitesimal elements
of marine riser in three states.

Table 1
Definition of the axial strains at each state.

Total strain (1-3)

_ ds—dsp . dsp _ds
& = . ss_l—d—SS sd_d—SS—l

Static strain (1-2) Dynamic strain (2-3)

3. Variational model

The model formulation used in this study is developed by vari-
ational approach. Theoretically, the strain energy includes those
contributions from axial deformation and bending deformation.
The external virtual work of the riser system is composed of the
virtual works done by the effective weight, hydrodynamic loading
and inertial forces of the riser mass and the transported fluid mass.
These expressions can be shown briefly in the following subtopics.
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3.1. Strain energy due to axial deformation

Based on the updated Lagrangian description, the strain energy
due to axial deformation of the apparent system of the riser is

St 2
Ua = / EA253[ dss (4)
0

Since the riser is a submerged structure, the effect of pressure
fields from external and internal fluid has to be considered
[18,27-28]. Based on theory of elasticity, the total axial strain
(&)for elastic isotropic riser can be expressed in terms of the true
wall tension (T) and fluid pressures by Eq. (5).

& = A, [T + 2v(p,Aes — DiAis)] 5)
According to Eq. (5), the apparent tension can be defined by
Tas = \'I;J‘F Zv(peAes — piAis) = EApsgt (6)

1 2

The effect of fluid pressures on the riser is deduced by the second
term of Eq. (6), where A, is the outside cross-sectional area of the
riser, A;s is the inside cross-sectional area of the riser, Ay is the cross
sectional area of the risers (Aps = Aes — Ais), P represents the exter-
nal fluid pressure, p; represents the internal fluid pressure, and v is
the Poisson’s ratio. In case of v = 0.5, the apparent tension is iden-
tical to the effective tension [27]. The concept of apparent tension is
a convenient mathematical technique for grouping the fluid pres-
sures into the axial tension. Eq. (6) shows that the external fluid
pressure induces the axial tension, while the internal fluid pressure
induces the axial compression.

By taking the first variation to Eq. (4) and adopting the Eq. (6),
one obtains the virtual strain energy due to axial deformation as
shown below.

< R Vs,
oU, = / |:Ta5 s_’5u3 + Ty s_/éys dot (7)
oo s s

3.2. Strain energy due to bending

According to the updated Lagrangian description, the strain en-
ergy due to bending can be expressed as

S MZ
Uy = /0 g 05 (8)

Based on the elastica theory of extensible risers/pipes [18], the
moment-curvature relation of the riser system can be written in
the following form:

M = Elpo(1 + &)K 9)
By substituting Eq. (9) into Eq. (8), one obtains

st 1
U,,:/0 S ElrI (1 -+ &)2ds, (10)

The virtual strain energy due to bending is derived by taking a
first variation of Eq. (10) and changing variable ds; to be do. The
virtual strain energy due to bending can be written as

Uy = / Ms0'dot (11)

According to the differential geometry of curve, the curvature
and the derivative of the angle 0, which is the angle between the
displacement curve and y-axis (see Fig. 1), can be expressed in
Cartesian coordinate as follows.

_ 0’ _ (X//y/ _ X/y//)
K= s - s3 (12)
; X//y/ _ Xry//
The relations between the Cartesian coordinates and the angle 6

dare
/

i—sin(?, and %:cose (14)

s

By substituting Eqs. (9),(12),and (13)into Eq.(11) and setting the
subscribe variables to be the static equilibrium state, one obtains

x B K . "
w5 ()
%o N S

X s yr BSKS X
B2 (%) B 35 (Vs | st — 2 (%) 50
B (s;) 1 2 (sgﬂ‘su‘ 5 (sg)wf
2 y/ S// X/ ,
+|—BsK; <5_§S> +BSKS§ (S—Zﬂévs}da (15)

where Bs = El,(1 + &) is the bending rigidity of the riser.
3.3. Work done by apparent weight

The virtual work done by the apparent weight of the riser can be
expressed as

oW, f—/S[wévdsf—/at WaSs s dot (16)
w — o a S - N ]+SS S

o

According to the apparent tension concept, the real system of the
submerged riser subjected to external and internal fluid pressures is
equivalent to the apparent system of the riser in the air that is sub-
jected to the apparent tension and the apparent weight [18].

The apparent weight per unit length of the riser can be defined
as

Wq = [ppAps — PAes + PiAis|g (17)

where p, is the density of the riser, p, is the density of the external
fluid/sea water, p; is the density of the internal fluid. It is noted that
the outside cross-sectional area of the riser A, can be represented
as the cross-sectional area of the external fluid column. In the same
manner, the inside cross-sectional area of the riser A;; can be repre-
sented as the cross-sectional area of the internal fluid column.

3.4. Work done by current force

The current force per unit length is composed of two compo-
nents. The component in normal direction can be expressed in
the following form.

1
fin =5 PeDeConV (18)
The component in tangential direction is given by
1
foe = ipenDethvlz-It (19

where D, is the outside diameter of the riser, V and Vy, are the cur-
rent velocities in tangential and normal directions, Cp, and Cp, are the
normal drag and tangential drag coefficients, respectively. The virtual
work done by hydrodynamic force can be expressed as follows:

Wy = / [y + freX, )0t -+ (—funXs + foe)vs)dox (20)

Oo

3.5. Work done by inertial forces

Based on the Newton'’s second law, the inertial force from inter-
nal flow velocity is defined as
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ot
- —/ myd;s,do (21)
Oo

in which the transported fluid mass per unit length at the equilib-
rium state is m; = p;A;. The virtual work done by inertial force of
transporting fluid can be expressed as:

ot
W, = — / [(Mia3)S. 015 + (Miay)S.0v5]dor (22)
%o
By considering the kinematics of transported mass in the mov-
ing frame [29], the acceleration of the fluid inside the riser can be

expressed in terms of the riser’s displacements and the speed of
the transported fluid as shown below.

e = ("sys)vz (23)

S/

Vi (24)

where V; is the speed of the internal fluid.

3.6. Total virtual work equation

Based on the virtual work principle, the total virtual work-en-
ergy of the riser system is

= (3Uq + 8Up) — (W, + dWy + W) (25)

By substituting Eqs. (7), (15), (16), (20), and (22) into Eq. (25),
one obtains the total virtual work equation as shown below.

o= /jt {B;Cs <Js}/;>éu;’+ [(TGS—B K )C/) BKSfZ <S—f>}5u;}dzx
[ A G ramman () e () o o

+/ anyS + freXy, — MKy, ,}wsda
+ / [

Eq. (26) is used for calculating the static equilibrium configuration
of marine riser. This equation is suitable for the case of the applied
top tension is specified and the total unstretched arc-length of riser
is an unknown. The unstretched arc-length of the riser depends on
the coordinate of the riser configuration and it can be determined
by integrating Eq. (1).

In the case of the unstretched arc-length is specified, the top
tension that is sufficient to maintain the equilibrium of riser is
an unknown. The assumed top tension may be guessed and then
adjust the value until the arc-length reaches to the specified value.
However, this method is not efficient for numerical computation.
Therefore, a better technique, which is the Lagrange multiplier
method, is used.

4 myIcsX.V; } ovsdo

(26)

Table 2

Properties of the riser used in the numerical analysis.
Property Value
Outside diameter 0.26 m
Inside diameter 0.20 m
Offset of the top end (%Ay) 5-40%
Density of riser 7850 kg/m>
Density of sea water 1025 kg/m?
Density of internal fluid 998 kg/m>

Young’s modulus 2.07 x 10'' N/m?

Table 3
Numerical results of the deep water riser for water depth of 900 m, 10% offset, and the
specified top tension of 1500 kN.

Top tension (kN) 1500
Unstretched total arc-length (m) 906.05
Stretched total arc-length (m) 906.23
Top angle (degree) 2.46
Bottom angle (degree) 17.10

3.7. Constraint equation

According to Eq. (1), the total unstretched arc-length of the riser
can be calculated as shown below.

/[dso:/" {(1 — &)/ ;2+x;2}doc:5mtal (27)

In the procedure, a Lagrange multiplier is introduced in the con-
straint condition. When the value of unstretched arc-length (S;o1q)
is specified, this introduces the constraint condition which is writ-
ten as

g:/ t {(1 —85)1/y;2+xg2}doc75mm1 —0 (28)

3.8. Modified total virtual work equation

Based on the virtual work principle, the total virtual work of the
riser system is equal to zero when the riser system is in equilib-
rium. Therefore, Eq. (26) has to be minimized to zero with the con-
straint Eq. (28). According to the Lagrange multiplier technique
[30], the unknown variable / is added to the system and the total
virtual work equation is modified as follows.

O = 0T + 6(2Ag) (29)

where é7* is the modified total virtual work. After performing var-
iation of the second term in Eq. (29), one obtains

e ™ [BsKs (s - X, )

= [ 5 () ) (2) s () e
/ { Bs"3< )5 "+[(THS—BSK§)<”S>+B KSSS/2<X>}M }d
+/ anys—i-foX ngyS ,}5115(10(

+/0 { 1+8 s+ MiKsX
+/ {)(1—83)[<X,>5u +< s) A }doc
+</ { — &) x’2 +y’2}doc Stotal>b/1

X V2| svsdo

30)

4. The finite element method

In this study, the nonlinear static solutions can be evaluated by
using the finite element method. Based on the finite element pro-

Table 4
Numerical results of the deep water riser for water depth of 900 m, 10% offset, and the
specified unstretched arc-length of 910 m.

The assumed top tension (kN) 1500
The Lagrange multiplier 4 -152.77
Unstretched total arc-length (m) 910.00
Stretched total arc-length (m) 910.14
Top angle (degree) 1.63
Bottom angle (degree) 32.66
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cedures, the range of the total sea depth is divided into n elements.
The sea water level (y;) is used as an independent variable (a),
therefore év =Jv = 6" = 0. Consequently, then the modified
total virtual work equation (Eq. (30)) becomes

. YH [ Bsk TasX. BsKx!'x.
on :/ { Sl oul + [—“S A S} 5u;}dy5
0

12 !
Ss Ss s

YH )
+ /0 - [an + freks — mstV,-](susdyS

YH _ !
+/ {).(1 gs)xséu;}dys
Jo S
YH
+ 1—¢& ,/l+x;2}d 5—500>5" 31
(/0 {( ) Y. total | O/ (31)

The large displacement of the riser (x;) is composed of two com-
ponents. First is the linear component (xy), which can be directly
calculated by linear interpolation. Second is the nonlinear compo-
nent (us), which is approximated by the fifth degree polynomial.
Hence, the large displacement of the riser can be written as shown
below.

X = Xg + Us (32)
s = [N} {d;} (33)

A matrix [N;] contains the fifth order shape function and a vec-
tor {d;} contains the nodal displacements of the riser element.

{df}T = {uls ulls u/l,s‘uzs u,25 ugs (34)

According to the virtual work principle, Eq. (31) is equal to zero
for equilibrium position. Therefore,

(97N sd 4 (97 55 =
ot = (adi>5dl+<az)5;‘*0 (35)

Since 4d; and §4 are not equal to zero, thus

om\ [ [N”}TBSKS AT [TasXl o BsksX!X,
(ad,->‘/o{ 52 ”N][ 2 }dyS

s, s
YT , 2
= [ N (B o — 2,

. /OyH {[N,]r<w> }dys —0 (36)
) ([ s)e o

Because Eqgs. (36) and (37) are the system of nonlinear equa-
tions, the iterative procedure is used to obtain the numerical solu-
tions. According to Taylor’s series approximation, Egs. (36) and
(37) can be approximated by neglecting the second-order terms
as shown below

o\ " fom ™ o (om\\™ . 1w
{5‘11} 7{3_‘11} +{3_dj<adi>} Ad

2 (N s _
*{E(ad,- } AX™ =0 (38)

om\ ™Y fom " o (omN\" \
G =) la(G)) e

)
(n)
} A =0 (39)

Fig. 2. Relations between the top tension and the unstretched arc-length for water depth of 300, 600, 900, 1200, and 1500 m. (A) 5% offset, (b) 10% offset, (c) 15% offset, (d)

20% offset, (e) 25% offset, (f) 30% offset, (g) 35% offset, (h) 40% offset.
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Fig. 2 (continued)

where {Ad}" = {d'""} — {d'}, A = ;"D —
iteration.
Egs. (38) and (39) can be arranged into the matrix form as

follows

[I<NL]N><N {I(Z}le { {Adl} } _ { 7{Ri} } (40)

K} O A S LR

The integer value N is the number of nodal displacements of the
riser system. The matrix [Ky;] is the assemblage of the matrices
{#*1;/8d;ad;} from all elements. The vector {K,} represents the
assemblage of the element vectors {#*7;/d)9d;}. The vector {R;}
is the element vectors {07} /dd;}. The parameter R, is the value
of on*/92. The increment vector of nodal displacements {Ad;}
and the increment value A4 are the unknown to be determined.
By adding the increment vector {Ad;} to {d;} and adding the value
of A’ to 4, the adjusted values of {d;} and / are obtained. Use these
values for computation the next iteration. Repeat this process until
it is terminated when {Ad;} and A2 approach zero.

7™ and n= number of

5. Numerical solutions

In this section, the numerical examples are presented to iden-
tify the physical meaning of the Lagrange multiplier. The relations
between the top tension and the unstretched arc-length of the ris-
ers, which are subjected to the apparent weight only, are provided
for water depth of 300, 600, 900, 1200, and 1500 m. The numerical
result from this study has been verified with the classical catenary
cable, and found that the results are conformable. The basic

properties of the marine riser shown in Table 2 are used to evaluate
the numerical examples.

5.1. Physical meaning of the Lagrange multiplier

Considering the case of the specified top tension of 1500 kN is
applied to the deep water riser for 900 m water depth and 10% off-
set. The numerical solutions for this case are shown in Table 3.

If the unstretched total arc-length of 910 m is specified as the
constraint condition, the iterative procedure will be used to evalu-
ate Eq. (40). The numerical results for this constraint problem are
shown in Table 4.

Calculation of top tension based on Table 4 can be simply ex-
plained as follows, if the top tension of 1347.23 kN is applied in-
stead of 1500 kN, the unstretched total arc-length will become
910.00 m. It can be seen that the applied top tension is equal to
the assumed top tension minus the Lagrange multiplier (1500-
152.77 = 1347.23 kN).

According to the numerical results presented above, one can
identify that the Lagrange multiplier is a parameter for adjusting
the value of applied top tension in order to satisfy the equilibrium
and the constraint condition.

5.2. Relations between the top tension and the unstretched arc-length

The relations between the top tension and the unstretched arc-
length for the water depth of 300, 600, 900, 1200 and 1500 m are
shown in Fig. 2. The risers are subjected to the apparent weight
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only, like steel catenary risers (SCR). The percentage of static off-
sets (%Ay) is varied in the range of 5-40%.

The numerical results in Fig. 2a-d show that the riser behaves
like a tension beam for the nearly vertical marine riser with the
static offset less than 20%. The displacements of the riser are small
when the shapes of static configuration are kept to have the free
hanging configurations without a contact portion on the seabed.

For a free hanging configuration with 25% static offset, the risers
experience large displacement (the angles between the span length
and the equilibrium configuration are larger than 10 degrees)
when the ratios of total unstretched arc-length (S ) to the span
length (L) are more than 1.036 as shown in Fig. 2e.

The riser configurations are close to the catenary shape when
the percentage of static offsets is increased. Fig. 2f-h indicate that
the risers experience the large displacement when the ratios of to-
tal unstretched arc-length to the span length are larger than 1.02,
1.014, and 1.012 for 30%, 35%, and 40% static offset, respectively.
Fig. 2 also shows that the applied top tensions decreased as the
specified unstretched arc-length increased. However, the applied
top tensions are not less than the minimum values, which are close
to the values of the total of apparent weight of riser, as shown in
Fig. 2. If the applied top tensions are less than those minimum val-
ues, the riser can no longer maintain its stability and will collapse.

6. Conclusions

This paper presents a numerical procedure to obtain the static
configuration of marine riser with the constraint condition, which
is the specified total unstretched arc-length. The model formula-
tion is developed by the variational approach. The Lagrange multi-
plier is applied to impose the constraint condition. The finite
element method with the iterative procedure is used for large dis-
placement analysis of marine riser. The numerical results indicate
that the Lagrange multiplier represents the parameter for adjusting
the applied top tension in order to maintain the riser in equilib-
rium position under the constraint condition. The relations be-
tween the top tension and the unstretched arc-length in different
water depth and static offset are also presented.

Acknowledgements

The authors gratefully acknowledge the financial support by the
Thailand Research Fund (TRF) under Contract No. MRG5380034.

References

[1] Cook RD, Malkus DS, Plesha ME. Concepts and applications of finite element
analysis. 3rd ed. New York: John Wiley & Sons; 1989.

[2] Bathe K]. Finite Element Procedures. New Jersey; Prentice-Hall; 1996.

[3] Belytschko T, Liu WK, Moran B. Nonlinear finite elements for continua and
structures. New York: John Wiley & Sons; 2000.

[4] Crisfield MA. An arc-length method including line searches and accelerations.
Int ] Numer Methods Eng 1983;19:1269-89.

[5] Felippa CA, Chung JS. Nonlinear static analysis of deep ocean mining pipe -
Part 1: modeling and formulation. ] Energy Res Technol 1981;103:11-5.

[6] Chung ]S, Felippa CA. Nonlinear static analysis of deep ocean mining pipe -
Part 2: numerical studies. ] Energy Res Technol 1981;103:16-25.

[7] McNamara JF, O'Brien PJ, Gilrory SG. Nonlinear analysis of flexible risers using
hybrid finite elements. ] Offshore Mech Arct Eng 1988;110:197-204.

[8] Moe G, Arntsen @. An analytic model for static analysis of catenary risers. In:
proceeding of 11th international offshore and polar engineering conference,
2001. p. 248-53.

[9] Bernitsas MM, Kokarakis JE. Importance of nonlinearities in static riser
analysis. Appl Ocean Res 1988;10:2-9.

[10] O’Brien PJ, McNamara JF. Significant characteristics of three-dimensional
flexible riser analysis. Eng Struct 1989;11:223-33.

[11] Chung ]S, Cheng BR, Huttelmaier HP. Three-dimensional coupled responses of
a vertical deep-ocean pipe: Part I. excitation at pipe ends and external torsion.
Int ] Offshore Polar Eng 1994;4:320-30.

[12] Chung JS, Cheng BR, Huttelmaier HP. Three-dimensional coupled responses of
a vertical deep-ocean pipe: Part II. excitation at pipe top and external torsion.
Int ] Offshore Polar Eng 1994;4:331-9.

[13] Chung ]S, Cheng BR. Effects of elastic joints on 3-d nonlinear responses of a
deep-ocean pipe: Modeling and boundary conditions. Int J Offshore Polar Eng
1996;6:203-11.

[14] Chai YT, Varyani KS. An absolute coordinate formulation for three dimensional
flexible pipe analysis. Ocean Eng 2006;33:23-58.

[15] Chatjigeorgiou IK. On the effect of internal flow on vibrating catenary risers in
three dimensions. Eng Struct 2010;32:3313-29.

[16] Patel MH, Seyed FB. Review of flexible riser modelling and analysis techniques.
Eng Struct 1995;17:293-304.

[17] Huang T, Chucheepsakul S. Large displacement analysis of a marine riser. ]
Energy Res Technol 1985;107:54-9.

[18] Chucheepsakul S, Huang T, Monprapussorn T. Large strain formulations of
extensible flexible marine pipes transporting fluid. ] Fluids Struct
2003;17:333-65.

[19] Huang T, Kang QL. Three dimensionalanalysis of a marine riser with large
displacements. Int ] Offshore Polar Eng 1991;1:300-6.

[20] Chucheepsakul S, Huang T, Monprapussorn T. Influence of transported fluid on
behavior of an extensible flexible riser/pipe. In: proceeding of 9th
international offshore and polar engineering conference, 1999. p. 286-
93.

[21] Athisakul C, Huang T, Chucheepsakul, S. Large strain static analysis of marine
risers via a variational approach. In: Proceeding of 12th international offshore
and polar engineering conference, 2002. p. 164-70.

[22] Athisakul C, Chucheepsakul S. Effect of inclination on bending of variable-arc-
length beams subjected to uniform self-weight. Eng Struct 2008;30:902-8.

[23] Athisakul C, Monprapussorn T, Chucheepsakul S. A variational formulation for
three-dimensional analysis of extensible marine riser transporting fluid. Ocean
Eng 2011;38:609-20.

[24] Monprapussorn T, Chucheepsakul S, Huang T. The coupled radial-axial
deformation analysis of flexible pipes conveying fluid. Int ] Num Methods
Eng 2004;59:1399-452.

[25] Monprapussorn T, Athisakul C, Chucheepsakul S. Nonlinear vibrations of an
extensible flexible marine riser carrying a pulsatile flow. ] Appl Mech ASME
2007;74:754-69.

[26] Kaewunruen S, Chiravatchradej ], Chucheepsakul S. Nonlinear free vibrations
of marine risers/pipes transporting fluid. Ocean Eng 2005;32:417-40.

[27] Spark CP. The influence of tension, pressure and weight on pipe and riser
deformations and stresses. ] Energy Res Technol 1984;106:46-54.

[28] Patel MH, Seyed FB. Internal flow-induced behavior of flexible risers. Eng
Struct 1989;11:266-80.

[29] Huang T. Kinematic of transported mass inside risers and pipes. In: Proceeding
of 3rd international offshore and polar engineering conference, 1993. p. 331-6.

[30] Langhaar HL. Energy methods in applied mechanics. New York: John Wiley &
Sons; 1962.



This article was downloaded by: [Chainarong Athisakul]

On: 22 May 2012, At: 23:39

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

The IES Journal Part A: Civil & Structural Engineering

Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tiea20

Critical weight of flexible pipe conveying fluid
subjected to end moments

Chainarong Athisakul ? , Boonchai Phungpaingam b Waraporn Chatanin ¢ & Somchai
Chucheepsakul ?

& Department of Civil Engineering, Faculty of Engineering, King Mongkut's University of
Technology, Thonburi, Bangkok, Thailand

b Department of Civil Engineering, Rajamangala University of Technology, Thanyaburi,
Pathum-thani, Thailand

¢ Department of Mathematics, Faculty of Science, King Mongkut's University of Technology,
Thonburi, Bangkok, Thailand

Available online: 19 Apr 2012

To cite this article: Chainarong Athisakul, Boonchai Phungpaingam, Waraporn Chatanin & Somchai Chucheepsakul (2012):
Critical weight of flexible pipe conveying fluid subjected to end moments, The IES Journal Part A: Civil & Structural
Engineering, 5:2, 90-94

To link to this article: http://dx.doi.org/10.1080/19373260.2012.663743

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should
be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,
proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in
connection with or arising out of the use of this material.



http://www.tandfonline.com/loi/tiea20
http://dx.doi.org/10.1080/19373260.2012.663743
http://www.tandfonline.com/page/terms-and-conditions

Downloaded by [Chainarong Athisakul] at 23:39 22 May 2012

The IES Journal Part A: Civil & Structural Engineering
Vol. 5, No. 2, May 2012, 90-94

Taylor &Francis
Taylor & Francis Group

TECHNICAL PAPER

Critical weight of flexible pipe conveying fluid subjected to end moments

Chainarong Athisakul®*, Boonchai Phungpaingam®, Waraporn Chatanin® and Somchai Chucheepsakul®

“Department of Civil Engineering, Faculty of Engineering, King Mongkut’s University of Technology, Thonburi, Bangkok,
Thailand; ®Department of Civil Engineering, Rajamangala University of Technology, Thanyaburi, Pathum-thani, Thailand;
“Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology, Thonburi, Bangkok, Thailand

(Received 5 November 2011, final version received 2 February 2012)

This article aims to evaluate the critical weight of flexible pipe subjected to applied end moments at fixed support
locations. The pipe is hinged at one end, while the other end is free to slide over a frictionless support. The horizontal
distance between the two supports is fixed. The model formulation is developed by the variational approach, and the
finite element method is employed to obtain the numerical solutions. The critical weights are evaluated for various
values of end moments and the proportional parameter of the end moments.
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1. Introduction

The failure of flexible pipes used in offshore engineer-
ing operations causes severe environmental pollution.
To ensure the strength and stability of flexible pipe,
accurate determination of the wall thickness of pipe is
necessary. There has been considerable amount of
research works dealing with the stability of pipes
conveying fluids, such as Chen (1971) and Paidoussis
and Issid (1974). Thompson and Lunn (1981) pre-
sented the static elastic theory for nonlinear analysis of
pipe conveying fluid. They found that the internal flow
velocity can induce the buckling-type or fluttering-type
instabilities. The divergence instability of a variable-
arc-length elastica pipe due to steady flow velocity of
internal fluid was presented by Chucheepsakul and
Monprapussorn (2000). They used the elliptic integral
method to obtain analytical solutions. However, this
work is focused only on the effect of internal flow
velocity by neglecting the weight of the pipe and the
internal fluid. A more recent investigation on non-
linear buckling of marine elastic pipes transporting
fluid was presented by Chucheepsakul and Monpra-
pussorn (2001). They concluded that the nonlinear
buckling of the marine elastica pipe can occur due to
insufficient stiffness and overloading. The critical
weights of pipes for a particular example were also
presented in their works. Athisakul and Chucheepsa-
kul (2008) used the finite element method (FEM) to
evaluate the critical loads of the variable-arc-length
beam for various inclinations. Their results can be
applied as benchmarks for the analysis of free hanging

marine pipes/risers. To reduce the stress at both the
touchdown point and at the platform connection, a
subsea buoy is added to produce the S, Wave and
Camel configurations. According to the subsea buoy
system, the additional bending moment may occur at
the ends of the pipes. Consequently, flexible pipes have
to resist the double curvature bending. Chucheepsakul
et al. (1999) published a paper dealing with the double
curvature bending of variable-arc-length elasticas
under two applied moments. The elliptic integral
method was utilised to obtain the closed-form solu-
tions. However, the weight of structure is neglected.

This article continues in this line of investigation by
considering the combination of its uniform self-weight
and two applied moments at both ends in the same
direction. Since the elliptic integrals method cannot be
applied to this kind of problems, the FEM is an
alternative method to determine the numerical solu-
tions. The variational approach is employed to develop
the model formulation. The first variation of the total
potential energy is derived to establish the system of
nonlinear finite element equations. The numerical
solutions are obtained by an iterative procedure. The
second variation of the total potential energy is
evaluated to form the tangent stiffness matrix of the
pipes. The critical uniform self-weights of the pipe are
the maximum value, which the determinant of tangent
stiffness matrix is equal to zero. In practice, the critical
uniform self-weight can be defined from changing the
sign of tangent stiffness matrix from positive to
negative.
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2. Variational formulation

Consider a flexible pipe of uniform flexural rigidity ET as
shown in Figure 1(a). The pipe is supported by a pin
support at end A and by a frictionless support at end B.
The constant distance between ends A and B is L. The
pipe is subjected to a clockwise moment M = (I — )M,
at the end A and a clockwise moment M= M, at the
end B. The scalar parameter f§ represents the proportion
of the moment at end B to the total moment AM,. The
uniform self-weight of the pipe per unit arc-length is
equal tow. The internal fluid of density p; is transported
from end A to end B with a uniform and steady flow
speed U. The internal area of pipe is represented by A;.
Figure 1(b) shows the deformed configuration of the
flexible pipe. The total arc-length S, is an unknown
parameter. The overhang length /is small compared with
the total arc-length S,. Therefore, the loads in the portion
of overhang length / can be neglected.

According to variational principle (Chucheepsakul
et al. 2003, Athisakul et al. 2011), the total virtual work
of the flexible pipe can be expressed as

The prime represents the derivatives with respect to
x. Since the beam material is linear elastic, the moment
curvature relation becomes

do
M = —Elx = —El—. 3
K o 3)

3. Finite element method

The span length L is divided into n equally spaced
regions or elements. Each of these elements has a
length /. The displacement of the beam segment is
approximated by

y(x) = [Nl{q}- (4)

where [NV] is the row of fifth-order polynomials shape
functions, and {¢} is the vector containing the values of
y and its first and second derivatives at both ends of
the element. Consequently, the system of element
equations can be expressed as follows:

L i n2_
Ely 2EI
5n:/ Y sy 2EVY s
0 (1

+y,2)5/2 (1 +y,2)7/2
M x=0 M x=L
A B
1+ ¥ - (1+7?) »

The first two terms represent the virtual strain
energy due to bending. The third term represents the
virtual strain energy due to axial deformation, where N
is the axial force in the pipe section. The fourth term is
the virtual work done by pipe’s weight. The fifth term
is the virtual work done by the internal flow inside the
pipe. The last two terms are the virtual work done by
the applied end moments.

According to differential geometry of a plane curve,
one obtains

do d . 0 )
d—::cos& d—i:sme, ds = /1 4 ydx, K:S—/:i%.

(2a—d)

Ny’
8y —wi/ 1+ y20y + p, A U*dy pdx
V1+y? l 0
1

on L r EL"
W= L
9q;i 0 (14 372)

pr[ 2E1y"2y’] (5)

+ [N

/1 +y/2 (1 +y,2)7/2

—[N]T{wy/ 14+y? - piAiKU2:| }dx.

The contribution from the applied moments is

on T Ma
_- =[N —2__
{aq}x—o,x—L V] (1+y7)

x=0

— [V

x=L
r My

()

Figure 1. (a) Undeformed configuration of flexible pipe; (b) deformed configurations of flexible pipe.
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For equilibrium, the total virtual of the system is
zero (0m=0). Therefore, the nonlinear global equili-
brium equation {f5} ={0} can be obtained by
assembling the element equations. The iterative proce-
dure is used to obtain the numerical solutions of the
global degree of freedom Q.

To find the critical configuration of the pipe, the
second variation of the total potential energy is derived
into the matrix form as (Athisakul and Chucheepsakul,
2008)

3 = {q}" [Krl{q}. (7)

The critical weight is evaluated by optimising for
an increment of load step by step until the determinant
of tangent stiffness matrix [K7] is equal to zero or it
changes sign from positive to negative (Athisakul and
Chucheepsakul, 2008). The critical weight is the
maximum value of pipe weight, which the equilibrium
of pipe is still satisfied.

4. Numerical results

The following nondimensional parameters are intro-
duced for the sake of generality.

s =s/s,x=x/L,y=y/L,§=s/L, (8a—d)

M = ML/EI,Q = QL?/EI,N = NL?/EI,

) (8e—1)
w=wL/EI,U = UL+\/p,A;/EL

The parameters p; and A; represent density of
internal fluid and internal cross-sectional area of the
pipe, respectively.

To validate the numerical results obtained from
this study, some numerical solutions for double
curvature bending of the variable-arc-length elastica
are evaluated as shown in Table 1. It is clearly found
that the numerical solutions obtained from this study
are in very good agreement with the exact solutions

Table 1. Validation of numerical results fosr elasticas with double curvature bending M = 3.

Rotation at end A 0, (rad)

Rotation at end B 0y (rad)

Total arc-length s,

EIM (Chucheepsakul FEM (this EIM (Chucheepsakul FEM EIM (Chucheepsakul FEM
p et al. 1999) study) et al. 1999) (this study) et al. 1999) (this study)
0.2 0.809178 0.809161 — 0.250095 — 0.250097 1.057947 1.057950
0.4 0.404192 0.404200 0.101105 0.101101 1.010185 1.010183
0.6 0.107839 0.107836 0.389108 0.389121 1.009265 1.009258
0.8 —0.144274 — 0.144305 0.652506 0.652565 1.031259 1.031254
1.0 — 0.357892 — 0.358003 0.887168 0.887392 1.066052 1.066079

Note: EIM, elliptic integral method; FEM, finite element method.

Table 2. Critical weights of flexible pipe for M=-2,—1,0,1,2and U:O, 0.5, 1.0.

£=0.0 p=0.2 p=04 p=0.6 p=0.8 p=10
Internal flow speed U=0.0
M=—2 15.3973 12.3742 9.6621 7.3203 5.4136 3.9953
M=—1 11.7910 10.3329 8.9553 7.6665 6.4751 5.3889
M=0 8.2527
M=1 4.7846 6.1236 7.5528 9.0644 10.6511 12.3040
M=2 1.3774 3.9242 6.8541 10.099 13.6007 17.3154
Internal flow speed U=0.5
M=—2 15.1678 12.1258 9.3909 7.0288 5.1015 3.6663
M=—1 11.5385 10.0692 8.6816 7.3831 6.1820 5.0863
M=0 7.9757
M=1 4.4836 5.8316 7.2706 8.7912 10.3857 12.0471
M=2 1.0524 3.6166 6.5641 9.8250 13.3420 17.0675
Internal flow speed U= 1.0
M=—-2 14.4967 11.3923 8.5905 6.1609 4.1709 2.6823
M=—1 10.7921 9.2927 7.8735 6.5436 5.3102 4.1840
M=0 7.1554
M=1 3.5896 4.9660 6.4326 7.9807 9.6009 11.2874
M=2 0.0822 2.7016 5.7040 9.0156 12.5758 16.3385
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Figure 2. Critical configurations of the pipe for U = 1.

computed from the elliptic integral method (Chu-
cheepsakul et al., 1999).

The particular problems of flexible pipes with the
total end moment M from — 2 to 2, and the internal
flow speed U of 0, 0.5 and 1.5 are considered. Table 2
shows the critical weights of the pipe for various values
of the proportional parameter f of the end moments.
As shown in Table 2, the critical weights depend on the
value of total end moments, the direction of end
moments and the internal flow speed. For M = 0 and
U = 0, the critical weight of 8.2527 is identical to the
value suggested by Athisakul and Chucheepsakul
(2008). In the case where M and f are specified, the
critical weight of the pipe decreases as the internal flow
speed increases. The critical configurations of the pipe
for U =1 are illustrated in Figure 2. Considering the
case of negative end moments, the critical weight
decreases as the parameters f§ increases (see Table 2).
According to the positive sign convention of the
applied end moments shown in Figure 1, the negative
end moment at end A resists the deflection induced by
the pipe weight while the negative end moment at end
B enlarges the deflection of the pipe. Therefore, the
deflection of the pipe at a critical state increases as the
parameter 5 of the negative end moment increases as
shown in Figure 2(a,b). On the contrary, the positive

end moment at end A enlarges the deflection of pipe
while the positive end moment at end B resists the
weight of pipe. Consequently, the deflection of the pipe
at critical state decreases as the parameter f§ of the
positive end moment increases as shown in Figure
2(c,d). For a given value of positive end moment, the
critical weight of pipe increases as the parameter f§
increases (see Table 2). Table 2 also shows that the
equilibrium of the pipe with the positive value of pipe
weight may not exist for the case of large end moment.

5. Conclusions

In this article, the critical uniform weight of the flexible
pipe subjected to two end moments is determined by
using the FEM. The end moments are applied at both
ends of the pipe in the same direction. The critical
weight of the pipe decreases as the internal flow speed
increases. As the parameter f§ increases, the critical
weight increases when the positive end moments are
applied. The results are opposite when the negative end
moments are applied, as the parameter f increases the
critical weight decreases. It is also found that the
equilibrium of the pipe with the positive value of pipe
weight may not exist when the absolute value of
moment becomes large.
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ABSTRACT

This paper aims to evaluate the critical weight of flexible pipe subjected to applied end moments at fixed
support locations. The pipe is hinged at one end, while the other end is free to slide over a frictionless
support. The horizontal distance between the two supports is fixed. The model formulation is developed
by the variational approach, and the finite element method is employed to obtain the numerical solutions.
The critical weights are evaluated for various values of end moments and the proportional parameter of
the end moments.

INTRODUCTION

The failure of flexible pipes used in offshore engineering operations causes severe environmental
pollution. In order to ensure the strength and stability of flexible pipe, accurate determination of the wall
thickness of pipe is necessary. There has been a considerable amount of research works dealing with the
stability of pipes conveying fluids such as Chen [/, and Paidoussis and Issid *. Thompson and Lunn !
presented the static elastic theory for nonlinear analysis of pipe conveying fluid. They found that the
internal flow velocity can induce the buckling-type or fluttering-type instabilities. The divergence
instability of a variable-arc-length elastica pipe due to steady flow velocity of internal fluid was presented
by Chucheepsakul and Monprapussorn /. They used the elliptic integral method to obtain analytical
solutions. However, this work is focused only on the effect of internal flow velocity by neglecting the
weight of the pipe and the internal fluid. A more recent investigation on nonlinear buckling of marine
elastic pipes transporting fluid was presented by Chucheepsakul and Monprapussorn ). They concluded
that the nonlinear buckling of the marine elastica pipe can occur due to insufficient stiffness and
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overloading. The critical weights of pipes for a particular example were also presented in their works.
Athisakul and Chucheepsakul ™ used the finite element method to evaluate the critical loads of the
variable-arc-length beam for various inclinations. Their results can be applied as benchmarks for the
analysis of free hanging marine pipes/risers. In order to reduce the stress at both the touchdown point and
at the platform connection, a subsea buoy is added to produce the S, Wave, and Camel configurations.
According to the subsea buoy system, the additional bending moment may occur at the ends of the pipes.
Consequently, flexible pipes have to resist the double curvature bending. Chucheepsakul et al. [7)
published a paper dealing with the double curvature bending of variable-arc-length elasticas under two
applied moments. The elliptic integral method was utilized to obtain the closed-form solutions. However,

the weight of structure is neglected.

This paper continues in this line of investigation by considering the combination of its uniform self-weight
and two applied moments at both ends in the same direction. Since the elliptic integrals method cannot be
applied to this kind of problems, the finite element method (FEM) is an alternative method to determine
the numerical solutions. The variational approach is employed to develop the model formulation. The
first variation of the total potential energy is derived to establish the system of nonlinear finite element
equations. The numerical solutions are obtained by an iterative procedure. The second variation of the
total potential energy is evaluated to form the tangent stiffness matrix of the pipes. The critical uniform
self-weights of the pipe are the maximum value, which the determinant of tangent stiffness matrix is
equal to zero. In practice, the critical uniform self-weight can be defined from changing the sign of

tangent stiffness matrix from positive to negative.
VARIATIONAL FORMULATION

Consider a flexible pipe of uniform flexural rigidity EI as shown in Figure 1(a). The pipe is supported by
a pin support at end A and by a frictionless support at end B. The constant distance between ends A and
Bis L. The pipe is subjected to a clockwise moment M, = (1 — ) M, at the end A and a clockwise
moment M = M, at the end B. The scalar parameter S represents the proportion of the moment at end
B to the total moment M,. The uniform self-weight of the pipe per unit arc-length is equal to w. The
internal fluid of density p; is transported from end A to end B with a uniform and steady flow speed U.
The internal area of pipe is represented by A;. Figure 1(b) shows the deformed configuration of the
flexible pipe. The total arc-length S, is an unknown parameter. The overhang length [ is small compared

with the total arc-length S,. Therefore. the loads in the portion of overhang length [ can be neglected.

A (Inlet) B Cloutlet)

mM\:( 1-8) M, M= M, m ‘
M,=(1-8) My

SERERETIRFRFEIR YR I

=S = A

I
L |

—

(a) (b)

Figure 1 (a) Undeformed configuration of flexible pipe; (b) Deformed configurations of flexible pipe.

According to variational principle " ', the total virtual work of the flexible pipe can be expressed as
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The first two terms represent the virtual strain energy due to bending. The third term represents the
virtual strain energy due to axial deformation, where N is the axial force in the pipe section. The fourth
term is the virtual work done by pipe’s weight. The fifth term is the virtual work done by the internal
flow inside the pipe. The last two terms are the virtual work done by the applied end moments.

According to differential geometry of a plane curve, one obtains

s

2a-d

S cnt, & i, tem /T o =

The prime represents the derivatives with respect to x. Since the beam material is linear elastic, the
moment curvature relation becomes

)

M =—FElIx =—EI
ds

3

FINITE ELEMENT METHOD

The span length L is divided into n equally spaced regions or elements. Each of these elements has a
length /. The displacement of the beam segment is approximated by

y () = [N]{q} 4)

where [ N] is the row of fifth-order polynomials shape functions, and { g} is the vector containing the
values of y and its first and second derivatives at both ends of the element. Consequently, the system of
clement equations can be expressed as follows

In T X T Ny ZEIy///Zy—/’ :|
(e 1= “Wj T HINT [ o Gy
—[NT[w /TT 5% — p,A,-KUZJ}dx (5)

The contribution from the applied moments is

{(777(} _ [N/]T M, ,2) ‘ =0 [\, :IT 13 6)
=0, 2=L

dq A+y (1+y

For equilibrium, the total virtual of the system is zero (dx = 0). Therefore, the nonlinear global
equilibrium equation {%} = {0} can be obtained by assembling the element equations. The iterative

procedure is used to obtain the numerical solutions of the global degree of freedom Q.

In order to find the critical configuration of the pipe, the second variation of the total potential energy is

derived into the matrix form ' as
= {q}T[KT]{(I} D

The critical weight is evaluated by optimizing for an increment of load step by step until the determinant
of tangent stiffness matrix [ K] is equal to zero or it changes sign from positive to negative [*/. The
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critical weight is the maximum value of pipe weight, which the equilibrium of pipe is still satisfied.

NUMERICAL RESULTS

The following non-dimensional parameters are introduced for the sake of generality.

s" =5s/s,y x=xa/L, y=y/L, s=s/L, (8 a-d)
M=ML/EI.Q = QL?/EI. N= NL?/EI., % = wl.*/EI, U= UL /p:A:/El (8 e-1)

The parameters ©; and A; represent density of internal fluid and internal cross sectional area of the pipe,

respectively.

In order to validate the numerical results obtained from this study, some numerical solutions for double
curvature bending of the variable-arc-length elastica are evaluated as shown in Table 1. It is clearly found
that the numerical solutions obtained from this study are in very good agreement with the exact solutions

computed from the elliptic integral method ™.

The particular problems of flexible pipes with the total end moment M from -2 to 2, and the internal
flow speed U of 0, 0.5, and 1.5 are considered. Table 2 shows the critical weights of the pipe for various
values of the proportional parameter S of the end moments. As shown in Table 2, the critical weights
depend on the value of total end moments, the direction of end moments, and the internal flow speed.
For M =0 and U =0, the critical weight of 8.252 7 is identical to the value suggested by Athisakul and
Chucheepsakul . In case where M and B are specified, the critical weight of the pipe decreases as the
internal flow speed increases. The critical configurations of the pipe for U =1 are illustrated in Figure 2.
Considering the case of negative end moments, the critical weight decreases as the parameters f increases
(see Table 2). According to the positive sign convention of the applied end moments shown in Figure 1,
the negative end moment at end A resists the deflection induced by the pipe weight while the negative end
moment at end B enlarges the deflection of the pipe. Therefore, the deflection of the pipe at a critical
state increases as the parameter 8 of the negative end moment increases as shown in Figures 2(a) and 2
(b). On the contrary, the positive end moment at end A enlarges the deflection of pipe while the positive
end moment at end B resists the weight of pipe. Consequently, the deflection of the pipe at critical state
decreases as the parameter f of the positive end moment increases as shown in Figures 2(c) and 2(d). For
a given value of positive end moment, the critical weight of pipe increases as the parameter f increases
(see Table 2). Table 2 also shows that the equilibrium of the pipe with the positive value of pipe weight

may not exist for the case of large end moments.

0.0 0.2 0.4 0.6 0.8 1.0

00 02 04 06 08 10 x 0.0 ! !
0.0 0051
0.05 -
0.10
0.10
0157 =00, %, =10.7921
0.15 £=00,, =14.4967 =00, 4, =10.
0.20 + =02 1w, =113923 0.20+ £=02,w,=92927
- - =0.4, W, =7.87
0.25 1 £ =04, W, =8.590 5 0251 AT=-10 B =04, 1:@, 8735
F=06, W, =6.160 9 O =1.0 B =0.6, W, =6.5436
s £=08, W, =4170 9 OB.O_r ’ £=08, Wer =5.3102
! B =10, v, =2.6823 2 B =10, W, =4.184 0

(a) (b)
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TABLE 1

Figure 2 Critical configurations of the pipe for ﬁ =1.

VALIDATION OF NUMERICAL RESULTS FOR THE PROBLEM OF

ELASTICAS WITH DOUBLE CURVATURE BENDING 1\//\1 =3

B =10, #, =16338 5
=08, W, =125758
B =0.6, W, =9.0156
B =04, W, =5.7040
=02, W, =27016
B =00, #, =0.0822

0.0 0.2 0.4 06 0.8 1.0 X
0_0 1 1 1 1 |

0.05 1

0.00
=10, W, =112874  0.151
£ =08, 3, =9.6009 0201
£ =06, i, =7.9807
B =04, i, =6.4326 0251 4r_20
B =02, 1, =4.9660 0307 =10
£=00, #, =3.5896 y

(d)

Rotation at end A Rotation at end B Total arc-length
04 (rad) 0 (rad) 8,

B EIM 7 (thiI:Fi\fdy) EIM 7 (thil?:;lt\:dy) EIM 7 (thi]:]:jfdy)
0.2 0.809 178 0.809 161 —0.250 095 —0.250 097 1.057 947 1.057 950
0.4 0.404 192 0.404 200 0.101 105 0.101 101 1.010 185 1.010 183
0.6 0.107 839 0.107 836 0.389 108 0.389 121 1.009 265 1.009 258
0.8 —0.144 274 —0.144 305 0.652 506 0.652 565 1.031 259 1.031 254
1.0 —0.357 892 —0.358 003 0.887 168 0.887 392 1.066 052 1.066 079
EIM = Elliptic integral method
FEM = Finite element method

TABLE 2 CRITICAL WEIGHTS OF THE FLEXIBLE PIPE FOR
M= —2,—1,0,1,2, ANDU =0, 0.5, 1.0
Internal Flow Speed lA] =0.0
£=0.0 £=0.2 B=0.4 £=0.6 8=0.8 B=1.0

M=-2 15.397 3 12.374 2 9.6621 7.3203 5.4136 3.9953

M=-1 11.7910 10.3329 8.9553 7.666 5 6.4751 5.3889

M=0 8.2527

M=1 4.784 6 6.123 6 7.5528 9.064 4 10.651 1 12.304 0

M=2 1.3774 3.9242 6.8541 10. 099 13.600 7 17.3154

Internal Flow Speed lA/ =0.5
£=0.0 B=0.2 8=0.4 £=0.6 8=0.8 B=1.0

M=-2 15.167 8 12.1258 9.3909 7.028 8 5.1015 3.666 3

M=-1 11.5385 10.069 2 8.6816 7.3831 6.1820 5.086 3

M=0 7.9757

M=1 4.4836 5.8316 7.270 6 8.7912 10.3857 12.047 1

M=2 1.0524 3.616 6 6.564 1 9.8250 13.3420 17.0675
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continued
Internal Flow Speed I.AJ =1.0

£=0.0 £=0.2 8=0.4 B=0.6 £=0.8 B=1.0
AZ[: — 2 14.496 7 11.3923 8.5905 6.160 9 4.1709 2.682 3
M=-1 10.792 1 9.2927 7.8735 6.543 6 5.3102 4.1840

M= 7.1554
M= 3.5896 4.966 0 6.4326 7.9807 9.6009 11.2874
/\//\[:2 0.0822 2.7016 5.704 0 9.0156 12.5758 16.3385

CONCLUSIONS

The finite element method for determining the critical uniform weight of the flexible pipe subjected to
two end moments is presented. The end moments are applied at both ends of the pipe in the same
direction. The critical weight of the pipe decreases as the internal flow speed increases. As the parameter
B increases the critical weight increases when the positive end moments are applied. The results are
opposite when the negative end moments are applied, as the parameter S increases the critical weight
decreases. It is also found that the equilibrium of the pipe with the positive value of pipe weight may not

exist when the absolute value of moment becomes large.
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