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The interaction between internal fluid and pipe wall of marine riser is thoroughly 
addressed. The acceleration of the internal fluid has to be formulated firstly in terms of 
the displacement of the riser and the internal fluid speed. This acceleration is used to 
derive the inertia force of transported fluid inside the riser which may be experiencing 
large displacement and large deformation. The model formulation of extensible marine 
riser is developed based on the extensible elastica theory and the work-energy 
principle. The finite element method is used to obtain the numerical solutions. The effect 
of interaction between internal fluid and pipe wall on static and dynamic behaviors of the 
extensible marine riser is presented. 
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Executive Summary 
 
Research Significant and Problem Statement 
The increasing demand on energy resources, especially in oil and gas, has driven the 
offshore production into deepwater and ultra deepwater fields. At present, there are a lot 
of deepwater offshore structures installed in all parts of the world. The new technologies 
for deep offshore industry are required and developed continuously. One of a key 
component for offshore production is the marine riser. 
 
The marine riser is a vertical pipe that extends from the offshore platform down to the 
well at the sea bed. There are two fundamental types of marine riser: drilling riser and 
production riser. Drilling riser is used to contain drilling mud and cutting from the 
borehole to the drilling platform, while production riser is used to transport hydrocarbons 
from the seabed to the production platform. Nowadays, the oil and gas companies try to 
develop new technologies for offshore production in over 2000 m of water. A damage of 
the riser system causes a severe environmental pollution and a significant financial 
consequence. Therefore, engineers and researchers must have a good understanding 
of marine riser behaviors. 
 
This report presents the effect of internal fluid and pipe wall interaction on static 
behavior and dynamic properties of marine riser. The model formulation of an extensible 
marine riser transporting fluid is developed by a variational approach. The finite element 
method is used to determine the numerical solutions. The effect of axial extensibility on 
large displacement and dynamic properties of marine riser are also investigated herein. 
 
Objective of Research 
The objectives of this research are as follows: 

• To present the concepts of fluid flow inside the extensible marine riser.  

• To develop the variational model formulation of the extensible marine riser 
transporting fluid. 

• To develop the finite element model for static and dynamic analysis of the 
extensible marine riser transporting fluid. 

• To investigate the effect of internal fluid and pipe wall interaction on static and 
dynamic behaviors of marine riser. 
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Research Methodology and Results 
The kinematics of marine riser and internal fluid inside the extensible marine riser has 
been addressed. The acceleration of the internal fluid has to be formulated firstly in 
terms of the displacement of the riser and the internal fluid speed.  The model 
formulation of an extensible marine riser is developed by the variational approach based 
on the elastica theory and the work-energy principle. The strain energy of the riser 
composes of the strain energy due to large axial deformation, and bending. The large 
axial strain is described by the total Lagrangian descriptor. The external virtual work of 
the riser is composed of the virtual work done by the apparent weight, the 
hydrodynamic forces, and the inertial forces.  
 
The finite element method is used to obtain the numerical solutions. For nonlinear static 
analysis, the system of finite element equations is solved by iterative numerical method. 
The static configurations are used as the initial configuration for free vibration analysis 
of marine riser. In this study, the linear free vibration of the marine riser is investigated. 
The natural frequencies and their corresponding mode shapes are determined by 
solving the boundary value problem. This problem is solved by the QR-algorithm. 
 
The numerical examples in this report are presented in order to investigate the effect of 
internal flow velocity on maximum displacement, maximum bending moment and 
dynamic properties of marine riser. The results indicate that the increase in internal flow 
velocity enlarges the riser displacement and changes the position of the maximum 
displacement down to the seabed. The increase in velocity of transporting fluid 
increases the maximum bending moment until the velocity reaches a value that induces 
a peak value of maximum bending moment. Beyond this velocity, the maximum bending 
moment no longer increases, but it is decreased. However, the maximum displacement 
continuously increases and the riser tends to have divergence instability. The negative 
flow velocity affects the nonlinear static behavior of the marine riser as same as the 
positive flow velocity. The internal flow velocity has an insignificant effect on the axial 
strain, the true-wall tension, and the apparent tension. The increase in internal flow 
velocity reduces the natural frequencies and the structural stability of the marine riser. 
The number of curvature for the mode shape of marine riser could be changed when 
the internal flow velocity reaches the critical values. The effect of the internal flow can 
be reduced by increasing the axial deformation. 
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1. Introduction 
1.1 Statement of the Problem 
The increasing demand on energy resources, especially in oil and gas, has driven the 
offshore production into deepwater and ultra deepwater fields. At present, there are a lot 
of deepwater offshore structures installed in all parts of the world. The new technologies 
for deep offshore industry are required and developed continuously. One of a key 
component for offshore production is the marine riser. 
 
The marine riser is a vertical pipe that extends from the offshore platform down to the 
well at the sea bed. There are two fundamental types of marine riser: drilling riser and 
production riser. Drilling riser is used to contain drilling mud and cutting from the 
borehole to the drilling platform, while production riser is used to transport hydrocarbons 
from the seabed to the production platform. Nowadays, the oil and gas companies try to 
develop new technologies for offshore production in over 2000 m of water. A damage of 
the riser system causes a severe environmental pollution and a significant financial 
consequence. Therefore, engineers and researchers must have a good understanding 
of marine riser behaviors. 
 
This report presents the effect of internal fluid and pipe wall interaction on static 
behavior and dynamic properties of marine riser. The model formulation of an extensible 
marine riser transporting fluid is developed by a variational approach. The finite element 
method is used to determine the numerical solutions. The effect of axial extensibility on 
large displacement and dynamic properties of marine riser are also investigated herein. 
 

1.2 Literature Review 
The analysis of marine riser has received considerable attention over the past several 
years. The first riser was installed in Mohole Project in 1949. St. Denis and Armijo [1] 
presented the first technical paper on dynamic analysis of the Mohole riser. From then 
on, many other interesting papers have been published on marine riser problems to 
increase the understanding of the static and dynamic behavior of the marine riser.  
 
In the literature, there are many papers related to analysis of marine riser as reviewed 
by Chakrabarti and Frampton [2], Ertas and Kozik [3], Jain [4] and Patel and Seyed [5]. 
A comprehensive review of the literature shows that the development of a model 
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formulation and computational technique is the main concern in riser analysis. The 
internal fluid transportation is a main function of marine riser, however, the effect of 
internal fluid and pipe wall interaction on the riser behavior has received a little 
attention.  
 
The effects of the internal fluid flow have been long investigated in many research 
studies dealing with the pipe conveying fluid. The vibrations of straight and curved pipes 
are presented in many papers, for example, Housner [6], Gregory and Païdoussis [7],  
Païdoussis [8], and Doll and Mote [9]. They stated that the liquid flow in the curve pipe 
would affect the tangential force. As a result, the internal flow can induce the flutter 
instability or the snaking behavior of cantilever pipes, and can generate the divergence 
instability or the statical buckling of simply supported pipes.  
 
In the early of 1980s, many papers have investigated the effects of the internal flow on 
the marine riser. They simplified that the internal flow induces only the friction force 
acting on the pipe wall and this force is vanished from the equation of motion. This 
simplification may not be sufficient for the large sagged pipes, because the internal 
friction force does not act directly on the riser pipe. It transmits the internal pressure into 
the pipe wall. This pressure reduces the internal tension of the marine riser [6-11]. In 
addition, the internal flow generated not only the effects of the pressure, but also other 
fictitious forces such as Coriolis and centrifugal forces. 
 
The misconception of the internal flow effect has been dispelled in the end of 1980s 
because many researchers in that period put their interest in this effect. Irani et al. [12] 
presented the dynamic analysis of the riser with internal flow and nutation dampers. 
They suggested that the steadily internal flow reduces the stiffness of the marine risers, 
and provides a negative damping mechanism. 
 
Patel and Seyed [13] presented a method for the analysis of the flexible risers subjected 
to a time varying internal flow. They concluded that the effect of the slug flow is 
significant for moderate to large water depths or in the large pressure area, and the slug 
flow caused additional source of the cyclic fatigue loading. 
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Moe and Chucheepsakul [14] used the asymptotic method and finite element method to 
obtain the natural frequencies of the flexible marine riser. They mentioned that the 
natural frequencies of the pipes are reduced when the internal flow velocity increase. 
This finding is also confirmed by Wu and Lou [15]. 
 
Chucheepsakul and Huang [16] investigated the effect of the steadily transported mass 
on the two-dimensional riser. They reported that the internal flow induces additional 
large displacements of the marine riser. At the state of low top-tensioning and low 
elastic modulus, the high flow rate leads to the divergence instability of the marine riser 
[17]. Chucheepsakul and Monprapussorn [18] investigated the nonlinear buckling of 
marine elastica pipes/risers transporting fluid. They solved the boundary value problem 
of the model by shooting optimization technique. Their results confirm that the effect of 
the internal flow velocity is to increase the large displacement and the critical top 
tension, and to decrease the critical pipe’s weight and the structural stability of the 
marine pipes/risers. 
 
Although the model formulations of the flexible marine riser transporting fluid have been 
presented by several scholars [19-22], their model formulations have not yet considered 
the geometric nonlinearity and the axial deformation of the marine riser. These themes 
have been taken into account in large strain model formulations of the extensible 
flexible marine pipes/risers by Chucheepsakul et al. [23]. This research aims to develop 
this model formulation for investigating the effects of internal fluid and pipe wall 
interaction on static and dynamic behavior of the extensible marine riser.  
 

1.3 Objectives 
The objectives of this research are as follows: 

• To present the concepts of fluid flow inside the extensible marine riser.  

• To develop the variational model formulation of the extensible marine riser 
transporting fluid. 

• To develop the finite element model for static and dynamic analysis of the 
extensible marine riser transporting fluid. 

• To investigate the effect of internal fluid and pipe wall interaction on static and 
dynamic behaviors of marine riser. 
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1.4 Assumptions 
The following assumptions are established in order to limit the scope of this study. 

• The material of the marine riser is linearly elastic. 

• At the undeformed state, the marine riser is straight, and has no residual 
stresses. 

• The riser’s cross sections remain circular after the change of cross-sectional 
size due to the axial deformation effect. 

• Every cross-section remains plane perpendicular to the axis. 

• The effect of the shear strain is small and can be neglected. 

• The effect of torsion is not considered. 

• The marine riser connections are presumed to be homogeneous with the riser 
body, and have the same properties. 

• The marine riser stiffness is determined from the cross-section of the riser only, 
the contribution from the drilling pipe and the surrounding kill and choke lines 
are not considered. 

• The internal and external fluids are inviscid, incompressible and irrotational.  
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2. Theoretical Concepts and Model Formulation 
 
In this chapter, theory and model formulation of the extensible marine risers are 
presented. A variational formulation is developed based on the extensible elastica 
theory and the work-energy principle. The strain energy due to bending, axial stretching 
and virtual work done by hydrostatic pressure and other external forces are involved in 
the variational model. The virtual work done by inertial forces of the riser and internal 
fluid are also included in the formulation. The outstanding feature of the model is the 
flexibility of the independent variable that is used to define elastic curves of the riser. 
The independent variable can be chosen between s,x, y, or z  to make it suitable for 
the particular problem. 
 

2.1 Kinematics of Marine Riser 
The riser configurations in each state can be described by using the position of the 
riser’s centroidal line as shown in the figure (2.1). At the top end, the riser is connected 
to the surface vessel with an appropriately tension ( aHN ) in order to prevent buckling 
due to its self weight and environmental loads. A connection of riser at the top end is a 
slip joint, which allows the relative motion between the moving surface vessel and the 
stationary seabed. At the seabed, the riser is connected to a ball joint locating inside the 
upper portion of the blowout preventer, or “BOP” stack. The horizontal offset of the 
vessel measured from the bottom end is represented by Hx  (figure 2.1).  
 
In this study, the two-dimensional Cartesian coordinate system is used to define 
position, motion, and deformation of the riser’s centroidal line. The Cartesian coordinate 
system ,x y  with unit vector ˆ ˆ,i j  is used as the global coordinate. The local coordinate 
system is represented by the tangential vector t̂ and normal vector n̂ . 
 
The first configuration of the riser is the undeformed configuration, which is an ideal 
configuration. The material point on the riser cross-section at the undeformed 
configuration can be defined by the position vector or  as shown below. 
 
 ˆ ˆ( ) ( )o ox i y jα α= +or  (2.1) 
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Figure 2.1 Three configuration states of an extensible marine riser. 
 

The parameter α  is used to define the riser configuration. This parameter is employed 
in the formulation for the sake of generality. Therefore, the users can choose any 
convenient coordinates such as o s o s o s o sx ,x ,x, y , y , y,z ,z ,z,s ,s ,s  to define the 
centroidal curve instead of parameterα .  
 
According to time independent loads (such as the apparent weight, the quasi-static load 
due to current, and the tangential force due to internal flow rate), the riser configuration 
is changed from the undeformed configuration to the equilibrium configuration. The 
material point on the riser cross-section at the equilibrium configuration is defined by the 
following position vector. 
 
 ˆ ˆ( ) ( ) ( ) ( ) ( )s sx i y jα α α α α= + = +s o sr r u  (2.2) 
 
The vector ( )αsu  represents a static displacement vector of marine riser, which is 
measured from the undeformed state. 
 
 ˆ ˆ( ) ( ) ( )s su i v jα α α= +su  (2.3) 
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When the riser is excited by the time dependent load such as wave and unsteady flows 
of transporting fluids, the riser will change its position from equilibrium to the dynamic 
configuration. As shown in figure 2.1, the position vector of the material point on the 
riser cross-section at the dynamic configuration is 
 
 ˆ ˆ( , ) ( ) ( , ) ( , ) ( , )t t x t i y t jα α α α α= + = +s dr r u  (2.4) 
 
The vector ( , )tαdu  represents the dynamic displacement vector of marine riser. It is 
measured from the equilibrium configuration.  
 
 ˆ ˆ( , ) ( , ) ( , )d dt u t i v t jα α α= +du  (2.5) 
 
Therefore, the position vector for the displaced configuration can be expressed by the 
following equations. 
 
 ( ) ( ) ( ) ( ) ( )ˆ ˆ,t ,t x u i y v jα α α= + = + + +or r u  (2.6 a) 
 ( ) ( ) ( ) ( ) ( )s d s d

ˆ ˆ,t ,t x u i y v jα α α= + = + + +s dr r u  (2.6 b) 
 
By taking the first and second derivative to equation (2.6) with respect to time t , the 
velocity ( , )tαPV  and acceleration ( , )tαPa  of the riser can be derived as follows. 
 
 ˆ ˆ( , ) ( , ) ( , )d dt u t i v t jα α α= = +PV r  (2.7) 
 ˆ ˆ( , ) ( , ) ( , )d dt u t i v t jα α α= = +Pa r  (2.8) 

 
The superscripts ( )  denotes the partial derivative with respect to time t .  

 
2.2 Axial Strain Definition 
Based on the differential geometry of plane curve, the derivative of arc-length at the 
undeformed state ( )os , the equilibrium state ( )ss , and the dynamic state ( )s  can be 
expressed by the following equations. 

 2 2
o o os x y′ ′ ′= +  (2.9) 

 ( ) ( )2 22 2
s s s o s o ss x y x u y v′ ′ ′ ′ ′ ′ ′= + = + + +  (2.10) 

 ( ) ( ) ( ) ( )2 2 2 22 2
o o o s d o s ds x y x u y v x u u y v v′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + = + + + = + + + + +  (2.11) 
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Based on the mechanics of deformable body, the axial strain can be defined by the total 
Lagrangian descriptor as follows 
 

Total strain: 1 1 2 1o
t t

o o

s s s L
s s

ε
′ ′ ′−

= = − = + −
′ ′

 (2.12a) 

Static strain: 1 1 2 1s o s
s s

o o

s s s L
s s

ε
′ ′ ′−

= = − = + −
′ ′

 (2.12b) 

Dynamic strain: 1 2 1 2s
d t s

o

s s L L
s

ε
′ ′−

= = + − +
′

 (2.12c) 

 
The Green strains ( tL , sL ) in equations (2.12) can be derived in the terms of riser 
displacements as follows. 

 
2 2

2

1
2 2t o o

o

u vL x u y v
s

′ ′⎛ ⎞
′ ′ ′ ′= + + +⎜ ⎟′ ⎝ ⎠

 (2.13a) 

 
2 2

2

1
2 2
s s

s o s o s
o

u vL x u y v
s

′ ′⎛ ⎞
′ ′ ′ ′= + + +⎜ ⎟′ ⎝ ⎠

 (2.13b) 

 
2.3  The Change of Differential Arc-length, Cross-Sectional Properties, and 

Internal Flow Velocity due to the Large Axial Strain 
The large axial strain of the riser cross-section leads to the change of differential arc-
length. Because the riser volume is conserved, the cross-sectional properties of the 
riser also change from the original to the deformed quantity. Moreover, the internal flow 
velocity is changed based on the continuity property of transporting fluid. Consequently, 
the differential arc-length, the cross-sectional properties, and internal flow velocity at 
each state are related to each other through the axial strain as follows. 
 

• Differential Arc-length 
The relations of large axial strain to the differential arc-length can be expressed as 
 

 
1 1

s
o

s t

ds dsds
ε ε

= =
+ +

 (2.14) 

 

• Cross-Sectional Properties 
If the large axial stain occurs on the riser, the differential arc-length is changed from its 
original quantity. Therefore, the volumetric strain of the riser is expressed as  
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 ( )1
1 1P tP Po P

v
Po Po o Po

Ad d A s
d A s A

ε
ε

+′∀ − ∀
= = − = −

′∀
 (2.15) 

 
Since the riser volume is conserved, the volumetric strain of the riser becomes zero. 
Therefore, the cross-sectional area of the riser in three states can be related to each 
other as 
 
 ( ) ( )1 1Po Ps s P tA A Aε ε= + = +  (2.16) 
 
From equation (2.16), one can obtain the relationships of diameter ( , ,Po Ps PD D D ), and 
moment of inertia ( , ,Po Ps PI I I ) of the riser in each state as follows. 
 
 1 1Po Ps s P tD D Dε ε= + = +  (2.17) 

 ( ) ( )2 21 1Po Ps s P tI I Iε ε= + = +  (2.18) 
 

• Internal Flow Velocity 
Based on the fluid mechanics [24], the continuity equation for incompressible fluid can 
be expressed as 
 
 ( ) ( ) ( ) ( ), ,io io is s is s i iA V A s V s A s t V s t= =  (2.19) 
 
From equation (2.19), one can see that the internal flow velocity is not uniform but it 
varies along the arc-length of the riser due to the change of the cross-sectional size. By 
using equation (2.16), the internal flow velocity at three states can be related to each 
other as 
 

 
( ) ( )1 1

is i
io

s t

V VV
ε ε

= =
+ +

 (2.20) 

 
where , ,io is iV V V  are the average velocity over a cross-section at undeformed, 
equilibrium, and dynamic state, respectively. 
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2.4 Hydrodynamic Forces due to Current and Wave 
Based on the Morison equation [25], the hydrodynamic forces can be expressed as 
follows. 

 

Hydrodynamic Froude-KrylovViscous drag force
mass force force

0.5Hn Dn n n n Hn
e e e e a e e

Ht Dt t t t Ht

f C V
D A C A

f C V
γ γ γ

ρ ρ ρ
π γ γ γ
⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫⎪ ⎪= = + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭

Hf  (2.21) 

 

where DnC , and DtC  represent the normal drag coefficient, and the tangential drag 
coefficient, respectively. The constant aC  is an added mass coefficient. The parameters 

eD  and eA  represent the external diameter and the external cross-sectional area, 
respectively. The relative current and wave velocities in normal and tangential directions 
can be represented by n Hn nV vγ = −  and t Ht tV uγ = − , respectively. The parameters nv  
and tu  are the riser velocities in normal and tangential directions, respectively. The 
parameters HnV  and HtV  represent the current and wave velocity in normal and 
tangential directions, respectively. 
 
In order to eliminates the absolute functions. The signum function is introduced 
 

 
( )

1 0
sgn

1 0
if
if
γ

γ
γ
≥⎧

= ⎨− <⎩
 (2.22)  

 

By using the signum function, equation (2.21) can be arranged into the form as 
 

2

2

Added mass force Hydrodynamic excitationHydrodynamic damping

00
00

Hn n neqna Dn Hn M Hn

Ht t teqta Dt Ht M Ht

f v vCC C V C V
f u uCC C V C V

∗∗ ∗ ∗

∗∗ ∗ ∗

⎡ ⎤⎡ ⎤ ⎧ ⎫+⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= = − − +⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ +⎢ ⎥⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎩ ⎭⎣ ⎦

Hf  (2.23) 

 
where, the coefficients of equivalent normal damping eqnC∗ , normal drag force DnC∗ , 
tangential damping eqtC∗ , tangential drag force DtC∗ , and the equivalent coefficients of 
added mass aC∗  and inertia forces MC∗  are 
 

 [ ]2eqn Dn Hn nC C V v∗ ∗= − , ( )0.5 sgnDn e e Dn nC D Cρ γ∗ = ⋅  (2.24 a-b) 
 [ ]2eqt Dt Ht tC C V u∗ ∗= − , ( )0.5 sgnDt e e Dt tC D Cρ π γ∗ = ⋅  (2.24 c-d) 

 
a e e aC A Cρ∗ = , M e e MC A Cρ∗ =  (2.24 e-f) 

 
in which 1M aC C= +  is the inertia coefficient.  
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With some manipulations, equation (2.23) can be transformed to an equation in the 
Cartesian coordinate system as follows. 
 

Added mass force Hydrodynamic damping force

0
0

Hx eqx eqxya

Hy eqxy eqya

f C Cx xC
f C Cy yC

∗ ∗∗

∗ ∗∗

⎡ ⎤⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= = − − ⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥

⎢ ⎥⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎣ ⎦ ⎣ ⎦
Hf  

                                            
2 2

1 2
2 2

2 1

Hydrodynamic excitation

2
2

Dx Hx Dxy Hx Hy Dxy Hy M Hx

Dy Hy Dxy Hx Hy Dxy Hx M Hy

C V C V V C V C V
C V C V V C V C V

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

⎧ ⎫+ + +⎪ ⎪+ ⎨ ⎬+ + +⎪ ⎪⎩ ⎭
 (2.25) 

 

where HxV  and HyV  are the components of current and wave velocities in x and y 
direction. Since the current and wave are normally in the horizontal direction, the 
components of current and wave velocities become 
  

 ,Hx c wV V V= +  0HyV =  (2.26a-b) 
 

The profile of current velocity ( )c cV V y=  is a polynomial function as shown below. 

 

 

n

b
c cH

H b

y yV V
y y

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠  

(2.27) 

 

where cHV  is the current velocity at mean sea level, and by  and Hy  are defined in 
figure (2.1). The degree n  can be varied from 0 to1 depending on the current profile. In 
this study, 1/ 7n =  is employed for the tidal current profile [26]. 
 

The velocity of wave particle wV  can be determined based on the Airy’s wave theory. 
According to the direction of x and y axes as indicated in figure 2.1, the horizontal 
velocity of wave particle at any time t  can be expressed as shown below [27]. 
 

 cosw wa wV V tω=  (2.28) 
 

The wave frequency wω  is defined by 

 2
w T

πω =  (2.29) 

where T is the wave period. 
The velocity amplitude waV  is a function of y as 
 

 ( ) ( )b H bk y y y y
wa a wV eς ω ⎡ ⎤+ − +⎣ ⎦=  (2.30) 
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This equation is used for deep water, ( ) 0.5H by y λ+ ≥ . The wave amplitude aς  is 
small in comparison with the wave length λ  and the water depth ( )H by y+ . The wave 
amplitude is defined by 

 
2a
Hς =  (2.31) 

where H  is the wave height. The wave number k  is defined in term of the wave length 
by  

 2k π
λ

=  (2.32) 

According to equation (2.25), the coefficients of equivalent hydrodynamic damping force 
in x  and y  direction are 

 
2 2cos sineqx eqn eqtC C Cθ θ∗ ∗ ∗= +  (2.33a) 

 
2 2sin coseqy eqn eqtC C Cθ θ∗ ∗ ∗= +  (2.33b) 

 

the coupling coefficients of equivalent hydrodynamic damping force in x y−  plane can 
be expressed as 

 
( )sin coseqxy eqn eqtC C C θ θ∗ ∗ ∗= − +  (2.34) 

 
the coefficients of equivalent of drag force in x  and y  directions are 
 

 
3 3cos sinDx Dn DtC C Cθ θ∗ ∗ ∗= +  (2.35a) 

 
3 3sin cosDy Dn DtC C Cθ θ∗ ∗ ∗= − +  (2.35b) 

 
and the coupling coefficients of drag force in x y−  plane can be expressed as 
 

 
2 2

1 sin cos sin cosDxy Dn DtC C Cθ θ θ θ∗ ∗ ∗= − +  (2.36a) 

 
2 2

2 sin cos sin cosDxy Dn DtC C Cθ θ θ θ∗ ∗ ∗= +  (2.36b) 
 
For static analysis, the flow of external fluid is considered as a steady flow. Therefore, 
the hydrodynamic forces can be reduced to 
 

 
2

2
Hns Dns Hns

Hts Dts Hts

f C V
f C V

∗

∗

⎧ ⎫⎧ ⎫
= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

Hsf  (2.37) 

 
2 2

1 2
2 2

2 1

2
2

Hxs Dxs Hxs Dxy s Hxs Hys Dxy s Hys

Hys Dys Hys Dxy s Hxs Hys Dxy s Hxs

f C V C V V C V
f C V C V V C V

∗ ∗ ∗

∗ ∗ ∗

⎧ ⎫+ +⎧ ⎫ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬+ +⎪ ⎪⎩ ⎭ ⎩ ⎭
Hsf  (2.38) 
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2.5 Fluid and Pipe Wall Interaction 
The hydrostatic pressure due to the external fluid and internal fluid has an influence on 
the axial tension inside the riser. The internal fluid flow inside the riser can induce the 
instability of marine riser. Consequently, the effect of fluid and pipe wall interaction on 
marine riser’s behavior has to be carefully investigated. The theoretical concepts of fluid 
and pipe wall interaction for analysis of marine riser can be briefly presented in this 
section.  
 
2.5.1 Hydrostatic pressure and concept of the apparent tension 
Based on the Archimedes’ law and superposition technique [28], the real system of the 
riser can be transformed to the apparent system as shown in figure 2.2. By using the 
superposition technique, the forces on the real system of the riser in figure 2.2(a) can 
be separated into two groups as shown in figures 2.2(b1) and 2.2(b2).  
 
Because the Archimedes’ law can be applied directly only to pressure fields that are 
completely closed, the missing pressures are added into both ends of the riser segment 
in figure 2.2(c1). In order to balance the missing pressures, the same value of the 
missing pressures have to be added into both ends of the riser segment in figure 
2.2(c2). As a result in figure 2.2(c1), the pressure fields are closed and Archimedes’ law 
is now applicable.  
 
The enclosing external and internal pressure fields induce the buoyancy force ew , and 
the internal fluid weight iw . Moreover, these pressure fields also induce the triaxial 
stresses which provoke the axial force triN  [23]. Therefore, the pressure fields in figure 
2.2(c1) can be replaced by the apparent weight and the axial force triN  as shown in 
figure 2.2(d1). In which, the apparent weight that is the net weight per unit length of the 
riser can be expressed in three deformation descriptor as 
 
  ( )a p p e e i iw A A A gρ ρ ρ= − +  (2.39) 

 
where p e, ,ρ ρ  and iρ  are the densities of the riser, the external fluid, and the internal 
fluid respectively.  
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Figure 2.2 Transformation of the real system into the apparent system 
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Based on the theory of elasticity [29], the axial force ( )triN  that appears in figure 
2.2(d1) can be expressed as 
 
 ( )( )tri e e i iN 2 1 p A p Aν= − −  (2.40) 

 
where ep  is the external hydrostatic pressure around the riser, and ip  is the internal 
hydrostatic pressures in the riser. By the addition of the balance forces due to the 
missing pressure on the riser segment in figure 2.2(c2), one obtains the effective 
tension [28] which is the sum of the true wall tension N and balance forces as shown in 
figure 2.2(d2). The expression of the effective tension is 
 

  e e e i iN N p A p A= + −  (2.41) 
 
Finally, by adding the two groups of forces in figures 2.2(d1) and 2.2(d2), the apparent 
system of marine riser can be depicted as figure 2.2(e). Consequently, the apparent 
tension ( )aN  can be derived as follows. 
 
  ( )a e tri e e i i pN N N N 2 p A p A EAν ε= + = + − =  (2.42) 

 
2.5.2 Kinematics of the incompressible fluid flow inside the marine riser 
The flow inside riser is assumed to be the one dimensional fully developed plug flow. 
The flow is also simplified that all points of the internal fluid having a velocity FPV  

relative to the riser. Consequently, the absolute velocity of internal fluid flow can be 
expressed as 
 FP

ˆV t= +F pV V  (2.43) 
 
where PV  is the velocity of the riser. The unit tangent vector t̂  is defined by 
 

  x y 1 x yˆ ˆ ˆ ˆt̂ i j i j
s s s α α
′ ′ ∂ ∂⎡ ⎤= + = +⎢ ⎥′ ′ ′ ∂ ∂⎣ ⎦

 (2.44) 
 

Consequently, the velocity of transported fluid can be written in the normal and 
tangential coordinates as 
 
  ( ) ( )t n FP t FP n

ˆ ˆ ˆˆ ˆu t v n V t u V t v n= + + = + +FV  (2.45) 
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where tu ,and nv  are the components of riser displacement vector in tangential and 
normal directions, respectively. 
The velocity of transported fluid can also be written in the fixed Cartesian coordinate as 
 

  FPVx y x yˆ ˆ ˆ ˆi j i j
t t s α α
∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤= + + +⎢ ⎥ ⎢ ⎥′∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

FV  (2.46) 

Consequently,  

  ( ) rFPV Dˆ ˆxi yj
t s Dtα
∂ ∂⎛ ⎞= + + ≡⎜ ⎟′∂ ∂⎝ ⎠

FV  (2.47) 

where FPVD
Dt t s α

∂ ∂⎛ ⎞= +⎜ ⎟′∂ ∂⎝ ⎠
 is the material derivative for the fluid element. Therefore, 

 

  FP FP
x yˆ ˆx V i y V j
s s
′ ′⎡ ⎤ ⎡ ⎤= + + +⎢ ⎥ ⎢ ⎥′ ′⎣ ⎦ ⎣ ⎦

FV  (2.48) 

 
In a same manner, the acceleration of the internal fluid [30] is found to be 
 

  
( ) r2

F
2

D V D
Dt Dt

= =Fa  (2.49) 
 

Consequently,  

( )

( )

( )

( )

( )

( ) ( ) ( ) ( )

( )22 2 2 2
FP FP FP FP FP FP FP

2 2 2 2 3

41 5 62 3

2V V V V V V s V s
t s t s s s s sα α α

⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂′ ′ ′′⎛ ⎞ ⎛ ⎞= + + + + − −⎢ ⎥⎜ ⎟ ⎜ ⎟′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎢ ⎥
⎣ ⎦

P P P P
F

r r r r
a  (2.50) 

 
where term (1) is the acceleration of riser, term (2) is the coriolis acceleration, term (3) 
is the centripetal acceleration, term (4) is the local acceleration due to unsteady flow, 
term (5) is the convective acceleration due to non-uniform flow, and term (6) is the 
relative accelerations due to local coordinate rotation and displacement. The magnitude 
of  FPV  is changed depend on the change of axial strain at each states as show in 
equation (2.20), therefore FP ioV V=  at the undeformed state, FP isV V=  at the equilibrium 
state, and FP iV V=  at the displaced state.  
 
According to the differential geometry of plane curve, one obtains following expressions. 
 

  = ˆs t′ ′r , t̂ n̂
s

κ
′
=
′

, 3

x y x y
s s
θκ
′ ′′ ′ ′ ′′−

= =
′ ′

, x sin ,
s

θ
′
=

′
 y cos

s
θ

′
=

′
 (2.51 a-e) 
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2

2
2

ˆˆs n s tκ
α
∂ ′ ′′= +
∂

r , ( )
t

2 ˆ ˆs t t sˆ ˆ ˆs t s s t ss n
t s t

κ
α

′∂∂ ∂ ∂′ ′ ′ ′= = + ⋅ = +
∂ ∂ ∂ ∂ ∂

r  (2.51 f-g) 

  s s x x y y′ ′′ ′ ′′ ′ ′′= + , s s x x y y′ ′ ′ ′ ′ ′= +  (2.51 h-i) 
 
By using equations (2.51), the acceleration of transported fluid at the displaced state 
can be written in the normal and tangential coordinates as follows. 
 

  2i i i
t i n i i

V s VV ˆ ˆu V t v 2V s V n
s s

κ κ
⎡ ⎤′ ′⎡ ⎤ ⎢ ⎥= + + + + + +⎢ ⎥′ ′ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Fa  (2.52) 

 
With some manipulations, the acceleration of transported fluid at the displaced state can 
also be written in the fixed Cartesian coordinate as follows. 
 

2
2 i

i i3 3

DV2 x x y y x ˆx x y V V i
s s s s Dt s

κ⎧ ⎫⎡ ⎤′ ′ ′ ′ ′⎛ ⎞⎪ ⎪⎛ ⎞⎛ ⎞ ⎛ ⎞′ ′= + − − + +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
Fa  

 
2

2 i
i i3 3 4

DVx y 2 y x y ˆy x y V V j
s s s s Dt s

κ⎧ ⎫⎡ ⎤′ ′ ′ ′ ′⎛ ⎞⎪ ⎪⎛ ⎞⎛ ⎞ ⎛ ⎞′ ′+ + − + − − +⎨ ⎬⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
 (2.53) 

 
By eliminating time dependent terms in equations (2.45), (2.48), (2.52), and (2.53), one 
obtains the velocity and the acceleration of the transported fluid at equilibrium state in 
the normal and tangential coordinates as 
 

   = is s
ˆV tFsV , ( )2is is

s is s s
s

V V ˆ ˆt V n
s

κ
⎛ ⎞′

= +⎜ ⎟′⎝ ⎠
Fa  (2.54 a,b) 

 
and in the fixed Cartesian coordinate system as 
 

   = is s is s

s s

V x V yˆ ˆi j
s s
′ ′⎛ ⎞ ⎛ ⎞

+⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠
FsV  (2.55) 

  2s s is is s
is

s s s

y V V x ˆV i
s s s

κ⎧ ⎫⎡ ⎤ ⎛ ⎞′ ′ ′⎪ ⎪= +⎨ ⎬⎜ ⎟⎢ ⎥′ ′ ′⎪ ⎪⎣ ⎦ ⎝ ⎠⎩ ⎭
Fsa 2s s is is s

is
s s s

x V V y ˆV j
s s s
κ⎧ ⎫⎡ ⎤ ⎛ ⎞′ ′ ′⎪ ⎪+ − +⎨ ⎬⎜ ⎟⎢ ⎥′ ′ ′⎪ ⎪⎣ ⎦ ⎝ ⎠⎩ ⎭

 (2.56) 

 
 
 



18 
 

2.6 Variational Model Formulation 
The model formulation used in this study is developed by the variational approach. 
Theoretically, the strain energy includes those contributions from axial deformation and 
bending deformation. The external virtual work of the riser system is composed of the 
virtual works done by the effective weight, hydrodynamic loading and inertial forces of 
the riser mass and the transported fluid mass. These expressions can be shown briefly 
in the following subtopics.   
 
2.6.1 Strain energy due to axial deformation 
Based on the total Lagrangian description [23], the strain energy due to axial 
deformation of the apparent system of the riser is 
 

 

ts 2
po t

a
0

EA
U ds

2
ε

= ∫  (2.57) 

 
Since the riser is a submerged structure, the effect of pressure fields from external and 
internal fluid has to be considered [13,23,28]. Based on theory of elasticity, the total 
axial strain tε for elastic isotropic riser can be expressed in terms of the true wall 
tension N  and fluid pressures by equation (2.58). 
 

 
( )t e eo i io

po

1 N 2 p A p A
EA

ε ν= + −⎡ ⎤⎣ ⎦
 

(2.58) 

 
By rearranging the equation (2.58), the apparent tension can be written again as  
 
 ( )a e eo i io po tN N 2 p A p A EAν ε= + − =   (2.59) 
 
By taking the first variation to equation (2.57) and adopting equation (2.59), one obtains 
the virtual strain energy due to axial deformation as shown below. 
 

 

t

o

a a a
x yU N u N v d
s s

α

α

δ δ δ α
′ ′⎡ ⎤′ ′= +⎢ ⎥′ ′⎣ ⎦∫  (2.60) 
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2.6.2 Strain energy due to bending 
According to the total Lagrangian description, the strain energy due to bending can be 
expressed as 

 

s 2

b
Po0

MU ds
2EI

= ∫  (2.61) 

 
Based on the elastica theory of extensible risers/pipes [23], the moment-curvature 
relation of the riser system can be written in the following form: 
 

   PoM EI (1 )ε κ= +  (2.62) 
   
By substituting equation (2.62) into Eq. (2.61), one obtains 
 

 
( )

ts
22

b Po
0

1U EI 1 ds
2

κ ε= +∫
 

   (2.63) 

 
The virtual strain energy due to bending is derived by taking a first variation of equation 
(2.63) and changing variable ds  to be dα . The virtual strain energy due to bending 
can be written as  

 

t

o

bU M d
α

α

δ δθ α′= ∫  (2.64) 

 
By substituting equations (2.51) and (2.62) into equation (2.64), one obtains 
 

t

o

2
b 2

B y x s yU u B B u
s s s s s

α

α

κδ δ κ κ δ
⎧ ′ ′ ′′ ′⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞′′ ′= + − −⎨ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′ ′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎩
∫  

 

2
2

B x y s xv B B v d
s s s s s
κ δ κ κ δ α

⎫′ ′ ′′ ′⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞′′ ′− + − + ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′ ′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎭
 (2.65) 

 
where ( )pB EI 1 ε= +  is the bending rigidity of the riser. 
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2.6.3 External virtual work 
The external virtual work of the riser is composed of the virtual work done by the 
apparent weight, the hydrodynamic forces, and the inertial forces. The expressions of 
these virtual works can be expressed in the fixed Cartesian coordinate system as 
follows. 
 
The virtual work done by the apparent weight of the riser can be expressed as 
 

 

t t

o

s

w a a
0

W w vds w s vd
α

α

δ δ δ α′= − = −∫ ∫  (2.66) 

 
The virtual work done by hydrodynamic force can be expressed as follows 
 

 

t

o

H Hx HyW f s u f s v d
α

α

δ δ δ α′ ′⎡ ⎤= +⎣ ⎦∫  (2.67) 

 
Based on the Newton’s second law, the inertial force from internal flow velocity is 
defined as 

 
a

t

o

i iF m s d
α

α

α′= − ∫  (2.68) 

 
The external virtual work done by the inertial forces of the riser and transporting fluid is 
 

 
( ) ( )I p px i Fx p py i FyW m a m a s u m a m a s v d

α

δ δ δ α⎡ ⎤′ ′= − + + +⎣ ⎦∫  (2.69) 

 
where pm  is the mass of riser per unit length, im  is the mass of transported fluid per 
unit length, pxa , and pya  are the components of the riser acceleration vector (equation 
(2.8)), and Fxa , and Fya  are the components of the transporting fluid acceleration 
vector (equation (2.53)).  
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2.6.4 Total virtual work equation 
Based on the virtual work principle, the total virtual work-energy of the riser system is 
 

 ( ) ( )a b w H IU U W W Wδπ δ δ δ δ δ= + − + +  (2.70) 
 
By substituting equations (2.60), (2.65), (2.66), (2.67), and (2.69) into equation (2.70), 
one obtains the total virtual work equation as shown below. 
 

( )2
2

t

o

a
B y x s yu N B B u d
s s s s s

α

α

κδπ δ κ κ δ α
⎧ ⎫′ ′ ′′ ′⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞′′ ′= + − −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′ ′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭
∫  

 
( )2

2

t

o

a
B x y s xv N B B v d
s s s s s

α

α

κ δ κ κ δ α
⎧ ⎫′ ′ ′′ ′⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞′′ ′+ − + − +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′ ′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭
∫

 
  { }Hx p px i Fxs f m a m a u d

α

δ α′ ⎡ ⎤− − −⎣ ⎦∫   

  { }a Hy p py i Fys w f m a m a v d
α

δ α′ ⎡ ⎤− − + − −⎣ ⎦∫   (2.71)  

 
For static analysis of marine riser, the time dependent terms in equation (2.71) are 
eliminated. Consequently, equation (2.71) can be reduced to 
 

( )2
2

t

o

s s s s s
s s as s s s

s s s s s

B y x ysu N B B u d
s s s s s

α

α

κδπ δ κ κ δ α
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′′′⎪ ⎪′′ ′= + − −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∫  

( )2
2

t

o

s s s s s s
s as s s s s s

s s s s s

B x y s xv N B B v d
s s s s s

α

α

κ δ κ κ δ α
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′′ ′⎪ ⎪′′ ′+ − + − +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∫  

2
t

o

Hn s Ht s i s s i sf y f x m y V u d
α

α

κ δ α′ ′ ′⎡ ⎤+ − + −⎣ ⎦∫  

2

1

t

o

a s
Hn s Ht s i s s i s

s

w s f x f y m x V v d
α

α

κ δ α
ε

⎡ ⎤′
′ ′ ′+ − − − + +⎢ ⎥+⎣ ⎦

∫
 

(2.72)  

 

 
Equation (2.72) is used for calculating the static equilibrium configuration of marine 
riser. This equation is suitable for the case of the applied top tension is specified and 
the total arc-length of riser is an unknown. The arc-length of the riser depends on the 
coordinate of the riser configuration and it can be determined by using equations (2.10) 
and (2.14).  
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2.6.5 Constraint equation and Modified total virtual work equation 
In the case of the total arc-length is specified, the top tension that is sufficient to 
maintain the equilibrium of riser is an unknown. The assumed top tension may be 
guessed and then adjust the value until the arc-length reaches to the specified value. 
However, this method is not efficient for numerical computation. Therefore, a better 
technique, which is the Lagrange multiplier method, is used.  
 

According to equation (2.10), the total arc-length of the riser can be calculated as 
shown below. 
 
 { }2 2

totalds y x d S
α α

α′ ′= + =∫ ∫  (2.73) 

 
In the procedure, a Lagrange multiplier is introduced in the constraint condition. When 
the value of stretched arc-length ( )totalS  is specified, this introduces the constraint 
condition which is written as 
 
 { }2 2

totalg y x d S 0
α

α′ ′= + − =∫  (2.74) 

 
Based on the virtual work principle, the total virtual work of the riser system is equal to 
zero when the riser system is in equilibrium. Therefore, equation (2.72) has to be 
minimized to zero with the constraint equation (2.74). According to the Lagrange 
multiplier technique, the unknown variable λ  is added to the system and the total 
virtual work equation is modified as follows. 
 
 ( )* gδπ δπ δ λ= +  (2.75) 
 
where *δπ  is the modified total virtual work. After performing variation of the second 
term in equation (2.75), one obtains 

( )* 2
2a

B y x s yu N B B u d
s s s s sα

κδπ δ κ κ δ α
⎧ ⎫′ ′ ′′ ′⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞′′ ′= + − −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′ ′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭
∫  

 
( )2

2a
B x y s xv N B B v d
s s s s sα

κ δ κ κ δ α
⎧ ⎫′ ′ ′′ ′⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞′′ ′+ − + − +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′ ′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭
∫  

 
[ ]{ }Hx P Px i Fx a Hy P Py i Fys f m a m a u s W f m a m a v d

α

δ δ α′ ′ ⎡ ⎤+ − − − − − + − −⎣ ⎦∫   

 
{ }2 2 0total

yx u v d x y d S
s sα α

λ δ δ α α δλ
⎛ ⎞⎧ ⎫′′⎡ ⎤⎛ ⎞⎛ ⎞ ′ ′ ′ ′+ + + + − =⎨ ⎬ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭ ⎝ ⎠

∫ ∫  (2.76) 
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3. Finite Element Model 
 
Based on the theoretical formulation in chapter 2, there are several nonlinear terms in 
the formulation. Because of this, one cannot evaluate the closed-form solution for 
marine riser problems. Therefore, the numerical techniques are required to investigate 
this complicate problem. In this study, the finite element method is used to evaluate the 
numerical solutions in both static and dynamic problems.  
 

3.1 Finite Element Model for Nonlinear Static Analysis 
In general, the riser will vibrate around its static configuration which is commonly 
nonlinear. Therefore, the nonlinear static solutions have to be evaluated before 
calculating the dynamic properties of the riser. 
 
Because the top end of the riser can slide through the slip joint, the total arc-length of 
the riser measured from the seabed to the slip joint may not be known until the 
equilibrium configuration is determined. Therefore, the discretization along the arc-length 
may not be convenient to set up the boundary condition at the top end. In order to 
eliminate this problem, the discretization of the riser element along the sea water level 
is applied instead of the total unknown arc-length as shown in Fig. 3.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1The discretization of the riser along the water depth. 
 

x

y

sHy
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3.1.1The applied top tension is specified 
For the case of the applied top tension is specified, the sea water level ( )sy  is used as 
an independent variable ( )α . Therefore, the virtual work energy of the riser at 
equilibrium state can be expressed as 
 

2 4
0

2
Hy

s s as s s s s s
s s s

s s s

B N x B x xu u dy
s s s
κ κδπ δ δ

⎧ ⎫⎡ ⎤′′′ ′⎪ ⎪′′ ′= + −⎢ ⎥⎨ ⎬′ ′ ′⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∫ 2

0

Hy

Hn Ht s i s i s sf f x m V u dyκ δ′⎡ ⎤+ − + −⎣ ⎦∫  

 (3.1) 
wherethe axial tension inside the riser can be determined by 
 

  ( ) ( ) ( )
sH

so

y
a

as so as sH s s s s Hts is Fts s
sy

wN y N y B s f m a dy
s

κ κ
⎡ ⎤⎛ ⎞′ ′= + + − + −⎢ ⎥⎜ ⎟′⎝ ⎠⎣ ⎦

∫  (3.2) 

 
The large displacement of the riser ( )sx  is composed of two components. First is the 
linear component ( )slx , which can be directly calculated by linear interpolation. Second 
is the nonlinear component ( )su , which is approximated by the fifth degree polynomial. 
Hence, the large displacement of the riser can be written as shown below.   
 

 s sl sx x u= +  (3.3) 

 [ ]{ }s s siu N d=  (3.4) 
 
Vanishing of the virtual work-energy functional expressed in equation (3.1) yields the 
following system of nonlinear equilibrium equations ( ( )si si/ d d 0δπ π δ= ∂ ∂ = ). 
 

 2 4

2
Th

Ts ss as s s s s s

si s s so

N B N x B x xN
d s s s

κπ κ⎧ ′′ ⎡ ⎤′ ′′ ′∂ ⎢ ⎥⎪ ⎣ ⎦ ′= + −⎢ ⎥⎨ ⎢ ⎥⎣ ⎦′ ′ ′∂ ⎣ ⎦⎪⎩
∫  

  }2 0T
ns ts s i is s is sN f f x A V dyρ κ′⎡ ⎤− + − =⎢ ⎥⎣ ⎦ ⎣ ⎦  (3.5) 

 
The effect of external moments at top and bottom end is taken into account by the 
following natural boundary conditions. 
 

  
[ ] ( ) [ ] ( )

x 0 x L

T TA B
2 2

M MN N 0
1 y 1 y

= =

′ ′− − =
′ ′+ +

 (3.6) 
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The essential boundary conditions or geometric boundary conditions are up to the riser 
supports. At top end, the riser is held by the slip joint that allows the riser to change its 
length when the vessel heaves and moves laterally. At the seabed, the riser is 
connected to a ball joint located inside the blowout preventer. Therefore, the boundary 
conditions of the riser system are 
 
(at bottom end, sy 0= )  s su 0,u 0′′= =  (3.7a,b) 
(at top end, s sHy y= ) s s as asHu 0,u 0,N N ,′′= = =  (3.7c-e) 
 
Equation (3.5) is a system of nonlinear equations which requires a computer program to 
find the solutions. The followings are the solution steps of the program.  
 

1. Read the input data from the data file. 
2. Assume the initial guessed values of all degrees of freedom. 
3. Calculate the constant parameters. 
4. Label node numbers for all elements. 
5. Form the system of finite element equations by using equations (3.2)-(3.5). 
6. Assemble the element equations to obtain the finite element model of the global 

system. 
7. Impose the boundary conditions of the problem, equations (3.6)-(3.7). 
8. Solve the finite element model of the global system which is the system of 

nonlinear equations. In this study, the subroutine DNEQNF, which is one of the 
fortran routines in IMSL math library, is used to solve this system of nonlinear 
equations. This routine uses a modified Powell hybrid algorithm and a finite-
difference approximation to the Jacobian[31]. The routine will correct and update 
the guessed values of degrees of freedom and repeat steps 5-7 until the 
stopping error criterion is satisfied. 

9. Save the numerical results in the result files. 
 
In this study, the computer program is written in the Fortran-90 language.  
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3.1.2The total arc-length of the riser is specified 
For the case of the total arc-length is specified, the Lagrange multiplier technique is 
applied. The modified total virtual work equation is 
 

*
2 4

0

2
Hy

s s as s s s s s
s s s

s s s

B T x B x xu u dy
s s s
κ κδπ δ δ

⎧ ⎫⎡ ⎤′′′ ′⎪ ⎪′′ ′= + −⎢ ⎥⎨ ⎬′ ′ ′⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∫  

2

0

Hy

Hn Ht s i s i s sf f x m V u dyκ δ′⎡ ⎤+ − + −⎣ ⎦∫  

( ) ( ){ }2
0 0

1
1 1

H Hy y
s s

s s s s s total
s

x
u dy x dy S

s
λ ε

δ ε δλ
⎛ ⎞′−⎧ ⎫

′ ′+ + − + −⎜ ⎟⎨ ⎬ ⎜ ⎟′⎩ ⎭ ⎝ ⎠
∫ ∫  (3.8) 

 

According to the virtual work principle, equation (3.8) is equal to zero for equilibrium 
position. Therefore, 

 

* *
*

i
i

d 0
d
π πδπ δ δλ

λ
⎛ ⎞ ⎛ ⎞∂ ∂

= + =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
 (3.9) 

 

Since idδ  and δλ  are not equal to zero, thus 
 

[ ] [ ]
H Ty*

Ts s as s s s s s
s2 4

i s s s0

N B T x B x xN 2 dy
d s s s

κ κπ ⎧ ⎫′′⎛ ⎞ ⎡ ⎤′ ′′ ′∂ ⎪ ⎪′= + −⎨ ⎬⎜ ⎟ ⎢ ⎥′ ′ ′∂⎝ ⎠ ⎣ ⎦⎪ ⎪⎩ ⎭
∫  

[ ] ( )
Hy

T 2
Hn Ht s i is s i s

0

N f f x A V dyρ κ′− + −∫  

[ ] ( )Hy
T s s

s
s0

1 x
N dy 0

s
λ ε⎧ ⎫′−⎛ ⎞⎪ ⎪′+ =⎨ ⎬⎜ ⎟′⎪ ⎪⎝ ⎠⎩ ⎭

∫  (3.10) 

( )
Hy*

2
s s s total

0

1 1 x dy S 0π ε
λ

⎛ ⎞⎛ ⎞∂ ′= − + − =⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
∫  (3.11) 

 

Because equations (3.10) and (3.11) are the system of nonlinear equations, the iterative 
procedure is used to obtain the numerical solutions. According to Taylor’s series 
approximation, equations (3.10) and (3.11) can be approximated by neglecting the 
second-order terms as shown below 
 

( ) ( ) ( )
( )

( )
( )

1

0
n nn n* * * *

n nk k k k

i i j i i

d
d d d d d
π π π π λ

λ

+ ⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂∂ ∂⎪ ⎪ ⎪ ⎪= + Δ + Δ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎩ ⎭
 (3.12) 

( ) ( ) ( )
( )

( )
( )

1

0
n nn n* * * *

n nk k k k

i

d
d

π π π π λ
λ λ λ λ λ

+ ⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂∂ ∂⎪ ⎪ ⎪ ⎪= + Δ + Δ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭
 (3.13) 
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where { } { } { }n n 1 n
i id d dΔ += − , ( ) ( ) ( )n n 1 nΔλ λ λ+= − , and n = number of iteration. 

 
Equations (3.12) and (3.13) can be arranged into the matrix form as follows 
 

 

[ ] { }
{ }

{ } { }NL N 1N N ii
T

1 N

K K Rd
RK 0

λ

λλ

Δ
Δλ

××

×

⎡ ⎤ ⎧− ⎫⎧ ⎫
=⎢ ⎥ ⎨ ⎬ ⎨ ⎬

−⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎣ ⎦
 (3.14) 

 
The integer value N  is the number of nodal displacements of the riser system.  The 
matrix [ ]NLK is the assemblage of the matrices { }2 *

k i jd dπ∂ ∂ ∂  from all elements. The 

vector { }Kλ  represents the assemblage of the element vectors { }2 *
k idπ λ∂ ∂ ∂ . The 

vector { }iR  is the element vectors { }*
k idπ∂ ∂ . The parameter Rλ  is the value of 

*π λ∂ ∂ . The increment vector of nodal displacements { }idΔ  and the increment value 
Δλ  are the unknown to be determined. By adding the increment vector { }idΔ  to { }id  
and adding the value of Δλ to λ , the adjusted values of { }id  and λ  are obtained. 
Use these values for computation the next iteration. Repeat this process until it is 
terminated when { }idΔ  and Δλ  approach zero.  
 

3.2Finite Element Model for Dynamic Analysis 
The weak formulation of Equation (2.71) is employed for the dynamic analysis as well. 
From 0δπ = , hence Equation (2.71) may be decomposed into the following two 
nonlinear equilibrium equations. 
 

( )2
2

t

o

a
B y x s yu N B B u d
s s s s s

α

α

κ δ κ κ δ α
⎧ ⎫′ ′ ′′ ′⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞′′ ′+ − −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′ ′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭
∫  

{ } 0
t

o

s Hx ps px is Fxs f m a m a u d
α

α

δ α′ ⎡ ⎤− − =⎣ ⎦∫  (3.15a) 

 

( )2
2

t

o

a
B x y s xv N B B v d
s s s s s

α

α

κ δ κ κ δ α
⎧ ⎫′ ′ ′′ ′⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞′′ ′− + − +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′ ′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭
∫  

{ } 0
t

o

s a Hy ps py is Fys w f m a m a v d
α

α

δ α′ ⎡ ⎤− + − − =⎣ ⎦∫  (3.15b) 
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For the vibrations with infinitesimal amplitudes, the axial force can be approximated by 
 

  
( ) 2

s d s d
a Ps s d as Ps

s

x u y vN EA N EA
s

ε ε
⎛ ⎞′ ′ ′ ′+

= + ≈ + ⎜ ⎟′⎝ ⎠
 (3.16) 

 
By substituting Equations (2.8), (2.25), (2.53), and (3.16) into Equations (3.15a-b) 
together with neglecting the higher order terms,eliminating the time-independent terms 
and using the relation that 
 

( ) ( )2 2 2
2 4 2x s y BB B x y x y x y

s s s s
κκ κ

′ ′′ ′⎛ ⎞ ⎛ ⎞ ⎡ ⎤′ ′ ′′ ′ ′ ′′− − = − + −⎜ ⎟ ⎜ ⎟ ⎣ ⎦′ ′ ′ ′⎝ ⎠ ⎝ ⎠
 (3.17a) 

( ) ( )2 2 2
2 4 2y s x BB B y x x x y y

s s s s
κκ κ

′ ′′ ′⎛ ⎞ ⎛ ⎞ ⎡ ⎤′ ′ ′′ ′ ′ ′′− + = − −⎜ ⎟ ⎜ ⎟ ⎣ ⎦′ ′ ′ ′⎝ ⎠ ⎝ ⎠
 (3.17b) 

2 2 2
t t

o o

s s
s is i is i is i

s sy x xs m V ud m V u m V u d
s s s s s

α α

α α

κ δ α δ δ α
′′ ′′ ′ ′⎡ ⎤ ⎛ ⎞⎡ ⎤′ = − ⎜ ⎟⎢ ⎥⎢ ⎥′ ′ ′ ′ ′⎣ ⎦ ⎣ ⎦ ⎝ ⎠∫ ∫  (3.17c) 
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s s
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s sx y ys m V vd m V v m V v d
s s s s s

α α

α α

κ δ α δ δ α
′′ ′′ ′ ′⎡ ⎤ ⎡ ⎤ ⎛ ⎞⎛ ⎞′ − = −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥′ ′ ′ ′ ′⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎣ ⎦

∫ ∫  (3.17d) 

x u y vs
s

′ ′ ′ ′+′ =
′

 (3.17e) 

3

x y x y
s

κ
′′ ′ ′ ′′−

=
′

 (3.17f) 

 
Equations (3.15a-b) can be expressed as 
 

( ) ( ) ( )2
2

5

t

o

as is iss
s s s

s s

N m V uB y u x y v u u d
s s

α

α

δ δ α
⎧ ⎫⎡ ⎤′−⎪ ⎪⎡ ⎤′ ′ ′′′ ′′ ′′ ′⎢ ⎥− +⎨ ⎬⎢ ⎥⎣ ⎦′ ′⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∫  

( ) ( ) ( ) ( )2 2 2
3 4 2

t

o

Ps s s
s s s s s s s

s s

EA Bx u x y v x y u y x v u d
s s

α

α

κ δ α
⎧ ⎫⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′′ ′ ′ ′′ ′+ + − + −⎨ ⎬⎣ ⎦ ⎣ ⎦′ ′⎩ ⎭
∫  

( ){ }22
t

o

s as eqxs eqxys Dxs c w w Ms ws C u C u C v C V V V C V u d
α

α

δ α∗ ∗ ∗ ∗ ∗⎡ ⎤′+ − − − − + + +⎣ ⎦∫  
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3 3

2t

o

s s s
s Ps is is is is is

s s s

x x ys m m u m V u m V v u d
s s s

α

α

δ α
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′ ′⎪ ⎪′ ′ ′+ + + − −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟′ ′ ′⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∫  

2

2 0
tt

o o

is is is is s id is is
s

s s s

m V V m x DV m V us u u d u
s s Dt s

αα

α α

δ α δ
⎧ ⎫⎡ ⎤⎛ ⎞ ⎡ ⎤′ ′ ′⎪ ⎪′ ′+ + + =⎨ ⎬⎢ ⎥⎜ ⎟ ⎢ ⎥′ ′ ′⎝ ⎠ ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭
∫  (3.18a) 
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⎧ ⎫⎡ ⎤⎛ ⎞ ⎡ ⎤′ ′ ′⎪ ⎪′ ′+ + + =⎨ ⎬⎢ ⎥⎜ ⎟ ⎢ ⎥′ ′ ′⎝ ⎠ ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭
∫  (3.18b) 

 
The solution form of the Equation (3.18a-b) can be obtained by separation of variables. 
Therefore, the displacement vector is assumed as 
 

  { } { } ( ) { }( )T
d d su v y t= = ⎡ ⎤⎣ ⎦ ndd N d  (3.19) 

 
In Equation (3.19), the nodal degree of freedoms { }ndd  is function of time only, i.e. 
 

  { } { }1 1 1 1 1 1 2 2 2 2 2 2u u u v v v u u u v v v′ ′′ ′ ′ ′ ′′ ′ ′′=ndd  (3.20) 
 
and the shape function matrix [ ]N  is function of sy  which can be expressed as 
 

[ ] 51 52 53 54 55 56

51 52 53 54 55 56

0 0 0 0 0 0
0 0 0 0 0 0

N N N N N N
N N N N N N

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

N  (3.21) 

 
Note that, 5iN  are the coefficients of the fifth order polynomial shape functions. 
 
Based on the virtual displacements, 0δπ = , Equations (3.18a-b) can be decomposed 
into two equations of motion for riser elements. These equations can be rearranged into 
the matrix form as 
 

  { } ( ){ } { } { }e e e e e⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦nd nd ndm d c g d k d f  (3.22) 
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where the element mass matrix is 
 

  
[ ] ( ) [ ]12 2 2 1212 12

0

1 0
0 1

Hy
Te

s Ps is as ss m m C dy∗
× ××

⎧ ⎫⎡ ⎤′⎡ ⎤ = + +⎨ ⎬⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭
∫m N N  (3.23) 

 

The element hydrodynamic damping is  
 

  
[ ] [ ]12 2 2 1212 12

0

Hy
T eqxs eqxyse

s s
eqxys eqys

C C
s dy

C C

∗ ∗

∗ ∗× ××

⎧ ⎫⎡ ⎤⎪ ⎪′⎡ ⎤ = ⎢ ⎥⎨ ⎬⎣ ⎦ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∫c N N  (3.24) 

 
The element hydrodynamic damping is  
 

  
[ ] [ ]

2

2

12 2 2 1212 12
0

2

2

12

H

s s
y

Te s s
is is s

s

s s

x x
s s

m V dy
x
s s

× ××

⎧ ⎫′ ′⎡ ⎤
− −⎪ ⎪⎢ ⎥′ ′⎪ ⎪⎢ ⎥ ′⎡ ⎤ = ⎨ ⎬⎣ ⎦ ⎢ ⎥′⎪ ⎪− −⎢ ⎥⎪ ⎪′ ′⎣ ⎦⎩ ⎭

∫g N N  (3.25) 

 

The element stiffness matrix is 
 

  1 2 1 212 12

e e e e e
b b t t×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦k k k k k  (3.26) 

 
In which the bending stiffness matrix of fourth order derivative is 
 

  
[ ] [ ]1 2512 2 2 1212 12

0

1Hy
T se s

b s
s ss

xBk dy
x xs× ××

′⎧ − ⎫⎡ ⎤⎪ ⎪′′ ′′⎡ ⎤ = ⎨ ⎬⎢ ⎥⎣ ⎦ ′ ′′ −⎪ ⎪⎣ ⎦⎩ ⎭
∫ N N  (3.27a) 

 
The bending stiffness matrix of third order derivative is 
 

  
[ ] [ ]

2

2 4 212 2 2 1212 12
0

2 1
1 2

Hy
Te s ss s

b s
s s s

x xBk dy
s x x
κ

× ××

⎧ ⎫′ ′⎡ ⎤−⎪ ⎪′ ′′⎡ ⎤ = ⎨ ⎬⎢ ⎥⎣ ⎦ ′ ′ ′− −⎪ ⎪⎣ ⎦⎩ ⎭
∫ N N  (3.27b) 

 
The axial stiffness matrix of the second order derivative is 
 

  
[ ] [ ]

2

1 12 2 2 1212 12
0

1 0
0 1
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Te as is is

t s
s

N m Vk dy
s× ××

⎧ ⎫⎛ ⎞ ⎡ ⎤−⎪ ⎪′ ′⎡ ⎤ = ⎨ ⎬⎜ ⎟ ⎢ ⎥⎣ ⎦ ′⎪ ⎪⎣ ⎦⎝ ⎠⎩ ⎭
∫ N N   

  [ ] [ ]
2

312 2 2 12
0 1

Hy
T s sPs

s
s s

x xEA dy
s x× ×

⎧ ⎫′ ′⎡ ⎤⎪ ⎪′ ′+ ⎨ ⎬⎢ ⎥′ ′⎪ ⎪⎣ ⎦⎩ ⎭
∫ N N  (3.28a) 
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The axial stiffness matrix of the first order derivative is 
 

  
[ ] [ ]2 212 2 2 1212 12

0

1 0
0 1

Hy
Te is is is

t s
s

m V Vk dy
s× ××

⎧ ⎫⎛ ⎞′ ⎡ ⎤⎪ ⎪′⎡ ⎤ = ⎨ ⎬⎜ ⎟⎢ ⎥⎣ ⎦ ′ ⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭
∫ N N  (3.28b) 

 
The element hydrodynamic excitation vector is 
 

  

{ } [ ]
( )

( )

2

12 2
20

1

2

2

H

is s id
Dxs c w w Ms wy

T se
s s

is id
Dxy s c w w
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m x DVC V V V C V
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m DVC V V V
s Dt
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×
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′⎧ ⎫+ + −⎪ ⎪′⎪ ⎪′= ⎨ ⎬
⎪ ⎪+ −
⎪ ⎪′⎩ ⎭

∫f N  (3.29) 

 
By assembling the element equations of motion, one obtains the equations of motion for 
entire riser as 

  [ ]{ } [ ]( ){ } [ ]{ } { }e⎡ ⎤+ + + =⎣ ⎦nd nd ndM D C G D K D F  (3.30) 

 
The global nodal displacement { }ndD , velocity { }ndD , and { }ndD  vectors can be 

obtained by assembling the element nodal displacement, therefore 
 

  
{ } { }

1
,

nelem

i=
= ∑nd ndD d { } { }

1
,

nelem

i=
= ∑nd ndD d { } { }

1

nelem

i=
= ∑nd ndD d  (3.31a-c) 

 
In the same manner, the total mass matrix is 
 

  
[ ]

1

nelem
e

i=

⎡ ⎤= ⎣ ⎦∑M m  (3.32a) 

 
the total hydrodynamic damping matrix is 
 

  
[ ]

1

nelem
e

i=

⎡ ⎤= ⎣ ⎦∑C c  (3.32b) 

 
the total gyroscopic matrix is 

  
[ ]

1

nelem
e

i=

⎡ ⎤= ⎣ ⎦∑G g  (3.32c) 
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the total stiffness matrix is 

  
[ ]

1

nelem
e

i=

⎡ ⎤= ⎣ ⎦∑K k  (3.32d) 

 
and the total hydrodynamic excitation vector is 
 

  
{ } { }

1

nelem
e

i=

= ∑F f  (3.32e) 

 
Note that, “ nelem ” is the abbreviation for the number of finite element. 
 
Equation (3.30) is the system of nonlinear equation of motion for two-dimensional 
marine riser system. The nonlinearity of the system is still occurred by the 
hydrodynamic damping forces although the amplitude of the vibration is assumed to be 
small. In order to solve this equation, the identity { } { }=nd ndD D  has to be added into 

the system of Equation (3.30). Therefore, the system of nonlinear equations of motion of 
marine riser can be rearranged into matrix form 
 

  

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎧ ⎫
⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎩ ⎭⎩ ⎭⎩ ⎭

ndnd

ndnd

DI 0 0 -I 0D
+ =

D0 M K C + G FD
 (3.33) 

 
Equations (3.33) can be cast it the state form [32] as 
 

  { } [ ]{ } [ ]{ } [ ]{ } { }nd nd ndX = A X + b F = A X + B  (3.34) 

 

where{ } { }2 1

T

n×
=nd nd ndX D D  is the 2n− dimensional state vector, and 

 

  
[ ] ( )

2 2n n×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

-1 -1

0 I
A

-M K -M C + G
, { }

2 1n×

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

-1

0
B

M F
 (3.35a,b) 

 
are the 2 2n n×  real nonsymmetric coefficient matrix and the 2 1n×  deterministic input 
matrix respectively. It has to note that n  is total degree of freedoms of the riser system 

and [ ]2
T

n n×
⎡ ⎤= ⎣ ⎦

-1b 0 M  . 
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The state equation (3.34) is used for the natural frequency analysis and for the 
nonlinear vibration analysis. In this study, the natural frequency analysis is presented in 
next section.  
 

3.3Natural Frequency Analysis of Marine Riser 
For natural frequency analysis of marine riser, the damping matrix [ ]C  and the 
hydrodynamic excitation vector { }F  are neglected. Consequently, Equation (3.33) is 
reduced to the free vibration equations in the standard state form 
 

  { } [ ]{ }nd ndX = A X  (3.36) 

 
and the 2 2n n×  real nonsymmetric coefficient matrix is reduced to 
 

  
[ ]

2 2n n×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

-1 -1

0 I
A

-M K -M G
 (3.37) 

 
The solution of Equation (3.36) has the exponential form 
 

  { } { }teλ=nd naX X  (3.38) 
 
The parameter λ  is the complex eigenvalues of Equation (3.38), i.e. 
 

  iλ α ω= ±  (3.39) 
 

whereω  is the frequency of the riser system and { }naX  is a constant 2n  complex 
vector. Inserting Equation (3.38) into Equation (3.36) and dividing though by teλ , one 
obtain the general algebraic eigenvalue problem as follow. 
 

  [ ]{ } { }λnd ndA X = X  (3.40) 
 
The boundary conditions are imposed as follows 
 
(i) At bottom end, 0sy = . 

  0d du v= = , 0d du v′′ ′′= =  (3.41a-b) 
(ii)At top end, s sHy y= . 

  0d du v= = , 0d du v′′ ′′= =  (3.42c-d) 
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In this study, the computer program for the eigenvalues and eigenvectors calculation is 
written though the following steps. 
 

1. By using static solutions, one can evaluate the element mass matrix (Equation 
(3.23)), the element gyroscopic matrix (Equation (2.24)), and the element 
stiffness matrix (Equation (2.27)). 

2. Assemble the element matrix from step 1 to obtain the global mass matrix, the 
global gyroscopic matrix, and the global stiffness matrix (Equation (3.32a,c,d)). 

3. Impose the boundary conditions of the problem (Equation (3.41)). 
4. Form the coefficient matrix of Equation (3.37). 
5. Solve the eigenvalue problem of Equation (3.40). In this study, the subroutine 

DEVCRG, which is one of the fortran routine in IMSL math library, is used to 
compute the eigenvalues and eigenvectors of real nonsymmetric matrix. This 
routine uses the implicit double-shifted QR algorithm [33] based on the 
EISPACK routine HQR2 [34] to compute the eigenvalues and the eigenvectors. 

6. Save the numerical results in the result files. 
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4. Results and Discussions 
 

4.1 Verification of Numerical Results 
In order to validate the numerical results of this study, the special test cases of the two-
dimensional extensible marine riser transporting fluid [14, 35] have been presented. The 
parameters used in this example are shown in Table 4.1. In Table 1, the natural 
frequencies of the rigid production riser are shown and are compared with the analytical 
solutions and the numerical solutions that were reported by Moe and Chucheepsakul 
[14], and Monprapussorn et al. [35], respectively. The results from Table 4.1 indicate 
that the numerical results obtained from this study are in good agreement with the 
previous reports.  
 

Table 4.1  Input parameters and the in-plane fundamental natural frequencies of the 
rigid production riser transporting fluid with various speeds of internal flow 

 

Input parameters used for the rigid production riser transporting fluid 

1.    Riser top tension ( )aHN  476,200 N 
2.    Water depth ( )Hy  300 m 
3.    Excursion of the vessel in x direction ( )Hx  0 m 
4.    Excursion of the vessel in z direction ( )Hz  0 m 
5.    Outside diameter ( )epoD  0.26 m 
6.    Inside diameter ( )ipoD  0.20 m 
7.    Density of riser ( )pρ  7850 kg/m3 
8.    Density of sea water ( )eρ  1025 kg/m3 
9.    Density of mud ( )iρ  998 kg/m3 
10.  Young's modulus ( )E  2.07x1011 N/m2 
11.  Poisson’s ratio ( )ν  0.50 
12.  Current velocity at mean sea level ( )cHV  0 m/sec 
13.  Angle between current direction and x-direction 0o

14.  Normal drag coefficient  ( )DnC  0.70 
15.  Tangential drag coefficient  ( )DtC  0.03 
16.  Added mass coefficient  ( )aC  1.00 
Numerical results 

Internal 
flow 

velocity

( )ioV  

(m/sec) 

The in-plane fundamental natural frequencies of production riser (rad/sec) 
Moe and Chucheepsakul 

(1988) 
(IA,EBR) 

Monprapussorn et al. 
(2007) 
(EA) 

This study 
(20 elements) 

(3-D,EA) 
Analytical solution Numerical 

solution EBR IBR EBR IBR 

0 0.2878 0.2890 0.2891 0.3001 0.2892 0.2988 
5 - - 0.2881 0.2994 0.2883 0.2980 

10 0.2838 0.2853 0.2853 0.2972 0.2854 0.2957 
15 - - 0.2804 0.2934 0.2805 0.2917 
20 0.2706 0.2730 0.2731 0.2880 0.2732 0.2860 
25 - - 0.2627 0.2809 0.2629 0.2783 
30 0.2413 0.2478 0.2478 0.2717 0.2481 0.2684 
35 - - 0.2224 0.2603 0.2230 0.2559 

Note:  IA = Inextensible Analysis, EA = Extensible Analysis,  
 3-D = 3-D Analysis, EBR = Excluding Bending Rigidity, IBR = Including Bending Rigidity. 
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4.2 Effect of Internal Flow Velocity on Maximum Displacement and 
Maximum Bending Moment of Marine Riser 

According to the validation of previous examples, the authors are confident that the 
model formulation developed herein is applicable and give the sufficient accuracy of the 
numerical results. In this subsection, the input parameters in Table 4.2 are used. The 
applied top tension is kept to a constant value of 2,000 kN. The offset of the vessel is 
equal to 540 m (30% of the sea depth). In general operation, the internal flow velocity in 
a riser is usually less than 10 m/sec, however, the velocity of greater than this value is 
used in numerical example as for demonstration purpose. The fluid is pumping up with 
the consecutive positive internal flow velocities (flow up) from 0 m/s to 65 m/sec. The 
case of the riser is subjected to negative internal flow velocities (flow down), which may 
occurr in the drilling riser, are also considered.  
 
Table 4.2  Input parameters for analysis of the marine water riser transporting fluid 
 

Input parameters used for analysis of the marine riser transporting fluid 
1.    Riser top tension ( )aHN  2,000-10,000 kN 
2.    Water depth ( )Hy  1,800 m 
3.    Offset of the vessel ( )H%x  30% 
4.    Outside diameter ( )epoD  0.25 m 
5.    Inside diameter ( )ipoD  0.21 m 
6.    Density of riser ( )pρ  7850 kg/m3 
7.    Density of sea water ( )eρ  1025 kg/m3 
8.    Density of mud ( )iρ  998 kg/m3 
9.  Young's modulus ( )E  2.07x1011 N/m2 
10.  Poisson’s ratio ( )ν  0.30 
11.  Internal flow velocity ( )ioV  0-65 m/sec 
12.  Current velocity at mean sea level ( )cHV  0.0 m/sec 
13.  Angle between current direction and x-axis  0o 

14.  Normal drag coefficient  ( )DnC  1.00 
15.  Tangential drag coefficient  ( )DtC  0.05 
16.  Added mass coefficient  ( )aC  1.00 

 
Numerical results in Table 4.3 show maximum displacements, maximum moments and 
their positions form seabed. The results indicate that the maximum displacement 
increases as the internal flow velocity increases. Moreover, the increase in velocity of 
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transporting fluid changes the position of the maximum displacement down to the 
seabed.  
 

The increase in velocity of transporting fluid increases the maximum bending moment 
until the velocity reaches 60 m/s. Beyond this velocity the maximum bending moment 
no longer increases, but decreases, however the maximum displacement continuously 
increases and the riser tends to have a divergence instability.  
 

Table 4.3  Maximum displacements and maximum bending moments of the marine 
riser with 30% offset 

 

 
Maximum 

displacement 
(m) H

y@
y

 
Maximum 
Moment 
(N-m) H

y@
y

 

isV  =   0 m/s 150.00 0.31 50987.91 0.01 

isV  =   5 m/s 150.24 0.31 51213.73 0.01 

isV  = 10 m/s 150.96 0.31 51902.48 0.01 

isV  = 15 m/s 152.19 0.30 53089.55 0.01 

isV  = 20 m/s 153.98 0.30 54839.83 0.01 

isV  = 25 m/s 156.37 0.30 57258.90 0.01 

isV  = 30 m/s 159.45 0.30 60516.14 0.01 

isV  = 35 m/s 163.42 0.29 64897.63 0.01 

isV  = 40 m/s 168.45 0.28 70953.51 0.01 

isV  = 45 m/s 174.96 0.27 80037.28 0.01 

isV  = 50 m/s 183.72 0.26 96943.84 0.01 

isV  = 55 m/s 196.54 0.25 143487.92 0.01 

isV  = 60 m/s 221.63 0.21 273943.80 0.01 

isV  = 65 m/s 241.86 0.19 231910.60 0.01 
 
The effects of the negative flow velocity (flow down) on maximum displacement and 
maximum bending moment are illustrated in figure 4.1 and figure 4.2 respectively. 
These figures indicate that the negative flow velocity affects the nonlinear static 
behavior of the marine riser as same as the positive flow velocity does. This result can 
be explained as follows. 
 
If the internal flow velocity has the opposite direction to the tangent of the centerline of 
the riser, the absolute velocity of the riser can be expressed as 
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  FP
DˆV t
Dt

= − =F p
rV V  (4.1) 

where FPVD
Dt t s α

∂ ∂⎛ ⎞= −⎜ ⎟′∂ ∂⎝ ⎠
 is the material derivative for the fluid element. By direct 

derivation, yields 
 

  
2

2

D D
Dt Dt

= =F
F

V ra  (4.2) 

 
Therefore, the acceleration of the transported fluid for negative flow velocity is found to 
be 
 

( )

( )

( )

( )

( )

( ) ( ) ( ) ( ) ( )

( )22 2 2 2
FP FP FP FP FP FP FP

2 2 2 2 3

4 6 71 52 3

2V V V V V V s V s
t s t s s s s sα α α

⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂′ ′ ′′⎛ ⎞ ⎛ ⎞= − + + − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎢ ⎥
⎣ ⎦

P P P P
F

r r r r
a   

   (4.3) 
 
By comparison with equation (2.50), there are three terms having a negative sign 
namely terms (2), (4), and (6). At equilibrium state, the transported fluid has a steady 
flow along the tangential line of the riser. Therefore, the time-dependent terms are 
eliminated from equation (4.3). Consequently, the acceleration of the transported fluid is 
combined with only the centripetal acceleration (term 3) and the convective acceleration 
due to non-uniform flow (term 5). One obtains 
 

  ( ) ( ) ( )
2 2

2is is is is is
is s s s2 2

s

V V V V V ˆˆV n t
s s s

κ
α α

∂ ∂ ⎛ ⎞′ ′⎛ ⎞= + = + ⎜ ⎟⎜ ⎟′ ′ ′∂ ∂⎝ ⎠ ⎝ ⎠
P P

Fs

r r
a  (4.4) 

 
Equation (4.4) is identical to equation (2.54 b). As a result of this agreement, the 
direction of the internal flow velocity has no effect on the nonlinear static behavior of the 
marine riser but the increase in the absolute value of the internal flow velocity induces 
the large displacement and reduces riser stability. 
 
Moreover, the author also found that the fluid transportation has an insignificant effect 
on axial strain, true-wall tension, and the apparent tension. The maximum value of the 
internal flow velocity for this example is 65 m/s. If the internal flow velocity is larger than 
65 m/s, the riser will buckle and collapse.  
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Figure 4.1  Effects of Fluid Transportation on Maximum Displacement of the marine 

riser with 30% offset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2  Effects of Fluid Transportation on Maximum Bending Moment of the 

marine riser with 30% offset. 
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4.3 The Couple Effect of Internal Flow Velocity and Axial Extensibility on 
Maximum Displacement of Marine Riser 

 
In this section, the couple effect of axial extensibility and internal flow on maximum 
displacement of marine riser is presented. The data in Table 4.4 is utilized for this 
example. In case of extensible riser, the flexural rigidity is small as compared with the 
applied top tension. Therefore, the applied top tension ( )aHN is used as the basis for 
the parametric normalization. The following dimensionless parameters are introduced in 
order to comprehend the effect of axial extensibility. 

 

 

poa
irv

aH aH

EAw LÊ
N N

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, io
io io

aH

mV̂ V
N

= , to

aH

mˆ L
N

ω ω= , s
s

yŷ
L

= , s
s

uû
L

=  (4.5 a-e) 

 
The parameter irvÊ  is recognized as the Irvine’s first parameter [36] in cable 
mechanics. It is utilized to describe the effect of riser’s extensibility. The high value of 

irvÊ  implied the low extensibility, but the low value of irvÊ implied the high extensibility 
condition of the riser. The parameter ioV̂  denotes the effect of the mean flow velocity of 
transported fluid. The parameter ω̂  is the nondimensional form of the natural frequency 
( )ω  of the riser. The parameter sŷ  represents the position of maximum displacement 
from sea bed. The parameter sû is the nondimensional form of the lateral displacement 

of the riser where the span length 2 2
H HL x y= + . 

 
The combination effect of axial extensibility and internal flow on the maximum 
displacement of extensible marine riser is shown in figures 4.3 and 4.4. It is evident that 
the internal flow of transported fluid increases the lateral displacements. The internal 
flow induces a tangential loading, which destabilizes the riser system. Consequently, the 
divergent instability could be occurred when speed of internal flow reaches the value of  

isV̂ 0.3246=  as shown in figure 4.4.  
 
Figure 4.3 and 4.4 also shows that an increase in axial extensibility, by reducing irvÊ

from 286.50 to 28.65, enlarges the lateral displacements due to the reduction of 
bending stiffness. However, the turning point occurs when irvÊ  is reduced passing 
10.00 to 1.81. In this range, the increase in axial extensibility reduces the lateral 
displacements.  
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Table 4.4  The input data utilized for study the effect of axial extensibility and internal 
flow on maximum displacement of marine riser. 

 

Parameters Value 
Offset of the vessel ( )Hx  70 m 
Water depth ( )Hy  300 m 
Normal drag coefficient ( )DnC  0.70 
Tangential drag coefficient ( )DtC  0.03 
Added mass coefficient ( )aC  1.00 
Current velocity at mean sea level  ( )cHV  0.20 m/s 
Elastic modulus ( )E  2.07x1011 N/m2 

Outside diameter ( )epoD  0.26 m 
Inside diameter ( )ipoD  0.20 m 
Density of pipes/risers ( )pρ  7850 kg/m3 
Density of sea water ( )eρ  1025 kg/m3 
Density of internal fluid ( )iρ  998 kg/m3 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Effect of axial extensibility and internal flow on maximum displacement ( )sû

of extensible marine risers and their positions from sea bed 
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Figure 4.4  Effects of axial extensibility and internal flow on static configurations of 

marine risers 
 
The transition behavior is occurred due to the variation of the structural stiffness 
domination from the bending stiffness domination to the pretensioned stiffness (Figure 
4.3). The structural stiffness of the low extensible riser is governed by the bending strain 
energy, and the riser behaves like a tensioned beam.  
 
On the contrary, when the condition of high extensibility such as irvÊ 1.81=  is applied, 
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axial strain energy or the pretensioned stiffness becomes the main stiffness of riser as 

well as the tensioned cable. For a moderate extensibility riser ( )irv
ˆ10.00 E 28.65≤ ≤ , 

the riser has large amount of both axial strain energy and bending strain energy. 
Consequently, the riser is under the coupled axial-bending stiffness domination and the 
transition of tensioned beam behavior to tensioned cable behavior is occurred in this 
state. 
 
Form the above discussions, it can be found that the effect of axial extensibility of the 
riser induces the lateral displacements when the bending stiffness controls. However, 
the effect of axial extensibility of the riser reduces the lateral displacements when the 
pretensioned stiffness controls. 
 

4.4 Effect of Internal Flow Velocity on Dynamic Properties of Marine Riser 
In this section, the properties of the deep water riser in Table 4.5 are used to show the 
effect of internal flow velocity on dynamic properties of marine riser in different static 
offsets. It is observed that the internal flow velocity induces the tangential load which 
has the effect on the natural frequencies and the corresponding mode shapes of the 
marine riser. 
 
Table 4.5  The input data utilized for study the effect of internal flow velocity on dynamic 

properties of marine riser. 
 

Parameters Value 
1.    Riser top tension  340 kN 
2.    Water depth  300 m 
3.    Offset of the vessel  0%-20% 
4.    Outside diameter  0.25 m 
5.    Inside diameter  0.21 m 
6.    Density of riser  7850 kg/m3 
7.    Density of sea water  1025 kg/m3 
8.    Density of mud  998 kg/m3 
9.    Young's modulus  2.07x1011 N/m2 
10.  Poisson’s ratio  0.30 
11.  Internal flow velocity  0-20 m/sec 
12.  Current velocity at mean sea level  1.0 m/sec 
13.  Angle between current direction and x-axis  0o 

14.  Normal drag coefficient   1.00 
15.  Tangential friction coefficient   0.05 
16.  Added mass coefficient   1.00 
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Figure 4.5 The effect of fluid transportation rate on in-plane natural frequencies and 

mode shapes of the three-dimensional riser in various offsets 
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The effect of internal flow velocity on in-plane natural frequencies of marine riser is 
illustrated in figure 4.5. Figure 4.5 shows that the increase in velocity of internal fluid 
reduces the in-plane natural frequencies of marine riser. If the internal flow velocity is 
increased continuously, the natural frequencies will be closed to zero. The internal flow 
velocity that induces the zero value of natural frequencies is called as the critical 
velocity. However, the critical velocity of fluid transportation is generally higher than 20 
m/s which is out of the practical range.   
 
The mode shapes of in-plane oscillation are also illustrated in figure 4.5. This figure 
shows that the velocity of internal fluid in the range of 0 to 20 m/s has an insignificant 
effect on the mode shapes of in-plane oscillation. However, the shapes of in-plane 
oscillation could change the number of curvature if the internal flow speed is 
continuously increased and reach the critical value [31].   
 
Figure 4.5 indicates that the increase in percent of static offset reduces the in-plane 
natural frequencies of marine riser. The mode shapes of in-plane oscillation are slightly 
different when the percent of static offset is increased.   
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5. Conclusions 
 
This report presents the effect of interaction between internal fluid and pipe wall on 
large displacement and dynamic properties of marine riser. The kinematics of marine 
riser and internal fluid are thoroughly addressed. The acceleration of the internal fluid 
are derived in terms of the riser displacement and internal flow speed. The model 
formulation of extensible marine riser is developed by the variational approach based on 
the extensible elastica theory and the work-energy principle. The outstanding feature of 
the model formulation presented in this report is the use of independent variable α  to 
provide the flexibility in the choice of parameters defining elastic curves. Therefore, the 
formulation allows users to select independent variable that is suitable for their 
applications. 
 
The finite element method is used to obtain the numerical solutions. The effect of 
internal flow on maximum displacement is investigated. It is observed that the maximum 
displacement increases as the internal flow velocity increases. Moreover, the increase in 
velocity of transporting fluid changes the position of the maximum displacement down to 
the seabed. 
 
The increase in velocity of transporting fluid increases the maximum bending moment 
until the velocity reaches a value which gives a peak value of maximum bending 
moment. Beyond this velocity the maximum bending moment no longer increases, but 
decreases, however the maximum displacement continuously increases and the riser 
tends to have a divergence instability. The direction of the internal flow velocity has no 
effect on the nonlinear static behavior of the marine riser but the increase in the 
absolute value of the internal flow velocity induces the large displacement and reduces 
riser stability. The internal flow velocity has an insignificant effect on axial strain, true-
wall tension, and the apparent tension. 
 
The couple effect of axial extensibility and internal flow on maximum displacement and 
dynamic properties of extensible marine riser is also investigated. The results indicate 
that the strength of low extensibility riser is dominated by bending stiffness of marine 
riser. Consequently, the axial extensibility reduces the stability of the riser system. On 
the contrary, the strength of the high extensibility riser is dominated by the pretensioned 
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stiffness. Therefore, the high extensibility riser performs the tensioned cable behavior, 
on which the axial extensibility increases the stability of the riser system. For the riser 
with moderate extensibility, the riser is in the transition state.  
 
The influence of internal flow on dynamic properties of three-dimensional extensible 
marine riser is also presented. It is observed that the fluid transportation induces the 
tangential force which has the effect on the natural frequencies of the riser. The fluid 
transportation reduces the natural frequencies and the structural stability of the marine 
riser. The shapes of in-plane oscillations could change the number of curvature when 
the internal flow velocity reaches the critical values. The effect of the internal flow can 
be reduced by increasing the axial deformation. 
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are provided to demonstrate interesting effects of fluid transportation and axial deformation on large

displacements and dynamic properties of the three-dimensional extensible marine riser.
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1. Introduction

The marine riser is a flexible pipe that links the floating drilling/
production platform and the seabed. It is a very important structural
component used in offshore engineering operations. Over the past
several years, the analysis of marine riser has received considerable
attention. During the years 1960–1979, the model formulation of
marine riser was introduced with the simplified small deflection
model in the planar coordinate. Examples of this model can be found
in several works such as NESCO (1965), Fischer and Ludwig (1966),
Gosse and Barksdale (1969), Morgan (1972), Burke (1974), Young
et al. (1978), Kirk et al. (1979), and Daring and Huang (1979).

From 1980 to present, the model formulations have been
developed continually for the large displacement and nonlinear
dynamic analysis. Researchers have begun to focus on the three-
dimensional model formulations that can be used in deep ocean
operations. Felippa and Chung (1981) presented the nonlinear
static analysis of deep ocean mining pipe or riser suspended from
moving vessels with free end at the bottom. Bernitsas (1982)
developed a three-dimensional model formulation for large dis-
placement analysis of marine riser. According to this formulation,
the numerical solutions for static and dynamic analysis of three-
dimensional marine riser were presented by Bernitsas et al. (1985),
Kokarakis and Bernitsas (1987), and Bernitsas and Kokarakis
(1988). A variational model formulation for three-dimensional
analysis of inextensible marine riser was introduced by Huang and
Kang (1991). Chai et al. (2002) presented a three-dimensional
lump-mass formulation for static and dynamic analysis of a
ll rights reserved.

+66 2 427 9063.
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catenary riser. A rather general model formulation for three
dimensional analysis of flexible riser using an absolute coordinate
was presented by Chai and Varyani (2006).

A large strain formulation of two-dimensional marine riser
using two different coordinate systems, namely, Cartesian and
Natural coordinates, was presented by Chucheepsakul et al. (2003).
The large axial strain can be considered based on three different
definitions (total Lagrangian, updated Lagrangian, and Eulerian).
Their model formulation can be applied not only for large strain
analysis of flexible marine riser, but also for any kind of highly
flexible structures such as flexible pipe, marine cable, elastic rod,
elastic column, and elastic beam. Monprapussorn et al. (2007) used
this formulation to investigate the effect of internal pulsating flow
on static and dynamic behaviors of the extensible marine riser.
Athisakul and Chucheepsakul (2008) used this formulation for
analysis of variable-arc-length beam. Although there are many
excellent works that deal with the model formulation of marine
riser, the general model formulation that can be applied for large
deformation analysis of three-dimensional extensible marine riser
is rarely found.

The main purpose of this study is to present a variational model
formulation of three-dimensional extensible marine riser trans-
porting fluid. The strain energy due to large axial deformation,
bending and twisting are taken into account. A generalized
independent variable a is introduced to the model formulation
for the sake of generality. The following assumptions are used to
stipulate the present formulation:
1.
 The material of the marine riser is linearly elastic.

2.
 At the undeformed state, the marine riser is straight, and has no

residual stresses.
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3.
 The riser’s cross sections remain circular after the change of
cross-sectional size due to the effect of axial deformation.
4.
 The longitudinal strain is large, while the effect of the shear
strain is small and can be neglected.
5.
 Every cross-section remains plane perpendicular to the axis.

6.
 Radial lines of the sections remain straight.

The numerical examples of the special problems such as a
catenary cable, three-dimensional cable, and vertical riser are
considered. The effects of axial extensibility and internal flow on
large displacement and dynamic properties of three-dimensional
extensible marine riser are also presented in this paper.
2. Model formulation

2.1. Kinematics and deformation

Globally, the riser’s behavior may follow elementary beam or
rod theories, while locally, it can be considered as a cylindrical
shell. However, the length of the riser is very large as compared to
Fig. 1. Three configurations of a th
its cross-sectional diameter. Therefore, the riser is usually modeled
as a three-dimensional rod rather than three-dimensional shell and
the centroidal line of the riser is used to represent the overall riser
configurations in both static and dynamic states.

The centroidal line of the riser can be described by three
orthogonal coordinate systems. The fixed Cartesian coordinate
system x, y, z with unit vectors î, ĵ,k̂ is used as a global coordinate.
The orthogonal coordinate system t̂,n̂,b̂ and the cross-sectional
principal axes system x1, x2, x3 with unit vectors ê1,ê2,ê3 are used as
the local coordinate.

The three states of the marine riser configurations are illustrated
by Fig. 1. The first configuration of the riser is the undeformed
configuration, which is an ideal configuration. This configuration
can be defined by the position vector r

,
o as shown below:

r
,

oðaÞ ¼ xoðaÞîþyoðaÞĵþzoðaÞk̂ ð1Þ

The parameter a, which is a scalar parameter, is used to define
the curve of riser’s centroidal line. This parameter is employed
in the formulation for the sake of generality. Therefore, the para-
meter a can be represented any convenient coordinates such as
xo,xs,x,yo,ys,y,zo,zs,z,so,ss,s used to define the centroidal curve.
ree-dimensional marine riser.
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The second configuration is the equilibrium configuration. At
this configuration, the riser is subjected to the time independent
loads such as the apparent weight, quasi-static load from the steady
current, and load due to the internal fluid flow. The position vector
of the point on the centroidal line of marine riser at equilibrium
state is

r
,

sðaÞ ¼ r
,

oðaÞþu
,

sðaÞ ¼ xsðaÞîþysðaÞĵþzsðaÞk̂ ð2Þ

The vector u
,

sðaÞ is a displacement vector of a point on the
equilibrium configuration measured with respect to the unde-
formed configuration

u
,

sðaÞ ¼ usðaÞîþvsðaÞĵþwsðaÞk̂ ð3Þ

If the riser at the equilibrium state is disturbed from wave and
unsteady flows of the transporting fluid, the riser will change its
position from equilibrium to displaced configuration. As shown in
Fig. 1, at any time t, the total displacement vector u

,
ða,tÞ of the point

on the centroidal line of marine riser at the displaced state can be
expressed as

u
,
ða,tÞ ¼ u

,
sðaÞþu

,
dða,tÞ ¼ uða,tÞîþvða,tÞĵþwða,tÞk̂ ð4Þ

The vector u
,

dða,tÞ is a displacement vector of the point on the
displaced configuration measured with respect to the equilibrium
configuration and it is defined as

u
,

dða,tÞ ¼ udða,tÞîþvdða,tÞĵþwdða,tÞk̂ ð5Þ

Therefore, the position vector for the displaced configuration
can be expressed by the following equations:

r
,
ða,tÞ ¼ r

,
sðaÞþu

,
dða,tÞ ¼ ðxsþudÞîþðysþvdÞĵþðzsþwdÞk̂ ð6Þ

Based on the differential geometry, the differential arc-length
for the undeformed state (so), the equilibrium state (ss), and the
displaced state (s) can be expressed by the following equations:

sou ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xou

2
þyou

2
þzou

2
q

ð7Þ

ssu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xu2s þyu2s þzu2s

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxou þusu Þ

2
þðyou þvsu Þ

2
þðzou þwsu Þ

2
q

ð8Þ

su¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xu2þyu2þzu2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxou þuuÞ2þðyou þvuÞ2þðzou þwuÞ

2
q

ð9Þ

The curvature (k) and torsion (t1) of the centroidal line of the
three-dimensional riser can be expressed as

k¼ dy
ds
¼

1

su3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx00yu�xuy00Þ2þðy00zu�yuz00Þ2þðx00zu�xuz00Þ2

q
ð10Þ

t1 ¼
df
ds
¼

xuðy00z000�y000z00Þ�yuðx00z000�x000z00Þþzuðx00y000�x000y00Þ

ðx00yu�xuy00Þ2þðy00zu�yuz00Þ2þðx00zu�xuz00Þ2

" #
ð11Þ

where the infinitesimal angles dy and df are the angles between
successive tangents and successive binormals, respectively. The
superscript (0) denotes the partial derivative with respect to
parameter a.

The orientation of the riser cross-section is defined by an angle
c(s,t), which is the angle between the principal axis of the cross-
section ðê2Þ and the principal normal of the centroidal curve ðn̂Þ (see
Fig. 2). According to the assumption that the riser cross-section
remains plane and perpendicular to the axis of the riser, the
rotations of the riser cross-section around both principal axes
are sufficiently small and can be neglected. Thus, the rotation
vector of the riser’s cross-section can be defined as

w
,

¼cða,tÞt̂¼ ðcsðaÞþcdða,tÞÞt̂ ð12Þ

It has to be noted that the torsion of the riser is composed of the
torsion of the centerline curve (t1) and the rate of change of the
twisting angle dc=ds
� �

. Therefore, the torsion of the riser can be
expressed as

t¼ t1þ
dc
ds

ð13Þ

The velocity V
,

pða,tÞ and acceleration a
,

pða,tÞ of the riser can be
derived by differentiating Eq. (4) with respect to time (t). Therefore

V
,

p ¼
_
r
,
ða,tÞ ¼ _udða,tÞîþ _vdða,tÞĵþ _wdða,tÞk̂ ð14Þ

a
,

p ¼
€
r
,
ða,tÞ ¼ €udða,tÞîþ €vdða,tÞĵþ €wdða,tÞk̂ ð15Þ

The angular velocity and angular acceleration can be expressed
as follows:

_
w
,

¼ _cða,tÞt̂¼ _cdða,tÞt̂ ð16Þ

€
w
,

¼ €cða,tÞt̂¼ €cdða,tÞt̂ ð17Þ

The notation ðUÞ denotes the partial derivative with respect to
time (t).

According to the updated Lagrangian description, the total,
static, and dynamic axial strains can be defined as follows:

Total strain : et ¼
su�sou

ssu
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2ud

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2us

p
ð18aÞ

Static strain : es ¼
ssu�sou

ssu
¼ 1�

sou

ssu
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2us

p
ð18bÞ

Dynamic strain : ed ¼
su�ssu

ssu
¼

su

ssu
�1¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2ud

p
�1 ð18cÞ

The updated Green strains (us,ud) in each state in Eqs. (18) can be
derived in the terms of displacements of the riser as follows:

us ¼
1

su2s
xsuusuþysuvsu þzsuwsu�

uu2s
2
�

vu2s
2
�

wu
2
s

2

 !
ð19aÞ

ud ¼
1

su2s
xsuudu þysuvdu þzsuwdu þ

uu2d
2
þ

vu2d
2
þ

wu
2
d

2

 !
ð19bÞ
2.2. Apparent weight and apparent tension

According to Chucheepsakul et al. (2003), the apparent weight
(Wa) and the apparent tension (Na) can be expressed as

Wa ¼ ðrpAps�reAesþriAisÞg ð20Þ

Na ¼NeþNtri ¼Nþ2nðpeAes�piAisÞ ¼ EApset ð21Þ

in which rp, re, ri are densities of riser, external fluid, and internal
fluid, respectively, Aps is the cross-sectional area of the riser, Aes, Ais

are the outside and inside cross-sectional areas of the riser,
respectively, pe, pi are the external and internal pressures, respec-
tively, and n is Poisson’s ratio. The axial tension N is a true wall
tension of the riser.
2.3. Hydrodynamic forces due to current and wave

For slender structure such as marine riser, the hydrodynamic
forces due to current and wave can be computed by the following
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expression:

F
,

H ¼

fHt

fHn

fHbn

8><
>:

9>=
>;¼ 0:5reDe

pCDtgt9gt9

CDngn9gn9

CDbngbn9gbn9

8><
>:

9>=
>;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Viscous drag force

þreAeCa

_gt

_gn

_gbn

8><
>:

9>=
>;|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Hydrodynamic

mass force

þreAe

_V Ht

_V Hn

_V Hbn

8><
>:

9>=
>;|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Froude-Krylov

force

ð22Þ

The coefficients CDt, CDn, CDbn, and Ca represent the tangential
friction, normal drag, binormal drag, and the added mass coeffi-
cients, respectively. The variables VHt,VHn, and VHbn are the tangen-
tial, normal, and binormal velocities of currents and waves,
respectively. The relative velocities gt ¼ VHt� _ut , gn ¼ VHn� _vn, and
gbn ¼ VHbn� _wbn represent the velocities of currents and waves
related to the riser velocity in tangential ð _utÞ, normal ð _vnÞ, and
binormal ð _wbnÞ directions, respectively.

2.4. Hydrodynamic forces due to fluid transportation

Based on the Newton’s law of momentum conservation, the
inertial force per unit length of the riser induced by the internal
fluid flow is written as

f
,

i ¼mia
,

F ð23Þ

where f
,

i is the inertial force vector, mi is the transported mass per
unit length of the riser, and a

,
F is the acceleration vector of the

transported fluid.
Fig. 2. The orientation of t
The acceleration of the transported fluid can be derived by
considering the kinematics of transported fluid inside the risers.
According to kinematics of transporting mass inside the moving
riser (Huang, 1993), the acceleration of transported fluid can be
expressed as

a
,

F ¼
@2ðr

,
pÞ

@t2
þ

2Vi

su

� �
@2ðr

,
pÞ

@a@t
þ

Vi

su

� �2 @2ðr
,

pÞ

@a2
þ

_V i

su
þ

ViViu

su2
�

Vi
_su

su2
�

V2
i s00

su3

" #
@ðr
,

pÞ

@a

ð24Þ

where Vi is a relative velocity of the fluid inside the riser.

2.5. Virtual strain energy

According to the extensible elastica theory (Chucheepsakul
et al., 2003), the virtual strain energy of the marine riser is written
as

dU ¼

Z
a
½NadsuþBkdyuþCtdfuþCtdcu�da ð25Þ

where B¼EIp(1+ed) is the bending rigidity, C¼GJp(1+ed) is torsion
rigidity,c is the twisting angle, s is the arc-length, ed is the dynamic
strain, Ip is the moment of inertia of the riser, Jp is the polar moment
of inertia of the riser. The expressions of the variation of su,yu and f0

are given in Appendix A.

2.6. External virtual work

The external virtual work of the riser system is

dW ¼ dWwþdWHþdWI ð26Þ

where dWw, dWH, and dWI are the virtual work done by the
apparent weight, hydrodynamic forces, and inertial forces of the
riser and transported fluid, respectively. In the Cartesian coordi-
nates, the expressions of these virtual works can be written as
he riser cross-section.
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follows:

dWw ¼�

Z
a

wasudvda ð27Þ

dWH ¼

Z
a
½fHxsuduþ fHysudvþ fHzsudw�da ð28Þ

dWI ¼�

Z
a
½ðmpapxþmiaixÞsuduþðmpapyþmiaiyÞsudv

þðmpapzþmiaizÞsudwþðrpJp
€cÞsudc�da ð29Þ

The components of the hydrodynamic forces vector (fHx, fHy, fHz)
can be derived by transforming Eq. (22) to the fixed Cartesian
coordinate system. The variables mp and mi represent the mass per
unit length of the riser and transporting fluid, respectively.

2.7. Total virtual work

In this study, the sea water level (ys) is used as an independent
variable (a). Based on the principle of virtual work, the riser system
is in equilibrium if the total virtual work energy of the riser system
is zero

dp¼ dU�dWw�dWH�dWI ¼ 0 ð30Þ

Substituting Eqs. (25), (27), (28), and (29) into Eq. (30) with
some manipulations, one obtains

dp¼
Z

ys

Na
xu

su

� �
�B

k2xu

su
þ

s00

su3
@

@ys

xu

su
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þCtkbx

� 	
duu
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su

� �
�B
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� 	
dvu
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k2zu
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þ

s00

su3
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zu
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þCtkbz

� 	
dwu

�
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þ

Z
ys

B

su2
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� �� 	
du00 þ
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su2
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� �� 	
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þ
B

su2
@

@ys
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su

� �� 	
dw00

�
dysþ

Z
ys

fTdcugdys

�

Z
ys

fsu½fHx�mpapx�miaFx�dugdys

�

Z
ys

fsu½�waþ fHy�mpapy�miaFy�dvgdys

�

Z
ys

fsu½fHz�mpapz�miaFz�dwgdysþ

Z
ys

fsu½rpJp
€c�dðcÞgdys ¼ 0

ð31Þ

The apparent tension in Eq. (31) can be evaluated by considering
the equilibrium condition of forces applied on the riser element in
tangential direction. One obtains

NaðysÞ ¼NaðysHÞþ

Z ysH

ys

ðBkÞukþsu
�wa

su
þ fHt�mpapt�miaFt

� 
h i
dys

ð32Þ

where fHt is the hydrodynamic forces in the tangential direction, apt

is the tangential acceleration of the riser, aFt is the tangential
acceleration of transporting fluid. In this study, the finite element
method is used to solve the system of Eqs. (31) and (32).
Fig. 3. The discretization of the riser along the water depth.
3. Finite element model

Because the top end of the riser can slide through the slip joint,
the total stretched arc-length of the riser measured from the seabed
to the slip joint may not be known until the equilibrium config-
uration is determined. Therefore, the discretization along the
unstretched arc-length may not be convenient to set up the
boundary condition at the top end. In order to eliminate this
problem, the discretization of the riser element along the sea water
level is applied instead of the total unknown arc-length as shown in
Fig. 3.

3.1. Nonlinear static analysis

In general, the riser will vibrate around its static configuration
which is commonly nonlinear. Therefore, the nonlinear static
solutions have to be evaluated before calculating the dynamic
properties of the riser. The hybrid finite element model formulation
for nonlinear static analysis of three-dimensional marine riser can
be derived by eliminating the time-dependent terms in Eq. (31).
One obtains

dps ¼

Z
ys

Nas
xus
sus
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�Bs

k2
s xsu

ssu
þ

ss
00

su3s

@
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xsu

ssu

� �� �
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@ys

xsu

ssu

� �" #
dðus
00 Þþ

Bs

su
2

s

@
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zsu

ssu

� �" #
dws
00

( )
dys

þ

Z
ys

fðCstsÞudcsgdysþ

Z
ys

fsus½�fHxsþmiaFxs�dusgdys

þ

Z
ys

fsus½�fHzsþmiaFzs�dwsgdys ¼ 0 ð33Þ

where xs¼xo+us, zs¼zo+ws. The subscript (s) of each parameters in
Eq. (33) represents the static quantities. The nonlinear static



C. Athisakul et al. / Ocean Engineering 38 (2011) 609–620614
displacement us and ws are approximated by the fifth order
polynomial. It has to be noted that the static displacement us

and ws are referenced to the fixed Cartesian coordinate x, y, z, and
the undeformed configuration of the riser is arbitrary. Therefore,
the axial static strain es is approximated by the linear interpolation
and can be calculated from the constrain condition between Eqs.
(21) and (32). According to Eq. (33), the derivative of torque is equal
to zero ((Csts)

0 ¼0) and the rate of change of the static twisting angle
dcs=ds
� �

can be found from Eq. (13). Therefore, the static twisting
angle can be calculated by the direct integration. Consequently, it is
not necessary to include the twisting angle to the displacement
vector. Therefore, the displacement vector can be expressed as

fd
,

sg ¼ us ws es
� �T

¼ ½Ns�fd
,

nsg ð34Þ

where the nodal displacements of each element are
ð35Þ

The shape function matrix at the equilibrium state is

ð36Þ
The elements of shape function matrix are defined in Appendix
B. According to the calculus of variation, one can find

dpðeÞs ¼
X14

i ¼ 1

@pðeÞs

@dnsi

" #
ddnsi ¼ 0 ð37Þ

Since ddnsia0, one obtains the system of nonlinear equations as
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ð39aÞ
The shape function matrix [N(ys)], which is a function of ys, can be ex
BTzs ¼
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ssu

� �
¼

Bs

su2s

zs
00

ssu
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NBTxs ¼Nas
xsu

ssu

� �
�Bs

k2
s xsu

ssu
þ

ss
00

su3s

@

@a
xsu

ssu
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ð39cÞ

NBTzs ¼Nas
zsu

ssu

� �
�Bs

k2
s zsu

ssu
þ

ss
00

su3s

@

@a
zsu

ssu

� � !
ð39dÞ

ffxs ¼ ssu ½�fHxsþmiaFxs��ðCstsksbxsÞu ð39eÞ

ffzs ¼ ssu ½�fHzsþmiaFzs��ðCstsksbzsÞu ð39fÞ

The boundary conditions of the riser system are

ðat ys ¼ 0Þ us ¼ 0, ws ¼ 0, cs ¼ 0 ð40a2cÞ
ðat ys ¼ ysHÞ us ¼ 0, ws ¼ 0, Nas ¼NasH , es ¼
NasH

EApsH

ð40a2dÞ

The system of the nonlinear equations (Eq. (38)), which is
constrained by boundary conditions (Eq. (39)) is solved numeri-
cally by the iterative procedure (Monprapussorn et al., 2004).
3.2. Natural frequency analysis

The assumed dynamic displacements of each element are
approximated by

fd
,

g ¼ ud vd wd cd

n oT
¼ ½NðysÞ�fd

,

ndðtÞg ð41Þ

The nodal displacement vector fd
,

ndg in Eq. (41) is a function of
time only and can be expressed as
ð42Þ

pressed as

ð43Þ
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The elements of the above matrix are the fifth degree poly-
nomial shape functions, which is defined in Appendix B. Then,
substituting Eq. (41) into Eq. (31) together with some manipula-
tions, the equation of motion for free vibration analysis of three-
dimensional marine riser element can be written in the matrix form
as

½me�f €dndgþ½g
e�f _dndgþ½k

e
�fdndg ¼ f0g ð44Þ

where [me], [ge], and [ke] are the element mass matrix, the element
gyroscopic matrix, and the element stiffness matrix, which are
shown in Appendix C.

Then, assembling the element equations of motion (Eq. (44)),
one obtains the equation of motion for entire riser as

½M�f €Dndgþ½G�f _Dndgþ½K�fDndg ¼ f0g ð45Þ

where fDndg ¼
Pnelem

i ¼ 1 fdndgis the global nodal displacement vector;

½M� ¼
Pnelem

i ¼ 1 ½m
e� is the total mass matrix; ½G� ¼

Pnelem
i ¼ 1 ½g

e� is the

total gyroscopic matrix; ½K� ¼
Pnelem

i ¼ 1 ½k
e
� is the total stiffness

matrix. The abbreviation ‘nelem’ represents the number of finite
element.

In order to evaluate Eq. (45), the identity f _Dndg ¼ f
_Dndg has to be

added into Eq. (45). Therefore, the equation of motion for entire
riser can be rearranged into the following form (Meirovitch, 1997):

I 0

0 M

� 	 _Dnd

€Dnd

( )
þ

0 -I

K G

� 	 Dnd

_Dnd

( )
¼

0

0


 �
ð46Þ

Eq. (46) can be cast in the state form as

f _Xndg ¼ ½A�fXndg ð47Þ

where fXndg2n�1 ¼ Dnd
_Dnd

� �T
is the 2n-dimensional state vector,

and the matrix [A] is the 2n�2n real nonsymmetric coefficient
matrix. The matrix [A] can be expressed as follows:

½A� ¼
0 I

�M�1K �M�1G

� 	
2n�2n

ð48Þ
Fig. 4. Configuration of
The solution of Eq. (47) can be written in the following form:

fXndg ¼ eltfXnag ð49Þ

The parameter l is a complex value and {Xna} is a 2n complex
vector. Substituting Eq. (49) into Eq. (47), one obtains the general
algebraic eigenvalue problem as follows:

½A�fXndg ¼ lfXndg ð50Þ

The general form of the eigenvalue l can be expressed as

l¼ a7 io ð51Þ

where o represents the natural frequency of the riser system. The
eigenvalue problem of Eq. (50) can be solved numerically by the
implicit double-shifted QR algorithm based on the EISPACK routine
HQR2 (Smith et al., 1976).
4. Numerical examples

In this study, the computer program for large displacement
analysis and free vibration analysis of three-dimensional exten-
sible marine riser is developed in the Fortran-90 language. The
special test cases such as the configuration of catenary cable, the
free vibration analysis of three-dimensional cable (Henghold et al.,
1977), and the free vibration analysis of extensible marine riser
transporting fluid (Moe and Chucheepsakul, 1988) are presented in
order to verify the accuracy of the numerical results.
4.1. Catenary cable

The numerical approximation of the catenary cable configuration
can be evaluated by eliminating the bending and torsional rigidity
from Eq. (38). The cable weight is equal to 5 N/m. The axial tensions in
cable at top and bottom end are equal to 1574.32 and 1074.32 N,
respectively. Fig. 4 shows that the numerical solutions and shape of
cable are identical to those carried out by the exact formula.
the catenary cable.



Table 1
Comparisons of the first four dimensionless frequencies of an inclined extensible cable for a value of EAo/waSs¼5000.

Mode Dimensionless frequencies of cable ðôcÞ

Henghold

et al. (1977)

Chucheepsakul

and Srinil (2002)

This study (20 elements) %Difference from

Henghold et al. (1977)

Incline angle ðyÞ is equal to 301

1 (O) 2.24 2.24 2.24 0.00

2 (I) 3.65 3.57 3.61 1.10

3 (O) 4.53 4.45 4.48 1.10

4 (I) 6.30 6.01 6.07 3.65

Incline angle ðyÞ is equal to 601

1 (O) 2.83 2.84 2.84 0.35

2 (I) 5.17 5.28 5.29 2.32

3 (O) 5.67 5.63 5.64 0.53

4 (I) 8.17 8.34 8.35 2.20

Table 2
Input parameters and the in-plane fundamental natural frequencies of the rigid production riser transporting fluid with various speeds of internal flow.

Input parameters used for the rigid production riser transporting fluid
1. Riser top tension, NaH 476,200 N

2. Water depth, yH 300 m

3. Excursion of the vessel in x-direction, xH 0 m

4. Excursion of the vessel in z direction, zH 0 m

5. Outside diameter, Depo 0.26 m

6. Inside diameter, Dipo 0.20 m

7. Density of riser, rp 7850 kg/m3

8. Density of sea water, re 1025 kg/m3

9. Density of mud, ri 998 kg/m3

10. Young’s modulus, E 2.07�1011 N/m2

11. Poisson’s ratio, n 0.50

12. Current velocity at mean sea level, VcH 0 m/sec

13. Angle between current direction and x-direction 0o

14. Normal drag coefficient, CDn 0.70

15. Tangential drag coefficient, CDt 0.03

16. Added mass coefficient, Ca 1.00

Numerical results
Internal flow

velocity

(Vio)(m/s)

The in-plane fundamental natural frequencies of production riser (rad/sec)

Moe and Chucheepsakul (1988) (IA,EBR) Monprapussorn et al. (2007) (EA) This study (20 elements) (3-D,EA)

Analytical

solution

Numerical

solution

EBR IBR EBR IBR

0 0.2878 0.2890 0.2891 0.3001 0.2892 0.2988

5 – – 0.2881 0.2994 0.2883 0.2980

10 0.2838 0.2853 0.2853 0.2972 0.2854 0.2957

15 – – 0.2804 0.2934 0.2805 0.2917

20 0.2706 0.2730 0.2731 0.2880 0.2732 0.2860

25 – – 0.2627 0.2809 0.2629 0.2783

30 0.2413 0.2478 0.2478 0.2717 0.2481 0.2684

35 – – 0.2224 0.2603 0.2230 0.2559

Note: IA¼ inextensible analysis, EA¼extensible abiicnalysis, 3-D¼3-D analysis, EBR¼excluding bending rigidity, IBR¼ including Bending Rigidity.

C. Athisakul et al. / Ocean Engineering 38 (2011) 609–620616
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4.2. Free vibration of three-dimensional cable

The special case of an inclined extensible cable subjected to its
uniform self-weight is presented. The cable is suspended in the air

with the incline angle ðyÞ of 301 and 601. Table 1 shows the in-plane

(I) and out-of-plane (O) dimensionless frequencies ôc ¼o
ffiffiffiffiffiffiffiffiffiffi
Ss=g

p� �
for the first four modes of the cable with a value of cable stiffness to
weight ratio (EAo/waSs) of 5000. The FEM solutions for 20 elements
obtained in this study are in a very good agreement with the studies
of Henghold et al. (1977) and Chucheepsakul and Srinil (2002).

4.3. Free vibration of vertical riser transporting fluid

The parameters used and the natural frequencies of a vertical
riser transporting fluid are shown in Table 2. The natural frequen-
cies of the vertical riser are compared with the analytical solutions
and the numerical solutions that were reported by Moe and
Chucheepsakul (1988) and Monprapussorn et al. (2007), respec-
tively. The numerical results, which are obtained from this study,
are in good agreement with the previous report.

4.4. Effect of axial extensibility and internal flow on maximum

displacement of extensible marine riser

According to the validation of previous examples, the authors
are confident that the model formulation developed herein is
applicable and give the sufficient accuracy of the numerical results.
In this section, the couple effect of axial extensibility and internal
flow on maximum displacement of extensible marine riser is
presented.

The data in Table 3 is utilized for this example. In the case of
extensible riser, the flexural rigidity is small as compared with the
applied top tension. Therefore, the applied top tension (NaH) is used
as the basis for the parametric normalization. The following
dimensionless parameters are introduced in order to comprehend
the effect of axial extensibility:

Êirv ¼
waL

NaH

� � ffiffiffiffiffiffiffiffiffiffi
EApo

NaH

s
, V̂ io ¼ Vio

ffiffiffiffiffiffiffiffiffiffiffi
mio

NaH
,

r
ô¼oL

ffiffiffiffiffiffiffiffi
mto

NaH

r
,

ŷs ¼
ys

L
, D̂s ¼

Ds

L
ð52a2eÞ

The parameter Êirv is recognized as the Irvine’s first parameter
(Hover and Triantafyllou, 1999) in cable mechanics. It is utilized to

describe the effect of riser’ extensibility. The high value of Êirv

implied the low extensibility, but the low value of Êirv implied the

high extensibility condition of the riser. The parameter V̂ io denotes
Table 3
The input data utilized for study the effect of axial extensibility and internal flow on

maximum displacement of marine riser.

Parameters Value

Offset of the vessel
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

Hþz2
H

q� 

70 m

Water depth, yH 300 m

Normal drag coefficient, CDn 0.70

Tangential drag coefficient, CDt 0.03

Added mass coefficient, Ca 1.00

Current velocity at mean sea level, VcH 0.20 m/s

Elastic modulus, E 2.07�1011 N/m2

Outside diameter, Depo 0.26 m

Inside diameter, Dipo 0.20 m

Density of pipes/risers, rp 7850 kg/m3

Density of sea water, re 1025 kg/m3

Density of internal fluid, ri 998 kg/m3
the effect of the mean flow velocity of transported fluid. The

parameter ô is the nondimensional form of the natural frequency

(o) of the riser. The parameter ŷs represents the position of

maximum displacement from seabed. The parameter D̂s is the

nondimensional form of the lateral displacement Ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

s þw2
s

p� 

of the riser where the span length L¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

Hþy2
Hþz2

H

q
.

The combination effect of axial extensibility and internal flow
on the maximum displacement of extensible marine riser is shown
in Fig. 5. It is evident that the internal flow of transported fluid
increases the lateral displacements. The internal flow induces a
tangential loading, which destabilizes the riser system. Conse-
quently, the divergent instability could be occurred when speed of
internal flow reaches the value of V̂ is ¼ 0:3246 as shown in Fig. 5.

Fig. 5 also shows that an increase in axial extensibility, by
reducing Êirv from 286.50 to 28.65, enlarges the lateral displace-
ments due to the reduction of bending stiffness. However, the
turning point occurs when Êirv is reduced passing 10.00 to 1.81. In
this range, the increase in axial extensibility reduces the lateral
displacements.

The transition behavior is occurred due to the variation of the
structural stiffness domination from the bending stiffness dom-
ination to the pretensioned stiffness (Fig. 5). The structural stiffness
of the low extensible riser is governed by the bending strain energy,
and the riser behaves like a tensioned beam.

On the contrary, when the condition of high extensibility such as
Êirv ¼ 1:81 is applied, the riser received high axial tension and the
axial strain become large. In this case, the axial strain energy or the
pretensioned stiffness becomes the main stiffness of riser as well as
the tensioned cable. For a moderate extensibility riser
ð10:00r Êirvr28:65Þ, the riser has large amount of both axial
strain energy and bending strain energy. Consequently, the riser is
under the coupled axial–bending stiffness domination and the
transition of tensioned beam behavior to tensioned cable behavior
is occurred in this state.

From the above discussions, it can be found that the effect of
axial extensibility of the riser induces the lateral displacements
when the bending stiffness controls. However, the effect of axial
Fig. 5. Effect of axial extensibility and internal flow on maximum displacement ðD̂sÞ

of extensible marine risers and their positions from seabed.
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extensibility of the riser reduces the lateral displacements when
the pretensioned stiffness controls.
4.5. Effect of axial extensibility and internal flow on natural

frequencies and mode shapes of extensible marine riser

Figs. 6 and 7 show that the increase in internal flow velocity
reduces the natural frequencies of the extensible marine riser. The
Fig. 7. Effect of axial extensibility on the in-plane natural frequencies of the

extensible marine riser.

Fig. 8. Effect of axial extensibility on modal transition of the in-plane oscillation of

the extensible marine riser.

Fig. 6. Effect of axial extensibility on the out-of-plane natural frequencies of the

extensible marine riser.
increase in axial extensibility reduces the values of out-of-plane
and in-plane natural frequencies when the bending stiffness
domination ðÊirv428:65Þ as shown in Figs. 6 and 7. This result
corresponds to the tensioned beam behavior (Hover and
Triantafyllou, 1999). Moreover, the shape of in-plane oscillation
does not change in this range.

On the contrary, the increase in axial extensibility increases the
values of out-of-plane and in-plane natural frequencies when the
pretensioned stiffness control ðÊirvo1:81Þ as shown in Figs. 6 and 7.
This result corresponds to the tensioned string behavior. In this range,
the riser is very taut and the in-plane natural frequencies are close to
the out-of-plane natural frequencies as shown in Fig. 8. Same as the
three-dimensional marine cable (Chucheepsakul and Srinil, 2002), the
fundamental natural frequencies of the marine riser represent the
first mode of out-of-plane natural frequencies (Fig. 8).

In the transition state ð1:812r Êirvr28:65Þ, the extensible riser
behavior is changed from the tensioned beam to the tensioned
string behavior (Russell and Lardner, 1998). The shapes of in-plane
oscillation are changed by crossing from single curvature curve to
double curvature curve of from two curvatures curve to three
curvatures curve and so on as shown in Fig. 8. The avoided crossing
of the extensible riser is occurred due to the hybrid mode formation
between the in-plane oscillation and out-of-plane oscillation
(Burgess and Triantafyllou, 1988).
5. Conclusions

The three-dimensional model formulation of the extensible
marine riser is developed by variational approach based on the
extensible elastica theory and the work–energy principle. The
outstanding feature of the model formulation presented in this
work is the use of independent variable a to provide the flexibility
in the choice of parameters defining elastic curves. Therefore, the
formulation allows users to select independent variable that is
suitable for their applications.

Several of numerical examples are presented to verify the model
formulation. The finite element method is used to obtain the
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numerical solutions. The couple effect of axial extensibility and
internal flow on maximum displacement and dynamic properties
of three-dimensional marine riser are also investigated.

The results indicate that the strength of low extensibility riser is
dominated by bending stiffness of marine riser. Consequently, the
axial extensibility reduces the stability of the riser system. On the
contrary, the strength of the high extensibility riser is dominated by
the pretensioned stiffness. Therefore, the high extensibility riser
performs the tensioned cable behavior, on which the axial exten-
sibility increases the stability of the riser system. For the riser with
moderate extensibility, the riser is in the transition state. In this
state, the variation of riser extensibility could induce the avoided
crossing of the in-plane mode shapes due to the hybrid mode
formation between the in-plane and out-of-plane oscillation.
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Appendix A

According to Eqs. (9)–(11), the variation of su,yu and f
0

can be
expressed as follows:

dsu¼
xu

su

� �
duuþ

yu

su

� �
dvuþ

zu

su

� �
dwu ðA1Þ
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where

I¼ ðsuÞ6ðkÞ2 ðA4Þ
Appendix B

The elements of shape function matrix are defined as follows:

N51 ¼ 1�10
y3

s

h3
þ15

y4
s

h4
�6

y5
s

h5
ðB1Þ

N52 ¼ ys�6
y3

s

h2
þ8

y4
s

h3
�3

y5
s

h4
ðB2Þ
N53 ¼
y2

s

2
�

3y3
s

2h
þ

3y4
s

2h2
�

y5
s

2h3
ðB3Þ

N54 ¼ 10
y3

s

h3
�15

y4
s

h4
þ6

y5
s

h5
ðB4Þ

N55 ¼�4
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h2
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2h3
ðB6Þ

N11 ¼ 1�
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h
ðB7Þ

N12 ¼
ys

h
ðB8Þ
Appendix C

The element mass matrix is

½me�24�24 ¼

Z h

0
½N�T24�4ðssu Þ

m� 0 0 0

0 m� 0 0

0 0 m� 0

0 0 0 rpJPs

2
66664

3
77775½N�4�24

8>>>><
>>>>:

9>>>>=
>>>>;

dys

ðC1Þ

Note that, m� ¼mpsþmisþCames

The element gyroscopic matrix is

½ge�24�24 ¼

Z h

0
½N�T24�4ðmisVisÞ

2� xu
2
s

su
2
s

� �
� xsu

su
2
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� �
� xsu zsu
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2
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0
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2
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2� zu

2
s

su
2
s

� �
0

0 0 0 0

2
66666666664

3
77777777775
½Nu�4�24

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

dys

ðC2Þ

The element stiffness matrix is

½ke
�24�24 ¼ ½b1k�þ½b2k�þ½N1k�þ½N2k�þ½T1k�þ½T2k� ðC3Þ

in which the bending stiffness matrix of the fourth order derivative
is

½b1k�24�24

¼

Z h

0
½N00�T24�4

Bs

ssu5

ð1þzsu
2
Þ �ðxsu Þ �ðxsuzsu Þ 0

�ðxsu Þ ðxsu
2
þzsu

2
Þ �ðzsu Þ 0

�ðxsuzsu Þ �ðzsu Þ ðxsu
2
þ1Þ 0

0 0 0 0

2
66664

3
77775½N00�4�24

8>>>><
>>>>:

9>>>>=
>>>>;

dys

ðC4Þ

The bending stiffness matrix of the third order derivative is

½b2k�24�24

¼

Z h

0
½Nu�T24�4ð�1Þ

b2k11s b2k12s b2k13s 0

b2k21s b2k22s b2k23s 0

b2k31s b2k32s b2k33s 0

0 0 0 0

2
6664

3
7775½N00�4�24

8>>><
>>>:

9>>>=
>>>;dys

ðC5Þ

where

b2k11s ¼
Bs

ssu7
2xs
00 xsuþ2ðxs

00 zsu�xsuzs
00 Þxsuzsu½ � ðC6aÞ

b2k22s ¼
Bs

ssu7
2ð�zs

00 Þzsu�2xs
00 xsu½ � ðC6bÞ
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b2k33s ¼
Bs

ssu7
�2ðxs

00 zsu�xsu zs
00 Þxsu zsu�2ð�zs
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h i
ðC6fÞ

The axial stiffness matrix of the second order derivative is

½N1k�24x24 ¼

Z h

0
½Nu�T24�4

Nas

ssu
�

misV
2
is

ssu

 ! 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

2
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8>>><
>>>:

9>>>=
>>>;dys
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The axial stiffness matrix of the first order derivative is

½N2k�24�24 ¼

Z h

0
½N�T24x4 �
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� � 1 0 0 0

0 1 0 0
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The torsional stiffness matrix of the fourth order derivative is

½T1k�24�24 ¼

Z h

0
½Nu�T24�4

T1k11s T1k12s T1k13s 0

T1k21s T1k22s T1k23s 0

T1k31s T1k32s T1k33s 0

0 0 0 0

2
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3
7775½N000�4�24
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>>>:

9>>>=
>>>;dys

ðC9Þ

The torsional stiffness matrix of the second order derivative is
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Z
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ðC10Þ
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s

ðC11a2cÞ

T1k12s ¼ T1k21s ¼
Cs

su9sk2
s

zs
00 ðzsuxs

00 �zs
00 xsu Þ ðC11dÞ

T1k13s ¼ T1k31s ¼
Cs

su9sk2
s

ð�xs
00 zs
00 Þ ðC11eÞ

T1k23s ¼ T1k32s ¼
Cs

su9sk2
s

ðzsuxs
00 �zs

00 xsu Þð�xs
00 Þ ðC11fÞ

T2k14s ¼
Cszs
00

su4s
, T2k24s ¼

Cs

su4s
ðzsuxs

00 �zs
00 xsu Þ, T2k34s ¼

Csð�xs
00 Þ

su4s
ðC11g2iÞ
T3k41s ¼ 0, T3k42s ¼ Cs
zs
00 xs
00
u�xs

00 zs
00
u

su6sk2
s

" #
, T3k43s ¼ 0, T2k44s ¼

Cs

ssu

ðC11j2mÞ
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a b s t r a c t

This paper presents a finite element method for calculating the static equilibrium configurations and
applied top tension of extensible marine riser with specified total arc-length. A variational formulation
of an extensible marine riser is formulated based on the work-energy principle. The variational model
formulation involves strain energy due to bending and axial stretching, and virtual work done by hydro-
static pressures and other external forces. The total unstretched arc-length of marine riser is specified
while the top tension is not yet exactly known at the equilibrium position. A Lagrange multiplier is intro-
duced in order to impose the constraint condition, which is the specified total arc-length of the riser. The
system unknowns are composed of the nodal degrees of freedom and the Lagrange multiplier. The system
of nonlinear finite element equations is derived based on the finite element procedure. The numerical
solutions of the nonlinear system are obtained by the iterative method. The results show that the
Lagrange multiplier is identified as the parameter for adjusting the top tension to a proper value that sat-
isfies the constraint condition.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

At present, the technologies for exploration and production of
oil and gas in the ultra-deep water has currently been developed.
One of a key component for offshore production is the marine riser.
As the water depth for offshore operations is increasing, the riser
system becomes more important. A failure of the riser system
causes not only the severe environmental pollutions but also the
significant financial consequences. Therefore, the appropriate ap-
plied top tension corresponding to the riser configuration has to
be determined with more degree of accuracy.

In general, the riser is a long slender vertical structure connect-
ing between the floating production facility and subsea wellhead.
Therefore, the riser behaves like a flexible structure which can be
experienced large displacement. Since this problem is highly non-
linear, the nonlinear analysis technique is required. The nonlinear
analysis method of flexible structure has been developed continu-
ously over the past 50 years as found in literature [1–4].

Felippa and Chung [5,6] presented a static analysis procedure
for determination of nonlinear static equilibrium configurations
of marine riser. They modeled the riser as the three-dimensional
beam elements. The numerical solutions were obtained by using

the incremental load iterative procedure. McNamara et al. [7] used
the hybrid finite elements, which the axial force is independently
interpolated and combined with the corresponding axial displace-
ments, for static and dynamic analysis of flexible risers. Moe and
Arntsen [8] proposed an analytic model for static analysis of cate-
nary risers. The particular three-dimensional model formulations
and analysis techniques for deep water riser have been developed
by several investigators [9–15]. The development of flexible riser
modeling and analysis techniques was reviewed by Patel and
Seyed [16].

Most of research works mentioned above assumed that the total
length of riser is constant, therefore the total arc-length of the riser
is normally discretized to be a finite length and the riser configura-
tions are determined along the arc-length of riser. However, in
most cases, the top end of the riser can slip through the slip joint.
Consequently, the total stretched arc-length of the riser measured
from the seabed to the slip joint may not be known until the equi-
librium configuration is evaluated. Therefore, the use of the un-
stretched arc-length to be the independent variable may not
convenient to set up the boundary condition at the slip joint.

In order to reduce the complexity of the problem discussed
above, the vertical distance is used as the independent variable
instead of the unstretched arc-length [17]. This technique
eliminates a number of iterations that are required to adjust the to-
tal unstretched arc-length until the boundary conditions at the top
end are satisfied. Moreover, in finite element analysis, the
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discretization of the riser elements along the arc-length requires
more nodal variables than the discretization along the sea depth
[18]. Some other examples of research works, which were adopted
this technique for large displacement analysis, can be found in
Huang and Kang [19], Chucheepsakul et al. [20], Athisakul et al.
[21–23], Monprapussorn et al. [24,25], and Kaewunruen et al. [26].

For the case of the applied top tension is specified, the discret-
ization along the sea depth (ys) is suitable for the numerical solu-
tions. The stretched arc-length and unstretched arc-length can be
easily found by direct integration along the vertical coordinate of
the riser configurations. On the contrary, if the unstretched arc-
length is specified, the applied top tension will be adjusted to sat-
isfy the equilibrium and boundary conditions. A trial error in esti-
mating the proper value of the applied top tension may be used,
but it is a time consuming process. A better approach to solve this
constraint problem is to use the Lagrange multiplier method.

The purpose of this paper is to present the finite element meth-
od for large displacement and large deformation analysis of marine
riser with a constraint condition (a specified total unstretched arc-
length). The model formulation is developed by using the varia-
tional approach. The strain energy due to bending, axial stretching
and virtual work done by hydrostatic pressure and other external
forces are involved in the variational model. A Lagrange multiplier
is introduced in order to impose the constraint condition. The
numerical examples are provided to explain the physical meaning
of the Lagrange multiplier. The relations between the top tension
and the unstretched arc-length in different water depth and static
offset are investigated herein.

2. Strain–displacement relations

The marine riser configurations and the infinitesimal elements
of marine riser in three states of the riser configurations are de-
picted in Fig. 1. The parameters dso; dss; and ds represent the differ-
ential arc-lengths at undeformed, equilibrium, and displaced
configurations, respectively.

According to the updated Lagrangian description, the motions
and deformations of riser body are described with respect to the
equilibrium position. Therefore, the definition of the total axial
strain, static strain, and dynamic strain can be defined as shown
in Table 1.

Based on the differential geometry of curve in plane, the differ-
ential arc-lengths in three states of the riser configurations can be
defined as follows.

At the undeformed state, the differential arc-length is defined
by

dso ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02o þ y02o

q
da ¼ ð1� esÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02s þ y02s

q
da ð1Þ

at the equilibrium state, the differential arc-length is defined by

dss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02s þ y02s

q
da ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0o þ u0sÞ

2 þ ðy0o þ v 0sÞ
2

q
da ð2Þ

and at the displaced state, the differential arc-length is defined by

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

p
da ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0s þ u0Þ2 þ ðy0s þ v 0Þ2

q
da

¼ ð1þ edÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02s þ y02s

q
da ð3Þ

where u and v represent the displacement in x and y directions,
respectively. The subscript (o) refers to the undeformed position.
The subscript (s) denotes the static equilibrium position. The super-
script (0) represents the derivative of the parameter with respect to
the independent variable a.

3. Variational model

The model formulation used in this study is developed by vari-
ational approach. Theoretically, the strain energy includes those
contributions from axial deformation and bending deformation.
The external virtual work of the riser system is composed of the
virtual works done by the effective weight, hydrodynamic loading
and inertial forces of the riser mass and the transported fluid mass.
These expressions can be shown briefly in the following subtopics.

Fig. 1. (a) Three states of marine riser configurations. (b) The infinitesimal elements
of marine riser in three states.

Table 1
Definition of the axial strains at each state.

Total strain (1–3) Static strain (1–2) Dynamic strain (2–3)

et ¼
ds� ds0

dss
es ¼ 1� dso

dss
ed ¼

ds
dss
� 1
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3.1. Strain energy due to axial deformation

Based on the updated Lagrangian description, the strain energy
due to axial deformation of the apparent system of the riser is

Ua ¼
Z st

0

EAse2
t

2
dss ð4Þ

Since the riser is a submerged structure, the effect of pressure
fields from external and internal fluid has to be considered
[18,27–28]. Based on theory of elasticity, the total axial strain
ðetÞfor elastic isotropic riser can be expressed in terms of the true
wall tension ðTÞ and fluid pressures by Eq. (5).

et ¼
1

EAps
T þ 2mðpeAes � piAisÞ½ � ð5Þ

According to Eq. (5), the apparent tension can be defined by

Tas ¼ T|{z}
1

þ2mðpeAes � piAisÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
2

¼ EApset ð6Þ

The effect of fluid pressures on the riser is deduced by the second
term of Eq. (6), where Aes is the outside cross-sectional area of the
riser, Ais is the inside cross-sectional area of the riser, Aps is the cross
sectional area of the risers ðAps ¼ Aes � AisÞ, pe represents the exter-
nal fluid pressure, pi represents the internal fluid pressure, and m is
the Poisson’s ratio. In case of m ¼ 0:5, the apparent tension is iden-
tical to the effective tension [27]. The concept of apparent tension is
a convenient mathematical technique for grouping the fluid pres-
sures into the axial tension. Eq. (6) shows that the external fluid
pressure induces the axial tension, while the internal fluid pressure
induces the axial compression.

By taking the first variation to Eq. (4) and adopting the Eq. (6),
one obtains the virtual strain energy due to axial deformation as
shown below.

dUa ¼
Z at

ao

Tas
x0s
s0s

du0s þ Tas
y0s
s0s

dv 0s
� �

da ð7Þ

3.2. Strain energy due to bending

According to the updated Lagrangian description, the strain en-
ergy due to bending can be expressed as

Ub ¼
Z s

0

M2

2EIPs
dss ð8Þ

Based on the elastica theory of extensible risers/pipes [18], the
moment–curvature relation of the riser system can be written in
the following form:

M ¼ EIPoð1þ esÞj ð9Þ

By substituting Eq. (9) into Eq. (8), one obtains

Ub ¼
Z st

0

1
2

EIPoj2ð1þ esÞ2dss ð10Þ

The virtual strain energy due to bending is derived by taking a
first variation of Eq. (10) and changing variable dss to be da. The
virtual strain energy due to bending can be written as

dUb ¼
Z at

ao

Mdh0da ð11Þ

According to the differential geometry of curve, the curvature
and the derivative of the angle h, which is the angle between the
displacement curve and y-axis (see Fig. 1), can be expressed in
Cartesian coordinate as follows.

j ¼ h0

s0
¼ ðx

00y0 � x0y00Þ
s03

ð12Þ

h0 ¼ ðx
00y0 � x0y00Þ

s02
ð13Þ

The relations between the Cartesian coordinates and the angle h
are
x0

s0
¼ sin h; and

y0

s0
¼ cos h ð14Þ

By substituting Eqs. (9), (12), and (13) into Eq. (11) and setting the
subscribe variables to be the static equilibrium state, one obtains

dUb ¼
Z at

ao

Bsjs

s0s

y0s
s0s

� �
du00s

�

þ �Bsj2
s

x0s
s0s

� �
� Bsjs

s00s
s02s

y0s
s0s

� �� �
du0s �

Bsjs

s0s

x0s
s0s

� �
dv 00s

þ �Bsj2
s

y0s
s0s

� �
þ Bsjs

s00s
s02s

x0s
s0s

� �� �
dv 0s
	

da ð15Þ

where Bs ¼ EIpoð1þ esÞ is the bending rigidity of the riser.

3.3. Work done by apparent weight

The virtual work done by the apparent weight of the riser can be
expressed as

dWw ¼ �
Z st

0
wadv sds ¼ �

Z at

ao

was0s
1þ es

dv sda ð16Þ

According to the apparent tension concept, the real system of the
submerged riser subjected to external and internal fluid pressures is
equivalent to the apparent system of the riser in the air that is sub-
jected to the apparent tension and the apparent weight [18].

The apparent weight per unit length of the riser can be defined
as

wa ¼ ½qpAps � qeAes þ qiAis�g ð17Þ

where qp is the density of the riser, qe is the density of the external
fluid/sea water, qi is the density of the internal fluid. It is noted that
the outside cross-sectional area of the riser Aes can be represented
as the cross-sectional area of the external fluid column. In the same
manner, the inside cross-sectional area of the riser Ais can be repre-
sented as the cross-sectional area of the internal fluid column.

3.4. Work done by current force

The current force per unit length is composed of two compo-
nents. The component in normal direction can be expressed in
the following form.

fHn ¼
1
2
qeDeCDnV2

Hn ð18Þ

The component in tangential direction is given by

fHt ¼
1
2
qepDeCDtV

2
Ht ð19Þ

where De is the outside diameter of the riser, VHt and VHn are the cur-
rent velocities in tangential and normal directions, CDn and CDt are the
normal drag and tangential drag coefficients, respectively. The virtual
work done by hydrodynamic force can be expressed as follows:

dWH ¼
Z at

ao

½ðfHny0s þ fHtx0sÞdus þ ð�fHnx0s þ fHty0sÞdvs�da ð20Þ

3.5. Work done by inertial forces

Based on the Newton’s second law, the inertial force from inter-
nal flow velocity is defined as
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~F ¼ �
Z at

ao

mi~ais0sda ð21Þ

in which the transported fluid mass per unit length at the equilib-
rium state is mi ¼ qiAis. The virtual work done by inertial force of
transporting fluid can be expressed as:

dWI ¼ �
Z at

ao

½ðmiaixÞs0sdus þ ðmiaiyÞs0sdv s�da ð22Þ

By considering the kinematics of transported mass in the mov-
ing frame [29], the acceleration of the fluid inside the riser can be
expressed in terms of the riser’s displacements and the speed of
the transported fluid as shown below.

aix ¼
jsy0s

s0s

� �
V2

i ð23Þ

aiy ¼ �
jsx0s

s0s

� �
V2

i ð24Þ

where Vi is the speed of the internal fluid.

3.6. Total virtual work equation

Based on the virtual work principle, the total virtual work-en-
ergy of the riser system is

dp ¼ ðdUa þ dUbÞ � ðdWw þ dWH þ dWIÞ ð25Þ

By substituting Eqs. (7), (15), (16), (20), and (22) into Eq. (25),
one obtains the total virtual work equation as shown below.

dp¼
Z at

ao

Bsjs

s0s

y0s
s0s

� �
du00s þ Tas�Bsj2

s


 � x0s
s0s

� �
�Bj

s00

s02s

y0s
s0s

� �� �
du0s

� 	
da

þ
Z at

ao

�Bsjs

s0s

x0s
s0s

� �
dv 00s þ Tas�Bsj2

s


 � y0s
s0s

� �
þBsjs

s00s
s02s

x0s
s0s

� �� �
dv 0s

� 	
da

þ
Z at

ao

� fHny0sþ fHtx0s�mijsy0sV
2
i

h i
dusda

þ
Z at

ao

� � was0s
1þes

� fHnx0sþ fHty0sþmijsx0sV
2
i

� �
dv sda

ð26Þ

Eq. (26) is used for calculating the static equilibrium configuration
of marine riser. This equation is suitable for the case of the applied
top tension is specified and the total unstretched arc-length of riser
is an unknown. The unstretched arc-length of the riser depends on
the coordinate of the riser configuration and it can be determined
by integrating Eq. (1).

In the case of the unstretched arc-length is specified, the top
tension that is sufficient to maintain the equilibrium of riser is
an unknown. The assumed top tension may be guessed and then
adjust the value until the arc-length reaches to the specified value.
However, this method is not efficient for numerical computation.
Therefore, a better technique, which is the Lagrange multiplier
method, is used.

3.7. Constraint equation

According to Eq. (1), the total unstretched arc-length of the riser
can be calculated as shown below.Z at

ao

dso ¼
Z at

ao

ð1� esÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y02s þ x02s

q� 	
da ¼ Stotal ð27Þ

In the procedure, a Lagrange multiplier is introduced in the con-
straint condition. When the value of unstretched arc-length ðStotalÞ
is specified, this introduces the constraint condition which is writ-
ten as

g ¼
Z at

ao

ð1� esÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y02s þ x02s

q� 	
da� Stotal ¼ 0 ð28Þ

3.8. Modified total virtual work equation

Based on the virtual work principle, the total virtual work of the
riser system is equal to zero when the riser system is in equilib-
rium. Therefore, Eq. (26) has to be minimized to zero with the con-
straint Eq. (28). According to the Lagrange multiplier technique
[30], the unknown variable k is added to the system and the total
virtual work equation is modified as follows.

dp� ¼ dpþ dðkgÞ ð29Þ

where dp� is the modified total virtual work. After performing var-
iation of the second term in Eq. (29), one obtains

dp� ¼
Z at

ao

Bsjs

s0s

y0s
s0s

� �
du00 þ Tas�Bsj2

s


 � x0s
s0s

� �
�Bj

s00

s02s

y0s
s0s

� �� �
du0s

� 	
da

þ
Z at

ao

�Bsjs

s0s

x0s
s0s

� �
dv 00s þ Tas�Bsj2

s


 � y0s
s0s

� �
þBsjs

s00s
s02s

x0s
s0s

� �� �
dv 0s

� 	
da

þ
Z at

ao

� fHny0sþ fHtx0s�mijsy0sV
2
i

h i
dusda

þ
Z at

ao

� � was0s
1þes

� fHnx0sþ fHty0sþmijsx0sV
2
i

� �
dv sda

þ
Z at

ao

k 1�esð Þ x0s
s0s

� �
du0sþ

y0s
s0s

� �
dv 0s

� �� 	
da

þ
Z at

ao

ð1�esÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02s þy02s

q� 	
da�Stotal

� �
dk

ð30Þ

4. The finite element method

In this study, the nonlinear static solutions can be evaluated by
using the finite element method. Based on the finite element pro-

Table 2
Properties of the riser used in the numerical analysis.

Property Value

Outside diameter 0.26 m
Inside diameter 0.20 m
Offset of the top end ð%DHÞ 5–40%
Density of riser 7850 kg/m3

Density of sea water 1025 kg/m3

Density of internal fluid 998 kg/m3

Young’s modulus 2.07 � 1011 N/m2

Table 3
Numerical results of the deep water riser for water depth of 900 m, 10% offset, and the
specified top tension of 1500 kN.

Top tension (kN) 1500
Unstretched total arc-length (m) 906.05
Stretched total arc-length (m) 906.23
Top angle (degree) 2.46
Bottom angle (degree) 17.10

Table 4
Numerical results of the deep water riser for water depth of 900 m, 10% offset, and the
specified unstretched arc-length of 910 m.

The assumed top tension (kN) 1500

The Lagrange multiplier k �152.77
Unstretched total arc-length (m) 910.00
Stretched total arc-length (m) 910.14
Top angle (degree) 1.63
Bottom angle (degree) 32.66
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cedures, the range of the total sea depth is divided into n elements.
The sea water level (ys) is used as an independent variable (a),
therefore dv ¼ dv 0 ¼ dv 00 ¼ 0. Consequently, then the modified
total virtual work equation (Eq. (30)) becomes

dp� ¼
Z yH

0

Bsjs

s02s
du00s þ

Tasx0s
s0s
� 2

Bsjsx00s x0s
s04s

� �
du0s

� 	
dys

þ
Z yH

0
� fHn þ fHtx0s �mijsV

2
i

h i
dusdys

þ
Z yH

0

k 1� esð Þx0s
s0s

du0s

� 	
dys

þ
Z yH

0
ð1� esÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x02s

q� 	
dys � Stotal

� �
dk ð31Þ

The large displacement of the riser ðxsÞ is composed of two com-
ponents. First is the linear component ðxslÞ, which can be directly
calculated by linear interpolation. Second is the nonlinear compo-
nent ðusÞ, which is approximated by the fifth degree polynomial.
Hence, the large displacement of the riser can be written as shown
below.

xs ¼ xsl þ us ð32Þ
us ¼ ½Ns�fdig ð33Þ

A matrix ½Ns� contains the fifth order shape function and a vec-
tor fdig contains the nodal displacements of the riser element.

fdigT ¼ fu1s u01s u001sju2s u02s u002sg ð34Þ

According to the virtual work principle, Eq. (31) is equal to zero
for equilibrium position. Therefore,

dp� ¼ @p�

@di

� �
ddi þ

@p�

@k

� �
dk ¼ 0 ð35Þ

Since ddi and dk are not equal to zero, thus

@p�

@di

� �
¼
Z yH

0

N00
� 
T Bsjs

s02s
þ N0
� 
T Tasx0s

s0s
� 2

Bsjsx00s x0s
s04s

� �( )
dys

�
Z yH

0
N½ �T fHn þ fHtx0s � qiAisjsV

2
i

� �
dys

þ
Z yH

0
N0
� 
T kð1� esÞx0s

s0s

� �� 	
dys ¼ 0 ð36Þ

@p�

@k

� �
¼

Z yH

0
ð1� esÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x02s

q
dys � Stotal

� �
¼ 0 ð37Þ

Because Eqs. (36) and (37) are the system of nonlinear equa-
tions, the iterative procedure is used to obtain the numerical solu-
tions. According to Taylor’s series approximation, Eqs. (36) and
(37) can be approximated by neglecting the second-order terms
as shown below

@p�k
@di

� 	 nþ1ð Þ

¼ @p�k
@di

� 	ðnÞ
þ @

@dj

@p�k
@di

� �� 	ðnÞ
DdðnÞ

þ @

@k
@p�k
@di

� �� 	ðnÞ
DkðnÞ ¼ 0 ð38Þ

@p�k
@k

� 	 nþ1ð Þ

¼ @p�k
@k

� 	ðnÞ
þ @

@di

@p�k
@k

� �� 	ðnÞ
DdðnÞ

þ @

@k
@p�k
@k

� �� 	ðnÞ
DkðnÞ ¼ 0 ð39Þ

Fig. 2. Relations between the top tension and the unstretched arc-length for water depth of 300, 600, 900, 1200, and 1500 m. (A) 5% offset, (b) 10% offset, (c) 15% offset, (d)
20% offset, (e) 25% offset, (f) 30% offset, (g) 35% offset, (h) 40% offset.
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where fDdgn ¼ fdnþ1
i g � fdn

i g, DkðnÞ ¼ kðnþ1Þ � kðnÞ, and n= number of
iteration.

Eqs. (38) and (39) can be arranged into the matrix form as
follows

½KNL�N�N Kkf gN�1

Kkf gT
1�N 0

" #
Ddif g
Dk

� 	
¼
� Rif g
�Rk

� 	
ð40Þ

The integer value N is the number of nodal displacements of the
riser system. The matrix ½KNL� is the assemblage of the matrices
f@2p�k=@di@djg from all elements. The vector fKkg represents the
assemblage of the element vectors f@2p�k=@k@dig. The vector fRig
is the element vectors f@p�k=@dig. The parameter Rk is the value
of @p�=@k. The increment vector of nodal displacements fDdig
and the increment value Dk are the unknown to be determined.
By adding the increment vector fDdig to fdig and adding the value
of Dk to k, the adjusted values of fdig and k are obtained. Use these
values for computation the next iteration. Repeat this process until
it is terminated when fDdig and Dk approach zero.

5. Numerical solutions

In this section, the numerical examples are presented to iden-
tify the physical meaning of the Lagrange multiplier. The relations
between the top tension and the unstretched arc-length of the ris-
ers, which are subjected to the apparent weight only, are provided
for water depth of 300, 600, 900, 1200, and 1500 m. The numerical
result from this study has been verified with the classical catenary
cable, and found that the results are conformable. The basic

properties of the marine riser shown in Table 2 are used to evaluate
the numerical examples.

5.1. Physical meaning of the Lagrange multiplier

Considering the case of the specified top tension of 1500 kN is
applied to the deep water riser for 900 m water depth and 10% off-
set. The numerical solutions for this case are shown in Table 3.

If the unstretched total arc-length of 910 m is specified as the
constraint condition, the iterative procedure will be used to evalu-
ate Eq. (40). The numerical results for this constraint problem are
shown in Table 4.

Calculation of top tension based on Table 4 can be simply ex-
plained as follows, if the top tension of 1347.23 kN is applied in-
stead of 1500 kN, the unstretched total arc-length will become
910.00 m. It can be seen that the applied top tension is equal to
the assumed top tension minus the Lagrange multiplier (1500–
152.77 = 1347.23 kN).

According to the numerical results presented above, one can
identify that the Lagrange multiplier is a parameter for adjusting
the value of applied top tension in order to satisfy the equilibrium
and the constraint condition.

5.2. Relations between the top tension and the unstretched arc-length

The relations between the top tension and the unstretched arc-
length for the water depth of 300, 600, 900, 1200 and 1500 m are
shown in Fig. 2. The risers are subjected to the apparent weight

Fig. 2 (continued)

276 C. Athisakul et al. / Engineering Structures 34 (2012) 271–277



Author's personal copy

only, like steel catenary risers (SCR). The percentage of static off-
sets ð%DHÞ is varied in the range of 5–40%.

The numerical results in Fig. 2a–d show that the riser behaves
like a tension beam for the nearly vertical marine riser with the
static offset less than 20%. The displacements of the riser are small
when the shapes of static configuration are kept to have the free
hanging configurations without a contact portion on the seabed.

For a free hanging configuration with 25% static offset, the risers
experience large displacement (the angles between the span length
and the equilibrium configuration are larger than 10 degrees)
when the ratios of total unstretched arc-length ðStotalÞ to the span
length ðLÞ are more than 1.036 as shown in Fig. 2e.

The riser configurations are close to the catenary shape when
the percentage of static offsets is increased. Fig. 2f–h indicate that
the risers experience the large displacement when the ratios of to-
tal unstretched arc-length to the span length are larger than 1.02,
1.014, and 1.012 for 30%, 35%, and 40% static offset, respectively.
Fig. 2 also shows that the applied top tensions decreased as the
specified unstretched arc-length increased. However, the applied
top tensions are not less than the minimum values, which are close
to the values of the total of apparent weight of riser, as shown in
Fig. 2. If the applied top tensions are less than those minimum val-
ues, the riser can no longer maintain its stability and will collapse.

6. Conclusions

This paper presents a numerical procedure to obtain the static
configuration of marine riser with the constraint condition, which
is the specified total unstretched arc-length. The model formula-
tion is developed by the variational approach. The Lagrange multi-
plier is applied to impose the constraint condition. The finite
element method with the iterative procedure is used for large dis-
placement analysis of marine riser. The numerical results indicate
that the Lagrange multiplier represents the parameter for adjusting
the applied top tension in order to maintain the riser in equilib-
rium position under the constraint condition. The relations be-
tween the top tension and the unstretched arc-length in different
water depth and static offset are also presented.
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Critical weight of flexible pipe conveying fluid subjected to end moments
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(Received 5 November 2011; final version received 2 February 2012)

This article aims to evaluate the critical weight of flexible pipe subjected to applied end moments at fixed support
locations. The pipe is hinged at one end, while the other end is free to slide over a frictionless support. The horizontal
distance between the two supports is fixed. The model formulation is developed by the variational approach, and the
finite element method is employed to obtain the numerical solutions. The critical weights are evaluated for various
values of end moments and the proportional parameter of the end moments.

Keywords: finite element method; flexible pipe; critical weights; variational approach; end moments; nonlinear

1. Introduction

The failure of flexible pipes used in offshore engineer-
ing operations causes severe environmental pollution.
To ensure the strength and stability of flexible pipe,
accurate determination of the wall thickness of pipe is
necessary. There has been considerable amount of
research works dealing with the stability of pipes
conveying fluids, such as Chen (1971) and Paı̈doussis
and Issid (1974). Thompson and Lunn (1981) pre-
sented the static elastic theory for nonlinear analysis of
pipe conveying fluid. They found that the internal flow
velocity can induce the buckling-type or fluttering-type
instabilities. The divergence instability of a variable-
arc-length elastica pipe due to steady flow velocity of
internal fluid was presented by Chucheepsakul and
Monprapussorn (2000). They used the elliptic integral
method to obtain analytical solutions. However, this
work is focused only on the effect of internal flow
velocity by neglecting the weight of the pipe and the
internal fluid. A more recent investigation on non-
linear buckling of marine elastic pipes transporting
fluid was presented by Chucheepsakul and Monpra-
pussorn (2001). They concluded that the nonlinear
buckling of the marine elastica pipe can occur due to
insufficient stiffness and overloading. The critical
weights of pipes for a particular example were also
presented in their works. Athisakul and Chucheepsa-
kul (2008) used the finite element method (FEM) to
evaluate the critical loads of the variable-arc-length
beam for various inclinations. Their results can be
applied as benchmarks for the analysis of free hanging

marine pipes/risers. To reduce the stress at both the
touchdown point and at the platform connection, a
subsea buoy is added to produce the S, Wave and
Camel configurations. According to the subsea buoy
system, the additional bending moment may occur at
the ends of the pipes. Consequently, flexible pipes have
to resist the double curvature bending. Chucheepsakul
et al. (1999) published a paper dealing with the double
curvature bending of variable-arc-length elasticas
under two applied moments. The elliptic integral
method was utilised to obtain the closed-form solu-
tions. However, the weight of structure is neglected.

This article continues in this line of investigation by
considering the combination of its uniform self-weight
and two applied moments at both ends in the same
direction. Since the elliptic integrals method cannot be
applied to this kind of problems, the FEM is an
alternative method to determine the numerical solu-
tions. The variational approach is employed to develop
the model formulation. The first variation of the total
potential energy is derived to establish the system of
nonlinear finite element equations. The numerical
solutions are obtained by an iterative procedure. The
second variation of the total potential energy is
evaluated to form the tangent stiffness matrix of the
pipes. The critical uniform self-weights of the pipe are
the maximum value, which the determinant of tangent
stiffness matrix is equal to zero. In practice, the critical
uniform self-weight can be defined from changing the
sign of tangent stiffness matrix from positive to
negative.
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2. Variational formulation

Consider a flexible pipe of uniform flexural rigidity EI as
shown in Figure 1(a). The pipe is supported by a pin
support at end A and by a frictionless support at end B.
The constant distance between ends A and B is L. The
pipe is subjected to a clockwise momentMA¼ (17b)Mo

at the end A and a clockwise moment MB¼ bMo at the
end B. The scalar parameter b represents the proportion
of the moment at end B to the total moment Mo. The
uniform self-weight of the pipe per unit arc-length is
equal tow. The internal fluid of density ri is transported
from end A to end B with a uniform and steady flow
speed U. The internal area of pipe is represented by Ai.
Figure 1(b) shows the deformed configuration of the
flexible pipe. The total arc-length St is an unknown
parameter. The overhang length l is small comparedwith
the total arc-length St. Therefore, the loads in the portion
of overhang length l can be neglected.

According to variational principle (Chucheepsakul
et al. 2003, Athisakul et al. 2011), the total virtual work
of the flexible pipe can be expressed as

The first two terms represent the virtual strain
energy due to bending. The third term represents the
virtual strain energy due to axial deformation, where N
is the axial force in the pipe section. The fourth term is
the virtual work done by pipe’s weight. The fifth term
is the virtual work done by the internal flow inside the
pipe. The last two terms are the virtual work done by
the applied end moments.

According to differential geometry of a plane curve,
one obtains

dx

ds
¼ cos y;

dy

ds
¼ sin y; ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

q
dx; k ¼ y0

s0
¼ y00

s03
:

ð2a�dÞ

The prime represents the derivatives with respect to
x. Since the beam material is linear elastic, the moment
curvature relation becomes

M ¼ �EIk ¼ �EI dy
ds
: ð3Þ

3. Finite element method

The span length L is divided into n equally spaced
regions or elements. Each of these elements has a
length l. The displacement of the beam segment is
approximated by

y xð Þ ¼ N½ � qf g: ð4Þ

where [N] is the row of fifth-order polynomials shape
functions, and {q} is the vector containing the values of
y and its first and second derivatives at both ends of
the element. Consequently, the system of element
equations can be expressed as follows:

@p
@qi

� �
¼
Z L

0

N00½ �T EIy00

ð1þ y02Þ5=2

(

þ ½N0�T Ny0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p � 2EIy002y0

1þ y02
� �7=2

" #

� N½ �T w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

q
� riAikU2

� ��
dx:

ð5Þ

The contribution from the applied moments is

@p
@q

� �
x¼0;x¼L

¼� N0½ �T MA

1þy02
� �

					
x¼0

� N0½ �T MB

1þy02
� �

					
x¼L

:

ð6Þ

Figure 1. (a) Undeformed configuration of flexible pipe; (b) deformed configurations of flexible pipe.

dp ¼
Z L

0

EIy00

1þ y02
� �5=2 dy00 � 2EIy002y0

1þ y02
� �7=2 dy0 þ Ny0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
p dy0 � w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

q
dyþ riAikU2dy

( )
dx

� MA

1þ y02
� � dy0

					
x¼0

� MB

1þ y02
� � dy0

					
x¼L

:

ð1Þ

The IES Journal Part A: Civil & Structural Engineering 91

D
ow

nl
oa

de
d 

by
 [

C
ha

in
ar

on
g 

A
th

is
ak

ul
] 

at
 2

3:
39

 2
2 

M
ay

 2
01

2 



For equilibrium, the total virtual of the system is
zero (dp¼ 0). Therefore, the nonlinear global equili-
brium equation



@p
@Q

�
¼ 0f g can be obtained by

assembling the element equations. The iterative proce-
dure is used to obtain the numerical solutions of the
global degree of freedom Q.

To find the critical configuration of the pipe, the
second variation of the total potential energy is derived
into the matrix form as (Athisakul and Chucheepsakul,
2008)

d2p ¼ qf gT KT½ � qf g: ð7Þ

The critical weight is evaluated by optimising for
an increment of load step by step until the determinant
of tangent stiffness matrix [KT] is equal to zero or it
changes sign from positive to negative (Athisakul and
Chucheepsakul, 2008). The critical weight is the
maximum value of pipe weight, which the equilibrium
of pipe is still satisfied.

4. Numerical results

The following nondimensional parameters are intro-
duced for the sake of generality.

s� ¼ s=st; x̂ ¼ x=L; ŷ ¼ y=L; ŝ ¼ s=L; ð8a�dÞ

M̂ ¼ML=EI; Q̂ ¼ QL2=EI; N̂ ¼ NL2=EI;̂

w ¼ wL3=EI; Û ¼ UL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
riAi=EI

p
:

ð8e�iÞ

The parameters ri and Ai represent density of
internal fluid and internal cross-sectional area of the
pipe, respectively.

To validate the numerical results obtained from
this study, some numerical solutions for double
curvature bending of the variable-arc-length elastica
are evaluated as shown in Table 1. It is clearly found
that the numerical solutions obtained from this study
are in very good agreement with the exact solutions

Table 1. Validation of numerical results fosr elasticas with double curvature bending M̂ ¼ 3.

b

Rotation at end A yA (rad) Rotation at end B yB (rad) Total arc-length ŝt

EIM (Chucheepsakul
et al. 1999)

FEM (this
study)

EIM (Chucheepsakul
et al. 1999)

FEM
(this study)

EIM (Chucheepsakul
et al. 1999)

FEM
(this study)

0.2 0.809178 0.809161 7 0.250095 7 0.250097 1.057947 1.057950
0.4 0.404192 0.404200 0.101105 0.101101 1.010185 1.010183
0.6 0.107839 0.107836 0.389108 0.389121 1.009265 1.009258
0.8 7 0.144274 7 0.144305 0.652506 0.652565 1.031259 1.031254
1.0 7 0.357892 7 0.358003 0.887168 0.887392 1.066052 1.066079

Note: EIM, elliptic integral method; FEM, finite element method.

Table 2. Critical weights of flexible pipe for M̂ ¼72,7 1, 0, 1, 2 and Û ¼ 0, 0.5, 1.0.

b¼ 0.0 b¼ 0.2 b¼ 0.4 b¼ 0.6 b¼ 0.8 b¼ 1.0

Internal flow speed Û¼ 0.0

M̂¼72 15.3973 12.3742 9.6621 7.3203 5.4136 3.9953

M̂¼71 11.7910 10.3329 8.9553 7.6665 6.4751 5.3889

M̂¼ 0 8.2527

M̂¼ 1 4.7846 6.1236 7.5528 9.0644 10.6511 12.3040

M̂¼ 2 1.3774 3.9242 6.8541 10.099 13.6007 17.3154

Internal flow speed Û¼ 0.5

M̂¼72 15.1678 12.1258 9.3909 7.0288 5.1015 3.6663

M̂¼71 11.5385 10.0692 8.6816 7.3831 6.1820 5.0863

M̂¼ 0 7.9757

M̂¼ 1 4.4836 5.8316 7.2706 8.7912 10.3857 12.0471

M̂¼ 2 1.0524 3.6166 6.5641 9.8250 13.3420 17.0675

Internal flow speed Û¼ 1.0

M̂¼72 14.4967 11.3923 8.5905 6.1609 4.1709 2.6823

M̂¼71 10.7921 9.2927 7.8735 6.5436 5.3102 4.1840

M̂¼ 0 7.1554

M̂¼ 1 3.5896 4.9660 6.4326 7.9807 9.6009 11.2874

M̂¼ 2 0.0822 2.7016 5.7040 9.0156 12.5758 16.3385
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computed from the elliptic integral method (Chu-
cheepsakul et al., 1999).

The particular problems of flexible pipes with the
total end moment M̂ from7 2 to 2, and the internal
flow speed Û of 0, 0.5 and 1.5 are considered. Table 2
shows the critical weights of the pipe for various values
of the proportional parameter b of the end moments.
As shown in Table 2, the critical weights depend on the
value of total end moments, the direction of end
moments and the internal flow speed. For M̂ ¼ 0 and
Û ¼ 0, the critical weight of 8.2527 is identical to the
value suggested by Athisakul and Chucheepsakul
(2008). In the case where M̂ and b are specified, the
critical weight of the pipe decreases as the internal flow
speed increases. The critical configurations of the pipe
for Û ¼ 1 are illustrated in Figure 2. Considering the
case of negative end moments, the critical weight
decreases as the parameters b increases (see Table 2).
According to the positive sign convention of the
applied end moments shown in Figure 1, the negative
end moment at end A resists the deflection induced by
the pipe weight while the negative end moment at end
B enlarges the deflection of the pipe. Therefore, the
deflection of the pipe at a critical state increases as the
parameter b of the negative end moment increases as
shown in Figure 2(a,b). On the contrary, the positive

end moment at end A enlarges the deflection of pipe
while the positive end moment at end B resists the
weight of pipe. Consequently, the deflection of the pipe
at critical state decreases as the parameter b of the
positive end moment increases as shown in Figure
2(c,d). For a given value of positive end moment, the
critical weight of pipe increases as the parameter b
increases (see Table 2). Table 2 also shows that the
equilibrium of the pipe with the positive value of pipe
weight may not exist for the case of large end moment.

5. Conclusions

In this article, the critical uniform weight of the flexible
pipe subjected to two end moments is determined by
using the FEM. The end moments are applied at both
ends of the pipe in the same direction. The critical
weight of the pipe decreases as the internal flow speed
increases. As the parameter b increases, the critical
weight increases when the positive end moments are
applied. The results are opposite when the negative end
moments are applied, as the parameter b increases the
critical weight decreases. It is also found that the
equilibrium of the pipe with the positive value of pipe
weight may not exist when the absolute value of
moment becomes large.

Figure 2. Critical configurations of the pipe for Û ¼ 1.
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