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บทคัดย่อ

จุดประสงค์ของงานวิจัยน้ีเราพิจรณาและศึกษา ระบบท่ัวไปของปัญหาอสมการเชิงแปรผันท่ัวไป
และระบบของปัญหาเชิงดุลยภาพผสมท่ัวไป โดยใช้วิธีจุดตรึง เราพิศูจน์ทฤษฎีบทการลู่เข้าแบบเข้ม
เพ่ือหาคำตอบร่วมของระบบท่ัวไปของปัญหาอสมการเชิงแปรผันท่ัวไป และระบบของปัญหาเชิงดุลย
ภาพผสมท่ัวไป ซึ่งสัมพันธ์กับปัญหาค่าเหมาะสมท่ีสุด ในปริภูมิฮิลเบร์ติและปริภูมิบานาค
คำสำคัญ : วิธีฉายไฮบริด / ปัญหาอสมการเชิงแปรผัน/ ปัญหาเชิงดุลยภาพผสมท่ัวไป/

การส่งแบบไม่เชิงเส้น / ปัญหาค่าเหมาะสมท่ีสุด
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บทท่ี 1

Introduction

1.1 Background

Variational inequality theory, which was introduced in 1960’s by Stampacchia [324],
has had a great impact and influence in the development of several branches of pure
and applied sciences. The ideas and techniques of this theory are being used in a
variety of diverse fields and proved to be productive and innovative, see [1-25] and the
references therein. Analysis of these problems requires a blend of techniques from con-
vex analysis, functional analysis and numerical analysis. As a result of the interaction
between different branches of mathematical and engineering sciences, we now have a
variety of techniques to suggest and analyze various algorithms for solving variational
inequalities and related optimization problems. Using the projection technique, one can
establish the equivalence between the variational inequalities and fixed point problems.
This alternative equivalent formulation has played an important role in developing some
efficient numerical techniques for solving variational inequalities and related optimiza-
tion problems. It is now well-known that the variational inequalities are equivalent
to the fixed-point problems, the origin of which can be traced back to Lions and
Stampacchia [127]. This alternative formulation has been used to suggest and analyze
projection iterative methods for solving the variational inequalities under the conditions
that the involved operator must be strongly monotone and Lipschitz continuous. These
conditions are very strict and rule out its application in several important problems. To
overcome this drawback, Korpelevich [125] suggested and analyzed the extragradient
method by using the technique of updating the solution. It has been shown that if the
underlying operator is only monotone and Lipschitz continuous, then the approximate
solution converges to the exact solution. Related to the variational inequalities, we
have the problem of finding the fixed points of the nonexpansive mappings, which is
the current interest in functional analysis. It is natural to consider a unified approach
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to these different problems, see, for example, [126, 137, 307, 152].
Equilibrium problems which were introduced by Blum and Oettli [108] and Noor

and Oettli [106] in 1994 have had a great impact and influence in the development of
several branches of pure and applied sciences. It has been shown that the equilibrium
problem theory provides a novel and unified treatment of a wide class of problems
which arise in economics, finance, image reconstruction, ecology, transportation, net-
work, elasticity and optimization. It has been shown [108, 106] that equilibrium
problems include variational inequalities, fixed point, Nash equilibrium and game the-
ory as special cases. Hence collectively, equilibrium problems cover a vast range of
applications. Due to the nature of the equilibrium problems, it is not possible to extend
the projection and its variant forms for solving equilibrium problems. To overcome this
drawback, one usually uses the auxiliary principle technique. The main and basic idea
in this technique is to consider an auxiliary equilibrium problem related to the original
problem and then show that the solution of the auxiliary problems is a solution of the
original problem. This technique has been used to suggest and analyze a number of
iterative methods for solving various classes of equilibrium problems and variational
inequalities, see [111, 101, 102, 103, 104, 105] and the references therein.

1.2 Iterative Approximation of Fixed-Points
Let X be a nonempty set and T : X −→ X a self map. We say that p ∈ X is a fixed
point of T if p = Tp and denote by F (T ) the set of all fixed points of T . Having
in view that many of the most important nonlinear problems of applied mathematics
reduce to solving a given equation which in turn may be reduced to finding the fixed
points of a certain operator, on the other hand, the metrical fixed point theory has
developed significantly in the second part of the 20th century.
As the constructive methods used in metrical fixed point theory are prevailingly

iterative procedures, that is, approximate methods, it is also of crucial importance to
have a priori or/and a posteriori error estimates or rate of convergence for such method.
For example, the Banach fixed point theorem concerns certain contractions mappings
of a complete metric space into itself. It states conditions sufficient for the existence
and uniqueness of a fixed point and it also given a constructive procedure for obtaining
better and better approximations to the fixed point. By definition, this is a method
such that we choose an arbitrary x0 in a given set and calculate recursively a sequence
x0, x1, x2, ... from a relation of the form

xn = Txn−1 = T nx0 n = 1, 2, 3, .. (1.2.1)

That is, we choose an arbitrary x0 and determine successively x1 = Tx0, x2 =
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Tx1, x3 = Tx2, .... It is also known as the Picard iteration starting at x0.

Iteration procedures are used in nearly every branch of applied mathematics, and
convergence proofs and error estimates are very often obtained by an application of
Banach fixed point theorem (or more difficult fixed point theorems). Many researchers
are interested in obtaining (additional) condition on T and E as general as possible,
and which should guarantee the (strong) convergence of the Picard iteration to a fixed
point of T . Moreover, if the Picard iteration converges to a fixed point of T , they will
be interested in evaluating the error estimate (or alternatively, the rate of convergence)
of the method, that is, in obtaining a stopping criterion for the sequence of successive
approximations. However, the Picard iteration may not converge even in the weak
topology.

Construction of fixed point iteration processes of nonlinear mappings is an impor-
tant subject in the theory of nonlinear mappings, and finds application in a number
of applied areas. Now, fixed point iteration processes for approximating fixed point
of nonexpansive mappings, relatively nonexpansive mappings, hemirelatively nonexpan-
sive mappings, generalized nonexpansive mappings and maximal monotone operators
in various space have been studied by many mathematicians.

Let (X, ‖ · ‖) be a real normed space and C ⊂ X be a closed and convex. Three
classical iteration processes are often used to approximate a fixed point of a nonlinear
mapping T : C −→ C.

Halpern’s iteration

The first one is introduced by Halpern [16] which is defined as follows: x0 ∈ C

xn+1 = αnx0 + (1 − αn)Txn, n ≥ 0, (1.2.2)

where {αn} is a real sequence in [0,1].

Mann’s iteration

The second iteration process is now known as Mann’s iteration process [33] and is
defined as follows: x0 ∈ C

xn+1 = αnxn + (1 − αn)Txn, n ≥ 0, (1.2.3)

where {αn} is a real sequence in [0,1].
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Ishikawa’s iteration

The third iteration process is referred to as Ishikawa’s iteration [21] which is defined
recursively by; x0 ∈ C

xn+1 = αnT
(
βnTxn + (1 − βn)xn

)
+ (1 − αn)xn, n ≥ 0, (1.2.4)

where {αn} and {βn} are real sequences in [0,1].

In general not much has been known regarding the convergence of the iteration
processes (1.2.2)-(1.2.4) unless the underlying space has elegant properties which be
briefly mention here.

Process (1.2.4) is indeed more general than process (1.2.3). But research has been
concentrated on the latter due probably to the reasons that the formulation of process
(1.2.3) is simpler than that of (1.2.4) and that a convergence theorem for process
(1.2.3) may possibly lead to a convergence theorem for process (1.2.4) provided the
sequence {βn} satisfies certain appropriate conditions. However, the introduction of
process (1.2.4) has its own right. As a matter of fact, process (1.2.3) may fail to
converge while process (1.2.4) can still converge for a Lipschitz pseudo-contractive
mapping in a Hilbert space. Both processes (1.2.3) and (1.2.4) have only weak con-
vergence, in general. For example, Reich [42] proved that if X is a uniformly convex
Banach space with a Frechet differentiable norm and if {αn} is chosen such that∑∞

n=0 αn(1 − αn) = ∞, then the Mann’s iteration converges weakly to a fixed point
of T . However, we note that Mann’s iteration have only weak convergence even in a
Hilbert space.

Normal Hybrid Method (or CQ method)

Attempts to modify the Mann’s iteration method (1.2.2) so that strong convergence
is guaranteed have recently been made. In 2003, Nakajo and Takahashi [39] proposed
the following modification of the Mann’s iteration method (1.2.2) by using the hybrid
method in mathematical programming, for a single nonexpansive mapping T in a Hilbert
space as follows: x0 = x ∈ C






un = αnxn + (1 − αn)Txn,

Cn = {z ∈ C : ‖z − un‖ ≤ ‖z − xn‖},

Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn∩Qn
x

(1.2.5)
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and they proved that if the sequence {αn} is bounded above from one, then the se-
quence {xn} generated by (1.2.5) converges strongly to PF (T )x, where PF (T ) is the
metric projection from C onto F (T ).

The iteration process (1.2.2) has been proved to be strong convergent in both Hilbert
space and uniformly smooth Banach spaces unless the sequence satisfies conditions:

(i): limn−→∞ αn = 0 (ii): ∑∞
n=0 αn = ∞ (iii): ∑∞

n=0 |αn − αn−1| < ∞

Due to the restriction of condition (ii), process (1.2.2) is widely believed to have s-
low convergence though the rate of convergence has not be determined. Moreover,
Halpern [16] prove that conditions (i) and (ii) are indeed necessary in the sense that
if process (1.2.2) is strongly convergent for all closed convex subsets C of a Hilbert
space H and all nonexpansive mappings T on C, then the sequence {αn} must satisfy
conditions (i) and (ii). (However, it is unknown whether these two conditions are also
sufficient). In 2006, Maritinez and Xu [35] develop the normal hybrid method for
process (1.2.2) and proved the strong convergence of the method under condition (i)
only. Moreover they extend Nakajo and Takahashi’ s iteration process (1.2.5) to the
Ishikawa iteration process. In 2005, Matsushita and Takahashi [37] extend the results
of Nakajo and Takahashi [39] to a Banach space for a relatively nonexpansive mapping.

Note that the hybrid method iteration method presented by Massushita and Taka-
hashi [37] can be used for relatively nonexpansive mapping, but it cannot be used for
hemirelatively nonexpansive mapping.

Shrinking Projection Method

In 2008, Takahashi et. al. [49] introduced another hybrid method called the
shrinking projection method for nonexpansive mapping T in a Hilbert space H as
follows: x0 = x ∈ C






un = αnxn + (1 − αn)Txn,

Cn+1 = {z ∈ Cn : ‖z − un‖ ≤ ‖z − xn‖},

xn+1 = PCn+1
x

(1.2.6)

and they proved that if the sequence {αn} is bounded above from one, then the se-
quence {xn} generated by (6.4.2) converges strongly to PF (T )x, where PF (T ) is the
metric projection from C onto F (T ) and they proposed the following modification the
iteration method (1.2.5) and (6.4.2) for a countable family of nonexpansive mappings
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satisfying NST-condition (see [49]) in a Hilbert space.

Monotone Hybrid Method

In 2008, Qin and Su [41] modified the iteration method (1.2.5), so call the
monotone hybrid method for nonexpansive mapping T in a Hilbert space as follows:
x0 = x ∈ C






un = αnxn + (1 − αn)Txn,

Cn = {z ∈ Cn−1 ∩ Qn−1 : ‖z − un‖ ≤ ‖z − xn‖},

Qn = {z ∈ Cn−1 ∩ Qn−1 : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn∩Qn
x

(1.2.7)

By using this method, they proved strong convergence theorem under a control con-
dition on the sequence {αn} but the technic they used in this paper is different from
Nakajo and Takahashi [21]. More precisely, they can show that the sequence generated
by (6.4.3) is a Cauchy sequence, without the use of demiclosedness principle, Opial’s
condition and the Kadec-Klee property. Moreover, they extended the results to a Ba-
nach space for a relative nonexpansive mapping by using same method.

1.3 The Variational Inequality and the Equilibrium Prob-
lem

Let H be a real Hilbert space and C be a nonempty closed convex subset of H . Let T
be a nonexpansive mapping of C into itself and let B be a β-inverse-strongly monotone
of C into H . The variational inequality problem is to find x ∈ C such that:

〈Bx, y − x〉 ≥ 0 for all y ∈ C. (1.3.1)

The set of solutions of the variational inequality is denoted by V I(C, B).
Let E be a real Banach space and let E∗ be the dual space of E. Let A be a

maximal monotone operator from E to E∗. It is well-known that many problems in
nonlinear analysis and optimization can be formulated as follows: find a point u ∈ E

satisfying

0 ∈ Au. (1.3.2)

We denote by A−10 the set of all points u ∈ C such that 0 ∈ Au. Such a problem
contains numerous problems in economics, optimization and physics, and is connected
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with a variational inequality problem.

A well-known method to solve the problem (1.3.2) is call the proximal point
algorithm: x0 ∈ E and

xn+1 = Jrn
xn, n = 0, 1, 2, 3, ..., (1.3.3)

where {rn} ⊂ (0,∞) and Jrn
are the resolvent of A. Many researchers have studies

this algorithm in a Hilbert space and in a Banach space.

Let E be a real Banach space, let E∗ be the dual space of E and let C be a closed
subset of E. Let F be a bifunction from C × C to R, where R is the set of real
numbers. The equilibrium problem is to find

x̂ ∈ C such that F (x̂, y) ≥ 0, ∀y ∈ C.

The set of such solutions x̂ is denoted by EP (F ).

Numerous problems in physics, optimization and economics reduce to find a so-
lution of the equilibrium problem. Some methods have been proposed to solve the
equilibrium problem in a Hilbert space; see, for instance, Blum and Oettli [65], Com-
bettes and Hirstoaga [69]. On the other hand, Ibaraki and Takahashi [18] introduced a
new resovent of a maximal monotone operator in a Banach space and the concept of
a generalized nonexpansive mapping in a Banach space. Kohsaka and Takahashi [31],
Ibaraki and Takahashi [18] also studied some properties for generalized nonexpansive
retractions in Banach spaces. Recently, Takahashi and Zembayashi [50] consider the
following equilibrium problem with a bifunction defined on the dual space of a Banach
space. Moreover, they proved a strong convergence theorem for finding a solution of
the equilibrium problem which generalized the result of Combettes and Hirstoaga [69].

The aim of this project is to consider and study general systems of the general-
ized variational inequality problems for the single-valued and multi-valued nonlinear
mappings. We plan to fine common solutions of fixed points and the solution of the
variational inequality problems and also construct and discuss the convergence criterion
for the iterative algorithm to approximate the solutions of the problems above, specially,
we mainly focus to the generalized systems of resolvent equations and generalized sys-
tems of the variational inclusion problems for nonlinear mappings. Moreover, we will
apply our results to (system) mixed equilibrium problems and optimization problems.
However, it is worth mentioning that the class of variational inclusions inequality prob-
lems for nonlinear mappings have had a great impact and influence in the development
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of several branches of pure, applied and engineering sciences. In the first year, we
will study and discuss some important basic results and consider some new theorems
about the general systems of (generalized) variational (inclusion) inequality problems
and fixed point problems for nonlinear mappings in the Hilbert spaces. In the second
year, we will focus our study to the heart of our project, that is, we will consider the
general systems of variational inclusion problems and general (system) mixed equilibri-
um problems with related optimization problems in the Banach spaces. In conclusion,
we point out that the results of this project are the extension and improvements of
the earlier and recent results in this field, and moreover, the study of this area is a
fruitful and growing field of intellectual endeavor. Much work is needed to develop
this interesting subject.

This research is divided into 7 chapters. Chapter 1 is an introduction to the research
problems. Chapter 2 deals with some preliminaries and give some useful results that
will be used in later chapters. Chapter 3 we prove strong convergence theorems
for finding a common element of the fixed point set. Chapter 4 we prove strong
convergence theorems for finding a common element of the systems of generalized
(mixed) equilibrium problems in Hilbert and Banach spaces. Chapter 5 we prove strong
convergence theorems for finding a common element of the systems of variational
inequality problems and the set of common fixed points. Chapter 6 we introduced
and prove strong convergence theorems for finding a common element of the set of
solutions of an equilibrium problem and the set of common fixed points which are
application to optimization problems, Furthermore, we also give some applications and
numerical example in the end of this section. The conclusion output of research is in
Chapter 7.



บทท่ี 2

Preliminaries

2.1 Linear Spaces and Metric Spaces
Definition 2.1.1. Let X be a nonempty set, and assume that each pair of elements
x and y in X can be combined by a process called addition to yield an element
z in X denoted by x + y. Assume also that this operation of addition satisfies the
following condition (1)–(4):

(1) (x + y) + z = x + (y + z);
(2) x + y = y + x;
(3) there exists a unique element in X , denoted by 0 and called the zero element,

or the origin, such that x + 0 = x for all x ∈ X;
(4) each x ∈ X there corresponds a unique element in X , denoted by −x and

called the negative of x, such that x + (−x) = 0.
We also assume that each scalar α ∈ R and each element x in X can be

combined by a process called scalar multiplication to yield an element y in X

denoted by y = αx satisfying (5)–(8):
(5) α(βx) = (αβ)x;
(6) 1 · x = x;
(7) (α + β)x = αx + βx;
(8) α(x + y) = αx + αy.

The system (X, ·, +) is called a linear space over R if it satisfies the conditions
(1)–(8). A linear space is often called a vector space, and its elements are spoken as
vectors.

Definition 2.1.2. Let X be a nonempty set. A mapping d : X × X −→ R, satisfying
the following conditions for all x, y and z in X:

(A1) d(x, y) = 0 ⇐⇒ x = y;
(A2) d(x, y) = d(y, x);
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(A2) d(x, y) ≤ d(x, z) + d(z, y). The conditions (A1)-(A3) are usually called the
metric axioms.

The function d assigns to each pair (x, y) of element of X a nonnegative real
number d(x, y), which does not on the order of the elements; d(x, y) is called the
distance between x and y. The set X together with a metric, denoted by (X, d), is
called a metric space.

2.2 Normed Spaces and Banach Spaces
Definition 2.2.1. Let X be a linear space over the field K (R or C). A function
‖ · ‖ : X −→ R is said to be a norm on X if it satisfies the following conditions:

(1) ‖x‖ ≥ 0, ∀x ∈ X;
(2) ‖x‖ = 0 ⇔ x = 0;
(3) ‖x + y‖ ≤ ‖x‖ + ‖y‖, ∀x, y ∈ X;
(4) ‖αx‖ = |α|‖x‖, ∀x ∈ X and ∀α ∈ K.

From this norm we can define a metric, induced by the norm ‖ · ‖, by

d(x, y) = ‖x − y‖, (x, y ∈ X).

A linear space X equipped with the norm ‖ · ‖ is called a normed linear space.

Definition 2.2.2. A normed space (X, ‖·‖) is called strictly convex if for all x, y ∈ X ,
x 6= y, ‖x‖ = ‖y‖ = 1, we have ‖λx + (1 − λ)y‖ < 1, ∀λ ∈ (0, 1).

Definition 2.2.3. Let (X, ‖ · ‖) be a normed space. A sequence {xn} ⊂ X is said to
converge strongly in X if there exists x ∈ X such that lim

n−→∞
‖xn −x‖ = 0. That is,

if for any ǫ > 0 there exists a positive integer N such that ‖xn − x‖ < ǫ, ∀n ≥ N.

We often write lim
n−→∞

xn = x or xn −→ x to mean that x is the limit of the sequence
{xn}.

Definition 2.2.4. A sequence {xn} in a normed spaces is said to converge weakly to
some vector x if limn−→∞ f(xn) = f(x) holds for every continuous linear functional
f . We often write xn ⇀ x to mean that {xn} converges weakly to x.

Definition 2.2.5. Let (X, ‖ · ‖) be a normed space. A sequence {xn} ⊂ X is said to
be a Cauchy sequence if for any ǫ > 0 there exists a positive integer N such that
‖xm − xn‖ < ǫ, ∀ m, n ≥ N . That is, {xn} is a Cauchy sequence in X if and only
if ‖xm − xn‖ −→ 0 as m, n −→ ∞.
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Theorem 2.2.6. [173] Let {xn} be a sequence of a normed space (X, ‖ · ‖), x ∈ X

and let xn → x if and only if, for any subsequence {xni
} of {xn}, there exist a

subsequence {xnij
} of {xni

} converging to x.

Definition 2.2.7. A normed space X is called complete if every Cauchy sequence in
X converges to an element in X .

Definition 2.2.8. A complete normed linear space over field K is called a Banach
space over K.

Lemma 2.2.9. [174] Let {xn} and {yn} be bounded sequences in a Banach space X

and let {βn} be a sequence in [0, 1] with 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1.

Suppose xn+1 = (1 − βn)yn + βnxn for all integers n ≥ 0 and lim supn−→∞(‖yn+1 −

yn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn−→∞ ‖yn − xn‖ = 0.

Definition 2.2.10. Let F and X be linear spaces over the field K.

(1) A mapping T : F −→ X is called a linear operator if T (x + y) = Tx + Ty

and T (αx) = αTx, ∀x, y ∈ F, and ∀α ∈ K.

(2) A mapping T : F −→ K is called a linear functional on F if T is a linear
operator.

Definition 2.2.11. Let F and X be normed spaces over the field K and T : X −→ F

a linear operator. T is said to be bounded on X if there exists a real number M > 0

such that ‖T (x)‖ ≤ M‖x‖, ∀x ∈ X .

Definition 2.2.12. Sequence {xn}
∞
n=1 in a normed linear space X is said to be a

bounded sequence if there exists M > 0 such that ‖xn‖ ≤ M, ∀n ∈ N.

Definition 2.2.13. A subset C of a normed linear space X is said to be convex
subset in X if λx + (1 − λ)y ∈ C for each x, y ∈ C and for each scalar λ ∈ [0, 1].

2.3 Inner Product Spaces and Hilber Spaces
Definition 2.3.1. The real-value function of two variables 〈·, ·〉 : X × X −→ R is
called inner product on a real vector space X if for any x, y, z ∈ X and α, β ∈ R

the following conditions are satisfied:
(1) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉;
(2) 〈x, y〉 = 〈y, x〉;
(3) 〈x, x〉 ≥ 0 for each x ∈ X and 〈x, x〉 = 0 if and only if x = 0.

A real inner product space is a real vector space equipped with an inner product.
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Definition 2.3.2. A Hilbert spaces is an inner product space which is complete under
the norm induced by its inner product.

An inner product on X defines a norm on X given by ‖x‖ =
√
〈x, x〉.

Lemma 2.3.3. [173](The Schwarz inequality) If x and y are any two vector in an
inner product space X , then

|〈x, y〉| ≤ ‖x‖‖y‖.

Remark 2.3.4. In a Hilbert space H , weak convergence is defined by limn−→∞〈xn, y〉 =

〈x, y〉 for all y ∈ H . The notation xn ⇀ x is sometimes used to denote this kind of
convergence.

Remark 2.3.5. If xn ⇀ x and xn ⇀ y, then x = y.

Definition 2.3.6. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H . Let f be a function of C into (−∞,∞], where (−∞,∞] = R ∪ {∞}.
Then, f is called lower semicontinuous if for any a ∈ R, the set {x ∈ C : f(x) ≤ a}

is closed.

Lemma 2.3.7. [173] Let X be an inner product space and {xn} be a bounded
sequence of H such that xn ⇀ x. Then following inequality holds:

‖x‖ ≤ lim
n−→∞

inf ‖xn‖.

2.4 Basic Concepts in Hilbert Spaces
Let C be a closed convex subset of a real Hilbert space H with inner product and
norm are denoted by 〈., .〉 and ‖.‖, respectively. We have the following are hold:

‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2〈x − y, y〉, (2.4.1)

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, (2.4.2)

‖x + y‖2 ≥ ‖x‖2 + 2〈y, x〉, (2.4.3)

and
‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2 (2.4.4)

for all x, y ∈ H and λ ∈ R.
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Lemma 2.4.1. [176] Let (E, 〈., .〉) be an inner product space. Then for all x, y, z ∈ E

and α, β, γ ∈ [0, 1] with α + β + γ = 1, we have

‖αx + βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 −αβ‖x− y‖2 −αγ‖x− z‖2 − βγ‖y − z‖2.

Lemma 2.4.2. [177] A Hilbert space H satisfies the Opial condition that is, for any
sequence {xn} with xn ⇀ x, the inequality lim infn−→∞ ‖xn−x‖ < lim infn−→∞ ‖xn−

y‖, holds for every y ∈ H with y 6= x.

Lemma 2.4.3. [178],[179] A Hilbert space H satisfies the Kadec-Klee property that
is, for any sequence {xn} with xn −→ x and ‖xn‖ −→ ‖x‖ together imply ‖xn −

x‖ −→ 0.

2.5 Basic Concepts in Banach Spaces
Let E be a real Banach space and E∗ be the dual space of E with norm ‖ · ‖ and
duality pairing between E and E∗ 〈·, ·〉.

Definition 2.5.1. We set E∗∗ = (E∗)∗. If E be a Banach space, then there is a
natural assignment of each x ∈ E to a continuous linear functional x∗∗ on E∗ given
by 〈x∗∗, f〉 = 〈x, f〉 for all x ∈ E∗. Here ‖x∗∗‖ = ‖x‖. We set b(x) = x∗∗. It
b : E → E∗∗ is surjective, then E is called reflexive.

Definition 2.5.2. Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to be

strictly convex if ‖
x + y

2
‖ < 1 for all x, y ∈ U with x 6= y.

Definition 2.5.3. Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to
uniformly convex if, for any ǫ ∈ (0, 2], there exists δ > 0 such that, for any x, y ∈ U ,
‖x − y‖ ≥ ǫ implies ‖x+y

2
‖ ≤ 1 − δ.

Remark 2.5.4. A uniformly convex Banach space is reflexive and strictly convex.

Definition 2.5.5. A Banach space E is said to be smooth if the limit limt→0
‖x+ty‖−‖x‖

t

exists for all x, y ∈ U .

Definition 2.5.6. The modulus of smoothness of E is defined by

ρ(τ) = sup{
1

2
(‖x + y‖ + ‖x − y‖) − 1 : x, y ∈ E, ‖x‖ = 1, ‖y‖ = τ},

where ρ : [0,∞) → [0,∞) is a function.

Definition 2.5.7. E be an uniformly smooth if limτ→0
ρ(τ)

τ
= 0.

Definition 2.5.8. Let q be a fixed real number with 1 < q ≤ 2. A Banach space E is
said to be q-uniformly smooth if there exists a constant c > 0 such that ρ(τ) ≤ cτ q

for all τ > 0.
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2.6 Some Nonlinear Mappings in Hilbert Spaces
Let C be a closed convex subset of a real Hilbert space H with inner product and norm
are denoted by 〈., .〉 and ‖.‖, respectively. Let T : C → C a nonlinear mapping. We
use F (T ) to denote the set of fixed points of T , that is, F (T ) = {x ∈ C : Tx = x}.

Definition 2.6.1. A mapping S : C → C is called L-Lipschitz-continuous if there
exists a positive real number L such that

‖Su − Sv‖ ≤ L‖u − v‖, ∀u, v ∈ C. (2.6.1)

Definition 2.6.2. A mapping f : C → C is called a contraction on C if there exists
a constant α ∈ (0, 1) and x, y ∈ C such that

‖f(x) − f(y)‖ ≤ α‖x − y‖. (2.6.2)

Definition 2.6.3. A mapping T is called nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C. (2.6.3)

Theorem 2.6.4. [173] (Banach’s Contraction Mapping Principle) Let (X, d) be a
complete metric space and f : X → X be a contraction. Then f has a unique fixed
point, i.e. there exists a unique x∗ ∈ X such that Tx∗ = x∗.

Lemma 2.6.5. [181] Assume A is a strongly positive linear bounded operator on a
Hilbert space H with coefficient γ̄ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I−ρA‖ ≤ 1−ργ̄.

Definition 2.6.6. The metric (nearest point) projection PC from a Hilbert space H to
a closed convex subset C of H is defined as follows: given x ∈ H , PCx is the only
point in C with the property

‖x − PCx‖ = inf{‖x − y‖ : y ∈ C}.

For every point x ∈ H , there exists a unique nearest point in C, denoted by PCx,
such that

‖x − PCx‖ ≤ ‖x − y‖ for all y ∈ C.

It is well known that PC is a nonexpansive mapping of H onto C and satisfies

〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2, ∀x, y ∈ H ; (2.6.4)

〈x − PCx, PCx − z〉 ≥ 0, ∀z ∈ C; (2.6.5)
‖x − y‖2 ≥ ‖x − PCx‖2 + ‖y − PCx‖2, ∀x ∈ H, y ∈ C; (2.6.6)

and

‖(x − y) − (PCx − PCy)‖2 ≥ ‖x − y‖2 − ‖PCx − PCy‖2, ∀x, y ∈ H. (2.6.7)
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Definition 2.6.7. A mapping A of C into H is called monotone if

〈Au − Av, u − v〉 ≥ 0, ∀u, v ∈ C. (2.6.8)

Definition 2.6.8. A is called α-inverse-strongly monotone if there exists a positive
real number α such that

〈Au − Av, u − v〉 ≥ α‖Au − Av‖2, ∀u, v ∈ C. (2.6.9)

Lemma 2.6.9. Let A : H → H be a α-inverse-strongly monotone mapping. If λ ≤ 2α,

for any λ > 0 and α > 0 then I −λA is a nonexpansive mapping from H into itself.
Proof. Let u, v ∈ H and λ > 0,

‖(I − λA)u − (I − λA)v‖2 = ‖(u − v) − λ(Au − Av)‖2

= ‖u − v‖2 − 2λ〈u − v, Au − Av〉 + λ2‖Au − Av‖2

≤ ‖u − v‖2 + λ(λ − 2α)‖Au − Av‖2.

Remark 2.6.10. It is easy to see that if A is an α-inverse-strongly monotone mapping
of C into H , then A is 1

α
–Lipschitz continuous.

Definition 2.6.11. The mapping S : C −→ C is called a κ-strict pseudo-contraction
mapping if there exists a constant 0 ≤ κ < 1 such that

‖Sx − Sy‖2 ≤ ‖x − y‖2 + κ‖(I − S)x − (I − S)y‖2, ∀x, y ∈ C. (2.6.10)

2.7 Some Geometric Properties of Banach Spaces
In this section, we discuss geometric properties of Banach spaces. When we deal

with the nonlinear problems in Banach spaces, it is to hard to discuss them without
geometric properties of Banach spaces.

Definition 2.7.1. ([24]) Let E and F be vector space. A linear operator from E

into F is a function f : E −→ F such that the following two conditions are satisfied
whenever x, y ∈ E and α ∈ F:

(1) f(x + y) = f(x) + f(y);

(2) f(αx) = αf(x)

Definition 2.7.2. ([24]) A linear functional f is a linear operator with domain in a
vector space E and range in the scalar field F = R or C.
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Definition 2.7.3. ([24]) Let E be a vector space over the field F = R or C. A
linear functional f : E −→ F is said to be bounded, if there exist k > 0 such that
|f(x)| ≤ k‖x‖, for all x ∈ E.

Definition 2.7.4. ([24]) Let E be a normed space. Then the set of all bounded linear
functionals on E constitutes a normed space with norm defined by

‖f‖ = sup
x 6=0∈X

|f(x)|

‖x‖

which ia called the dual space of E and is denoted by E∗.

Theorem 2.7.5. ([47]) The dual space E∗ of a normed space E is a Banach space.

Definition 2.7.6. ([47]) Let E be a Banach space and let E∗ be it dual. With each
x ∈ E, we associate the set J(x) = {f ∈ E∗| f(x) = ‖x‖2 = ‖f‖2}. The multivalued
operator J : E −→ E∗ is called the duality mapping of E.

Theorem 2.7.7. ([47]) Let E be a Banach space and let J be duality mapping of E.
Then:

(1) For x ∈ E, J(x) is nonempty, bounded, closed and convex,

(2) J(0) = {0},

(3) for x ∈ E and a real α, J(αx) = αJ(x),

(4) for x, y ∈ E, f ∈ J(x) and g ∈ J(y), 〈x − y, f − g〉 ≥ 0,

(5) for x, y ∈ E and f ∈ J(y), ‖x‖2 − ‖y‖2 ≥ 2〈x − y, f〉.

Definition 2.7.8. ([24]) Let E be normed space, for each x ∈ E there corresponds a
unique bounded linear functional gx ∈ E∗∗ given by gx(f) = f(x), f ∈ E∗. A mapping
C : E −→ E∗∗ defined by x 7→ gx, is called the canonical mapping.

Definition 2.7.9. ([47]) Let E be a Banach space and let U = {x ∈ E | ‖x‖ = 1}.
Then a Banach space is said to be smooth provided the limit

lim
t−→0

‖x + ty‖ − ‖x‖

t
(2.7.1)

exists for each x, y ∈ U . In this case, the norm of E is said to be Gâteaux

differentiable. The space E is said to have a uniformly Gâteaux differentiable norm
if for each y ∈ U , the limit (2.7.1) is attained uniformly for x ∈ U . The norm of E is
said to be Fréchet differentiable norm if for each x ∈ U , the limit (2.7.1) is attained
uniformly for y ∈ U . The norm of E is said to be uniformly Fréchet differentiable
(and E is said to be uniformly smooth) if the limit (2.7.1) is attained uniformly for
(x, y) ∈ U × U .
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Remark We know the following: see [47] more details;

(i) If E is smooth, then J is single-valued;

(ii) If E∗ is is strictly convex, then J is single-valued;

(iii) If E is reflexive, then J is onto;

(iv) If E is strictly convex, then J is one-to-one;

(v) If E is strictly convex, then J is strictly monotone;

(vi) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on
each bounded subset of E.

2.8 Basic Concept of Convex Analysis
Definition 2.8.1. ([48]) Let H be a Hilbert space and let C be nonempty closed convex
subset of H . Let f be a function of C into (−∞,∞], where (−∞,∞] = R∪{∞}.
Then, f is called lower semicontinuous if for any a ∈ R, the set

{x ∈ C : f(x) ≤ a}

is closed. f is also called convex on if for any x, y ∈ C and t ∈ [0, 1], then

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y).

Theorem 2.8.2. ([48])(Minimization theorem)
Let C be a nonempty bounded closed convex subset of a Hilbert space H and let f be
a proper lower semicontinuous convex function of C into (−∞,∞]. Then there exists
x0 ∈ D(f) such that

f(x0) = min
x∈C

f(x).

Definition 2.8.3. ([48]) Let H be a Hilbert space and let f : H −→ (−∞,∞] be a
proper convex function. Then, we define the subdifferential ∂f of f by

∂f(x) = {x ∈ H : f(y) ≥ 〈y − x, z〉 + f(x), ∀y ∈ H}

for all x ∈ H . If f(x) = ∞, then ∂f(x) = ∅.
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Lemma 2.8.4. ([48]) Let H be a Hilbert space and let f : H −→ (−∞,∞] be a proper
convex function. Let z ∈ H . Then

0 ∈ ∂f(z) ⇔ f(z) = min
x∈H

f(x).

Lemma 2.8.5. ([48]) Let E be a Banach space and let f : E −→ (−∞,∞] be a proper
lower semicontinuous convex function. Define the subdifferential of f as follows:

∂f(x) = {x∗ ∈ E : f(y) ≥ 〈y − x, x∗〉 + f(x), ∀y ∈ E}

for each x ∈ E. Then, ∂f is a maximal monotone operator.

Lemma 2.8.6. ([48]) Let H be a Hilbert space and let C be a nonempty closed convex
subset of H . Define the indicator function iC of C by

iC(x) =





0, x ∈ C,

∞, otherwise.

Then, iC is proper, convex and semicontinuous and ∂iC is a maximal monotone oper-
ator.

Definition 2.8.7. ([48]) Let H be a Hilbert space and let C be a nonempty closed
convex subset of H and x ∈ C. Then we define the set NC(x) of H by

NC(x) = {z ∈ H : 〈u − x, z〉 ≤ 0, ∀u ∈ C}.

Such a set NC(x) is called the normal cone of C.

Remark The set NC(x) is a closed convex cone of H .

Definition 2.8.8. ([48]) Let H be a Hilbert space and let C be a nonempty closed
convex subset of H . Let B be an operator of C into H . Consider the following
problem: Find x ∈ C such that

〈Bx, y − x〉 ≥ 0

for all y ∈ C. Such an x ∈ C is called a solution of the variational inequality of B.
We denote V I(C, B) the set of all solutions of the variational inequality.

Definition 2.8.9. ([48]) Let H be a Hilbert space and let C be a nonempty closed
convex subset of H . Let B be an operator of C into H . Then B is called hemicotinuous
if for any u, v ∈ C and w ∈ H , the function

t 7→ 〈w, B(tu + (1 − t)v)〉

of [0,1] into R is contonuous.
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Theorem 2.8.10. ([48]) Let H be a Hilbert space and let C be a nonempty closed
convex subset of H . Let B : C −→ H be monotone and hemicontinuous and let NC(x)

denote the normal cone of C at x ∈ C. Define

Tx =





Bx + NCx, if v ∈ C,

∅, if v /∈ C.

Then T : H −→ 2H is a maximal monotone and 0 ∈ Tx iff x ∈ V I(C, B).

Definition 2.8.11. ([48]) Let H be a Hilbert space and let C be a nonempty closed
convex subset of H . Let B be an operator of C into H . Then B is called an inverse
strongly monotone operator if there exists β > 0 such that

〈x − y, Bx − By〉 ≥ β‖Bx − By‖2

for all x, y ∈ C. Such a B is called β-inverse strongly monotone.

Remake. If B is a β-inverse strongly monotone operator of C to H , then it is
obvious that B is 1

β
-Lipschitz continuous.

Lemma 2.8.12. ([48]) Let H be a Hilbert space and let C be a nonempty closed
convex subset of H . Let β > 0 and let B : C −→ H be β-inverse strongly monotone.
If 0 < λ ≤ 2β, then I − λB is a nonexpansive mapping of C into H .

Lemma 2.8.13. ([48]) Let H be a Hilbert space and let C be a nonempty closed convex
subset of H . Let B be an operator of C into H . Let u ∈ C. Then for λ > 0,

u ∈ V I(C, B) ⇔ u = PC(I − λB)u.

where PC is the metric projection of H onto C.

Theorem 2.8.14. ([48]) Let H be a Hilbert space and let C be a nonempty bounded
closed convex subset of H . Let β > 0 and let B : C −→ H be β-inverse strongly
monotone. Then V I(C, B) 6= ∅.

Definition 2.8.15. ([48]) Let H be a real Hilbert space and C be a nonempty closed
convex subset of H . A mapping B of C into H is called monotone if 〈Bx−By, x−

y〉 ≥ 0 for all x, y ∈ C.

Definition 2.8.16. ([48]) Let H be a Hilbert space and let C be a nonempty bounded
closed convex subset of H . A mapping T : C −→ C is called strictly pseudocontractive
if there exists k with 0 ≤ k < 1 such that:

‖Tx − Ty‖2 ≤ ‖x − y‖2 + k‖(I − T )x − (I − T )y‖2 for all x, y ∈ C.

Remark. If k = 0, then T is nonexpansive. Put B = I −T , where T : C −→ C is a
strictly pseudocontractive mapping with k. Then B is 1−k

2
-inverse-strongly monotone.



บทท่ี 3

Fixed Point Problems

3.1 Strong Convergence Theorems

The following lemmas will be useful for proving the convergence result of this
paper.

Lemma 3.1.1 ([327]). Assume {αn} is a sequences of nonnegative real numbers such
that

αn+1 ≤ (1 − γn)αn + δn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=1 γn = ∞;

(ii) lim supn−→∞ δn/γn ≥ 0 or
∑∞

n=1 |δn| < ∞.

Then limn−→∞ αn exists.

Lemma 3.1.2 ([61], Lemma 3.2). Let C be a nonempty closed subset of a Banach
space and let {Tn} be a sequence of nonexpansive mappings of C into itself. Suppose
that

∑∞
n=1 sup{‖Tn+1z−Tnz‖ : z ∈ C} < ∞. Then, for each y ∈ C, {Tny} converges

strongly to some point of C. Moreover, let T be a mapping of C into itself defined
by

Ty = lim
n−→∞

Tny for all y ∈ C.

Then limn−→∞ sup{‖Tnz − Tz‖ : z ∈ C} = 0.

3.1.1 A countable family of nonexpansive mappings
In this section, we prove some strong convergence theorems for monotone mappings
and a countable family of nonexpansive mappings.
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Theorem 3.1.3. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let α > 0 and let A be an α-inverse-strongly monotone mapping of C into
H . Let {Sn} be a sequence of nonexpansive mappings from C into itself such
that

⋂∞
n=1 F(Sn) ∩ V I(C, A) 6= ∅, and f be a contraction of C into itself. Suppose

x1 = x ∈ C and let {xn} be the iterative sequence defined by

xn+1 = αnf(xn) + (1 − αn)SnPC(xn − λnAxn),

for all n = 0, 1, 2, ..., where {αn} is a sequence in (0, 1) and {λn} ⊂ [a, b] ⊂ (0, 2α)

satisfy
∑∞

n=1 |λn+1 − λn| < ∞,

lim
n→∞

αn = 0,

∞∑

n=1

αn = ∞ and
∞∑

n=1

|αn+1 − αn| < ∞,

Suppose that
∑∞

n=1 sup{‖Sn+1z − Snz‖ : z ∈ B} < ∞ for any bounded subset B

of C. Let S be a mapping of C into itself defined by Sz = limn−→∞ Snz for
all z ∈ C and suppose that F(S) =

⋂∞
n=1 F(Sn). Then {xn} converges strongly to

z ∈ F(S) ∩ V I(C, A), where z = PF(S)∩V I(C,A)f(z).

Proof. Let Q = PF(S)∩V I(C,A). Then Qf is a contraction of H into C. In fact, there
exists k ∈ [0, 1) such that ‖f(x)− f(y)‖ ≤ k||x− y‖ for all x, y ∈ H. So, we have that

‖Qf(x) − Qf(y)‖ ≤ ‖f(x) − f(y)‖ ≤ k||x − y‖

for all x, y ∈ H. This implies that Qf is a contraction on H into C. Since H is
complete, there exists a unique element of z ∈ H , such that z = Qf(z). Such a z ∈ H

is an element of C.

Put yn = PC(xn−λnAxn), for every n ∈ N∪{0}. Let u ∈ F (S)∩V I(C, A). Since
I − λnA is nonexpansive and u = PC(u − λnAu), we have

‖yn − u‖ = ‖PC(xn − λnAxn) − PC(u − λnAu)‖

≤ ‖(xn − λnAxn) − (u − λnAu)‖

≤ ‖(I − λnA)xn − (I − λnA)u‖

≤ ‖xn − u‖,

for all n ∈ N ∪ {0}. We note that

‖xn+1 − u‖ = ‖αn(f(xn) − u) + (1 − αn)(Snyn − u)‖

≤ αn‖f(xn) − u‖ + (1 − αn)‖Snyn − u‖

≤ αn(‖f(xn) − f(u)‖ + ‖f(u) − u‖) + (1 − αn)‖xn − u‖

≤ αnk‖xn − u‖ + αn‖f(u) − u‖ + (1 − αn)‖xn − u‖

= (1 − (1 − k)αn)‖xn − u‖ + (1 − k)αn(
1

1 − a
‖f(u) − u‖)

≤ max{‖xn − u‖,
1

1 − k
‖f(u) − u‖}.
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for all n ∈ N. By induction, we get

‖xn+1 − u‖ ≤ max{‖x1 − u‖,
1

1 − k
‖f(u) − u‖}, n ≥ 1. (3.1.1)

Therefore {xn} is bounded. Hence, we also obtain that {yn}, {Snyn} and {f(xn)} are
bounded.
Since I − λnA is nonexpansive, we have

‖yn+1 − yn‖ = ‖PC(xn+1 − λnAxn+1) − PC(xn − λnAxn)‖

≤ ‖(I − λn+1A)xn+1 − (I − λnA)xn‖

≤ ‖(I − λn+1A)xn+1 − (I − λn+1A)xn‖ + |λn − λn+1|‖Axn‖

≤ ‖(xn+1 − xn)‖ + |λn − λn+1|‖Axn‖, (3.1.2)

for all n ∈ N. So, we obtain

‖xn+1 − xn‖ = ‖[αnf(xn) + (1 − αn)Snyn] − [αn−1f(xn−1) + (1 − αn−1)Sn−1yn−1]‖

= ‖αn[f(xn) − f(xn−1)] + (αn − αn−1)f(xn−1)

+(1 − αn)(Snyn − Sn−1yn−1) + (αn−1 − αn)Sn−1yn−1‖

≤ αnk‖xn − xn−1‖ + |(αn − αn−1|(‖f(xn−1‖ + ‖Sn−1yn−1‖)

+(1 − αn)(‖Snyn − Snyn−1‖ + ‖Snyn−1 − Sn−1yn−1‖)

≤ αnk‖xn − xn−1‖ + |(αn − αn−1|(‖f(xn−1‖ + ‖Sn−1yn‖)

+(1 − αn)‖yn − yn−1‖ + (1 − αn) sup{‖Snz − Sn−1z‖ : z ∈ {yn−1}}

≤ αnk‖xn − xn−1‖ + |αn − αn−1|(‖fxn−1‖ + ‖Sn−1yn−1‖)

+(1 − αn)(‖xn − xn−1‖ + |λn−1 − λn|‖Axn−1‖ ( by 3.1.2)

+(1 − αn) sup{‖Snz − Sn−1z‖ : z ∈ {yn}}

≤ (1 − (1 − k)αn)‖xn − xn−1‖ + |λn−1 − λn|M + |αn − αn−1|L

+(1 − αn) sup{‖Snz − Sn−1z‖ : z ∈ {yn}},

for every n ∈ N, where L := supn≥1{‖fxn−1‖+‖Sn−1yn−1‖} andM := supn≥1{‖Axn‖}.

Since∑∞
n=1 αn = ∞,

∑∞
n=1 |λn−λn−1| < ∞,

∑∞
n=1 |αn−αn−1| < ∞ and∑∞

n=1{‖Snz−

Sn+1z‖ : z ∈ {yn}} < ∞, it follows by Lemma 3.1.1 that

lim
n−→∞

‖xn+1 − xn‖ = 0. (3.1.3)

Then we also obtain limn−→∞ ‖yn+1 − yn‖ = 0. Moreover, we note that

‖xn − Snyn‖ ≤ ‖xn − Sn−1yn−1‖ + ‖Sn−1yn−1 − Snyn−1‖ + ‖Snyn−1 − Snyn‖

≤ αn−1‖f(xn−1) − Sn−1yn−1‖ + sup{‖Sn−1z − Snz‖ : z ∈ {yn−1}}

+‖yn−1 − yn‖, for all n ∈ N.
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Thus, we have
lim

n−→∞
‖xn − Snyn‖ = 0. (3.1.4)

From above, we obtain

‖xn+1 − u‖2 ≤ αn‖f(xn) − u‖2 + (1 − αn)‖Snyn − u‖2

≤ αn‖f(xn) − u‖2 + (1 − αn)‖yn − u‖2

= αn‖f(xn) − u‖2 + (1 − αn)‖PC(xn − λnAxn) − u‖2

≤ αn‖f(xn) − u‖2 + (1 − αn)‖(I − λnA)xn − (I − λnA)u‖2

≤ αn‖f(xn) − u‖2 + (1 − αn)(‖xn − u‖2 + λn(λn − 2α)‖Axn − Au‖2)

≤ αn‖f(xn) − u‖2 + ‖xn − u‖2 + (1 − αn)a(b − 2α)‖Axn − Au‖2

and hence

−(1 − αn)a(b − 2α)‖Axn − Au‖2

≤ αn‖f(xn) − u‖2 + ‖xn − u‖2 − ‖xn+1 − u‖2

≤ αn‖f(xn) − u‖2 + (‖xn − u‖ + ‖xn+1 − u‖)‖xn+1 − xn‖.

Since αn −→ 0 and ‖xn+1 −xn‖ −→ 0, it follows that ‖Axn −Au‖ −→ 0. Further, we
obtain

‖yn − u‖2 = ‖PC(xn − λnAxn) − PC(u − λnAu)‖2

≤ 〈(xn − λnAxn) − (u − λnAu), yn − u〉

= (1/2){‖(xn − λnAxn) − (u − λnAu)‖2 + ‖yn − u‖2

−‖[(xn − λnAxn) − (u − λnAu)] − (yn − u)‖2}

≤ (1/2){‖xn − u‖2 + ‖yn − u‖2 − ‖(xn − yn) − λn(Axn − Au)‖2}

= (1/2){‖xn − u‖2 + ‖yn − u‖2 − ‖(xn − yn)‖2

+2λn〈xn − yn, Axn − Au〉 − λ2
n‖Axn − Au‖2}.

Thus, we have

‖yn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖
2

+2λn〈xn − yn, Axn − Au〉 − λ2
n‖Axn − Au‖2

and hence

‖xn+1 − u‖2 = ‖αnf(xn) + (1 − αn)Snyn − u‖2

≤ αn‖f(xn) − u‖2 + (1 − αn)‖yn − u‖2

≤ αn‖f(xn) − u‖2 + ‖xn − u‖2 − ‖xn − yn‖
2

+2λn〈xn − yn, Axn − Au〉 − λ2
n‖Axn − Au‖2.
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Since αn −→ 0, ‖xn+1 − xn‖ −→ 0 and ‖Axn − Au‖ −→ 0, we have

‖xn − yn‖ −→ 0. (3.1.5)

>From ‖Snyn − yn‖ ≤ ‖Snyn − xn‖ + ‖xn − yn‖, we obtain

‖Snyn − yn‖ −→ 0. (3.1.6)

Next we show that

lim sup
n−→∞

〈f(z) − z, Snyn − z〉 ≤ 0,

where z = PF (S)∩V I(C,A)f(z). To show it, choose a subsequence {yni
} of {yn} such

that

lim sup
n−→∞

〈f(z) − z, Snyn − z〉 = lim
i−→∞

〈f(z) − z, Snyni
− z〉.

Since {yni
} is bounded, there exists a subsequence {ynij

} of {yni
} converges weakly to

w. We may assume without loss of generality that yni
⇀ w. Since ‖Snyn − yn‖ −→ 0,

we obtain Sni
yni

⇀ w. We now show that w ∈ F (S) ∩ V I(C, A).

First, it follows by the same argument as in the proof of [258, Theorem 3.1, pp.
346-347] that z ∈ V I(C, A). Let us show that w ∈ F (S). Assume w /∈ F (S). From
Opial’s condition, we have

lim inf
n−→∞

‖yni
− w‖ < lim inf

i−→∞
‖yni

− Sw‖

= lim inf
i−→∞

‖yni
− Sni

yni
+ Sni

yni
− Syni

+ Syni
− Sw‖

≤ lim inf
i−→∞

‖Syni
− Sw‖

≤ lim inf
i−→∞

‖yni
− w‖

This is a contradiction. Thus, we obtain w ∈ F (S). Therefore w ∈ F (S) ∩ V I(C, A).

Since z = PF (S)∩V I(C,A)f(z), we have

lim sup
n−→∞

〈f(z) − z), Snyn − z〉 = lim
i−→∞

〈f(z) − z, Snyni
− z〉

= 〈f(z) − z, w − z〉 ≤ 0.
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for all n ≥ m. For all n ≥ m, we have

‖xn+1 − z‖2 = ‖αnf(xn) + (1 − αn)Snyn − z‖2

= ‖αn(f(xn) − z) + (1 − αn)(Snyn − z)‖2

≤ α2
n‖(f(xn) − z)‖2 + 2αn(1 − αn)〈f(xn) − z, Snyn − z〉

+(1 − αn)2‖Snyn − z‖2

≤ α2
n‖(f(xn) − z)‖2 + (1 − αn)2‖xn − z‖2

+2αn(1 − αn)〈f(xn) − f(z), Snyn − z〉

+2αn(1 − αn)〈f(z) − z, Snyn − z〉

≤ α2
n‖(f(xn) − z)‖2 + (1 − 2αn + α2

n)‖xn − z‖2

+2αn(1 − αn)k‖xn − z‖2 + 2αn(1 − αn)〈f(z) − z, Snyn − z〉

= [1 − 2αn + α2
n + 2kαn(1 − αn)]‖xn − z‖2 + α2

n‖f(xn) − z‖2

+2αn(1 − αn)〈f(z) − z, Snyn − z〉

= (1 − ᾱn)‖xn − z‖2 + ᾱnβ̄n,

where

ᾱn = 2αn + α2
n + 2kαn(1 − αn),

β̄n =
αn‖f(xn) − z‖2 + 2(1 − αn)〈f(z) − z, Snyn − z〉.

2 + αn + 2k(1 − αn)

It is easily see that ᾱn −→ 0,
∑∞

n=1 ᾱn = ∞ and lim supn−→∞ β̄n ≤ 0. Hence, by
Lemma 3.1.1, we obtain xn → z = PF (S)∩V I(C,A)f(z). This completes the proof.
Putting f(y) = x ∈ C for all y ∈ H in Theorem 3.1.3, we have the following

result.

Theorem 3.1.4. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let α > 0 and let A be an α-inverse-strongly monotone mapping of C into
H . Let {Sn} be a sequence of nonexpansive mappings from C into itself such that
⋂∞

n=1 F(Sn) ∩ V I(C, A) 6= ∅. Suppose x1 = x ∈ C and {xn} is given by

xn+1 = αnxn + (1 − αn)SnPC(xn − λnAxn),

for all n = 0, 1, 2, ...,, where {αn} is a sequence in (0, 1) and {λn} ⊂ [a, b] for some
a, b ∈ (0, 2α) with

∑∞
n=1 |λn+1 − λn| < ∞,

lim
n→∞

αn = 0,

∞∑

n=1

αn = ∞ and
∞∑

n=1

|αn+1 − αn| < ∞,

Suppose that
∑∞

n=1 sup{‖Sn+1z − Snz‖ : z ∈ B} < ∞ for any bounded subset B

of C and S be a mapping of C into itself defined by Sz = limn−→∞ Snz for all
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z ∈ C and suppose that F(S) =
⋂∞

n=1 F(Sn). Then {xn} converges strongly to
z ∈ F(S) ∩ V I(C, A), where z = PF(S)∩V I(C,A)x1.

Proof. It follows by Theorem 3.1.3 that xn −→ z, where z = PF (S)∩V I(C,A)x1.

Setting Sn ≡ S in Theorem 3.1.3 and 3.1.4, we have the following results.

Corollary 3.1.5. (Chen, Zhang and Fan [?]) Let C be a nonempty closed convex
subset of a real Hilbert space H . Let α > 0 and let A be an α-inverse-strongly
monotone mapping of C into H . Let S be a sequence of nonexpansive mappings
from C into itself such that F(S) ∩ V I(C, A) 6= ∅. Let f be a contraction of C into
itself. Suppose x1 = x ∈ C and {xn} is given by

xn+1 = αnf(xn) + (1 − αn)SPC(xn − λnAxn),

for all n = 0, 1, 2, ...,, where {αn} is a sequence in (0, 1) and {λn} ⊂ [a, b] for some
a, b ∈ (0, 2α) with

∑∞
n=1 |λn+1 − λn| < ∞,

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞ and
∞∑

n=1

|αn+1 − αn| < ∞.

Then {xn} converges strongly to z ∈ F(S) ∩ V I(C, A), where z = PF(S)∩V I(C,A)f(z).

By using the same argument in the proof of Theorem 3.1.3, we have the following
theorem.

Theorem 3.1.6. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let {Sn} be a sequence of nonexpansive mappings from C into itself such that
⋂∞

n=1 F (Sn) 6= ∅ and f be a contraction of C into itself. Suppose x1 = x ∈ C and
let {xn} be the iterative sequence defined by

xn+1 = αnf(xn) + (1 − αn)Snxn

for every n ∈ N, where {αn} is a sequence in (0, 1). Suppose that
∑∞

n=1 sup{‖Sn+1z−

Snz‖ : z ∈ B} < ∞ for any bounded subset B of C. Let S be a mapping defined
by Sz = limn−→∞ Snz for all z ∈ C and suppose that F(S) =

⋂∞
n=1 F(Sn). Then

{xn} converges strongly to z ∈ F(S), where z = PF(S)f(z).

Proof. Putting Q = PF (S) and yn = xn in the proof of Theorem 3.1.3. Then, by
using the same argument as in the proof of Theorem 3.1.3, we can show that {xn}

converges strongly to a point z ∈ F (S), where z = PF (S)f(z).

Lemma 3.1.7. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let F be a bifunction from C × C into R satisfying (A1)-(A4). Let {rn} be a
sequence of positive integers and Trn

be the mapping. Let {rn} be a sequence in
(0,∞) such that inf{rn : n ∈ N} > 0 and

∑∞
n=1 |rn+1 − rn| < ∞, then the following

hold:
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(i)
∑∞

n=1 sup{‖Trn+1
z − Trn

z‖ : z ∈ B} < ∞ for any bounded subset B of C,

(i) F (T ) =
⋂∞

n=1 F(Trn
) where T is a mapping defined by Tx = limn−→∞ Trn

x for
all x ∈ C.

Using Theorem 3.1.3 and Lemma 3.1.7, we have the following theorem.

Theorem 3.1.8. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let F be a bifunction from C × C into R satisfying (A1)-(A4). Let A be an
α-inverse-strongly monotone mapping of C into H such that V I(C, A)∩EP(F ) 6= ∅.
Let f be a contraction of H into itself. Let {xn} and {un} be sequences generated
by x1 ∈ C and






yn = PC(xn − λnAxn)

F (un, y) +
1

rn

〈y − un, un − yn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1 − αn)un,

for all n ∈ N, where {αn} is a sequence in [0, 1] and {λn} ⊂ [a, b] ⊂ (0, 2α) satisfy
∑∞

n=1 |λn+1 − λn| < ∞ with limn→∞ αn = 0,
∑∞

n=1 αn = ∞,
∑∞

n=1 |αn+1 − αn| <

∞ and {rn} is a sequence in (0,∞) with lim infn−→∞ rn > 0 and
∑∞

n=1 |rn+1 −

rn| < ∞. Then {xn} converges strongly to w ∈ V I(C, A) ∩ EP(F ), moreover
w = PEP(F )∩V I(C,A)f(w).

Using Theorem 3.1.6 and Lemma 3.1.7, we have the following theorem.

Theorem 3.1.9. Let C be a nonempty closed convex subset of a real Hilbert space H .
Let F be a bifunction from C ×C into R satisfying (A1)-(A4) with EP (F ) 6= ∅ and
let f be a contraction of C into itself. Let {xn} and {un} be sequences generated
by x1 = x ∈ C and





F (un, y) +

1

rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1 − αn)un,

for all n ∈ N, where {αn} is a sequence in [0, 1] with
∑∞

n=1 αn = ∞ and {rn} is a
sequence in (0,∞) with lim infn−→∞ rn > 0 and

∑∞
n=1 |rn+1 − rn| < ∞. Then {xn}

converges strongly to w ∈ EP(F ), moreover w = PEP(F )f(w).

3.1.2 Accretive operators
In this section, we consider the problem of finding a zero of an accretive operator.
Let E be a real Banach space. Let p be a fixed real number with p ≥ 2. A
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Banach space E is said to be p-uniformly convex if there exists a constant c > 0

such that δ(ε) ≥ cεp for all ε ∈ [0, 2]. Observe that every p-uniform convex is
uniformly convex. One should note that no a Banach space is p-uniform convex for
1 < p < 2. It is well known that a Hilbert space is 2-uniformly convex, uniformly
smooth. For each p > 1, the generalized duality mapping Jp : E → 2E∗ is defined
by Jp(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1} for all x ∈ E. In particular,
J = J2 is called the normalized duality mapping. If E is a Hilbert space, then J = I ,
where I is the identity mapping. An operator A ⊂ E ×E is said to be accretive if for
each (x1, y1) and (x2, y2) ∈ A, there exists j ∈ J(x1 − x2) such that 〈y1 − y2, j〉 ≥ 0.

An accretive operator A is said to satisfy the range condition of D(A) ⊂ R(I + λA)

for all λ > 0, where D(A) is the domain of A, R(I + λA) is the range of I + λA, and
D(A) is the closure of D(A). If A is an accretive operator which satisfies the range
condition, then we can define, for each λ > 0, a mapping Jλ : R(I +λA) −→ D(A) by
Jλ = (I −λA)−1, which is called the resolvent of A. We know that Jλ is nonexpansive
and F (Jλ) = A−1(0) for all λ > 0. An accretive operator A is said to be m-accretive
if R(I + λA) = E for all λ > 0 (see also [61])

Lemma 3.1.10. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let T ⊂ H ×H be an accretive operator such that T−1(0) 6= ∅ and D(T ) ⊂ C ⊂
⋂

r>0 R(I + rT ), and {rn} be a sequence in (0,∞). If inf{rn : n ∈ N} > 0, and
∑∞

n=1 |rn+1 − rn| < ∞, then the followings hold:

(i)
∑∞

n=1 sup{‖Jrn+1
z − Jrn

z‖ : z ∈ B} < ∞ for any bounded subset B of C,

(ii) F (S) =
⋂∞

n=1 F(Jrn
), where S is a mapping defined by Sx = limn−→∞ Jrn

x

for all x ∈ C.

Using Theorem 3.1.3 and Lemma 3.1.10, we have the following theorem.

Theorem 3.1.11. Let T ⊂ H × H be an m-accretive operator with T−1(0) 6= ∅ and
let C := D(T ). Let α > 0 and let A be an α-inverse-strongly monotone mapping
of C into H and let f be a contraction of C into itself. Let {xn} be a sequence
generated by x1 = x ∈ C and

xn+1 = αnf(xn) + (1 − αn)Jrn
PC(xn − λnAxn)

for all n ∈ N, where {αn} is a sequence in [0, 1], {rn} is a sequence in (0,∞)

and {λn} ⊂ [a, b] ⊂ (0, 2α) satisfy
∑∞

n=1 |λn+1 − λn| < ∞. Suppose that S is a
mapping defined by Sx = limn−→∞ Jrn

x for all x ∈ C. If limn αn = 0,
∑∞

n=1 αn =

∞,
∑∞

n=1 |αn+1 − αn| < ∞, inf{rn : n ∈ N} > 0, and
∑∞

n=1 |rn+1 − rn| < ∞, then
{xn} converges strongly to z ∈ T−1(0) ∩ V I(C, A), where z = PT−1(0)∩V I(C,A)f(z).



30

Proof. Since H is Hilbert space C = D(T ) is closed and convex. By Lemma
3.1.10, we have the following

F(S) =
∞⋂

n=1

F(Jrn
) = T−1(0) 6= ∅.

Therefore, by Theorem 3.1.3, we obtain {xn} converges strongly to z = PF(S)∩T−1(0)f(z).

Using Theorem 3.1.6 and Lemma 3.1.10, we have the following theorem.

Theorem 3.1.12. Let T ⊂ H × H be an m-accretive operator with T−1(0) 6= ∅ and
let C := D(T ). Let f be a contraction of C into itself. Let {xn} be a sequence
generated by x1 = x ∈ C and

xn+1 = αnf(xn) + (1 − αn)Jrn
xn,

for all n ∈ N, where {αn} is a sequence in [0, 1], {rn} is a sequence in (0,∞).

If limn−→∞ αn = 0,
∑∞

n=1 αn = ∞,
∑∞

n=1 |αn+1 − αn| < ∞, inf{rn : n ∈ N} > 0,
and

∑∞
n=1 |rn+1 − rn| < ∞, then {xn} converges strongly to z ∈ T−1(0), where

z = PT−1(0)f(z).

3.1.3 Strictly pseudocontractive mappings
A mapping T : C −→ C is called strictly pseudocontractive on C if there exists k with
0 ≤ k < 1 such that

‖Tx − Ty‖2 ≤ ‖x − y‖2 + k‖(I − T )x + (I − T )y‖2, for all x, y ∈ C.

If k = 0, then T is nonexpansive. Put A = I − T , where T : C −→ C is a
strictly pseudocontractive mapping with k. We know that, A is 1−k

2
− inverse strongly

monotone and A−1(0) = F (T ) (see [258]).
Now, using Theorem 3.1.3 we state a strong convergence theorem for a pair of a

nonexpansive mapping and strictly pseudocontractive mapping as follows.

Theorem 3.1.13. Let C be a closed convex subset of a real Hilbert space H . Let
{Sn} be a sequence of nonexpansive mappings of C into itself. Let T be a strictly
pseudocontractive mapping with constant k of C into itself such that ∩∞

n=1F (Sn) ∩

V I(C, A) 6= ∅. Let {xn} be a sequence generated by x1 = x ∈ C and

xn+1 = αnf(xn) + (1 − αn)SnPC((1 − λn)xn + λnTxn)

for all n ∈ N, where {αn} is a sequence in [0, 1], {rn} is a sequence in (0,∞)

and {λn} ⊂ [a, b] ⊂ (0, 2α) satisfy
∑∞

n=1 |λn+1 − λn| < ∞. Suppose that S is a
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mapping defined by Sz = limn−→∞ Snz for all z ∈ C. If limn αn = 0,
∑∞

n=1 αn =

∞,
∑∞

n=1 |αn+1 − αn| < ∞, inf{rn : n ∈ N} > 0, and
∑∞

n=1 |rn+1 − rn| < ∞, then
{xn} converges strongly to z ∈ F(S) ∩ F (T ), where z = PF(S)∩F (T )f(z).

Proof. Put A = I − T. Then A is 1−k
2
−inverse-strongly monotone. We have that

F (T ) is the solution set of V I(A, C) i.e., F (T ) = V I(A, C) and

PC(xn − λnAxn) = (1 − λn)xn + λnTxn.

Therefore, by Theorem 3.1.3, the conclusion follows.
Setting f(y) = x for all y ∈ C in Theorem 3.1.13, we have the following corollary.

Corollary 3.1.14. Let C be a closed convex subset of a real Hilbert space H .
Let {Sn} be a sequence of nonexpansive mappings of C into itself and let T

be a strictly pseudocontractive mapping with constant k of C into itself such that
∩∞

n=1F (Sn) ∩ F (T ) 6= ∅. Let {xn} be a sequence generated by x1 = x ∈ C and

xn+1 = αnx + (1 − αn)SnPC((1 − λn)xn − λnTxn)

for all n ∈ N, where {αn} is a sequence in [0, 1], {rn} is a sequence in (0,∞)

and {λn} ⊂ [a, b] ⊂ (0, 2α) satisfy
∑∞

n=1 |λn+1 − λn| < ∞. Suppose that S is a
mapping defined by Sz = limn−→∞ Snz for all z ∈ C. If limn αn = 0,

∑∞
n=1 αn =

∞,
∑∞

n=1 |αn+1 − αn| < ∞, inf{rn : n ∈ N} > 0, and
∑∞

n=1 |rn+1 − rn| < ∞, then
{xn} converges strongly to z ∈ F(S) ∩ F (T ), where z = PF(S)∩F (T )x1.

3.2 Convergence Theorems by the Hybrid Projection Method
Let C be a closed and convex subset of E, a mapping T : C → C is called

nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for any x, y ∈ C. A point x ∈ C is a fixed
point of T provided Tx = x. Denote by F (T ) the fixed point set of T ; that is,
F (T ) = {x ∈ C : Tx = x}. Consider the functional defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2, (3.2.1)

where J is the normalized duality mapping.
If C is a nonempty, closed and convex subset of a Hilbert space H and PC : H → C

is the metric projection of H onto C, then PC is nonexpansive. This fact actually
characterizes Hilbert spaces and consequently, it is not available in more general Banach
spaces. In this connection, Alber [319] introduced a generalized projection ΠC from E

into C by
ΠC(x) = argminy∈Cφ(y, x). (3.2.2)
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It is obvious from the definition of φ that

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖+ ‖x‖)2, ∀x, y ∈ E. (3.2.3)

If E is a Hilbert space, then φ(y, x) = ‖y − x‖2 and ΠC becomes the metric projection
of E onto C. The generalized projection ΠC : E → C is a map that assigns to an
arbitrary point x ∈ E the minimum point of the functional φ(x, y), that is, ΠCx = x̄,

where x̄ is the solution of the minimization problem

φ(x̄, x) = inf
y∈C

φ(y, x). (3.2.4)

The existence and uniqueness of the operator ΠC follows from the properties of the
functional φ(y, x) and the strict monotonicity of the mapping J (see, for example,
[55, 319, 65, 69, 92]). In 2006, Wu and Huang [325] introduced a new generalized
f -projection operator in Banach space. They extended the definition of the generalized
projection operators introduced by Abler [318] and proved properties of the generalized
f -projection operator. Next, we recall the concept of the generalized f -projection
operator. Let G : C × E∗ −→ R ∪ {+∞} be a functional defined by

G(ξ, ̟) = ‖ξ‖2 − 2〈ξ, ̟〉+ ‖̟‖2 + 2ρf(ξ), (3.2.5)

where ξ ∈ C, ̟ ∈ E∗, ρ is positive number and f : C → R∪ {+∞} is proper, convex
and lower semicontinuous. From the definition of G, it is easy to see the following
properties.

(1) G(ξ, ̟) is convex and continuous with respect to ̟ when ξ is fixed;

(2) G(ξ, ̟) is convex and lower semicontinuous with respect to ξ when ̟ is fixed.

Definition 3.2.1. Let E be a real Banach space with its dual E∗. Let C be a
nonempty, closed and convex subset of E. We say that πf

C : E∗ → 2C is a
generalized f -projection operator if

πf
C̟ = {u ∈ C : G(u, ̟) = inf

ξ∈C
G(ξ, ̟), ∀̟ ∈ E∗}.

Definition 3.2.2. Let C be a nonempty subset of E and let {Tn}
∞
n=1 ิ้ be a countable

family of mappings from C into E. A point p in C is called an asymptotic fixed
point of {Tn}

∞
n=1 [82] if C contains a sequence {xn}

∞
n=1 which converges weakly to

p such that limn→∞ ‖xn−Tnxn‖ = 0. The asymptotic fixed point set of {Tn}
∞
n=1 will

be denoted by F̂ ({Tn}
∞
n=1). A mapping Tn from C into itself is called countable

family of relatively nonexpansive mappings (see [89]) if

(R1) F ({Tn}
∞
n=1) is nonempty;
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(R2) φ(p, Tnx) ≤ φ(p, x) for all x ∈ C and p ∈ F ({Tn}
∞
n=1);

(R3) F̂ ({Tn}
∞
n=1) = F ({Tn}

∞
n=1).

A sequence {Tn}
∞
n=1 is called countable family of relatively quasi-nonexpansive

mappings ( or countable family of quasi-φ-nonexpansive mappings) if conditions (R1)

and (R2) hold. It is obvious that a countable family of relatively nonexpansive map-
pings is a countable family of relatively quasi-nonexpansive mappings but the converse
is not true. In order to explain this better, we give the following example.

Example 3.2.3. Let E = R with the usual norm. We define a mapping Tn : E −→ E

by

Tn(x) =

{
0, if x ≤ 1

n
;

1
n
, if x > 1

n
,

for all n ≥ 0 and for each x ∈ R.

Then
⋂∞

n=1 F (Tn) = F (Tn) = {0} and

φ(0, Tnx) = ‖0 − Tnx‖ ≤ ‖0 − x‖ = φ(0, x), ∀x ∈ R.

Hence, T is a relatively quasi-nonexpansive mapping but not a relatively nonexpansive
mapping.

Definition 3.2.4. A point p in C is called an asymptotic fixed point of T [82] if
C contains a sequence {xn} which converges weakly to p such that limn→∞ ‖xn −

Txn‖ = 0. The asymptotic fixed point set of T will be denoted by F̂ (T ). A mapping
T from C into itself is called relatively nonexpansive (see [77, 86, 96]) if

(R1)′ F (T ) is nonempty;

(R2)′ φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F (T );

(R3)′ F̂ (T ) = F (T ).

A mapping T is called relatively quasi-nonexpansive ( or quasi-φ-nonexpansive) if
conditions (R1)′ and (R2)′ hold. Obviously, relatively nonexpansive mappings implies
relatively quasi-nonexpansive mappings but the converse is not true. Moreover, Defin-
ition 3.2.4 is a special case of Definition 3.2.2 when Tn ≡ T , for all n ≥ 0. Relatively
quasi-nonexpansive mappings are sometimes called hemirelatively nonexpansive map-
pings. The asymptotic behavior of a relatively nonexpansive mapping was studied in
[62, 63, 64]. The class of relatively quasi-nonexpansive mappings is more general than
the class of relatively nonexpansive mappings (see [62, 63, 64, 75, 84]) which requires
the strong restriction: F (T ) = F̂ (T ). Furthermore, Su et al. [87, 88] gave an ex-
ample of relatively quasi-nonexpansive mappings which is not relatively nonexpansive
mapping.
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Example 3.2.5. (cf. [87, 95]) Let E be any smooth Banach space and let x0 6= 0 be
any element of E. We define a mapping T : E −→ E by

T (x) =

{
(1

2
+ 1

2n )x0, if x = (1
2

+ 1
2n )x0;

−x, if x 6= (1
2

+ 1
2n )x0.

Then T is a relatively quasi-nonexpansive mapping but not a relatively nonexpansive
mapping. Actually, T above fails to have the condition (R3)′.

For other examples of relatively quasi-nonexpansive mappings such as the general-
ized projections others see [79, Examples 2.3 and 2.4].
There are many methods for approximating fixed points of a nonexpansive mapping.

In 1953, Mann [74] introduced the following iterative scheme

xn+1 = αnxn + (1 − αn)Txn (3.2.6)

where the initial guess element x1 ∈ C is arbitrary and {αn} is sequence in [0, 1].
Mann iteration has been extensively investigated for nonexpansive mappings. One of
the fundamental convergence results is proved by Bauschke and Combettes [58]. In an
infinite-dimensional Hilbert space, Mann iteration can conclude only weak convergence
(see [59, 68]). Attempts to modify the Mann iteration method (3.2.6) so that strong
convergence is guaranteed have recently been made. Bauschke and Combettes [58]
proposed the following modification of Mann iteration method






x1 = x ∈ C is arbitrary,
yn = αnxn + (1 − αn)Txn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn∩Qn
x, n = 1, 2, 3, ... .

(3.2.7)

They proved that if the sequence {αn} bounded above from one, then {xn} defined
by (3.2.7) converges strongly to PF (T )x. Let {Tn} be a sequence of nonexpansive
mappings from C into itself such that ⋂∞

n=1 F (Tn) 6= ∅ satisfy the following condition:
if for each bounded subset B of C

∞∑

n=1

sup{‖Tn+1z − Tnz‖ : z ∈ B} < ∞. (3.2.8)

Assume that if the mapping T : C → C defined by Tx = limn→∞ Tnx for all x ∈ C,
then limn→∞ sup{‖Tz − Tnz‖ : z ∈ C} = 0. Aoyama et al. [61, Lemma 3.1] proved
that the sequence {Tn} converges strongly to a point in C for all x ∈ C.
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Very recently, Takahashi et al. [91] studied the strong convergence theorem by
the new hybrid method for a family of nonexpansive mappings in Hilbert spaces:
x0 ∈ H, C1 = C and x1 = PC1

x0 and let






yn = αnxn + (1 − αn)Tnxn,

Cn+1 = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},

xn+1 = PCn+1
x0, n ∈ N,

(3.2.9)

where 0 ≤ αn ≤ a < 1 for all n ∈ N and {Tn} is a sequence of nonexpansive mappings
of C into itself such that ⋂∞

n=1 F (Tn) 6= ∅. They prove that if {Tn} satisfies some
appropriate conditions, then {xn} converge strongly to PT∞

n=1 F (Tn)x0.
The ideas to generalize the process (3.2.6) from Hilbert spaces have recently been

made. Matsushita and Takahashi [75] proposed the following hybrid iteration method
(CQ method) with generalized projection for relatively nonexpansive mapping T in a
Banach space E:






x0 ∈ C chosen arbitrarily,
yn = J−1(αnJxn + (1 − αn)JTxn),

Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qn
x0.

(3.2.10)

They proved that {xn} converges strongly to ΠF (T )x0. Many authors studied methods
for approximating fixed points of countable family of (relatively quasi-) nonexpansive
mappings (see [60, 61, 70, 77, 282, 83, 85, 93]). Plubtieng and Ungchittrakool [282]
introduced a method for finding common fixed point of countable family of relatively
nonexpansive mappings in a Banach space. Let Ĉ and C be two nonempty, closed
and convex subsets of a uniformly smooth and uniformly convex Banach space E such
that C ⊂ Ĉ and let {Tn} be a sequence of relatively nonexpansive mappings such that⋂∞

n=1 F (Tn) 6= ∅. Define {xn} in the following ways:






x0 ∈ Ĉ,

C1 = C,

x1 = PC1
x0,

yn = J−1(αnxn + (1 − αn)Tnxn),

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},

xn+1 = ΠCn+1
x0

(3.2.11)
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and 




x0 ∈ Ĉ,

C1 = C,

yn = J−1(αnxn + (1 − αn)Tnxn),

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},

xn+1 = ΠCn+1
x0

(3.2.12)

where αn ⊂ [0, 1] satisfies some appropriate conditions. They proved that the processes
(3.2.11) and (3.2.12) converge strongly to a common fixed point of a countable family
of relatively nonexpansive mappings {Tn} provided that {Tn} satisfies some appropriate
conditions.
Recently, Li et al. [73] introduced the following hybrid iterative scheme for ap-

proximation fixed points of relatively nonexpansive mapping using the generalized
f -projection operator in a uniformly smooth real Banach space which is also uniformly
convex: x0 ∈ C and






yn = J−1(αnJxn + (1 − αn)JTxn),

Cn+1 = {w ∈ Cn : G(w, Jyn) ≤ G(w, Jxn)},

xn+1 = Πf
Cn+1

x0.

(3.2.13)

They obtained strong convergence theorem for finding an element in the fixed point set
of T . The result of Li et al. [73] extended and improved the results of Matsushita and
Takahashi [75].
On the other hand, Nakajo et al. [76] introduced the following condition. Let C

be a nonempty, closed and convex subset of a Banach space E, let {Tn} be a family
of mappings of C into itself such that F :=

⋂∞
n=1 F (Tn) 6= ∅ and ωw(zn) denotes the

set of all weak subsequential limits of a bounded sequence {zn} in C. The sequence
{Tn} satisfy the NST-condition if for every bounded sequence {zn} in C

lim
n→∞

‖zn − Tnzn‖ = 0 implies ωw(zn) ⊂ F .

Recall that a mapping T : C −→ C is closed if for each {xn} in C, if xn −→ x

and Txn −→ y, then Tx = y. Let {Tn} be a family of mappings of C into itself with
F :=

⋂∞
n=1 F (Tn) 6= ∅. The sequence {Tn} satisfy the (∗)-condition [60] if for each

bounded sequence {zn} in C

lim
n→∞

‖zn − Tnzn‖ = 0 and lim
n→+∞

zn = z imply z ∈ F . (3.2.14)

It follows directly from the definitions above that if {Tn} satisfies NST-condition, then
{Tn} satisfies (∗)-condition. Hence the (∗)-condition weaker than the NST-condition.
If Tn ≡ T and T is closed, then {Tn} satisfies (∗)-condition (see [60, 76] for more de-
tails). Now we give an example of a countable family of relatively quasi-nonexpansive
mappings which are satisfy the (∗)-condition.



37

Example 3.2.6. Let E = R. A mapping Tn : E −→ E defined by Example 3.2.3.
Hence, we have

⋂∞
n=1 F (Tn) = F (Tn) = {0}. For each bounded sequences zn ∈

E, we observe that Tnzn = 1
n

−→ 0 as n −→ ∞ and hence z = limn→∞ zn =

limn→∞ Tnzn = 0 as n −→ ∞, this implies that z = 0 ∈ F (Tn). Therefore, Tn is a
relatively quasi-nonexpansive mapping and satisfy the (∗)-condition.

The following questions naturally arise in connection with the above results.
Question 1 Can the algorithms (3.2.11), (3.2.12) and (3.2.13) still valid for rela-

tively quasi-nonexpansive mappings which more general than relatively nonexpansive
mappings?

Question 2 Is it possible to construct an approximate fixed point sequence for
finding common fixed points of an infinite family of relatively quasi-nonexpansive
mappings in more general Banach spaces?
The purpose of this section is to answer the above questions. Motivated and inspired

by the works mentioned above, we introduce a new hybrid projection algorithm of the
generalized f -projection operator which modify the iterative method introduced by Li
et al. [73] for a countable family of relatively quasi-nonexpansive mappings in a
uniformly smooth and uniformly convex Banach space by using the (∗)-condition. By
improving the main result of Li et al. [72] and Plubtieng and Ungchittrakool [282],
we propose the new sufficient and uncomplicated condition in our main result which
is more general than the formerly result. Our condition is weaker than the Plubtieng
and Ungchittrakool’s condition [282] in the reason that just only one condition will be
needed. As applications, we apply our results to obtain new results for finding zeroes of
general B-monotone and maximal monotone operators in a Banach space. The results
presented in this paper generalize and improve previous results.
For the generalized f -projection operator, Wu and Hung [325] proved the following

basic properties.

Lemma 3.2.1. (Wu and Hung [325]). Let E be a real reflexive Banach space with
its dual E∗ and C be a nonempty, closed and convex subset of E. The following
statement hold:

(1) πf
C̟ is a nonempty, closed and convex subset of C for all ̟ ∈ E∗;

(2) if E is smooth, then for all ̟ ∈ E∗, x ∈ πf
C̟ if and only if

〈x − y, ̟ − Jx〉 + ρf(y) − ρf(x) ≥ 0, ∀y ∈ C;

(3) if E is strictly convex and f : C → R ∪ {+∞} is positive homogeneous (i.e.,
f(tx) = tf(x) for all t > 0 such that tx ∈ C where x ∈ C), then πf

C̟ is single
valued mapping.
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Recently, Fan et al. [323] show that the condition, f is positive homogeneous,
which appeared in [323, Lemma 2.1 (iii)] can be removed.

Lemma 3.2.2. (Fan et al. [323]). Let E be a real reflexive Banach space with its
dual E∗ and C be a nonempty, closed and convex subset of E. If E is strictly
convex, then πf

C̟ is single valued.

Recall that J is single value mapping when E is a smooth Banach space. There
exists a unique element ̟ ∈ E∗ such that ̟ = Jx where x ∈ E. This substitution in
(5.3.8) give

G(ξ, Jx) = ‖ξ‖2 − 2〈ξ, Jx〉 + ‖x‖2 + 2ρf(ξ). (3.2.15)
Now we consider the second generalized f projection operator in Banach space (see

[73]).

Definition 3.2.7. Let E be a real smooth Banach space and let C be a nonempty,
closed and convex subset of E. We say that Πf

C : E → 2C is generalized f -projection
operator if

Πf
Cx = {u ∈ C : G(u, Jx) = inf

ξ∈C
G(ξ, Jx), ∀x ∈ E}.

Lemma 3.2.3. (Deimling [66]). Let E be a Banach space and let f : E → R∪{+∞}

be a lower semicontinuous convex function. Then there exist x∗ ∈ E∗ and α ∈ R

such that
f(x) ≥ 〈x, x∗〉 + α, ∀x ∈ E.

Lemma 3.2.4. (Li et al. [73]). Let E be a reflexive smooth Banach space and let
C be a nonempty, closed and convex subset of E. The following statements hold

(1) Πf
Cx is nonempty, closed and convex subset of C for all x ∈ E;

(2) for all x ∈ E, x̂ ∈ Πf
Cx if and only if

〈x̂ − y, Jx− Jx̂〉 + ρf(y) − ρf(x̂) ≥ 0, ∀y ∈ C;

(3) if E is strictly convex, then Πf
C is single valued mapping.

Lemma 3.2.5. (Li et al. [73]). Let E be a real reflexive smooth Banach space, let
C be a nonempty, closed and convex subset of E, x ∈ E and let x̂ ∈ Πf

Cx. Then

φ(y, x̂) + G(x̂, Jx) ≤ G(y, Jx), ∀y ∈ C.

Remark 3.2.6. Let E be a uniformly convex and uniformly smooth Banach space and
f(x) = 0 for all x ∈ E, then Lemma 3.2.5 reduces to the property of the generalized
projection operator considered by Alber [319].
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Lemma 3.2.7. (Qin et al.[79]). Let E be a real uniformly smooth and strictly
convex Banach space and let C be a nonempty, closed and convex subset of E. Let
T : C → C be a closed and relatively quasi-nonexpansive mapping. Then F (T ) is a
closed convex subset of C.

3.2.1 A countable family of relatively quasi-nonexpansive mappings

In this section, by using the (∗)-condition, we prove the convergence theorem for
finding a common fixed points of a countable family of relatively quasi-nonexpansive
mappings, in a uniformly convex and uniformly smooth Banach space.

Theorem 3.2.8. Let C be a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let {Tn}

∞
n=1 be a countable family of

relatively quasi-nonexpansive mappings of C into E that satisfy the (∗)-condition and
let f : E → R be a convex and lower semicontinuous function with C ⊂ int(D(f)).
Assume that F =

⋂∞
n=1 F (Tn) 6= ∅. For an initial point x0 ∈ E with x1 = Πf

C1
x0 and

C1 = C, we define the sequence {xn} by






yn = J−1(αnJxn + (1 − αn)JTnxn),

Cn+1 = {z ∈ Cn : G(z, Jyn) ≤ G(z, Jxn)},

xn+1 = Πf
Cn+1

x0

(3.2.16)

where {αn} is a sequence in [0, 1]. If lim infn−→∞(1− αn) > 0 then {xn} converges
strongly to Πf

Fx0.

Proof . We split the proof into five steps.
Step 1. We first show that Cn is closed and convex for each n ∈ N.

Clearly C1 = C is closed and convex. Suppose that Cn is closed and convex for
each n ∈ N. Since for any z ∈ Cn, we know that G(z, Jyn) ≤ G(z, Jxn) is equivalent
to

2〈z, Jxn − Jyn〉 ≤ ‖xn‖
2 − ‖yn‖

2.

Therefore, Cn+1 is closed and convex. This implies that Πf
Cn+1

x0 is well defined.
Step 2. We will show that F ⊂ Cn for all n ∈ N.

Next, we will show by induction that F ⊂ Cn for all n ∈ N. It is obvious that
F ⊂C1=C. Suppose that F ⊂ Cn for some n ∈ N. Let q ∈ F and since {Tn} is
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relatively quasi-nonexpansive mappings, we have

G(q, Jyn) = G(q, αnJxn + (1 − αn)JTnxn)

= ‖q‖2 − 2〈q, αnJxn + (1 − αn)JTnxn〉 + ‖αnJxn + (1 − αn)JTnxn‖
2 + 2ρf(q)

≤ ‖q‖2 − 2αn〈q, Jxn〉 − 2(1 − αn)〈q, JTnxn〉

+αn‖Jxn‖
2 + (1 − αn)‖JTnxn‖

2 + 2ρf(q)

= αnG(q, Jxn) + (1 − αn)G(q, JTnxn)

≤ αnG(q, Jxn) + (1 − αn)G(q, Jxn)

= G(q, Jxn).
(3.2.17)

This shows that q ∈ Cn+1 which implies that F ⊂ Cn+1. Hence F ⊂ Cn for all
n ∈ N and the sequence {xn} is well defined.

Step 3. We will show that {xn} is a Cauchy sequence in C and limn→∞ G(xn, Jx0)

exist.
Since f : E → R is convex and lower semicontinuous function, from Lemma 3.2.3,

we known that there exist x∗ ∈ E∗ and α ∈ R such that

f(y) ≥ 〈y, x∗〉 + α, ∀y ∈ E.

Since xn ∈ E, it follows that

G(xn, Jx0) = ‖xn‖
2 − 2〈xn, Jx0〉 + ‖x0‖

2 + 2ρf(xn)

≥ ‖xn‖
2 − 2〈xn, Jx0〉 + ‖x0‖

2 + 2ρ〈xn, x∗〉 + 2ρα

= ‖xn‖
2 − 2〈xn, Jx0 − ρx∗〉 + ‖x0‖

2 + 2ρα

≥ ‖xn‖
2 − 2‖xn‖‖Jx0 − ρx∗‖ + ‖x0‖

2 + 2ρα

= (‖xn‖ − ‖Jx0 − ρx∗‖)2 + ‖x0‖
2 − ‖Jx0 − ρx∗‖2 + 2ρα.

(3.2.18)

For each q ∈ F and xn = Πf
Cn

x0, we have

G(q, Jx0) ≥ G(xn, Jx0) ≥ (‖xn‖ − ‖Jx0 − ρx∗‖)2 + ‖x0‖
2 − ‖Jx0 − ρx∗‖2 + 2ρα.

This implies that {xn} is bounded and so are {G(xn, Jx0)} and {yn}. From the fact
that xn+1 = Πf

Cn+1
x0 ∈ Cn+1 ⊂ Cn and xn = Πf

Cn
x0, it follows from Lemma 3.2.5

0 ≤ (‖xn+1 − ‖xn‖)
2 ≤ φ(xn+1, xn) ≤ G(xn+1, Jx0) − G(xn, Jx0). (3.2.19)

This implies that {G(xn, Jx0)} is nondecreasing. Hence, we obtain that limn→∞ G(xn, Jx0)

exist. For any m > n, xn = Πf
Cn

x0, xm = Πf
Cm

x0 ∈ Cm ⊂ Cn and from (3.2.19), we
have

φ(xm, xn) ≤ G(xm, Jx0) − G(xn, Jx0).

Taking m, n → ∞, we have φ(xm, xn) → 0. It follows that ‖xn − xm‖ −→ 0. Hence
{xn} is a Cauchy sequence and by the completeness of E and the closedness of C, we
can assume that there exists p ∈ C such that xn → p ∈ C.
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Step 4. We will show that xn → p ∈ F .

In particular, since limn→∞ G(xn, Jx0) exist from (3.2.19), we also have

lim
n→∞

φ(xn+1, xn) = 0. (3.2.20)

It follows that
lim

n→∞
‖xn+1 − xn‖ = 0. (3.2.21)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we also have

lim
n→∞

‖Jxn+1 − Jxn‖ = 0. (3.2.22)

Since xn+1 = Πf
Cn+1

x0 ∈ Cn+1, we get

G(xn+1, Jyn) ≤ G(xn+1, Jxn)

is equivalent to
φ(xn+1, yn) ≤ φ(xn+1, xn).

Then, we get
lim

n→∞
‖xn+1 − yn‖ = 0. (3.2.23)

Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞

‖Jxn+1 − Jyn‖ = 0. (3.2.24)

Assume that

‖Jxn+1 − Jyn‖ = ‖Jxn+1 − αnJxn − (1 − αn)JTnxn‖

= ‖(1 − αn)Jxn+1 − (1 − αn)JTnxn + αnJxn+1 − αnJxn‖

≥ (1 − αn)‖Jxn+1 − JTnxn‖ − αn‖Jxn − Jxn+1‖,
(3.2.25)

and therefore

‖Jxn+1 − JTnxn‖ ≤
1

(1 − αn)
(‖Jxn+1 − Jyn‖ + αn‖Jxn − Jxn+1‖) (3.2.26)

since lim infn−→∞(1 − αn) > 0, (4.2.91) and (4.2.101), one has

lim
n→∞

‖Jxn+1 − JTnxn‖ = 0. (3.2.27)

Since J−1 is uniformly norm-to-norm continuous, we obtain

lim
n→∞

‖xn+1 − Tnxn‖ = 0. (3.2.28)

Using the triangle inequality, we have

‖xn − Tnxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Tnxn‖.
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From (4.2.90) and (3.2.28) we obtain

lim
n→∞

‖xn − Tnxn‖ = 0. (3.2.29)

Since xn → p, it follows from the (∗)-condition that p ∈ F =
⋂∞

n=0 F (Tn).
Step 5. We will show that p = Πf

Fx0.

Since F is closed and convex set from Lemma 3.2.4, we have Πf
Fx0 is single value,

denote by v. By definition xn = Πf
Cn

x0 and v ∈ F ⊂ Cn, we also have

G(xn, Jx0) ≤ G(v, Jx0), ∀n ≥ 1.

By the definition of G and f , we know that, for each given x, G(ξ, Jx) is convex and
lower semicontinuous with respect to ξ. So

G(p, Jx0) ≤ lim inf
n→∞

G(xn, Jx0) ≤ lim sup
n→∞

G(xn, Jx0) ≤ G(v, Jx0).

From the definition of Πf
Fx0 and since p ∈ F , we conclude that v = p = Πf

Fx0 and
xn → p as n → ∞. This completes the proof. �

Corollary 3.2.9. Let C be a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let {Tn}

∞
n=1 be a countable family

of relatively quasi-nonexpansive mappings of C into E that satisfy the NST-condition
and let f : E → R be a convex and lower semicontinuous function with C ⊂

int(D(f)). Assume that F =
⋂∞

n=1 F (Tn) 6= ∅. For an initial point x0 ∈ E with
x1 = Πf

C1
x0 and C1 = C, we define the sequence {xn} by






yn = J−1(αnJxn + (1 − αn)JTnxn),

Cn+1 = {z ∈ Cn : G(z, Jyn) ≤ G(z, Jxn)},

xn+1 = Πf
Cn+1

x0

(3.2.30)

where {αn} is a sequence in [0, 1]. If lim infn−→∞(1− αn) > 0 then {xn} converges
strongly to p ∈ F , where p = Πf

Fx0.

Remark 3.2.10. Theorem 5.3.11 extends and improves the results of Li et al. [73] and
Plubtieng and Ungchittrakool [282] from relatively nonexpansive mappings to a more
general class of a countable family of relatively quasi-nonexpansive mappings.

Setting Tn ≡ T in Theorem 5.3.11, then we obtain the following result.

Corollary 3.2.11. Let C be a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let T : C → E, be a relatively quasi-
nonexpansive mapping and let f : E → R be a convex and lower semicontinuous
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function with C ⊂ int(D(f)). Assume that F (T ) 6= ∅. For an initial point x0 ∈ E

with x1 = Πf
C1

x0 and C1 = C, we define the sequence {xn} by





yn = J−1(αnJxn + (1 − αn)JTxn),

Cn+1 = {z ∈ Cn : G(z, Jyn) ≤ G(z, Jxn)},

xn+1 = Πf
Cn+1

x0

(3.2.31)

where {αn} is a sequence in [0, 1]. If lim infn−→∞(1− αn) > 0 then {xn} converges
strongly to Πf

F (T )x0.

Remark 3.2.12. Corollary 3.2.11 extends and improves the result of Li et al. [73]
from relatively nonexpansive mappings to more general relatively quasi-nonexpansive
mappings.

Taking f(x) = 0 for all x ∈ E, we have G(ξ, Jx) = φ(ξ, x) and Πf
Cx = ΠCx.

From Theorem 5.3.11 we obtain the following corollaries.

Corollary 3.2.13. Let C be a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let {Tn}

∞
n=1 be a countable family

of relatively quasi-nonexpansive mappings of C into E that satisfy the (∗)-condition.
Assume that F := ∩∞

n=1F (Tn) 6= ∅. For an initial point x0 ∈ E with x1 = ΠC1
x0 and

C1 = C, we define the sequence {xn} by





yn = J−1(αnJxn + (1 − αn)JTnxn),

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},

xn+1 = ΠCn+1
x0

(3.2.32)

where {αn} is a sequence in [0, 1]. If lim infn−→∞(1− αn) > 0 then {xn} converges
strongly to ΠFx0.

Corollary 3.2.14. Let C be a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let {Tn}

∞
n=1 be a countable family of

relatively quasi-nonexpansive mappings of C into E that satisfy the NST-condition.
Assume that F := ∩∞

n=1F (Tn) 6= ∅. For an initial point x0 ∈ E with x1 = ΠC1
x0 and

C1 = C, we define the sequence {xn} by





yn = J−1(αnJxn + (1 − αn)JTnxn),

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},

xn+1 = ΠCn+1
x0

(3.2.33)

where {αn} is sequences in [0, 1]. If lim infn−→∞(1 − αn) > 0 then {xn} converges
strongly to ΠFx0.
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Remark 3.2.15. Corrollary 3.2.13 and 3.2.14 extend and improve the results of Plub-
tieng and Ungchittrakool [282] from relatively nonexpansive mappings to a more gen-
eral class of a countable family of relatively quasi-nonexpansive mappings.

Corollary 3.2.16. Let C be a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let {Tn}

∞
n=1 be a countable family

of relatively nonexpansive mappings of C into E that satisfy the (∗)-condition and
let f : E → R be a convex and lower semicontinuous function with C ⊂ int(D(f)).
Assume that F = ∩∞

n=1F (Tn) 6= ∅. For an initial point x0 ∈ E with x1 = Πf
C1

x0 and
C1 = C, we define the sequence {xn} by






yn = J−1(αnJxn + (1 − αn)JTnxn),

Cn+1 = {z ∈ Cn : G(z, Jyn) ≤ G(z, Jxn)},

xn+1 = Πf
Cn+1

x0

(3.2.34)

where {αn} is a sequence in [0, 1]. If lim infn−→∞(1− αn) > 0 then {xn} converges
strongly to Πf

Fx0.

Remark 3.2.17. Corollary 3.2.16 extends and improves the result of Li et al. [73] from
a single relatively nonexpansive mapping to the class of an infinite family of relatively
quasi-nonexpansive mappings.

3.2.2 Zeroes of B-monotone mappings.
Let B be a mapping from E to E∗. A mapping B is called

(1) monotone if 〈Bx − By, x − y〉 ≥ 0 for all x, y ∈ E;

(2) strictly monotone if B monotone and 〈Bx−By, x− y〉 = 0 if and only if x = y;

(3) β- Lipschitz continuous if there exist a constant β ≥ 0 such that ‖Bx − By‖ ≤

β‖x − y‖ for all x, y ∈ E.

Let M be a set-valued mapping from E to E∗ with domain D(M) = {z ∈ E : Mz 6= 0}

and range R(M) =
⋃
{Mz : z ∈ D(M)}. A set value mapping M is called

(i) monotone if 〈x1 − x2, y1 − y2〉 ≥ 0 for each xi ∈ D(M) and yi ∈ Mxi, i = 1, 2;

(ii) r-strongly monotone if 〈x1 − x2, y1 − y2〉 ≥ r‖x1 − x2‖ for each xi ∈ D(M) and
yi ∈ Mxi, i = 1, 2;

(iii) maximal monotone if M is monotone and its graph G(M) = {(x, y) : y ∈ Mx}

is not properly contained in the graph of any other monotone mapping;
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(iv) general B-monotone if M is monotone and (B + λM)E = E∗ holds for every
λ > 0, where B is a mapping from E to E∗.

We consider the problem of finding a point x∗ ∈ E satisfying 0 ∈ Mx∗. We
denote by M−10 the set of all points x∗ ∈ C such that 0 ∈ Mx∗, where M is maximal
monotone operator from E to E∗.

Lemma 3.2.18. (Li et al. [73]). Let E be a Banach space with the dual space E∗,

let B : E → E∗ be a strictly monotone mapping, and let M : E → 2E∗ be a general
B-monotone mapping. Then M is maximal monotone mapping.

Remark 3.2.19. (Li et al. [73]). Let E be a Banach space with the dual space
E∗, let B : E → E∗ be a strictly monotone mapping, and let M : E → 2E∗ be a
general B-monotone mapping. Then M is a maximal monotone mapping. Therefore,
M−10 = {z ∈ D(M) : 0 ∈ Mz} is closed and convex.

Lemma 3.2.20. (Alber. [319]). Let E be a uniformly convex and uniformly smooth
Banach space, δE(ǫ) is the modulus of convexity of E and ρE(t) is the modulus of
smoothness of E, then the inequalities

8d2δE(‖x − ξ‖/4d) ≤ φ(x, ξ) ≤ 4d2ρE(4‖x − ξ‖/d)

hold for all x and ξ in E, where d =
√

(‖x‖2 + ‖ξ‖2)/2.

Lemma 3.2.21. (Xia and Huang. [97]). Let E be a Banach space with the dual
space E∗, let B : E → E∗ be a strictly monotone mapping, and let M : E → 2E∗ be
a general B-monotone mapping. Then

(1) (B + λM)−1 is single valued;

(2) if E is reflexive and M : E → 2E∗ is a r-strongly monotone, then (B +λM)−1

is Lipschitz continuous with constant 1
λr

(r > 0).

Let E be a Banach space with the dual space E∗, B : E → E∗ a strictly monotone
mapping, and M : E → 2E∗ a general B-monotone mapping, for every λ > 0 and x∗ ∈

E∗. From Lemma 3.2.21 there exists a unique x ∈ D(M) such that x = (B+λM)−1x∗.
We define a single valued mapping Tλ : E → D(M) by Tλx = (B + λM)−1Bx. It is
easy to see that M−10 = F (Tλ) for all λ > 0. Indeed, we have

z ∈ M−10 ⇔ 0 ∈ Mz

⇔ 0 ∈ λMz

⇔ Bz ∈ (B + λM)z

⇔ z = (B + λM)−1Bz = Tλz

⇔ z ∈ F (Tλ).

(3.2.35)

Motivated by Li et al. [73] we obtain the following result.
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Theorem 3.2.22. Let C be a nonempty closed and convex subset of a uniformly
convex and uniformly smooth Banach space E with δE(ǫ) ≥ kǫ2 and ρE(t) ≤ ct2

for some c, k > 0. Let B : E → E∗ a strictly monotone and β-Lipschitz continuous
mapping and let M : E → 2E∗ be a general B-monotone and r-strongly monotone
mapping with r > 0. Let {Tλn

} = (B+λnM)−1B and let f : E → R be a convex and
lower semicontinuous function with C ⊂ int(D(f)) and suppose that for each n ≥ 0

there exists λn > 0 such that 64cβ2 ≤ min{1
2
kλ2

nr2}. Assume that F := M−10 6= ∅.

For an initial point x0 ∈ E with x1 = Πf
C1

x0 and C1 = C, we define the sequence
{xn} by 





yn = J−1(αnJxn + (1 − αn)JTλn
xn),

Cn+1 = {z ∈ Cn : G(z, Jyn) ≤ G(z, Jxn)},

xn+1 = Πf
Cn+1

x0

(3.2.36)

where {αn} is a sequence in [0, 1]. If lim infn−→∞(1−αn) > 0, then {xn} converges
strongly to Πf

Fx0.

Proof . We will show that {Tλn
} is a family of relatively quasi-nonexpansive map-

pings with common fixed point ⋂∞
n=1 F (Tλn

) = M−10. We only need to show that
φ(p, Tλn

q) ≤ φ(p, q) for each q ∈ E, p ∈ F (Tλn
), n ≥ 1. From Lemma 3.2.20, and

since B is a β-Lipschitz continuous mapping, we have

φ(p, Tλn
q) = φ(Tλn

p, Tλn
q)

≤ 4d2ρE(
4‖Tλnp−Tλnq‖

d
)

≤ 64c‖Tλn
p − Tλn

q‖2

= 64c‖(B + λnM)−1Bp − (B + λnM)−1Bq‖2

≤ 64c
λ2

nr2‖Bp − Bq‖2

≤ 64cβ2

λ2
nr2 ‖p − q‖2

(3.2.37)

and we also have
φ(p, q) ≥ 8d2δE(‖p−q‖

4d
) ≥ 1

2
k‖p − q‖2. (3.2.38)

Since
64cβ2 ≤

1

2
kλ2

nr
2

it follows from (3.2.37) and (3.2.38) that φ(p, Tλn
q) ≤ φ(p, q) for all q ∈ E, p ∈

F (Tλn
), n ≥ 1. Therefore {Tλn

} is a family of relatively quasi-nonexpansive mapping.
Hence the result follows from Theorem 5.3.11. �

3.2.3 Zeroes of maximal monotone operators
In this section, we apply our results to find zeros of maximal monotone operator. Such
a problem contains numerous problems in optimization, economics, and physics. The
following result is also well known.
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Lemma 3.2.23. (Rockafellar. [80]). Let E be a reflexive strictly convex and smooth
Banach space and let M be a monotone operator from E to E∗. Then M is maximal
if and only if R(J + λM) = E∗ for all λ > 0.

Let E be a reflexive strictly convex and smooth Banach space, B = J and let M

be a maximal monotone operator from E to E∗. Using Lemma 3.2.23 and the strict
convexity of E, we obtain that for every λ > 0 and x ∈ E, there exists a unique xλ

such that Jx ∈ (Jxλ +λMxλ). Then recall the single valued mapping Jλ : E → D(M)

by Jλ = (J + λM)−1J and Jλ is the resovent of M . We known that M−10 = F (Jλ)

(see [90, 92]).

Theorem 3.2.24. Let C be a nonempty closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let M ⊂ E × E∗ be a maximal
monotone mapping such that D(M) ⊂ C ⊂ J−1(∩λn>0R(J+λnM). Let {Jλn

} = (J+

λnM)−1J where λn > 0 and let f : E → R be a convex and lower semicontinuous
function with C ⊂ int(D(f)). Assume that F := M−10 6= ∅. For an initial point
x0 ∈ E with x1 = Πf

C1
x0 and C1 = C, we define the sequence {xn} by






yn = J−1(αnJxn + (1 − αn)JJλn
xn),

Cn+1 = {z ∈ Cn : G(z, Jyn) ≤ G(z, Jxn)},

xn+1 = Πf
Cn+1

x0

(3.2.39)

where {αn} is a sequence in [0, 1]. If lim infn−→∞(1− αn) > 0 then {xn} converges
strongly to p ∈ F , where p = Πf

Fx0.

Proof . First, we have ⋂∞
n=1 F (Jλn

) = M−10 6= ∅. Secondly, from the monotonicity of
M , let p ∈

⋂∞
n=1 F (Jλn

) and q ∈ E, we have

φ(p, Jλn
q) = ‖p‖2 − 2〈p, JJλn

q〉 + ‖Jλn
q‖2

= ‖p‖2 + 2〈p, Jq − JJλn
q − Jq〉 + ‖Jλn

q‖2

= ‖p‖2 + 2〈p, Jq − JJλn
q〉 − 2〈p, Jq〉 + ‖Jλn

q‖2

= ‖p‖2 − 2〈Jλn
q − p − Jλn

q, Jq − JJλn
q〉 − 2〈p, Jq〉 + ‖Jλn

q‖2

= ‖p‖2 − 2〈Jλn
q − p, Jq − JJλn

q〉 + 2〈Jλn
q, Jq − JJλn

q〉 − 2〈p, Jq〉 + ‖Jλn
q‖2

≤ ‖p‖2 + 2〈Jλn
q, Jq − JJλn

q〉 − 2〈p, Jq〉 + ‖Jλn
q‖2

= ‖p‖2 − 2〈p, Jq〉 + ‖q‖2 − ‖Jλn
q‖2 + 2〈Jλn

q, Jq〉 − ‖q‖2

= φ(p, q) − φ(Jλn
q, q)

≤ φ(p, q)

for all n ≥ 1. Therefor {Jλn
} is a family of relatively quasi-nonexpansive mapping,

for all λn > 0 with common fixed point set ⋂∞
n=1 F (Jλn

) = M−10. Hence the result
follows from Theorem 5.3.11. �



บทท่ี 4

Equilibrium Problems

Let {fi}i∈Γ : C×C −→ R be a bifunction, {ϕi}i∈Γ : C −→ R be a real-valued function,
and {Bi}i∈Γ : C −→ E∗ be a monotone mapping, where Γ is an arbitrary index set.
The system of generalized mixed equilibrium problems is to find x ∈ C such that

fi(x, y) + 〈Bix, y − x〉 + ϕi(y) − ϕi(x) ≥ 0, i ∈ Γ, ∀y ∈ C. (4.0.1)

If Γ is a singleton, then problem (4.0.1) reduces to the generalized mixed equilibrium
problem, which is to find x ∈ C such that

f(x, y) + 〈Bx, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (4.0.2)

The set of solutions to (5.2.1) is denoted by GMEP(f, B, ϕ), i.e.,

GMEP(f, B, ϕ) = {x ∈ C : f(x, y)+〈Bx, y−x〉+ϕ(y)−ϕ(x) ≥ 0, ∀y ∈ C}. (4.0.3)

If B ≡ 0, the problem (5.2.1) reduces into the mixed equilibrium problem for f ,
denoted by MEP(f, ϕ), which is to find x ∈ C such that

f(x, y) + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (4.0.4)

If f ≡ 0, the problem (5.2.1) reduces into the mixed variational inequality of Browder
type, denoted by VI(C, B, ϕ), which is to find x ∈ C such that

〈Bx, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (4.0.5)

If B ≡ 0 and ϕ ≡ 0 the problem (5.2.1) reduces into the equilibrium problem for f ,
denoted by EP(f), which is to find x ∈ C such that

f(x, y) ≥ 0, ∀y ∈ C. (4.0.6)

If f ≡ 0, the problem (5.2.3) reduces into the minimize problem, denoted by Argmin(ϕ),
which is to find x ∈ C such that

ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (4.0.7)
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The above formulation (4.0.5) was shown in [5] to cover monotone inclusion prob-
lems, saddle point problems, variational inequality problems, minimization problems,
optimization problems, variational inequality problems, vector equilibrium problems,
Nash equilibria in noncooperative games. In addition, there are several other problems,
for example, the complementarity problem, fixed point problem and optimization prob-
lem, which can also be written in the form of an EP(f). In other words, the EP(f)

is an unifying model for several problems arising in physics, engineering, science, op-
timization, economics, etc. In the last two decades, many papers have appeared in
the literature on the existence of solutions of EP(f); see, for example [5, 10] and
references therein. Some solution methods have been proposed to solve the EP(f); see,
for example, [5, 10, 302, 15, 79, 93] and references therein.

4.1 The System of Generalized Mixed Equilibrium Prob-
lems in Hilbert Spaces

In this section, we prove a strong convergence theorem of the new shrinking pro-
jection method for finding a common element of the set of fixed points of strictly
pseudocontractive mappings, the set of common solutions of generalized mixed equi-
librium problems and the set of common solutions of the variational inequalities with
inverse-strongly monotone mappings in Hilbert spaces.
For solving the mixed equilibrium problem, let us give the following assumptions

for the bifunction F , the function A and the set E:

(A1) F (x, x) = 0 for all x ∈ E;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ E;

(A3) for each x, y, z ∈ E, limt−→0 F (tz + (1 − t)x, y) ≤ F (x, y);

(A4) for each x ∈ E, y 7→ F (x, y) is convex and lower semicontinuous;

(A5) for each y ∈ E, x 7→ F (x, y) is weakly upper semicontinuous;

(B1) for each x ∈ H and r > 0, there exist a bounded subset Dx ⊆ E and yx ∈ E

such that for any z ∈ E \ Dx,

F (z, yx) + ϕ(yx) − ϕ(z) +
1

r
〈yx − z, z − x〉 < 0; (4.1.1)

(B2) E is a bounded set.
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By similar argument as in the proof of Lemma 4.1.1, we have the following lemma
appearing.

Lemma 4.1.1. Let E be a nonempty closed convex subset of H . Let F : E×E → R

be a bifunction satisfies (A1)-(A5) and let ϕ : E → R ∪ {+∞} be a proper lower
semicontinuous and convex function. Assume that either (B1) or (B2) holds. For
r > 0 and x ∈ H , define a mapping T F

r : H → E as follows:

T F
r (x) =

{
z ∈ E : F (z, y) + ϕ(y) − ϕ(z) +

1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ E

}
,

for all z ∈ H . Then, the following hold:

(1) For each x ∈ H, T F
r (x) 6= ∅;

(2) T F
r is single-valued;

(3) T F
r is firmly nonexpansive, i.e., for any x, y ∈ H,

‖T F
r x − T F

r y‖2 ≤ 〈T F
r x − T F

r y, x − y〉;

(4) F (T F
r ) = MEP (F, ϕ);

(5) MEP (F, ϕ) is closed and convex.

4.1.1 The shrinking projection method for common solutions of gen-
eralized mixed equilibrium problems

Theorem 4.1.2. Let E be a nonempty closed convex subset of a real Hilbert space H .
Let F1 and F2 be two bifunction from E × E to R satisfying (A1)-(A5) and let ϕ :

E −→ R∪ {+∞} be a proper lower semicontinuous and convex function with either
(B1) or (B2). Let A1, A2, B, C be four ρ, ω, β, ξ-inverse-strongly monotone mappings
of E into H , respectively. Let S : E −→ E be a k-strictly pseudocontractive mapping
with a fixed point. Define a mapping Sk : E −→ E by Skx = kx+(1−k)Sx, ∀x ∈

E. Suppose that

Θ := F (S) ∩ GMEP (F1, ϕ, A1) ∩ GMEP (F2, ϕ, A2) ∩ V I(E, B) ∩ V I(E, C) 6= ∅.
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Let {xn} be a sequence generated by the following iterative algorithm:





x0 ∈ H, E1 = E, x1 = PE1
x0, un ∈ E, vn ∈ E,

F1(un, u) + ϕ(u) − ϕ(un) + 〈A1xn, u − un〉 + 1
rn
〈u − un, un − xn〉 ≥ 0, ∀u ∈ E,

F2(vn, v) + ϕ(v) − ϕ(vn) + 〈A2xn, v − vn〉 + 1
sn
〈v − vn, vn − xn〉 ≥ 0, ∀v ∈ E,

yn = PE(xn − λnBxn), zn = PE(xn − µnCxn),

tn = α
(1)
n Skxn + α

(2)
n yn + α

(3)
n zn + α

(4)
n un + α

(5)
n vn,

En+1 = {w ∈ En : ‖tn − w‖ ≤ ‖xn − w‖},

xn+1 = PEn+1
x0, ∀n ≥ 0,

(4.1.2)
where {α(i)

n } are sequences in (0, 1), where i = 1, 2, 3, 4, 5, rn ∈ (0, 2ρ), sn ∈ (0, 2ω)

and {λn}, {µn} are positive sequences. Assume that the control sequences satisfy
the following restrictions:

(C1)
∑5

i=1 α
(i)
n = 1,

(C2) limn−→∞ α
(i)
n = α(i) ∈ (0, 1), where i = 1, 2, 3, 4, 5,

(C3) a ≤ rn ≤ 2ρ and b ≤ sn ≤ 2ω, where a, b are two positive constants,

(C4) c ≤ λn ≤ 2β and d ≤ µn ≤ 2ξ, where c, d are two positive constants,

(C5) limn−→∞ |λn+1 − λn| = limn−→∞ |µn+1 − µn| = 0.

Then, {xn} converges strongly to PΘx0.

พิสูจน์. Let p ∈ Θ and Lemma 4.1.1, we obtain

p = PE(p − λnBp) = PE(p − µnCp) = T F1

rn
(I − rnA1)p = T F2

sn
(I − snA2)p.

Note that un = T F1

rn
(I − rnA1)xn ∈ dom ϕ and vn = T F2

sn
(I − snA2)xn ∈ dom ϕ, we

have

‖un − p‖ = ‖T F1

rn
(I − rnA1)xn − T F1

rn
(I − rnA1)p‖ ≤ ‖xn − p‖ (4.1.3)

and

‖vn − p‖ = ‖T F2

sn
(I − snA2)xn − T F2

sn
(I − snA2)p‖ ≤ ‖xn − p‖. (4.1.4)

Next, we will divide the proof into six steps.
Step 1. We show that {xn} is well defined and En is closed and convex for any
n ≥ 1.
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From the assumption, we see that E1 = E is closed and convex. Suppose that Ek

is closed and convex for some k ≥ 1. Next, we show that Ek+1 is closed and convex
for some k. For any p ∈ Ek, we obtain

‖ tk − p ‖≤‖ xk − p ‖

is equivalent to
‖ tk − p ‖2 +2〈tk − xk, xk − p〉 ≤ 0.

Thus Ek+1 is closed and convex. Then, En is closed and convex for any n ≥ 1. This
implies that {xn} is well defined.

Step 2.We show that Θ ⊂ En for each n ≥ 1. From the assumption, we see that
Θ ⊂ E = E1. Suppose Θ ⊂ Ek for some k ≥ 1. For any p ∈ Θ ⊂ Ek. Since
yn = PE(xn − λnBxn) and zn = PE(xn − µnCxn). For each λn ≤ 2β and µn ≤ 2ξ by
Lemma ??, we have I − λnB and I − µnC are nonexpansive. Thus, we obtain

‖yn − p‖ = ‖PE(xn − λnBxn) − PE(p − λnBp)‖

≤ ‖(xn − λnBxn) − (p − λnBp)‖

= ‖(I − λnB)xn − (I − λnB)p‖

≤ ‖xn − p‖,

and

‖zn − p‖ = ‖PE(xn − µnCxn) − PE(p − µnCp)‖

≤ ‖(xn − µnCxn) − (p − µnCp)‖

= ‖(I − µnC)xn − (I − µnC)p‖

≤ ‖xn − p‖.

From previous Lemma, we have Sk is nonexpansive with F (Sk) = F (S). It follows
that

‖tn − p‖ = ‖α(1)
n Skxn + α(2)

n yn + α(3)
n zn + α(4)

n un + α(5)
n vn − p‖

≤ α(1)
n ‖Skxn − p‖ + α(2)

n ‖yn − p‖ + α(3)
n ‖zn − p‖ + α(4)

n ‖un − p‖ + α(5)
n ‖vn − p‖

≤ α(1)
n ‖xn − p‖ + α(2)

n ‖xn − p‖ + α(3)
n ‖xn − p‖ + α(4)

n ‖xn − p‖ + α(5)
n ‖xn − p‖

= ‖xn − p‖.

It follows that p ∈ Ek+1. This implies that Θ ⊂ En for each n ≥ 1.

Step 3. We claim that limn−→∞ ‖xn+1 − xn‖ = 0 and limn−→∞ ‖xn − tn‖ = 0.

From xn = PEn
x0, we get

〈x0 − xn, xn − y〉 ≥ 0
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for each y ∈ En. Using Θ ⊂ En, we have

〈x0 − xn, xn − p〉 ≥ 0 for each p ∈ Θ and n ∈ N.

Hence, for p ∈ Θ, we obtain

0 ≤ 〈x0 − xn, xn − p〉

= 〈x0 − xn, xn − x0 + x0 − p〉

= −〈x0 − xn, x0 − xn〉 + 〈x0 − xn, x0 − p〉

≤ −‖x0 − xn‖
2 + ‖x0 − xn‖‖x0 − p‖.

It follows that

‖x0 − xn‖ ≤ ‖x0 − p‖, for all p ∈ Θ and n ∈ N.

From xn = PEn
x0 and xn+1 = PEn+1

x0 ∈ En+1 ⊂ En, we have

〈x0 − xn, xn − xn+1〉 ≥ 0. (4.1.5)

For n ∈ N, we compute

0 ≤ 〈x0 − xn, xn − xn+1〉

= 〈x0 − xn, xn − x0 + x0 − xn+1〉

= −〈x0 − xn, x0 − xn〉 + 〈x0 − xn, x0 − xn+1〉

≤ −‖x0 − xn‖
2 + 〈x0 − xn, x0 − xn+1〉

≤ −‖x0 − xn‖
2 + ‖x0 − xn‖‖x0 − xn+1‖,

and then
‖x0 − xn‖ ≤ ‖x0 − xn+1‖, for all n ∈ N.

Thus the sequence {‖xn−x0‖} is a bounded and nondecreasing sequence, so limn−→∞ ‖xn−

x0‖ exists, That is, there exists m such that

m = lim
n−→∞

‖xn − x0‖. (4.1.6)

From (4.1.34), we get

‖xn − xn+1‖
2 = ‖xn − x0 + x0 − xn+1‖

2

= ‖xn − x0‖
2 + 2〈xn − x0, x0 − xn+1〉 + ‖x0 − xn+1‖

2

= ‖xn − x0‖
2 + 2〈xn − x0, x0 − xn + xn − xn+1〉 + ‖x0 − xn+1‖

2

= ‖xn − x0‖
2 + 2〈xn − x0, x0 − xn〉 + 2〈xn − x0, xn − xn+1〉 + ‖x0 − xn+1‖

2

= −‖xn − x0‖
2 + 2〈xn − x0, xn − xn+1〉 + ‖x0 − xn+1‖

2

≤ −‖xn − x0‖
2 + ‖x0 − xn+1‖

2.
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By (4.1.35), we obtain

lim
n−→∞

‖xn − xn+1‖ = 0. (4.1.7)

Since xn+1 = PEn+1
x0 ∈ En+1 ⊂ En, we have

‖xn − tn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − tn‖ ≤ 2‖xn − xn+1‖.

By (6.4.13), we obtain

lim
n−→∞

‖xn − tn‖ = 0. (4.1.8)

Step 4. We claim that the following statements hold:

(S1) limn−→∞ ‖xn − un‖ = 0;

(S2) limn−→∞ ‖xn − yn‖ = 0;

(S3) limn−→∞ ‖xn − zn‖ = 0;

(S4) limn−→∞ ‖xn − vn‖ = 0.

For p ∈ Θ, we note that

‖zn − p‖2 = ‖PE(xn − µnCxn) − PE(p − µnCp)‖2

≤ ‖(xn − µnCxn) − (p − µnCp)‖2

= ‖(xn − p) − µn(Cxn − Cp)‖2

≤ ‖xn − p‖2 − 2µn〈xn − p, Cxn − Cp〉 + µ2
n‖Cxn − Cp‖2

≤ ‖xn − p‖2 + µn(µn − 2ξ)‖Cxn − Cp‖2

= ‖xn − p‖2 − µn(2ξ − µn)‖Cxn − Cp‖2. (4.1.9)

Similarly, we also have

‖yn − p‖2 ≤ ‖xn − p‖2 − λn(2β − λn)‖Bxn − Bp‖2. (4.1.10)

We note that

‖un − p‖2 = ‖T F1

rn
(I − rnA1)xn − T F1

rn
(I − rnA1)p‖

2

≤ ‖(I − rnA1)xn − (I − rnA1)p‖
2

= ‖(xn − p) − rn(A1xn − A1p)‖2

= ‖xn − p‖2 − 2rn〈xn − p, A1xn − A1p〉 + r2
n‖A1xn − A1p‖

2

≤ ‖xn − p‖2 − 2rnρ‖A1xn − A1p‖
2 + r2

n‖A1xn − A1p‖
2

= ‖xn − p‖2 + rn(rn − 2ρ)‖A1xn − A1p‖
2

= ‖xn − p‖2 − rn(2ρ − rn)‖A1xn − A1p‖
2. (4.1.11)
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Similarly, we also have

‖vn − p‖2 ≤ ‖xn − p‖2 − sn(2ω − sn)‖A2xn − A2p‖
2. (4.1.12)

Observing that

‖tn − p‖2

≤ α(1)
n ‖Skxn − p‖2 + α(2)

n ‖yn − p‖2 + α(3)
n ‖zn − p‖2 + α(4)

n ‖un − p‖2 + α(5)
n ‖vn − p‖2

≤ α(1)
n ‖xn − p‖2 + α(2)

n ‖yn − p‖2 + α(3)
n ‖zn − p‖2 + α(4)

n ‖un − p‖2 + α(5)
n ‖vn − p‖2.

Substituting (6.1.28), (6.1.29), (4.1.11) and (6.1.30) into (4.1.41), we obtain

‖tn − p‖2

≤ α(1)
n ‖xn − p‖2 + α(2)

n

{
‖xn − p‖2 − λn(2β − λn)‖Bxn − Bp‖2

}

+ α(3)
n

{
‖xn − p‖2 − µn(2ξ − µn)‖Cxn − Cp‖2

}

+ α(4)
n

{
‖xn − p‖2 − rn(2ρ − rn)‖A1xn − A1p‖

2
}

+ α(5)
n

{
‖xn − p‖2 − sn(2ω − sn)‖A2xn − A2p‖

2
}

= ‖xn − p‖2 − α(2)
n λn(2β − λn)‖Bxn − Bp‖2 − α(3)

n µn(2ξ − µn)‖Cxn − Cp‖2

−α(4)
n rn(2ρ − rn)‖A1xn − A1p‖

2 − α(5)
n sn(2ω − sn)‖A2xn − A2p‖

2. (4.1.13)

It follows that

α(3)
n µn(2ξ − µn)‖Cxn − Cp‖2

≤ ‖xn − p‖2 − ‖tn − p‖2 − α(2)
n λn(2β − λn)‖Bxn − Bp‖2

−α(4)
n rn(2ρ − rn)‖A1xn − A1p‖

2 − α(5)
n sn(2ω − sn)‖A2xn − A2p‖

2

≤ (‖xn − p‖ + ‖tn − p‖)‖xn − tn‖.

From (C2), (C4) and (4.1.39), we have

lim
n−→∞

‖Cxn − Cp‖ = 0. (4.1.14)

Since sn ∈ (0, 2ω), we also have

α(5)
n sn(2ω − sn)‖A2xn − A2p‖

2

≤ ‖xn − p‖2 − ‖tn − p‖2 − α(2)
n λn(2β − λn)‖Bxn − Bp‖2

−α(3)
n µn(2ξ − µn)‖Cxn − Cp‖2 − α(4)

n rn(2ρ − rn)‖A1xn − A1p‖
2

≤ (‖xn − p‖ + ‖tn − p‖)‖xn − tn‖.

From (C2), (C3) and (4.1.39), we obtain

lim
n−→∞

‖A2xn − A2p‖ = 0. (4.1.15)
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Similarly, (4.1.14) and (4.1.15), we can prove that

lim
n−→∞

‖Bxn − Bp‖ = lim
n−→∞

‖A1xn − A1p‖ = 0. (4.1.16)

On the other hand, let p ∈ Θ for each n ≥ 1, we get p = T F1

rn
(I − rnA1)p. Since T F1

rn

is firmly nonexpansive, we have

‖un − p‖2 = ‖T F1

rn
(I − rnA1)xn − T F1

rn
(I − rnA1)p‖

2

≤
〈
(I − rnA1)xn − (I − rnA1)p, un − p

〉

=
1

2

{
‖(I − rnA1)xn − (I − rnA1)p‖

2 + ‖un − p‖2

−‖(I − rnA1)xn − (I − rnA1)p − (un − p)‖2
}

≤
1

2

{
‖xn − p‖2 + ‖un − p‖2 − ‖(xn − un) − rn(A1xn − A1p)‖2

}

≤
1

2

{
‖xn − p‖2 + ‖un − p‖2 − ‖xn − un‖

2 +

2rn‖xn − un‖‖A1xn − A1p‖ − rn
2‖A1xn − A1p‖

2
}
.

So, we obtain

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖
2 + 2rn‖xn − un‖‖A1xn − A1p‖.(4.1.17)

Observe that

‖yn − p‖2 = ‖PE(xn − λnBxn) − PE(p − λnBp)‖2

≤ 〈(I − λnB)xn − (I − λnB)p, yn − p〉

=
1

2

{
‖(I − λnB)xn − (I − λnB)p‖2 + ‖yn − p‖2

−‖(I − λnB)xn − (I − λnB)p − (yn − p)‖2
}

≤
1

2

{
‖xn − p‖2 + ‖yn − p‖2 − ‖(xn − yn) − λn(Bxn − Bp)‖2

}

≤
1

2

{
‖xn − p‖2 + ‖yn − p‖2 − ‖xn − yn‖

2 − λ2
n‖Bxn − Bp‖2

+ 2λn〈xn − yn, Bxn − Bp〉
}
,

and hence

‖yn − p‖2 ≤ ‖xn − p‖2 − ‖xn − yn‖
2 + 2λn‖xn − yn‖‖Bxn − Bp‖. (4.1.18)

By using the same argument in (4.1.51) and (4.1.18), we can get

‖vn − p‖2 ≤ ‖xn − p‖2 − ‖xn − vn‖
2 + 2sn‖xn − vn‖‖A2xn − A2p‖ (4.1.19)
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and

‖zn − p‖2 ≤ ‖xn − p‖2 − ‖xn − zn‖
2 + 2µn‖xn − zn‖‖Cxn − Cp‖. (4.1.20)

Substituting (4.1.51), (4.1.54), (4.1.54) and (4.1.54) into (4.1.41), we obtain

‖tn − p‖2 ≤ α(1)
n ‖xn − p‖2 + α(2)

n ‖yn − p‖2 + α(3)
n ‖zn − p‖2 + α(4)

n ‖un − p‖2 + α(5)
n ‖vn − p‖2

≤ α(1)
n ‖xn − p‖2 + α(2)

n

{
‖xn − p‖2 − ‖xn − yn‖

2 + 2λn‖xn − yn‖‖Bxn − Bp‖
}

+ α(3)
n

{
‖xn − p‖2 − ‖xn − zn‖

2 + 2µn‖xn − zn‖‖Cxn − Cp‖
}

+ α(4)
n

{
‖xn − p‖2 − ‖xn − un‖

2 + 2rn‖xn − un‖‖A1xn − A1p‖
}

+ α(5)
n

{
‖xn − p‖2 − ‖xn − vn‖

2 + 2sn‖xn − vn‖‖A2xn − A2p‖
}

= ‖xn − p‖2 − α(2)
n ‖xn − yn‖

2 + 2λnα(2)
n ‖xn − yn‖‖Bxn − Bp‖

−α(3)
n ‖xn − zn‖

2 + 2µnα(3)
n ‖xn − zn‖‖Cxn − Cp‖

−α(4)
n ‖xn − un‖

2 + 2rnα
(4)
n ‖xn − un‖‖A1xn − A1p‖

−α(5)
n ‖xn − vn‖

2 + 2snα(5)
n ‖xn − vn‖‖A2xn − A2p‖. (4.1.21)

It follows that

α(4)
n ‖xn − un‖

2 ≤ ‖xn − p‖2 − ‖tn − p‖2 − α(2)
n ‖xn − yn‖

2 + 2λnα(2)
n ‖xn − yn‖‖Bxn − Bp‖

−α(3)
n ‖xn − zn‖

2 + 2µnα(3)
n ‖xn − zn‖‖Cxn − Cp‖

+2rnα(4)
n ‖xn − un‖‖A1xn − A1p‖ − α(5)

n ‖xn − vn‖
2

+ 2snα(5)
n ‖xn − vn‖‖A2xn − A2p‖

≤ (‖xn − p‖ + ‖tn − p‖)‖xn − tn‖ + 2λnα
(2)
n ‖xn − yn‖‖Bxn − Bp‖

+2µnα(3)
n ‖xn − zn‖‖Cxn − Cp‖ + 2rnα

(4)
n ‖xn − un‖‖A1xn − A1p‖

+2snα(5)
n ‖xn − vn‖‖A2xn − A2p‖.

From (C2), (4.1.39), (4.1.14), (4.1.15) and (4.1.16), we have

lim
n−→∞

‖xn − un‖ = 0. (4.1.22)

By using the same argument, we can prove that

lim
n−→∞

‖xn − yn‖ = lim
n−→∞

‖xn − zn‖ = lim
n−→∞

‖xn − vn‖ = 0. (4.1.23)

Applying (4.1.39), (5.4.21) and (4.1.23), we can obtain

lim
n−→∞

‖tn − un‖ = lim
n−→∞

‖tn − yn‖ = lim
n−→∞

‖tn − zn‖ = lim
n−→∞

‖tn − vn‖ = 0. (4.1.24)

Step 5. We show that

z ∈ F (S) ∩ GMEP (F1, ϕ, A1) ∩ GMEP (F2, ϕ, A2) ∩ V I(E, B) ∩ V I(E, C).
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Assume that λn −→ λ ∈ [c, 2β] and µn −→ µ ∈ [d, 2ξ].
Define a mapping P : E −→ E by

Px = α(1)Skx+α(2)PE(1−λB)x+α(3)PE(1−µC)x+α(4)T F1

r (I−rA1)x+α(5)T F2

s (I−sA2)x,

∀x ∈ E, where limn−→∞ α
(i)
n = α(i) ∈ (0, 1), when i = 1, 2, 3, 4, 5. By (C1), then we

have∑5
i=1 α

(i)
n = 1. Since Lemma ??, we have P is nonexpansive and

F (P) = F (Sk) ∩ F (PE(1 − λB)) ∩ F (PE(1 − µC)) ∩ F (T F1

r (I − rA1)) ∩ F (T F2

s (I − sA2))

= F (Sk) ∩ GMEP (F1, ϕ, A1) ∩ GMEP (F2, ϕ, A2) ∩ V I(E, B) ∩ V I(E, C). (4.1.25)

We note that

‖Pxn − xn‖

≤ ‖Pxn − tn‖ + ‖tn − xn‖

=

∥∥∥∥∥

[
α(1)Skxn + α(2)PE(1 − λB)xn + α(3)PE(1 − µC)xn

+α(4)T F1

r (I − rA1)xn + α(5)T F2

s (I − sA2)xn

]

−
[
α(1)

n Skxn + α(2)
n PE(1 − λnB)xn + α(3)

n PE(1 − µnC)xn + α(4)
n T F1

r (I − rA1)xn

+α(5)
n T F2

s (I − sA2)xn

]∥∥∥∥∥+ ‖tn − xn‖

≤ |α(1) − α(1)
n |‖Skxn‖

+α(2)‖PE(I − λB)xn − PE(I − λnB)xn‖ + |α(2) − α(2)
n |‖PE(I − λnB)xn‖

+ α(3)‖PE(I − µC)xn − PE(I − µnC)xn‖ + |α(3) − α(3)
n |‖PE(I − µnC)xn‖

+ |α(4) − α(4)
n |‖T F1

r (I − rA1)xn‖ + |α(5) − α(5)
n |‖T F2

s (I − sA2)xn‖ + ‖tn − xn‖

≤ |α(1) − α(1)
n |‖Skxn‖ + α(2)|λn − λ|‖Bxn‖ + |α(2) − α(2)

n |‖PE(I − λnB)xn‖

+ α(3)|µn − µ|‖Cxn‖ + |α(3) − α(3)
n |‖PE(I − µnC)xn‖

+ |α(4) − α(4)
n |‖T F1

r (I − rA1)xn‖ + |α(5) − α(5)
n |‖T F2

s (I − sA2)xn‖ + ‖tn − xn‖

≤ K1

(
5∑

i=1

|α(i) − α(i)
n | + |λn − λ| + |µn − µ|

)
+ ‖tn − xn‖,

where K1 is an appropriate constant such that

K1 = max
{

sup
n≥1

‖T F1

r (I − rA1)xn‖, sup
n≥1

‖T F2

s (I − sA2)xn‖, sup
n≥1

‖PE(I − λnB)xn‖,

sup
n≥1

‖PE(I − µnC)xn‖, sup
n≥1

‖Bxn‖, sup
n≥1

‖Cxn‖, sup
n≥1

‖Skxn‖
}
.

From (C2), (C5) and (4.1.39), we obtain

lim
n−→∞

‖xn − Pxn‖ = 0. (4.1.26)
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Since {xni
} is bounded, There exists a subsequence {xni

} of {xn} which converges
weakly to z. Without loss of generality, we may assume that {xni

} ⇀ z. It follows
from (4.1.26), that

lim
n−→∞

‖xni
−Pxni

‖ = 0.

It follows that z ∈ F (P). By (4.1.25), we have z ∈ Θ.

Step 6. Finally, we show that xn → z, where z = PΘx0.

Since Θ is nonempty closed convex subset of H , there exists a unique z′ ∈ Θ such
that z′ = PΘx0. Since z′ ∈ Θ ⊂ En and xn = PEn

x0, we have

‖x0 − xn‖ = ‖x0 − PEn
x0‖ ≤ ‖x0 − z′‖ (4.1.27)

for all n ≥ 1. From (6.4.15), {xn} is bounded, so ωw(xn) 6= ∅. By the weak lower
semicontinuity of the norm, we have

‖x0 − z‖ ≤ lim inf
i−→∞

‖x0 − xni
‖ ≤ ‖x0 − z′‖. (4.1.28)

Since z ∈ ωw(xn) ⊂ Θ, we obtain

‖x0 − z′‖ = ‖x0 − PΘx0‖ ≤ ‖x0 − z‖.

Using (6.4.15) and (6.4.15), we obtain z′ = z. Thus ωw(xn) = {z} and xn ⇀ z. So,
we have

‖x0 − z′‖ ≤ ‖x0 − z‖ ≤ lim inf
i−→∞

‖x0 − xn‖ ≤ lim sup
i−→∞

‖x0 − xn‖ ≤ ‖x0 − z′‖. (4.1.29)

Thus,
‖x0 − z‖ = lim

i−→∞
‖x0 − xn‖ = ‖x0 − z′‖.

From xn ⇀ z, we obtain (x0 − xn) ⇀ (x0 − z). Using Lemma 6.4.19, we obtain that

‖xn − z‖ = ‖(xn − x0) − (z − x0)‖ → 0

as n → ∞ and hence xn → z in norm. This completes of the proof.

If the mapping S is nonexpansive, then Sk = S0 = S. We can obtain the following
result from Theorem 4.1.2 immediately.

Corollary 4.1.3. Let E be a nonempty closed convex subset of a real Hilbert space
H . Let F1 and F2 be two bifunction from E ×E to R satisfying (A1)-(A5) and let
ϕ : E −→ R ∪ {+∞} be a proper lower semicontinuous and convex function with
either (B1) or (B2). Let A1, A2, B, C be four ρ, ω, β, ξ-inverse-strongly monotone
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mapping of E into H , respectively. Let S : E −→ E be a nonexpansive mapping
with a fixed point. Suppose that

Θ := F (S) ∩ GMEP (F1, ϕ, A1) ∩ GMEP (F2, ϕ, A2) ∩ V I(E, B) ∩ V I(E, C) 6= ∅.

Let {xn} be a sequence generated by the following iterative algorithm (6.5.3), where
{α

(i)
n } are sequences in (0, 1), where i = 1, 2, 3, 4, 5, rn ∈ (0, 2ρ), sn ∈ (0, 2ω)

and {λn}, {µn} are positive sequences. Assume that the control sequences satisfy
(C1)-(C5) in Theorem 4.1.2. Then, {xn} converges strongly to PΘx0.

If ϕ = 0 and A1 = A2 = 0 in Theorem 4.1.2, then we can obtain the following
result immediately.

Corollary 4.1.4. Let E be a nonempty closed convex subset of a real Hilbert space
H . Let F1 and F2 be two bifunction from E ×E to R satisfying (A1)-(A5) and let
ϕ : E −→ R ∪ {+∞} be a proper lower semicontinuous and convex function with
either (B1) or (B2). Let B, C be two β, ξ-inverse-strongly monotone mapping of E

into H , respectively. Let S : E −→ E be a nonexpansive mapping with a fixed
point. Suppose that

Θ := F (S) ∩ EP (F1) ∩ EP (F2) ∩ V I(E, B) ∩ V I(E, C) 6= ∅.

Let {xn} be a sequence generated by the following iterative algorithm:





x0 ∈ H, E1 = E, x1 = PE1
x0, un ∈ E, vn ∈ E,

F1(un, u) + 1
rn
〈u − un, un − xn〉 ≥ 0, ∀u ∈ E,

F2(vn, v) + 1
sn
〈v − vn, vn − xn〉 ≥ 0, ∀v ∈ E,

zn = PE(xn − µnCxn),

yn = PE(xn − λnBxn),

tn = α
(1)
n Sxn + α

(2)
n yn + α

(3)
n zn + α

(4)
n un + α

(5)
n vn,

En+1 = {w ∈ En : ‖tn − w‖ ≤ ‖xn − w‖},

xn+1 = PEn+1
x0, ∀n ≥ 1,

where {α
(i)
n } are sequences in (0, 1), where i = 1, 2, 3, 4, 5, rn ∈ (0,∞), sn ∈ (0,∞)

and {λn}, {µn} are positive sequences. Assume that the control sequences satisfy
the condition (C1)-(C5) in Theorem 4.1.2. Then, {xn} converges strongly to PΘx0.

If B = 0, C = 0 and F1(un, u) = F1(vn, v) = 0 in Corollary 4.1.4, then PE = I

and we get un = yn = xn and vn = zn = xn, hence we can obtain the following result
immediately.
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Corollary 4.1.5. Let E be a nonempty closed convex subset of a real Hilbert space
H . Let S : E −→ E be a k-strictly pseudocontractive mapping with a fixed point.
Define a mapping Sk : E −→ E by Skx = kx + (1 − k)Sx, ∀x ∈ E. Suppose that
F (S) 6= ∅. Let {xn} be a sequence generated by the following iterative algorithm:






x0 ∈ H, E1 = E, x1 = PE1
x0

tn = αnSkxn + (1 − αn)xn,

En+1 = {w ∈ En : ‖tn − w‖ ≤ ‖xn − w‖},

xn+1 = PEn+1
x0, ∀n ≥ 1,

where {αn} are sequences in (0, 1). Assume that the control sequences satisfy the
condition limn−→∞ αn = α ∈ (0, 1) in Theorem 4.1.2 Then, {xn} converges strongly
to a point PF (S)x0.

4.1.2 Convex Feasibility Problem

Finally, we consider the following Convex Feasibility Problem (CFP): finding an x ∈
⋂M

j=1 Cj , where M ≥ 1 is an integer and each Ci is assumed to be the solutions of
equilibrium problem with the bifunction Fj , j = 1, 2, 3, . . . , M and the solution set of
the variational inequality problem. There is a considerable investigation on CFP in
the setting of Hilbert spaces which captures applications in various disciplines such as
image restoration [220], computer tomography and radiation therapy treatment planning.

The following result can obtain from Theorem 4.1.2. We, therefore, omit the proof.

Theorem 4.1.6. Let E be a nonempty closed convex subset of a real Hilbert space
H . Let {Fj}

M
j=1 be a family of bifunction from E × E to R satisfying (A1)-(A5)

and let ϕ : E −→ R ∪ {+∞} be a proper lower semicontinuous and convex function
with either (B1) or (B2). Let Aj : E −→ H be ρj-inverse-strongly monotone
mapping for each j ∈ {1, 2, 3, . . . , M}. Let Bi : E −→ H be βi-inverse-strongly
monotone mapping for each i ∈ {1, 2, 3, . . . , N}. Let S : E −→ E be a k-strictly
pseudocontractive mapping with a fixed point. Define a mapping Sk : E −→ E by
Skx = kx + (1 − k)Sx, ∀x ∈ E. Suppose that

Θ := F (Sk) ∩ (∩M
j=1GMEP (Fj , ϕ, Aj)) ∩ (∩N

i=1V I(E, Bi)) 6= ∅.
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Let {xn} be a sequence generated by the following iterative algorithm:





x0 ∈ H, E1 = E, x1 = PE1
x0, v1, v2, . . . , vM ∈ E,

F1(vn,1, v1) + ϕ(v1) − ϕ(vn,1) + 〈A1xn, v1 − vn,1〉 + 1
r1
〈v1 − vn,1, vn,1 − xn〉 ≥ 0, ∀v1 ∈ E,

F2(vn,2, v2) + ϕ(v2) − ϕ(vn,2) + 〈A2xn, v2 − vn,2〉 + 1
r2
〈v2 − vn,2, vn,2 − xn〉 ≥ 0, ∀v2 ∈ E,

...

FM(vn,M , vM) + ϕ(vM) − ϕ(vn,M) + 〈AMxn, vM − vn,M〉 + 1
rM

〈vM − vn,M , vn,M − xn〉 ≥ 0,

∀vM ∈ E,

yn,1 = PE(xn − λn,1B1xn),

yn,2 = PE(xn − λn,2B2xn),
...

yn,N = PE(xn − λn,NBNxn),

tn = αn,0Skxn +
∑N

i=1 αn,iyn,i +
∑M

j=1 α′
n,jvn,j,

En+1 = {w ∈ En : ‖tn − w‖ ≤ ‖xn − w‖},

xn+1 = PEn+1
x0, ∀n ≥ 1,

where αn,0, αn,1, αn,2, . . . , αn,N and α′
n,1, α

′
n,2, . . . , α′

n,M ∈ (0, 1) such that
∑N

i=0 αn,i+∑M

j=1 α′
n,j = 1, {λn,i} are positive sequences in (0, 1). Assume that the control

sequences satisfy the following restrictions:

(C1) limn−→∞ α
(i)
n = α(i) ∈ (0, 1), for each 0 ≤ i ≤ N ,

(C2) limn−→∞ α
′(j)
n = α′(j) ∈ (0, 1), for each 1 ≤ j ≤ M ,

(C3) aj ≤ rj ≤ 2ρj , where aj is some positive constants for each 1 ≤ j ≤ M ,

(C4) ci ≤ λn,i ≤ 2βi , where ci is some positive constants for each 1 ≤ i ≤ N ,

(C5) limn−→∞ |λn+1,i − λn,i| = 0, for each 1 ≤ i ≤ N .

Then, {xn} converges strongly to PΘx0.

If Aj = 0, for each 1 ≤ j ≤ M and Fi(vn,i, vi) = 0, for each 1 ≤ i ≤ N in Theorem
4.1.6, then vn,i = xn, hence we can obtain the following result immediately.

Theorem 4.1.7. Let E be a nonempty closed convex subset of a real Hilbert space H .
Let ϕ : E −→ R∪{+∞} be a proper lower semicontinuous and convex function with
either (B1) or (B2). Let Bi : E −→ H be βi-inverse-strongly monotone mapping for
each i ∈ {1, 2, 3, . . . , N}. Let S : E −→ E be a k-strictly pseudocontractive mapping
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with a fixed point. Define a mapping Sk : E −→ E by Skx = kx+(1−k)Sx, ∀x ∈

E. Suppose that

Θ := F (Sk) ∩ (∩N
i=1V I(E, Bi)) 6= ∅.

Let {xn} be a sequence generated by the following iterative algorithm:






x0 ∈ H, E1 = E, x1 = PE1
x0,

yn,1 = PE(xn − λn,1B1xn),

yn,2 = PE(xn − λn,2B2xn),
...

yn,N = PE(xn − λn,NBNxn),

tn = αn,0Skxn +
∑N

i=1 αn,iyn,i,

En+1 = {w ∈ En : ‖tn − w‖ ≤ ‖xn − w‖},

xn+1 = PEn+1
x0, ∀n ≥ 1,

where αn,0, αn,1, αn,2, . . . , αn,N ∈ (0, 1) such that
∑N

i=0 αn,i = 1, {λn,i} are positive
sequences in (0, 1). Assume that the control sequences satisfy the following restric-
tions:

(C1) limn−→∞ α
(i)
n = α(i) ∈ (0, 1), for each 0 ≤ i ≤ N ,

(C2) ci ≤ λn,i ≤ 2βi , where ci is some positive constants for each 1 ≤ i ≤ N ,

(C3) limn−→∞ |λn+1,i − λn,i| = 0, for each 1 ≤ i ≤ N .

Then, {xn} converges strongly to PΘx0.

If Bi = 0, for each 1 ≤ i ≤ N in Theorem 4.1.6, we get yn,i = xn. Hence we can
obtain the following result immediately.

Theorem 4.1.8. Let E be a nonempty closed convex subset of a real Hilbert space
H . Let be a {Fj}

M
j=1 be a family of bifunction from E × E to R satisfying

(A1)-(A5) and let ϕ : E −→ R ∪ {+∞} be a proper lower semicontinuous and
convex function with either (B1) or (B2). Let Aj : E −→ H be ρj-inverse-strongly
monotone mapping for each j ∈ {1, 2, 3, . . . , M}. Let S : E −→ E be a k-strictly
pseudocontractive mapping with a fixed point. Define a mapping Sk : E −→ E by
Skx = kx + (1 − k)Sx, ∀x ∈ E. Suppose that

Θ := F (Sk) ∩ (∩M
j=1GMEP (Fj , ϕ, Aj)) 6= ∅.
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Let {xn} be a sequence generated by the following iterative algorithm:





x0 ∈ H, E1 = E, x1 = PE1
x0, v1, v2, . . . , vM ∈ E,

F1(vn,1, v1) + ϕ(v1) − ϕ(vn,1) + 〈A1xn, v1 − vn,1〉 + 1
r1
〈v1 − vn,1, vn,1 − xn〉 ≥ 0, ∀v1 ∈ E,

F2(vn,2, v2) + ϕ(v2) − ϕ(vn,2) + 〈A2xn, v2 − vn,2〉 + 1
r2
〈v2 − vn,2, vn,2 − xn〉 ≥ 0, ∀v2 ∈ E,

...

FM(vn,M , vM) + ϕ(vM) − ϕ(vn,M) + 〈AMxn, vM − vn,M〉 + 1
rM

〈vM − vn,M , vn,M − xn〉 ≥ 0,

∀vM ∈ E,

tn = αn,0Skxn +
∑M

j=1 α′
n,jvn,j,

En+1 = {w ∈ En : ‖tn − w‖ ≤ ‖xn − w‖},

xn+1 = PEn+1
x0, ∀n ≥ 1,

where αn,0 and α′
n,1, α

′
n,2, . . . , α′

n,M ∈ (0, 1) such that αn,0 +
∑M

j=1 α′
n,j = 1. Assume

that the control sequences satisfy the following restrictions:

(C1) limn−→∞ α
(0)
n = α(0) ∈ (0, 1),

(C2) limn−→∞ α
′(j)
n = α′(j) ∈ (0, 1), for each 1 ≤ j ≤ M ,

(C3) aj ≤ rj ≤ 2ρj , where aj is some positive constants for each 1 ≤ j ≤ M .

Then, {xn} converges strongly to PΘx0.

4.1.3 Hybrid algorithms of generalized mixed equilibrium problems
and the common variational inequality problems

In this section, we prove a strong convergence theorem for finding a common element
of the set of solutions of a common of generalized mixed equilibrium problems, the
common solutions of the variational inequality for inverse-strongly monotone mapping
and the set of fixed points of infinite family of nonexpansive mappings in the set of
Hilbert spaces.

Theorem 4.1.9. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let F1, F2 be a bifunction of C × C into real numbers R satisfying (A1) −

(A4) and let ϕ1, ϕ2 : C → R ∪ {+∞} be a proper lower semi-continuous and
convex function. Let A, B, D, E be α, β, δ, η-inverse-strongly monotone mapping of
C into H , respectively. Let {Ti}

∞
i=1 be an infinite nonexpansive mapping such that

Θ := ∩∞
i=1F (Ti)∩GMEP (F1, ϕ1, A)∩GMEP (F2, ϕ2, B)∩V I(C, D)∩V I(C, E) 6= ∅.
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Assume that either (B1) or (B2) holds. Let {xn} be a sequence generated by
x0 ∈ C, C1,i = C, C1 = ∩∞

i=1C1,i, x1 = PC1
x0 and






tn = T
(F1,ϕ1)
rn (xn − rnAxn),

un = T
(F2,ϕ2)
sn (xn − snBxn),

wn = ξnPC(un − λnDun) + (1 − ξn)PC(tn − µnEtn),

yn,i = αn,ix0 + (1 − αn,i)Tiwn,

Cn+1,i =
{
z ∈ Cn,i : ‖yn,i − z‖2 ≤ ‖xn − z‖2 + αn,i(‖x0‖

2 + 2〈xn − x0, z〉)
}
,

Cn+1 = ∩∞
i=1Cn+1,i,

xn+1 = PCn+1
x0.

(4.1.30)
for every n ≥ 0, where {rn}, {sn} ⊂ (0,∞), λn ∈ (0, 2δ) and µn ∈ (0, 2η) satisfying
the following conditions: (i). 0 < a ≤ rn ≤ b < 2α;

(ii). 0 < c ≤ sn ≤ d < 2β;

(iii).limn→∞ αn,i = 0;

(iv).limn→∞ ξn = ξ ∈ (0, 1);

(v). 0 < e ≤ λn ≤ f < 2δ;

(vi). 0 < g ≤ µn ≤ j < 2η.

Then, {xn} converges strongly to PΘx0.

Proof . Let p ∈ Θ then, p = T
(F1,ϕ1)
rn (p − rnAp), p = T

(F2,ϕ2)
sn (p − snBp), p =

PC(p − λnDp) and p = PC(p − µnEp). By nonexpansiveness of PC , T
(F1,ϕ1)
rn and

T
(F2,ϕ2)
sn , we have

‖wn − p‖2

= ‖ξnPC(un − λnDun) + (1 − ξn)PC(tn − µnEtn) − ξnPC(p − λnDp)

−(1 − ξn)PC(p − µnEp)‖2

=
∥∥∥ξn

{
PC(un − λnDun) − PC(p − λnDp)

}
+ (1 − ξn)

{
PC(tn − µnEtn) − PC(p − µnEp)

}∥∥∥
2

≤ ξn‖(un − λnDun) − (p − λnDp)‖2 + (1 − ξn)‖(tn − µnEtn) − (p − µnEp)‖2

= ξn‖(un − p) − λn(Dun − Dp)‖2 + (1 − ξn)‖(tn − p) − µn(Etn − Ep)‖2

= ξn

{
‖un − p‖2 − λn(2δ − λn)‖Dun − Dp‖2

}

+(1 − ξn)
{
‖tn − p‖2 − µn(2η − µn)‖Etn − Ep‖2

}

≤ ξn

{
‖T (F2,ϕ2)

sn
(xn − snBxn) − T (F2,ϕ2)

sn
(p − snBp)‖2 − λn(2δ − λn)‖Dun − Dp‖2

}

+(1 − ξn)
{
‖T (F1,ϕ1)

rn
(xn − rnAxn) − T (F1,ϕ1)

rn
(p − rnAp)‖2 − µn(2η − µn)‖Etn − Ep‖2

}

≤ ξn{‖(xn − snBxn) − (p − snBp)‖2} + (1 − ξn){‖(xn − rnAxn) − (p − rnAp)‖2} (4.1.31)
≤ ξn‖xn − p‖2 + (1 − ξn)‖xn − p‖2

≤ ‖xn − p‖2.
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Since both I − rnA and I − snB are nonexpansive for each n ≥ 1, we have

‖un − p‖2 = ‖T (F2,ϕ2)
sn

(I − snB)xn − T (F2,ϕ2)
sn

(I − snB)p‖2

≤ ‖(I − snB)xn − (I − snB)p‖2

≤ ‖xn − p‖2 + sn(sn − 2β)‖Bxn − Bp‖2 (4.1.32)
≤ ‖xn − p‖2

and

‖tn − p‖2 = ‖T (F1,ϕ1)
rn

(I − rnA)xn − T (F1,ϕ1)
rn

(I − rnA)p‖2

≤ ‖(I − rnA)xn − (I − rnA)p‖2

≤ ‖xn − p‖2 + rn(rn − 2α)‖Axn − Ap‖2

≤ ‖xn − p‖2. (4.1.33)

Therefore we obtain, ‖un − p‖ ≤ ‖xn − p‖ and ‖tn − p‖ ≤ ‖xn − p‖.

Next, we will divide the proof into four steps.
Step 1. We show that {xn} is well defined. Let n = 1, then C1,i = C is closed and
convex for each i ≥ 1. Suppose that Cn,i is closed convex for some n > 1. Then, by
definition of Cn+1,i, we know that Cn+1,i is closed convex for n ≥ 1. Hence, Cn,i is
closed convex for n ≥ 1 and for each i ≥ 1. This implies that Cn is closed convex for
n ≥ 1. Moreover, we show that Θ ⊂ Cn. For n = 1, Θ ⊂ C = C1,i. For n ≥ 2, let
p ∈ Θ. Then,

‖yn,i − p‖2 = ‖αn,i(x0 − p)2 + (1 − αn,i)(Tiwn − p)‖2

≤ αn,i‖x0 − p‖2 + (1 − αn,i)‖wn − p‖2

= ‖wn − p‖2 + αn,i(‖x0 − p‖2 − ‖wn − p‖2)

≤ ‖xn − p‖2 + αn,i(‖x0‖
2 + 2〈xn − x0, p〉),

which shows that p ∈ Cn,i, ∀n ≥ 2, ∀i ≥ 1. So, Θ ⊂ Cn,i, ∀n ≥ 1, ∀i ≥ 1. Therefore,
it follows that ∅ 6= Θ ⊂ Cn, ∀n ≥ 1. This implies that {xn} is well defined.
Step 2.We claim that limn−→∞ ‖xn+1 − xn‖ = 0 and limn−→∞ ‖yn,i − xn‖ = 0.

From xn = PCn
x0, we get

〈x0 − xn, xn − y〉 ≥ 0

for each y ∈ Cn. Since Θ ⊂ Cn, we have

〈x0 − xn, xn − p〉 ≥ 0 for each p ∈ Θ and n ∈ N.
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Hence, for p ∈ Θ, we obtain

0 ≤ 〈x0 − xn, xn − p〉

= 〈x0 − xn, xn − x0 + x0 − p〉

= −〈x0 − xn, x0 − xn〉 + 〈x0 − xn, x0 − p〉

≤ −‖x0 − xn‖
2 + ‖x0 − xn‖‖x0 − p‖.

It follows that

‖x0 − xn‖ ≤ ‖x0 − p‖, for all p ∈ Θ and n ∈ N.

From xn = PCn
x0 and xn+1 = PCn+1

x0 ∈ Cn+1 ⊂ Cn, we have

〈x0 − xn, xn − xn+1〉 ≥ 0. (4.1.34)

For n ∈ N, we compute

0 ≤ 〈x0 − xn, xn − xn+1〉

= 〈x0 − xn, xn − x0 + x0 − xn+1〉

= −〈x0 − xn, x0 − xn〉 + 〈x0 − xn, x0 − xn+1〉

≤ −‖x0 − xn‖
2 + 〈x0 − xn, x0 − xn+1〉

≤ −‖x0 − xn‖
2 + ‖x0 − xn‖‖x0 − xn+1‖

and then
‖x0 − xn‖ ≤ ‖x0 − xn+1‖, for all n ∈ N.

Thus, the sequence {‖xn−x0‖} is a bounded and nondecreasing sequence, so limn−→∞ ‖xn−

x0‖ exists. That is, there exists m such that

m = lim
n−→∞

‖xn − x0‖. (4.1.35)

Hence, {xn} is bounded and so are {Axn}, {Bxn}, {un}, {Dun}, {tn}, {Etn}, {wn}, {Tiwn}

and {yn,i} for i = 1, 2, ..., and n ≥ 1. From (4.1.34), we get

‖xn − xn+1‖
2 = ‖xn − x0 + x0 − xn+1‖

2

= ‖xn − x0‖
2 + 2〈xn − x0, x0 − xn+1〉 + ‖x0 − xn+1‖

2

= ‖xn − x0‖
2 + 2〈xn − x0, x0 − xn + xn − xn+1〉 + ‖x0 − xn+1‖

2

= ‖xn − x0‖
2 − 2〈xn − x0, xn − x0〉 + 2〈xn − x0, xn − xn+1〉 + ‖x0 − xn+1‖

2

= −‖xn − x0‖
2 + 2〈xn − x0, xn − xn+1〉 + ‖x0 − xn+1‖

2

≤ −‖xn − x0‖
2 + ‖x0 − xn+1‖

2.
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By (4.1.35), we obtain

lim
n−→∞

‖xn − xn+1‖ = 0. (4.1.36)

Since xn+1 = PCn+1
x0 ∈ Cn+1 ⊂ Cn, we have

‖yn,i − xn+1‖
2 ≤ ‖xn − xn+1‖

2 + αn,i(‖x0‖
2 + 2〈xn − x0, xn+1〉). (4.1.37)

By (iii) and (6.4.13), we get

lim
n−→∞

‖yn,i − xn+1‖ = 0. (4.1.38)

It follows that

‖yn,i − xn‖ ≤ ‖yn,i − xn+1‖ + ‖xn − xn+1‖.

By (6.4.13) and (4.1.38), we have

lim
n−→∞

‖yn,i − xn‖ = 0, i = 1, 2, .... (4.1.39)

Step 3. We claim that the following statements hold:

(S1) limn−→∞ ‖xn − un‖ = 0;

(S2) limn−→∞ ‖xn − tn‖ = 0;

(S3) limn−→∞ ‖wn − xn‖ = 0.

For (4.1.31), we note that

‖yn,i − p‖2 ≤ αn,i‖x0 − p‖2 + (1 − αn,i)‖Tiwn − p‖2

= αn,i‖x0 − p‖2 + (1 − αn,i)‖wn − p‖2

≤ αn,i‖x0 − p‖2 + (1 − αn,i)
{
ξn‖(xn − snBxn) − (p − snBp)‖2

+(1 − ξn)‖(xn − rnAxn) − (p − rnAp)‖2
}

≤ αn,i‖x0 − p‖2 + (1 − αn,i)
{
ξn

(
‖xn − p‖2 + sn(sn − 2β)‖Bxn − Bp‖2

)

+(1 − ξn)
(
‖xn − p‖2 + rn(rn − 2α)‖Axn − Ap‖2

)}

= αn,i‖x0 − p‖2 + (1 − αn,i)
{
‖xn − p‖2 + ξnsn(sn − 2β)‖Bxn − Bp‖2

+(1 − ξn)rn(rn − 2α)‖Axn − Ap‖2
}

= αn,i‖x0 − p‖2 + ‖xn − p‖2 + (1 − αn,i)ξnsn(sn − 2β)‖Bxn − Bp‖2

+(1 − αn,i)(1 − ξn)rn(rn − 2α)‖Axn − Ap‖2 (4.1.40)
= αn,i‖x0 − p‖2 + ‖xn − p‖2 + (1 − αn,i)ξnsn(sn − 2β)‖Bxn − Bp‖2.
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Since 0 < c ≤ sn ≤ d ≤ 2β, 0 ≤ ki ≤ αn,i ≤ hi < 1, we have

(1 − hi)ξc(2β − d)‖Bxn − Bp‖2 ≤ αn,i‖x0 − p‖2 + ‖xn − p‖2 − ‖yn,i − p‖2

≤ αn,i‖x0 − p‖2 + ‖yn,i − xn‖(‖xn − p‖ + ‖yn,i − p‖).

By condition (iii) and (4.1.39), then limn→∞ ‖Bxn − Bp‖ = 0. By using the same
method with (6.1.29). Hence, from (6.1.28) since 0 < a ≤ rn ≤ b ≤ 2α, 0 ≤ ki ≤

αn,i ≤ hi < 1, we have

(1 − hi)(1 − ξ)a(2α − b)‖Axn − Ap‖2 ≤ αn,i‖x0 − p‖2 + ‖xn − p‖2 − ‖yn,i − p‖2

≤ αn,i‖x0 − p‖2 + ‖yn,i − xn‖(‖xn − p‖ + ‖yn,i − p‖).

By condition (iii) and (4.1.39), then we have limn→∞ ‖Axn − Ap‖ = 0. On the other
hand, we compute

‖un − p‖2 = ‖T (F2,ϕ2)
sn

(I − snB)xn − T (F2,ϕ2)
sn

(I − snB)p‖2

≤ 〈(xn − snBxn) − (p − snBp), un − p〉

=
1

2

{
‖(xn − snBxn) − (p − snBp)‖2 + ‖un − p‖2

−‖(xn − snBxn) − (p − snBp) − (un − p)‖2
}

≤
1

2

{
‖xn − p‖2 + ‖un − p‖2 − ‖(xn − snBxn) − (p − snBp) − (un − p)‖2

}

=
1

2

{
‖xn − p‖2 + ‖un − p‖2 − ‖un − xn‖

2 + 2sn〈xn − un, Bxn − Bp〉

−s2
n‖Bxn − Bp‖2

}

and hence

‖un − p‖2 ≤ ‖xn − p‖2 − ‖un − xn‖
2 + 2sn〈xn − un, Bxn − Bp〉

−s2
n‖Bxn − Bp‖2

≤ ‖xn − p‖2 − ‖un − xn‖
2 + 2sn‖xn − un‖‖Bxn − Bp‖. (4.1.41)

By using the same method as (4.1.41), we also have

‖tn − p‖2 ≤ ‖xn − p‖2 − ‖tn − xn‖
2 + 2rn〈xn − tn, Axn − Ap〉

−r2
n‖Axn − Ap‖2

≤ ‖xn − p‖2 − ‖tn − xn‖
2 + 2rn‖xn − tn‖‖Axn − Ap‖. (4.1.42)
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Furthermore, we observe that

‖yn,i − p‖2 (4.1.43)
≤ αn,i‖x0 − p‖2 + (1 − αn,i)‖Tiwn − p‖2

= αn,i‖x0 − p‖2 + (1 − αn,i)‖wn − p‖2

≤ αn,i‖x0 − p‖2 + (1 − αn,i)
{
‖ξnPC(un − λnDun) + (1 − ξn)PC(tn − µnEtn) − p‖2

}

≤ αn,i‖x0 − p‖2 + (1 − αn,i)
{
ξn(‖un − p‖2 − λn(2δ − λn)‖Dun − Dp‖2)

+(1 − ξn)(‖tn − p‖2 − µn(2η − µn)‖Etn − Ep‖2)
}

≤ αn,i‖x0 − p‖2 + (1 − αn,i)
{
ξn‖un − p‖2 + (1 − ξn)‖tn − p‖2

}

≤ αn,i‖x0 − p‖2 + (1 − αn,i)
{
ξn

(
‖xn − p‖2 − ‖un − xn‖

2 + 2sn‖xn − un‖‖Bxn − Bp‖
)

+(1 − ξn)
(
‖xn − p‖2 − ‖tn − xn‖

2 + 2rn‖xn − tn‖‖Axn − Ap‖
)}

≤ αn,i‖x0 − p‖2 + ‖xn − p‖2 − (1 − αn,i)ξn‖un − xn‖
2

+(1 − αn,i)ξn2sn‖xn − un‖‖Bxn − Bp‖ − (1 − αn,i)(1 − ξn)‖tn − xn‖
2

+(1 − αn,i)(1 − ξn)2rn‖xn − tn‖‖Axn − Ap‖ (4.1.44)
≤ αn,i‖x0 − p‖2 + ‖xn − p‖2

−(1 − αn,i)ξn‖un − xn‖
2 + (1 − αn,i)ξn2sn‖xn − un‖‖Bxn − Bp‖

+(1 − αn,i)(1 − ξn)2rn‖xn − tn‖‖Axn − Ap‖.

By condition (i)-(iv), (4.1.39), limn→∞ ‖Axn −Ap‖ = 0 and limn→∞ ‖Bxn −Bp‖ = 0,

then we get

(1 − αn,i)ξn‖un − xn‖
2 (4.1.45)

≤ αn,i‖x0 − p‖2 + ‖xn − p‖2 − ‖yn,i − p‖2 + (1 − αn,i)ξn2sn‖xn − un‖‖Bxn − Bp‖

+(1 − αn,i)(1 − ξn)2rn‖xn − tn‖‖Axn − Ap‖

≤ αn,i‖x0 − p‖2 + ‖xn − yn,i‖(‖xn − p‖ + ‖yn,i − p‖)

+(1 − αn,i)ξn2sn‖xn − un‖‖Bxn − Bp‖

+(1 − αn,i)(1 − ξn)2rn‖xn − tn‖‖Axn − Ap‖. (4.1.46)

Therefore, we have

lim
n→∞

‖xn − un‖ = 0. (4.1.47)

Similary (6.4.31), from (4.1.43) by conditions (i)-(iv), (4.1.39), limn→∞ ‖Axn−Ap‖ =
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0 and limn→∞ ‖Bxn − Bp‖ = 0, then we get

(1 − αn,i)(1 − ξn)‖tn − xn‖
2

≤ αn,i‖x0 − p‖2 + ‖xn − p‖2 − ‖yn,i − p‖2 + (1 − αn,i)ξn2sn‖xn − un‖‖Bxn − Bp‖

+(1 − αn,i)(1 − ξn)2rn‖xn − tn‖‖Axn − Ap‖

≤ αn,i‖x0 − p‖2 + ‖xn − yn,i‖(‖xn − p‖ + ‖yn,i − p‖)

+(1 − αn,i)ξn2sn‖xn − un‖‖Bxn − Bp‖

+(1 − αn,i)(1 − ξn)2rn‖xn − tn‖‖Axn − Ap‖. (4.1.48)

Therefore, we have

lim
n→∞

‖xn − tn‖ = 0. (4.1.49)

From (4.1.30), (4.1.32) and (4.1.33), we have

‖wn − p‖2 = ‖ξnPC(un − λnDun) + (1 − ξn)PC(tn − µnEtn) − ξnPC(p − λnDp)

−(1 − ξn)PC(p − µnEp)‖2

= ξn‖PC(un − λnDun) − PC(p − λnDp)‖2

+(1 − ξn)‖PC(tn − µnEtn) − PC(p − µnEp)‖2

≤ ξn{‖un − p‖2 − λn(2δ − λn)‖Dun − Dp‖2} + (1 − ξn){‖tn − p‖2

−µn(2η − µn)‖Etn − Ep‖2}

≤ ξn{‖xn − p‖2 + sn(sn − 2β)‖Bxn − Bp‖2 − λn(2δ − λn)‖Dun − Dp‖2}

+(1 − ξn){‖xn − p‖2 + rn(rn − 2α)‖Axn − Ap‖2 − µn(2η − µn)‖Etn − Ep‖2}

≤ ‖xn − p‖2 + ξnsn(sn − 2β)‖Bxn − Bp‖2 − ξnλn(2δ − λn)‖Dun − Dp‖2

+(1 − ξn)rn(rn − 2α)‖Axn − Ap‖2 − (1 − ξn)µn(2η − µn)‖Etn − Ep‖2.
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Furthermore, we observe that

‖yn,i − p‖2 ≤ αn,i‖x0 − p‖2 + (1 − αn,i)‖Tiwn − p‖2

= αn,i‖x0 − p‖2 + (1 − αn,i)‖wn − p‖2

≤ αn,i‖x0 − p‖2 + (1 − αn,i){‖xn − p‖2 + ξnsn(sn − 2β)‖Bxn − Bp‖2

−ξnλn(2δ − λn)‖Dun − Dp‖2 + (1 − ξn)rn(rn − 2α)‖Axn − Ap‖2

−(1 − ξn)µn(2η − µn)‖Etn − Ep‖2}

≤ αn,i‖x0 − p‖2 + ‖xn − p‖2

+(1 − αn,i)ξnsn(sn − 2β)‖Bxn − Bp‖2

−(1 − αn,i)ξnλn(2δ − λn)‖Dun − Dp‖2

+(1 − αn,i)(1 − ξn)rn(rn − 2α)‖Axn − Ap‖2

−(1 − αn,i)(1 − ξn)µn(2η − µn)‖Etn − Ep‖2

≤ αn,i‖x0 − p‖2 + ‖xn − p‖2 + (1 − αn,i)ξnsn(sn − 2β)‖Bxn − Bp‖2

−(1 − αn,i)ξnλn(2δ − λn)‖Dun − Dp‖2

+(1 − αn,i)(1 − ξn)rn(rn − 2α)‖Axn − Ap‖2.

Since 0 < e ≤ λn ≤ f < 2δ, 0 ≤ ki ≤ αn,i ≤ hi < 1, we have

(1 − hi)ξe(2δ − f)‖Dun − Dp‖2 ≤ αn,i‖x0 − p‖2 + ‖xn − p‖2 − ‖yn,i − p‖2

+(1 − αn,i)ξnsn(sn − 2β)‖Bxn − Bp‖2

+(1 − αn,i)(1 − ξn)rn(rn − 2α)‖Axn − Ap‖2

≤ αn,i‖x0 − p‖2 + ‖yn,i − xn‖(‖xn − p‖ − ‖yn,i − p‖)

+(1 − αn,i)ξnsn(sn − 2β)‖Bxn − Bp‖2

+(1 − αn,i)(1 − ξn)rn(rn − 2α)‖Axn − Ap‖2.

By conditions (i)-(v), (4.1.39), limn→∞ ‖Axn −Ap‖ = 0 and limn→∞ ‖Bxn −Bp‖ = 0,

then limn→∞ ‖Dun −Dp‖ = 0. By using the same method with (4.1.50). Hence, from
(4.1.50) and since 0 < g ≤ µn ≤ j ≤ 2η, 0 ≤ ki ≤ αn,i ≤ hi ≤ 1, we have

(1 − hi)(1 − ξ)g(2η − j)‖Etn − Ep‖2 ≤ αn,i‖x0 − p‖2 + ‖xn − p‖2 − ‖yn,i − p‖2

+(1 − αn,i)ξnsn(sn − 2β)‖Bxn − Bp‖2

+(1 − αn,i)(1 − ξn)rn(rn − 2α)‖Axn − Ap‖2

≤ αn,i‖x0 − p‖2 + ‖yn,i − xn‖(‖xn − p‖ − ‖yn,i − p‖)

+(1 − αn,i)ξnsn(sn − 2β)‖Bxn − Bp‖2

+(1 − αn,i)(1 − ξn)rn(rn − 2α)‖Axn − Ap‖2.

By conditions (i)-(iv), (vi), (4.1.39), limn→∞ ‖Axn − Ap‖ = 0 and limn→∞ ‖Bxn −
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Bp‖ = 0, then limn→∞ ‖Etn − Ep‖ = 0. From (4.1.30), we have

‖wn − p‖2

≤
∥∥∥ξn

{
PC(un − λnDun) − PC(p − λnDp)

}
+ (1 − ξn)

{
PC(tn − µnEtn) − PC(p − µnEp)

}∥∥∥
2

≤ ξn‖u
′
n − p‖2 + (1 − ξn)‖t′n − p‖2. (4.1.50)

Assume that u′
n = PC(un − λnDun) and t′n = PC(tn − µnEtn). By nonexpansiveness

of I − λnD and I − µnE, we also have

‖u′
n − p‖2 ≤ ‖PC(I − λnD)un − PC(I − λnD)p‖2

≤ 〈(un − λnDun) − (p − λnDp), u′
n − p〉

=
1

2

{
‖(un − λnDun) − (p − λnDp)‖2 + ‖u′

n − p‖2

−‖(un − λnDun) − (p − λnDp) − (u′
n − p)‖2

}

≤
1

2

{
‖un − p‖2 + ‖u′

n − p‖2 − ‖(un − λnDun) − (p − λnDp) − (u′
n − p)‖2

}

=
1

2

{∥∥T (F2,ϕ2)
sn

(xn − snBxn) − T (F2,ϕ2)
sn

(p − snBp)
∥∥2

+ ‖u′
n − p‖2 − ‖un − u′

n‖
2

+2λn〈un − u′
n, Dun − Dp〉 − λ2

n‖Dun − Dp‖2
}

≤
1

2

{
‖xn − p‖2 + ‖u′

n − p‖2 − ‖un − u′
n‖

2 + λn(λn − 2δ)‖Dun − Dp‖2
}
.

It follows that

‖u′
n − p‖2 ≤ ‖xn − p‖2 − ‖un − u′

n‖
2 + λn(λn − 2δ)‖Dun − Dp‖2. (4.1.51)

Similaly (4.1.51), we obtain

‖t′n − p‖2 ≤ ‖xn − p‖2 − ‖tn − t′n‖
2 + µn(µn − 2η)‖Etn − Ep‖2. (4.1.52)

Substituting (4.1.51), (4.1.52) into (4.1.50)

‖wn − p‖2 ≤ ξn‖u
′
n − p‖2 + (1 − ξn)‖t′n − p‖2

≤ ξn{‖xn − p‖2 − ‖un − u′
n‖

2 + λn(λn − 2δ)‖Dun − Dp‖2}

+(1 − ξn){‖xn − p‖2 − ‖tn − t′n‖
2 + µn(µn − 2η)‖Etn − Ep‖2}

≤ ‖xn − p‖2 − ξn‖un − u′
n‖

2 + ξnλn(λn − 2δ)‖Dun − Dp‖2

−(1 − ξn)‖tn − t′n‖
2 + (1 − ξn)µn(µn − 2η)‖Etn − Ep‖2. (4.1.53)
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By (4.1.53), we have

‖yn,i − p‖2

≤ αn,i‖x0 − p‖2 + (1 − αn,i)‖Tiwn − p‖2

= αn,i‖x0 − p‖2 + (1 − αn,i)‖wn − p‖2

= αn,i‖x0 − p‖2 + (1 − αn,i)
{
‖xn − p‖2 − ξn‖un − u′

n‖
2

+ξnλn(λn − 2δ)‖Dun − Dp‖2 − (1 − ξn)‖tn − t′n‖
2 + (1 − ξn)µn(µn − 2η)‖Etn − Ep‖2

}

= αn,i‖x0 − p‖2 + ‖xn − p‖2 − (1 − αn,i)ξn‖un − u′
n‖

2

+(1 − αn,i)ξnλn(λn − 2δ)‖Dun − Dp‖2 − (1 − αn,i)(1 − ξn)‖tn − t′n‖
2

+(1 − αn,i)(1 − ξn)µn(µn − 2η)‖Etn − Ep‖2

= αn,i‖x0 − p‖2 + ‖xn − p‖2 − (1 − αn,i)ξn‖un − u′
n‖

2

+(1 − αn,i)ξnλn(λn − 2δ)‖Dun − Dp‖2 + (1 − αn,i)(1 − ξn)µn(µn − 2η)‖Etn − Ep‖2.

It follows that

(1 − αn,i)ξn‖un − u′
n‖

2

≤ αn,i‖x0 − p‖2 + ‖xn − p‖2 − ‖yn,i − p‖2

+(1 − αn,i)ξnλn(λn − 2δ)‖Dun − Dp‖2 + (1 − αn,i)(1 − ξn)µn(µn − 2η)‖Etn − Ep‖2

≤ αn,i‖x0 − p‖2 + ‖xn − yn,i‖(‖xn − p‖ + ‖yn,i − p‖)

+(1 − αn,i)ξnλn(λn − 2δ)‖Dun − Dp‖2 + (1 − αn,i)(1 − ξn)µn(µn − 2η)‖Etn − Ep‖2.

By conditions (iii)-(vi), (4.1.39), limn→∞ ‖Dun−Dp‖ = 0 and limn→∞ ‖Etn−Ep‖ = 0,

then we get

lim
n→∞

‖un − u′
n‖ = 0. (4.1.54)

By using the same argument (4.1.54), we can prove that

lim
n→∞

‖tn − t′n‖ = 0. (4.1.55)

Applying (4.1.47) and (4.1.54), we also have

lim
n→∞

‖xn − u′
n‖ = 0. (4.1.56)

From (4.1.49) and (4.1.55), we obtain

lim
n→∞

‖xn − t′n‖ = 0. (4.1.57)

Since u′
n = PC(un − λnDun) and t′n = PC(tn − µnEtn), we have

wn − xn = ξn(u′
n − xn) + (1 − ξn)(t′n − xn).
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By (4.1.56) and (4.1.57), we obtain

lim
n→∞

‖wn − xn‖ = 0. (4.1.58)

By condition (iii), we have yn,i = αn,ix0 + (1 − αn,i)Tiwn which implies that

‖yn,i − Tiwn‖ = αn,i‖x0 − Tiwn‖ → 0, n → ∞, ∀i ≥ 1.

From (4.1.39) and limn→∞ ‖yn,i − Tiwn‖ = 0, we have

‖xn − Tiwn‖ ≤ ‖yn,i − Tiwn‖ + ‖yn,i − xn‖ → 0, n → ∞, ∀i ≥ 1. (4.1.59)

Since

‖wn − Tiwn‖ ≤ ‖wn − xn‖ + ‖xn − Tiwn‖.

By (4.1.58) and (4.1.59), hence limn→∞ ‖wn − Tiwn‖ = 0, ∀i = 1, 2, ....
Step 4. We show that z ∈ Θ := (∩∞

i=1F (Ti))∩GMEP (F1, ϕ1, A)∩GMEP (F2, ϕ2, B)∩

V I(C, D) ∩ V I(C, E).

First, we show that z ∈ ∩∞
i=1F (Ti). Assume that z /∈ ∩∞

i=1F (Ti). Since limn→∞ ‖wn−

xn‖ = 0 and limn→∞ ‖xn − z‖ = 0, we have that limn→∞ ‖wn − z‖ = 0. By
limn→∞ ‖wn − z‖ = 0 and limn→∞ ‖wn − Tiwn‖ = 0, i = 1, 2, ..., from Opial’s
condition, we have

lim infi−→∞‖wni
− z‖ < lim infi−→∞‖wni

− Tiz‖

≤ lim infi−→∞(‖wni
− Tiwni

‖ + ‖Tiwni
− Tiz‖)

≤ lim infi−→∞‖wni
− z‖,

which is a contradiction. Thus, we obtain z ∈ ∩∞
i=1F (Ti).

Next, we show that z ∈ GMEP (F1, ϕ, A). Since tn = T
(F1,ϕ1)
rn (xn−rnAxn), n ≥ 1,

we have for any y ∈ C that

F1(tn, y) + ϕ1(y) − ϕ1(tn) + 〈Axn, y − tn〉 +
1

rn

〈y − tn, tn − xn〉 ≥ 0, ∀y ∈ C.

From (A2), we also have

ϕ1(y) − ϕ1(tn) + 〈Axn, y − tn〉 +
1

rn

〈y − tn, tn − xn〉 ≥ F1(y, tn), ∀y ∈ C.

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)z. Since y ∈ C and z ∈ C, we
have yt ∈ C. Then, we have

〈yt − tni
, Ayt〉

≥ 〈yt − tni
, Ayt〉 − ϕ1(yt) + ϕ1(tni

) − 〈yt − tni
, Axni

〉 − 〈yt − tni
,
tni

− xni

rni

〉 + F1(yt, tni
)

= 〈yt − tni
, Ayt − Atni

〉 + 〈yt − tni
, Atni

− Axni
〉 − ϕ1(yt) + ϕ1(tni

)

−〈yt − tni
,
tni

− xni

rni

〉 + F1(yt, tni
).
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Since ‖tni
− xni

‖ → 0, we have ‖Atni
−Axni

‖ → 0. Further, from an inverse strongly
monotonicity of A, we have 〈yt − tni

, Ayt − Atni
〉 ≥ 0. So, from (A4) and the weak

lower semi-continuity of ϕ1,
tni

−xni

rni

→ 0 and tni
⇀ z, we have at the limit

〈yt − z, Ayt〉 ≥ −ϕ1(yt) + ϕ1(z) + F1(yt, z) (4.1.60)

as i → ∞. From (A1),(A4) and (4.1.60), we also get

0 = F1(yt, yt) + ϕ1(yt) − ϕ1(yt)

≤ tF1(yt, y) + (1 − t)F1(yt, z) + tϕ1(y) − (1 − t)ϕ1(z) − ϕ(yt)

= t[F1(yt, y) + ϕ1(y) − ϕ1(yt)] + (1 − t)[F1(yt, z) + ϕ1(z) − ϕ1(yt)]

≤ t[F1(yt, y) + ϕ1(y) − ϕ1(yt)] + (1 − t)〈yt − z, Ayt〉

= t[F1(yt, y) + ϕ1(y) − ϕ1(yt)] + (1 − t)t〈y − z, Ayt〉,

0 ≤ F1(yt, y) + ϕ1(y) − ϕ1(yt) + (1 − t)〈y − z, Ayt〉.

Letting t → 0, we have, for each y ∈ C,

F1(z, y) + ϕ1(y) − ϕ1(z) + 〈y − z, Az〉 ≥ 0.

This implies that z ∈ GMEP (F1, ϕ1, A). By following the same arguments, we can
show that z ∈ GMEP (F2, ϕ2, B).

Lastly, by the same proof of [258, Theorem 3.1, pp. 346-347], we can show that
z ∈ V I(C, D) and z ∈ V I(C, E). Therefore, z ∈ (∩∞

i=1F (Ti)) ∩ GMEP (F1, ϕ1, A) ∩

GMEP (F2, ϕ2, B) ∩ V I(C, D) ∩ V I(C, E) that is z ∈ Θ.

Noting that since xn = PCn
x0. By (??), we have

〈x0 − xn, y − xn〉 ≤ 0, ∀y ∈ Cn.

Since Θ ⊂ Cn and by the continuity of inner product, we obtain from the above
inequality that

〈x0 − z, y − z〉 ≤ 0, ∀y ∈ C.

We conclude that z = PΘx0. This completes the proof. �

4.1.4 Complementarity Problem
Let C be a nonempty closed and convex cone in H and E be an operator of C into
H . We define the polar of C in H to be the set

K∗ := {y∗ ∈ H : 〈x, y∗〉 ≥ 0, ∀x ∈ C}.
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Then the element u ∈ C is called a solution of the complementarity problem if

Eu ∈ K∗, 〈u, Eu〉 = 0.

The set of solution of the complementarity problem is denoted by C ′(C, D), C ′(C, E).

We shall assume that D, E satisfies the following conditions:

(E1) D, E are δ, η-inverse-strongly monotone mapping;

(E2) C ′(C, D), C ′(C, E) 6= ∅.

(B1) For each x ∈ H and r > 0, there exist a bounded subset Dx ⊆ C and yx ∈

C ∩ dom(ϕ) such that for any z ∈ C \ Dx,

F (z, yx) + ϕ(yx) +
1

r
〈yx − z, z − x〉 < ϕ(z);

(B2) C is a bounded set.

Corollary 4.1.10. Let C be a nonempty closed convex subset of a real Hilbert
Space H . Let F1, F2 be a bifunction of C × C into real numbers R satisfying
(A1)− (A4) and let ϕ1, ϕ2 : C → R∪ {+∞} be a proper lower semi continuous and
convex function. Let A, B, D, E be α, β, δ, η-inverse-strongly monotone mapping of
C into H , respectively. Let T1, T2, . . . be infinite nonexpansive mapping such that
Θ := ∩∞

i=1F (Ti) ∩GMEP (F1, ϕ1, A) ∩GMEP (F2, ϕ2, B) ∩C ′(C, D) ∩C ′(C, E) 6= ∅.
Assume that either (B1) or (B2) holds. Let {xn} be a sequence generated by
x0 ∈ C, C1,i = C, C1 = ∩∞

i=1C1,i, x1 = PC1
x0 and






tn = T
(F1,ϕ1)
rn (xn − rnAxn),

un = T
(F2,ϕ2)
sn (xn − snBxn),

wn = ξnPC(un − λnDun) + (1 − ξn)PC(tn − µnEtn),

yn,i = αn,ix0 + (1 − αn,i)Tiwn,

Cn+1,i =
{

z ∈ Cn,i : ‖yn,i − z‖2 ≤ ‖xn − z‖2 + αn,i(‖x0‖
2 + 2〈xn − x0, z〉)

}
,

Cn+1 = ∩∞
i=1Cn+1,i,

xn+1 = PCn+1
x0.

(4.1.61)
for every n ≥ 0, where {rn}, {sn} ⊂ (0,∞), λn ∈ (0, 2δ) and µn ∈ (0, 2η) satisfy
the following conditions:
(i). 0 < a ≤ rn ≤ b < 2α;

(ii). 0 < c ≤ sn ≤ d < 2β;

(iii).limn→∞ αn,i = 0;

(iv).limn→∞ ξn = ξ ∈ (0, 1);
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(v). 0 < e ≤ λn ≤ f < 2δ;

(vi). 0 < g ≤ µn ≤ j < 2η.

Then, {xn} converges strongly to PΘx0.

Proof . Using Lemma 7.1.1 of [239], we have that V I(C, D) = C ′(C, D) and
V I(C, E) = C ′(C, E). Hence, by Corollary 4.1.10 we can conclude the desired
conclusion easily. This completes the proof. �

4.2 A System of Generalized Mixed Equilibrium Problems
in Banach Spaces

For solving the equilibrium problem for a bifunction f : C × C → R, let us assume
that f satisfies the following conditions:
(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim
t↓0

f(tz + (1 − t)x, y) ≤ f(x, y);

(A4) for each x ∈ C, y 7→ f(x, y) is convex and lower semicontinuous.
For example, let A be a continuous and monotone operator of C into E∗ and define

f(x, y) = 〈Ax, y − x〉, ∀x, y ∈ C.

Then, f satisfies (A1)–(A4). The following result is in Blum and Oettli [5].
Motivated by Combettes and Hirstoaga [10] in a Hilbert space and Takahashi and

Zembayashi [50] in a Banach space, we obtained the following lemma.
Lemma 4.2.1. Let C be a closed convex subset of a smooth, strictly convex and
reflexive Banach space E. Assume that f be a bifunction from C×C to R satisfying
(A1)–(A4), A : C → E∗ be a continuous and monotone mapping and ϕ : C → R

be a semicontinuous and convex functional. For r > 0 and let x ∈ E. Then, there
exists z ∈ C such that

Q(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C,

where Q(z, y) = f(z, y) + 〈Bz, y − z〉 + ϕ(y) − ϕ(z), x, y ∈ C. Furthermore, define a
mapping Tr : E → C as follows:

Trx =

{
z ∈ C : Q(z, y) +

1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}
.

Then the following hold:
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(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, i.e., for all x, y ∈ E, 〈Trx − Try, JTrx − JTry〉 ≤

〈Trx − Try, Jx − Jy〉;

(3) F (Tr) = F̃ (Tr) = GMEP(f, B, ϕ);

(4) GMEP(f, B, ϕ) is closed and convex;

(5) φ(p, Trz) + φ(Trz, z) ≤ φ(p, z), ∀p ∈ F (Tr) and z ∈ E.

4.2.1 A new modified block iterative algorithm for a system of gen-
eralized mixed equilibrium problems

In this section, we prove the new convergence theorems for finding the set of solutions
of system of generalized mixed equilibrium problems, the common fixed point set of
a family of closed and uniformly quasi-φ-asymptotically nonexpansive mappings, and
the solution set of variational inequalities for an α-inverse strongly monotone mapping
in a 2-uniformly convex and uniformly smooth Banach space.

Theorem 4.2.2. Let C be a nonempty closed and convex subset of a 2-uniformly
convex and uniformly smooth Banach space E. For each j = 1, 2, . . . , m let fj be a
bifunction from C ×C to R which satisfies conditions (A1)–(A4), Bj : C −→ E∗ be
a continuous and monotone mapping and ϕj : C → R be a lower semicontinuous and
convex function. Let A be an α-inverse-strongly monotone mapping of C into E∗

satisfying ‖Ay‖ ≤ ‖Ay−Au‖, ∀y ∈ C and u ∈ VI(A, C) 6= ∅. Let {Si}
∞
i=1 : C → C

be an infinite family of closed uniformly Li-Lipschitz continuous and uniformly quasi-
φ-asymptotically nonexpansive mappings with a sequence {kn} ⊂ [1,∞), kn → 1

such that F := (∩∞
i=1F (Si))∩ (∩m

j=1GMEP(fj , Bj, ϕj))(∩VI(A, C)) is a nonempty and
bounded subset in C. For an initial point x0 ∈ E with x1 = ΠC1

x0 and C1 = C, we
define the sequence {xn} as follows:






vn = ΠCJ−1(Jxn − λnAxn),

zn = J−1(αn,0Jxn +
∑∞

i=1 αn,iJSn
i vn),

yn = J−1(βnJxn + (1 − βn)Jzn),

un = TQm
rm,n

TQm−1

rm−1,n
· · ·TQ2

r2,n
TQ1

r1,n
yn,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn},

xn+1 = ΠCn+1
x0, ∀n ≥ 1,

(4.2.1)

where θn = supq∈F (kn − 1)φ(q, xn), for each i ≥ 0, {αn,i} and {βn} are sequences
in [0, 1], {rj,n} ⊂ [d,∞) for some d > 0 and {λn} ⊂ [a, b] for some a, b with
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0 < a < b < c2α/2, where 1
c

is the 2-uniformly convexity constant of E. If
∑∞

i=0 αn,i = 1 for all n ≥ 0, lim infn−→∞(1 − βn) > 0 and lim infn−→∞ αn,0αn,i > 0

for all i ≥ 1, then {xn} converges strongly to p ∈ F , where p = ΠF x0.

Proof. We first show that Cn+1 is closed and convex for each n ≥ 0. Clearly,
C1 = C is closed and convex. Suppose that Cn is closed and convex for each
n ∈ N. Since for any z ∈ Cn, we know φ(z, un) ≤ φ(z, xn) + θn is equivalent to
2〈z, Jxn − Jun〉 ≤ ‖xn‖

2 − ‖un‖
2 + θn. So, Cn+1 is closed and convex.

Next, we show that F ⊂ Cn for all n ≥ 0. Since un = Ωm
n yn, when Ωj

n =

T
Qj
rj,nT

Qj−1

rj−1,n · · ·T
Q2

r2,n
TQ1

r1,n
, j = 1, 2, 3, . . . , m, Ω0

n = I , by the convexity of ‖ · ‖2, property
of φ, and by uniformly quasi-φ-asymptotically nonexpansive of Sn for each q ∈ F ⊂ Cn,
we have

φ(q, un) = φ(q, Ωm
n yn)

≤ φ(q, yn)

= φ(q, J−1(βnJxn + (1 − βn)Jzn)

= ‖q‖2 − 2〈q, βnJxn + (1 − βn)Jzn〉 + ‖βnJxn + (1 − βn)Jzn‖
2

≤ ‖q‖2 − 2βn〈q, Jxn〉 − 2(1 − βn)〈q, Jzn〉 + βn‖xn‖
2 + (1 − βn)‖zn‖

2

= βnφ(q, xn) + (1 − βn)φ(q, zn) (4.2.2)

and
φ(q, zn) = φ(q, J−1(αn,0Jxn +

∑∞
i=1 αn,iJSn

i vn))

= ‖q‖2 − 2〈q, αn,0Jxn +
∑∞

i=1 αn,iJSn
i vn〉 + ‖αn,0Jxn +

∑∞
i=1 αn,iJSn

i vn‖
2

= ‖q‖2 − 2αn,0〈q, Jxn〉 − 2
∑∞

i=1 αn,i〈q, JSn
i vn〉 + ‖αn,0Jxn +

∑∞
i=1 αn,iJSn

i vn‖
2

≤ ‖q‖2 − 2αn,0〈q, Jxn〉 − 2
∑∞

i=1 αn,i〈q, JSn
i vn〉 + αn,0‖Jxn‖

2 +
∑∞

i=1 αn,i‖JSn
i vn‖

2

−αn,0αn,jg‖Jvn − JSn
j vn‖

= ‖q‖2 − 2αn,0〈q, Jxn〉 + αn,0‖Jxn‖
2 − 2

∑∞
i=1 αn,i〈q, JSn

i vn〉

+
∑∞

i=1 αn,i‖JSn
i vn‖

2 − αn,0αn,jg‖Jvn − JSn
j vn‖

= αn,0φ(q, xn) +
∑∞

i=1 αn,iφ(q, Sn
i vn) − αn,0αn,jg‖Jvn − JSn

j vn‖

≤ αn,0φ(q, xn) +
∑∞

i=1 αn,iknφ(q, vn) − αn,0αn,jg‖Jvn − JSn
j vn‖.

(4.2.3)
It follows that

φ(q, vn) = φ(q, ΠCJ−1(Jxn − λnAxn))

≤ φ(q, J−1(Jxn − λnAxn))

= V (q, Jxn − λnAxn)

≤ V (q, (Jxn − λnAxn) + λnAxn) − 2〈J−1(Jxn − λnAxn) − q, λnAxn〉

= V (q, Jxn) − 2λn〈J
−1(Jxn − λnAxn) − q, Axn〉

= φ(q, xn) − 2λn〈xn − q, Axn〉 + 2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉.
(4.2.4)
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Since q ∈ VI(A, C) and A is an α-inverse-strongly monotone mapping, we have

−2λn〈xn − q, Axn〉 = −2λn〈xn − q, Axn − Aq〉 − 2λn〈xn − q, Aq〉

≤ −2λn〈xn − q, Axn − Aq〉

≤ −2αλn‖Axn − Aq‖2.

(4.2.5)

From ‖Axn‖ ≤ ‖Axn − Aq‖, ∀q ∈ VI(A, C), we also have

2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉 = 2〈J−1(Jxn − λnAxn) − J−1(Jxn),−λnAxn〉

≤ 2‖J−1(Jxn − λnAxn) − J−1(Jxn)‖‖λnAxn‖

≤ 4
c2
‖JJ−1(Jxn − λnAxn) − JJ−1(Jxn)‖‖λnAxn‖

= 4
c2
‖Jxn − λnAxn − Jxn‖‖λnAxn‖

= 4
c2
‖λnAxn‖

2

= 4
c2

λ2
n‖Axn‖

2

≤ 4
c2

λ2
n‖Axn − Aq‖2.

(4.2.6)
Substituting (4.2.80) and (4.2.81) into (4.2.3), we obtain

φ(q, vn) ≤ φ(q, xn) − 2αλn‖Axn − Aq‖2 + 4
c2

λ2
n‖Axn − Aq‖2

= φ(q, xn) + 2λn(
2
c2

λn − α)‖Axn − Aq‖2

≤ φ(q, xn).

(4.2.7)

Substituting (4.2.82) into (4.2.3), we also have

φ(q, zn) ≤ αn,0φ(q, xn) +
∑∞

i=1 αn,iknφ(q, xn) − αn,0αn,jg‖Jvn − JSn
j vn‖

≤ αn,0knφ(q, xn) +
∑∞

i=1 αn,iknφ(q, xn) − αn,0αn,jg‖Jvn − JSn
j vn‖

= knφ(q, xn) − αn,0αn,jg‖Jvn − JSn
j vn‖

≤ φ(q, xn) + supq∈F (kn − 1)φ(q, xn) − αn,0αn,jg‖Jvn − JSn
j vn‖

= φ(q, xn) + θn − αn,0αn,jg‖Jvn − JSn
j vn‖

≤ φ(q, xn) + θn.
(4.2.8)

and substituting (4.2.83) into (4.2.79), we also have

φ(q, un) ≤ φ(q, xn) + θn. (4.2.9)

This shows that q ∈ Cn+1 implies that F ⊂ Cn+1 and hence, F ⊂ Cn for all n ≥ 0.
This implies that the sequence {xn} is well defined. From definition of Cn+1 that
xn = ΠCn

x0 and xn+1 = ΠCn+1
x0,∈ Cn+1 ⊂ Cn, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0. (4.2.10)

Hence, we get
φ(xn, x0) = φ(ΠCn

x0, x0)

≤ φ(q, x0) − φ(q, xn)

≤ φ(q, x0), ∀q ∈ F.

(4.2.11)
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From (4.2.85) and (4.2.86), then {φ(xn, x0)} are nondecreasing and bounded. So, we
obtain that lim

n→∞
φ(xn, x0) exists. In particular, by (3.2.3), the sequence {(‖xn‖−‖x0‖)

2}

is bounded. This implies {xn} is also bounded. Denote

M = sup
n≥0

{‖xn‖} < ∞. (4.2.12)

Moreover, by the definition of θn and (5.1.21), it follows that

θn −→ 0 as n −→ ∞. (4.2.13)

Next, we show that {xn} is a Cauchy sequence in C. Since xm = ΠCm
x0 ∈ Cm ⊂

Cn, for m > n, we have

φ(xm, xn) = φ(xm, ΠCn
x0)

≤ φ(xm, x0) − φ(ΠCn
x0, x0)

= φ(xm, x0) − φ(xn, x0).

Since limn−→∞ φ(xn, x0) exists and we take m, n → ∞, we get φ(xm, xn) → 0.Then,
we have limn→∞ ‖xm − xn‖ = 0. Thus, {xn} is a Cauchy sequence, and by the
completeness of E, there exists a point p ∈ C such that xn → p as n → ∞.
Now, we claim that ‖Jun − Jxn‖ → 0, as n → ∞. By definition of xn = ΠCn

x0,
we have

φ(xn+1, xn) = φ(xn+1, ΠCn
x0)

≤ φ(xn+1, x0) − φ(ΠCn
x0, x0)

= φ(xn+1, x0) − φ(xn, x0).

Since limn→∞ φ(xn, x0) exists, we also have

lim
n→∞

φ(xn+1, xn) = 0. (4.2.14)

Again we have that
lim

n→∞
‖xn+1 − xn‖ = 0. (4.2.15)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we obtain

lim
n→∞

‖Jxn+1 − Jxn‖ = 0. (4.2.16)

Since xn+1 = ΠCn+1
x0 ∈ Cn+1 ⊂ Cn and the definition of Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn) + θn.

By (4.2.13) and (4.2.89) that

lim
n→∞

φ(xn+1, un) = 0. (4.2.17)
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Again, we get
lim

n→∞
‖xn+1 − un‖ = 0. (4.2.18)

Since
‖un − xn‖ = ‖un − xn+1 + xn+1 − xn‖

≤ ‖un − xn+1‖ + ‖xn+1 − xn‖.

It follows from (4.2.90) and (4.2.93) that

lim
n→∞

‖un − xn‖ = 0. (4.2.19)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we also have

lim
n→∞

‖Jun − Jxn‖ = 0. (4.2.20)

Next, we will show that p ∈ F := ∩m
j=1GMEP(fj , Bj, ϕj)∩ (∩∞

i=1F (Si))∩VI(A, C).

(a) We show that p ∈ ∩∞
i=1F (Si). Since xn+1 = ΠCn+1

x0 ∈ Cn+1 ⊂ Cn, it follow
from (4.2.83), we have

φ(xn+1, zn) ≤ φ(xn+1, xn) + θn,

by (4.2.13) and (4.2.89), we get

lim
n→∞

φ(xn+1, zn) = 0 (4.2.21)

it follows that
lim

n→∞
‖xn+1 − zn‖ = 0. (4.2.22)

Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞

‖Jxn+1 − Jzn‖ = 0. (4.2.23)

From (4.2.78), we note that

‖Jxn+1 − Jzn‖ = ‖Jxn+1 − (αn,0Jxn +
∑∞

i=1 αn,iJSn
i vn)‖

= ‖αn,0Jxn+1 − αn,0Jxn +
∑∞

i=1 αn,iJxn+1 −
∑∞

i=1 αn,iJSn
i vn‖

= ‖αn,0(Jxn+1 − Jxn) +
∑∞

i=1 αn,i(Jxn+1 − JSn
i vn)‖

= ‖
∑∞

i=1 αn,i(Jxn+1 − JSn
i vn) − αn,0(Jxn − Jxn+1)‖

≥
∑∞

i=1 αn,i‖Jxn+1 − JSn
i vn‖ − αn,0‖Jxn − Jxn+1‖,

and hence

‖Jxn+1 − JSn
i vn‖ ≤ 1P

∞

i=1
αn,i

(‖Jxn+1 − Jzn‖ + αn,0‖Jxn − Jxn+1‖). (4.2.24)

From (4.2.91), (4.2.101) and lim infn→∞

∑∞
i=1 αn,i > 0, we obtain that

lim
n→∞

‖Jxn+1 − JSn
i vn‖ = 0. (4.2.25)
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Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn+1 − Sn
i vn‖ = 0. (4.2.26)

Using the triangle inequality that

‖xn − Sn
i vn‖ = ‖xn − xn+1 + xn+1 − Sn

i vn‖

≤ ‖xn − xn+1‖ + ‖xn+1 − Sn
i vn‖.

From (4.2.90) and (4.2.104), we have

lim
n→∞

‖xn − Sn
i vn‖ = 0. (4.2.27)

On the other hand, we note that

φ(q, xn) − φ(q, un) + θn = ‖xn‖
2 − ‖un‖

2 − 2〈q, Jxn − Jun〉 + θn

≤ ‖xn − un‖(‖xn‖ + ‖un‖) + 2‖q‖‖Jxn − Jun‖ + θn.

It follows from θn −→ 0, ‖xn − un‖ −→ 0 and ‖Jxn − Jun‖ −→ 0, that

φ(q, xn) − φ(q, un) + θn −→ 0 as n −→ ∞. (4.2.28)

From (4.2.79), (4.2.3) and (4.2.82) that

φ(q, un) ≤ φ(q, yn)

≤ βnφ(q, xn) + (1 − βn)φ(q, zn)

≤ βnφ(q, xn) + (1 − βn)[αn,0φ(q, xn) +
∑∞

i=1 αn,iknφ(q, vn)

−αn,0αn,jg‖Jvn − JSn
j vn‖]

= βnφ(q, xn) + (1 − βn)αn,0φ(q, xn) + (1 − βn)
∑∞

i=1 αn,iknφ(q, vn)

−(1 − βn)αn,0αn,jg‖Jvn − JSn
j vn‖

≤ βnφ(q, xn) + (1 − βn)αn,0φ(q, xn) + (1 − βn)
∑∞

i=1 αn,iknφ(q, vn)

≤ βnφ(q, xn) + (1 − βn)αn,0φ(q, xn)

+(1 − βn)
∑∞

i=1 αn,ikn[φ(q, xn) − 2λn(α − 2
c2

λn)‖Axn − Aq‖2]

≤ βnφ(q, xn) + (1 − βn)αn,0knφ(q, xn)

+(1 − βn)
∑∞

i=1 αn,iknφ(q, xn)

−(1 − βn)
∑∞

i=1 αn,ikn2λn(α − 2
c2

λn)‖Axn − Aq‖2

≤ βnknφ(q, xn) + (1 − βn)knφ(q, xn)

−(1 − βn)
∑∞

i=1 αn,ikn2λn(α − 2
c2

λn)‖Axn − Aq‖2

= knφ(q, xn) − (1 − βn)
∑∞

i=1 αn,ikn2λn(α − 2
c2

λn)‖Axn − Aq‖2]

≤ φ(q, xn) + supq∈F (kn − 1)φ(q, xn)

−(1 − βn)
∑∞

i=1 αn,ikn2λn(α − 2
c2

λn)‖Axn − Aq‖2

= φ(q, xn) + θn − (1 − βn)
∑∞

i=1 αn,ikn2λn(α − 2
c2

λn)‖Axn − Aq‖2,
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and hence

2a(α − 2b
c2

)‖Axn − Aq‖2 ≤ 2λn(α − 2
c2

λn)‖Axn − Aq‖2

≤ 1
(1−βn)

P
∞

i=1
αn,ikn

(φ(q, xn) − φ(q, un) + θn).
(4.2.29)

From (4.2.28), {λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, lim infn−→∞(1 −

βn) > 0 and lim infn−→∞ αn,0αn,i > 0, for i ≥ 0 and kn −→ 1 as n −→ ∞, we obtain
that

lim
n→∞

‖Axn − Aq‖ = 0. (4.2.30)

From (4.2.81), we compute

φ(xn, vn) = φ(xn, ΠCJ−1(Jxn − λnAxn))

≤ φ(xn, J−1(Jxn − λnAxn))

= V (xn, Jxn − λnAxn)

≤ V (xn, (Jxn − λnAxn) + λnAxn) − 2〈J−1(Jxn − λnAxn) − xn, λnAxn〉

= φ(xn, xn) + 2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉

= 2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉

≤ 4λ2
n

c2
‖Axn − Aq‖2

≤ 4b2

c2
‖Axn − Aq‖2.

From (4.2.108) that
lim

n→∞
‖xn − vn‖ = 0 (4.2.31)

and we also obtain
lim

n→∞
‖Jxn − Jvn‖ = 0. (4.2.32)

Since Sn
i is continuous, for any i ≥ 1

lim
n→∞

‖Sn
i xn − Sn

i vn‖ = 0. (4.2.33)

Again by the triangle inequality, we get

‖xn − Sn
i xn‖ ≤ ‖xn − Sn

i vn‖ + ‖Sn
i vn − Sn

i xn‖.

From (4.2.105) and (4.2.111), we have

lim
n→∞

‖xn − Sn
i xn‖ = 0, ∀i ≥ 1. (4.2.34)

By using triangle inequality, we get

‖Sn
i xn − p‖ ≤ ‖Sn

i xn − xn‖ + ‖xn − p‖, ∀i ≥ 1.

We know that xn → p as n → ∞ and from (4.2.112)

Sn
i xn −→ p for each i ≥ 1.
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Moreover, by the assumption that ∀i ≥ 1, Si is uniformly Li-Lipschitz continuous, and
hence we have.

‖Sn+1
i xn − Sn

i xn‖ ≤ ‖Sn+1
i xn − Sn+1

i xn+1‖ + ‖Sn+1
i xn+1 − xn+1‖

+‖xn+1 − xn‖ + ‖xn − Sn
i xn‖

≤ (Li + 1)‖xn+1 − xn‖ + ‖Sn+1
i xn+1 − xn+1‖ + ‖xn − Sn

i xn‖.
(4.2.35)

By (4.2.90) and (4.2.112), it yields that ‖Sn+1
i xn −Sn

i xn‖ → 0. From Sn
i xn −→ p, we

have Sn+1
i xn → p, that is SiS

n
i xn → p. In view of closeness of Si, we have Sip = p,

for all i ≥ 1. This implies that p ∈ ∩∞
i=1F (Si).

(b) We show that p ∈ ∩m
j=1GMEP(fj, Bj , ϕj).

Let un = Ωm
n yn, when Ωj

n = T
Qj
rj,nT

Qj−1

rj−1,n · · ·T
Q2

r2,n
TQ1

r1,n
, j = 1, 2, 3, . . . , m and Ω0

n = I ,
we obtain

φ(q, un) = φ(q, Ωm
n yn)

≤ φ(q, Ωm−1
n yn)

≤ φ(q, Ωm−2
n yn)

...
≤ φ(q, Ωj

nyn).

(4.2.36)

By Lemma (4.2.1)(5), we have for j = 1, 2, 3, . . . , m

φ(Ωj
nyn, yn) + θn ≤ φ(q, yn) − φ(q, Ωj

nyn) + θn

≤ φ(q, xn) − φ(q, Ωj
nyn) + θn

≤ φ(q, xn) − φ(q, un) + θn.

(4.2.37)

From (4.2.13) and (4.2.28), we get φ(Ωj
nyn, yn) → 0 as n → ∞, for j = 1, 2, 3, . . . , m

and implies that

lim
n→∞

‖Ωj
nyn − yn‖ = 0, ∀j = 1, 2, 3, . . . , m. (4.2.38)

Since xn+1 = ΠCn+1
x0 ∈ Cn+1 ⊂ Cn, it follows from (4.2.79) and (4.2.83) that

φ(xn+1, yn) ≤ φ(xn+1, xn) + θn.

By (4.2.13) and (4.2.89), we have

lim
n→∞

φ(xn+1, yn) = 0.

Applying previous Lemma that

lim
n→∞

‖xn+1 − yn‖ = 0. (4.2.39)
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Using the triangle inequality, we obtain

‖xn − yn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖.

From (4.2.90) and (4.2.39), we get

lim
n→∞

‖xn − yn‖ = 0. (4.2.40)

Since xn → p and ‖xn − yn‖ → 0, we have yn → p as n → ∞.

Again by using the triangle inequality, we have for j = 1, 2, 3, . . . , m

‖p − Ωj
nyn‖ ≤ ‖p − yn‖ + ‖yn − Ωj

nyn‖.

From (4.2.38) and yn → p as n → ∞, we get

lim
n→∞

‖p − Ωj
nyn‖ = 0, ∀j = 1, 2, 3, . . . , m. (4.2.41)

By using the triangle inequality, we obtain

‖Ωj
nyn − Ωj−1

n yn‖ ≤ ‖Ωj
nyn − p‖ + ‖p − Ωj−1

n yn‖.

From (4.2.41), we have

lim
n→∞

‖Ωj
nyn − Ωj−1

n yn‖ = 0, ∀j = 1, 2, 3, . . . , m. (4.2.42)

Since {rj,n} ⊂ [d,∞) and J is uniformly continuous on any bounded subset of E,

lim
n→∞

‖JΩj
nyn−JΩj−1

n yn‖
rj,n

= 0, ∀j = 1, 2, 3, . . . , m. (4.2.43)

From Lemma 4.2.1, we get for j = 1, 2, 3, . . . , m

Qj(Ω
j
nyn, y) +

1

rj,n

〈y − Ωj
nyn, JΩj

nyn − JΩj−1
n yn〉 ≥ 0, ∀y ∈ C.

From (A2),
1

rj,n

〈y − Ωj
nyn, JΩj

nyn − JΩj−1
n yn〉 ≥ Qj(y, Ωj

nyn), ∀y ∈ C, ∀j = 1, 2, 3, . . . , m.

From (4.2.41) and (4.2.43), we have

0 ≥ Qj(y, p), ∀y ∈ C, ∀j = 1, 2, 3, . . . , m. (4.2.44)

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)p. Then, we get that yt ∈ C.
From (4.2.44), and it follows that

Qj(yt, p) ≤ 0, ∀y ∈ C, ∀j = 1, 2, 3, . . . , m. (4.2.45)
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By the conditions (A1) and (A4), we have for j = 1, 2, 3, . . . , m

0 = Qj(yt, yt)

≤ tQj(yt, y) + (1 − t)Qj(yt, p)

≤ tQj(yt, y)

= Qj(yt, y).

(4.2.46)

From (A3) and letting t −→ 0, This implies that p ∈ GMEP(fj, Bj , ϕj), ∀j =

1, 2, 3, . . . , m. Therefore p ∈ ∩m
j=1GMEP(fj , Bj, ϕj).

(c) We show that p ∈ VI(A, C). Indeed, define U ⊂ E × E∗ by

Uv =

{
Av + NC(v), v ∈ C;

∅, v /∈ C.
(4.2.47)

Since U is maximal monotone and U−10 = VI(A, C). Let (v, w) ∈ G(U). Since
w ∈ Uv = Av + NC(v), we get w − Av ∈ NC(v).
From vn ∈ C, we have

〈v − vn, w − Av〉 ≥ 0. (4.2.48)
On the other hand, since vn = ΠCJ−1(Jxn − λnAxn). Then, we have

〈v − vn, Jvn − (Jxn − λnAxn)〉 ≥ 0,

and thus 〈
v − vn, Jxn−Jvn

λn
− Axn

〉
≤ 0. (4.2.49)

It follows from (4.2.117), (4.2.118) and A is monotone and 1
α
-Lipschitz continuous

that
〈v − vn, w〉 ≥ 〈v − vn, Av〉

≥ 〈v − vn, Av〉 +
〈
v − vn, Jxn−Jvn

λn
− Axn

〉

= 〈v − vn, Av − Axn〉 +
〈
v − zvn, Jxn−Jvn

λn

〉

= 〈v − vn, Av − Avn〉 + 〈v − vn, Avn − Axn〉 +
〈
v − vn, Jxn−Jvn

λn

〉

≥ −‖v − vn‖
‖vn−xn‖

α
− ‖v − vn‖

‖Jxn−Jvn‖
a

≥ −H
(

‖vn−xn‖
α

+ ‖Jxn−Jvn‖
a

)
,

where H = supn≥1 ‖v − vn‖. Take the limit as n → ∞, (4.2.109) and (4.2.110), we
obtain 〈v−p, w〉 ≥ 0. By the maximality of B we have p ∈ B−10, that is p ∈ VI(A, C).
Hence, from (a), (b) and (c), we obtain p ∈ F.

Finally, we show that p = ΠF x0. From xn = ΠCn
x0, we have 〈Jx0−Jxn, xn−z〉 ≥

0, ∀z ∈ Cn. Since F ⊂ Cn, we also have

〈Jx0 − Jxn, xn − y〉 ≥ 0, ∀y ∈ F.
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Taking limit n → ∞, we obtain

〈Jx0 − Jp, p − y〉 ≥ 0, ∀y ∈ F.

We can conclude that p = ΠF x0 and xn → p as n → ∞. This completes the proof. �

4.2.2 A modified hybrid projection method for solving generalized
mixed equilibrium problems

In this section, we prove the new convergence theorem for solving the set of solutions
of a generalized mixed equilibrium problems and the common fixed point set of a
family of closed and uniformly quasi-φ-asymptotically nonexpansive mappings in a
uniformly smooth and strictly convex Banach space E with Kadec-Klee property.

Theorem 4.2.3. Let C be a nonempty, closed and convex subset of a uniformly
smooth and strictly convex Banach space E with Kadec-Klee property. Let B :

C −→ E∗ be a continuous and monotone mapping and let ϕ : C → R be a convex
and lower semi-continuous. Let f be a bifunction from C ×C to R satisfying (A1)-
(A4). Let B be a continuous monotone mapping of C into E∗. Let {Si}

∞
i=1 : C → C

be an infinite family of closed uniformly Li-Lipschitz continuous and uniformly quasi-
φ-asymptotically nonexpansive mappings with a sequence {kn} ⊂ [1,∞), kn → 1 such
that F := ∩∞

i=1F (Si)∩GMEP (f, B, ϕ) is a nonempty and bounded subset in C. For
an initial point x0 ∈ E with x1 = ΠC1

x0 and C1 = C, we define the sequence {xn}

as follows: 




zn = J−1(αn,0Jxn +
∑∞

i=1 αn,iJSn
i xn),

yn = J−1(βnJxn + (1 − βn)Jzn),

un ∈ C such that un = Krn
yn,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + ζn},

xn+1 = ΠCn+1
x0, ∀n ≥ 0,

(4.2.50)

where ζn = supq∈F (kn − 1)φ(q, xn), {αn,i}, {βn} are sequences in [0, 1] and {rn} ⊂

[a,∞) for some a > 0. If
∑∞

i=0 αn,i = 1 for all n ≥ 0 and lim infn−→∞ αn,0αn,i > 0

for all i ≥ 1, then {xn} converges strongly to p ∈ F , where p = ΠF x0.

Proof . We first show that Cn+1 is closed and convex for each n ≥ 0. Clearly C1 = C

is closed and convex. Suppose that Cn is closed and convex for each n ∈ N. Since for
any z ∈ Cn, we known

φ(z, un) ≤ φ(z, xn) + ζn ⇔ 2〈z, Jxn − Jun〉 ≤ ‖xn‖
2 − ‖un‖

2 + ζn.

So, Cn+1 is closed and convex. Therefore ΠF x0 and ΠCn
x0 are well defined.
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Next, we show that F ⊂ Cn for all n ≥ 0. Indeed, since un = Krn
yn for all

n ≥ 0. It is clear that F ⊂C1=C. Suppose F ⊂ Cn for n ∈ N, by the convexity of
‖ · ‖2, property of φ, and uniformly quasi-φ-asymptotically nonexpansive of Sn for each
q ∈ F ⊂ Cn, we observe that

φ(q, un) = φ(q, Krn
yn)

≤ φ(q, yn)

= φ(q, J−1(βnJxn + (1 − βn)Jzn))

= ‖q‖2 − 2〈q, βnJxn + (1 − βn)Jzn〉 + ‖βnJxn + (1 − βn)Jzn‖
2

≤ ‖q‖2 − 2βn〈p, Jxn〉 − 2(1 − βn)〈q, Jzn〉 + βn‖xn‖
2 + (1 − βn)‖zn‖

2

= βnφ(q, xn) + (1 − βn)φ(q, zn) (4.2.51)

and

φ(q, zn) = φ(q, J−1(αn,0Jxn +
∑∞

i=1 αn,iJSn
i xn))

= ‖q‖2 − 2〈q, αn,0Jxn +
∑∞

i=1 αn,iJSn
i xn〉 + ‖αn,0Jxn +

∑∞
i=1 αn,iJSn

i xn‖
2

≤ ‖q‖2 − 2αn,0〈q, Jxn〉 − 2
∑∞

i=1 αn,i〈q, JSn
i xn〉 + ‖αn,0Jxn +

∑∞
i=1 αn,iJSn

i xn‖
2

≤ ‖q‖2 − 2αn,0〈q, Jxn〉 − 2
∑∞

i=1 αn,i〈q, JSn
i xn〉 + αn,0‖Jxn‖

2 +
∑∞

i=1 αn,i‖JSn
i xn‖

2

−αn,0αn,jg‖Jxn − JSn
j xn‖

= ‖q‖2 − 2αn,0〈q, Jxn〉 + αn,0‖Jxn‖
2 − 2

∑∞
i=1 αn,i〈q, JSn

i xn〉

+
∑∞

i=1 αn,i‖JSn
i xn‖

2 − αn,0αn,jg‖Jxn − JSn
j xn‖

= αn,0φ(q, xn) +
∑∞

i=1 αn,iφ(q, Sn
i xn) − αn,0αn,jg‖Jxn − JSn

j xn‖

≤ αn,0knφ(q, xn) +
∑∞

i=1 αn,iknφ(q, xn) − αn,0αn,jg‖Jxn − JSn
j xn‖

≤ knφ(q, xn).
(4.2.52)

Substituting (4.2.52) into (4.2.79), we get

φ(q, un) ≤ βnφ(q, xn) + (1 − βn)φ(q, zn)

≤ βnφ(q, xn) + (1 − βn)knφ(q, xn)

≤ βnφ(q, xn) + (1 − βn)[φ(q, xn) + sup
q∈F

(kn − 1)φ(q, xn)]

≤ φ(q, xn) + (1 − βn) sup
q∈F

(kn − 1)φ(q, xn)

≤ φ(q, xn) + ζn. (4.2.53)

This show that q ∈ Cn+1 implies that F ⊂ Cn+1 and hence, F ⊂ Cn for all n ≥ 0.
Since F is nonempty, Cn is a nonempty closed convex subset of E and hence ΠCn

exist for all n ≥ 0. This implies that the sequence {xn} is well defined.
From definition of Cn+1 that xn = ΠCn

x0 and xn+1 = ΠCn+1
x0, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0. (4.2.54)
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We note that

φ(xn, x0) = φ(ΠCn
x0, x0)

≤ φ(p, x0) − φ(p, xn)

≤ φ(p, x0), ∀p ∈ F ⊂ Cn, ∀n ≥ 0.

(4.2.55)

From (4.2.85) and (4.2.86), then {φ(xn, x0)} are nondecreasing and bounded. So, we
obtain lim

n→∞
φ(xn, x0) exists. In particular, by (3.2.3), the sequence {(‖xn‖ − ‖x0‖)

2}

is bounded. This implies {xn} is also bounded. Denote

K = sup
n≥0

{‖xn‖} < ∞. (4.2.56)

Moreover, by the definition of {ζn} and (5.1.21), it follows that

ζn −→ 0, n −→ ∞. (4.2.57)

Since

lim infn−→∞ φ(xn, x0) = lim infn−→∞{‖xn‖
2 − 2〈xn, Jx0〉 + ‖x0‖

2}

≥ ‖p‖2 − 2〈p, Jx0〉 + ‖x0‖
2 = φ(p, x0),

it follows that

φ(p, x0) ≤ lim inf
n−→∞

φ(xn, x0) ≤ lim sup
n−→∞

φ(xn, x0) ≤ φ(p, x0).

This implies that limn−→∞ φ(xn, x0) = φ(p, x0). Hence, we get ‖xn‖ −→ ‖p‖ as
n −→ ∞. In view of the Kadec-Klee property of E, we obtain that

lim
n−→∞

xn = p.

Now, we claim that ‖Jun − Jxn‖ → 0, as n → ∞. By definition of ΠCn
x0, one

has
φ(xn+1, xn) = φ(xn+1, ΠCn

x0)

≤ φ(xn+1, x0) − φ(ΠCn
x0, x0)

= φ(xn+1, x0) − φ(xn, x0).

From the lim
n→∞

φ(xn, x0) exists, we obtain

lim
n→∞

φ(xn+1, xn) = 0. (4.2.58)

Since xn+1 = ΠCn+1
x0 ∈ Cn+1 ⊂ Cn and the definition of Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn) + ζn.

By (4.2.57) and (4.2.89), we also have

lim
n→∞

φ(xn+1, un) = 0. (4.2.59)
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From (3.2.3), we see that

‖un‖ −→ ‖p‖, as n −→ ∞. (4.2.60)

It follows that
‖Jun‖ −→ ‖Jp‖, as n −→ ∞. (4.2.61)

This implies that {‖Jun‖} is bounded in E∗. Note that E is reflexive and E∗ is also
reflexive, we can assume that Jun ⇀ x∗ ∈ E∗. In view of the reflexive of E, wee see
that J(E) = E∗. Hence there exist x ∈ E such that Jx = x∗. It follows that

φ(xn+1, un) = ‖xn+1‖
2 − 2〈xn+1, Jun〉 + ‖un‖

2

= ‖xn+1‖
2 − 2〈xn+1, Jun〉 + ‖Jun‖

2.

Taking lim infn−→∞ on the both sides of equation above and in view of the weak lower
semicontinuity of norm ‖ · ‖, it yields that

0 ≥ ‖p‖2 − 2〈p, x∗〉 + ‖x∗‖2

= ‖p‖2 − 2〈p, Jx〉 + ‖Jx‖2

= ‖p‖2 − 2〈p, Jx〉 + ‖x‖2

= φ(p, x).

Thai is, p = x, which implies that x∗ = Jp. It follows that Jun ⇀ Jq ∈ E∗. Since
(3.2.3) and the Kadec-Klee property of E that

lim
n−→∞

un = p. (4.2.62)

Since ‖xn − un‖ ≤ ‖xn − p‖ + ‖p − un‖. It follows that

lim
n−→∞

‖xn − un‖ = 0. (4.2.63)

From J is uniformly norm-to-norm continuous on bounded subsets of E, we obtain

lim
n→∞

‖Jun − Jxn‖ = 0. (4.2.64)

Next, we will show that p ∈ F := GMEP (f, B, ϕ) ∩ (∩∞
i=1F (Si)).

(a) First, we show that p ∈ GMEP (f, B, ϕ). It follows from (4.2.79) and (4.2.52),
that φ(p, yn) ≤ φ(p, xn) + ζn. By (4.2.57) and un = Krn

yn, we have

φ(un, yn) = φ(Krn
yn, yn)

≤ φ(p, yn) − φ(p, Krn
yn)

≤ φ(p, xn) − φ(p, Krn
yn) + ζn

= φ(p, xn) − φ(p, un) + ζn −→ 0 as n −→ ∞.

(4.2.65)
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From (3.2.3), we see that

‖un‖ −→ ‖yn‖, as n −→ ∞. (4.2.66)

In view of un −→ p as n −→ ∞, wee see that

‖yn‖ −→ ‖p‖, as n −→ ∞. (4.2.67)

It follows that
‖Jun‖ −→ ‖Jp‖, as n −→ ∞. (4.2.68)

Since E∗ is reflexive, we may assume that Jyn ⇀ z∗ ∈ E∗. In view of the reflexive
of E, wee see that J(E) = E∗. Hence there exist z ∈ E such that Jz = z∗. It follows
that

φ(un, yn) = ‖un‖
2 − 2〈un, Jyn〉 + ‖yn‖

2

= ‖un‖
2 − 2〈un, Jyn〉 + ‖Jyn‖

2.

Taking lim infn−→∞ on the both sides of equality above yields that

0 ≥ ‖p‖2 − 2〈p, z∗〉 + ‖z∗‖2

= ‖p‖2 − 2〈p, Jz〉 + ‖Jz‖2

= ‖p‖2 − 2〈p, Jz〉 + ‖z‖2

= φ(p, x).

Thai is, p = z, which implies that z∗ = Jp. It follows that Jyn ⇀ Jq ∈ E∗. Since
(3.2.3) and the Kadec-Klee property of E that

Jyn − Jp −→ 0 as n −→ ∞. (4.2.69)

Since J−1 is norm-weak*-continuous. It follows that yn ⇀ p. Since (4.2.67) and E

enjoys the KKadec-Klee property, we obtain that

yn −→ p as n −→ ∞. (4.2.70)

It follows by (4.2.62) and (4.2.70), that

lim
n→∞

‖un − yn‖ = 0. (4.2.71)

Since J is uniformly norm-to-norm continuous, we get

lim
n→∞

‖Jun − Jyn‖ = 0. (4.2.72)

From (A2), that

ϕ(y) − ϕ(un) + 〈Byn, y − un〉 + 1
rn
〈y − un, Jun − Jyn〉 ≥ −f(un, y) ≥ f(y, un), ∀y ∈ C,
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and hence

ϕ(y) − ϕ(un) + 〈Byn, y − un〉 + 〈y − un,
Jun−Jyn

rn
〉 ≥ f(y, un), ∀y ∈ C. (4.2.73)

For t with 0 < t < 1 and y ∈ C, let yt = ty + (1 − t)p. Then yt ∈ C and hence

0 ≥ −ϕ(yt) + ϕ(un) − 〈Byn, yt − un〉 − 〈yt − un,
Jun−Jyn

rn
〉 + f(yt, un), ∀y ∈ C.

It follows that
〈Byt, yt − un〉 ≥ 〈Byt, yt − un〉 − ϕ(yt) + ϕ(un) − 〈Byn, yt − un〉 − 〈yt − un,

Jun−Jyn

rn
〉

+f(yt, un), ∀yt ∈ C

= 〈Byt, yt − un〉 − ϕ(yt) + ϕ(un) − 〈Bun, yt − un〉 + 〈Bun, yt − un〉

−〈Byn, yt − un〉 − 〈yt − un, Jun−Jyn

rn
〉 + f(yt, un), ∀yt ∈ C

= 〈Byt − Bun, yt − un〉 − ϕ(yt) + ϕ(un)

+〈Bun − Byn, yt − un〉 − 〈yt − un, Jun−Jyn

rn
〉 + f(yt, un), ∀yt ∈ C.

By (4.2.97), we get un → p and yn → p as n → ∞. By the continuity of B, we obtain
that Bun − Byn → 0 as n → ∞. From rn > 0 then ‖Jun−Jyn‖

rn
→ 0 as n → ∞. Since

B is monotone, we know that 〈Byt − Bun, yt − un〉 ≥ 0. Thus, it follows from (A4)
that

f(yt, p) − ϕ(yt) + ϕ(p) ≤ lim inf
n→∞

f(yt, un) − ϕ(yt) + ϕ(un)

≤ lim
n→∞

〈Byt, yt − un〉

= 〈Byt, yt − p〉.

From the conditions (A1) and (A4), we obtain

0 = f(yt, yt) + ϕ(yt) − ϕ(yt)

≤ tf(yt, y) + (1 − t)f(yt, p) + tϕ(y) + (1 − t)ϕ(p) − ϕ(yt)

= tf(yt, y) + tϕ(y) − tϕ(yt) + (1 − t)f(yt, p) + (1 − t)ϕ(p) − (1 − t)ϕ(yt)

≤ t(f(yt, y) + ϕ(y) − ϕ(yt)) + (1 − t)(〈Byt, yt − p〉

≤ t(f(yt, y) + ϕ(y) − ϕ(yt)) + (1 − t)t〈Byt, y − p〉

dividing by t, we get

0 ≤ f(yt, y) + ϕ(y) − ϕ(yt) + (1 − t)〈Byt, y − p〉.

Letting t → 0, we have

0 ≤ f(p, y) + ϕ(y) − ϕ(p) + 〈Bp, y − p〉, ∀y ∈ C.

This implies that p ∈ GMEP (f, B, ϕ).
(b) We show that p ∈ ∩∞

i=1F (Si). For any j ≥ 1 and any q ∈ F , it follows from
(4.2.79), (4.2.52) and (4.2.3) that

αn,0αn,jg(‖Jxn − JSn
j xn‖) ≤ φ(q, xn) − φ(q, un) + ζn −→ 0, n −→ ∞.
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From the condition lim infn−→∞ αn,0αn,i > 0, we see that

g(‖Jxn − JSn
j xn‖) −→ 0, n −→ ∞.

It follows from the property of g that

limn→∞ ‖Jxn − JSn
i xn‖ = 0, ∀i ≥ 1. (4.2.74)

Since xn −→ p and J is uniformly continuous, it yields Jxn −→ Jp. Thus from
(4.2.113), we have

JSn
i xn −→ Jp, ∀i ≥ 1. (4.2.75)

Since J−1 : E∗ −→ E is norm-weak∗-continuous, we also have

Sn
i xn ⇀ p, ∀i ≥ 1. (4.2.76)

On the other hand, for each i ≥ 1, we observe that

|‖Sn
i xn‖ − ‖p‖| = |‖J(Sn

i xn)‖ − ‖Jp‖| ≤ ||J(Sn
i xn) − Jp||.

In view of (4.2.114), we obtain ‖Sn
i xn‖ −→ ‖p‖ for each i ≥ 1. Since E has the

Kadee-Klee property, we get

Sn
i xn −→ p for each i ≥ 1.

By the assumption that for each i ≥ 1, Si is uniformly Li-Lipschitz continuous, so we
have

‖Sn+1
i xn − Sn

i xn‖ ≤ ‖Sn+1
i xn − Sn+1

i xn+1‖ + ‖Sn+1
i xn+1 − xn+1‖ + ‖xn+1 − xn‖

+‖xn − Sn
i xn‖

≤ (Li + 1)‖xn+1 − xn‖ + ‖Sn+1
i xn+1 − xn+1‖ + ‖xn − Sn

i xn‖.
(4.2.77)

By (4.2.62) and (4.2.115), it yields that ‖Sn+1
i xn −Sn

i xn‖ → 0. From Sn
i xn −→ p, we

get Sn+1
i xn → p, that is SiS

n
i xn → p. In view of closeness of Si, we have Sip = p, for

all i ≥ 1. This imply that p ∈ ∩∞
i=1F (Si).

Finally, we show that xn −→ p = ΠF x0. Let q = ΠFx0. From xn = ΠCn
x0 and

q ∈ F ⊂ Cn, we have
φ(xn, x0) ≤ φ(q, x0), ∀n ≥ 0.

This implies that
φ(p, x0) = lim

n−→∞
φ(xn, x0) ≤ φ(q, x0).

By definition of p = ΠF x0, we have p = q. Therefore xn −→ p = ΠF x0. This
completes the proof. �
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4.2.3 Convergence theorems for mixed equilibrium problems and vari-
ational inequality problems

In this section, we prove the new convergence theorems for finding the set of solutions
of a mixed equilibrium problem, the common fixed point set of a family of closed
and uniformly quasi-φ-asymptotically nonexpansive mappings, and the solution set of
variational inequalities for an α-inverse strongly monotone mapping in a 2-uniformly
convex and uniformly smooth Banach space.

Theorem 4.2.4. Let C be a nonempty closed and convex subset of a 2-uniformly
convex and uniformly smooth Banach space E. Let f be a bifunction from C × C

to R satisfying (A1)-(A4) and ϕ : C → R is convex and lower semi-continuous.
Let A be an α-inverse-strongly monotone mapping of C into E∗ satisfying ‖Ay‖ ≤

‖Ay − Au‖, ∀y ∈ C and u ∈ V I(A, C) 6= ∅. Let {Si}
∞
i=1 : C → C be an

infinite family of closed uniformly Li-Lipschitz continuous and uniformly quasi-φ-
asymptotically nonexpansive mappings with a sequence {kn} ⊂ [1,∞), kn → 1 such
that F := ∩∞

i=1F (Si) ∩MEP (f, ϕ) ∩ V I(A, C) is a nonempty and bounded subset in
C. For an initial point x0 ∈ E and C1 = C, we define the sequence {xn} as follows:






vn = ΠCJ−1(Jxn − λnAxn),

zn = J−1(αn,0Jxn +
∑∞

i=1 αn,iJSn
i vn),

yn = J−1(βnJxn + (1 − βn)Jzn),

f(un, y) + ϕ(y) − ϕ(un) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, zn) ≤ φ(z, xn) + θn},

xn+1 = ΠCn+1
x0, ∀n ≥ 0,

(4.2.78)

where θn = supq∈F (kn − 1)φ(q, xn), for each i ≥ 0, {αn,i}, {βn} are sequences in
[0, 1], {rn} ⊂ [d,∞) for some d > 0 and {λn} ⊂ [a, b] for some a, b with 0 < a <

b < c2α/2, where 1
c

is the 2-uniformly convexity constant of E. If
∑∞

i=0 αn,i = 1 for
all n ≥ 0, lim infn−→∞(1 − βn) > 0 and lim infn−→∞ αn,0αn,i > 0 for all i ≥ 1, then
{xn} converges strongly to p ∈ F , where p = ΠF x0.

Proof . We first show that Cn+1 is closed and convex for each n ≥ 0. Clearly
C1 = C is closed and convex. Suppose that Cn is closed and convex for each
n ∈ N. Since for any z ∈ Cn, we known φ(z, un) ≤ φ(z, xn) + θn is equivalent to
2〈z, Jxn − Jun〉 ≤ ‖xn‖

2 − ‖un‖
2 + θn. So, Cn+1 is closed and convex.

Next, we show that F ⊂ Cn for all n ≥ 0. Indeed, put un = Trn
yn for all n ≥ 0. On

the other hand, one has Trn
is relatively quasi-nonexpansive mappings and F ⊂C1=C.

Suppose F ⊂ Cn for n ∈ N, by the convexity of ‖ · ‖2, property of φ and by uniformly
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quasi-φ-asymptotically nonexpansive of Sn for each q ∈ F ⊂ Cn, we have

φ(q, un) = φ(q, Trn
yn)

≤ φ(q, yn)

= φ(q, J−1(βnJxn + (1 − βn)Jzn)

= ‖q‖2 − 2〈q, βnJxn + (1 − βn)Jzn〉 + ‖βnJxn + (1 − βn)Jzn‖
2

≤ ‖q‖2 − 2βn〈q, Jxn〉 − 2(1 − βn)〈q, Jzn〉 + βn‖xn‖
2 + (1 − βn)‖zn‖

2

= βnφ(q, xn) + (1 − βn)φ(q, zn) (4.2.79)

and

φ(q, zn) = φ(q, J−1(αn,0Jxn +
∑∞

i=1 αn,iJSn
i vn))

= ‖q‖2 − 2〈q, αn,0Jxn +
∑∞

i=1 αn,iJSn
i vn〉 + ‖αn,0Jxn +

∑∞
i=1 αn,iJSn

i vn‖
2

= ‖q‖2 − 2αn,0〈q, Jxn〉 − 2
∑∞

i=1 αn,i〈q, JSn
i vn〉 + ‖αn,0Jxn +

∑∞
i=1 αn,iJSn

i vn‖
2

≤ ‖q‖2 − 2αn,0〈q, Jxn〉 − 2
∑∞

i=1 αn,i〈q, JSn
i vn〉 + αn,0‖Jxn‖

2 +
∑∞

i=1 αn,i‖JSn
i vn‖

2

−αn,0αn,jg‖Jvn − JSn
j vn‖

= ‖q‖2 − 2αn,0〈q, Jxn〉 + αn,0‖Jxn‖
2 − 2

∑∞
i=1 αn,i〈q, JSn

i vn〉

+
∑∞

i=1 αn,i‖JSn
i vn‖

2 − αn,0αn,jg‖Jvn − JSn
j vn‖

= αn,0φ(q, xn) +
∑∞

i=1 αn,iφ(q, Sn
i vn) − αn,0αn,jg‖Jvn − JSn

j vn‖

≤ αn,0φ(q, xn) +
∑∞

i=1 αn,iknφ(q, vn) − αn,0αn,jg‖Jvn − JSn
j vn‖.

It follows that

φ(q, vn) = φ(q, ΠCJ−1(Jxn − λnAxn))

≤ φ(q, J−1(Jxn − λnAxn))

= V (q, Jxn − λnAxn)

≤ V (q, (Jxn − λnAxn) + λnAxn) − 2〈J−1(Jxn − λnAxn) − q, λnAxn〉

= V (q, Jxn) − 2λn〈J
−1(Jxn − λnAxn) − q, Axn〉

= φ(q, xn) − 2λn〈xn − q, Axn〉 + 2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉.

Since q ∈ V I(A, C) and A is an α-inverse-strongly monotone mapping, we have

−2λn〈xn − q, Axn〉 = −2λn〈xn − q, Axn − Aq〉 − 2λn〈xn − q, Aq〉

≤ −2λn〈xn − q, Axn − Aq〉

≤ −2αλn‖Axn − Aq‖2.

(4.2.80)
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From ‖Axn‖ ≤ ‖Axn − Aq‖, ∀q ∈ V I(A, C), we also have

2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉 = 2〈J−1(Jxn − λnAxn) − J−1(Jxn),−λnAxn〉

≤ 2‖J−1(Jxn − λnAxn) − J−1(Jxn)‖‖λnAxn‖

≤ 4
c2
‖JJ−1(Jxn − λnAxn) − JJ−1(Jxn)‖‖λnAxn‖

= 4
c2
‖Jxn − λnAxk − Jxn‖‖λnAxn‖

= 4
c2
‖λnAxn‖

2

= 4
c2

λ2
n‖Axn‖

2

≤ 4
c2

λ2
n‖Axn − Aq‖2.

(4.2.81)
Substituting (4.2.80) and (4.2.81) into (4.2.3), we obtain

φ(q, vn) ≤ φ(q, xn) − 2αλn‖Axn − Aq‖2 + 4
c2

λ2
n‖Axn − Aq‖2

= φ(q, xn) + 2λn(
2
c2

λn − α)‖Axn − Aq‖2

≤ φ(q, xn).

(4.2.82)

Substituting (4.2.82) into (4.2.3), we also have

φ(q, zn) ≤ αn,0φ(q, xn) +
∑∞

i=1 αn,iknφ(q, xn) − αn,0αn,jg‖Jvn − JSn
j vn‖

≤ αn,0knφ(q, xn) +
∑∞

i=1 αn,iknφ(q, xn) − αn,0αn,jg‖Jvn − JSn
j vn‖

= knφ(q, xn) − αn,0αn,jg‖Jvn − JSn
j vn‖

≤ φ(q, xn) + supq∈F (kn − 1)φ(q, xn) − αn,0αn,jg‖Jvn − JSn
j vn‖

= φ(q, xn) + θn − αn,0αn,jg‖Jvn − JSn
j vn‖

≤ φ(q, xn) + θn.
(4.2.83)

and substituting (4.2.83) into (4.2.79), we also have

φ(q, un) ≤ φ(q, xn) + θn. (4.2.84)

This show that q ∈ Cn+1 implies that F ⊂ Cn+1 and hence, F ⊂ Cn for all
n ≥ 0. This implies that the sequence {xn} is well defined. Since xn = ΠCn

x0 and
xn+1 = ΠCn+1

x0 ⊂ Cn+1 ⊂ Cn, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0. (4.2.85)

Then, we get
φ(xn, x0) = φ(ΠCn

x0, x0)

≤ φ(q, x0) − φ(q, xn)

≤ φ(q, x0), ∀q ∈ F.

(4.2.86)

From (4.2.85) and (4.2.86), then {φ(xn, x0)} are nondecreasing and bounded. So, we
obtain that lim

n→∞
φ(xn, x0) exists. In particular, by (3.2.3), the sequence {(‖xn‖−‖x0‖)

2}

is bounded. This implies {xn}, {vn}, {un}, {yn} and {zn} are also bounded. Denote

M = sup
n≥0

{‖xn‖} < ∞. (4.2.87)
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Moreover, by the definition of {θn} and (5.1.21), it follows that

θn −→ 0 as n −→ ∞. (4.2.88)

Next, we show that {xn} is a Cauchy sequence in C. Since xm = ΠCm
x0 ∈ Cm ⊂

Cn, for m > n, we have

φ(xm, xn) = φ(xm, ΠCn
x0)

≤ φ(xm, x0) − φ(ΠCn
x0, x0)

= φ(xm, x0) − φ(xn, x0).

Since limn−→∞ φ(xn, x0) exists and we taking m, n → ∞ then, we get φ(xm, xn) → 0.
Then, we have limn→∞ ‖xm − xn‖ = 0. Thus {xn} is a Cauchy sequence and by the
completeness of E and there exist a point p ∈ C such that xn → p as n → ∞.
Now, we claim that ‖Jun − Jxn‖ → 0, as n → ∞. By definition of ΠCn

x0, we
have

φ(xn+1, xn) = φ(xn+1, ΠCn
x0)

≤ φ(xn+1, x0) − φ(ΠCn
x0, x0)

= φ(xn+1, x0) − φ(xn, x0).

Since lim
n→∞

φ(xn, x0) exists, we also have

lim
n→∞

φ(xn+1, xn) = 0. (4.2.89)

It follows that
lim

n→∞
‖xn+1 − xn‖ = 0. (4.2.90)

From J is uniformly norm-to-norm continuous on bounded subsets of E, we obtain

lim
n→∞

‖Jxn+1 − Jxn‖ = 0. (4.2.91)

Since xn+1 = ΠCn+1
x0 ∈ Cn+1 ⊂ Cn and the definition of Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn) + θn.

By (4.2.89), that
lim

n→∞
φ(xn+1, un) = 0. (4.2.92)

Then, we have
lim

n→∞
‖xn+1 − un‖ = 0. (4.2.93)

Since
‖un − xn‖ = ‖un − xn+1 + xn+1 − xn‖

≤ ‖un − xn+1‖ + ‖xn+1 − xn‖
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It follows that
lim

n→∞
‖un − xn‖ = 0. (4.2.94)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we also have

lim
n→∞

‖Jun − Jxn‖ = 0. (4.2.95)

Next, we will show that p ∈ F := MEP (f, ϕ) ∩ (∩∞
i=1F (Si)) ∩ V I(A, C).

(a) First, we show that p ∈ MEP (f, ϕ). From (4.2.79)-(4.2.83) and (4.2.88), we
get φ(q, yn) ≤ φ(q, xn). Sine un = Trn

yn, we observe that

φ(un, yn) = φ(Trn
yn, yn)

≤ φ(q, yn) − φ(q, Trn
yn)

≤ φ(q, xn) − φ(q, Trn
yn)

= φ(q, xn) − φ(q, un)

= ‖q‖2 − 2〈q, Jxn〉 + ‖xn‖
2 − (‖q‖2 − 2〈q, Jun〉 + ‖un‖

2)

= ‖xn‖
2 − ‖un‖

2 − 2〈q, Jxn − Jun〉

≤ ‖xn − un‖(‖xn‖ + ‖un‖) + 2‖q‖‖Jxn − Jun‖.

(4.2.96)

From (4.2.94) and (4.2.95), we have

lim
n→∞

‖un − yn‖ = 0. (4.2.97)

Again since J is uniformly norm-to-norm continuous, we also have

lim
n→∞

‖Jun − Jyn‖ = 0. (4.2.98)

From (A2), that

ϕ(y) − ϕ(un) + 1
rn
〈y − un, Jun − Jyn〉 ≥ f(y, un), ∀y ∈ C,

ϕ(y) − ϕ(un) + 〈y − un, (Jun−Jyn)
rn

〉 ≥ f(y, un), ∀y ∈ C.

From rn > 0 then ‖Jun−Jyn‖
rn

→ 0 and un → p as n → ∞, we obtain

f(y, p) + ϕ(p) − ϕ(y) ≤ 0.

For t with 0 < t < 1 and y ∈ C, let yt = ty + (1 − t)p. Then yt ∈ C and hence
f(yt, p)+ϕ(p)−ϕ(yt) ≤ 0. By the conditions (A1), (A4) and convexity of ϕ, we have

0 = f(yt, yt) + ϕ(yt) − ϕ(yt)

≤ tf(yt, y) + (1 − t)f(yt, p) + tϕ(y) + (1 − t)ϕ(p) − ϕ(yt)

≤ t(f(yt, y) + ϕ(y) − ϕ(yt)) + (1 − t)(f(yt, p) + ϕ(p) − ϕ(yt))

≤ t[f(yt, y) + ϕ(y) − ϕ(yt)].
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From (A3) and the weakly lower semicontinuity of ϕ, we also have f(p, y) + ϕ(y) −

ϕ(p) ≥ 0, ∀y ∈ C. This implies p ∈ MEP (f, ϕ).
(b) We show that p ∈ ∩∞

i=1F (Si). From definition of Cn+1, we have φ(z, zn) ≤

φ(z, xn) + θn. Since xn+1 = ΠCn+1
x0 ∈ Cn+1, we get φ(xn+1, zn) ≤ φ(xn+1, xn) + θn.

It follows from (4.2.89), that

lim
n→∞

φ(xn+1, zn) = 0 (4.2.99)

it follows that
lim

n→∞
‖xn+1 − zn‖ = 0. (4.2.100)

Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞

‖Jxn+1 − Jzn‖ = 0. (4.2.101)

From (4.2.78), we note that

‖Jxn+1 − Jzn‖ = ‖Jxn+1 − (αn,0Jxn +
∑∞

i=1 αn,iJSn
i vn)‖

= ‖αn,0Jxn+1 − αn,0Jxn +
∑∞

i=1 αn,iJxn+1 −
∑∞

i=1 αn,iJSn
i vn‖

= ‖αn,0(Jxn+1 − Jxn) +
∑∞

i=1 αn,i(Jxn+1 − JSn
i vn)‖

= ‖
∑∞

i=1 αn,i(Jxn+1 − JSn
i vn) − αn,0(Jxn − Jxn+1)‖

≥
∑∞

i=1 αn,i‖Jxn+1 − JSn
i vn‖ − αn,0‖Jxn − Jxn+1‖,

and hence

‖Jxn+1 − JSn
i vn‖ ≤ 1P

∞

i=1
αn,i

(‖Jxn+1 − Jzn‖ + αn,0‖Jxn − Jxn+1‖). (4.2.102)

From (4.2.91), (4.2.101) and lim inf
n→∞

∑∞
i=1 αn,i > 0, we obtain that

lim
n→∞

‖Jxn+1 − JSn
i vn‖ = 0. (4.2.103)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn+1 − Sn
i vn‖ = 0. (4.2.104)

Using the triangle inequality, that

‖xn − Sn
i vn‖ = ‖xn − xn+1 + xn+1 − Sn

i vn‖

≤ ‖xn − xn+1‖ + ‖xn+1 − Sn
i vn‖.

From (4.2.90) and (4.2.104), we have

lim
n→∞

‖xn − Sn
i vn‖ = 0. (4.2.105)

On the other hand, we note that

φ(q, xn) − φ(q, un) + θn = ‖xn‖
2 − ‖un‖

2 − 2〈q, Jxn − Jun〉 + θn.
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It follows from θn −→ 0, ‖xn − un‖ −→ 0 and ‖Jxn − Jun‖ −→ 0, that

φ(q, xn) − φ(q, un) + θn −→ 0 as n −→ ∞. (4.2.106)

From (4.2.79), (4.2.3) and (4.2.82), that

φ(q, un) ≤ φ(q, yn)

≤ βnφ(q, xn) + (1 − βn)φ(q, zn)

≤ βnφ(q, xn) + (1 − βn)[αn,0φ(q, xn) +
∑∞

i=1 αn,iknφ(q, vn)

−αn,0αn,jg‖Jvn − JSn
j vn‖]

= βnφ(q, xn) + (1 − βn)αn,0φ(q, xn) + (1 − βn)
∑∞

i=1 αn,iknφ(q, vn)

−(1 − βn)αn,0αn,jg‖Jvn − JSn
j vn‖

≤ βnφ(q, xn) + (1 − βn)αn,0φ(q, xn) + (1 − βn)
∑∞

i=1 αn,iknφ(q, vn)

≤ βnφ(q, xn) + (1 − βn)αn,0φ(q, xn)

+(1 − βn)
∑∞

i=1 αn,ikn[φ(q, xn) − 2λn(α − 2
c2

λn)‖Axn − Aq‖2]

≤ βnφ(q, xn) + (1 − βn)αn,0knφ(q, xn) + (1 − βn)
∑∞

i=1 αn,iknφ(q, xn)

−(1 − βn)
∑∞

i=1 αn,ikn2λn(α − 2
c2

λn)‖Axn − Aq‖2

= βnknφ(q, xn) + (1 − βn)knφ(q, xn)

−(1 − βn)
∑∞

i=1 αn,ikn2λn(α − 2
c2

λn)‖Axn − Aq‖2

≤ knφ(q, xn)

−(1 − βn)
∑∞

i=1 αn,ikn2λn(α − 2
c2

λn)‖Axn − Aq‖2]

≤ φ(q, xn) + supq∈F (kn − 1)φ(q, xn)

−(1 − βn)
∑∞

i=1 αn,ikn2λn(α − 2
c2

λn)‖Axn − Aq‖2

≤ φ(q, xn) + θn − (1 − βn)
∑∞

i=1 αn,ikn2λn(α − 2
c2

λn)‖Axn − Aq‖2

and hence

2a(α − 2b
c2

)‖Axn − Aq‖2 ≤ 2λn(α − 2
c2

λn)‖Axn − Aq‖2

≤ 1
(1−βn)

P
∞

i=1 αn,ikn
(φ(q, xn) − φ(q, un) + θn).

(4.2.107)

From (4.2.106), {λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, lim infn−→∞(1 −

βn) > 0 and lim infn−→∞ αn,0αn,i > 0, for i ≥ 0 and kn −→ 1 as n −→ ∞, we obtain
that

lim
n→∞

‖Axn − Aq‖ = 0. (4.2.108)
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From (4.2.81), we compute

φ(xn, vn) = φ(xn, ΠCJ−1(Jxn − λnAxn))

≤ φ(xn, J−1(Jxn − λnAxn))

= V (xn, Jxn − λnAxn)

≤ V (xn, (Jxn − λnAxn) + λnAxn) − 2〈J−1(Jxn − λnAxn) − xn, λnAxn〉

= φ(xn, xn) + 2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉

= 2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉

≤ 4λ2
n

c2
‖Axn − Aq‖2

≤ 4b2

c2
‖Axn − Aq‖2.

Applying by (4.2.108) that
lim

n→∞
‖xn − vn‖ = 0 (4.2.109)

and we also obtain
lim

n→∞
‖Jxn − Jvn‖ = 0 (4.2.110)

From Sn
i is continuous, for any i ≥ 1

lim
n→∞

‖Sn
i xn − Sn

i vn‖ = 0. (4.2.111)

Again by the triangle inequality, we get

‖xn − Sn
i xn‖ ≤ ‖xn − Sn

i vn‖ + ‖Sn
i vn − Sn

i xn‖.

From (4.2.105) and (4.2.111), we have

lim
n→∞

‖xn − Sn
i xn‖ = 0, ∀i ≥ 1. (4.2.112)

Since J is uniformly continuous on any bounded subset of E, we obtain

limn→∞ ‖Jxn − JSn
i xn‖ = 0, ∀i ≥ 1. (4.2.113)

Since xn −→ p and J is uniformly continuous, it yields Jxn −→ Jp. Thus from
(4.2.113), we get

JSn
i xn −→ Jp, ∀i ≥ 1. (4.2.114)

Since J−1 : E∗ −→ E is norm-weake*-continuous, we have

Sn
i xn ⇀ p, for each i ≥ 1. (4.2.115)

On the other hand, for each i ≥ 1, we have

|‖Sn
i xn‖ − ‖p‖| = |‖J(Sn

i xn)‖ − ‖Jp‖| ≤ ‖J(Sn
i xn) − Jp‖.
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In view of (4.2.114), we obtain ‖Sn
i xn‖ −→ ‖p‖ for each i ≥ 1. Since E is uniformly

convex Banach spaces then E has the Kadec-Klee property, we get

Sn
i xn −→ p for each i ≥ 1.

Moreover, by the assumption that ∀i ≥ 1, Si is uniformly Li-Lipschitz continuous,
hence we have.

‖Sn+1
i xn − Sn

i xn‖ ≤ ‖Sn+1
i xn − Sn+1

i xn+1‖ + ‖Sn+1
i xn+1 − xn+1‖

+‖xn+1 − xn‖ + ‖xn − Sn
i xn‖

≤ (Li + 1)‖xn+1 − xn‖ + ‖Sn+1
i xn+1 − xn+1‖ + ‖xn − Sn

i xn‖.

By (4.2.90) and (4.2.112), it yields that ‖Sn+1
i xn −Sn

i xn‖ → 0. From Sn
i xn −→ p, we

have Sn+1
i xn → p, that is SiS

n
i xn → p. In view of closeness of Si, we have Sip = p,

for all i ≥ 1. This imply that p ∈ ∩∞
i=1F (Si).

(c) We show that p ∈ V I(A, C). Indeed, define B ⊂ E × E∗ by

Bv =

{
Av + NC(v), v ∈ C;

∅, v /∈ C.
(4.2.116)

Since B is maximal monotone and B−10 = V I(A, C). Let (v, w) ∈ G(B). Since
w ∈ Bv = Av + NC(v), we get w − Av ∈ NC(v).
From vn ∈ C, we have

〈v − vn, w − Av〉 ≥ 0. (4.2.117)

On the other hand, since vn = ΠCJ−1(Jxn − λnAxn). Then by Lemma ??, we have

〈v − vn, Jvn − (Jxn − λnAxn)〉 ≥ 0,

and thus
〈v − vn, Jxn−Jvn

λn
− Axn〉 ≤ 0. (4.2.118)

It follows from (4.2.117), (4.2.118) and A is monotone and 1
α
-Lipschitz continuous,

that

〈v − vn, w〉 ≥ 〈v − vn, Av〉

≥ 〈v − vn, Av〉 + 〈v − vn, Jxn−Jvn

λn
− Axn〉

= 〈v − vn, Av − Axn〉 + 〈v − vn, Jxn−Jvn

λn
〉

= 〈v − vn, Av − Avn〉 + 〈v − vn, Avn − Axn〉 + 〈v − vn, Jxn−Jvn

λn
〉

≥ −‖v − vn‖
‖vn−xn‖

α
− ‖v − vn‖

‖Jxn−Jvn‖
a

≥ −G(‖vn−xn‖
α

+ ‖Jxn−Jvn‖
a

),

where G = supn≥1 ‖v − vn‖. By (4.2.109), (4.2.110) and take the limit as n → ∞, we
obtain 〈v−p, w〉 ≥ 0. By the maximality of B we have p ∈ B−10, that is p ∈ V I(A, C).
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Finally, we show that p = ΠF x0. From xn = ΠCn
x0, we have 〈Jx0−Jxn, xn−z〉 ≥

0, ∀z ∈ Cn. Since F ⊂ Cn, we also have

〈Jx0 − Jxn, xn − y〉 ≥ 0, ∀y ∈ F.

Taking limit n → ∞, we obtain

〈Jx0 − Jp, p − y〉 ≥ 0, ∀y ∈ F.

Then, we can conclude that p = ΠFx0 and xn → p as n → ∞. This completes the
proof. �



บทท่ี 5

Variational Inequality Problems

5.1 Generalized Systems of Variational Inequalities for In-
verse Strongly Monotone Operators

Consider the following problem of finding (x∗, y∗) ∈ E ×E such that (see cf. Ceng et
al. (2008) [299].)





〈λAy∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ E,

〈µBx∗ + y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ E,
(5.1.1)

which is called general system of variational inequalities (GSVI) where λ > 0 and
µ > 0 are two constants. In particular, if A = B, then problem (5.1.1) reduces to
finding (x∗, y∗) ∈ E × E such that





〈λAy∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ E,

〈µAx∗ + y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ E,
(5.1.2)

which is defined by Verma (1999) [309] and Verma (2001) [310], and is called
the new system of variational inequalities. Further, if x∗ = y∗, then problem (5.1.2)
reduces to the classical variational inequality V I(A, E) i.e., find x∗ ∈ E such that
〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ E

We can characteristic problem, if x∗ ∈ F (S) ∩ V I(A, E), then it follows that
x∗ = Sx∗ = PE[x∗ − ρAx∗], where ρ > 0 is a constant.
In 2008 Ceng et al [299], introduced a relaxed extragradient method for finding

solutions of problem (5.1.1). Let the mappings A, B : E −→ H be α-inverse-strongly
monotone and β-inverse-strongly monotone, respectively. Let S : E −→ E be a
nonexpansive mapping. Suppose x1 = u ∈ E and {xn} is generated by




yn = PE(xn − µBxn),

xn+1 = αnu + βnxn + γnSPE(yn − λnAyn),
(5.1.3)
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where λ ∈ (0, 2α), µ ∈ (0, 2β), and {αn}, {βn}, {γn} are three sequence in [0, 1] such
that αn + βn + γn = 1, ∀n ≥ 1. First, problem (5.1.1) is proven to be equivalent to a
fixed point problem of nonexpansive mapping.
In this paper, motivation by above we consider generalized system of variational

inequalities as follows:
Let E be a nonempty closed convex subset of a real Hilbert space H . Let A, B, C :

E −→ H be three mappings. We consider the following problem of finding (x∗, y∗, z∗) ∈

E × E × E such that





〈λAy∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ E,

〈µBz∗ + y∗ − z∗, x − y∗〉 ≥ 0, ∀x ∈ E,

〈τCx∗ + z∗ − x∗, x − z∗〉 ≥ 0, ∀x ∈ E,

(5.1.4)

which is called a general system of variational inequalities where λ > 0, µ > 0 and
τ > 0 are three constants.
In particular, if A = B = C, then problem (5.1.4) reduces to finding (x∗, y∗, z∗) ∈

E × E × E such that





〈λAy∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ E,

〈µAz∗ + y∗ − z∗, x − y∗〉 ≥ 0, ∀x ∈ E,

〈τAx∗ + z∗ − x∗, x − z∗〉 ≥ 0, ∀x ∈ E.

(5.1.5)

Next, we consider some special classes of the GSVI problem (5.1.4) reduce to the
following GSVI:
(i) If τ = 0, then the GSVI problems (5.1.4) reduce to GSVI problem (5.1.1).
(ii) If τ = µ = 0, then the GSVI problems (5.1.4) reduce to classical variational
inequality VI(A,E) problem.
The above system enters a class of more general problems which originated mainly from
the Nash equilibrium points and was treated from a theoretical viewpoint in [300, 301].
Observe at the same time that, to construct a mathematical model which is as close
as possible to a real complex problem, we often have to use constraints which can be
expressed as one several subproblems of a general problem. These constrains can be
given for instance by variational inequalities, by fixed point problems or by problems
of different types.
This section deals with a relaxed extragradient approximation method for solving

a system of variational inequalities over the fixed-point sets of nonexpansive map-
ping. Under classical conditions, we prove a strong convergence theorem for method.
Moreover, the proposed algorithm can be applied for instance to solving the classical
variational inequality problems.
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In this section, we introduce an iterative precess by the relaxed extragradient ap-
proximation method for finding a common element of the set of fixed points of a
nonexpansive mapping and the solution set of the variational inequality problem for
three inverse-strongly monotone mappings in a real Hilbert space. We prove that the
iterative sequences converges strongly to a common element of the above two sets.
In order to prove our main result, the following lemmas are needed.

Lemma 5.1.1. For given x∗, y∗, z∗ ∈ E×E×E, (x∗, y∗, z∗) is a solution of problem
(5.1.4) if and only if x∗ is a fixed point of the mapping G : E −→ E defined by

G(x) = PE{PE[PE(x−τCx)−µBPE(x−τCx)]−λAPE [PE(x−τCx)−µBPE(x−τCx)]},

∀x ∈ E, where y∗ = PE(z∗ − µBz∗) and z∗ = PE(x∗ − τCx∗).

พิสูจน์. 




〈λAy∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ E,

〈µBz∗ + y∗ − z∗, x − y∗〉 ≥ 0, ∀x ∈ E,

〈τCx∗ + z∗ − x∗, x − z∗〉 ≥ 0, ∀x ∈ E,

⇔ 




〈(−y∗ + λAy∗) + x∗, x − x∗〉 ≥ 0, ∀x ∈ E,

〈(−z∗ + µBz∗) + y∗, x − y∗〉 ≥ 0, ∀x ∈ E,

〈(−x∗ + τCx∗) + z∗, x − z∗〉 ≥ 0, ∀x ∈ E,

⇔ 




〈(y∗ − λAy∗) − x∗, x∗ − x〉 ≥ 0, ∀x ∈ E,

〈(z∗ − µBz∗) − y∗, y∗ − x〉 ≥ 0, ∀x ∈ E,

〈(x∗ − τCx∗) − z∗, z∗ − x〉 ≥ 0, ∀x ∈ E,

⇔ 




x∗ = PE(y∗ − λAy∗)

y∗ = PE(z∗ − µBz∗)

z∗ = PE(x∗ − τCx∗),

⇔ x∗ = PE[PE(z∗ − µBz∗) − λAPE(z∗ − µBz∗)].
Thus

x∗ = PE{PE[PE(x∗−τCx∗)−µBPE(x∗−τCx∗)]−λAPE [PE(x∗−τCx∗)−µBPE(x∗−τCx∗)]}.

Lemma 5.1.2. The mapping G defined by Lemma 5.1.1 is nonexpansive mappings.
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พิสูจน์. For all x, y ∈ E

‖G(x) − G(y)‖

= ‖PE{PE[PE(x − τCx) − µBPE(x − τCx)] − λAPE [PE(x − τCx) − µBPE(x − τCx)]}

−PE{PE [PE(y − τCy) − µBPE(y − τCy)] − λAPE[PE(y − τCy) − µBPE(y − τCy)]}

≤ ‖
[
PE(x − τCx) − µBPE(x − τCx)

]
− λAPE

[
PE(x − τCx) − µBPE(x − τCx)

]

−
[
PE(y − τCy) − µBPE(y − τCy)

]
− λAPE

[
PE(y − τCy) − µBPE(y − τCy)

]
‖

= ‖(I − λA)[PE(x − τCx) − µBPE(x − τCx)] − (I − λA)[PE(y − τCy) − µBPE(y − τCy)]‖

≤ ‖[PE(x − τCx) − µBPE(x − τCx)] − [PE(y − τCy) − µBPE(y − τCy)]‖

= ‖(I − µB)[PE(x − τCx)] − (I − µB)[PE(y − τCy)]‖

≤ ‖PE(x − τCx) − PE(y − τCy)‖

≤ ‖(x − τCx) − (y − τCy)‖

= ‖(I − τC)(x) − (I − τC)(y)‖

≤ ‖x − y‖.

This shows that G : E −→ E is a nonexpansive mapping.

Throughout this paper, the set of fixed points of the mapping G is denoted by Γ.
Now, we are ready to proof our main results in this paper.

Theorem 5.1.3. Let E be a nonempty closed convex subset of a real Hilbert space
H . Let the mapping A, B, C : E −→ H be α-inverse-strongly monotone, β-inverse-
strongly monotone and γ-inverse-strongly monotone, respectively. Let S be a nonex-
pansive mapping of E into itself such that F (S) ∩ Γ 6= ∅. Let f be a contraction of
H into itself and given x1 ∈ H arbitrarily and {xn} is generated by






zn = PE(xn − τCxn)

yn = PE(zn − µBzn)

xn+1 = αnf(xn) + βnxn + γnSPE(yn − λAyn), n ≥ 0,

(5.1.6)

where λ ∈ (0, 2α), µ ∈ (0, 2β), τ ∈ (0, 2γ) and {αn}, {βn}, {γn} are three sequences
in [0, 1] such that

(i) αn + βn + γn = 1,

(ii) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞,

(iii) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1.

Then {xn} converges strongly to x̄ ∈ F (S)∩ Γ, where x̄ = PF (S)∩Γf(x̄) and (x̄, ȳ, z̄)

is a solution of problem (5.1.4), where
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ȳ = PE(z̄ − µBz̄) and

z̄ = PE(x̄ − τCx̄).

Proof . Let x∗ ∈ F (S) ∩ Γ. Then x∗ = Sx∗ and x∗ = Gx∗, i.e. ,

x∗ = PE{PE[PE(x∗−τCx∗)−µBPE(x∗−τCx∗)]−λAPE [PE(x∗−τCx∗)−µBPE(x∗−τCx∗)]}.

Put x∗ = PE(y∗ − λAy∗) and tn = PE(yn − λAyn). Then x∗ = PE [PE(z∗ − µBz∗) −

λAPE(z∗ − µBz∗)] implies that y∗ = PE(z∗ − µBz∗), where z∗ = PE(x∗ − τCx∗).
Since I − λA, I − µB and I − τC are nonexpansive mappings. We obtain that

‖tn − x∗‖ = ‖PE(yn − λAyn) − x∗‖

= ‖PE(yn − λAyn) − PE(y∗ − λAy∗)‖

≤ ‖(yn − λAyn) − (y∗ − λAy∗)‖

= ‖(I − λA)yn − (I − λA)y∗‖

≤ ‖yn − y∗‖ (5.1.7)
= ‖yn − PE(z∗ − µBz∗)‖

= ‖PE(zn − µBzn) − PE(z∗ − µBz∗)‖

≤ ‖(I − µB)zn − (I − µB)z∗‖

≤ ‖zn − z∗‖, (5.1.8)

and

‖zn − z∗‖ = ‖PE(xn − τCxn) − PE(x∗ − τCx∗)‖

≤ ‖(xn − τCxn) − (x∗ − τCx∗)‖

= ‖(I − τC)xn − (I − τC)x∗‖

≤ ‖xn − x∗‖. (5.1.9)

Substituting (5.1.9) into (5.1.8), we have

‖tn − x∗‖ ≤ ‖xn − x∗‖, (5.1.10)

and by (5.1.7) also have

‖yn − y∗‖ ≤ ‖xn − x∗‖. (5.1.11)



112

Since xn+1 = αnf(xn) + βnxn + γnStn, we compute

‖xn+1 − x∗‖ = ‖αnf(xn) + βnxn + γnStn − x∗‖

= ‖αn(f(xn) − x∗) + βn(xn − x∗) + γn(Stn − x∗)‖

≤ αn‖f(xn) − x∗‖ + βn‖xn − x∗‖ + γn‖Stn − x∗‖

≤ αn‖f(xn) − x∗‖ + βn‖xn − x∗‖ + γn‖tn − x∗‖

≤ αn‖f(xn) − x∗‖ + βn‖xn − x∗‖ + γn‖xn − x∗‖

= αn‖f(xn) − x∗‖ + (1 − αn)‖xn − x∗‖

= αn‖f(xn) − f(x∗) + f(x∗) − x∗‖ + (1 − αn)‖xn − x∗‖

≤ αn‖f(xn) − f(x∗)‖ + αn‖f(x∗) − x∗‖ + (1 − αn)‖xn − x∗‖

≤ αnk‖xn − x∗‖ + αn‖f(x∗) − x∗‖ + (1 − αn)‖xn − x∗‖

= (αnk + (1 − αn))‖xn − x∗‖ + αn‖f(x∗) − x∗‖

= (1 − αn(1 − k))‖xn − x∗‖ + αn‖f(x∗) − x∗‖

= (1 − αn(1 − k))‖xn − x∗‖ + αn(1 − k)
‖f(x∗) − x∗‖

(1 − k)
.

By induction, we get
‖xn+1 − x∗‖ ≤ M,

where M = max{‖x0−x∗‖+ 1
(1−k)

‖f(x∗)−x∗‖}, n ≥ 0. Therefore, {xn} is bounded.
Consequently, by (5.1.7),(5.1.8) and (5.1.9) the sequences {tn}, {Stn}, {yn}, {Ayn},

{zn}, {Bzn}, {Cxn} and {f(xn)} are also bounded. Also, we observe that

‖zn+1 − zn‖ = ‖PE(xn+1 − τCxn+1) − PE(xn − τCxn)‖

≤ ‖(I − τC)xn+1 − (I − τC)xn‖

≤ ‖xn+1 − xn‖, (5.1.12)

and

‖tn+1 − tn‖ = ‖PE(yn+1 − λAyn+1) − PE(yn − λAyn)‖

≤ ‖(yn+1 − λAyn+1) − (yn − λAyn)‖

= ‖(I − λA)yn+1 − (I − λA)yn‖

≤ ‖yn+1 − yn‖ (5.1.13)
= ‖PE(zn+1 − µBzn+1) − PE(zn − µBzn)‖

≤ ‖zn+1 − zn‖

≤ ‖xn+1 − xn‖.

Let xn+1 = (1 − βn)wn + βnxn. Thus, we get

wn =
xn+1 − βnxn

1 − βn

=
αnf(xn) + γnSPC(yn − λnAyn)

1 − βn

=
αnu + γnStn

1 − βn
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it follows that

wn+1 − wn

=
αn+1f(xn+1) + γn+1Stn+1

1 − βn+1
−

αnf(xn) + γnStn
1 − βn

=
αn+1f(xn+1)

1 − βn+1
+

γn+1Stn+1

1 − βn+1
−

αn+1f(xn)

1 − βn+1
+

αn+1f(xn)

1 − βn+1
−

αnf(xn)

1 − βn

−
γnStn
1 − βn

=
αn+1

1 − βn+1

(f(xn+1) − f(xn)) + (
αn+1

1 − βn+1

−
αn

1 − βn

)f(xn) +
γn+1Stn+1

1 − βn+1

−
γnStn
1 − βn

=
αn+1

1 − βn+1

(f(xn+1) − f(xn)) + (
αn+1

1 − βn+1

−
αn

1 − βn

)f(xn)

+
γn+1Stn+1

1 − βn+1
−

γn+1Stn
1 − βn+1

+
γn+1Stn
1 − βn+1

−
γnStn
1 − βn

=
αn+1

1 − βn+1
(f(xn+1) − f(xn)) + (

αn+1

1 − βn+1
−

αn

1 − βn

)f(xn)

+
γn+1

1 − βn+1

(Stn+1 − Stn) + (
γn+1

1 − βn+1

−
γn

1 − βn

)Stn

=
αn+1

1 − βn+1

(f(xn+1) − f(xn)) + (
αn+1

1 − βn+1

−
αn

1 − βn

)f(xn) (5.1.14)

+(
αn+1

1 − βn+1
−

αn

1 − βn

)Stn +
γn+1

1 − βn+1
(Stn+1 − Stn)

=
αn+1

1 − βn+1
(f(xn+1) − f(xn)) + (

αn+1

1 − βn+1
−

αn

1 − βn

)(f(xn) (5.1.15)

+Stn) +
γn+1

1 − βn+1

(Stn+1 − Stn).



114

Combining (5.1.13) and (5.1.14), we obtain

‖wn+1 − wn‖ − ‖xn+1 − xn‖

≤ |
αn+1

1 − βn+1
|‖f(xn+1) − f(xn)‖ + |

αn+1

1 − βn+1
−

αn

1 − βn

|‖f(xn) + Stn‖

+|
γn+1

1 − βn+1
|‖Stn+1 − Stn‖ − ‖xn+1 − xn‖

≤ |
αn+1

1 − βn+1

|k‖xn+1 − xn‖ + |
αn+1

1 − βn+1

−
αn

1 − βn

|‖f(xn) + Stn‖

+|
γn+1

1 − βn+1
|‖tn+1 − tn‖ − ‖xn+1 − xn‖

≤ |
αn+1

1 − βn+1
|k‖xn+1 − xn‖ + |

αn+1

1 − βn+1
−

αn

1 − βn

|‖f(xn) + Stn‖

+|
γn+1

1 − βn+1

|‖xn+1 − xn‖ − ‖xn+1 − xn‖

= |
αn+1

1 − βn+1
|k‖xn+1 − xn‖ + |

αn+1

1 − βn+1
−

αn

1 − βn

|‖f(xn) + Stn‖

+|
γn+1 − 1 + βn+1

1 − βn+1
|‖xn+1 − xn‖

= |
αn+1

1 − βn+1
|k‖xn+1 − xn‖ + |

αn+1

1 − βn+1
−

αn

1 − βn

|‖f(xn) + Stn‖

+|
αn+1

1 − βn+1
|‖xn+1 − xn‖.

This together with (i), (ii) and (iii) imply that

lim sup
n−→∞

(‖wn+1 − wn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence, we have
lim

n→∞
‖wn − xn‖ = 0. (5.1.16)

Consequently,

lim
n−→∞

‖xn+1 − xn‖ = lim
n−→∞

(1 − βn)‖wn − xn‖ = 0. (5.1.17)

From (5.1.12) and (5.1.13), we also have ‖zn+1 − zn‖ −→ 0 ‖tn+1 − tn‖ −→ 0 and
‖yn+1 − yn‖ −→ 0 as n −→ ∞. Since

xn+1 − xn = αnf(xn) + βnxn + γnStn − xn = αn(f(xn) − xn) + γn(Stn − xn),

it follows by (ii) and (5.1.17) that

lim
n→∞

‖xn − Stn‖ = 0. (5.1.18)
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Since x∗ ∈ F (S) ∩ Γ and from (5.1.11), we get

‖xn+1 − x∗‖2

= ‖αnf(xn) + βnxn + γnStn − x∗‖2

≤ αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn‖Stn − x∗‖2

≤ αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn‖tn − x∗‖2

= αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn‖PE(yn − λAyn) − PE(y∗ − λAy∗)‖2

≤ αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn‖(yn − λAyn) − (y∗ − λAy∗)‖2

= αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn‖(yn − y∗) − λ(Ayn − Ay∗)‖2

= αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2

+γn

[
‖yn − y∗‖2 − 2λ〈yn − y∗, Ayn − Ay∗〉 + λ2‖Ayn − Ay∗‖2

]

≤ αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2

+γn

[
‖yn − y∗‖2 − 2λα‖Ayn − Ay∗‖2 + λ2‖Ayn − Ay∗‖2

]

= αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn

[
‖yn − y∗‖2 + λ(λ − 2α)‖Ayn − Ay∗‖2

]

≤ αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn

[
‖xn − x∗‖2 + λ(λ − 2α)‖Ayn − Ay∗‖2

]

= αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn‖xn − x∗‖2 + γnλ(λ − 2α)‖Ayn − Ay∗‖2

= αn‖f(xn) − x∗‖2 + (βn + γn)‖xn − x∗‖2 + γnλ(λ − 2α)‖Ayn − Ay∗‖2

= αn‖f(xn) − x∗‖2 + (1 − αn)‖xn − x∗‖2 + γnλ(λ − 2α)‖Ayn − Ay∗‖2

≤ αn‖f(xn) − x∗‖2 + ‖xn − x∗‖2 + γnλ(λ − 2α)‖Ayn − Ay∗‖2.

Therefore, we have

−γnλ(λ − 2α)‖Ayn − Ay∗‖2

≤ αn‖f(xn) − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

= αn‖f(xn) − x∗‖2 + (‖xn − x∗‖ + ‖xn+1 − x∗‖)(‖xn − x∗‖ − ‖xn+1 − x∗‖)

≤ αn‖f(xn) − x∗‖2 + (‖xn − x∗‖ + ‖xn+1 − x∗‖)‖xn − xn+1‖. (5.1.19)

From (ii), (iii) and ‖xn+1 − xn‖ −→ 0, as n −→ ∞, we get ‖Ayn − Ay∗‖ −→ 0 as
n −→ ∞.
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Since x∗ ∈ F (S) ∩ Γ, from (5.1.7), we get

‖xn+1 − x∗‖2 = ‖αnf(xn) + βnxn + γnStn − x∗‖2

≤ αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn‖tn − x∗‖2

≤ αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn‖yn − y∗‖2

= αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn‖PE(zn − µBzn) − PE(z∗ − µBz∗)‖2

≤ αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn‖(zn − µBzn) − (z∗ − µBz∗)‖2

= αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn‖(zn − z∗) − (µBzn − µBz∗)‖2

≤ αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn

[
‖zn − z∗‖2 + µ(µ − 2β)‖Bzn − Bz∗‖2

]

≤ αn‖f(xn) − x∗‖2 + ‖xn − x∗‖2 + γnµ(µ − 2β)‖Bzn − Bz∗‖2.

Thus, we also have

−γnµ(µ − 2β)‖Bzn − Bz∗‖2

≤ αn‖f(xn) − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

= αn‖f(xn) − x∗‖2 + (‖xn − x∗‖ + ‖xn+1 − x∗‖)(‖xn − x∗‖ − ‖xn+1 − x∗‖)

≤ αn‖f(xn) − x∗‖2 + (‖xn − x∗‖ + ‖xn+1 − x∗‖)‖xn − xn+1‖. (5.1.20)

By again (ii), (iii) and (5.1.17), we also get ‖Bzn − Bz∗‖ −→ 0 as n −→ ∞.
Let x∗ ∈ F (S) ∩ Γ, again from (5.1.8), (5.1.9), we get

‖xn+1 − x∗‖2 = ‖αnf(xn) + βnxn + γnStn − x∗‖2

≤ αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn‖tn − x∗‖2

≤ αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn‖zn − z∗‖2

≤ αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn‖(xn − τCxn) − (x∗ − τCx∗)‖2

≤ αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn

[
‖xn − x∗‖2 + τ(τ − 2γ)‖Cxn − Cx∗‖2

]

≤ αn‖f(xn) − x∗‖2 + ‖xn − x∗‖2 + γnτ(τ − 2γ)‖Cxn − Cx∗‖2.

Again, we have

−γnτ(τ − 2γ)‖Cxn − Cx∗‖2

≤ αn‖f(xn) − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

= αn‖f(xn) − x∗‖2 + (‖xn − x∗‖ + ‖xn+1 − x∗‖)(‖xn − x∗‖ − ‖xn+1 − x∗‖)

≤ αn‖f(xn) − x∗‖2 + (‖xn − x∗‖ + ‖xn+1 − x∗‖)‖xn − xn+1‖. (5.1.21)

Similarly again by (ii), (iii) and ‖xn − xn+1‖ −→ 0 as n −→ ∞, from (5.1.21), we
also that ‖Cxn − Cx∗‖ −→ 0.
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On the other hand, we compele that

‖zn − z∗‖2

= ‖PE(xn − τCxn) − PE(x∗ − τCx∗)‖2

≤ 〈(xn − τCxn) − (x∗ − τCx∗), PE(xn − τCxn) − PE(x∗ − τCx∗)〉

= 〈(xn − τCxn) − (x∗ − τCx∗), zn − z∗〉

=
1

2

[
‖(xn − τCxn) − (x∗ − τCx∗)‖2 + ‖zn − z∗‖2 − ‖(xn − τCxn)

−(x∗ − τCx∗) − (zn − z∗)‖2
]

=
1

2

[
‖(I − τC)xn − (I − τC)x∗‖2 + ‖zn − z∗‖2 − ‖(xn − τCxn)

−(x∗ − τCx∗) − (zn − z∗)‖2
]

≤
1

2

[
‖xn − x∗‖2 + ‖zn − z∗‖2 − ‖(xn − zn) − τ(Cxn − Cx∗) − (x∗ − z∗)‖2

]

=
1

2

[
‖xn − x∗‖2 + ‖zn − z∗‖2 − ‖

[
(xn − zn) − (x∗ − z∗)

]
− τ(Cxn − Cx∗)‖2

]

=
1

2

[
‖xn − x∗‖2 + ‖zn − z∗‖2 − ‖(xn − zn) − (x∗ − z∗)‖2

+2τ〈(xn − zn) − (x∗ − z∗), Cxn − Cx∗〉 − τ 2‖Cxn − Cx∗‖2
]
.

So, we obtain

‖zn − z∗‖2 ≤ ‖xn − x∗‖2 − ‖(xn − zn) − (x∗ − z∗)‖2

+2τ〈(xn − zn) − (x∗ − z∗), Cxn − Cx∗〉 − τ 2‖Cxn − Cx∗‖2.

Hence, it follows that

‖xn+1 − x∗‖2 = ‖αnf(xn) + βnxn + γnStn − x∗‖2

≤ αn‖f(xn) − x∗‖2 + βn‖xn − x∗‖2 + γn‖Stn − x∗‖2

≤ αnk‖xn − x∗‖2 + βn‖xn − x∗‖2 + γn‖tn − x∗‖2

≤ αnk‖xn − x∗‖2 + βn‖xn − x∗‖2 + γn‖zn − z∗‖2

≤ αnk‖xn − x∗‖2 + βn‖xn − x∗‖2 + γn‖xn − x∗‖2 − γn‖(xn − zn) − (x∗ − z∗)‖2

+2τγn〈(xn − zn) − (x∗ − z∗), Cxn − Cx∗〉 − τ 2γn‖Cxn − Cx∗‖2

= αnk‖xn − x∗‖2 + (1 − αn)‖xn − x∗‖2 − γn‖(xn − zn) − (x∗ − z∗)‖2

+2τγn〈(xn − zn) − (x∗ − z∗), Cxn − Cx∗〉 − τ 2γn‖Cxn − Cx∗‖2

≤ αnk‖xn − x∗‖2 + ‖xn − x∗‖2 − γn‖(xn − zn) − (x∗ − z∗)‖2

+2τγn〈(xn − zn) − (x∗ − z∗), Cxn − Cx∗〉

≤ αnk‖xn − x∗‖2 + ‖xn − x∗‖2 − γn‖(xn − zn) − (x∗ − z∗)‖2

+2τγn‖(xn − zn) − (x∗ − z∗)‖‖Cxn − Cx∗‖,
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which implies that

γn‖(xn − zn) − (x∗ − z∗)‖2 ≤ αnk‖xn − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

+2τγn‖(xn − zn) − (x∗ − z∗)‖‖Cxn − Cx∗‖

≤ αnk‖xn − x∗‖2 + 2γnτ‖(xn − zn) − (x∗ − z∗)‖‖Cxn − Cx∗‖

+‖xn − xn+1‖
(
‖xn − x∗‖ + ‖xn+1 − x∗‖

)
. (5.1.22)

By (ii), (iii), ‖xn − xn+1‖ −→ 0 and ‖Cxn − Cx∗‖ −→ 0 as n −→ ∞ from (5.1.22)
we get
‖(xn − zn) − (x∗ − z∗)‖ −→ 0 as n −→ ∞. Now, observe that

‖(zn − tn) + (x∗ − z∗)‖2

= ‖zn − PE(yn − λAyn) + PE(y∗ − λAy∗) − z∗‖2

= ‖zn − PE(yn − λAyn) + PE(y∗ − λAy∗) − z∗ + µBzn − µBzn + µBz∗ − µBz∗‖2

= ‖zn − µBzn − (z∗ − µBz∗) − [PE(yn − λAyn) − PE(y∗ − λAy∗)] + µ(Bzn − Bz∗)‖2

≤ ‖zn − µBzn − (z∗ − µBz∗) − [PE(yn − λAyn) − PE(y∗ − λAy∗)]‖2

+2µ〈Bzn − Bz∗, zn − µBzn − (z∗ − µBz∗) − [PE(yn − λAyn) − PE(y∗ − λAy∗)]

+µ(Bzn − Bz∗)〉

= ‖zn − µBzn − (z∗ − µBz∗) − [PE(yn − λAyn) − PE(y∗ − λAy∗)]‖2

+2µ〈Bzn − Bz∗, (zn − tn) + (x∗ − z∗)〉

≤ ‖zn − µBzn − (z∗ − µBz∗)‖2 − ‖PE(yn − λnAyn) − PE(y∗ − λnAy∗)‖2

+2µ‖Bzn − Bz∗‖‖(zn − tn) + (x∗ − z∗)‖

≤ ‖zn − µBzn − (z∗ − µBz∗)‖2 − ‖SPE(yn − λnAyn) − SPE(y∗ − λnAy∗)‖2

+2µ‖Bzn − Bz∗‖‖(zn − tn) + (x∗ − z∗)‖

= ‖zn − µBzn − (z∗ − µBz∗)‖2 − ‖Stn − Sx∗‖2

+2µ‖Bzn − Bz∗‖‖(zn − tn) + (x∗ − z∗)‖

≤ ‖zn − µBzn − (z∗ − µBz∗) − (Stn − x∗)‖

×(‖zn − µBzn − (z∗ − µBz∗)‖ + ‖Stn − x∗‖)

+2µ‖Bzn − Bz∗‖‖(zn − tn) + (x∗ − z∗)‖. (5.1.23)

Since ‖Stn−xn‖ −→ 0, ‖(xn−zn)−(x∗−z∗)‖ −→ 0 and ‖Bzn−Bz∗‖ −→ 0, as n −→

∞, it follows that

‖(zn − tn) + (x∗ − z∗)‖ −→ 0, as n −→ ∞.

Since

‖Stn − tn‖ ≤ ‖Stn − xn‖ + ‖(xn − zn) − (x∗ − z∗)‖ + ‖(zn − tn) + (x∗ − z∗)‖,
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from above, we obtain

lim
n−→∞

‖Stn − tn‖ = 0. (5.1.24)

Next, we show that

lim sup
n−→∞

〈f(x̄) − x̄, xn − x̄〉 ≤ 0,

where x̄ = PF (S)∩Γf(x̄).

Indeed, since {tn} and {Stn} are two bounded sequence in E, we can choose a
subsequence {tni

} of {tn} such that tni
of tn such that tni

⇀ z ∈ E and

lim sup
n−→∞

〈f(x̄) − x̄, Stn − x̄〉 = lim
i−→∞

〈f(x̄) − x̄, Stni
− x̄〉.

Since limn−→∞ ‖Stn − tn‖ = 0, we obtain Stni
⇀ z as i −→ ∞. Now we claim that

z ∈ F (S) ∩ Γ. It is easy to see that z ∈ F (S).

Since ‖Stn − tn‖ −→ 0, ‖Stn − xn‖ −→ 0 and

‖tn − xn‖ = ‖tn − Stn + Stn − xn‖

≤ ‖tn − Stn‖ + ‖Stn − xn‖

= ‖Stn − tn‖ + ‖Stn − xn‖,

we conclude that ‖tn − xn‖ −→ 0 as n −→ ∞. Furthermore, by Lemma 5.1.2 that G

is nonexpansive, then

‖tn − G(tn)‖ = ‖G(xn) − G(tn)‖

≤ ‖xn − tn‖.

Thus limn−→∞ ‖tn − G(tn)‖ = 0. Then, we obtain z ∈ Γ. Therefore there holds
z ∈ F (S) ∩ Γ.
On the other hand, it follows that

lim sup
n−→∞

〈f(x̄) − x̄, xn − x̄〉 = lim sup
n−→∞

〈f(x̄) − x̄, Stn − x̄〉

= lim
n−→∞

〈f(x̄) − x̄, Stni
− x̄〉

= 〈f(x̄) − x̄, z − x̄〉

≤ 0. (5.1.25)
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Finally, we show that xn −→ x̄, by (5.1.10) that

‖xn+1 − x̄‖2 = ‖αnf(xn) + βnxn + γnStn − x̄‖2

≤ ‖βn(xn − x̄) + γn(Stn − x̄)‖2 + 2αn〈f(xn) − x̄, xn+1 − x̄〉

≤ ‖βn(xn − x̄) + γn(Stn − x̄)‖2 + 2αn〈f(xn) − f(x̄), xn+1 − x̄〉

+2αn〈f(x̄) − x̄, xn+1 − x̄〉

≤ [βn‖xn − x̄‖2 + γn‖Stn − x̄‖2] + 2αn‖f(xn) − f(x̄)‖‖xn+1 − x̄‖

+2αn〈f(x̄) − x̄, xn+1 − x̄〉

≤ [βn‖xn − x̄‖2 + γn‖tn − x̄‖2] + 2αnα‖xn − x̄‖‖xn+1 − x̄‖

+2αn〈f(x̄) − x̄, xn+1 − x̄〉

≤ (1 − αn)2‖xn − x̄‖2 + αnα(‖xn − x̄‖2 + ‖xn+1 − x̄‖2)

+2αn〈f(x̄) − x̄, xn+1 − x̄〉

which implies that

‖xn+1 − x̄‖2 ≤ (1 −
2(1 − α)αn

1 − ααn

)‖xn − x̄‖2 +
α2

n

1 − ααn

‖xn − x̄‖2

+
2αn

1 − ααn

〈f(x̄) − x̄, xn+1 − x̄〉

:= (1 − σn)‖xn − x̄‖2 + δn, n ≥ 0,

where σn = 2(1−α)αn

1−ααn
and δn = α2

n

1−ααn
‖xn − x̄‖2 + 2αn

1−ααn
〈f(x̄)− x̄, xn+1 − x̄〉. Therefore,

by (5.1.25), we get that {xn} converges to x̄, where x̄ = PF (S)∩Γf(x̄). This completes
the proof.
Setting A = B = C we obtain the following corollary:

Corollary 5.1.4. Let E be a nonempty closed convex subset of a real Hilbert space
H . Let the mapping A : E −→ H be α-inverse-strongly monotone. Let S be
a nonexpansive mapping of E into itself such that F (S) ∩ Γ 6= ∅. Let f be a
contraction of H into itself and given x0 ∈ H arbitrarily and {xn} is generated by






zn = PE(xn − τAxn)

yn = PE(zn − µAzn)

xn+1 = αnf(xn) + βnxn + γnSPE(yn − λAyn), n ≥ 1,

(5.1.26)

where λ, µ, τ ∈ (0, 2α) and {αn}, {βn}, {γn} are three sequences in [0, 1] such that

(i) αn + βn + γn = 1,

(ii) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞,
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(iii) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1.

Then {xn} converges strongly to x̄ ∈ F (S)∩ Γ, where x̄ = PF (S)∩Γf(x̄) and (x̄, ȳ, z̄)

is a solution of problem (5.1.5), where

ȳ = PE(z̄ − µAz̄) and

z̄ = PE(x̄ − τAx̄).

Setting A ≡ B ≡ 0 (the zero operators), we obtain the following corollary for
solving the foxed points problem and the classical variational inequality problems.

Corollary 5.1.5. Let E be a nonempty closed convex subset of a real Hilbert space
H . Let the mapping A : E −→ H be α-inverse-strongly monotone. Let S be a
nonexpansive mapping of E into itself such that F (S) ∩ V I(A, E) 6= ∅. Let f be a
contraction of H into itself and given x0 ∈ H arbitrarily and {xn} is generated by

xn+1 = αnf(xn) + βnxn + γnSPE(xn − λAxn), n ≥ 1, (5.1.27)

where λ ∈ (0, 2α) and {αn}, {βn}, {γn} are three sequences in [0, 1] such that

(i) αn + βn + γn = 1,

(ii) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞,

(iii) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1.

Then {xn} converges strongly to x̄ ∈ F (S)∩V I(A, E), where x̄ = PF (S)∩V I(A,E)f(x̄).

We recall that a mapping T : E −→ E is called strictly pseudocontractive if there
exists some k with 0 ≤ k < 1 such that

‖Tx − Ty‖2 ≤ ‖x − y‖2 + k‖(I − T )x − (I − T )y‖2, ∀x, y ∈ E.

For recent convergence result for strictly pseudocontractive mappings. Put A = I − T .
Then we have

‖(I − A)x − (I − A)y‖2 ≤ ‖x − y‖2 + k‖Ax − Ay‖2.

On the other hand,

‖(I − A)x − (I − A)y‖2 ≤ ‖x − y‖2 + ‖Ax − Ay‖2 − 2〈x − y, Ax− Ay〉.

Hence we have
〈x − y, Ax− Ay〉 ≥

1 − k

2
‖Ax − Ay‖2.

Consequently, if T : E −→ E is a strictly pseudocontractive mapping with constant k,
then the mapping A = I − T is (1 − k)/2-inverse-strongly monotone.
Setting A = I − T , B = I − V and C = I − W we obtain the following corollary:
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Theorem 5.1.6. Let E be a nonempty closed convex subset of a real Hilbert space
H . Let T, V, W be strictly pseudocontractive mappings with constant k of C into
itself and let S be a nonexpansive mapping of E into itself such that F (S)∩ Γ 6= ∅.
Let f be a contraction of H into itself and given x0 ∈ H arbitrarily and {xn} is
generated by






zn = (I − τ)xn + τWxn)

yn = (I − µ)zn + µV zn

xn+1 = αnf(xn) + βnxn + γnS((1 − λ)yn + λTyn), n ≥ 1,

(5.1.28)

where λ ∈ (0, 2α), µ ∈ (0, 2β), τ ∈ (0, 2γ) and {αn}, {βn}, {γn} are three sequences
in [0, 1] such that

(i) αn + βn + γn = 1,

(ii) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞,

(iii) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1.

Then {xn} converges strongly to x̄ ∈ F (S)∩ Γ, where x̄ = PF (S)∩Γf(x̄) and (x̄, ȳ, z̄)

is a solution of problem (5.1.4), where

ȳ = PE(z̄ − µBz̄) and

z̄ = PE(x̄ − τCx̄).

Proof . Since A = I − T , B = I − V and C = I − W , we have

PE(xn − τCxn) = (I − τ)xn + τWxn

PE(yn − λAyn) = (I − λ)yn + λTyn

PE(zn − µBzn) = (I − µ)zn + µV zn.

Thus, the conclusion follows immediately from Theorem 5.1.3.
If f(x) = x0, ∀x ∈ E and T = V = W in Theorem 5.1.6, we obtain the following

corollary.

Corollary 5.1.7. Let E be a nonempty closed convex subset of a real Hilbert space
H . Let T be strictly pseudocontractive mappings with constant k of C into itself
and let S be a nonexpansive mapping of E into itself such that F (S)∩Γ 6= ∅. Given
x0 ∈ H arbitrarily and {xn} is generated by






zn = (I − τ)xn + τTxn)

yn = (I − µ)zn + µTzn

xn+1 = αnx0 + βnxn + γnS((1 − λ)yn + λTyn), n ≥ 1,

(5.1.29)
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where λ ∈ (0, 2α), µ ∈ (0, 2β), τ ∈ (0, 2γ) and {αn}, {βn}, {γn} are three sequences
in [0, 1] such that

(i) αn + βn + γn = 1,

(ii) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞,

(iii) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1.

Then {xn} converges strongly to x̄ ∈ F (S) ∩ Γ, where x̄ = PF (S)∩Γx̄ and (x̄, ȳ, z̄) is
a solution of problem (5.1.5), where

ȳ = PE(z̄ − µAz̄) and

z̄ = PE(x̄ − τAx̄).

5.2 General System of Variational Inequalities for Inverse
Strongly Accretive Operators

Let S : C → C a nonlinear mapping. Let A be a monotone operator of C into H . The
variational inequality problem, denote by V I(C, A), is to find x∗ ∈ C such that

〈Ax∗, x − x∗〉 ≥ 0,

for all x ∈ C. Recall that an operator A of C into E is said to be accretive if there
exists j(x − y) ∈ J(x − y) such that

〈Ax − Ay, j(x − y)〉 ≥ 0

for all x, y ∈ C. An operator A : C → E is said to be β-strongly accretive if there
exists a constant β > 0 such that

〈Ax − Ay, j(x − y)〉 ≥ β‖x − y‖2 ∀x, y ∈ C.

An operator A of C into E is said to be β-inverse strongly accretive if, for any β > 0,

〈Ax − Ay, j(x− y)〉 ≥ β‖Ax − Ay‖2

for all x, y ∈ C. Evidently, the definition of the inverse strongly accretive operator is
based on that of the inverse strongly monotone operator.
Recently, Aoyama et al. first considered the following generalized variational in-

equality problem in a smooth Banach space. Let A be an accretive operator of C into
E. Find a point x ∈ C such that

〈Ax, j(y − x)〉 ≥ 0, (5.2.1)
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for all y ∈ C. In order to find a solution of the variational inequality (5.2.1), the
authors proved the following theorem in the framework of Banach spaces.
Theorem AIT. Let E be a uniformly convex and 2-uniformly smooth Banach space
and C a nonempty closed convex subset of E. Let QC be a sunny nonexpansive
retraction from E onto C, α > 0, and A be an α-inverse strongly accretive operator
of C into E with S(C, A) 6= ∅, where

S(C, A) = {x∗ ∈ C : 〈Ax∗, j(x − x∗)〉 ≥ 0, x ∈ C}.

If {λn} and {αn} are chosen such that λn ∈ [a, α
K2 ], for some a > 0 and αn ∈ [b, c],

for some b, c with 0 < b < c < 1, then the sequence {xn} defined by the following
manners: x1 − x ∈ C and

xn+1 = αnxn + (1 − αn)QC(xn − λnAxn),

converges weakly to some element z of S(C, A), where K is the 2-uniformly s-
moothness constant of E and QC is a sunny nonexpansive retraction.
Let A : C → E be an β-inverse strongly accretive mapping. Find (x∗, y∗) ∈ C ×C

such that {
〈λAy∗ + x∗ − y∗, j(x − x∗)〉 ≥ 0 ∀x ∈ C,

〈µAx∗ + y∗ − x∗, j(x − y∗)〉 ≥ 0 ∀x ∈ C.
(5.2.2)

Let C be nonempty closed convex subset of a real Banach space E. For given two
operators A, B : C → E, we consider the problem of finding (x∗, y∗) ∈ C × C such
that {

〈λAy∗ + x∗ − y∗, j(x − x∗)〉 ≥ 0 ∀x ∈ C,

〈µBx∗ + y∗ − x∗, j(x − y∗)〉 ≥ 0 ∀x ∈ C,
(5.2.3)

where λ and µ are two positive real numbers. This system is called the system of
general variational inequalities in a real Banach spaces. If we add up the requirement
that A = B, then the problem (5.2.3) is reduced to the system (5.2.2).
An interesting problem to extend the above results to find a solution of a general

system of variational inequalities.
In this section we introduce viscosity iterative scheme for finding solutions of

a general system of variational inequalities (5.2.3) for two inverse-strongly accretive
operators with a viscosity of modified extragradient methods and solutions of fixed point
problems involving the nonexpansive mapping in Banach spaces. Then, we prove that
the sequence {xn} defined by (5.2.6) below converge strongly to x̄ = QF (G)∩F (S)f(x̄)

which (x̄, ȳ) is a solution of the system of general variational inequalities (5.2.3), where
ȳ = QC(x̄ − µBx̄).
In this section, we always assume that E is a Banach space. Let D be a subset of

C and Q : C → D. Then Q is said to sunny if

Q(Qx + t(x − Qx)) = Qx,
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whenever Qx + t(x − Qx) ∈ C for x ∈ C and t ≥ 0. A subset D of C is said to be
a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction Q

of C onto D. A mapping Q : C → C is called a retraction if Q2 = Q. If a mapping
Q : C → C is a retraction, then Qz = z for all z is in the range of Q.
The following result describes a characterization of sunny nonexpansive retractions

on a smooth Banach space.

Proposition 5.2.1. Let E be a smooth Banach space and let C be a nonempty subset
of E. Let Q : E → C be a retraction and let J be the normalized duality mapping
on E. Then the following are equivalent:
(i) Q is sunny and nonexpansive;
(ii) ‖Qx − Qy‖2 ≤ 〈x − y, J(Qx − Qy)〉, ∀x, y ∈ E;
(iii) 〈x − Qx, J(y − Qx)〉 ≤ 0, ∀x ∈ E, y ∈ C.

Proposition 5.2.2. Let C be a nonempty closed convex subset of a uniformly convex
and uniformly smooth Banach space E and let T be a nonexpansive mapping of C
into itself with F (T ) 6= ∅. Then the set F(T) is a sunny nonexpansive retract of C.

For the class of nonexpansive mappings, one classical way to study nonexpansive
mappings is to use contractions to approximate a nonexpansive mapping [109, 144].
More precisely, take t ∈ (0, 1) and define a contraction St : C −→ C by

Stx = tu + (1 − t)Sx, ∀x ∈ C,

where u ∈ C is a fixed point. Banach’s contraction mapping principle guarantees that
St has a unique fixed point xt in C. that is

xt = tu + (1 − t)Sxt.

We need the following lemmas for proving our main results.

Lemma 5.2.3. Let C be a nonempty closed convex subset of a strictly convex Banach
space E. Let S1 and S2 be two nonexpansive mappings from C into itself with a
common fixed point. Define a mapping S : C −→ C by

Sx = δS1x + (1 − δ)S2x, ∀x ∈ C,

where δ is a constant in (0, 1). Then S is nonexpansive and F (S) = F (S1)∩F (S2).

Lemma 5.2.4. Let E be a real 2-uniformly smooth Banach space with the best
smooth constant K. Then the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, Jx〉 + 2‖Ky‖2, ∀x, y ∈ E.
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Lemma 5.2.5. Let {xn} and {yn} be bounded sequences in a Banach space X and let
{βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose
xn+1 = (1 − βn)yn + βnxn for all integers n ≥ 0 and lim supn→∞(‖yn+1 − yn‖ −

‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖yn − xn‖ = 0.

Lemma 5.2.6. ([311]) Assume {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1 − αn)an + δn, n ≥ 0

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1)
∑∞

n=1 αn = ∞

(2) lim supn−→∞
δn

αn
≤ 0 or

∑∞
n=1 |δn| < ∞.

Then, limn−→∞ an = 0.

Lemma 5.2.7. ([306]) Let (E, 〈., .〉) be an inner product space. Then for all x, y, z ∈

E and α, β, γ ∈ [0, 1] with α + β + γ = 1, we have

‖αx + βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 −αβ‖x− y‖2 −αγ‖x− z‖2 − βγ‖y − z‖2.

Lemma 5.2.8. Let C be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space E. Let the mapping A : C → E be β-inverse-strongly accretive.
Then, we have

‖(I − λA)x − (I − λA)y‖2 ≤ ‖x − y‖2 + 2λ(λK2 − β)‖Ax − Ay‖2.

If β ≥ λK2, then I − λA is nonexpansive.

Proof . For any x, y ∈ C, from Lemma 5.2.4, we have

‖(I − λA)x − (I − λA)y‖2 = ‖(x − y) − λ(Ax − Ay)‖2

≤ ‖x − y‖2 − 2λ〈Ax − Ay, j(x− y)〉 + 2λ2K2‖Ax − Ay‖2

≤ ‖x − y‖2 − 2λβ‖Ax − Ay‖2 + 2λ2K2‖Ax − Ay‖2

= ‖x − y‖2 + 2λ(λK2 − β)‖Ax − Ay‖2.

If β ≥ λK2, then I − λA is nonexpansive.

Lemma 5.2.9. Let C be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space E. Let QC be the sunny nonexpansive retraction from E onto
C. Let the mapping A, B : C → E be β-inverse-strongly accretive and γ-inverse-
strongly accretive, respectively. Let G : C → C be a mapping defined by

G(x) = QC(QC(x − µBx) − λAQC(x − µBx)) ∀x ∈ C.

If β ≥ λK2 and γ ≥ µK2, then G is nonexpansive.
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Lemma 5.2.10. Let C be a nonempty closed convex subset of a real smooth Banach
space E. Let QC be the sunny nonexpansive retraction from E onto C. Let A, B : C →

E be two possibly nonlinear mappings. For given x∗, y∗ ∈ C, (x∗, y∗) is a solution
of problem (5.2.3) if and only if x∗ = QC(y∗ − λAy∗) where y∗ = QC(x∗ − µBx∗).

Proof . From (5.2.3), we rewrite as
{

〈x∗ − (y∗ − λAy∗), j(x − x∗)〉 ≥ 0 ∀x ∈ C,

〈y∗ − (x∗ − µBx∗), j(x − y∗)〉 ≥ 0 ∀x ∈ C.
(5.2.4)

From Proposition 5.2.1 (iii), the system (5.2.4) equivalent to
{

x∗ = QC(y∗ − λAy∗),

y∗ = QC(x∗ − µBx∗).
(5.2.5)

Remark 5.2.11. From Lemma 5.2.10, we note that

x∗ = QC(QC(x∗ − µBx∗) − λAQC(x∗ − µBx∗)),

which implies that x∗ is a fixed point of the mapping G.
Throughout this paper, the set of fixed points of the mapping G is denoted by F (G).

In this section, we prove a strong convergence theorem.

Theorem 5.2.12. Let E be a uniformly convex and 2-uniformly smooth Banach space
with the best smooth constant K and C be a nonempty closed convex subset of E.
Let S : C → C be a nonexpansive mapping and QC be a sunny nonexpansive
retraction from E onto C. Let A, B : C → E be β-inverse-strongly accretive with
β ≥ λK2 and γ-inverse-strongly accretive with γ ≥ µK2, respectively. Let f be a
contraction of C into itself with coefficient α ∈ (0, 1) and suppose the sequences
{αn}, {βn} and {γn} in (0, 1) satisfy αn +βn +γn = 1, n ≥ 1. Suppose F 6= ∅ where
G defined by Lemma 5.2.9 and let λ, µ are positive real numbers. The following
conditions are satisfied:
(C1). limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(C2). 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
For arbitrary given x0 = x ∈ C, the sequences {xn} generated by






yn = QC(xn − µBxn),

vn = QC(yn − λAyn),

xn+1 = αnf(xn) + βnxn + γn[δSxn + (1 − δ)vn],

(5.2.6)

then {xn} converges strongly to x̄ = QFf(x̄) and (x̄, ȳ) is a solution of the problem
(5.2.3), where ȳ = QC(x̄ − µBx̄) and QF is a sunny nonexpansive retraction of C

onto F .
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Proof . First, we prove that {xn} bounded. Let x∗ ∈ F , from Lemma 5.2.10, we see
that

x∗ = QC(QC(x∗ − µBx∗) − λAQC(x∗ − µBx∗)).

Put y∗ = QC(x∗ −µBx∗) and vn = QC(yn − λAyn). Then x∗ = QC(y∗ − λAy∗). From
Lemma 5.2.8, we have

‖vn − x∗‖ = ‖QC(yn − λAyn) − QC(y∗ − λAy∗)‖

≤ ‖(yn − λAyn) − (y∗ − λAy∗)‖

= ‖(I − λA)yn − (I − λA)y∗‖

≤ ‖yn − y∗‖

= ‖QC(xn − µBxn) − QC(x∗ − µBx∗)‖

≤ ‖(xn − µBxn) − (x∗ − µBx∗)‖

= ‖(I − µB)xn − (I − µB)x∗‖

≤ ‖xn − x∗‖ (5.2.7)

and put en = δSxn + (1 − δ)vn. From (5.2.7), we obtain

‖en − x∗‖ = ‖δSxn + (1 − δ)vn − x∗‖

≤ δ‖Sxn − x∗‖ + (1 − δ)‖vn − x∗‖

≤ δ‖xn − x∗‖ + (1 − δ)‖xn − x∗‖

= ‖xn − x∗‖. (5.2.8)

We observe that

‖xn+1 − x∗‖ = ‖αnf(xn) + βnxn + γnen − x∗‖

≤ αn‖f(xn) − x∗‖ + βn‖xn − x∗‖ + γn‖en − x∗‖

≤ ααn‖xn − x∗‖ + αn‖f(x∗) − x∗‖ + βn‖xn − x∗‖ + γn‖xn − x∗‖

= (1 − αn + ααn)‖xn − x∗‖ + αn‖f(x∗) − x∗‖

= (1 − αn(1 − α))‖xn − x∗‖ + αn(1 − α)
‖f(x∗) − x∗‖

1 − α

≤ max{‖x1 − x∗‖,
‖f(x∗) − x∗‖

1 − α
}.

This implies that {xn} is bounded, so are {f(xn)}, {yn}, {vn}, {en}, {Ayn} and
{Bxn}.
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Next, we show that limn→∞ ‖xn+1 − xn‖ = 0. Notice that

‖vn+1 − vn‖ = ‖QC(yn+1 − λAyn+1) − QC(yn − λAyn)‖

≤ ‖(yn+1 − λAyn+1) − (yn − λAyn)‖

= ‖(I − λA)yn+1 − (I − λA)yn‖

≤ ‖yn+1 − yn‖

= ‖QC(xn+1 − µBxn+1) − QC(xn − µBxn)‖

≤ ‖(xn+1 − µBxn+1) − (xn − µBxn)‖

= ‖(I − µB)xn+1 − (I − µB)xn‖

≤ ‖xn+1 − xn‖ (5.2.9)

it follows that

‖en+1 − en‖ = ‖[δSxn+1 + (1 − δ)vn+1] − [δSxn + (1 − δ)vn]‖

≤ δ‖Sxn+1 − Sxn‖ + (1 − δ)‖vn+1 − vn‖

≤ δ‖xn+1 − xn‖ + (1 − δ)‖xn+1 − xn‖

= ‖xn+1 − xn‖. (5.2.10)

Setting xn+1 = (1 − βn)zn + βnxn for all n ≥ 0, we see that zn = xn+1−βnxn

1−βn
, then

‖zn+1 − zn‖

= ‖
xn+2 − βn+1xn+1

1 − βn+1
−

xn+1 − βnxn

1 − βn

‖

= ‖
αn+1f(xn+1) + γn+1en+1

1 − βn+1
−

αnf(xn) + γnen

1 − βn

‖

= ‖
αn+1f(xn+1) + γn+1en+1

1 − βn+1
−

αn+1f(xn)

1 − βn+1
+

αn+1f(xn)

1 − βn+1
−

γn+1en

1 − βn+1
+

γn+1en

1 − βn+1

−
αnf(xn) + γnen

1 − βn

‖

= ‖
αn+1

1 − βn+1
(f(xn+1) − f(xn)) +

γn+1

1 − βn+1
(en+1 − en) + (

αn+1

1 − βn+1
−

αn

1 − βn

)f(xn)

+(
γn+1

1 − βn+1

−
γn

1 − βn

)en‖

≤
ααn+1

1 − βn+1

‖xn+1 − xn‖ +
γn+1

1 − βn+1

‖en+1 − en‖ + |
αn+1

1 − βn+1

−
αn

1 − βn

|‖f(xn)‖

+|
1 − βn+1 − αn+1

1 − βn+1

−
1 − βn − αn

1 − βn

|‖en‖

≤
ααn+1

1 − βn+1
‖xn+1 − xn‖ +

γn+1

1 − βn+1
‖xn+1 − xn‖

+|
αn+1

1 − βn+1
−

αn

1 − βn

|(‖f(xn)‖ + ‖en‖)

≤
ααn+1

1 − βn+1

‖xn+1 − xn‖ + |
αn+1

1 − βn+1

−
αn

1 − βn

|(‖f(xn)‖ + ‖en‖) + ‖xn+1 − xn‖.
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Therefore

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤
ααn+1

1 − βn+1
‖xn+1 − xn‖ + |

αn+1

1 − βn+1
−

αn

1 − βn

|(‖f(xn)‖ + ‖en‖).

It follows from the condition (C1) and (C2), that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Applying Lemma 5.2.5, we obtain limn→∞ ‖zn − xn‖ = 0 and we also have

‖xn+1 − xn‖ = (1 − βn)‖zn − xn‖ −→ 0, n −→ ∞.

Hence
lim

n→∞
‖xn+1 − xn‖ = 0. (5.2.11)

Next, we show that x∗ ∈ F . Define a mapping T : C → C by

Tx = δSx + (1 − δ)QC(I − λA)QC(I − µB), ∀x ∈ C.

From Lemma 5.2.3 and Lemma 5.2.8, we see that T is a nonexpansive mapping with

F (T ) = F (S) ∩ F (QC(I − λA)QC(I − µB))

= F (S) ∩ F (G).

Therefore, we have x∗ ∈ F .
Next, we show that lim supn→∞〈(f − I)x̄, J(xn − x̄)〉 ≤ 0, where x̄ = QFf(x̄).

Since {xn} is bounded, we can choose a sequence {xni
} of {xn} which xni

⇀ x∗ such
that

lim sup
n→∞

〈(f − I)x̄, J(xn − x̄)〉 = lim
i→∞

〈(f − I)x̄, J(xni
− x̄)〉. (5.2.12)

Now, from (5.2.12), Proposition 5.2.1 (iii) and since J is strong to weak∗ uniformly
continuous on bounded subset of E, we have

lim sup
n→∞

〈(f − I)x̄, J(xn − x̄)〉 = lim
i→∞

〈(f − I)x̄, J(xni
− x̄)〉

= 〈(f − I)x̄, J(x∗ − x̄)〉 ≤ 0. (5.2.13)

From (5.2.11), it follows that

lim sup
n→∞

〈(f − I)x̄, J(xn+1 − x̄)〉 ≤ 0. (5.2.14)
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Finally, we show that {xn} converges strongly to x̄ = QFf(x̄). Observe that

‖xn+1 − x̄‖2

= 〈xn+1 − x̄, J(xn+1 − x̄)〉

= 〈αnf(xn) + βnxn + γnen − x̄, J(xn+1 − x̄)〉

= 〈αn(f(xn) − x̄) + βn(xn − x̄) + γn(en − x̄), J(xn+1 − x̄)〉

= αn〈f(xn) − f(x̄), J(xn+1 − x̄)〉 + αn〈f(x̄) − x̄, J(xn+1 − x̄)〉

+βn〈xn − x̄, J(xn+1 − x̄)〉

+γn〈en − x̄, J(xn+1 − x̄)〉

≤ ααn‖xn − x̄‖‖xn+1 − x̄‖ + αn〈f(x̄) − x̄, J(xn+1 − x̄)〉 + βn‖xn − x̄‖‖xn+1 − x̄‖

+γn‖en − x̄‖‖xn+1 − x̄‖

≤ ααn‖xn − x̄‖‖xn+1 − x̄‖ + αn〈f(x̄) − x̄, J(xn+1 − x̄)〉 + βn‖xn − x̄‖‖xn+1 − x̄‖

+γn‖xn − x̄‖‖xn+1 − x̄‖

=
ααn + βn + γn

2
(‖xn − x̄‖2 + ‖xn+1 − x̄‖2) + αn〈f(x̄) − x̄, J(xn+1 − x̄)〉

=
ααn + 1 − αn

2
(‖xn − x̄‖2 + ‖xn+1 − x̄‖2) + αn〈f(x̄) − x̄, J(xn+1 − x̄)〉

=
1 − αn(1 − α)

2
(‖xn − x̄‖2 + ‖xn+1 − x̄‖2) + αn〈f(x̄) − x̄, J(xn+1 − x̄)〉

≤
1 − αn(1 − α)

2
‖xn − x̄‖2 +

1

2
‖xn+1 − x̄‖2 + αn〈f(x̄) − x̄, J(xn+1 − x̄)〉

which implies that

‖xn+1 − x̄‖2 ≤ (1 − αn(1 − α))‖xn − x̄‖2 + 2αn〈f(x̄) − x̄, J(xn+1 − x̄)〉.(5.2.15)

Now, from (C1), (5.2.14) and applying Lemma 5.2.6 to (5.2.15), we get ‖xn− x̄‖ → 0

as n → ∞, where x̄ = QFf(x̄). This completes the proof. �

5.3 Existence and Algorithm for the System of Mixed
Variational Inequalities

We first introduce and consider the system of mixed variational inequalities (SMVI):
is to find x̂, ŷ, ẑ ∈ C such that






〈δ1T1ẑ + Jx̂ − Jẑ, y − x̂〉 + f1(y) − f1(x̂) ≥ 0, ∀y ∈ C,

〈δ2T2x̂ + Jŷ − Jx̂, y − ŷ〉 + f2(y) − f2(ŷ) ≥ 0, ∀y ∈ C,

〈δ3T3ŷ + Jẑ − Jŷ, y − ẑ〉 + f3(y) − f3(ẑ) ≥ 0, ∀y ∈ C,

(5.3.1)

where δj > 0, Tj : C → E∗, fj : C → R ∪ {+∞} for j = 1, 2, 3 are mappings and J

is the normalized duality mapping from E to E∗.
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As special case of the problem (5.3.1), we have the following.
If fj(x) = 0 for j = 1, 2, 3, ∀x ∈ C, (5.3.1) is equivalent to find x̂, ŷ and ẑ ∈ C such
that 





〈δT1ẑ + Jx̂ − Jẑ, y − x̂〉 ≥ 0, ∀y ∈ C,

〈δ2T2x̂ + Jŷ − Jx̂, y − ŷ〉 ≥ 0, ∀y ∈ C,

〈δ3T3ŷ + Jẑ − Jŷ, y − ẑ〉 ≥ 0, ∀y ∈ C.

(5.3.2)

The problem (5.3.2) is call the system of variational inequalities. We denote by (SVI).
If T2 = T3, f2(x) = f3(x), ∀x ∈ C and ŷ = ẑ, then (5.3.1) is reduced to find x̂, ŷ ∈ C

such that
{

〈δ1T1ŷ + Jx̂ − Jŷ, y − x̂〉 + f1(y) − f1(x̂) ≥ 0, ∀y ∈ C,

〈δ2T2x̂ + Jŷ − Jx̂, y − ŷ〉 + f2(y) − f2(ŷ) ≥ 0, ∀y ∈ C,
(5.3.3)

which is studied by Zhang et al. [338].
If T = T1 = T2 = T3, f1(x) = f2(x) = f3(x), ∀x ∈ C and x̂ = ŷ = ẑ, (5.3.1) is
reduced to find x̂ such that

〈T x̂, y − x̂〉 + f1(y) − f1(x̂) ≥ 0, ∀y ∈ C. (5.3.4)

This iterative method is studied by Wu and Huang [326].
If f1(x) = 0, ∀x ∈ C, (5.3.4) is reduced to find x̂ such that

〈T x̂, y − x̂〉 ≥ 0, ∀y ∈ C. (5.3.5)

which is studied by Alber [319, 320], Li [72] and Fan [322]. If E = H is a Hilbert
space, (5.3.5) which is known as the classical variational inequality introduced and
studied by Stampacchia [324].
If E = H is a Hilbert space, then (5.3.1) is reduced to find x̂, ŷ, ẑ ∈ C such that






〈δ1T1ẑ + x̂ − ẑ, y − x̂〉 + f1(y) − f1(x̂) ≥ 0, ∀y ∈ C,

〈δ2T2x̂ + ŷ − x̂, y − ŷ〉 + f2(y) − f2(ŷ) ≥ 0, ∀y ∈ C,

〈δ3T3ŷ + ẑ − ŷ, y − ẑ〉 + f3(y) − f3(ẑ) ≥ 0, ∀y ∈ C.

(5.3.6)

If fj(x) = 0 for j = 1, 2, 3, ∀x ∈ C, (5.3.6) reduces to the following (SVI):





〈δ1T1ẑ + x̂ − ẑ, y − x̂〉 ≥ 0, ∀y ∈ C,

〈δ2T2x̂ + ŷ − x̂, y − ŷ〉 ≥ 0, ∀y ∈ C,

〈δ3T3ŷ + ẑ − ŷ, y − ẑ〉 ≥ 0, ∀y ∈ C.

(5.3.7)

The purpose of this paper is to study the existence and convergence analysis of solutions
of the system of mixed variational inequalities in Banach spaces by using the generalized
f -projection operator. The results presented in this paper improve and extend important
recent results in the literature.
We also need the following lemmas for the proof of our main results.
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Lemma 5.3.1. (Xu[327]) Let q > 1 and r > 0 be two fixed real numbers. Let E be
a q-uniformly convex Banach space if and only if there exists a continuous strictly
increasing and convex function g : [0, +∞) → [0, +∞), g(0) = 0, such that

‖λx + (1 − λ)y‖q ≤ λ‖x‖q + (1 − λ)‖y‖q − ςq(λ)g(‖x− y‖)

for all x, y ∈ Br = {x ∈ E : ‖x‖ ≤ r} and λ ∈ [0, 1], where ςq(λ) = λ(1 − λ)q +

λq(1 − λ).

For case q = 2, we have

‖λx + (1 − λ)y‖q ≤ λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)g(‖x− y‖).

Lemma 5.3.2. (Change[321]) Let E be a uniformly convex and uniformly smooth
Banach spaces. We have the following holds:

‖φ + Φ‖2 ≤ ‖φ‖2 + 2〈Φ, J∗(φ + Φ)〉, ∀φ, Φ ∈ E∗.

Next we recall the concept of the generalized f -projection operator. Let G :

E∗ × C −→ R ∪ {+∞} be a functional defined as follows:

G(ξ, x) = ‖ξ‖2 − 2〈ξ, x〉+ ‖x‖2 + 2ρf(x), (5.3.8)

where ξ ∈ E∗, ρ is positive number and f : C → R ∪ {+∞} is proper, convex and
lower semi-continuous. From definitions of G and f , it is easy to see the following
properties:

(1) (‖ξ‖ − ‖x‖)2 + 2ρf(x) ≤ G(ξ, x) ≤ (‖ξ‖ + ‖x‖)2 + 2ρf(x);

(2) G(ξ, x) is convex and continuous with respect to x when ξ is fixed;

(3) G(ξ, x) is convex and lower semicontinuous with respect to ξ when x is fixed.

Definition 5.3.1. Let E be a real Banach space with its dual E∗. Let C be a
nonempty closed convex subset of E. We say that Πf

C : E∗ → 2C is generalized
f -projection operator if

Πf
Cξ = {u ∈ C : G(ξ, u) = inf

y∈C
G(ξ, y)}, ∀ξ ∈ E∗.

In this paper, we fixed ρ = 1, we have

G(ξ, x) = ‖ξ‖2 − 2〈ξ, x〉 + ‖x‖2 + 2f(x).

For the generalized f -projection operator, Wu and Hung [326] proved the following
basic properties.
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Lemma 5.3.3. (Wu and Hung [325]) Let E be a reflexive Banach space with its
dual E∗ and C is a nonempty closed convex subset of E. The following statement
holds:

(1) Πf
Cξ is nonempty closed convex subset of C for all ξ ∈ E∗;

(2) if E is smooth, then for all ξ ∈ E∗, x ∈ Πf
Cξ if and only if

〈ξ − Jx, x − y〉 + ρf(y) − ρf(x) ≥ 0, ∀y ∈ C;

(3) if E is smooth, then for any ξ ∈ E∗, Πf
Cξ = (J + ρ∂f)−1ξ, where ∂f is the

subdifferential of the proper convex and lower semi-continuous functional f .

Lemma 5.3.4. (Wu and Hung [325]) If f(x) ≥ 0 for all x ∈ C, then for any ρ > 0,

G(Jx, y) ≤ G(ξ, y) + 2ρf(y), ∀ξ ∈ E∗, y ∈ C, x ∈ Πf
Cξ.

Lemma 5.3.5. (Fan et al. [323]) Let E be a reflexive strictly convex Banach space
with its dual E∗ and C is a nonempty closed convex subset of E. If f : C →

R ∪ {+∞} is proper, convex and lower semi-continuous, then

(1) Πf
C : E∗ → C is single valued and norm to weak continuous;

(2) if E has the property (h), that is, for any sequence {xn} ⊂ E, xn ⇀ x ∈ E

and ‖xn‖ → ‖x‖, implies xn → x, then Πf
C : E∗ → C is continuous.

Defined the functional G2 : E × C → R ∪ {+∞} by

G2(x, y) = G(Jx, y), ∀ x ∈ E, y ∈ C.

5.3.1 Generalized Projection Algorithms
Proposition 5.3.6. Let C be a nonempty closed and convex subset of a reflexive
strictly convex and smooth Banach space E. If fj : C → R ∪ {+∞} for j = 1, 2, 3

is proper, convex and lower semi-continuous, then (x̂, ŷ, ẑ) is a solution of (SMVI)
is equivalent to finding x̂, ŷ, ẑ such that






x̂ = Πf1

C (Jẑ − δ1T1ẑ),

ŷ = Πf2

C (Jx̂ − δ2T1x̂),

ẑ = Πf3

C (Jŷ − δ3T1ŷ).

(5.3.9)

Proof . From Lemma 5.3.3 (2) and E is a reflexive strictly convex and smooth Banach
space, we known that J is single valued and Π

fj

C for j = 1, 2, 3 is well defined and
single valued. So, we can conclude that Proposition 5.3.9 holds. �

For solving the system of mixed variational inequality (5.3.1), we defined some
projection algorithms as follow:
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Algorithm 5.3.7. For an initial point x0, z0 ∈ C, we define the sequences {xn}, {yn}

and {zn} as follows:





xn+1 = (1 − αn)xn + αnΠf1

C (Jzn − δ1T1zn),

yn+1 = Πf2

C (Jxn+1 − δ2T2xn+1),

zn+1 = Πf3

C (Jyn+1 − δ3T3yn+1),

(5.3.10)

where 0 < a ≤ αn ≤ b < 1.

If fj(x) = 0, j = 1, 2, 3, for all x ∈ C then Algorithm 5.3.7 reduces to the following
iterative method for solving the system of variational inequalities (5.3.2).

Algorithm 5.3.8. For an initial point x0, z0 ∈ C, we define the sequences {xn}, {yn}

and {zn} as follows:





xn+1 = (1 − αn)xn + αnΠC(Jzn − δ1T1zn),

yn+1 = ΠC(Jxn+1 − δ2T2xn+1),

zn+1 = ΠC(Jyn+1 − δ3T3yn+1),

(5.3.11)

where 0 < a ≤ αn ≤ b < 1.

For solving the problem (5.3.6), we defined the algorithm as follows:
If E = H is a Hilbert space, then Algorithm 5.3.7 reduces to the following.

Algorithm 5.3.9. For an initial point x0, z0 ∈ C, we define the sequences {xn}, {yn}

and {zn} as follows:





xn+1 = (1 − αn)xn + αnΠf1

C (Jzn − δ1T1zn),

yn+1 = Πf2

C (Jxn+1 − δ2T2xn+1),

zn+1 = Πf3

C (Jyn+1 − δ3T3yn+1),

(5.3.12)

where 0 < a ≤ αn ≤ b < 1.

If fj(x) = 0, j = 1, 2, 3, for all x ∈ C, then Algorithm 5.3.9 reduces to the
following iterative method for solving the problem (5.3.7) as follow:

Algorithm 5.3.10. For an initial point x0, z0 ∈ C, we define the sequences {xn}, {yn}

and {zn} as follows:





xn+1 = (1 − αn)xn + αnPC(Jzn − δ1T1zn),

yn+1 = PC(Jxn+1 − δ2T2xn+1),

zn+1 = PC(Jyn+1 − δ3T3yn+1),

(5.3.13)

where 0 < a ≤ αn ≤ b < 1.
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5.3.2 Existence and Convergence Analysis
Theorem 5.3.11. Let C be a nonempty closed and convex subset of a uniformly
convex and uniformly smooth Banach space E with dual space E∗. If the mapping
Tj : C → E∗ and fj : C → R ∪ {+∞} which is convex lower semi-continuous
mappings for j = 1, 2, 3 satisfy the following conditions:

(i) 〈Tjx, J∗(Jx − δjTjx)〉 ≥ 0, ∀x ∈ C for j = 1, 2, 3;

(ii) (J − δjTj) are compact for j = 1, 2, 3;

(iii) fj(0) = 0 and fj(x) ≥ 0, ∀x ∈ C and j = 1, 2, 3.

Then the system of mixed variational inequality (5.3.1) have a solution (x̂, ŷ, ẑ)

and sequences {xn}, {yn} and {zn} defined by Algorithm 5.3.7 have convergent
subsequences {xni

}, {yni
} and {zni

}such that

xni
→ x̂, i → ∞,

yni
→ ŷ, i → ∞,

zni
→ ẑ, i → ∞.

Proof . Since E is uniformly convex and uniform smooth Banach spaces, we known
that J is bijection from E to E∗ and uniformly continuous on any bounded subsets of
E. Hence Π

fj

C for j = 1, 2, 3 is well defined and single value implies that, {xn}, {yn}

and {zn} is well defined. Let G2(x, y) = G(Jx, y), for any x ∈ C and y = 0, we have

G2(x, 0) = G(Jx, 0)

= ‖Jx‖2 − 2〈Jx, 0〉 + 2f(0)

= ‖Jx‖2

= ‖x‖2.

(5.3.14)

By (5.3.14) and Lemma 5.3.4, we have

G2(Π
f1

C (Jzn − δ1T1zn), 0) = G(J(Πf1

C (Jzn − δ1T1zn)), 0)

≤ G(Jzn − δ1T1zn, 0)

= ‖Jzn − δ1T1zn‖
2.

(5.3.15)

From Lemma 5.3.2, and for all x ∈ C, 〈T1x, J∗(Jx − δ1T1x)〉 ≥ 0, so for zn ∈ C, we
obtain

‖Jzn − δ1T1zn‖
2 ≤ ‖Jzn‖

2 − 2〈δ1T1zn, J∗(Jzn − δ1T1zn)〉

≤ ‖Jzn‖
2

≤ ‖zn‖
2.

(5.3.16)
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Again by Lemma 5.3.2, for all x ∈ C, 〈T2x, J∗(Jx − δ2T2x)〉 ≥ 0, and for xn+1 ∈ C,
we have

‖yn+1‖
2 = G2(yn+1, 0)

= G(Jyn+1, 0)

= G(JΠf2

C (Jxn+1 − δ2T2xn+1), 0)

≤ G(Jxn+1 − δ2T2xn+1, 0)

≤ ‖Jxn+1 − δ2T2xn+1‖
2

≤ ‖Jxn+1‖
2 − 2〈δ2T2xn+1, J

∗(Jxn+1 − δ2T2xn+1)〉

≤ ‖Jxn+1‖
2

≤ ‖xn+1‖
2.

(5.3.17)

In similar way, for all x ∈ C, 〈T3x, J∗(Jx− δ3T3x)〉 ≥ 0, and zn+1 ∈ C, we also have

‖zn+1‖
2 = G(Jzn+1, 0)

≤ G(Jyn+1 − δ3T3yn+1, 0)

= ‖Jyn+1 − δ3T3yn+1)‖
2

≤ ‖Jyn+1‖
2 − 2〈δ3T3yn+1, J

∗(Jyn+1 − δ3T3yn+1)〉

≤ ‖yn+1‖
2.

(5.3.18)

It follows from (5.3.17) and (5.3.18) that

‖zn+1‖
2 ≤ ‖xn+1‖

2, ∀n ∈ N. (5.3.19)

From (5.3.17) and (5.3.18), we compute

‖xn+1‖
2 ≤ (1 − αn)‖xn‖ + αn‖Π

f1

C (Jzn − δ1T1zn)‖

≤ (1 − αn)‖xn‖ + αn‖zn‖

≤ (1 − αn)‖xn‖ + αn‖yn‖

≤ (1 − αn)‖xn‖ + αn‖xn‖

= ‖xn‖.

(5.3.20)

This implies that the sequences {xn}, {yn}, {zn} and {Πf1

C (Jzn−δ1T1zn)} are bounded.
For a positive number r such that {xn}, {yn}, {zn}, {Π

f1

C (Jzn − δ1T1zn)} ∈ Br, by
Lemma 5.3.1, for q = 2 there exists a continuous, strictly increasing and convex
function g : [0,∞) → [0,∞) with g(0) = 0 such that for αn ∈ [0, 1], we have

‖xn+1‖
2 = ‖(1 − αn)xn + αnΠf1

C (Jzn − δ1T1zn)‖2

≤ (1 − αn)‖xn‖
2 + αn‖Π

f1

C (Jzn − δ1T1zn)‖2

−αn(1 − αn)g‖xn − Πf1

C (Jzn − δ1T1zn)‖

= (1 − αn)‖xn‖
2 + αnG2(Π

f1

C (Jzn − δ1T1zn, 0))

−αn(1 − αn)g‖xn − Πf1

C (Jzn − δ1T1zn)‖.

(5.3.21)
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Applying (5.3.15), (5.3.16) and (5.3.19), we have

αn(1 − αn)g‖xn − Πf1

C (Jzn − δ1T1zn)‖

≤ (1 − αn)‖xn‖
2 − ‖xn+1‖

2 + αnG2(Π
f1

C (Jzn − δ1T1zn), 0)

≤ (1 − αn)‖xn‖
2 − ‖xn+1‖

2 + αn‖xn‖
2

= ‖xn‖
2 − ‖xn+1‖

2.

(5.3.22)

Summing (5.3.22), for n = 0, 1, 2, 3, ..., k, we have
k∑

n=0

αn(1 − αn)g‖xn − Πf1

C (Jzn − δ1T1zn)‖ ≤ ‖x0‖
2 − ‖xk+1‖

2 ≤ ‖x0‖
2,

taking k → ∞, we get
∑∞

n=0 αn(1 − αn)g‖xn − Πf1

C (Jzn − δ1T1zn)‖ ≤ ‖x0‖
2. (5.3.23)

This show that series (5.3.23) is converge, we obtain that

limn→∞ αn(1 − αn)g‖xn − Πf1

C (Jzn − δ1T1zn)‖ = 0. (5.3.24)

From 0 < a ≤ αn ≤ b < 1 for all n, thus ∑∞
n=0 αn(1 − αn) > 0 and (5.3.24), we have

limn→∞ g‖xn − Πf1

C (Jzn − δ1T1zn)‖ = 0. (5.3.25)

By property of functional g, we have

limn→∞ ‖xn − Πf1

C (Jzn − δ1T1zn)‖ = 0. (5.3.26)

Since {zn} is bounded sequence and (J − δ1T1) is compact on C, then sequence
{Jzn − δ1T1zn} have a convergence subsequence such that

{Jzni
− δ1T1zni

} → w0 ∈ E∗ as i → ∞. (5.3.27)

By the continuity of the Πf1

C , we have

limi→∞ Πf1

C (Jzni
− δ1T1zni

) = Πf1

C (w0). (5.3.28)

Again since {xn}, {yn} are bounded and (J − δ2T2), (J − δ3T3) are compact on C,
then sequences {Jxn − δ2T2xn} and {Jyn − δ3T3yn} have convergence subsequences
such that

{Jxni
− δ2T2xni

} → u0 ∈ E∗ as i → ∞, (5.3.29)

and
{Jyni

− δ3T3yni
} → v0 ∈ E∗ as i → ∞. (5.3.30)
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By the continuity of Πf2

C and Πf3

C , we have

limi→∞ Πf2

C (Jxni
− δ2T2xni

) = Πf2

C (u0), (5.3.31)

and
limi→∞ Πf3

C (Jyni
− δ3T3yni

) = Πf3

C (v0). (5.3.32)

Let
Πf1

C (w0) = x̂, (5.3.33)

Πf2

C (u0) = ŷ, (5.3.34)

Πf3

C (v0) = ẑ. (5.3.35)

By using the triangle inequality, we have

‖xni
− x̂‖ ≤ ‖xni

− Πf1

C (Jzni
− δ1T1zni

)‖ + ‖Πf1

C (Jzni
− δ1T1zni

) − x̂‖.

From (5.3.26) and (5.3.28), we have

limi→∞ xni
= x̂. (5.3.36)

By definition of zni
, we get

‖zni
− ẑ‖ ≤ ‖Πf3

C (Jyni
− δ3T3yni

) − ẑ‖.

It follows by (5.3.32) and (5.3.35), we obtain

limi→∞ zni
= ẑ. (5.3.37)

In the same way, we also have

limi→∞ yni
= ŷ. (5.3.38)

By the continuity properties of (J−δ1T1), (J−δ2T2), (J−δ3T3) and Π
fj

C for j = 1, 2, 3.
We conclude that

x̂ = Πf1

C (Jẑ − δ1T1ẑ)

ŷ = Πf2

C (Jx̂ − δT2x̂)

ẑ = Πf3

C (Jŷ − δ3T3ŷ).

This complete of proof. �

Theorem 5.3.12. Let C be a nonempty compact and convex subset of a uniformly
convex and uniformly smooth Banach space E with dual space E∗. If the mapping
Tj : C → E∗ and fj : C → R ∪ {+∞} which is convex lower semi-continuous
mappings for j = 1, 2, 3 satisfy the following conditions:
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(i) 〈Tjx, J∗(Jx − δjTjx)〉 ≥ 0, ∀x ∈ C for j = 1, 2, 3;

(ii) fj(0) = 0 and fj(x) ≥ 0, ∀x ∈ C for j = 1, 2, 3.

Then the system of mixed variational inequality (5.3.1) has a solution (x̂, ŷ, ẑ) and
sequences {xn}, {yn} and {zn} defined by Algorithm 5.3.7 have a convergent sub-
sequences {xni

}, {yni
} and {zni

} such that

xni
→ x̂, i → ∞,

yni
→ ŷ, i → ∞,

zni
→ ẑ, i → ∞.

Proof . In the same way to the proof in Theorem 5.3.11, we have

limn→∞ ‖xn − Πf1

C (Jzn − δ1T1zn)‖ = 0. (5.3.39)

Hence there exist subsequences {xni
} ⊂ {xn} and {zni

} ⊂ {zn} such that

limi→∞ ‖xni
− Πf1

C (Jzni
− δ1T1zni

)‖ = 0. (5.3.40)

From the compactness of C, we have that

{xni
} → x̂ as i → ∞

and
{zni

} → ẑ as i → ∞,

where x̂, ẑ are points in C. Also for a sequence {yn} ⊃ {yni
} → ŷ as i → ∞, where

ŷ is a points in C. By the continuity properties of J , T2, T3 Πf2

C and Πf3

C , we obtain
that

ŷ = Πf2

C (Jx̂ − δ2T2x̂)

and
ẑ = Πf3

C (Jŷ − δ3T3ŷ).

From definition of xn+1, we get

‖Πf1

C (Jzni
− δ1T1zni

) − x̂‖

= ‖Πf1

C (Jzni
− δ1T1zni

) − x̂ + xni+1 − (1 − αn)xni
− αnΠf1

C (Jzni
− δ1T1zni

)‖

= ‖xni+1 − x̂ + (1 − αn)(Πf1

C (Jzni
− δ1T1zni

) − xni
‖

≤ ‖xni+1 − x̂‖ + (1 − αn)‖xni
− Πf1

C (Jzni
− δ1T1zni

)‖.

By (5.3.36) and (5.3.39), we have

x̂ = Πf1

C (Jẑ − δ1T1ẑ).

This complete of proof. �
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Corollary 5.3.13. Let C be a nonempty closed and convex subset of a uniformly
convex and uniformly smooth Banach space E with dual space E∗. If the mapping
Tj : C → E∗ for j = 1, 2, 3 satisfy the following conditions:

(i) 〈Tjx, J∗(Jx − δjTjx)〉 ≥ 0, ∀x ∈ C for j = 1, 2, 3;

(ii) (J − δjTj) are compact for j = 1, 2, 3.

Then the system of mixed variational inequality (5.3.2) have a solution (x̂, ŷ, ẑ)

and sequences {xn}, {yn} and {zn} defined by Algorithm 5.3.8 have convergent
subsequences {xni

}, {yni
} and {zni

} such that xni
→ x̂, i → ∞, yni

→ ŷ, i → ∞ and
zni

→ ẑ, i → ∞.

If E = H is a Hilbert space, then H∗ = H, J∗ = J = I , so we obtain the following
corollary.

Corollary 5.3.14. Let C be a nonempty closed and convex subset of a Hilbert space
H . If the mapping Tj : C → H and fj : C → R ∪ {+∞} which is convex lower
semi-continuous mappings for j = 1, 2, 3 satisfy the following conditions:

(i) 〈Tjx, x − δjTjx〉 ≥ 0 for j = 1, 2, 3;

(ii) fj(0) = 0 and fj(x) ≥ 0 for all x ∈ Cfor j = 1, 2, 3.

Then the system of mixed variational inequality (5.3.6) have a solution (x̂, ŷ, ẑ)

and sequences {xn}, {yn} and {zn} defined by Algorithm 5.3.9 have a convergent
subsequences {xni

}, {yni
} and {zni

} such that xni
→ x̂, i → ∞, yni

→ ŷ, i → ∞ and
zni

→ ẑ, i → ∞.

Corollary 5.3.15. Let C be a nonempty closed and convex subset of a Hilbert space
H . If the mapping Tj : C → H for j = 1, 2, 3 satisfy the conditions: 〈Tjx, x −

δjTjx〉 ≥ 0 for j = 1, 2, 3. Then the system of mixed variational inequality (5.3.7)
have a solution (x̂, ŷ, ẑ) and sequences {xn}, {yn} and {zn} defined by Algorithm
5.3.10 have a convergent subsequences {xni

}, {yni
} and {zni

} such that xni
→ x̂, i →

∞, yni
→ ŷ, i → ∞ and zni

→ ẑ, i → ∞.

Remark 5.3.16. Theorem 5.3.11, 5.3.12 and Corollary 5.3.13 extend and improve the
results of Zhang et al. [338] and Wu and Huang [326].
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5.4 Variational Inequality Inclusion and Nonexpansive Semi-
groups

Let B : H −→ H be a single-valued nonlinear mapping and M : H −→ 2H be a
set-valued mapping. The variational inclusion problem is to find x̂ ∈ H such that

θ ∈ B(x̂) + M(x̂), (5.4.1)

where θ is the zero vector in H . The set of solutions of problem (5.4.1) is denoted
by I(B, M). A set-valued mapping M : H −→ 2H is called monotone if for all
x, y ∈ H, f ∈ M(x) and g ∈ M(y) imply 〈x − y, f − g〉 ≥ 0. A monotone mapping
M is maximal if its graph G(M) := {(f, x) ∈ H × H : f ∈ M(x)} of M is not
properly contained in the graph of any other monotone mapping. It is known that a
monotone mapping M is maximal if and only if for (x, f) ∈ H ×H, 〈x−y, f −g〉 ≥ 0

for all (y, g) ∈ G(M) imply f ∈ M(x).

Definition5.4.1. A family S = {S(s) : 0 ≤ s ≤ ∞} of mappings of C into itself is
called a nonexpansive semigroup on C if it satisfies the following conditions:
(1) S(0)x = x for all x ∈ C;
(2) S(s + t) = S(s)S(t) for all s, t ≥ 0;
(3) ‖S(s)x − S(s)y‖ ≤ ‖x − y‖ for all x, y ∈ C and s ≥ 0;
(4) for all x ∈ C, s 7→ S(s)x is continuous.

We denoted by F (S) the set of all common fixed points of S = {S(s) : s ≥ 0},
i.e., F (S) = ∩s≥0F (S(s)). It is know that F (S) is closed and convex.

Definition5.4.2. Let η : C × C → H is called Lipschitz continuous, if there exists a
constant L > 0 such that

‖η(x, y)‖ ≤ L‖x − y‖, ∀x, y ∈ C.

Let K : C → R be a differentiable functional on a convex set C, which is called:

(1) η-convex if
K(y) −K(x) ≥

〈
K′(x), η(y, x)

〉
, ∀x, y ∈ C,

where K′(x) is the Fréchet derivative of K at x;

(2) η-strongly convex if there exists a constant σ > 0 such that

K(y) −K(x) −
〈
K′(x), η(y, x)

〉
≥

σ

2
‖x − y‖2, ∀x, y ∈ C.

In particular, if η(x, y) = x − y for all x, y ∈ C, then K is said to be strongly
convex.
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Definition5.4.3. Let M : H −→ 2H be a set-valued maximal monotone mapping, then
the single-valued mapping JM,λ : H −→ H defined by

JM,λ(x̂) = (I + λM)−1(x̂), x̂ ∈ H (5.4.2)

is called the resolvent operator associated with M , where λ is any positive number
and I is the identity mapping. The following characterizes the resolvent operator.
(R1) The resolvent operator JM,λ is single-valued and nonexpansive for all λ > 0,

that is,
‖JM,λ(x) − JM,λ(y)‖ ≤ ‖x − y‖, ∀x, y ∈ H and ∀λ > 0.

(R2) The resolvent operator JM,λ is 1-inverse-strongly monotone; see([252]), that
is,

‖JM,λ(x) − JM,λ(y)‖2 ≤ 〈x − y, JM,λ(x) − JM,λ(y)〉, ∀x, y ∈ H.

(R3) The solution of problem (5.4.1) is a fixed point of the operator JM,λ(I − λB)

for all λ > 0, that is,

I(B, M) = F (JM,λ(I − λB)), ∀λ > 0.

(R4) If 0 < λ ≤ 2β, then the mapping JM,λ(I − λB) : H −→ H is nonexpansive.
(R5) I(B, M) is closed and convex.

Lemma 5.4.4. [252] Let M : H −→ 2H be a maximal monotone mapping and let
B : H −→ H be a Lipshitz continuous mapping. Then the mapping L = M + B :

H −→ 2H is a maximal monotone mapping.

Lemma 5.4.5. Let C be a closed convex subset of H . Let {xn} be a bounded
sequence in H . Assume that

(1). The weak ω-limit set ωw(xn) ⊂ C,

(2). For each z ∈ C, limn−→∞ ‖xn − z‖ exists.

Then {xn} is weakly convergent to a point in C.

Lemma 5.4.6. [232]. Each Hilbert space H satisfies Opial’s condition, that is,
for any sequence {xn} ⊂ H with xn ⇀ x, the inequality lim infn−→∞ ‖xn − x‖ <

lim infn−→∞ ‖xn − y‖, hold for each y ∈ H with y 6= x.

Lemma 5.4.7. [239] Each Hilbert space H, satisfies the Kadec-Klee property, that is,
for any sequence {xn} with xn ⇀ x and ‖xn‖ −→ ‖x‖ together imply ‖xn−x‖ −→ 0.

For solving the system of mixed equilibrium problem, let us assume that function
Fk : C × C −→ R, k = 1, 2, ..., N satisfies the following conditions:
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(H1) Fk is monotone, i.e., Fk(x, y) + Fk(y, x) ≤ 0, ∀x, y ∈ C;

(H2) for each fixed y ∈ C, x 7→ Fk(x, y) is convex and upper semicontinuous;

(H3) for each fixed x ∈ C, y 7→ Fk(x, y) is convex.

Lemma 5.4.8. [223] Let C be a nonempty closed convex subset of a real Hilbert
space H and let ϕ be a lower semicontinuous and convex functional from C to R.
Let F be a bifunction from C × C to R satisfying (H1)-(H3). Assume that

(i) η : C × C → H is k Lipschitz continuous with constant k > 0 such that;

(a) η(x, y) + η(y, x) = 0, ∀x, y ∈ C,

(b) η(·, ·) is affine in the first variable,

(c) for each fixed x ∈ C, y 7→ η(x, y) is sequentially continuous from the
weak topology to the weak topology,

(ii) K : C → R is η-strongly convex with constant σ > 0 and its derivative K′ is
sequentially continuous from the weak topology to the strong topology;

(iii) for each x ∈ C, there exist a bounded subset Dx ⊂ C and zx ∈ C such that
for any y ∈ C\Dx,

F (y, zx) + ϕ(zx) − ϕ(y) +
1

r

〈
K′(y) −K′(x), η(zx, y)

〉
< 0.

For given r > 0, Let KF
r : C → C be the mapping defined by:

KF
r (x) =

{
y ∈ C : F (y, z)+ϕ(z)−ϕ(y)+

1

r

〈
K′(y)−K′(x), η(z, y)

〉
≥ 0, ∀z ∈ C

}

(5.4.3)
for all x ∈ C. Then the following hold

(1) KF
r is single-valued;

(2) KF
r is nonexpansive if K′ is Lipschitz continuous with constant ν > 0 such

that σ ≥ kν;

(3) F (KF
r ) = MEP (F, ϕ);

(4) MEP (F, ϕ) is closed and convex.

Lemma 5.4.9. [184] Let V : C → H be a ξ-strict pseudo-contraction, then
(1) the fixed point set F (V ) of V is closed convex so that the projection PF (V ) is
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well defined;
(2) define a mapping T : C → H by

Tx = tx + (1 − t)V x, ∀x ∈ C (5.4.4)

If t ∈ [ξ, 1), then T is a nonexpansive mapping such that F (V ) = F (T ).

A family of mappings {Vi : C → H}∞i=1 is called a family of uniformly ξ-strict
pseudo-contractions, if there exists a constant ξ ∈ [0, 1) such that

‖Vix − Viy‖
2 ≤ ‖x − y‖2 + ξ‖(I − Vi)x − (I − Vi)y‖

2, ∀x, y ∈ C, ∀i ≥ 1.

Let {Vi : C → C}∞i=1 be a countable family of uniformly ξ-strict pseudo-contractions.
Let
{Ti : C → C}∞i=1 be the sequence of nonexpansive mappings defined by (5.4.4), i.e.,

Tix = tx + (1 − t)Vix, ∀x ∈ C, ∀i ≥ 1, t ∈ [ξ, 1) (5.4.5)

Let {Ti} be a sequence of nonexpansive mappings of C into itself defined by (5.4.5)
and let {µi} be a sequence of nonnegative numbers in [0,1]. For each n ≥ 1, define a
mapping Wn of C into itself as follows:

Un,n+1 = I,

Un,n = µnTnUn,n+1 + (1 − µn)I,

Un,n−1 = µn−1Tn−1Un,n + (1 − µn−1)I,
... (5.4.6)

Un,k = µkTkUn,k+1 + (1 − µk)I,

Un,k−1 = µk−1Tk−1Un,k + (1 − µk−1)I,
...

Un,2 = µ2T2Un,3 + (1 − µ2)I,

Wn = Un,1 = µ1T1Un,2 + (1 − µ1)I.

Such a mapping Wn is nonexpansive from C to C and it is called the W -mapping
generated by T1, T2, ..., Tn and µ1, µ2, ..., µn. For each n, k ∈ N, let the mapping Un,k

be defined by (6.1.4). Then we can have the following crucial conclusions concerning
Wn.

Lemma 5.4.10. [238]. Let C be a nonempty closed convex subset of a real
Hilbert space H . Let T1, T2, ... be nonexpansive mappings of C into itself such
that ∩∞

i=1F (Ti) is nonempty, let µ1, µ2, ... be real numbers such that 0 ≤ µi ≤ b < 1

for every i ≥ 1. Then, for every x ∈ C and k ∈ N, limn→∞ Un,kx exists.
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Using this Lemma, one can define a mapping U∞,k and W : C → C as follows
U∞,kx = limn→∞ Un,kx and

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1x, ∀x ∈ C (5.4.7)

Such a mapping W is called the W -mapping. Since Wn is nonexpansive and F (W ) =

∩∞
i=1F (Ti), W : C → C is also nonexpansive. Indeed, observe that for each x, y ∈ C

such that
‖Wx − Wy‖ = lim

n→∞
‖Wnx − Wny‖ ≤ ‖x − y‖.

Lemma 5.4.11. [238] Let C be a nonempty closed convex subset of a Hilbert
space H , {Ti : C → C} be a countable family of nonexpansive mappings with
∩∞

i=1F (Ti) 6= ∅, {µi} be a real sequence such that 0 < µi ≤ b < 1, ∀i ≥ 1. Then
F (W ) = ∩∞

i=1F (Ti).

Lemma 5.4.12. Let C be a nonempty closed convex subset of a Hilbert space H ,
{Ti : C → C} be a countable family of nonexpansive mappings with ∩∞

i=1F (Ti) 6= ∅,
{µi} be a real sequence such that 0 < µi ≤ b < 1, ∀i ≥ 1. If D is any bounded
subset of C, then

lim
n→∞

sup
x∈D

‖Wx − Wnx‖ = 0.

Lemma 5.4.13. Let C be a nonempty bounded closed convex subset of a Hilbert
space H and let S = {S(s) : 0 ≤ s < ∞} be a nonexpansive semigroup on C, then
for any h ≥ 0,

lim
t−→∞

sup
x∈C

∥∥∥∥
1

t

∫ t

0

T (s)xds − T (h)
(1

t

∫ t

0

T (s)xds
)∥∥∥∥ = 0.

Lemma 5.4.14. Let C be a nonempty bounded closed convex subset of H, {xn} be
a sequence in C and S = {S(s) : 0 ≤ s < ∞} be a nonexpansive semigroup on C.
If the following conditions are satisfied:

(i) xn ⇀ z;

(ii) lim sups−→∞ lim supn−→∞ ‖S(s)xn − xn‖ = 0, then z ∈ F (S).

Theorem 5.4.15. Let C be a nonempty closed convex subset of a real Hilbert space
H , let {Fk : C × C → R, k = 1, 2, . . . , N} be a finite family of mixed equilibrium
functions satisfying conditions (H1)-(H3). Let S = {S(s) : 0 ≤ s < ∞} be a
nonexpansive semigroup on C and let {tn} be a positive real divergent sequence.
Let {Vi : C → C}∞i=1 be a countable family of uniformly ξ-strict pseudo-contractions,
{Ti : C → C}∞i=1 be the countable family of nonexpansive mappings defined by
Tix = tx + (1 − t)Vix, ∀x ∈ C, ∀i ≥ 1, t ∈ [ξ, 1), Wn be the W -mapping defined by
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(6.1.4) and W be a mapping defined by (6.1.5) with F (W ) 6= ∅. Let A, B : C → H

be γ, β-inverse-strongly monotone mappings and M1, M2 : H −→ 2H be maximal
monotone mappings such that

Θ := F (S) ∩ F (W ) ∩
(
∩N

k=1SMEP (Fk)) ∩ I(A, M1) ∩ I(B, M2) 6= ∅.

Let rk > 0, k = 1, 2, . . . , N , which are constants. Let {xn}, {yn}, {vn}, {zn} and
{un} be sequences generated by x0 ∈ C, C1 = C, x1 = PC1

x0, un ∈ C and





x0 = x ∈ C chosen arbitrary,

un = KFN
rN,n

KFN−1

rN−1,n
KFN−2

rN−2,n
. . . KF2

r2,n
KF1

r1,n
xn,

yn = JM2,δn
(un − δnBun),

vn = JM1,λn
(yn − λnAyn),

zn = αnvn + (1 − αn)
1

tn

∫ tn

0

S(s)Wnvnds,

Cn+1 =
{
z ∈ Cn : ‖zn − z‖2 ≤ ‖xn − z‖2 − αn(1 − αn)

∥∥∥vn −
1

tn

∫ tn

0

S(s)Wnvnds
∥∥∥

2}
,

xn+1 = PCn+1
x0, n ∈ N,

(5.4.8)
where KFk

rk
: C → C, k = 1, 2, . . . , N is the mapping defined by (5.4.3) and {αn}

be a sequence in (0, 1) for all n ∈ N. Assume the following conditions are satisfied:

(C1) ηk : C × C → H is Lk-Lipschitz continuous with constant k = 1, 2, . . . , N such
that

(a) ηk(x, y) + ηk(y, x) = 0, ∀x, y ∈ C,

(b) x 7→ ηk(x, y) is affine,

(c) for each fixed y ∈ C, y 7→ ηk(x, y) is sequentially continuous from the
weak topology to the weak topology;

(C2) Kk : C → R is ηk-strongly convex with constant σk > 0 and its derivative
K′

k is not only sequentially continuous from the weak topology to the strong
topology but also Lipschitz continuous with a Lipschitz constant νk > 0 such
that σk > Lkνk;

(C3) For each k ∈ {1, 2, . . . , N} and for all x ∈ C, there exist a bounded subset
Dx ⊂ C and zx ∈ C such that for any y ∈ C\Dx,

Fk(y, zx) + ϕ(zx) − ϕ(y) +
1

rk

〈
K′(y) −K′(x), η(zx, y)

〉
< 0;

(C4) {αn} ⊂ [c, d] for some c, d ∈ (ξ, 1);
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(C5) {λn} ⊂ [a1, b1] for some a1, b1 ∈ (0, 2γ];

(C6) {δn} ⊂ [a2, b2] for some a2, b2 ∈ (0, 2β];

(C7) lim infn→∞ rk,n > 0 for each k ∈ 1, 2, 3, ..., N.

Then, {xn} and {un} converge strongly to z = PΘx0.

Proof . Pick any p ∈ Θ. Taking ℑk
n = KFk

rk,n
K

Fk−1

rk−1,nK
Fk−2

rk−2,n . . .KF2

r2,n
KF1

r1,n
for k ∈

{1, 2, 3, . . . , N} and ℑ0
n = I for all n ∈ N. From the definition of KFk

rk,n
is nonexpansive

for each k = 1, 2, 3, . . . , N, then ℑk
n also and p = ℑFk

rk,n
p, we note that un = ℑN

n xn. If
follows that

‖un − p‖ = ‖ℑN
n xn −ℑN

n p‖ ≤ ‖xn − p‖.

Next, we will divide the proof into eight steps.

Step 1. We first show by induction that Θ ⊂ Cn for each n ≥ 1.
Taking p ∈ Θ, we get that p = JM1,λk

(p − λkAp) = JM2,δk
(p − δkBp). Since

JM1,λk
, JM2,δk

are nonexpansive. From the assumption, we see that Θ ⊂ C = C1.
Suppose Θ ⊂ Ck for some k ≥ 1. For any p ∈ Θ = Ck, we have

‖vk − p‖ = ‖JM1,λk
(yk − λkAyk) − JM1,λk

(p − λkAp)‖

≤ ‖(yk − λkAyk) − (p − λkAp)‖

≤ ‖(I − λkA)yk − (I − λkA)p‖

≤ ‖yk − p‖, (5.4.9)

and

‖yk − p‖ = ‖JM2,δk
(uk − δkBuk) − JM2,δk

(p − δkBp)‖

≤ ‖(uk − δkBuk) − (p − δkBp)‖

≤ ‖uk − p‖

≤ ‖xk − p‖. (5.4.10)

Which yield that

‖zk − p‖2 =
∥∥∥αk(vk − p) + (1 − αk)

( 1

tk

∫ tk

0

S(s)Wkvkds − p
)∥∥∥

2

≤ αk‖vk − p‖2 + (1 − αk)
∥∥∥

1

tk

∫ tk

0

S(s)Wkvkds − p
∥∥∥

2

−αk(1 − αk)
∥∥∥vk −

1

tk

∫ tk

0

S(s)Wkvkds
∥∥∥

2

≤ αk‖vk − p‖2 + (1 − αk)‖vk − p‖2 − αk(1 − αk)
∥∥∥vk −

1

tk

∫ tk

0

S(s)Wkvkds
∥∥∥

2

≤ ‖vk − p‖2 − αk(1 − αk)
∥∥∥vk −

1

tk

∫ tk

0

S(s)Wkvkds
∥∥∥

2

. (5.4.11)
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Applying (5.4.9) and (5.4.10), we get

‖zk − p‖2 ≤ ‖xk − p‖2 − αk(1 − αk)
∥∥∥vk −

1

tk

∫ tk

0

S(s)Wkvkds
∥∥∥

2

. (5.4.12)

Hence p ∈ Ck+1. This implies that Θ ⊂ Cn for each n ≥ 1.
Step 2. Next, we show that {xn} is well defined and Cn is closed and convex for any
n ∈ N.
It is obvious that C1 = C is closed and convex. Suppose that Ck is closed and

convex for some k ≥ 1. Now, we show that Ck+1 is closed and convex for some k.
For any p ∈ Ck, we obtain

‖zk − p‖2 ≤ ‖xk − p‖2

is equivalent to
‖zk − xk‖

2 + 2〈zk − xk, xk − p〉 ≤ 0. (5.4.13)

Thus Ck+1 is closed and convex. Then, Cn is closed and convex for any n ∈ N. This
implies that {xn} is well-defined.
Step 3. Next, we show that {xn} is bounded and limn→∞ ‖xn − x0‖ exists. From
xn = PCn

x0, we have

〈x0 − xn, xn − y〉 ≥ 0

for each y ∈ Cn. Using Θ ⊂ Cn, we also have

〈x0 − xn, xn − p〉 ≥ 0, ∀p ∈ Θ and n ∈ N.

So, for p ∈ Θ. We observe that

0 ≤ 〈x0 − xn, xn − p〉

= 〈x0 − xn, xn − x0 + x0 − p〉

= −〈x0 − xn, x0 − xn〉 + 〈x0 − xn, x0 − p〉

≤ −‖x0 − xn‖
2 + ‖x0 − xn‖‖x0 − p‖.

This implies that

‖x0 − xn‖ ≤ ‖x0 − p‖, ∀p ∈ Θ and n ∈ N.

Hence, we get {xn} is bounded. It follows by (5.4.9)-(6.4.13), that {vn}, {yn} and
{Wnvn} are also bounded. From xn = PCn

x0, and xn+1 = PCn+1
x0 ∈ Cn+1 ⊂ Cn, we

obtain
〈x0 − xn, xn − xn+1〉 ≥ 0. (5.4.14)
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It follows that, we have for each n ∈ N

0 ≤ 〈x0 − xn, xn − xn+1〉

= 〈x0 − xn, xn − x0 + x0 − xn+1〉

= −〈x0 − xn, x0 − xn〉 + 〈x0 − xn, x0 − xn+1〉

≤ −‖x0 − xn‖
2 + ‖x0 − xn‖‖x0 − xn+1‖.

It follows that

‖x0 − xn‖ ≤ ‖x0 − xn+1‖.

Thus, since the sequence {‖xn − x0‖} is a bounded and nondecreasing sequence, so
limn−→∞ ‖xn − x0‖ exists, that is

m = lim
n−→∞

‖xn − x0‖. (5.4.15)

Step 4. Next, we show that limn−→∞ ‖xn+1 − xn‖ = 0 and limn−→∞ ‖xn − zn‖ = 0.
Applying (5.4.14), we get

‖xn − xn+1‖
2 = ‖xn − x0 + x0 − xn+1‖

2

= ‖xn − x0‖
2 + 2〈xn − x0, x0 − xn+1〉 + ‖x0 − xn+1‖

2

= ‖xn − x0‖
2 + 2〈xn − x0, x0 − xn + xn − xn+1〉 + ‖x0 − xn+1‖

2

= ‖xn − x0‖
2 − 2〈xn − x0, xn − x0〉 + 2〈xn − x0, xn − xn+1〉 + ‖x0 − xn+1‖

2

= −‖xn − x0‖
2 + 2〈xn − x0, xn − xn+1〉 + ‖x0 − xn+1‖

2

≤ −‖xn − x0‖
2 + ‖x0 − xn+1‖

2.

Thus, by (5.4.15), we obtain

lim
n−→∞

‖xn − xn+1‖ = 0. (5.4.16)

On the other hand, from xn+1 = PCn+1
x0 ∈ Cn+1 ⊂ Cn, which implies that

‖xn+1 − zn‖ ≤ ‖xn+1 − xn‖. (5.4.17)

It follows by (5.4.17), we also have

‖zn − xn‖ ≤ ‖zn − xn+1‖ + ‖xn+1 − xn‖ ≤ 2‖xn − xn+1‖.

By (5.4.16), we obtain
lim

n−→∞
‖xn − zn‖ = 0. (5.4.18)

Step 5. Next, we show that

lim
n−→∞

‖ℑk
nxn − ℑk−1

n xn‖ = 0 (5.4.19)
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for every k ∈ {1, 2, 3, . . . , N}. Indeed, for p ∈ Θ, note that KFk
rk,n
is the firmly nonex-

pansie, so we have

‖ℑk
nxn − ℑk

np‖2 = ‖KFk
rk,n

ℑk−1
n xn − KFk

rk,n
p‖2

≤ 〈ℑk
nxn − p,ℑk−1

n xn − p〉

=
1

2

{
‖ℑk

nxn − p‖2 + ‖ℑk−1
n xn − p‖2 − ‖ℑk

nxn − ℑk−1
n xn‖

2
}

.

Thus, we get

‖ℑk
nxn − ℑk

np‖
2 ≤ ‖ℑk−1

n xn − p‖2 − ‖ℑk
nxn − ℑk−1

n xn‖
2.

It follows that

‖un − p‖2 ≤ ‖ℑk
nxn − ℑk

np‖2

≤ ‖ℑk−1
n xn − p‖2 − ‖ℑk

nxn − ℑk−1
n xn‖

2

≤ ‖xn − p‖2 − ‖ℑk
nxn − ℑk−1

n xn‖
2. (5.4.20)

By (5.4.9), (5.4.10), (6.4.13) and (5.4.20), we have for each k ∈ {1, 2, 3, ..., N}

‖zn − p‖2 ≤ ‖vn − p‖2

≤ ‖un − p‖2

≤ ‖xn − p‖2 − ‖ℑk
nxn −ℑk−1

n xn‖
2.

Consequently, we have

‖ℑk
nxn −ℑk−1

n xn‖
2 ≤ ‖xn − p‖2 − ‖zn − p‖2

≤ ‖xn − zn‖(‖xn − p‖ + ‖zn − p‖).

Since (5.4.18) implies that for every k ∈ {1, 2, 3, ..., N}

lim
n−→∞

‖ℑk
nxn − ℑk−1

n xn‖ = 0. (5.4.21)

Step 6. Next, we show that limn−→∞ ‖yn − vn‖ = 0 and limn−→∞ ‖KnWnvn − vn‖ = 0,

where Kn = 1
tn

∫ tn

0
S(s)ds

For any given p ∈ Θ, λn ∈ (0, 2γ], δn ∈ (0, 2β] and p = JM1,λn
(p − λnAp) =

JM2,δn
(p − δnBp). Since I − λnA and I − δnB are nonexpansive, we have

‖vn − p‖2 = ‖JM1,λn
(yn − λnAyn) − JM1,λn

(p − λnAp)‖2

≤ ‖(yn − λnAyn) − (p − λnAp)‖2

= ‖(yn − p) − λn(Ayn − Ap)‖2

≤ ‖yn − p‖2 − 2λn〈yn − p, Ayn − Ap〉 + λ2
n‖Ayn − Ap‖2

≤ ‖xn − p‖2 − 2λnγ‖Ayn − Ap‖2 + λ2
n‖Ayn − Ap‖2

≤ ‖xn − p‖2 + λn(λn − 2γ)‖Ayn − Ap‖2. (5.4.22)
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Similarly, we can show that

‖yn − p‖2 ≤ ‖xn − p‖2 + δn(δn − 2β)‖Bun − Bp‖2. (5.4.23)

Observe that

‖zn − p‖2 =
∥∥∥αn(vn − p) + (1 − αn)

( 1

tn

∫ tn

0

S(s)Wnvnds − p
)∥∥∥

2

≤ αn‖vn − p‖2 + (1 − αn)
∥∥∥

1

tn

∫ tn

0

S(s)Wnvnds − p
∥∥∥

2

−αn(1 − αn)
∥∥∥vn −

1

tn

∫ tn

0

S(s)Wnvnds
∥∥∥

2

≤ αn‖vn − p‖2 + (1 − αn)
∥∥∥

1

tn

∫ tn

0

S(s)Wnvnds − p
∥∥∥

2

≤ αn‖xn − p‖2 + (1 − αn)‖vn − p‖2. (5.4.24)

Substituting (6.1.28) into (6.1.33) and using conditions (C4) and (C5), we have

‖zn − p‖2 ≤ αn‖xn − p‖2 + (1 − αn){‖xn − p‖2 + λn(λn − 2γ)‖Ayn − Ap‖2}

= ‖xn − p‖2 + (1 − αn)λn(λn − 2γ)‖Ayn − Ap‖2.

It follows that

(1 − d)a1(2γ − b1)‖Ayn − Ap‖2 ≤ (1 − αn)λn(2γ − λn)‖Ayn − Ap‖2

≤ ‖xn − p‖2 − ‖zn − p‖2

≤ ‖xn − zn‖(‖xn − p‖ + ‖zn − p‖).

By (5.4.18), we obtain
lim

n−→∞
‖Ayn − Ap‖ = 0. (5.4.25)

Since the resolvent operator JM1,λn
is 1-inverse-strongly monotone, we obtain

‖vn − p‖2 = ‖JM1,λn
(yn − λnAyn) − JM1,λn

(p − λnAp)‖2

= ‖JM1,λn
(I − λnA)yn − JM1,λn

(I − λnA)p‖2

≤
〈
(I − λnA)yn − (I − λnA)p, vn − p

〉

=
1

2

{
‖(I − λnA)yn − (I − λnA)p‖2 + ‖vn − p‖2

−‖(I − λnA)yn − (I − λnA)p − (vn − p)‖2
}

≤
1

2

{
‖yn − p‖2 + ‖vn − p‖2 − ‖(yn − vn) − λn(Ayn − Ap)‖2

}

≤
1

2

{
‖xn − p‖2 + ‖vn − p‖2 − ‖yn − vn‖

2

−λ2
n‖Ayn − Ap‖2 + 2λn〈yn − vn, Ayn − Ap〉

}
,
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which yields that

‖vn − p‖2 ≤ ‖xn − p‖2 − ‖yn − vn‖
2 + 2λn‖yn − vn‖‖Ayn − Ap‖. (5.4.26)

Similarly, we can obtain

‖yn − p‖2 ≤ ‖xn − p‖2 − ‖un − yn‖
2 + 2δn‖un − yn‖‖Bun − Bp‖. (5.4.27)

Substituting (6.1.36) into (6.1.33), and using condition (C4) and (C5), we have

‖zn − p‖2 ≤ αn‖xn − p‖2 + (1 − αn)‖vn − p‖2

≤ αn‖xn − p‖2 + (1 − αn)
{
‖xn − p‖2 − ‖yn − vn‖

2 + 2λn‖yn − vn‖‖Ayn − Ap‖
}

= ‖xn − p‖2 − (1 − αn)‖yn − vn‖
2 + 2(1 − αn)λn‖yn − vn‖‖Ayn − Ap‖.

It follows that

(1 − αn)‖yn − vn‖
2 ≤ ‖xn − p‖2 − ‖zn − p‖2 + 2(1 − αn)λn‖yn − vn‖‖Ayn − Ap‖

≤ ‖xn − zn‖(‖xn − p‖ + ‖zn − p‖) + 2(1 − αn)λn‖yn − vn‖‖Ayn − Ap‖.

By (5.4.18) and (6.1.35), we get

lim
n−→∞

‖yn − vn‖ = 0. (5.4.28)

From (5.4.12) and (C4), we also have

αn(1 − αn)
∥∥∥vn −

1

tn

∫ tn

0

S(s)Wnvnds
∥∥∥

2

≤ ‖xn − p‖2 − ‖zn − p‖2

≤ ‖xn − zn‖(‖xn − p‖ + ‖zn − p‖).

Since Kn = 1
tn

∫ tn

0
S(s)ds, we obtain (5.4.18), we have

lim
n−→∞

‖KnWnvn − vn‖ = 0. (5.4.29)

Since {Wnvn} is a bounded sequence in C, from Lemma 5.4.13 for all h ≥ 0, we have

lim
n→∞

‖KnWnvn−S(h)KnWnvn‖ = lim
n→∞

∥∥∥∥
1

tn

∫ tn

0

S(s)Wnvnds−S(h)

(
1

tn

∫ tn

0

S(s)Wnvnds

)∥∥∥∥ = 0.

(5.4.30)
It follows from (5.4.29) and (5.4.30), we get

‖vn − S(s)vn‖ ≤ ‖vn −KnWnvn‖ + ‖KnWnvn − S(s)KnWnvn‖ + ‖S(s)KnWnvn − S(s)vn‖

≤ 2‖vn −KnWnvn‖ + ‖KnWnvn − S(s)KnWnvn‖.

So, we have
lim

n→∞
‖vn − S(s)vn‖ = 0. (5.4.31)
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Step 7. Next, we show that q ∈ Θ := F (S) ∩ F (W ) ∩
(
∩N

k=1SMEP (Fk)) ∩

I(A, M1) ∩ I(B, M2) 6= ∅.

Since {vni
} is bounded, there exists a subsequence {vnij

} of {vni
} which converges

weakly to q ∈ C. Without loss of generality, we can assume that vni
⇀ q.

(1) First, we prove that q ∈ F (S). Indeed, from Lemma 5.4.14 and (5.4.31), we
get q ∈ F (S), i.e., q = S(s)q, ∀s ≥ 0.
(2) We show that q ∈ F (W ) = ∩∞

n=1F (Wn), where F (Wn) = ∩∞
i=1F (Ti), ∀n ≥ 1

and F (Wn+1) ⊂ F (Wn). Assume that q /∈ F (W ), then there exists a positive integer m
such that q /∈ F (Tm) and so q /∈ ∩m

i=1F (Ti). Hence for any n ≥ m, q /∈ ∩n
i=1F (Ti) =

F (Wn), i.e., q 6= Wnq. This together with q = S(s)q, ∀s ≥ 0 shows q = S(s)q 6=

S(s)Wnq, ∀s ≥ 0, therefore we have q 6= KnWnq, ∀n ≥ m. It follows from the
Opial’s condition and (5.4.29) that

lim inf
i→∞

‖vni
− q‖ < lim inf

i→∞
‖vni

−Kni
Wni

q‖

≤ lim inf
i→∞

(‖vni
−Kni

Wni
vni

‖ + ‖Kni
Wni

vni
−Kni

Wni
q‖)

≤ lim inf
i→∞

‖vni
− q‖,

which is a contradiction. Thus, we get q ∈ F (W ).
(3) We prove that q ∈ ∩N

k=1SMEP (Fk, ϕ). Since ℑk
n = KFk

rk
, k = 1, 2, . . . , N and

uk
n = ℑk

nxn, we have

Fk(ℑ
k
nxn, x)+ϕ(x)−ϕ(ℑk

nxn)+
1

rk

〈
K′(ℑk

nxn)−K′(ℑk−1
n xn), η(x,ℑk

nxn)
〉
≥ 0, ∀x ∈ C.

It follows that
1

rk

〈
K′(ℑk

ni
xni

) −K′(ℑk−1
ni

xni
), η(x,ℑk

ni
xni

)
〉
≥ −Fk(ℑ

k
ni

xni
, x) − ϕ(x) + ϕ(ℑk

ni
xni

)(5.4.32)

for all x ∈ C. From (5.4.21) and by conditions (C1)(c) and (C2), we get

lim
ni→∞

1

rk

〈
K′(ℑk

ni
xni

) −K′(ℑk−1
ni

xni
), η(x,ℑk

ni
xni

)
〉

= 0.

By the assumption and by the condition (H1), we know that the function ϕ and the
mapping x 7−→ (−Fk(x, y)) both are convex and lower semicontinuous, hence they are
weakly lower semicontinuous.
These together with K′(ℑk

ni
xni

)−K′(ℑk−1
ni

xni
)

rk
→ 0 and ℑk

ni
xni

⇀ q, we have

lim inf
ni→∞

〈K′(ℑk
ni

xni
) −K′(ℑk−1

ni
xni

)

rk

, η(x,ℑk
ni

xni
)
〉
≥ lim inf

ni→∞
{−Fk(ℑ

k
ni

xni
, x) − ϕ(x) + ϕ(ℑk

ni
xni

)}.

Then, we obtain

Fk(q, x) + ϕ(x) − ϕ(q) ≥ 0, ∀x ∈ C, ∀k =, 1, 2, . . . , N. (5.4.33)
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Therefore q ∈ ∩N
k=1SMEP (Fk, ϕ).

(4) Lastly, we prove that q ∈ I(A, M1) ∩ I(B, M2).
We observe that A is an 1/γ-Lipschitz monotone mapping and D(A) = H . From

Lemma 5.4.4, we know that M1 + A is maximal monotone. Let (v, g) ∈ G(M1 + A)

that is, g − Av ∈ M1(v). Since vni
= JM1,λni

(yni
− λni

Ayni
), we have

yni
− λni

Ayni
∈ (I + λni

M1)(vni
),

that is,
1

λni

(yni
− vni

− λni
Ayni

) ∈ M1(vni
). (5.4.34)

By virtue of the maximal monotonicity of M1 + A, we have
〈

v − vni
, g − Av −

1

λni

(yni
− vni

− λni
Ayni

)

〉
≥ 0, (5.4.35)

and so
〈

v − vni
, g

〉
≥

〈
v − vni

, Av +
1

λni

(yni
− vni

− λni
Ayni

)

〉

=

〈
v − vni

, Av − Avni
+ Avni

− Ayni
+

1

λni

(yni
− vni

)

〉
(5.4.36)

≥ 0 + 〈v − vni
, Avni

− Ayni
〉 +

〈
v − vni

,
1

λni

(yni
− vni

)

〉
.

By (5.4.28), vni
⇀ q and A is inverse-strongly monotone, we obtain that limn→∞ ‖Ayn−

Avn‖ = 0 and it follows that

lim
ni−→∞

〈v − vni
, g〉 = 〈v − q, g〉 ≥ 0. (5.4.37)

It follows from the maximal monotonicity of M1 + A that θ ∈ (M1 + A)(q), that is,
q ∈ I(A, M1). Since {yni

} is bounded, there exists a subsequence {ynij
} of {yni

}

which converges weakly to q ∈ C. Without loss of generality, we can assume that
yni

⇀ q. In similar way, we can obtain q ∈ I(B, M2), hence q ∈ I(A, M1) ∩ I(B, M2)

Step 8. Finally, we show that xn −→ z and un −→ z, where z = PΘx0.

Since Θ is nonempty closed convex subset of H , there exists a unique z′ ∈ Θ such
that z′ = PΘx0. Since z′ ∈ Θ ⊂ Cn and xn = PCn

x0, we have

‖x0 − xn‖ ≤ ‖x0 − PCn
x0‖ ≤ ‖x0 − z′‖ (5.4.38)

for all n ∈ N. From (5.4.38) and {xn} is bounded, so ωw(xn) 6= ∅.
By the weakly lower semicontinuous of the norm, we have

‖x0 − z‖ ≤ lim inf
ni−→∞

‖x0 − xni
‖ ≤ ‖x0 − z′‖. (5.4.39)
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However, since z ∈ ωw(xn) ⊂ Θ, we have

‖x0 − z′‖ ≤ ‖x0 − PCn
x0‖ ≤ ‖x0 − z‖.

Using (5.4.38) and (5.4.39), we obtain z′ = z. Thus ωw(xn) = {z} and xn ⇀ z. So,
we have

‖x0 − z′‖ ≤ ‖x0 − z‖ ≤ lim inf
n−→∞

‖x0 − xn‖ ≤ lim sup
n−→∞

‖x0 − xn‖ ≤ ‖x0 − z′‖.

Thus, we obtain that

‖x0 − z‖ = lim
n−→∞

‖x0 − xn‖ = ‖x0 − z′‖.

From xn ⇀ z, we obtain (x0 − xn) ⇀ (x0 − z). Using the Kadec-Klee property, we
obtain that

‖xn − z‖ = ‖(xn − x0) − (z − x0)‖ −→ 0 as n −→ ∞

and hence xn −→ z in norm. Finally, noticing ‖un − z‖ = ‖ℑN
n xn −ℑN

n z‖ ≤ ‖xn − z‖.

We also conclude that un −→ z in norm. This completes the proof.



บทท่ี 6

Optimization Problems

6.1 Optimization Problem
Definition 6.1.1. Let A be a strongly positive bounded linear operator on H if there
exists a constant γ̄ > 0 with the property

〈Ax, x〉 ≥ γ̄‖x‖2, ∀x ∈ H. (6.1.1)

A typical problem is that of minimizing a quadratic function over the set of the
fixed points of a nonexpansive mapping on a real Hilbert space H:

min
x∈F (S)

1

2
〈Ax, x〉 − 〈x, b〉, (6.1.2)

where A is a nonexpansive mapping and b is a given point in H .
Optimization problem (for short, OP) as the following

OP : min
x∈F

µ

2
〈Ax, x〉 +

1

2
‖x − u‖2 − h(x), (6.1.3)

where F = ∩∞
n=1Cn, C1, C2, · · · are infinitely closed convex subsets of H such that

∩∞
n=1Cn 6= ∅, u ∈ H , µ ≥ 0 is a real number, A is a strongly positive linear bounded
operator on H and h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).
Lemma 6.1.2. [180] Let C be a nonempty closed convex subset of a real Hilbert
space H , and g : C → R ∪ {∞} be a proper lower-semicontinuous differentiable
convex function. If z is a solution to the minimization problem

g(z) = inf
x∈C

g(x),

then 〈
g′(x), x − z

〉
≥ 0, x ∈ C.

In particular, if z solves problem OP , then
〈
u +

[
γf − (I + µA)

]
z, x − z

〉
≤ 0.
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Lemma 6.1.3. [231]. Let E be a nonempty closed convex subset of H and let f

be a contraction of H into itself with α ∈ (0, 1), and A be a strongly positive linear
bounded operator on H with coefficient γ̄ > 0. Then , for 0 < γ < γ̄

α
,

〈x − y, (A − γf)x − (A − γf)y〉 ≥ (γ̄ − αγ)‖x − y‖2, x, y ∈ H.

That is, A − γf is strongly monotone with coefficient γ̄ − αγ.

Lemma 6.1.4. [231]. Assume A be a strongly positive linear bounded operator on
H with coefficient γ̄ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1 − ργ̄.

For solving the mixed equilibrium problem for an equilibrium bifunction Θ : E ×

E −→ R, let us assume that Θ satisfies the following conditions:

(H1) Θ is monotone, i.e., Θ(x, y) + Θ(y, x) ≤ 0, ∀x, y ∈ E;

(H2) for each fixed y ∈ E, x 7→ Θ(x, y) is convex and upper semicontinuous;

(H3) for each x ∈ E, y 7→ Θ(x, y) is convex.

Let η : E × E −→ H , which is called Lipschitz continuous if there exists a constant
λ > 0 such that

‖η(x, y)‖ ≤ λ‖x − y‖, ∀x, y ∈ E.

Let K : E −→ R be a differentiable functional on a convex set E, which is called:

(K1) η-convex [223] if

K(y) − K(x) ≥ 〈K ′(x), η(y, x)〉, ∀x, y ∈ E,

where K ′(x) is the Fréchet derivative at x;

(K2) η-strongly convex [243] if there exists a constant σ > 0 such that

K(y) − K(x) − 〈K ′(x), η(y, x)〉 ≥
σ

2
‖x − y‖2, ∀x, y ∈ E.

Let E be a nonempty closed convex subset of a real Hilbert space H , let ϕ : E −→ R

be a real-valued function and Θ : E ×E −→ R be an equilibrium bifunction. Let r be
a positive parameter. For a given point x ∈ E, the auxiliary problem for MEP consists
of finding y ∈ E such that

Θ(y, z) + ϕ(z) − ϕ(y) +
1

r
〈K ′(y) − K ′(x), η(z, y)〉 ≥ 0, ∀z ∈ E.
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Let Sr : E −→ E be the mapping such that for each x ∈ E, Sr(x) is the solution set
of the auxiliary problem MEP, that is,

Sr(x) = {y ∈ E : Θ(y, z)+ϕ(z)−ϕ(y)+
1

r
〈K ′(y)−K ′(x), η(z, y)〉 ≥ 0, ∀z ∈ E}, ∀x ∈ E.

Definition 6.1.5. Let {Tn} be a sequence of nonexpansive mappings of E into itself
and let {µn} be a sequence of nonnegative numbers in [0,1]. For each n ≥ 1, define
a mapping Wn of E into itself as follows:

Un,n+1 = I,

Un,n = µnTnUn,n+1 + (1 − µn)I,

Un,n−1 = µn−1Tn−1Un,n + (1 − µn−1)I,
... (6.1.4)

Un,k = µkTkUn,k+1 + (1 − µk)I,

Un,k−1 = µk−1Tk−1Un,k + (1 − µk−1)I,
...

Un,2 = µ2T2Un,3 + (1 − µ2)I,

Wn = Un,1 = µ1T1Un,2 + (1 − µ1)I.

Such a mapping Wn is nonexpansive from E to E and it is called the W -mapping
generated by T1, T2, ..., Tn and µ1, µ2, ..., µn.

For each n, k ∈ N, let the mapping Un,k be defined by (6.1.4). Then we can have
the following crucial conclusions concerning Wn. You can find them in [238]. Now
we only need the following similar version in Hilbert spaces.

Lemma 6.1.6. [238]. Let E be a nonempty closed convex subset of a real Hilbert
space H . Let T1, T2, ... be nonexpansive mappings of E into itself such that
∩∞

n=1F (Tn) is nonempty, let µ1, µ2, ... be real numbers such that 0 ≤ µn ≤ b < 1 for
every n ≥ 1. Then, for every x ∈ E and k ∈ N, the limit limn−→∞ Un,kx exists.

Using Lemma 6.1.6, one can define a mapping W of E into itself as follows:

Wx = lim
n−→∞

Wnx = lim
n−→∞

Un,1x, (6.1.5)

for every x ∈ E. Such a W is called the W -mapping generated by T1, T2, ... and
µ1, µ2, .... Throughout this paper, we will assume that 0 ≤ µn ≤ b < 1 for every n ≥ 1.
Then, we have the following results.
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Lemma 6.1.7. [238]. Let E be a nonempty closed convex subset of a real Hilbert
space H . Let T1, T2, ... be nonexpansive mappings of E into itself such that
∩∞

n=1F (Tn) is nonempty, let µ1, µ2, ... be real numbers such that 0 ≤ µn ≤ b < 1 for
every n ≥ 1. Then, F (W ) = ∩∞

n=1F (Tn).

Lemma 6.1.8. [314]. If {xn} is a bounded sequence in E, then limn−→∞ ‖Wxn −

Wnxn‖ = 0.

Lemma 6.1.9. [307]. Let {xn} and {vn} be bounded sequences in a Banach space X

and let {βn} be a sequence in [0, 1] with 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1.

Suppose xn+1 = (1 − βn)vn + βnxn for all integers n ≥ 0 and lim supn−→∞(‖vn+1 −

vn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn−→∞ ‖vn − xn‖ = 0.

Lemma 6.1.10. Let H be a real Hilbert space. Then the following inequalities hold:

(1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;

(2) ‖x + y‖2 ≥ ‖x‖2 + 2〈y, x〉;

for all x, y ∈ H .

Lemma 6.1.11. [311]. Assume {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1 − ln)an + σn, ∀n ≥ 0,

where {ln} is a sequence in (0, 1) and {σn} is a sequence in R such that

(1)
∑∞

n=1 ln = ∞

(2) lim supn−→∞
σn

ln
≤ 0 or

∑∞
n=1 |σn| < ∞.

Then limn−→∞ an = 0.

Next, we prove a strong convergence theorem of a general iterative method (6.1.6) to
compute the approximate solutions of the mixed equilibrium problems and optimization
problems in Hilbert spaces.

Theorem 6.1.12. Let E be a nonempty closed convex subset of a real Hilbert space
H and let ϕ be a lower semicontinuous and convex functional from E to R. Let
Θ be a bifunction from E × E to R satisfying (H1)-(H3), let {Tn} be an infinite
family of nonexpansive mappings of E into itself and let B be a ξ-inverse-strongly
monotone mapping of C into H such that

Γ := ∩∞
n=1F (Tn) ∩ MEP ∩ V I(E, B) 6= ∅.
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Let µ > 0, γ > 0 and r > 0 be three constants. Let f be a contraction of E into
itself with α ∈ (0, 1) and let A be a strongly positive linear bounded operator on H

with coefficient γ̄ > 0 and 0 < γ < (1+µ)γ̄
α

. For given x1 ∈ H arbitrarily and fixed
u ∈ H , suppose the {xn}, {kn}, {yn} and {zn} are generated iteratively by





Θ(zn, x) + ϕ(x) − ϕ(zn) + 1
r
〈K ′(zn) − K ′(xn), η(x, zn)〉 ≥ 0, ∀x ∈ C,

yn = PE(zn − δnBzn),

kn = αnxn + (1 − αn)WnPE(yn − λnByn),

xn+1 = ǫn(u + γf(Wnxn)) + βnxn + ((1 − βn)I − ǫn(I + µA))WnPE(kn − τnBkn),

(6.1.6)
for all n ∈ N, where Wn be the W -mapping defined by (6.1.4) and {ǫn}, {αn} and
{βn} are three sequences in (0, 1). Assume the following conditions are satisfied:

(C1) η : E × E −→ H is Lipschitz continuous with constant λ > 0 such that;

(a) η(x, y) + η(y, x) = 0, ∀x, y ∈ E

(b) η(·, ·) is affine in the first variable,

(c) for each fixed y ∈ E, x 7→ η(y, x) is sequentially continuous from the
weak topology to the weak topology;

(C2) K : E −→ R is η-strongly convex with constant σ > 0 and its derivative K ′ is
not only sequentially continuous from the weak topology to the strong topology
but also Lipschitz continuous with constant υ > 0 such that σ > λυ;

(C3) for each x ∈ E, there exist a bounded subset Dx ⊂ E and zx ∈ E such that
for any y ∈ E\Dx,

Θ(y, zx) + ϕ(zx) − ϕ(y) +
1

r
〈K ′(y) − K ′(x), η(zx, y)〉 < 0;

(C4) limn−→∞ αn = 0, limn−→∞ ǫn = 0 and
∑∞

n=1 ǫn = ∞;

(C5) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1;

(C6) limn−→∞ |λn+1 − λn| = limn−→∞ |δn+1 − δn| = limn−→∞ |τn+1 − τn| = 0;

(C7) {τn}, {λn}, {δn} ⊂ [a, b] for some a, b ∈ (0, 2ξ).

Then, {xn} and {zn} converge strongly to z ∈ Γ := ∩∞
n=1F (Tn) ∩ MEP ∩ V I(E, B)

provided Sr is firmly nonexpansive, which solves the following optimization problem:

OP : min
x∈Γ

µ

2
〈Ax, x〉 +

1

2
‖x − u‖2 − h(x). (6.1.7)
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Proof . Since ǫn −→ 0 by the condition (C4) and (C5), we may assume, without loss of
generality, that ǫn ≤ (1− βn)(1 + µ‖A‖)−1 for all n ∈ N. First, we show that I − τnB

is nonexpansive. Indeed, from the ξ-inverse-strongly monotone mapping definition on
B and condition (C7), we observe that

‖(I − τnB)x − (I − τnB)y‖2 = ‖(x − y) − τn(Bx − By)‖2

= ‖x − y‖2 − 2τn〈x − y, Bx− By〉 + τ 2
n‖Bx − By‖2

≤ ‖x − y‖2 − 2τnξ‖Bx − By‖ + τ 2
n‖Bx − By‖2

= ‖x − y‖2 + τn(τn − 2ξ)‖Bx − By‖2 (6.1.8)
≤ ‖x − y‖2,

if τn ≤ 2ξ then the mapping I−τnB is nonexpansive, and so are I−λnB and I−δnB,
if provided λn, δn ≤ (o, 2ξ). On the other hand, since A is a strongly positive bounded
linear operator on H, we have

‖A‖ = sup{|〈Ax, x〉| : x ∈ H, ‖x‖ = 1}.

Observe that

〈((1 − βn)I − ǫn(I + µA))x, x〉 = 1 − βn − ǫn − ǫnµ〈Ax, x〉

≥ 1 − βn − ǫn − ǫnµ‖A‖

≥ 0,

this shows that (1 − βn)I − ǫn(I + µA) is positive. It follows that

‖(1 − βn)I − ǫn(I + µA)‖ = sup{|〈((1 − βn)I − ǫn(I + µA))x, x〉| : x ∈ H, ‖x‖ = 1}

= sup{1 − βn − ǫn − ǫnµ〈Ax, x〉 : x ∈ H, ‖x‖ = 1}

≤ 1 − βn − ǫn − ǫnµγ̄.

We shall divide the proof into five steps.
Step 1. We claim that {xn} is bounded. Indeed, pick any p ∈ Γ := ∩∞

n=1F (Tn) ∩

MEP ∩ V I(E, B). From the definition of Sr, we note that zn = Srxn. If follows that

‖zn − p‖ = ‖Srxn − Srp‖ ≤ ‖xn − p‖.

Since I − λnB, I − δnB, PE and Wn are nonexpansive and p = WnPE(p − λnBp) =

WnPE(p − δnBp), we have

‖yn − p‖ = ‖WnPE(zn − δnBzn) − WnPE(p − δnBp)‖

≤ ‖PE(zn − δnBzn) − PE(p − δnBp)‖

≤ ‖(zn − δnBzn) − (p − δnBp)‖

= ‖(I − δnB)zn − (I − δnB)p)‖ ≤ ‖zn − p‖ ≤ ‖xn − p‖.
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It follows that

‖kn − p‖ = ‖αn(xn − p) + (1 − αn)(WnPE(yn − λnByn) − p)‖

≤ αn‖xn − p‖ + (1 − αn)‖PE(yn − λnByn) − PE(p − λnBp)‖

≤ αn‖xn − p‖ + (1 − αn)‖(yn − λnByn) − (p − λnBp)‖

= αn‖xn − p‖ + (1 − αn)‖(I − λnB)yn − (I − λnB)p‖

≤ αn‖xn − p‖ + (1 − αn)‖yn − p‖

≤ αn‖xn − p‖ + (1 − αn)‖xn − p‖ = ‖xn − p‖,

which yields that

‖xn+1 − p‖ = ‖ǫnu + ǫn(γf(Wnxn) − (I + µA)p) + βn(xn − p)

+ ((1 − βn)I − ǫn(I + µA))(WnPE(kn − τnBkn) − p)‖

≤ (1 − βn − ǫn(1 + µ)γ̄)‖PE(I − τnB)kn − p‖ + βn‖xn − p‖ + ǫn‖u‖

+ ǫn‖γf(Wnxn) − (I + µA)p‖

≤ (1 − βn − ǫn(1 + µ)γ̄)‖kn − p‖ + βn‖xn − p‖ + ǫn‖u‖

+ ǫn‖γf(Wnxn) − (I + µA)p‖

≤ (1 − βn − ǫn(1 + µ)γ̄)‖kn − p‖ + βn‖xn − p‖ + ǫn‖u‖

+ ǫnγ‖f(Wnxn) − f(p)‖ + ǫn‖γf(p) − (I + µA)p‖

≤ (1 − βn − ǫn(1 + µ)γ̄)‖xn − p‖ + βn‖xn − p‖ + ǫn‖u‖

+ ǫnγα‖xn − p‖ + ǫn‖γf(p) − (I + µA)p‖

≤ (1 − ǫn(1 + µ)γ̄ + ǫnγα)‖xn − p‖ + ǫn(‖γf(p) − (I + µA)p‖ + ‖u‖)

= (1 − ((1 + µ)γ̄ − γα)ǫn)‖xn − p‖ + ǫn(‖γf(p) − (I + µA)p‖ + ‖u‖)

= (1 − ((1 + µ)γ̄ − γα)ǫn)‖xn − p‖

+ ((1 + µ)γ̄ − γα)ǫn

‖f(p) − (I + µA)p‖ + ‖u‖

(1 + µ)γ̄ − γα
. (6.1.9)

It follows that (6.1.9) and induction that

‖xn − p‖ ≤ max

{
‖x1 − p‖,

‖f(p) − (I + µA)p‖ + ‖u‖

(1 + µ)γ̄ − γα

}
, n ≥ 1. (6.1.10)

Hence, {xn} is bounded, so are {zn}, {kn}, {yn}, {f(Wnxn)}, {Bzn}, {Bkn}, {Byn},
{Wnkn} and {Wnyn}.

Step 2. We claim that limn−→∞ ‖xn+1 − xn‖ = 0 and limn−→∞ ‖Wnθn − xn‖ = 0.

Observing that zn = Srxn and zn+1 = Srxn+1, from the nonexpansive of Sr, we get

‖zn+1 − zn‖ = ‖Srxn+1 − Srxn‖ ≤ ‖xn+1 − xn‖. (6.1.11)



164

Put θn = PE(kn − τnBkn) and φn = PE(yn − λnByn). Since I − τnB, I − λnB and
I − δnB are nonexpansive, then we have the following estimates:

‖yn+1 − yn‖ ≤ ‖PE(zn+1 − δn+1Bzn+1) − PE(zn − δnBzn)‖

≤ ‖(zn+1 − δn+1Bzn+1) − (zn − δnBzn)‖

= ‖(zn+1 − δn+1Bzn+1) − (zn − δn+1Bzn) + (δn − δn+1)Bzn‖

≤ ‖(zn+1 − δn+1Bzn+1) − (zn − δn+1Bzn)‖ + |δn − δn+1|‖Bzn‖

= ‖(I − δn+1B)zn+1 − (I − δn+1B)zn‖ + |δn − δn+1|‖Bzn‖

≤ ‖zn+1 − zn‖ + |δn − δn+1|‖Bzn‖

≤ ‖xn+1 − xn‖ + |δn − δn+1|‖Bzn‖, (6.1.12)

‖φn+1 − φn‖ ≤ ‖PE(yn+1 − λn+1Byn+1) − PE(yn − λnByn)‖

≤ ‖(yn+1 − λn+1Byn+1) − (yn − λnByn)‖

≤ ‖(yn+1 − λn+1Byn+1) − (yn − λn+1Byn)‖ + |λn − λn+1|‖Byn‖

= ‖(I − λn+1B)yn+1 − (I − λn+1B)yn‖ + |λn − λn+1|‖Byn‖

≤ ‖yn+1 − yn‖ + |λn − λn+1|‖Byn‖ (6.1.13)

and

‖θn+1 − θn‖ ≤ ‖PE(kn+1 − τn+1Bkn+1) − PE(kn − τnBkn)‖

≤ ‖(kn+1 − τn+1Bkn+1) − (kn − τnBkn)‖

≤ ‖(kn+1 − τn+1Bkn+1) − (kn − τn+1Bkn)‖ + |τn − τn+1|‖Bkn‖

= ‖(I − τn+1B)kn+1 − (I − τn+1B)kn‖ + |τn − τn+1|‖Bkn‖

≤ ‖kn+1 − kn‖ + |τn − τn+1|‖Bkn‖. (6.1.14)

Since Ti and Un,i are nonexpansive, we have

‖Wn+1φn − Wnφn‖ = ‖µ1T1Un+1,2φn − µ1T1Un,2φn‖

≤ µ1‖Un+1,2φn − Un,2φn‖

= µ1‖µ2T2Un+1,3φn − µ2T2Un,3φn‖

≤ µ1µ2‖Un+1,3φn − Un,3φn‖
...
≤ µ1µ2 · · ·µn‖Un+1,n+1φn − Un,n+1φn‖

≤ M2

n∏

i=1

µi, (6.1.15)

where M2 ≥ 0 is a constant such that ‖Un+1,n+1φn − Un,n+1φn‖ ≤ M2 for all n ≥ 0.

Similarly, we can obtain that, there exist nonnegative numbers M3 such that

‖Un+1,n+1θn − Un,n+1θn‖ ≤ M3,
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and so is

‖Wn+1θn − Wnθn‖ ≤ M3

n∏

i=1

µi. (6.1.16)

Observing that




kn = αnxn + (1 − αn)Wnφn

kn+1 = αn+1xn+1 + (1 − αn+1)Wnφn+1,

we obtain

kn − kn+1 = αn(xn − xn+1) + (1 − αn)(Wnφn − Wn+1φn+1) + (Wn+1φn+1 − xn+1)(αn+1 − αn),

which yields that

‖kn − kn+1‖ ≤ αn‖xn − xn+1‖ + (1 − αn)‖Wnφn − Wn+1φn+1‖

+|αn+1 − αn|‖Wn+1φn+1 − xn+1‖

≤ αn‖xn − xn+1‖ + (1 − αn){‖Wn+1φn+1 − Wn+1φn‖ + ‖Wn+1φn − Wnφn‖}

+ |αn+1 − αn|‖Wn+1φn+1 − xn+1‖

≤ αn‖xn − xn+1‖ + (1 − αn)‖φn+1 − φn‖ + ‖Wn+1φn − Wnφn‖

+ |αn+1 − αn|‖Wn+1φn+1 − xn+1‖. (6.1.17)

Substitution of (6.1.13) and (6.1.15) into (6.1.17) yields that

‖kn − kn+1‖ = αn‖xn − xn+1‖ + (1 − αn){‖yn+1 − yn‖ + |λn − λn+1|‖Byn‖}

+ M2

n∏

i=1

µi + |αn+1 − αn|‖Wn+1φn+1 − xn+1‖

= αn‖xn − xn+1‖ + (1 − αn)‖yn+1 − yn‖ + (1 − αn)|λn − λn+1|‖Byn‖

+ M2

n∏

i=1

µi + |αn+1 − αn|‖Wn+1φn+1 − xn+1‖

≤ αn‖xn − xn+1‖ + (1 − αn)‖yn+1 − yn‖ + M2

n∏

i=1

µi

+M4(|λn − λn+1| + |αn+1 − αn|), (6.1.18)

whereM4 is an appropriate constant such thatM4 = max{supn≥1 ‖Byn‖, supn≥1 ‖Wnφn−

xn‖}.



166

Substitution of (6.1.12) into (6.1.18), we obtain

‖kn − kn+1‖ ≤ αn‖xn − xn+1‖ + (1 − αn)‖yn+1 − yn‖ + M2

n∏

i=1

µi

+ M4(|λn − λn+1| + |αn+1 − αn|)

≤ αn‖xn − xn+1‖ + (1 − αn){‖xn+1 − xn‖ + |δn − δn+1|‖Bzn‖} + M2

n∏

i=1

µi

+ M4(|λn − λn+1| + |αn+1 − αn|)

= ‖xn − xn+1‖ + (1 − αn)‖xn+1 − xn‖ + (1 − αn)|δn − δn+1|‖Bzn‖ + M2

n∏

i=1

µi

+ M4(|λn − λn+1| + |αn+1 − αn|)

≤ ‖xn − xn+1‖ + M2

n∏

i=1

µi + M5(|λn − λn+1| + |αn+1 − αn| + |δn − δn+1),(6.1.19)

where M5 is an appropriate constant such that M5 = max{supn≥1 ‖Bzn‖, M4}. Substi-
tuting (6.1.19) into (6.1.14), we obtain
‖θn+1 − θn‖ ≤ ‖kn+1 − kn‖ + |τn − τn+1|‖Bkn‖

≤ ‖xn − xn+1‖ + M2

n∏

i=1

µi + M5(||λn − λn+1| + |αn+1 − αn| + |δn − δn+1|)

+ |τn − τn+1|‖Bkn‖

≤ ‖xn − xn+1‖ + M2

n∏

i=1

µi

+ M6(|λn − λn+1| + |αn+1 − αn| + |δn − δn+1| + |τn − τn+1|), (6.1.20)
where M6 is an appropriate constant such that M6 = max{supn≥1 ‖Bkn‖, M5}.
Let xn+1 = (1 − βn)vn + βnxn, n ≥ 1. Where

vn =
xn+1 − βnxn

1 − βn

=
ǫn(u + γf(Wnxn)) + ((1 − βn)I − ǫn(I + µA))Wnθn

1 − βn

.

Then we have
vn+1 − vn =

ǫn+1(u + γf(Wn+1xn+1)) + ((1 − βn+1)I − ǫn+1(I + µA))Wn+1θn+1

1 − βn+1

−
ǫn(u + γf(Wnxn)) + ((1 − βn)I − ǫn(I + µA))Wnθn

1 − βn

=
ǫn+1

1 − βn+1

(u + γf(Wn+1xn+1)) −
ǫn

1 − βn

(u + γf(Wnxn)) + Wn+1θn+1 − Wnθn

+
ǫn

1 − βn

(I + µA)Wnθn −
ǫn+1

1 − βn+1

(I + µA)Wn+1θn+1

=
ǫn+1

1 − βn+1
((u + γf(Wn+1xn+1)) − (I + µA)Wn+1θn+1)

+
ǫn

1 − βn

((I + µA)Wnθn − u − γf(Wnxn))

+ Wn+1θn+1 − Wn+1θn + Wn+1θn − Wnθn. (6.1.21)
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It follows from (6.1.16), (6.1.20) and (6.1.21) that

‖vn+1 − vn‖ − ‖xn+1 − xn‖ (6.1.22)
≤

ǫn+1

1 − βn+1
(‖u‖ + ‖γf(Wn+1xn+1)‖ + ‖(I + µA)Wn+1θn+1‖)

+
ǫn

1 − βn

(‖(I + µA)Wnθn‖ + ‖u‖ + ‖γf(Wnxn)‖)

+ ‖Wn+1θn+1 − Wn+1θn‖ + ‖Wn+1θn − Wnθn‖ − ‖xn+1 − xn‖

≤
ǫn+1

1 − βn+1

(‖u‖ + ‖γf(Wn+1xn+1)‖ + ‖(I + µA)Wn+1θn+1‖)

+
ǫn

1 − βn

(‖(I + µA)Wnθn‖ + ‖u‖ + ‖γf(Wnxn)‖) + ‖θn+1 − θn‖

+ ‖Wn+1θn − Wnθn‖ − ‖xn+1 − xn‖

≤
ǫn+1

1 − βn+1
(‖u‖ + ‖γf(Wn+1xn+1)‖ + ‖(I + µA)Wn+1θn+1‖)

+
ǫn

1 − βn

(‖(I + µA)Wnθn‖ + ‖u‖ + ‖γf(Wnxn)‖) + M3

n∏

i=1

µi

+ M2

n∏

i=1

µi + M6(|λn − λn+1| + |αn+1 − αn| + |δn − δn+1| + |τn − τn+1|)

≤
ǫn+1

1 − βn+1
(‖u‖ + ‖γf(Wn+1xn+1)‖ + ‖(I + µA)Wn+1θn+1‖)

+
ǫn

1 − βn

(‖(I + µA)Wnθn‖ + ‖u‖ + ‖γf(Wnxn)‖) + 2L
n∏

i=1

µi

+ M6(|λn − λn+1| + |αn+1 − αn| + |δn − δn+1| + |τn − τn+1|), (6.1.23)

where L is an appropriate constant such that L = max{M2, M3}.
It follows from condition (C4), (C5), (C6) and 0 < µi ≤ b < 1, ∀i ≥ 1)

lim sup
n−→∞

(‖vn+1 − vn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence, by Lemma 6.1.9, we obtain

lim
n−→∞

‖vn − xn‖ = 0.

It follows that

lim
n−→∞

‖xn+1 − xn‖ = lim
n−→∞

(1 − βn)‖vn − xn‖ = 0. (6.1.24)

Applying (6.1.24) and condition in Theorem 5.4.15 to (6.1.11), (6.1.12), (6.1.14) and
(6.1.20), we obtain that

lim
n−→∞

‖zn+1 − zn‖ = lim
n−→∞

‖yn+1 − yn‖ = lim
n−→∞

‖kn+1 − kn‖ = lim
n−→∞

‖θn+1 − θn‖ = 0.

(6.1.25)
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By (6.1.25), (6.1.13), (C6) and 0 < µi ≤ b < 1, ∀i ≥ 1), we also have

lim
n−→∞

‖φn+1 − φn‖ = 0. (6.1.26)

Since xn+1 = ǫn(u + γf(Wnxn)) + βnxn + ((1 − βn)I − ǫn(I + µA))Wnθn, we have

‖xn − Wnθn‖

≤ ‖xn − xn+1‖ + ‖xn+1 − Wnθn‖

= ‖xn − xn+1‖ + ‖ǫn(u + γf(Wnxn)) + βnxn + ((1 − βn)I − ǫn(I + µA))Wnθn − Wnθn‖

= ‖xn − xn+1‖ + ‖ǫn((u + γf(Wnxn)) − (I + µA)Wnθn) + βn(xn − Wnθn)‖

≤ ‖xn − xn+1‖ + ǫn(‖u‖ + ‖γf(Wnxn)‖ + ‖(I + µA)Wnθn‖) + βn‖xn − Wnθn‖,

that is

‖xn − Wnθn‖ ≤
1

1 − βn

‖xn − xn+1‖ +
ǫn

1 − βn

(‖u‖ + ‖γf(Wnxn)‖ + ‖(I + µA)Wnθn‖).

By (C4), (C5) and (6.1.24) it follows that

lim
n−→∞

‖Wnθn − xn‖ = 0. (6.1.27)

Step 3. We claim that the following statements hold:

(1) limn−→∞ ‖xn − θn‖ = 0;

(2) limn−→∞ ‖Wnθn − θn‖ = 0.

Since B is a ξ-inverse-strongly monotone, by the assumptions imposed on {τn} for any
p ∈ Γ := ∩∞

n=1F (Tn) ∩ MEP ∩ V I(E, B), we have

‖Wnθn − p‖2 ≤ ‖PE(kn − τnBkn) − PE(p − τnBp)‖2

≤ ‖(kn − τnBkn) − (p − τnBp)‖2

= ‖(kn − p) − τn(Bkn − Bp)‖2

≤ ‖kn − p‖2 − 2τn〈kn − p, Bkn − Bp〉 + τ 2
n‖Bkn − Bp‖2

≤ ‖xn − p‖2 − 2τn〈kn − p, Bkn − Bp〉 + τ 2
n‖Bkn − Bp‖2

≤ ‖xn − p‖2 + τn(τn − 2ξ)‖Bkn − Bp‖2. (6.1.28)

Similarly, we have

‖Wnφn − p‖2 ≤ ‖xn − p‖2 + λn(λn − 2ξ)‖Byn − Bp‖2. (6.1.29)
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Observe that

‖xn+1 − p‖2

= ‖((1 − βn)I − ǫn(I + µA))(Wnθn − p) + βn(xn − p) + ǫn(u + γf(Wnxn) − (I + µA)p)‖2

= ‖((1 − βn)I − ǫn(I + µA))(Wnθn − p) + βn(xn − p)‖2 + ǫ2
n‖u + γf(Wnxn) − (I + µA)p‖2

+ 2βnǫn〈xn − p, u + γf(Wnxn) − (I + µA)p〉

+2ǫn〈((1 − βn)I − ǫn(I + µA))(Wnθn − p), u + γf(Wnxn) − (I + µA)p〉

≤ [((1 − βn)I − ǫn(I + µA))‖Wnθn − p‖ + βn‖xn − p‖]2 + ǫ2
n‖u + γf(Wnxn) − (I + µA)p‖2

+ 2βnǫn〈xn − p, u + γf(Wnxn) − (I + µA)p〉

+ 2ǫn〈((1 − βn)I − ǫn(I + µA))(Wnθn − p), u + γf(Wnxn) − (I + µA)p〉

≤ [(1 − βn − ǫn − ǫnµγ̄)‖Wnθn − p‖ + βn‖xn − p‖]2 + cn

= (1 − βn − ǫn − ǫnµγ̄)2‖Wnθn − p‖2 + β2
n‖xn − p‖2

+ 2(1 − βn − ǫn − ǫnµγ̄)βn‖Wnθn − p‖xn − p‖| + cn

≤ (1 − βn − ǫn − ǫnµγ̄)2‖Wnθn − p‖2 + β2
n‖xn − p‖2

+ (1 − βn − ǫn − ǫnµγ̄)βn(‖Wnθn − p‖2 + ‖xn − p‖2) + cn

= [(1 − ǫn − ǫnµγ̄)2 − 2(1 − ǫn − ǫnµγ̄)βn + β2
n]‖Wnθn − p‖2 + β2

n‖xn − p‖2

+ ((1 − ǫn − ǫnµγ̄)βn − β2
n)(‖Wnθn − p‖2 + ‖xn − p‖2) + cn

= [(1 − ǫn − ǫnµγ̄)2 − (1 − ǫn − ǫnµγ̄)βn]‖Wnθn − p‖2 + (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

= (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖Wnθn − p‖2

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn, (6.1.30)

where

cn = ǫ2
n‖u + γf(xn) − (I + µA)p‖2 + 2βnǫn〈xn − p, u + γf(Wnxn) − (I + µA)p〉

+ 2ǫn〈((1 − βn)I − ǫn(I + µA))(Wnθn − p), u + γf(Wnxn) − (I + µA)p〉.

It follows from condition (C4) that

lim
n−→∞

cn = 0. (6.1.31)

Substituting (6.1.28) into (6.1.30), and using condition (C7), we have

‖xn+1 − p‖2 ≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄){‖xn − p‖2 + τn(τn − 2ξ)‖Bkn − Bp‖2}

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

= (1 − ǫn − ǫnµγ̄)2‖xn − p‖2

+ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)τn(τn − 2ξ)‖Bkn − Bp‖2 + cn

≤ ‖xn − p‖2 + τn(τn − 2ξ)‖Bkn − Bp‖2 + cn.
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It follows that

a(2ξ − b)‖Bkn − Bp‖2 ≤ τn(2ξ − τn)‖Bkn − Bp‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + cn

= (‖xn − p‖ − ‖xn+1 − p‖)(‖xn − p‖ + ‖xn+1 − p‖) + cn

≤ ‖xn − xn+1‖(‖xn − p‖ + ‖xn+1 − p‖) + cn.

Since cn −→ 0 as n −→ ∞ and (6.1.24), we obtain

lim
n−→∞

‖Bkn − Bp‖ = 0. (6.1.32)

Note that

‖kn − p‖2 = ‖αn(xn − p) + (1 − αn)(Wnφn − p)‖2

≤ αn‖xn − p‖ + (1 − αn)‖Wnφn − p‖2

≤ αn‖xn − p‖2 + (1 − αn){‖xn − p‖2 + λn(λn − 2ξ)‖Byn − Bp‖2}

= ‖xn − p‖2 + (1 − αn)λn(λn − 2ξ)‖Byn − Bp‖2. (6.1.33)

Using (6.1.30) again, we have

‖xn+1 − p‖2 ≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖Wnθn − p‖2

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − p‖2

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − p‖2

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn. (6.1.34)

Substituting (6.1.33) into (6.1.34), and using condition (C4) and (C7), we have

‖xn+1 − p‖2

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄){‖xn − p‖2 + (1 − αn)λn(λn − 2ξ)‖Byn − Bp‖2}

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

= (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)(1 − αn)λn(λn − 2ξ)‖Byn − Bp‖2

+ (1 − ǫn − ǫnµγ̄)2‖xn − p‖2 + cn

≤ ‖xn − p‖2 + (1 − αn)λn(λn − 2ξ)‖Byn − Bp‖2 + cn.

It follows that

(1 − αn)a(2ξ − b)‖Byn − Bp‖2 ≤ (1 − αn)(λn(2ξ − λn)‖Byn − Bp‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + cn

≤ ‖xn − xn+1‖(‖xn − p‖ + ‖xn+1 − p‖) + cn.
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Since cn −→ 0 as n −→ ∞ and (6.1.24), we obtain

lim
n−→∞

‖Byn − Bp‖ = 0. (6.1.35)

By (6.4.20), we also have

‖θn − p‖2 = ‖PE(kn − τnBkn) − PE(p − τnBp)‖2

= ‖PE(I − τnB)kn − PE(I − τnB)p‖2

≤ 〈(I − τnB)kn − (I − τnB)p, θn − p〉

=
1

2
{‖(I − τnB)kn − (I − τnB)p‖2 + ‖θn − p‖2

−‖(I − τnB)kn − (I − τnB)p − (θn − p)‖2}

≤
1

2
{‖kn − p‖2 + ‖θn − p‖2 − ‖(kn − θn) − τn(Bkn − Bp)‖2}

≤
1

2
{‖xn − p‖2 + ‖θn − p‖2 − ‖kn − θn‖

2

− τ 2
n‖Bkn − Bp‖2 + 2τn〈kn − θn, Bkn − Bp〉},

which yields that

‖θn − p‖2 ≤ ‖xn − p‖2 − ‖kn − θn‖
2 + 2τn‖kn − θn‖‖Bkn − Bp‖. (6.1.36)

Substituting (6.1.36) into (6.1.30), we have

‖xn+1 − p‖2

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖Wnθn − p‖2

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − p‖2

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄){‖xn − p‖2 − ‖kn − θn‖
2

+ 2τn‖kn − θn‖‖Bkn − Bp‖} + (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

= (1 − ǫn − ǫnµγ̄)2‖xn − p‖2 − (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − θn‖
2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)τn‖kn − θn‖‖Bkn − Bp‖ + cn

≤ ‖xn − p‖2 − (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − θn‖
2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)τn‖kn − θn‖‖Bkn − Bp‖ + cn.

It follows that

(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − θn‖
2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2(1 − ǫn − ǫnµγ̄)

(1 − βn − ǫn − ǫnµγ̄)τn‖kn − θn‖‖Bkn − Bp‖ + cn

≤ ‖xn − xn+1‖(‖xn − p‖ + ‖xn+1 − p‖)

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)τn‖kn − θn‖‖Bkn − Bp‖ + cn.
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Applying ‖xn+1 − xn‖ −→ 0, ‖Bkn − Bp‖ −→ 0 and cn −→ ∞ as n −→ ∞ to the
last inequality, we have

lim
n−→∞

‖kn − θn‖ = 0. (6.1.37)
On the other hand, we have

‖Wnθn − p‖2 ≤ ‖PE(kn − τnBkn) − PE(p − τnBp)‖2

= ‖PE(I − τnB)kn − PE(I − τnB)p‖2

≤ 〈(I − τnB)kn − (I − τnB)p, Wnθn − p〉

=
1

2
{‖(I − τnB)kn − (I − τnB)p‖2 + ‖Wnθn − p‖2

−‖(I − τnB)kn − (I − τnB)p − (Wnθn − p)‖2}

≤
1

2
{‖kn − p‖2 + ‖Wnθn − p‖2 − ‖(kn − Wnθn) − τn(Bkn − Bp)‖2}

≤
1

2
{‖xn − p‖2 + ‖Wnθn − p‖2 − ‖kn − Wnθn‖

2

− τ 2
n‖Bkn − Bp‖2 + 2τn〈kn − Wnθn, Bkn − Bp〉},

which yields that

‖Wnθn − p‖2 ≤ ‖xn − p‖2 − ‖kn − Wnθn‖
2 + 2τn‖kn − Wnθn‖‖Bkn − Bp‖. (6.1.38)

Similarly, we can prove

‖Wnφn − p‖2 ≤ ‖xn − p‖2 − ‖yn −Wnφn‖
2 + 2λn‖yn −Wnφn‖‖Byn −Bp‖. (6.1.39)

Substituting (6.1.38) into (6.1.30), we have

‖xn+1 − p‖2 ≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖Wnθn − p‖2

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄){‖xn − p‖2 − ‖kn − Wnθn‖
2

+ 2τn‖kn − Wnθn‖‖Bkn − Bp‖} + (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

= (1 − ǫn − ǫnµγ̄)2‖xn − p‖2 − (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − Wnθn‖
2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)τn‖kn − Wnθn‖‖Bkn − Bp‖ + cn

≤ ‖xn − p‖2 − (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − Wnθn‖
2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)τn‖kn − Wnθn‖‖Bkn − Bp‖ + cn,

which yields that

(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − Wnθn‖
2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)τn‖kn − Wnθn‖‖Bkn − Bp‖ + cn

≤ ‖xn − xn+1‖(‖xn − p‖ + ‖xn+1 − p‖)

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)τn‖kn − Wnθn‖‖Bkn − Bp‖ + cn.
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Applying (6.1.24) and (6.1.32) to the last inequality, we have

lim
n−→∞

‖kn − Wnθn‖ = 0. (6.1.40)

Using (6.1.34) again, we have

‖xn+1 − p‖2

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − p‖2 + (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄){‖αn(xn − p) + (1 − αn)(Wnφn − p)‖2}

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄){αn‖xn − p‖2 + (1 − αn)‖Wnφn − p‖2}

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

= (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)αn‖xn − p‖2

+ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)(1 − αn)‖Wnφn − p‖2

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)αn‖xn − p‖2

+ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)(1 − αn){‖xn − p‖2 − ‖yn − Wnφn‖
2

+ 2λn‖yn − Wnφn‖‖Byn − Bp‖} + (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

= (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)αn‖xn − p‖2

+ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)(1 − αn)‖xn − p‖2

− (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)(1 − αn)‖yn − Wnφn‖
2

+ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)(1 − αn)2λn‖yn − Wnφn‖‖Byn − Bp‖

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

= (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖xn − p‖2

− (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)(1 − αn)‖yn − Wnφn‖
2

+ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)(1 − αn)2λn‖yn − Wnφn‖‖Byn − Bp‖

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

= (1 − ǫn − ǫnµγ̄)2‖xn − p‖2 − (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)(1 − αn)‖yn − Wnφn‖
2

+ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)(1 − αn)2λn‖yn − Wnφn‖‖Byn − Bp‖ + cn

≤ ‖xn − p‖2 − (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)(1 − αn)‖yn − Wnφn‖
2

+ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)(1 − αn)2λn‖yn − Wnφn‖‖Byn − Bp‖ + cn
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which implies that

(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)(1 − αn)‖yn − Wnφn‖
2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)(1 − αn)λn‖yn − Wnφn‖‖Byn − Bp‖ + cn

≤ ‖xn − xn+1‖(‖xn − p‖ + ‖xn+1 − p‖)

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)(1 − αn)λn‖yn − Wnφn‖‖Byn − Bp‖ + cn.

From (6.1.24) and (6.1.35), we obtain

lim
n−→∞

‖yn − Wnφn‖ = 0. (6.1.41)

Note that

kn − Wnφn = αn(xn − Wnφn)

Since αn −→ ∞ as n −→ ∞, we also have

lim
n−→∞

‖kn − Wnφn‖ = 0. (6.1.42)

From (6.1.41) and (6.1.42), we have

lim
n−→∞

‖yn − kn‖ = 0. (6.1.43)

On the other hand, we have

‖yn − p‖2 ≤ ‖PE(zn − δnBzn) − PE(p − δnBp)‖2

≤ ‖(zn − δnBzn) − (p − δnBp)‖2

= ‖(zn − p) − δn(Bzn − Bp)‖2

≤ ‖zn − p‖2 − 2δn〈zn − p, Bzn − Bp〉 + δ2
n‖Bzn − Bp‖2

≤ ‖xn − p‖2 − 2δn〈zn − p, Bzn − Bp〉 + δ2
n‖Bzn − Bp‖2

≤ ‖xn − p‖2 + δn(δn − 2ξ)‖Bzn − Bp‖2. (6.1.44)
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Using (6.1.34) again, we obtain that

‖xn+1 − p‖2 ≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − p‖2

+(1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

= (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖(kn − yn) + (yn − p)‖2

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄){‖kn − yn‖
2 + ‖yn − p‖2

+ 2‖kn − yn‖‖yn − p‖} + (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

= (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖
2

+(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖yn − p‖2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖‖yn − p‖

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn (6.1.45)
≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖

2

+(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄){‖xn − p‖2 + δn(δn − 2ξ)‖Bzn − Bp‖2}

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖‖yn − p‖

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖
2

+(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖xn − p‖2

+ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)δn(δn − 2ξ)‖Bzn − Bp‖2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖‖yn − p‖

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖
2 + (1 − ǫn − ǫnµγ̄)2‖xn − p‖2

+ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)δn(δn − 2ξ)‖Bzn − Bp‖2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖‖yn − p‖ + cn

≤ ‖kn − yn‖
2 + ‖xn − p‖2 + δn(δn − 2ξ)‖Bzn − Bp‖2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖‖yn − p‖ + cn.

It follows that

a(2ξ − b)‖Bzn − Bp‖2 ≤ δn(2ξ − δn)‖Bzn − Bp‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + ‖kn − yn‖
2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖‖yn − p‖ + cn

≤ ‖xn − xn+1‖(‖xn − p‖ + ‖xn+1 − p‖) + ‖kn − yn‖
2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖‖yn − p‖ + cn
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Since cn −→ 0 as n −→ ∞, (6.1.24) and (6.1.43) ,we obtain

lim
n−→∞

‖Bzn − Bp‖ = 0. (6.1.46)

We note that

‖yn − p‖2 = ‖PE(zn − δnBzn) − PE(p − δnBp)‖2

= ‖PE(I − δnB)zn − PE(I − δnB)p‖2

≤ 〈(I − δnB)zn − (I − δnB)p, yn − p〉

=
1

2
{‖(I − δnB)zn − (I − δnB)p‖2 + ‖yn − p‖2

−‖(I − δnB)zn − (I − δnB)p − (yn − p)‖2}

≤
1

2
{‖zn − p‖2 + ‖yn − p‖2 − ‖(zn − yn) − δn(Bzn − Bp)‖2

≤
1

2
{‖xn − p‖2 + ‖yn − p‖2 − ‖zn − yn‖

2

− δ2
n‖Bzn − Bp‖2 + 2δn〈zn − yn, Bzn − Bp〉}.

Then we derive

‖yn − p‖2 ≤ ‖xn − p‖2 − ‖zn − yn‖
2 + 2δn‖zn − yn‖‖Bzn − Bp‖. (6.1.47)
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Using (6.1.45) again, we obtain that

‖xn+1 − p‖2 ≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖
2

+(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖yn − p‖2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖‖yn − p‖

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖
2

+(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄){‖xn − p‖2 − ‖zn − yn‖
2

+ 2δn‖zn − yn‖‖Bzn − Bp‖}

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖‖yn − p‖

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖
2

+(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖xn − p‖2

−(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖zn − yn‖
2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)δn‖zn − yn‖‖Bzn − Bp‖

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖‖yn − p‖

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

= (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖
2 + (1 − ǫn − ǫnµγ̄)2‖xn − p‖2

−(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖zn − yn‖
2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)δn‖zn − yn‖‖Bzn − Bp‖

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖‖yn − p‖ + cn

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

≤ ‖kn − yn‖
2 + ‖xn − p‖2 − (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖zn − yn‖

2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)δn‖zn − yn‖‖Bzn − Bp‖

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖‖yn − p‖ + cn.

It follows that

(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖zn − yn‖
2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + ‖kn − yn‖
2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)δn‖zn − yn‖‖Bzn − Bp‖

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖‖yn − p‖ + cn

≤ ‖xn − xn+1‖(‖xn − p‖ + ‖xn+1 − p‖) + ‖kn − yn‖
2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)δn‖zn − yn‖‖Bzn − Bp‖

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖kn − yn‖‖yn − p‖ + cn.
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Applying ‖xn+1 − xn‖ −→ 0, ‖yn − kn‖ −→ 0, ‖Bzn − Bp‖ −→ 0 and cn −→ ∞ as
n −→ ∞ to the last inequality, we have

lim
n−→∞

‖zn − yn‖ = 0. (6.1.48)

On the other hand, we observe that

‖zn − θn‖ ≤ ‖zn − yn‖ + ‖yn − kn‖ + ‖kn − θn‖.

Applying (6.1.37), (6.1.43) and (6.1.48), we have

lim
n−→∞

‖zn − θn‖ = 0. (6.1.49)

Let p ∈ Γ := ∩∞
n=1F (Tn) ∩ MEP ∩ V I(E, B). Since zn = Srxn and Sr is firmly

nonexpansive (Remark ??) , then we obtain

‖zn − p‖2 = ‖Srxn − Srp‖
2

≤ 〈Srxn − Srp, xn − p〉

= 〈zn − p, xn − p〉

=
1

2
(‖zn − p‖2 + ‖xn − p‖2 − ‖xn − zn‖

2).

So, we have

‖zn − p‖2 ≤ ‖xn − p‖2 − ‖xn − zn‖
2.
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Therefore, we have

‖xn+1 − p‖2

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − p‖2

+(1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

= (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖(θn − zn)

+(zn − p)‖2 + (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄){‖θn − zn‖
2 + ‖zn − p‖2 + 2〈θn − zn, zn − p〉}

+ (1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − zn‖
2

+(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖zn − p‖2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − zn‖‖zn − p‖

+(1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

≤ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − zn‖
2

+ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄){‖xn − p‖2 − ‖xn − zn‖
2}

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − zn‖‖zn − p‖

+(1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

= (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − zn‖
2

+ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖xn − p‖2

−(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖xn − zn‖
2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − zn‖‖zn − p‖

+(1 − ǫn − ǫnµγ̄)βn‖xn − p‖2 + cn

= (1 − ǫn − ǫnµγ̄)2‖xn − p‖2 − (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖xn − zn‖
2

+ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − zn‖
2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − zn‖‖zn − p‖ + cn

= (1 − 2ǫn(1 + µ)γ̄ + ǫ2
n(1 + µ)2γ̄2‖xn − p‖2 − (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖xn − zn‖

2

+ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − zn‖
2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − zn‖‖zn − p‖ + cn

≤ ‖xn − p‖2 + ǫ2
n(1 + µ)2γ̄2‖xn − p‖2 − (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖xn − zn‖

2

+ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − zn‖
2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − zn‖‖zn − p‖ + cn.
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It follows that

(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖xn − zn‖
2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + ǫ2
n(1 + µ)2γ̄2‖xn − p‖2

+(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − zn‖
2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − zn‖‖zn − p‖ + cn

≤ ‖xn − xn+1‖(‖xn − p‖ + ‖xn+1 − p‖) + ǫ2
n(1 + µ)2γ̄2‖xn − p‖2

+ (1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − zn‖
2

+ 2(1 − ǫn − ǫnµγ̄)(1 − βn − ǫn − ǫnµγ̄)‖θn − zn‖‖zn − p‖ + cn.

Using ǫn −→ 0, cn −→ 0 as n −→ ∞, (6.1.24) and (6.1.49), we obtain

lim
n−→∞

‖zn − xn‖ = 0. (6.1.50)

Note that

‖xn − θn‖ ≤ ‖xn − zn‖ + ‖zn − θn‖,

thus from (6.1.49) and (6.1.50), we have

lim
n−→∞

‖xn − θn‖ = 0. (6.1.51)

Observe that

‖Wnθn − θn‖ ≤ ‖Wnθn − xn‖ + ‖xn − θn‖.

Applying (6.1.27) and (6.1.51), we obtain

lim
n−→∞

‖Wnθn − θn‖ = 0. (6.1.52)

Let W be the mapping defined by (6.1.5). Since {θn} is bounded, applying Lemma
6.1.8 and (6.1.52), we have

‖Wθn − θn‖ ≤ ‖Wθn − Wnθn‖ + ‖Wnθn − θn‖ −→ 0 as n −→ ∞. (6.1.53)

Step 4. We claim that

lim sup
n−→∞

〈u + [γf − (I + µA)]z, xn − z〉 ≤ 0,

where z is a solution of the optimization problem:

OP : min
x∈Γ

µ

2
〈Ax, x〉 +

1

2
‖x − u‖2 − h(x).
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To show this inequality, we can choose a subsequence {θni
} of {θn} such that

lim
i−→∞

〈〈u+[γf − (I +µA)]z, θni
−z〉 = lim sup

n−→∞
〈u+[γf − (I +µA)]z, θn−z〉. (6.1.54)

Since {θni
} is bounded, there exists a subsequence {θnij

} of {θni
} which converges

weakly to w ∈ E. Without loss of generality, we can assume that θni
⇀ w. From

‖Wθn − θn‖ −→ 0, we obtain Wθni
⇀ w. Next, we show that w ∈ Γ, where

Γ := ∩∞
n=1F (Tn) ∩ MEP ∩ V I(E, B). First, we prove w ∈ MEP . Since zn = Srxn,

we have

Θ(zn, x) + ϕ(x) − ϕ(zn) +
1

r
〈K ′(zn) − K ′(xn), η(x, zn)〉 ≥ 0, ∀x ∈ C.

From (H1), we also have
1

r
〈K ′(zn) − K ′(xn), η(x, zn)〉 + ϕ(x) − ϕ(zn) ≥ −Θ(zn, x) ≥ Θ(x, zn)

and hence

〈
K ′(zni

) − K ′(xni
)

r
, η(x, zni

)〉 + ϕ(x) − ϕ(zni
) ≥ Θ(x, zni

).

Since K ′(zni
)−K ′(xni

)

r
−→ 0 and zni

⇀ w, from the weak lower semicontinuity of ϕ

and Θ(x, y) in the second variable y, we also have Θ(x, w) + ϕ(w) − ϕ(x) ≤ 0 for
all x ∈ C. For t with 0 < t ≤ 1 and x ∈ E, let xt = tx + (1 − t)w. Since x ∈ E

and w ∈ E, we have xt ∈ E and hence Θ(xt, w) + ϕ(w) − ϕ(xt) ≤ 0. So, from the
convexity of equilibrium bifunction Θ(x, y) in the second variable y, we have

0 = Θ(xt, xt) + ϕ(xt) − ϕ(xt)

≤ tΘ(xt, x) + (1 − t)Θ(xt, w) + tϕ(x) + (1 − t)ϕ(w) − ϕ(xt)

≤ t[Θ(xt, x) + ϕ(x) − ϕ(xt)],

and hence Θ(xt, x)+ϕ(x)−ϕ(xt) ≥ 0. Then, we have Θ(w, x)+ϕ(x)−ϕ(w) ≥ 0 for
all x ∈ E and hence w ∈ MEP.

Next, we show that w ∈ ∩∞
n=1F (Tn). By Lemma 6.1.7, we have F (W ) = ∩∞

n=1F (Tn).
Assume w /∈ F (W ). Since ‖xn − θn‖ −→ 0 we know that θni

⇀ w (i −→ ∞) and
w 6= Ww, it follows by the Opial’s condition (Lemma 6.1.3) that

lim inf
i−→∞

‖θni
− w‖ < lim inf

i−→∞
‖θni

− Ww‖

≤ lim inf
i−→∞

(‖θni
− Wθni

‖ + ‖Wθni
− Ww‖)

< lim inf
i−→∞

‖θni
− w‖,

which is a contradiction. Thus, we get w ∈ F (W ) = ∩∞
n=1F (Tn).



182

Finally, we show that w ∈ V I(E, B). Define

Tw1 =

{
Bw1 + NEw1, w1 ∈ E,

∅, w1 /∈ E.

Then, T is maximal monotone. Let (w1, w2) ∈ G(T ). Since w2−Bw1 ∈ NEw1 and θn ∈

E, we have 〈w1 − θn, w2 −Bw1〉 ≥ 0. On the other hand, from θn = PC(kn − τnBkn),

we have
〈w1 − θn, θn − (kn − τnBkn)〉 ≥ 0,

and hence
〈w1 − θn,

θn − kn

τn

+ Bkn〉 ≥ 0.

Therefore, we have

〈w1 − θni
, w〉 ≥ 〈w1 − θni

, Bw1〉

≥ 〈w1 − θni
, Bw1〉 − 〈w1 − θni

,
θni

− kni

τni

+ Bkni
〉

= 〈w1 − θni
, Bw1 − Bkni

−
θni

− kni

τni

〉

= 〈w1 − θni
, Bv − Bθni

〉 + 〈w1 − θni
, Bθni

− Bkni
〉 − 〈w1 − θni

,
θni

− kni

τni

〉

≥ 〈w1 − θni
, Bθni

− Bkni
〉 − 〈w1 − θni

,
θni

− kni

τni

〉.

Noting that ‖θni
− kni

‖ −→ 0 as i −→ ∞ and B is Lipschitz continuous implies that

〈w1 − w, w2〉 ≥ 0.

Since T is maximal monotone, we have w ∈ T−10 and hence w ∈ V I(E, B). That is
w ∈ Γ := ∩∞

n=1F (Tn)∩MEP∩V I(E, B). Therefore, from Lemma 6.1.2, ‖xn−θn‖ −→

0 as n −→ ∞ and (6.1.54), we have

lim sup
n−→∞

〈u + [γf − (I + µA)]z, xn − z〉 = lim sup
n−→∞

〈u + [γf − (I + µA)]z, θn − z〉

= lim
i−→∞

〈u + [γf − (I + µA)]z, θni
− z〉

= 〈u + [γf − (I + µA)]z, w − z〉 ≤ 0.(6.1.55)

It follows from the last inequality, (6.1.27) and (6.1.51) that

lim sup
n−→∞

〈u + [γf − (I + µA)]z, Wnθn − z〉 ≤ 0. (6.1.56)
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Step 5. Finally, we prove {xn} and {zn} converges strongly to z ∈ Γ. From
(6.1.6), we obtain

‖xn+1 − z‖2

= ‖ǫn(u + γf(Wnxn)) + βnxn + ((1 − βn)I − ǫn(I + µA))Wnθn − z‖2

= ‖((1 − βn)I − ǫn(I + µA))(Wnθn − z) + βn(xn − z) + ǫn(u + γf(Wnxn) − (I + µA)z)‖2

= ‖((1 − βn)I − ǫn(I + µA))(Wnθn − z) + βn(xn − z)‖2 + ǫ2
n‖u + γf(Wnxn) − (I + µA)z‖2

+ 2βnǫn〈xn − z, u + γf(Wnxn) − (I + µA)z〉

+ 2ǫn〈((1 − βn)I − ǫn(I + µA))(Wnθn − z), u + γf(Wnxn) − (I + µA)z〉

≤ [(1 − βn − ǫn(1 + µ)γ̄)‖Wnθn − z‖ + βn‖xn − z‖]2 + ǫ2
n‖u + γf(Wnxn)

−(I + µA)z‖2 + 2βnǫnγ〈xn − z, f(Wnxn) − f(z)〉 + 2βnǫn〈xn − z, u + γf(z)

−(I + µA)z〉 + 2(1 − βn)γǫn〈Wnθn − z, f(Wnxn) − f(z)〉

+2(1 − βn)ǫn〈Wnθn − z, u + γf(z) − (I + µA)z〉

− 2ǫ2
n〈(I + µA)(Wnθn − z), u + γf(z) − (I + µA)z〉

≤ [(1 − βn − ǫn(1 + µ)γ̄)‖Wnθn − z‖ + βn‖xn − z‖]2 + ǫ2
n‖u + γf(Wnxn) − (I + µA)z‖2

+ 2βnǫnγ‖xn − z‖‖f(Wnxn) − f(z)‖ + 2βnǫn〈xn − z, u + γf(z)

−(I + µA)z〉 + 2(1 − βn)γǫn‖Wnθn − z‖‖f(Wnxn) − f(z)‖

+2(1 − βn)ǫn〈Wnθn − z, u + γf(z) − (I + µA)z〉

− 2ǫ2
n〈(I + µA)(Wnθn − z), u + γf(z) − (I + µA)z〉

≤ [(1 − βn − ǫn(1 + µ)γ̄)‖θn − z‖ + βn‖xn − z‖]2 + ǫ2
n‖u + γf(Wnxn) − (I + µA)z‖2

+ 2βnǫnγ‖xn − z‖‖f(Wnxn) − f(z)‖ + 2βnǫn〈xn − z, u + γf(z) − (I + µA)z〉

+ 2(1 − βn)γǫn‖θn − z‖‖f(Wnxn) − f(z)‖

+2(1 − βn)ǫn〈Wnθn − z, u + γf(z) − (I + µA)z〉

− 2ǫ2
n〈(I + µA)(Wnθn − z), u + γf(z) − (I + µA)z〉

≤ [(1 − βn − ǫn(1 + µ)γ̄)‖xn − z‖ + βn‖xn − z‖]2 + ǫ2
n‖u + γf(Wnxn) − (I + µA)z‖2

+ 2βnǫnγα‖xn − z‖2 + 2βnǫn〈xn − z, u + γf(z) − (I + µA)z〉

+ 2(1 − βn)γǫnα‖xn − z‖2 + 2(1 − βn)ǫn〈Wnθn − z, u + γf(z) − (I + µA)z〉

− 2ǫ2
n〈(I + µA)(Wnθn − z), u + γf(z) − (I + µA)z〉

= [(1 − ǫn(1 + µ)γ̄)2 + 2βnǫnγα

+2(1 − βn)γǫnα]‖xn − z‖2 + ǫ2
n‖u + γf(Wnxn) − (I + µA)z‖2

+ 2βnǫn〈xn − z, u + γf(z) − (I + µA)z〉 + 2(1 − βn)ǫn〈Wnθn − z, u + γf(z) − (I + µA)z〉

− 2ǫ2
n〈(I + µA)(Wnθn − z), u + γf(z) − (I + µA)z〉
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≤ [1 − 2((1 + µ)γ̄ − αγ)ǫn]‖xn − z‖2

+ǫ2
n(1 + µ)2γ̄2‖xn − z‖2 + ǫ2

n‖u + γf(Wnxn) − (I + µA)z‖2

+ 2βnǫn〈xn − z, u + γf(z) − (I + µA)z〉 + 2(1 − βn)ǫn〈Wnθn − z, u + γf(z) − (I + µA)z〉

+ 2ǫ2
n‖(I + µA)(Wnθn − z)‖‖u + γf(z) − (I + µA)z‖

= [1 − 2((1 + µ)γ̄ − αγ)ǫn]‖xn − z‖2 + ǫn{ǫn[(1 + µ)2γ̄2‖xn − z‖2

+‖u + γf(Wnxn) − (I + µA)z‖2

+ 2‖(I + µA)(Wnθn − z)‖‖u + γf(z) − (I + µA)z‖] + 2βn〈xn − z, u + γf(z) − (I + µA)z〉

+ 2(1 − βn)〈Wnθn − z, u + γf(z) − (I + µA)z〉}.

Since {xn}, {f(Wnxn)} and {Wnθn} are bounded, we can take a constant M > 0 such
that (1+µ)2γ̄2‖xn−z‖2 +‖u+γf(Wnxn)− (I +µA)z‖2 +2‖(I +µA)(Wnθn−z)‖‖u+

γf(z) − (I + µA)z‖ ≤ M, for all n ≥ 0. It follows that

‖xn+1 − z‖2 ≤ (1 − ln)‖xn − z‖2 + ǫnσn, (6.1.57)

where

ln = 2((1 + µ)γ̄ − αγ)ǫn,

σn = ǫnM + 2βn〈xn − z, u + γf(z) − (I + µA)z〉

+2(1 − βn)〈Wnθn − z, u + γf(z) − (I + µA)z〉.

Using (C4), (6.1.55) and (6.1.56), we get ln −→ 0,∑∞
n=1 ln = ∞ and lim supn−→∞

σn

ln
≤

0. Applying Lemma 6.1.11 and (6.1.55) to (6.1.57), we conclude that xn −→ z in
norm. Finally, noticing ‖zn − z‖ = ‖Srxn − Srz‖ ≤ ‖xn − z‖. We also conclude that
zn −→ z in norm. This completes the proof.

6.2 Multi-Objective Optimization problem
In this section, we study a kind of multi-objective optimization problem by using the
result of this paper. We will give an iterative algorithm of solution for the following
optimization problem with nonempty set of solutions






min h1(x)

min h2(x)

x ∈ C,

(6.2.1)

where h(x) is a convex and lower semi-continuous functional and define C is a closed
convex subset of a real Hilbert space H . We denote the set of solutions of (6.2.1)
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by M(h1) and M(h2). Let Fi : C × C → R be a bifunction defined by Fi(x, y) =

hi(y) − hi(x). We consider the equilibrium problem, it is obvious that EP (Fi) =

M(hi), i = 1, 2. Therefore, from Theorem 4.2.4, we obtained the following corollary.

Corollary 6.2.1. Let C be a nonempty closed convex subset of a real Hilbert Space
H . Let F1, F2 be a bifunction of C ×C into real numbers R satisfying (A1)− (A4)

and let ϕ1, ϕ2 : C → R ∪ {+∞} be a proper lower semi continuous and convex
function. Let A, B, D, E be α, β, δ, η-inverse-strongly monotone mapping of C into
H , respectively. Let T1, T2, . . . be an infinite nonexpansive mapping such that Θ :=

∩∞
i=1F (Ti) ∩MEP (F1, ϕ1) ∩MEP (F2, ϕ2) ∩ V I(C, D)∩ V I(C, E) 6= ∅. Assume that

either (B1) or (B2) holds. Let {xn} be a sequence generated by x0 ∈ C, C1,i =

C, C1 = ∩∞
i=1C1,i, x1 = PC1

x0 and





h1(t) − h1(tn) + 1
rn
〈t − tn, tn − xn〉 ≥ 0, ∀t ∈ C,

h2(u) − h2(un) + 1
sn
〈u − un, un − tn〉 ≥ 0, ∀u ∈ C,

wn = ξnPC(un − λnDun) + (1 − ξn)PC(tn − µnEtn),

yn,i = αn,ix0 + (1 − αn,i)Tiwn,

Cn+1,i =
{

z ∈ Cn,i : ‖yn,i − z‖2 ≤ ‖xn − z‖2 + αn,i(‖x0‖
2 + 2〈xn − x0, z〉)

}
,

Cn+1 = ∩∞
i=1Cn+1,i,

xn+1 = PCn+1
x0.

(6.2.2)
for every n ≥ 0, where {rn}, {sn} ⊂ (0,∞), λn ∈ (0, 2δ) and µn ∈ (0, 2η) satisfy
the following conditions:
(i).limn→∞ αn,i = 0;

(ii).limn→∞ ξn = ξ ∈ (0, 1);

(iii). 0 < e ≤ λn ≤ f < 2δ;

(iv). 0 < g ≤ µn ≤ j < 2η.

Then, {xn} converges strongly to PΘx0.

Proof . From Theorem 4.2.4 put F1(tn, t) = h1(t)−h1(tn), F2(un, u) = h2(u)−h2(un)

and A, B, ϕ1, ϕ2 ≡ 0. The conclusion of Corollary 6.2.1 can be obtained from
Theorem 4.2.4 immediately. �

6.3 Minimizer of a continuously Frechet Differentiable
Convex Functional

In this section, we study the problem for finding a minimizer of a continuously Frèchet
differentiable convex functional in a Hilbert space.
First, we use the following lemma in our result:
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Lemma 6.3.1. [252] Let E be a Banach space, let f be a continuously Frèchet
differentiable convex functional on E and let ∇f be the gradient of f . If ∇f is
1
α
-Lipschitz continuous, then ∇f is an α-inverse-strongly monotone.

Let f1, f2 be functionals on H which satisfies the following conditions:
(C1) f1, f2 be a continuously Frèchet differentiable convex functional on H and

∇f1, ∇f2 be 1
δ
, 1

η
- Lipschitz continuous,

(C2) (∇f1)
−10 = {z1 ∈ H : f1(z1) = miny1∈H f1(y1)} 6= ∅ and (∇f2)

−10 = {z2 ∈

H : f2(z2) = miny2∈H f2(y2)} 6= ∅.

Corollary 6.3.2. Let H be a real Hilbert Space. Let F1, F2 be a bifunction of H ×H

into real numbers R satisfying (A1) − (A4) and let ϕ1, ϕ2 : C → R ∪ {+∞} be a
proper lower semi continuous and convex function. Let A, B be α, β-inverse-strongly
monotone mapping of H into H , respectively. Let T1, T2, . . . be infinite nonexpansive
mappings. Let f1, f2 be functionals on H which satisfies the conditions (C1) and
(C2). Suppose that Θ := ∩∞

i=1F (Ti)∩GMEP (F1, ϕ1)∩GMEP (F2, ϕ2)∩ (∇f1)
−10∩

(∇f2)
−10 6= ∅. Assume that either (B1) or (B2) holds. Let {xn} be a sequence

generated by x0 ∈ C, C1,i = C, C1 = ∩∞
i=1C1,i, x1 = PC1

x0 and





tn = T
(F1,ϕ1)
rn (xn − rnAxn),

un = T
(F2,ϕ2)
sn (xn − snBxn),

wn = ξn(un − λn∇f1(un)) + (1 − ξn)(tn − µn∇f2(tn)),

yn,i = αn,ix0 + (1 − αn,i)Tiwn,

Cn+1,i =
{

z ∈ Cn,i : ‖yn,i − z‖2 ≤ ‖xn − z‖2 + αn,i(‖x0‖
2 + 2〈xn − x0, z〉)

}
,

Cn+1 = ∩∞
i=1Cn+1,i,

xn+1 = PCn+1
x0.

(6.3.1)
for every n ≥ 0, where {rn}, {sn} ⊂ (0,∞), λn ∈ (0, 2δ) and µn ∈ (0, 2η) satisfying
the following conditions: (i). 0 < a ≤ rn ≤ b < 2α;

(ii). 0 < c ≤ sn ≤ d < 2β;

(iii).limn→∞ αn,i = 0;

(iv).limn→∞ ξn = ξ ∈ (0, 1);

(v). 0 < e ≤ λn ≤ f < 2δ;

(vi). 0 < g ≤ µn ≤ j < 2η.

Then, {xn} converges strongly to PΘx0.

Proof . We know form condition (C1) and Lemma 6.3.1 that ∇f1, ∇f2 are δ, η-
inverse-strongly monotone operators from H in to itself. The conclusion of Corollary
6.3.2 can be obtained from Theorem 4.2.4 immediately. �
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6.4 Minimization Problem
Iterative methods for nonexpansive mappings have recently been applied to solve con-
vex minimization problems. Convex minimization problems have a great impact and
influence in the development of almost all branches of pure and applied sciences. A
typical problem is to minimize a quadratic function over the set of the fixed points of
a nonexpansive mapping on a real Hilbert space H:

θ(x) =
1

2
〈Ax, x〉 − 〈x, y〉, ∀x ∈ F (S), (6.4.1)

where A is a linear bounded operator, F (S) is the fixed point set of a nonexpansive
mapping S and y is a given point in H [263].
In 2006, Marino and Xu [263] introduced a general iterative method for nonexpan-

sive mapping. They defined the sequence {xn} generated by the algorithm x0 ∈ C,

xn+1 = αnγf(xn) + (I − αnA)Sxn, n ≥ 0 (6.4.2)

where {αn} ⊂ (0, 1) and A is a strongly positive linear bounded operator. They proved
that if C = H and the sequence {αn} satisfies appropriate conditions, then the sequence
{xn} generated by (6.4.2) converge strongly to a fixed point of S (say x̄ ∈ H) which
is the unique solution of the following variational inequality:

〈(A − γf)x̄, x − x̄〉 ≥ 0, ∀x ∈ F (S), (6.4.3)

which is the optimality condition for the minimization problem

min
x∈F (S)∩EP (F )

1

2
〈Ax, x〉 − h(x), (6.4.4)

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).
For finding a common element of the set of fixed points of nonexpansive mappings

and the set of solution of the variational inequalities. Let PC be the projection of H

onto C. In 2005, Iiduka and Takahashi [258] introduced following iterative process
for x0 ∈ C,

xn+1 = αnu + (1 − αn)SPC(xn − λnAxn), ∀n ≥ 0, (6.4.5)

where u ∈ C, {αn} ⊂ (0, 1) and {λn} ⊂ [a, b] for some a, b with 0 < a < b < 2β.
They proved that under certain appropriate conditions imposed on {αn} and {λn}, the
sequence {xn} generated by (6.4.5) converges strongly to a common element of the set
of fixed points of a nonexpansive mapping and the set of solutions of the variational
inequality for an inverse-strongly monotone mapping (say x̄ ∈ C) which solve some
variational inequality

〈x̄ − u, x− x̄〉 ≥ 0, ∀x ∈ F (S) ∩ V I(C, A). (6.4.6)
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In 2008, Su et al. [268] introduced the following iterative scheme by the viscosity
approximation method in a real Hilbert space: x1, un ∈ H





F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1 − αn)SPC(un − λnAun),
(6.4.7)

for all n ∈ N, where {αn} ⊂ [0, 1) and {rn} ⊂ (0,∞) satisfy some appropriate
conditions. Furthermore, they proved that {xn} and {un} converge strongly to the
same point z ∈ F (S) ∩ V I(C, A) ∩ EP (F ), where z = PF (S)∩V I(C,A)∩EP (F )f(z).
Let {Ti} be an infinite family of nonexpansive mappings of H into itself and let

{λi} be a real sequence such that 0 ≤ λi ≤ 1 for every i ∈ N. For n ≥ 1, we defined
a mapping Wn of H into itself as follows:

Un,n+1 := I,

Un,n := λnTnUn,n+1 + (1 − λn)I,
...
Un,k := λkTkUn,k+1 + (1 − λk)I,
...
Un,2 := λ2T2Un,3 + (1 − λ2)I,

Wn := Un,1 := λ1T1Un,2 + (1 − λ1)I.

(6.4.8)

In 2011, He et al. [274] introduced following iterative process for {Tn : C → C}

which is a sequence of nonexpansive mappings. Let {zn} be the sequence defined by

zn+1 = ǫnγf(zn) + (I − ǫn)WnK1
r1,nK2

r2,n · ... · KK
rK ,nzn, ∀n ∈ N (6.4.9)

The sequence {zn} defined by (6.4.9) converges strongly to a common element of the
set of fixed points of nonexpansive mappings, the set of solutions of the variational
inequality and the generalized equilibrium problem. Recently, Jitpeera and Kumam
[275] introduced the following a new general iterative method for finding a common
element of the set of solutions of fixed point for nonexpansive mappings, the set
of solution of generalized mixed equilibrium problems and the set of solutions of the
variational inclusion for a β-inverse-strongly monotone mapping in a real Hilbert space.
In this section, we modify the iterative methods (6.4.2), (6.4.7) and (6.4.9) by

purposing the new general viscosity iterative method. We show that under some
control conditions the sequence {xn} converges strongly to a common element of the
set of common fixed points of nonexpansive mappings, the solution of the system of
mixed equilibrium problems and the set of solutions of the variational inclusion in a real
Hilbert space. Moreover, we apply our results to the class of strictly pseudocontractive
mappings. Finally, we give a numerical example which support our main theorem in
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the last part. Our results improve and extend the corresponding results of Marino and
Xu (2006), Su et al. (2008), He et al. (2011) and some authors.

Lemma 6.4.1. [327] Assume {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1 − γn)an + δn, ∀n ≥ 0,

where {γn} ⊂ (0, 1) and {δn} is a sequence in R such that
(i)
∑∞

n=1 γn = ∞

(ii) lim supn−→∞
δn

γn
≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn−→∞ an = 0.

Lemma 6.4.2. [251] Let C be a closed convex subset of a real Hilbert space H and
let T : C −→ C be a nonexpansive mapping. Then I − T is demiclosed at zero, that
is,

xn ⇀ x and xn − Txn → 0

implies x = Tx.

Lemma 6.4.3. [274] Let C be a nonempty closed and convex subset of a strictly
convex Banach space. Let {Ti}i∈N be an infinite family of nonexpansive mappings
of C into itself such that ∩i∈NF (Ti) 6= ∅ and let {λi} be an real sequence such that
0 ≤ λi ≤ b < 1 for every i ∈ N. Then F(W) = ∩i∈NF (Ti) 6= ∅.

Lemma 6.4.4. [274] Let C be a nonempty closed and convex subset of a strictly
convex Banach space. Let {Ti} be an infinite family of nonexpansive mappings of
C into itself and let {λi} be a real sequence such that 0 ≤ λi ≤ b < 1 for every
i ∈ N. Then, for every x ∈ C and k ∈ N , the limit limn−→∞ Un,k exist.

In view of the previous lemma, we define

Wx := lim
n−→∞

Un,1x = lim
n−→∞

Wnx.

Next we stat our main result, we show a strong convergence theorem which solves
the problem of finding a common element of the common fixed points, the common
solution of a system of mixed equilibrium problems and variational inclusion of inverse-
strongly monotone mappings in a Hilbert space.

Theorem 6.4.5. Let H be a real Hilbert space, C be a nonempty close and convex
subset of H and B be a β-inverse-strongly monotone mapping. Let ϕ : C−→R be
a convex and lower semicontinuous function, f : C −→ C be a contraction mapping
with coefficient α( 0 < α < 1 ), M : H −→ 2H be a maximal monotone mapping.
Let A be a strongly positive linear bounded operator of H into itself with coefficient
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γ > 0. Assume that 0 < γ < γ

α
and λ ∈ (0, 2β). Let {Tn} be a family of

nonexpansive mappings of H into itself such that

θ := ∩∞
n=1F (Tn) ∩ (∩N

k=1SMEP (Fk)) ∩ I(B, M) 6= ∅.

Suppose that {xn} is a sequence generated by the following algorithm for x0 ∈ C

arbitrarily and





un = KFN

rn,n · K
FN−1

rn−1,n · K
FN−2

rn−2,n · ... · KF2

r2,n · KF1

r1,n · xn, ∀n ∈ N

xn+1 = PC [ǫnγf(xn) + (I − ǫnA)WnJM,λ(un − λBun)]
(6.4.10)

for all n = 1,2,3,..., where

KFi
ri,n

(x) = {un ∈ C : Fi(un, y) + ϕ(y) − ϕ(un) +
1

ri,n

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C}

for all i = 1, 2, 3, . . . , N and the following conditions are satisfied

(C1): {ǫn} ⊂ (0, 1), limn−→0 ǫn = 0,
∑∞

n=1 ǫn = ∞,
∑∞

n=1 |ǫn+1 − ǫn| < ∞;

(C2): {rn} ⊂ [c, d] with c, d ∈ (0, 2σ) and
∑∞

n=1 |rn+1 − rn| < ∞.

Then, the sequence {xn} converges strongly to q ∈ θ, where q = Pθ(γf+I−A)(q)

which solves the following variational inequality:

〈(γf − A)q, p − q〉 ≤ 0, ∀p ∈ θ, (6.4.11)

which is the optimality condition for the minimization problem

min
q∈θ

1

2
〈Aq, q〉 − h(q), (6.4.12)

where h is a potential function for γf (i.e., h′(q) = γf(q) for q ∈ H).

Proof. Since condition (C1), we may assume without loss of generality, then
ǫn ∈ (0, ‖ A ‖−1) for all n. Then, we have ‖I − ǫnA‖ ≤ 1− ǫnγ̄. Next, we will assume
that ‖I − A‖ ≤ ‖1 − γ̄‖.

Next, we will divide the proof into six steps.

Step 1. First, will show that {xn} and {un} are bounded. Since B is β-inverse-
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strongly monotone mappings, we have

‖(I − λB)x − (I − λB)y‖2 = ‖Ix − λBx − Iy + λBy‖2

= ‖x − y − λBx + λBy‖2

= ‖(x − y) − λ(Bx + By)‖2

≤ ‖x − y‖2 − 2λ〈x − y〉〈Bx + By〉

+λ2‖Bx − By‖2

≤ ‖x − y‖2 − 2λβ‖Bx + By‖2

+λ2‖Bx − By‖2

≤ ‖x − y‖2 + λ(λ − 2β‖Bx + By‖2 (6.4.13)

if 0 < λ < 2β, then I − λ B is nonexpansive.
Put yn := JM,λ(un−λBun), n ≥ 0. Since JM,λ and I −λB are nonexpansive mapping,
it follows that

‖yn − q‖ = ‖JM,λ(un − λBun) − JM,λ(q − λBq)‖

≤ ‖(un − λBun) − (q − λBq)‖

≤ ‖un − q‖. (6.4.14)

By Lemma ??, we have

un = KFN
rn,n · KFN−1

rn−1,n · KFN−2

rn−2,n · ... · KF2

r2,n · KF1

r1,n · xn, for n ≥ 0

τk
n = KFk

rk,n · KFk−1

rk−1,n · ... · KF2

r2,n · KF1

r1,n, for k ∈ {0, 1, 2, ..., N}

and τ 0
n = I for all n ∈ N, q = τFk

rk,nq, un = τN
rk,Nxn Then, we have

‖un − q‖2 = ‖τN
rk,nxn − τFk

rk,nq‖2

= ‖xn − q‖2. (6.4.15)

Hence, we get

‖yn − q‖ ≤ ‖xn − q‖. (6.4.16)
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From (6.4.10), we deduce that

‖xn+1 − q‖ = ‖PC(ǫnγf(xn) + (I − ǫnA)Wnyn) − PCq‖

≤ ‖ǫn(γf(xn) − Aq) + (I − ǫnA)(Wnyn − q)‖

≤ ǫn‖γf(xn) − Aq)‖ + (1 − ǫnγ̄)‖(yn)) − q‖

≤ ǫγǫn‖xn − q‖ + ǫn‖γf(g) − Aq‖

+(1 − ǫnγ̄)‖xn − q‖ (6.4.17)
= (1 − (γ̄ − γǫ)ǫn)‖xn − q‖ − ǫn‖γf(q) − Aq‖

= (1 − (γ̄ − γǫ)ǫn)‖xn − q‖ + (γ̄ − γǫ)ǫn

‖γf(q) − Aq‖

γ̄ − γǫ
...

≤ max
{
‖xn − q‖,

‖γf(q) − Aq‖

γ̄ − γǫ

}
.

It follows by induction that

‖xn − q‖ ≤ max{‖x0 − q‖,
‖γf(q) − Aq‖

γ̄ − γǫ
}, n ≥ 0. (6.4.18)

Therefore {xn} is bounded, so are {yn}, {Bun}, {f(xn)} and {AWnyn}.

Step 2. We claim that limn−→∞ ‖xn+1 − xn‖ = 0 and limn→∞ ‖yn+1 − yn‖ = 0.

From (6.4.10), we have

‖xn+1 − xn‖ = ‖PC(ǫnγf(xn) + (I − ǫnA)Wnyn) − PC(ǫn−1γf(xn−1) + (I − ǫn−1A)Wnyn−1‖

≤ ‖(I − ǫnA)(Wnyn − Wnyn−1) − (ǫn − ǫn−1)AWnyn−1 +

γǫn(f(xn) − f(xn−1)) + γ(ǫn − ǫn−1)f(xn−1)‖

≤ (1 − ǫnγ̄)‖yn − yn−1‖ + |ǫn − ǫn−1|‖AWnyn‖ + γǫǫn‖xn − xn−1‖

+γ|ǫn − ǫn−1|‖f(xn−1)‖. (6.4.19)

Since JM,λ and I − λB are nonexpansive, we also have

‖yn − yn−1‖ = ‖JM,λ(un − λBun) − JM,λ(un−1 − λBun−1)‖

≤ ‖(un − λBun) − (un−1 − λBun−1)‖ (6.4.20)
≤ ‖un − un−1‖.

On the other hand, from un−1 = τN
rk ,n−1xn−1 and un = τN

rk,nxn, it follows that

F (un−1, y)+ϕ(y)−ϕ(un−1)+
1

rn−1

〈y−un−1, un−1−xn−1〉 ≥ 0, ∀y ∈ C (6.4.21)

and

F (un, y) + ϕ(y) − ϕ(un) +
1

rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C. (6.4.22)
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Substituting y = un into (6.4.21) and y = un−1 into (6.4.22), we get

F (un−1, un) + ϕ(un) − ϕ(un−1) +
1

rn−1

〈un − un−1, un−1 − xn−1〉 ≥ 0 (6.4.23)

and

F (un, un+1) + ϕ(un+1) − ϕ(un) +
1

rn

〈un+1 − un, un − xn〉 ≥ 0. (6.4.24)

From (A2), we obtain

〈un − un−1,
un−1 − xn−1

rn−1
−

un − xn

rn

〉 ≥ 0, (6.4.25)

and
〈un − un−1, un−1 − xn−1 −

rn−1

rn

(un − xn)〉 ≥ 0, (6.4.26)

so,
〈un − un−1, un−1 − un + un − xn−1 −

rn−1

rn

(un − xn)〉 ≥ 0. (6.4.27)

It follows that

〈un − un−1, un−1 − un + un − xn −
rn−1

rn

(un − xn)〉 ≥ 0,

and

〈un − un−1, un−1 − un〉 + 〈un − un−1, (1 −
rn−1

rn

)(un − xn)〉 ≥ 0. (6.4.28)

Without loss of generality, let us assume that there exists a real number c such that
rn−1 > c > 0, for all n ∈ N. Then, we have

‖un − un−1‖
2 ≤

〈
un − un−1,

(
1 −

rn−1

rn

)
(un − xn)

〉

≤ ‖un − un−1‖
{
|1 −

rn−1

rn

∣∣∣‖un − xn‖
}

and hence

‖un − un−1‖ ≤ ‖xn − xn−1‖ +
1

rn

|rn − rn−1|‖un − xn‖

≤ ‖xn − xn−1‖ +
M1

c
|rn − rn−1|, (6.4.29)

where M1 = sup{‖un − xn‖ : n ∈ N}. Substituting (6.4.29) into (6.4.20), we have

‖yn − yn−1‖ ≤ ‖xn − xn−1‖ +
M1

c
|rn − rn−1|. (6.4.30)
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Substituting (6.4.30) into (6.4.19), we get

‖xn+1 − xn‖ ≤ (1 − ǫnγ̄)
(
‖xn − xn−1‖ +

M1

c
|rn − rn−1|

)
+ |ǫn − ǫn−1|‖AWnyn−1‖

+γǫǫn‖xn − xn−1‖ + γ|ǫn − ǫn−1|‖f(xn−1)‖

= (1 − ǫnγ̄)‖xn − xn−1‖ + (1 − ǫnγ̄)
M1

c
|rn − rn−1| + |ǫn − ǫn−1|‖AWnyn−1‖

+γǫǫn‖xn − xn−1‖ + γ|ǫn − ǫn−1|‖f(xn−1)‖

≤ (1 − (γ̄ − γǫ)ǫn)‖xn − xn−1‖ +
M1

c
|rn − rn−1| + |ǫn − ǫn−1|‖AWnyn−1‖

+γ|ǫn − ǫn−1|‖f(xn−1)‖

≤ (1 − (γ̄ − γǫ)ǫn)‖xn − xn−1‖ +
M1

c
|rn − rn−1| + M2|ǫn − ǫn−1|,

where M2 = sup
{

max{‖AWnyn−1‖, ‖f(xn−1)‖ : n ∈ N}
}
. Since conditions (C1)-(C2)

and by Lemma 6.4.1, we have ‖xn+1 − xn‖ −→ 0 as n → ∞. From (6.4.30), we also
have ‖yn+1 − yn‖ −→ 0 as n → ∞.

Step 3. Next, we show that limn−→∞ ‖Bun − Bq‖ = 0.

For q ∈ θ hence q = JM,λ(q − λBq). By (6.4.13) and (6.4.15), we get

‖yn − q‖2 = ‖JM,λ(un − λBun) − JM,λ(q − λBq)‖2

≤ ‖(un − λBun) − (q − λBq)‖2

≤ ‖un − q‖2 + λ(λ − 2β)‖Bun − Bq‖2

≤ ‖xn − q‖2 + λ(λ − 2β)‖Bun − Bq‖2. (6.4.31)

It follows that

‖xn+1 − q‖2 = ‖PC(ǫnγf(xn) + (I − ǫnA)Wnyn) − PC(q)‖2

≤ ‖ǫn(γf(xn) − Aq) + (I − ǫnA)(Wnyn − q)‖2

≤
(
ǫn‖γf(xn) − Aq‖ + (1 − ǫnγ̄)‖yn − q‖

)2

≤ ǫn‖γf(xn) − Aq‖2 + (1 − ǫnγ̄)‖yn − q‖2

+2ǫn(1 − ǫnγ̄)‖γf(xn) − Aq‖‖yn − q‖ (6.4.32)
≤ ǫn‖γf(xn) − Aq‖2 + 2ǫn(1 − ǫnγ̄)‖γf(xn) − Aq‖‖yn − q‖

+(1 − ǫnγ̄)
(
‖xn − q‖2 + λ(λ − 2β)‖Bun − Bq‖2

)

≤ ǫn‖γf(xn) − Aq‖2 + 2ǫn(1 − ǫnγ̄)‖γf(xn) − Aq‖‖yn − q‖

+‖xn − q‖2 + (1 − ǫnγ̄)λ(λ − 2β)‖Bun − Bq‖2.
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So, we obtain

(1 − ǫnγ̄)λ(2β − λ)‖Bun − Bq‖2

≤ ǫn‖γf(xn) − Aq‖2 + ‖xn − xn+1‖
(
‖xn − q‖ + ‖xn+1 − q‖

)
+ ξn, (6.4.33)

where ξn = 2ǫn(1 − ǫnγ̄)‖γf(xn) − Aq‖‖yn − q‖. By conditions (C1),(C3) and
limn→∞ ‖xn+1 − xn‖ = 0, then, we obtain that ‖Bun − Bq‖ −→ 0 as n −→ ∞.

Step 4. We show the followings:

(i) limn−→∞ ‖xn − un‖ = 0;

(ii) limn−→∞ ‖un − yn‖ = 0;

(iii) limn−→∞ ‖yn − Wnyn‖ = 0.

Since Krn
(x) is firmly nonexpansive, we observe that

‖un − q‖2 = ‖τN
rn,n xn − τN

rn,n q‖2

≤ 〈xn − q, un − q〉

=
1

2

(
‖xn − q‖2 + ‖un − q‖2 − ‖xn − q − un − q‖2

)
(6.4.34)

≤
1

2

(
‖xn − q‖2 + ‖un − q‖2 − ‖xn − un‖

2
)

it follows that

‖un − q‖2 ≤ ‖xn − q‖2 − ‖xn − un‖
2.

Since JM,λ is 1-inverse-strongly monotone, we compute

‖yn − q‖2 = ‖JM,λ(un − λBun) − JM,λ(q − λBq)‖2

≤ 〈(un − λBun) − (q − λBq), yn − q〉

=
1

2

(
‖(un − λBun) − (q − λBq)‖2 + ‖yn − q‖2

−‖(un − λBun) − (q − λBq) − (yn − q)‖2
)

(6.4.35)

≤
1

2

(
‖un − q‖2 + ‖yn − q‖2 − ‖(un − yn) − λ(Bun − Bq)‖2

)

=
1

2

(
‖un − q‖2 + ‖yn − q‖2 − ‖un − yn‖

2

+2λ〈un − yn, Bun − Bq〉 − λ2‖Bun − Bq‖2
)
,
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which implies that

‖yn − q‖2 ≤ ‖un − q‖2 − ‖un − yn‖
2 + 2λ‖un − yn‖‖Bun − Bq‖. (6.4.36)

Substitute (6.4.36) into (6.4.32), we have

‖xn+1 − q‖2 ≤ ǫn‖γf(xn) − Aq‖2 + ‖yn − q‖2 + 2ǫn(1 − ǫnγ̄)‖γf(xn) − Aq‖‖yn − q‖

≤ ǫn‖γf(xn) − Aq‖2 +
(
‖un − q‖2 − ‖un − yn‖

2 + 2λn‖un − yn‖‖Bun − Bq‖
)

+2ǫn(1 − ǫnγ̄)‖γf(xn) − Aq‖‖yn − q‖. (6.4.37)

Then, we derive

‖xn − un‖
2 + ‖un − yn‖

2

≤ ǫn‖γf(xn) − Aq‖2 + ‖xn − q‖2 − ‖xn+1 − q‖2

+2λ‖un − yn‖‖Bun − Bq‖ + 2ǫn(1 − ǫnγ̄)‖γf(xn) − Aq‖‖yn − q‖.

= ǫn‖γf(xn) − Aq‖2 + ‖xn − xn+1‖(‖xn − q‖ + ‖xn+1 − q‖) (6.4.38)
+2λ‖un − yn‖‖Bun − Bq‖ + 2ǫn(1 − ǫnγ̄)‖γf(xn) − Aq‖‖yn − q‖.

By condition (C1), limn→∞ ‖xn − xn+1‖ = 0 and limn→∞ ‖Bun − Bq‖ = 0.
So, we have ‖xn − un‖ → 0, ‖un − yn‖ → 0 as n → ∞. It follows that

‖xn − yn‖ ≤ ‖xn − un‖ + ‖un − yn‖ → 0, as n → ∞. (6.4.39)

From (6.4.10), we have

‖xn − Wnyn‖ ≤ ‖xn − Wnyn−1‖ + ‖Wnyn−1 − Wnyn‖

≤
∥∥PC

(
ǫn−1γf(xn−1) + (I − αn−1A)Wnyn−1

)
− PC(Wnyn−1)

∥∥

+‖yn−1 − yn‖ (6.4.40)
≤ ǫn−1‖γfxn−1 − AWnyn−1‖ + ‖yn−1 − yn‖.

By condition (C1) and limn→∞ ‖yn−1 − yn‖ = 0, we obtain that ‖xn − Wnyn‖ → 0 as
n → ∞.

Hence, we have

‖xn − Wnxn‖ ≤ ‖xn − Wnyn‖ + ‖Wnyn − Wnxn‖

≤ ‖xn − Wnyn‖ + ‖yn − xn‖. (6.4.41)

By (6.4.39) and limn→∞ ‖xn−Wnyn‖ = 0 , we obtain ‖xn−Wnxn‖ −→ 0 as n −→ ∞.
Moreover, we also have

‖yn − Wnyn‖ ≤ ‖yn − xn‖ + ‖xn − Wnyn‖.
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By (6.4.39) and limn→∞ ‖xn −Wnyn‖ = 0, we obtain ‖yn −Wnyn‖ −→ 0 as n −→ ∞.

Step 5. We show that q ∈ θ :=
⋂∞

n=1 F (Tn) ∩ (
⋂N

k=1 SMEP (Fk)) ∩ I(B, M) and
lim supn−→∞〈(γf − A)q, Wnyn − q〉 ≤ 0. It is easy to see that Pθ(γf + (I − A)) is a
contraction of H into itself.
Indeed, since 0 < γ < γ̄

ǫ
, we have

‖Pθ(γf + (I − A))x − Pθ(γf + (I − A))y‖ ≤ γ‖f(x) − f(y)‖ + ‖I − A‖‖x − y‖

≤ γǫ‖x − y‖ + (1 − γ̄)‖x − y‖(6.4.42)
≤ (1 − γ̄ + γǫ)‖x − y‖.

Since H is complete, then there exists a unique fixed point q ∈ H such that q =

Pθ(γf + (I − A))(q). Hence, we obtain that 〈(γf − A)q, w − q〉 ≤ 0 for all w ∈ θ.
Next, we show that lim supn−→∞〈(γf − A)q, Wnyn − q〉 ≤ 0, where q = Pθ(γf +

I − A)(q) is the unique solution of the variational inequality
〈
(γf − A)q, w − q

〉
≥

0, ∀w ∈ θ. We can choose a subsequence {yni
} of {yn} such that

lim sup
n−→∞

〈(γf − A)q, Wnyn − q〉 = lim
i−→∞

〈(γf − A)q, Wnyni
− q〉. (6.4.43)

As {yni
} is bounded, there exists a subsequence {ynij

} of {yni
} which converges

weakly to w. We may assume without loss of generality that yni
⇀ w.

Next we claim that w ∈ θ. Since ‖yn − Wnyn‖ −→ 0,‖xn − Wnxn‖ −→ 0 and
‖xn − yn‖ −→ 0 and by Lemma 6.4.2, we have w ∈

⋂∞
n=1F (Tn).

Next, we show that w ∈
⋂∞

k=1SMEP (Fk). Since un = τN
rk,n xn, for k = 1, 2, 3, . . . , N,

we know that

Fk(un, y) + ϕ(y) − ϕ(un) +
1

rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C. (6.4.44)

It follows by (A2) that

ϕ(y) − ϕ(un) +
1

rn

〈y − un, un − xn〉 ≥ Fk(y, un), ∀y ∈ C. (6.4.45)

Hence, for k = 1, 2, 3, . . . , N, we get

ϕ(y) − ϕ(uni
) +

1

rni

〈y − uni
, uni

− xni
〉 ≥ Fk(y, uni

), ∀y ∈ C. (6.4.46)

For t ∈ (0, 1] and y ∈ H, let yt = ty + (1 − t)w. From (6.4.46), we have

0 ≥ ϕ(yt) + ϕ(uni
) −

1

rni

〈yt − uni
, uni

− xni
〉 + Fk(yt, uni

) (6.4.47)
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Since ‖uni
− xni

‖ −→ 0, from (A4) and the weakly lower semicontinuity of ϕ,
(uni

−xni
)

rni

→ 0 and uni
⇀ w. From (A1), (A4) and we have

0 = Fk(yt, yt) − ϕ(yt) + ϕ(yt)

≤ tFk(yt, y) + (1 − t)Fk(yt, w) + tϕ(y) + (1 − t)ϕ(w) − ϕ(yt)

≤ t[Fk(yt, y) + ϕ(y) − ϕ(yt)]. (6.4.48)

Deviding by t, we get
Fk(yt, y) + ϕ(y) − ϕ(yt) ≥ 0.

The weakly lower semicontinuity of ϕ for k = 1, 2, 3, . . . , N, we get

Fk(w, y) + ϕ(y) ≥ ϕ(w).

So, we have
Fk(w, y) + ϕ(y) − ϕ(w) ≥ 0, ∀k = 1, 2, 3, . . . , N.

This implies that w ∈
⋂N

k=1SMEP (Fk).

Lastly, we show that w ∈ I(B, M). In fact, since B is β-inverse strongly monotone,
hence B is a monotone and Lipschitz continuous mapping. It follows that M + B

is a maximal monotone. Let (v, g) ∈ G(M + B), since g − Bv ∈ M(v). Again
since yni

= JM,λ(uni
− λBuni

), we have uni
− λBuni

∈ (I + λM)(yni
), that is,

1
λ
(uni

− yni
− λBuni

) ∈ M(yni
). By virtue of the maximal monotonicity of M + B, we

have
〈v − yni

, g − Bv −
1

λ
(uni

− yni
− λBuni

)〉 ≥ 0,

and hence

〈v − yni
, g〉 ≥

〈
v − yni

, Bv +
1

λ
(uni

− yni
− λBuni

)
〉

= 〈v − yni
, Bv − Byni

〉 + 〈v − yni
, Byni

− Buni
〉 (6.4.49)

+
〈
v − yni

,
1

λ
(uni

− yni
)
〉
.

It follows from limn→∞ ‖un−yn‖ = 0, we have limn→∞ ‖Bun−Byn‖ = 0 and yni
⇀ w,

it follows that

lim sup
n→∞

〈v − yn, g〉 = 〈v − w, g〉 ≥ 0. (6.4.50)

It follows from the maximal monotonicity of B + M that θ ∈ (M + B)(w), that is,
w ∈ I(B, M). Therefore, w ∈ θ. We observe that

lim sup
n−→∞

〈(γf − A)q, Wnyn − q〉 = lim
i−→∞

〈(γf − A)q, Wnyni
− q〉 = 〈(γf − A)q, w − q〉 ≤ 0.
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Step 6. Finally, we prove xn −→ q. By using (6.4.10) and together with Schwarz
inequality, we have

‖xn+1 − q‖2 = ‖PC

(
ǫnγf(xn) + (I − ǫnA)Wnyn

)
− PC(q)‖2

≤ ‖ǫn(γf(xn) − Aq) + (I − ǫnA)(Wnyn − q)‖2

≤ (I − ǫnA)2‖(Wnyn − q)‖2 + ǫ2
n‖γf(xn) − Aq‖2

+2ǫn〈(I − ǫnA)(Wnyn − q), γf(xn) − Aq〉

≤ (1 − ǫnγ̄)2‖yn − q‖2 + ǫ2
n‖γf(xn) − Aq‖2

+2ǫn〈Wnyn − q, γf(xn) − Aq〉 − 2ǫ2
n〈A(Wnyn − q), γf(xn) − Aq〉

≤ (1 − ǫnγ̄)2‖xn − q‖2 + ǫ2
n‖γf(xn) − Aq‖2 + 2ǫn〈Wnyn − q, γf(xn) − γf(q)〉

+2ǫn〈Wnyn − q, γf(q) − Aq〉 − 2ǫ2
n〈A(Wnyn − q), γf(xn) − Aq〉

≤ (1 − ǫnγ̄)2‖xn − q‖2 + ǫ2
n‖γf(xn) − Aq‖2 + 2ǫn‖Wnyn − q‖‖γf(xn) − γf(q)‖

+2ǫn〈Wnyn − q, γf(q) − Aq〉 − 2ǫ2
n〈A(Wnyn − q), γf(xn) − Aq〉

≤ (1 − ǫnγ̄)2‖xn − q‖2 + ǫ2
n‖γf(xn) − Aq‖2 + 2γǫǫn‖yn − q‖‖xn − q‖

+2ǫn〈Wnyn − q, γf(q) − Aq〉 − 2ǫ2
n〈A(Wnyn − q), γf(xn) − Aq〉

≤ (1 − ǫnγ̄)2‖xn − q‖2 + ǫ2
n‖γf(xn) − Aq‖2 + 2γǫǫn‖xn − q‖2

+2ǫn〈Wnyn − q, γf(q) − Aq〉 − 2ǫ2
n〈A(Wnyn − q), γf(xn) − Aq〉

≤
(
(1 − ǫnγ̄)2 + 2γǫǫn

)
‖xn − q‖2 + ǫn

{
ǫn‖γf(xn) − Aq‖2

+2〈Wnyn − q, γf(q) − Aq〉 − 2ǫn‖A(Wnyn − q)‖‖γf(xn) − Aq‖
}

=
(
1 − 2(γ̄ − γǫ)ǫn

)
‖xn − q‖2 + ǫn

{
ǫn‖γf(xn) − Aq‖2

+2〈Wnyn − q, γf(q) − Aq〉 − 2ǫn‖A(Wnyn − q)‖ |γf(xn) − Aq‖

+ǫnγ̄2‖xn − q‖2
}

. (6.4.51)

Since {xn} is bounded, where η ≥ ‖γf(xn) − Aq‖2 − 2‖A(Wnyn − q)‖‖γf(xn) −

Aq‖ + γ̄2‖xn − q‖2 for all n ≥ 0. It follows that

‖xn+1 − q‖2 ≤
(
1 − 2(γ̄ − γǫ)ǫn

)
‖xn − q‖2 + ǫnδn, (6.4.52)

where δn = 2〈Wnyn−q, γf(q)−Aq〉+ηαn. Since lim supn−→∞〈(γf−A)q, Wnyn−q〉 ≤

0, we get lim supn−→∞ δn ≤ 0. Applying Lemma 6.4.1, we can conclude that xn −→ q.
This completes the proof.

Corollary 6.4.6. Let H be a real Hilbert space, C be a nonempty closed and convex
subset of H . Let B be β-inverse-strongly monotone and ϕ : C → R is convex and
lower semicontinuous function. Let f : C −→ C be a contraction with coefficient α
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(0 < α < 1), M : H −→ 2H be a maximal monotone mapping and {Tn} be a family
of nonexpansive mappings of H into itself such that

θ := ∩∞
n=1F (Tn) ∩ (∩N

k=1SMEP (Fk)) ∩ I(B, M) 6= 0.

Suppose {xn} is a sequence generated by the following algorithm for x0, un ∈ C

arbitrarily:




un = KFN

rn,n · K
FN−1

rn−1,n · K
FN−2

rn−2,n · ... · KF2

r2,n · KF1

r1,n · xn, ∀n ∈ N

xn+1 = PC [ǫnf(xn) + (I − ǫn)WnJM,λ(un − λBun)]
(6.4.53)

for all n = 0, 1, 2, ..., and the conditions (C1)-(C3) in Theorem 6.4.5 are satisfied.
Then, the sequence {xn} converges strongly to q ∈ θ, where q = Pθ(f + I)(q)

which solves the following variational inequality:

〈(f − I)q, p − q〉 ≤ 0, ∀p ∈ θ.

Proof. Putting A ≡ I and γ ≡ 1 in Theorem 6.4.5, we can obtain desired conclusion
immediately.

Corollary 6.4.7. Let H be a real Hilbert space, C be a nonempty closed and convex
subset of H . Let B be β-inverse-strongly monotone, ϕ : C → R is convex and lower
semicontinuous function and M : H −→ 2H be a maximal monotone mapping. Let
{Tn} be a family of nonexpansive mappings of H into itself such that

θ := ∩∞
n=1F (Tn) ∩ (∩N

k=1SMEP (Fk)) ∩ I(B, M) 6= 0.

Suppose {xn} is a sequence generated by the following algorithm for x0, u ∈ C and
un ∈ C:





un = KFN

rn,n · K
FN−1

rn−1,n · K
FN−2

rn−2,n · ... · KF2

r2,n · KF1

r1,n · xn, ∀n ∈ N

xn+1 = PC [ǫnu + (I − ǫn)WnJM,λ(un − λBun)]
(6.4.54)

for all n = 0, 1, 2, ..., and the conditions (C1)-(C3) in Theorem 6.4.5 are satisfied.
Then, the sequence {xn} converges strongly to q ∈ θ, where q = Pθ(q) which

solves the following variational inequality:

〈u − q, p − q〉 ≤ 0, ∀p ∈ θ.

Proof. Putting f(x) ≡ u, ∀x ∈ C in Corollary 6.4.6, we can obtain desired
conclusion immediately.
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Corollary 6.4.8. Let H be a real Hilbert space, C be a nonempty closed and convex
subset of H and B be β-inverse-strongly monotone mapping, A a strongly positive
linear bounded operator of H into itself with coefficient γ̄ > 0. Assume that 0 <

γ < γ̄

α
. Let f : C −→ C be a contraction with coefficient α (0 < α < 1) and {Tn}

be a family of nonexpansive mappings of H into itself such that

θ := ∩∞
n=1F (Tn) ∩ V I(C, B) 6= ∅.

Suppose {xn} is a sequence generated by the following algorithm for x0 ∈ C arbi-
trarily:

xn+1 = PC

[
ǫnγf(xn) + (I − ǫnA)WnPC(xn − λBxn)

]
(6.4.55)

for all n = 0, 1, 2, ..., and the conditions (C1)-(C3) in Theorem 6.4.5 are satisfied.
Then, the sequence {xn} converges strongly to q ∈ θ, where q = Pθ(γf +I−A)(q)

which solves the following variational inequality:

〈(γf − A)q, p − q〉 ≤ 0, ∀p ∈ θ.

Proof. Taking F ≡ 0, ϕ ≡ 0, un = xn and JM,λ = PC in Theorem 6.4.5, we can
obtain desired conclusion immediately.

Remark 6.4.9. Corollary 6.4.8 generalizes and improves the result of Klin-eam and
Suantai [260].

6.5 Some Applications
In this section, we apply the iterative scheme for finding a common fixed point of
nonexpansive mapping and strictly pseudocontractive mapping.

Definition6.5.1. A mapping S : C −→ C is called strictly pseudo-contraction if there
exists a constant 0 ≤ κ < 1 such that

‖Sx − Sy‖2 ≤ ‖x − y‖2 + κ‖(I − S)x − (I − S)y‖2, ∀x, y ∈ C.

If κ = 0, then S is nonexpansive. In this case, we say that S : C −→ C is a κ-strictly
pseudo-contraction. Putting B = I − S. Then, we have

‖(I − B)x − (I − B)y‖2 ≤ ‖x − y‖2 + κ‖Bx − By‖2, ∀x, y ∈ C.

Observe that

‖(I − B)x − (I − B)y‖2 = ‖x − y‖2 + ‖Bx − By‖2 − 2〈x − y, Bx− By〉, ∀x, y ∈ C.
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Hence, we obtain

〈x − y, Bx− By〉 ≥
1 − κ

2
‖Bx − By‖2, ∀x, y ∈ C.

Then, B is a 1−κ
2
-inverse-strongly monotone mapping.

Using Theorem 6.4.5, we first prove a strongly convergence theorem for finding a
common fixed point of a nonexpansive mapping and a strictly pseudo-contraction.

Theorem 6.5.2. Let H be a real Hilbert space, C be a nonempty closed and convex
subset of H and B be an β-inverse-strongly monotone, ϕ : C → R is convex
and lower semicontinuous function, f : C −→ C be a contraction with coefficient
α (0 < α < 1) and A be a strongly positive linear bounded operator of H into
itself with coefficient γ̄ > 0. Assume that 0 < γ < γ̄

α
. Let {Tn} be a family of

nonexpansive mappings of H into itself and let S be a κ-strictly pseudo-contraction
of C into itself such that

θ := ∩∞
n=1F (Tn) ∩ (∩N

k=1SMEP (Fk)) ∩ F (S) 6= 0.

Suppose {xn} is a sequence generated by the following algorithm for x0, un ∈ C

arbitrarily:




un = KFN

rn,n · K
FN−1

rn−1,n · K
FN−2

rn−2,n · ... · KF2

r2,n · KF1

r1,n · xn, ∀n ∈ N

xn+1 = PC [ǫnγf(xn) + (I − ǫnA)Wn(1 − λ)xn + λSxn]
(6.5.1)

for all n = 0, 1, 2, ..., and the conditions (C1)-(C3) in Theorem 6.4.5 are satisfied.
Then, the sequence {xn} converges strongly to q ∈ θ, where q = Pθ(γf +I−A)(q)

which solves the following variational inequality:

〈(γf − A)q, p − q〉 ≤ 0, ∀p ∈ θ

which is the optimality condition for the minimization problem

min
q∈θ

1

2
〈Aq, q〉 − h(q), (6.5.2)

where h is a potential function for γf (i.e., h′(q) = γf(q) for q ∈ H).

Proof. Put B ≡ I − T , then B is 1−κ
2
inverse-strongly monotone and F (S) =

I(B, M) and JM,λ(xn − λBxn) = (1 − λ)xn + λTxn. So by Theorem 6.4.5, we obtain
the desired result.

Corollary 6.5.3. Let H be a real Hilbert space, C be a closed convex subset of H and
B be β-inverse-strongly monotone, ϕ : C → R is convex and lower semicontinuous
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function. Let f : C −→ C be a contraction with coefficient α (0 < α < 1) and Tn be
a nonexpansive mapping of H into itself and let S be a κ-strictly pseudo-contraction
of C into itself such that

θ := ∩∞
n=1F (Tn) ∩ (∩N

k=1SMEP (Fk)) ∩ F (S) 6= 0.

Suppose {xn} is a sequence generated by the following algorithm for x0 ∈ C arbi-
trarily:





un = KFN

rn,n · K
FN−1

rn−1,n · K
FN−2

rn−2,n · ... · KF2

r2,n · KF1

r1,n · xn, ∀n ∈ N

xn+1 = PC [ǫnf(xn) + (I − ǫn)Wn((1 − λ)un + λSun)]
(6.5.3)

for all n = 0, 1, 2, ..., and the conditions (C1)-(C3) in Theorem 6.4.5 are satisfied.
Then, the sequence {xn} converges strongly to q ∈ θ, where q = Pθ(f + I)(q),

which solves the following variational inequality:

〈(f − I)q, p − q〉 ≤ 0, ∀p ∈ θ

which is the optimality condition for the minimization problem

min
q∈θ

1

2
〈Aq, q〉 − h(q), (6.5.4)

where h is a potential function for γf (i.e., h′(q) = γf(q) for q ∈ H).

Proof. Put A ≡ I and γ ≡ 1 in Theorem 6.5.2, we obtain the desired result.

6.6 Numerical example
Now, we give a real numerical example in which the condition satisfy the ones of
theorem 6.4.5 and some numerical experiment results to explain the main result theorem
6.4.5 as follows:

Example 6.6.1. Let H = R, C = [−1, 1], Tn = I, λn = β ∈ (0, 1), n ∈ N, Fk(x, y) =

0, ∀x, y ∈ C, rn,n = 1, k ∈ {1, 2, 3, ..., N}, ϕ(x) = 0, ∀x ∈ C, B = A = I, f(x) =
1
5
x, ∀x ∈ H, λ = 1

2
with contraction coefficient α = 1

10
, ǫn = 1

n
for every n ∈

N and γ = 1. Then {xn} is the sequence generated by

xn+1 = (
1

2
−

3

10n
)xn (6.6.1)

and xn −→ 0 as n −→ ∞, where 0 is the unique solution of the minimization
problem

min
x∈C

=
2

5
x2 + q.
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Proof. We prove the Example 6.6.1 by step 1, step 2, step 3. By step 4, we give two
numerical experiment results which can directly explain the sequence {xn} strongly
converges to 0.

Step 1. We show

KFN
rn,nx = PCx, ∀x ∈ H, FN ∈ {1, 2, 3, ..., N}, (6.6.2)

where

PCx =






x
|x|

, x ∈ H\C

x, x ∈ C.
(6.6.3)

Indeed, since Fk(x, y) = 0, ∀x, y ∈ C, n ∈ {1, 2, 3, ..., N}, due to the definition of
Kr(x), ∀x ∈ H , as lemma ??, we have

Kr(x) =
{
u ∈ C : 〈y − u, u − x〉 ≥ 0, ∀y ∈ C

}
.

Also by the equivalent property of the nearest projection PC from H −→ C, we
obtain this conclusion, when we take x ∈ C, KFN

rn,nx = PCx = Ix. By (iii) in lemma
??, we have

N⋂

k=1

SMEP (Fk) = C. (6.6.4)

Step 2. We show

Wn = I. (6.6.5)

Indeed. By (6.4.8), we have

W1 = U11 = λ1T1U12 + (1 − λ1)I = λ1T1 + (1 − λ1)I, (6.6.6)

W2 = U21 = λ1T1U22 + (1 − λ1)I = λ1T1(λ2T2U23 + (1 − λ2)I) + (1 − λ1)I

= λ1λ2T1T2 + λ1(1 − λ2)T1 + (1 − λ1)I,

W3 = U31 = λ1T1U32 + (1 − λ1)I = λ1T1(λ2T2U33 + (1 − λ2)I) + (1 − λ1)I

= λ1λ2T1T2U33 + λ1(1 − λ2)T1 + (1 − λ1)I,

= λ1λ2T1T2(λ3T3U34 + (1 − λ3I)) + λ1(1 − λ2)T1 + (1 − λ1)I,

= λ1λ2λ3T1T2T3 + λ1λ2(1 − λ3T1T2 + λ1(1 − λ2)T1 + (1 − λ1)I.
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Compute in this way by (6.4.8), we obtain

Wn = Un1 = λ1λ2 · · ·λnT1T2 · · ·Tn + λ1λ2 · · ·λn−1(1 − λn)T1T2 · · ·Tn−1

+λ1λ2 · · ·λn−2(1 − λn−1)T1T2 · · ·Tn−2 + · · · + λ1(1 − λ2)T1 + (1 − λ1)I.

Since Tn = I, λn = β, n ∈ N, thus

Wn = [βn + βn−1(1 − β) + · · ·+ β(1 − β) + (1 − β)]I = I.

Step 3. We show

xn+1 = (
1

2
−

3

10n
)xn and xn+1 −→ 0, as n −→ ∞, (6.6.7)

where 0 is the unique solution of the minimization problem

min
x∈C

=
2

5
x2 + q.

Indeed, we can see A = I is a strongly position bounded linear operator with
coefficient γ̄ = 1

2
, γ is a real number such that 0 < γ < γ̄

α
, so we can take γ = 1. Due

to (6.6.1 ), (6.6.3 ) and (6.6.5 ), we can obtain an special sequence {xn} of (6.4.10)
in theorem 6.4.5 as follows:

xn+1 = (
1

2
−

3

10n
)xn

Since Tn = I, n ∈ N, so,
∩∞

n=1F (Tn) = H,

combining with (6.6.4), we have

θ := ∩∞
n=1F (Tn) ∩ (∩N

k=1SMEP (Fk)) ∩ I(B, M) = C = [−1, 1].

By Lemma 6.4.1, it is obviously that zn −→ 0, 0 is the unique solution of the
minimization problem

min
x∈C

=
2

5
x2 + q,

where q is a constant number.

Step 4. We give the numerical experiment results using software Mathlab 7.0 and
get the figure 1 to figure 4, which show that the iteration process of the sequence {xn}

is a monotone decreasing sequence and converges to 0, but the more the iteration steps
are, the more showily the sequence {xn} converges to 0.

Now we turn to realizing (6.4.10) for approximating a fixed point of T . We take
the initial valued x1 = 1 and x1 = 1/2, respectively. All the numerical results are given
in Tables 1 and 2. The corresponding graph appears in Figure 1 (i) and (ii).
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Table 1 This table shows the value of sequence {xn} on each iteration steps (initial
value x1 = 1)

n xn n xn

1 1.000000000000000 31 0.000000000054337
2 0.200000000000000 32 0.000000000026643
3 0.070000000000000 33 0.000000000013072
4 0.028000000000000 34 0.000000000006417
... ... ... ...
19 0.000000301580666 39 0.000000000000184
20 0.000000146028533 40 0.000000000000091
21 0.000000070823839 41 0.000000000000045
... ... ... ...
29 0.000000000226469 47 0.000000000000001
30 0.000000000110892 48 0.000000000000000

Table 2 This table shows the value of sequence {xn} on each iteration steps ( initial
value x1 = 1

2
)

n xn n xn

1 0.500000000000000 31 0.000000000027168
2 0.100000000000000 32 0.000000000013321
3 0.035000000000000 33 0.000000000006536
4 0.014000000000000 34 0.000000000003208
... ... ... ...
19 0.000000150790333 39 0.000000000000092
20 0.000000073014267 40 0.000000000000045
21 0.000000035411919 41 0.000000000000022
... ... ... ...
29 0.000000000113235 46 0.000000000000001
30 0.000000000055446 47 0.000000000000000

The numerical results that support our main theorem as shown by calculating and
plotting graphs using Matlab 7.11.0.
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[59] H. H. Bauschke, E. Matoušková and S. Reich, Projection and proximal point
methods: convergence results and counterexamples, Nonlinear Anal. 56 (2004),
715–738.

[60] D. Boonchari and S. Saejung, Approximation of common fixed points of a
countable family of relatively nonexpansive mappings, Fixed Point Theory and
Appl. 2010 (2010), Article ID 407651, 26 pp.

[61] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common
fixed points of a countable family of nonexpansive mappings in a Banach space,
Nonlinear Anal. 67 (2007), 2350–2360.



218

[62] D. Butnariu, S. Reich and A. J. Zaslavski, Asymptotic behavior of relatively
nonexpansive operators in Banach spaces, J. Appl. Anal. 7 (2001), 151–174.

[63] D. Butnariu, S. Reich and A.J. Zaslavski,Weak convergence of orbits of nonlinear
operators in reflexive Banach spaces, Numer. Funct. Anal. Optim. 24 (2003),
489–508.

[64] Y. Censor and S. Reich, Iterations of paracontractions and firmly nonexpan-
sive operators with applications to feasibility and optimization, Optimization 37
(1996), 323–339.

[65] I. Cioranescu, Geometry of Banach spaces, Duality Mappings and Nonlinear
Problems, Kluwer, Dordrecht, 1990.

[66] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, Heidelberg,
New York, Tokyo, 1985.

[67] J. H. Fan, X. Liu and J. L. Li, Iterative schemes for approximating solutions of
generalized variational inequalities in Banach spaces, Nonlinear Anal. 70 (2009),
3997–4007.

[68] A. Genel and J. Lindenstrauss, An example concerning fixed points, Israel J. of
Math. 22 (1975), 81–86.

[69] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm
in a Banach space, SIAM J. Optim. 13 (2002), 938–945.

[70] P. Kumam and S. Plubtieng, Viscosity approximation methods for monotone
mappings and a countable family of nonexpansive mappings, Math. Slovaca, 61
(2011), 257–274.

[71] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonex-
pansive Mappings, Marcel Dekker, New York, 1984.

[72] J. L. Li, The generalized projection operator on reflexive Banach spaces and its
applications, J. Math. Anal. Appl. 306 (2005), 55–71.

[73] X. Li, N. Huang and D. O’Regan, Strong convergence theorems for relatively
nonexpansive mappings in Banach spaces with applications, Comput. Math. Appl.
60 (2010), 1322–1331.

[74] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953),
506–510,



219

[75] S. Matsushita and W. Takahashi, A strong convergence theorem for relatively
nonexpansive mappings in a Banach space, J. Approx. Theory, 134 (2005),
257–266.

[76] K. Nakajo, K. Shimoji and W. Takahashi, Strong convergence theorems by the
hybrid method for families of nonexpansive mappings in Hilbert spaces, Tai-
wanese J. Math. 10 (2006), 339–360.

[77] W. Nilsrakoo and S. Saejung, Strong convergence to common fixed points of
countable relatively quasi-nonexpansive mappings, Fixed Point Theory and Appl.
2008 (2008), Article ID 312454, 19 pp.

[78] S. Plubtieng and K. Ungchittrakool, Approximation of common fixed points for
a countable family of relatively nonexpansive mappings in a Banach space and
applications, Nonlinear Anal. 72 (2010), 2896–2908

[79] X. Qin, Y. J. Cho and S. M. Kang, Convergence theorems of common elements
for equilibrium problems and fixed point problems in Banach spaces, J. Comput.
Appl. Math. 225 (2009), 20–30.

[80] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators,
Trans. Amer. Math. Soc. 149 (1970), 75–88.

[81] S. Reich, Geometry of Banach spaces, duality mappings and nonlinear problems,
Bull. Amer. Math. Soc. 26 (1992), 367–370.

[82] S. Reich, A weak convergence theorem for the alternating method with Bregman
distances, in: A.G. Kartsatos (Ed.), Theory and Applications of Nonlinear Opera-
tors of Accretive and Monotone Type, Marcel Dekker, New York, pp 313–318
(1996).

[83] S. Plubtieng and P. Kumam, Weak convergence theorem for monotone mappings
and a countable family of nonexpansive mappings, J. Comput. Appl. Math. 224
(2009), 614–621.

[84] S. Saewan, P. Kumam and K. Wattanawitoon, Convergence theorem based on
a new hybrid projection method for finding a common solution of generalized
equilibrium and variational inequality problems in Banach spaces, Abstr. Appl.
Anal. 2010 (2010), Article ID 734126, 26 pp.

[85] S. Saewan and P. Kumam A hybrid iterative scheme for a maximal monotone
operator and two countable families of relatively quasi-nonexpansive mappings



220

for generalized mixed equilibrium and variational inequality problems, Abstr.
Appl. Anal. 2010 (2010), Article ID 123027, 31 pp.

[86] Y. Su, D. Wang and M. Shang, Strong convergence of monotone hybrid algorithm
for hemi-relatively nonexpansive mappings, Fixed Point Theory and Appl. 2008
(2008), Article ID 284613, 8 pp.

[87] Y. Su, Z. Wang and H. K. Xu, Strong convergence theorems for a common fixed
point of two hemi-relatively nonexpansive mappings, Nonlinear Anal. 71 (2009),
5616–5628.

[88] Y. Su, M. Li and H. Zhang, New monotone hybrid algorithm for hemi-relatively
nonexpansive mappings and maximal monotone operators, Appl. Math. Comput.
217 (2011), 5458–5465

[89] Y. Su, H.-K. Xu, and X. Zhang, Strong convergence theorems for two countable
families of weak relatively nonexpansive mappings and applications, Nonlinear
Anal. 73 (2010), 3890–3906.

[90] W. Takahashi, Convex Analysis and Approximation Fixed Points, Yokohama-
Publishers, 2009.

[91] W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by
hybrid methods for families of nonexpansive mappings in Hilbert spaces, J.
Math. Anal. Appl. 341 (2008), 276–286.

[92] W. Takahashi, Nonlinear Functional Analysis, Yokohama-Publishers, 2000.

[93] K. Wattanawitoon and P. Kumam, Strong convergence to common fixed points
for countable families of asymptotically nonexpansive mappings and semigroups,
Fixed Point Theory and Appl. 2010 (2010), Article ID 301868, 16 pp.

[94] K. Q. Wu and N. J. Huang, The generalized f -projection operator with an
application, Bull. Aust. Math. Soc. 73 (2006), 307–317.

[95] Z. Wang, Y. Su, D. Wang and Y. Dong, A modified Halpern-type iteration
algorithm for a family of hemi-relatively nonexpansive mappings and systems
of equilibrium problems in Banach spaces, J. Comput. Appl. Math. 235 (2011),
2364–2371.

[96] H. Zegeye and N. Shahzad, Strong convergence for monotone mappings and
relatively weak nonexpansive mappings, Nonlinear Anal. 70 (2009), 2707–2716.



221

[97] F. Q. Xia and N. J. Huang, Variational inclusions with a general H monotone
operator in Banach spaces, Comput. Math. Appl. 54 (2007), 24–30.

[98] ] K. Aoyama, Y. Kimura, W. Takahashi, M. Toyoda, Approximation of common
fixed points of a countable family of nonexpansive mappings in a Banach space,
Nonlinear Anal., 67(2007) 2350-2360.

[99] ] H.H. Bauschke, The approximation of fixed points of compositions of nonex-
pansive mappings in Hilbert space, J. Math. Anal. Appl. 202 (1996) 150-159.

[100] ] H.H. Bauschke, J.M. Borwein, On projection algorithms for solving convex
feasibility problems, SIAM Rev. 38 (1996) 367-426.

[101] ] M. Aslam Noor, Generalized mixed quasi-equilibrium problems with trifunction,
Appl. Math. Lett. 18 (2005) 695–700.

[102] ] M. Aslam Noor, On a class of nonconvex equilibrium problems, Appl. Math.
Comput. 157 (2004) 653–666.

[103] ] M. Aslam Noor, Multivalued general equilibrium problems, J. Math. Anal.
Appl. 283 (2003) 140–149.

[104] ] M. Aslam Noor, Themistocles M. Rassias, On nonconvex equilibrium problems,
J. Math. Anal. Appl. 312 (2005) 289–299.

[105] ] M. Aslam Noor, Themistocles M. Rassias, On general hemiequilibrium prob-
lems, J. Math. Anal. Appl. 324 (2006) 1417–1428.

[106] ] M. Aslam Noor, W. Oettli, On general nonlinear complementarity problems
and quasi equilibria, Matematiche (Catania) 49 (1994) 313-331.

[107] ] G. Bigi, M. Castellani, G. Kassay, A dual view of equilibrium problems. J.
Math. Anal. Appl. 342, 17–26 (2008)

[108] ] E. Blum, W. Oettli, From optimization and variational inequalities to equilib-
rium problems, Math. Student 63 (1994) 123-145.

[109] ] F.E. Browder, Fixed point theorems for noncompact mappings in Hilbert spaces,
Proceedings of the National Academy of Sciences of the United States of America,
53 (1965), 1272-1276.

[110] ] A. Cabot, Proximal point algorithm controlled by a slowly vanishing term:
applications to hierarchical minimization. SIAM J. Optim. 15(2), 555–572 (2005)



222

[111] ] L.C. Ceng, J.C. Yao, A hybrid iterative scheme for mixed equilibrium problems
and fixed point problems, J. Comput. Appl. Math. 214 (2008) 186-201.

[112] ] P.L. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J.
Nonlinear Convex Anal. 6 (2005) 117–136.

[113] ] P.L. Combettes, The foundations of set theoretic estimation, Proc. IEEE 81
(1993) 182-208.

[114] ] A. Chinchuluun, P. Pardalos, A. Migdalas, L. Pitsoulis, Pareto Optimality,
Game Theory and Equilibria, Edward Elgar Publishing, (2008).

[115] ] X.P. Ding, Auxiliary principle and algorithm for mixed equilibrium problems
and bilevel mixed equilibrium problems in Banach spaces. J. Optim. Theory Appl.,
146(2), 347–357 (2010)

[116] ] X.P. Ding, Existence and Algorithm of Solutions for Mixed Equilibrium Prob-
lems and Bilevel Mixed Equilibrium Problems in Banach Spaces, Acta Mathemat-
ica Sinica, English Series, DOI: 10.1007/s10114-011-9730-6.

[117] ] X.P. Ding, Existence and iterative algorithm of solutions for a class of bilevel
generalized mixed equilibrium problems in Banach spaces, J Glob Optim DOI
10.1007/s10898-011-9724-z.

[118] ] X.P. Ding, Iterative algorithm of solutions for generalized mixed implicit
equilibrium-like problems. Appl. Math. Comput. 162(2), 799–809 (2005)

[119] ] X. P. Ding, Y. C. Liou, J. C. Yao, Existence and algorithms for bilevel
generalized mixed equilibrium problems in Banach spaces, J Glob Optim DOI
10.1007/s10898-011-9712-3.

[120] ] X.P. Ding, T.C. Lai, S.J. Yu, Systems of generalized vector quasi-variational
inclusion problems and application to mathematical programs. Taiwanese J. Math.
13(5), 1515–1536 (2009)

[121] ] X.P. Ding, Y.C. Lin, J.C. Yao, Predictor-corrector algorithms for solving gen-
eralized mixed implicit quasi-equilibrium problems. Appl. Math. Mech. 27(9),
1157–1164 (2006)

[122] ] N.J. Huang, H.Y. Lan, Y.J. Cho, Sensitivity analysis for nonlinear generalized
mixed implicit equilibrium problems with non-monotone set-valued mappings. J.
Comput. Appl. Math. 196, 608–618 (2006)



223

[123] ] K.R. Kazmi, F.A. Khan, Existence and iterative approximation of solutions of
generalized mixed equilibrium problems. Comput. Math. Appl. 56, 1314–1321
(2008)

[124] ] I.V.Konnov, Application of the proximal method to nonmonotone equilibrium
problems. J. Optim. Theory Appl. 119, 317–333 (2003)

[125] ] G. M. Korpelevich, The extragradient method for finding saddle points and
other problems. Matecon 12 (1976), 747-756.

[126] ] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansine
mappings and inverse-strongly monotone mappigs, Nonlinear Anal. 61 (2005),
341-350.

[127] ] J.L. Lions, G. Stampacchia, Variational inequalities. Comm. Pure Apl. Math.
20 (1967), 493-512.

[128] ] A.N. Iusem, A.R. De Pierro, On the convergence of Han’s method for con-
vex programming with quadratic objective, Math. Program. Ser. B 52 (1991)
265–284.

[129] ] Z.-Q. Luo, J.-S. Pang, D. Ralph, Mathematical Programs With Equilibrium
Constraints. Cambridge University Press, Cambridge (1996)

[130] ] Z.-Q. Luo, J.-S. Pang, D. Ralph, Mathematical Programs With Equilibrium
Constraints. Cambridge University Press, Cambridge (1996).

[131] ] G. Marino, H.K. Xu, A general iterative method for nonexpansive mappings in
Hilbert space, J. Math. Anal. Appl. (2006)

[132] ] G. Mastroeni, On auxiliary principle for equilibrium problems. Publicatione del
Departimento di Mathematica Dell’Universita di Pisa 3, 1244–1258 (2000)

[133] A. Moudafi, Mixed equilibrium problems: sensitivity analysis and algorithmic
aspects. Comput. Math. Appl. 44, 1099–1108 (2002)

[134] ] A. Moudafi, Proximal point algorithm extended for equilibrium problems. J.
Nat. Geom. 15, 91–100 (1999)

[135] ] A. Moudafi, Proximal methods for a class of bilevel monotone equilibri-
um problems. J. Glob. Optim. (2010), Volume 47 Issue 2, 287-292, DOI:
10.1007/s10898-009-9476-1.



224

[136] ] A. Moudafi, Proximal methods for a class of bilevel monotone equilibrium
problems. J. Glob. Optim. Math., 47(2), 287–29 (2010)

[137] ] N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragra-
dient method for nonexpansive and monotone mappings. J. Optim. Theory Appl.
128 (2006), 191-201.

[138] ] P.M. Pardalos, T.M. Rassias, A.A. Khan, Nonlinear Analysis and Variational
Problems, Springer, (2010).

[139] ] J.W. Peng, Iterative algorithms for mixed equilibrium problems, stric-
t pseudocontractions and monotone mappings. J. Optim. Theory Appl. (2009).
doi:10.1007/s10957-009-9585-5

[140] ] J.W. Peng, Iterative algorithms for mixed equilibrium problems, strict pseudo-
contractions and monotone mappings. J. Optim. Theory Appl., 144(1), 107–119
(2010)

[141] ] J.W. Peng, J.C. Yao, Some new iterative algorithms for generalized mixed equi-
librium problems with strict pseudo-contractions and monotone mappings. Taiwan.
J. Math. 13, 1537–1582 (2009)

[142] ] J.W. Peng, J.C. Yao, A viscosity approximation scheme for system of equilib-
rium problems, nonexpansive mappings and monotone mappings. Nonlinear Anal.,
Ser. A, Theory Methods Appl. 71, 6001–6010 (2009)

[143] ] S. Plubtieng, R. Punpaeng, A general iterative method for equilibrium problems
and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 336 (2007)
455–469.

[144] ] S. Reich, Strong convergence theorems for resolvents of accretive operators in
Banach spaces, Journal of Mathematical Analysis and Applications, 75 (1980),
287-292.

[145] ] M. Shang, Y. Su, X. Qin, Strong convergence theorems for a finite family of
nonexpansive mappings, Fixed Point Theory Appl. 2007 (2007) Art. ID 76971,
9 pages.

[146] ] K. Shimoji, W. Takahashi, Strong convergence to common fixed points of
infinite nonexpansive mappings and applications, Taiwanese J. Math. 5 (2001)
387-404.



225

[147] ] M. Solodov, An explicit descentmethod for bilevel convex optimization, J.
Convex Anal. 14(2), 227–237 (2007) (to appear)

[148] ] G. Stampacchia, Formes bilineaires coercitivies sur les ensembles convexes, C.
R. Acad. Sciences, Paris, 258(1964), 4413-4416.

[149] ] T. Suzuki, Strong convergence of Krasnoselskii and Mann’s type sequences for
oneparameter nonexpansive semigroups without Bochner integrals, J. Math. Anal.
Appl. 305 (2005), 227-239.

[150] ] A. Tada, W. Takahashi, Strong convergence theorem for an equilibrium prob-
lem and a nonexpansive mapping, in: W. Takahashi, T. Tanaka (Eds.), Nonlin-
ear Analysis and Convex Analysis, Yokohama Publishers, Yokohama, 2007, pp.
609–617.

[151] ] S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium
problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331
(2007) 506–515.

[152] ] W. Takahashi, M. Toyoda, Weak convergence theorems for nonexpansive map-
ping, J. Optim. Theory Appl. 118 (2003), 417-428

[153] ] D.Q. Tran, L.D. Muu , V.H. Nguyen, Extragradient algorithms extended to
solving equilibrium problems. Optimization 57(6), 749–776 (2008)

[154] ] D.T. Tuc, N.X. Tan, : Existence conditions in variational inclusions with
constraints. Optimization 53(5–6), 505–515 (2004)

[155] ] N.T.T. Van, J.J. Strodiot , V.H. Nguyen, A bundle method for solving equilib-
rium problems. Math. Program. 116(1–2), Ser. B, 529–552 (2009)

[156] ] I. Yamada, N. Ogura, Hybrid steepest descentmethod for the variational in-
equality problem over the fixed point set of certain quasi-nonexpansive mappings.
Num. Funct. Anal. Optim. 25(7–8), 619–655 (2004)

[157] ] Y. Yao, Y.C. Liou, J.C. Yao, Convergence theorem for equilibrium problems
and fixed point problems of infinite family of nonexpansive mappings, Fixed Point
Theory Appl. 2007 (2007), Article ID 64363, 12 pp.

[158] ] R. Wangkeeree and U. Kamraksa, A General Iterative Method for Solving the
variational Inequality Problem and Fixed Point problem of an Infinite family of
nonexpansive mappings in Hilbert spaces, Fixed Point Theory and Applications,
Vol. 2009, Article ID 369215, 23 pages doi:10.1155/2009/369215.



226

[159] ] R. Wangkeeree, N. Petrot, and R. Wangkeeree, The general iterative methods
for nonexpansive mappings in Banach spaces, Journal of Global Optimization,
DOI 10.1007/s10898-010-9617-6.

[160] ] R. Wangkeeree, An Extragradient Approximation Method for Equilibrium Prob-
lems and Fixed Point Problems of a Countable Family of Nonexpansive Mappings,
Fixed Point Theory and Applications, Volume 2008 (2008), Article ID 134148,
17 pages, doi:10.1155/2008/134148.

[161] ] R. Wangkeeree, and U. Kamraksa, An iterative approximation method for
solving a general system of variational inequality problems and mixed equilibrium
problems, Nonlinear Analysis: Hybrid Systems 3 (2009), 615-630.

[162] ] F.Q. Xia, X.P. Ding, Predictor-corrector algorithms for solving generalized
mixed implicit quasiequilibrium problems. Appl. Math. Comput. 188(1), 173–179
(2007)

[163] ] H.K. Xu, Strong convergence of an iterative method for nonexpansive and ac-
cretive operators, Journal of Mathematical Analysis and Applications, 314 (2006),
631-643.

[164] ] D.C. Youla, Mathematical theory of image restoration by the method of con-
vex projections, in: H. Stark (Ed.), Image Recovery: Theory and Applications,
Academic Press, Florida, 1987, pp. 29-77.

[165] Mann, W.R., 1953, “Mean value methods in iterations", Proceedings of the
American Mathematical Society, Vol. 4, pp. 506–510.

[166] Halpern, B., 1967, “Fixed points of nonexpansive maps", Bulletin of the Amer-
ican Mathematical Society, Vol. 73, pp. 957–961.

[167] Ishikawa, S., 1974, “Fixed point by a new iterations methods", Proceedings of
the American Mathematical Society, Vol. 44, pp. 147–150.

[168] Noor, M.A., 2000, “New approximation schemes for general variational in-
equalities", Journal of Mathematical Analysis and Applications, Vol. 251, pp.
217–229.

[169] Noor, M.A., 2001, “Three-step iterative algorithms for multivalued quasi varia-
tional inclusions", Journal of Mathematical Analysis and Applications, Vol. 255,
pp. 589–604.



227

[170] Korpelevich, G.M., 1976, “The extragradient method for finding saddle points
and other problems", Journal Matecon, Vol. 12, pp. 747–756.

[171] Takahashi, W., Takeuchi, Y. and Kubota, R., 2008, “Strong Convergence The-
orems by Hybrid Methods for Families of Nonexpansive Mappings in Hilbert
Spaces", Journal of Mathematical Analysis and Applications, Vol. 341, pp. 276–
286

[172] Nakajo, K. and Takahashi, W., 2003, “Strong convergence theorems for nonex-
pansive mappings and nonexpansive semigroups", Journal of Mathematical Analy-
sis and Applications, Vol. 279, pp. 372–379.

[173] Takahashi, W., 2000, Introduction to Nonlinear and Convex Analysis,
Yokohama–Publishers, Yokohama, Japan.

[174] Suzuki, T., 2005, “Strong convergence of Krasnoselskii and Mann’s type se-
quences for one-parameter nonexpansive semigroups without Bochner integrals",
Journal of Mathematical Analysis and Applications, Vol. 305, pp. 227–239.

[175] Xu, H.K., 2004, “Viscosity approximation methods for nonexpansive mappings",
Journal of Mathematical Analysis and Applications, Vol. 298, pp. 279–291.

[176] Osilike, M.O. and Igbokwe, D.I., 2000, “Weak and strong convergence theorems
for fixed points of pseudocontractions and solutions of monotone type operator
equations", Computers & Mathematics with Applications, Vol. 40, pp. 559-567.

[177] Opial, Z., 1967, “Weak convergence of successive approximations for nonex-
pansive mappings", Bulletin of the American Mathematical Society, Vol. 73, pp.
591—597.

[178] Goebel, K. and Kirk, W.A., 1990, Topics in metric fixed point theory, Cam-
bridge University Press, Cambridge.

[179] Takahashi, W., 2000, Nonlinear Functional Analysis, Yokohama Publishers,
Yokohama.

[180] Yao, Y., Noor, M.A., Zainab S. and Liouc, Y.C., 2009, “Mixed Equilibrium
Problems and Optimization Problems", Journal of Mathematical Analysis and
Applications, Vol. 354, pp. 319–329.

[181] Marino, G. and Xu, H.-K.A, 2006, “General iterative method for nonexpansive
mappings in Hilbert spaces", Journal of Mathematical Analysis and Applications,
Vol. 318, pp. 43–52.



228

[182] Hanson, M.A., 1981, “On sufficiency of the Kuhn–Tucker conditions", Journal
of Mathematical Analysis and Applications, Vol. 80, 545—550.

[183] Ansari, Q.H. and Yao, J.C., 2001, “Iterative schems for solving mixed
variational-like inequalities", Journal Optimization Theory & Applications, Vol.
108, pp. 527—541.

[184] Zhou, H., 2008, “Convergence theorems of fixed Points for k-strict pseudo-
contractions in Hilbert spaces", Nonlinear Analysis, Vol. 69, pp. 456—462.

[185] Shimoji, K. and Takahashi, W., 2001, “Strong convergence to common fixed
points of infinite nonexpansive mappings and applications", Taiwanese Journal of
Mathematics, Vol. 5, pp. 387–404.

[186] Chang, S.S., 2007, Variational Inequalities and Related Problems, Chongqing
Publishing House.

[187] Shimizu, T. and Takahashi, W., 1997, “Strong convergence to common fixed
points of families of nonexpansive mappings", Journal of Mathematical Analysis
and Applications, Vol. 211, pp. 71–83.

[188] Tan, K.K. and Xu, H.K., 1992, “The nonlinear ergodic theorem for asymptot-
ically nonexpansive mappings in Banach spaces", Proceedings of the American
Mathematical Society, Vol. 114, pp. 399—404.

[189] Plubtieng, S. and Thammathiwat, T., 2008, “A Viscosity approximation method
for finding a common fixed point of nonexpansive and firmly nonexpansive map-
pings in Hilbert spaces", Thai journal of Mathematics, Vol. 6, pp. 377–390.

[190] Atsushiba, S. and Takahashi, W., 1999, “Strong convergence theorems for a
finite family of nonexpansive mappings and applications", Indian Journal Mathe-
matics, Vol. 41, pp. 435–453.

[191] Colao, V., Marino G. and Xu, H.-K., 2008, “An iterative method for finding
common solutions of equilibrium and fixed point problems", Journal of Mathe-
matical Analysis and Applications, Vol. 344, pp. 340–352.

[192] Cho, Y.J. and Qin, X.L., 2009, “Convergence of a general iterative method for
nonexpansive mappings in Hilbert spaces", Journal of Computational and Applied
Mathematics, Vol. 228. pp. 458–465.

[193] Bruck, R.E., 1973, “Nonexpansive projections on subsets of Banach spaces",
Pacific Journal of Mathematics, Vol. 47, pp. 341–355.



229

[194] Reich, S., 1973, “Asymptotic bebavior of contractions in Banach space", Journal
of Mathematical Analysis and Applications, Vol. 44, pp. 57–70.

[195] Kirk, W.A. and Sims, B., 2001, Handbook of metric fixed point theory, Kluwer
Academic Publishers.

[196] Kitahara, S. and Takahashi, W., 1993, “Image recovery by convex combinations
of sunny nonexpansive retractions", Topological Methods in Nonlinear Analysis,
Vol. 2, pp. 333–342.

[197] Cai, G. and Hu, C.S., 2010, “Strong convergence theorems of a general iterative
process for a finite family of λi-strict pseudo-contractions in q-uniformly smooth
Banach spaces", Computers and Mathematics with Applications, Vol. 59, pp.
149–160.

[198] Xu, H.K., 1991, “Inequalities in Banach spaces with applications", Nonlinear
Anal., Vol. 16, pp. 1127–1138.

[199] Qin, X., Cho, Y.J., Kang J.I. and Kang, S.M., 2009, “Strong convergence
theorems for an infinite family of nonexpansive mappings in Banach spaces",
Journal of Computational and Applied Mathematics, Vol. 230, pp. 121–127.

[200] Xu, H.K., 2006, “Strong convergence of an iterative method for nonexpansive
and accretive operators", Journal of Mathematical Analysis and Applications, Vol.
314, pp. 631–643.

[201] Wittmann, R., 1992, “Approximation of fixed points of nonexpansive mappings",
Archiv der Mathematik, Vol. 58, pp. 486–491.

[202] Bruck, R.E., 1973, “Properties of fixed point sets of nonexpansive mappings in
Banach spaces", Transactions of the American Mathematical Society, Vol. 179,
pp. 251–262.

[203] Browder, F.E., 1968, “Semicontractive and semiaccretive nonlinear mappings in
Banach spaces", Bulletin of the American Mathematical Society, Vol. 74, pp.
660-665.

[204] Verma, R.U., 1999, “On a new system of nonlinear variational inequalities
and associated iterative algorithms", Mathematical Sciences Research, Vol. 3, pp.
65–68.

[205] Verma, R.U., 2001, “Iterative algorithms and a new system of nonlinear quasi-
variational inequalities", Advances in Nonlinear Variational Inequalities, Vol. 4,
pp. 117–124.



230

[206] Stampacchia, G., 1964, “Formes bilineaires coercitives sur les ensembles con-
vexes", Comptes rendus Academy of Sciences, Vol. 258, pp. 4413—4416.
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