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generalized variational inequality problems and the system of general mixed equilibrium
problems by using the fixed point methods. We prove strong convergence theorem for
finding the common solutions of the general systems of variational inclusion problems
and general system mixed equilibrium problems with related optimization problems in
Hilbert and Banach spaces.

Keywords: Hybrid projection method/ Variational inequality problem/ General mixed

equilibrium problems/ Nonlinear mappings/ Optimization problem



UNANYD

tlszasdvesnAdeilinfesanuazfne sruvinldvesdameaumadaudsiuialy
wazrzuuveatiymiBanasmwnaniall Tneldiseanse infguimguiunmsguiuuudy
iilemmasuinvessz o livesifymeaumsideulsiitaly uazszuuvadifymisanasy
amranm ) Feduiusiutfgmamnzaniign ludsaidawsauazsafivnna

Mmaar : Iemelavia / TameaumsBaudsiuy ffmymt%maﬂmwwauﬁ"ﬂﬂ/
mydauvullidadu / Tamarumnzaudige



AR

Andanssuilszmea

Abstract in English

Abstract in thai

1

2

3

Introduction
1.1 Background . . . . . . . it i i i i i e e e e e e e e e e e e e e

1.2 TIterative Approximation of Fixed-Points . .. .. ... ... .......

1.3 The Variational Inequality and the Equilibrium Problem ... ... ...
Preliminaries

2.1 Linear Spaces and Metric Spaces . . . . . v v v v v v v v v i oo e e
2.2 Normed Spaces and Banach Spaces . . . . ... ... ... ... .....
2.3 Inner Product Spaces and Hilber Spaces . ... ..............

2.4 Basic Concepts in Hilbert Spaces . . . . ... ... ...
2.5 Basic Concepts in Banach Spaces . . . . . ... ... ...
2.6 Some Nonlinear Mappings in Hilbert Spaces . . . ... ... ... ....
2.7 Some Geometric Properties of Banach Spaces . . ... ..........

2.8 Basic Concept of Convex Analysis . . . . . v v v v v v v v v v v v v v

Fixed Point Problems

3.1 Strong Convergence Theorems. . . . . . . v v v v v v v v vt v vt v v v
3.1.1 A countable family of nonexpansive mappings . ... ... ...
3.1.2  ACCIetive OPEratorS . « v v v v v v v v v v v v o o o o o o v o v o o

3.1.3 Strictly pseudocontractive mappings . . « « « v v 4 o 0 000w ..
3.2 Convergence Theorems by the Hybrid Projection Method . . . . ... ..
3.2.1 A countable family of relatively quasi-nonexpansive mappings . .
3.2.2  Zeroes of B-monotone mappings. . . . . v e e 0 000 e 00 .

3.2.3 Zeroes of maximal monotone operators . . . . . ... .

ii

iii

iv



4 Equilibrium Problems 49

4.1 The System of Generalized Mixed Equilibrium Problems in Hilbert Spaces 50
4.1.1 The shrinking projection method for common solutions of gen-
eralized mixed equilibrium problems . . . ... ... ... .... 51
4.1.2 Convex Feasibility Problem .. ... ............... 62
4.1.3 Hybrid algorithms of generalized mixed equilibrium problems
and the common variational inequality problems . .. ... ... 65
4.1.4 Complementarity Problem . . . ... ... ... .......... 77
4.2 A System of Generalized Mixed Equilibrium Problems in Banach Spaces 79
4.2.1 A new modified block iterative algorithm for a system of gen-
eralized mixed equilibrium problems . . . ... . ... ... ... 80
4.2.2 A modified hybrid projection method for solving generalized
mixed equilibrium problems . . . . .. ... ... . 0000, 90
4.2.3 Convergence theorems for mixed equilibrium problems and vari-
ational inequality problems . ... ... ... ... ... ... 97
S5 Variational Inequality Problems 107
5.1 Generalized Systems of Variational Inequalities for Inverse Strongly
Monotone OPerators . . v v v v v v v v v v o v o o o b e e e e e e e e 107
5.2 General System of Variational Inequalities for Inverse Strongly Accretive
L0 1S5 1 1) 123
5.3 Existence and Algorithm for the System of Mixed Variational Inequalities131
5.3.1 Generalized Projection Algorithms . ... ... .......... 134
5.3.2 Existence and Convergence Analysis . . . . . . ..o v v v v .. 136
5.4 Variational Inequality Inclusion and Nonexpansive Semigroups . . . . . . 142
6 Optimization Problems 157
6.1 Optimization Problem . . ... .. ... ..., 157
6.2 Multi-Objective Optimization problem . . ... ... ... ... .. ... 184
6.3 Minimizer of a continuously Frechet Differentiable Convex Functional . 185
6.4 Minimization Problem . ... ... ... ... .. . 0000 187
6.5 Some Applications . . . v v v v v v it e e e e e e e e e e e e e e 201
6.6 Numerical example . . . . . . . . . vt i e e e e e 203
7 Conclusion 209
Bibliography 213

MANUIN 242



YNN 1

Introduction

1.1 Background

Variational inequality theory, which was introduced in 1960’s by Stampacchia [324],
has had a great impact and influence in the development of several branches of pure
and applied sciences. The ideas and techniques of this theory are being used in a
variety of diverse fields and proved to be productive and innovative, see [1-25] and the
references therein. Analysis of these problems requires a blend of techniques from con-
vex analysis, functional analysis and numerical analysis. As a result of the interaction
between different branches of mathematical and engineering sciences, we now have a
variety of techniques to suggest and analyze various algorithms for solving variational
inequalities and related optimization problems. Using the projection technique, one can
establish the equivalence between the variational inequalities and fixed point problems.
This alternative equivalent formulation has played an important role in developing some
efficient numerical techniques for solving variational inequalities and related optimiza-
tion problems. It is now well-known that the variational inequalities are equivalent
to the fixed-point problems, the origin of which can be traced back to Lions and
Stampacchia [127]. This alternative formulation has been used to suggest and analyze
projection iterative methods for solving the variational inequalities under the conditions
that the involved operator must be strongly monotone and Lipschitz continuous. These
conditions are very strict and rule out its application in several important problems. To
overcome this drawback, Korpelevich [125] suggested and analyzed the extragradient
method by using the technique of updating the solution. It has been shown that if the
underlying operator is only monotone and Lipschitz continuous, then the approximate
solution converges to the exact solution. Related to the variational inequalities, we
have the problem of finding the fixed points of the nonexpansive mappings, which is

the current interest in functional analysis. It is natural to consider a unified approach



to these different problems, see, for example, [126, 137, 307, 152].

Equilibrium problems which were introduced by Blum and Oettli [108] and Noor
and Oettli [106] in 1994 have had a great impact and influence in the development of
several branches of pure and applied sciences. It has been shown that the equilibrium
problem theory provides a novel and unified treatment of a wide class of problems
which arise in economics, finance, image reconstruction, ecology, transportation, net-
work, elasticity and optimization. It has been shown [108, 106] that equilibrium
problems include variational inequalities, fixed point, Nash equilibrium and game the-
ory as special cases. Hence collectively, equilibrium problems cover a vast range of
applications. Due to the nature of the equilibrium problems, it is not possible to extend
the projection and its variant forms for solving equilibrium problems. To overcome this
drawback, one usually uses the auxiliary principle technique. The main and basic idea
in this technique is to consider an auxiliary equilibrium problem related to the original
problem and then show that the solution of the auxiliary problems is a solution of the
original problem. This technique has been used to suggest and analyze a number of
iterative methods for solving various classes of equilibrium problems and variational
inequalities, see [111, 101, 102, 103, 104, 105] and the references therein.

1.2 TIterative Approximation of Fixed-Points

Let X be a nonempty set and 7" : X — X a self map. We say that p € X is a fixed
point of T if p = Tp and denote by F(T) the set of all fixed points of 7. Having
in view that many of the most important nonlinear problems of applied mathematics
reduce to solving a given equation which in turn may be reduced to finding the fixed
points of a certain operator, on the other hand, the metrical fixed point theory has
developed significantly in the second part of the 20th century.

As the constructive methods used in metrical fixed point theory are prevailingly
iterative procedures, that is, approximate methods, it is also of crucial importance to
have a priori or/and a posteriori error estimates or rate of convergence for such method.
For example, the Banach fixed point theorem concerns certain contractions mappings
of a complete metric space into itself. It states conditions sufficient for the existence
and uniqueness of a fixed point and it also given a constructive procedure for obtaining
better and better approximations to the fixed point. By definition, this is a method
such that we choose an arbitrary x( in a given set and calculate recursively a sequence

Zg, 1, To, ... from a relation of the form
Tp=Tx, 1 =T"2g n=1,2,3,.. (1.2.1)

That is, we choose an arbitrary xy and determine successively x; = T'xg, 1o =



Txzi,23 =Txs,.... It is also known as the Picard iteration starting at x.

Iteration procedures are used in nearly every branch of applied mathematics, and
convergence proofs and error estimates are very often obtained by an application of
Banach fixed point theorem (or more difficult fixed point theorems). Many researchers
are interested in obtaining (additional) condition on 7" and E as general as possible,
and which should guarantee the (strong) convergence of the Picard iteration to a fixed
point of T'. Moreover, if the Picard iteration converges to a fixed point of 7', they will
be interested in evaluating the error estimate (or alternatively, the rate of convergence)
of the method, that is, in obtaining a stopping criterion for the sequence of successive
approximations. However, the Picard iteration may not converge even in the weak

topology.

Construction of fixed point iteration processes of nonlinear mappings is an impor-
tant subject in the theory of nonlinear mappings, and finds application in a number
of applied areas. Now, fixed point iteration processes for approximating fixed point
of nonexpansive mappings, relatively nonexpansive mappings, hemirelatively nonexpan-
sive mappings, generalized nonexpansive mappings and maximal monotone operators

in various space have been studied by many mathematicians.

Let (X,| - ||) be a real normed space and C' C X be a closed and convex. Three
classical iteration processes are often used to approximate a fixed point of a nonlinear

mapping 7' : C' — C.
Halpern’s iteration

The first one is introduced by Halpern [16] which is defined as follows: o € C'
Tpt1 = o+ (1 — a,)Tx,, n>0, (1.2.2)

where {a,,} is a real sequence in [0,1].
Mann’s iteration

The second iteration process is now known as Mann’s iteration process [33] and is
defined as follows: zy € C'

Tpr1 = aptp + (1 —ay)Tx,, n>0, (1.2.3)

where {«,} is a real sequence in [0,1].



Ishikawa’s iteration

The third iteration process is referred to as Ishikawa’s iteration [21] which is defined

recursively by; xg € C
Tn1 = anT (B, Ty + (1 = Bu)zn) + (1 — )z, n >0, (1.2.4)

where {«,} and {f,} are real sequences in [0,1].

In general not much has been known regarding the convergence of the iteration
processes (1.2.2)-(1.2.4) unless the underlying space has elegant properties which be
briefly mention here.

Process (1.2.4) is indeed more general than process (1.2.3). But research has been
concentrated on the latter due probably to the reasons that the formulation of process
(1.2.3) is simpler than that of (1.2.4) and that a convergence theorem for process
(1.2.3) may possibly lead to a convergence theorem for process (1.2.4) provided the
sequence {f3,} satisfies certain appropriate conditions. However, the introduction of
process (1.2.4) has its own right. As a matter of fact, process (1.2.3) may fail to
converge while process (1.2.4) can still converge for a Lipschitz pseudo-contractive
mapping in a Hilbert space. Both processes (1.2.3) and (1.2.4) have only weak con-
vergence, in general. For example, Reich [42] proved that if X is a uniformly convex
Banach space with a Frechet differentiable norm and if {«,} is chosen such that
Yo gan(l — a,) = oo, then the Mann’s iteration converges weakly to a fixed point
of T. However, we note that Mann’s iteration have only weak convergence even in a

Hilbert space.
Normal Hybrid Method (or CQ method)

Attempts to modify the Mann’s iteration method (1.2.2) so that strong convergence
is guaranteed have recently been made. In 2003, Nakajo and Takahashi [39] proposed
the following modification of the Mann’s iteration method (1.2.2) by using the hybrid
method in mathematical programming, for a single nonexpansive mapping 7' in a Hilbert

space as follows: zg =x € C

( Uy = Ty + (1 — )Ty,

Cr={2€C: |z —u,| <z =z},
Q.={z€C:{(x, —z,x —x,) >0},

(1.2.5)

[ Tni1 = Po,n@.



and they proved that if the sequence {cv,} is bounded above from one, then the se-
quence {z,} generated by (1.2.5) converges strongly to Ppyx, where Pp(r) is the
metric projection from C' onto F(T).

The iteration process (1.2.2) has been proved to be strong convergent in both Hilbert

space and uniformly smooth Banach spaces unless the sequence satisfies conditions:
1: lim,,— o, =0 (i) Y07 =00 (i) D07l — 1] < o0

Due to the restriction of condition (ii), process (1.2.2) is widely believed to have s-
low convergence though the rate of convergence has not be determined. Moreover,
Halpern [16] prove that conditions (i) and (ii) are indeed necessary in the sense that
if process (1.2.2) is strongly convergent for all closed convex subsets C' of a Hilbert
space H and all nonexpansive mappings 7" on C, then the sequence {«,} must satisfy
conditions (i) and (ii). (However, it is unknown whether these two conditions are also
sufficient). In 2006, Maritinez and Xu [35] develop the normal hybrid method for
process (1.2.2) and proved the strong convergence of the method under condition (i)
only. Moreover they extend Nakajo and Takahashi’ s iteration process (1.2.5) to the
Ishikawa iteration process. In 2005, Matsushita and Takahashi [37] extend the results

of Nakajo and Takahashi [39] to a Banach space for a relatively nonexpansive mapping.

Note that the hybrid method iteration method presented by Massushita and Taka-
hashi [37] can be used for relatively nonexpansive mapping, but it cannot be used for

hemirelatively nonexpansive mapping.

Shrinking Projection Method

In 2008, Takahashi et. al. [49] introduced another hybrid method called the
shrinking projection method for nonexpansive mapping 7' in a Hilbert space H as

follows: zg =z € C

Up = Ty + (1 — ap) Ty,
Cot1 ={2 € Cp: ||z —upl| <[z — zall}, (1.2.6)

Tpp1 = Po, T

and they proved that if the sequence {c,} is bounded above from one, then the se-
quence {z,} generated by (6.4.2) converges strongly to Ppyx, where Pp(r) is the
metric projection from C' onto F'(7') and they proposed the following modification the

iteration method (1.2.5) and (6.4.2) for a countable family of nonexpansive mappings



satisfying NST-condition (see [49]) in a Hilbert space.
Monotone Hybrid Method

In 2008, Qin and Su [41] modified the iteration method (1.2.5), so call the
monotone hybrid method for nonexpansive mapping 7' in a Hilbert space as follows:
ro=x€C

(
Uy = Ty + (1 — )Ty,

Chn=1{2€C1NQu:|z—un < |z =z},
Qn={z€C1NQu_1:{(x, — 2,0 —x,) >0},

(| Tnt1 = Po,n,

(1.2.7)

By using this method, they proved strong convergence theorem under a control con-
dition on the sequence {c,} but the technic they used in this paper is different from
Nakajo and Takahashi [21]. More precisely, they can show that the sequence generated
by (6.4.3) is a Cauchy sequence, without the use of demiclosedness principle, Opial’s
condition and the Kadec-Klee property. Moreover, they extended the results to a Ba-

nach space for a relative nonexpansive mapping by using same method.

1.3 The Variational Inequality and the Equilibrium Prob-

lem

Let H be a real Hilbert space and C' be a nonempty closed convex subset of H. Let T’
be a nonexpansive mapping of C' into itself and let B be a (-inverse-strongly monotone
of C' into H. The variational inequality problem is to find x € C' such that:

(Bx,y —x) >0 forallyeC. (1.3.1)

The set of solutions of the variational inequality is denoted by VI(C, B).

Let F be a real Banach space and let £* be the dual space of E. Let A be a
maximal monotone operator from E to E*. It is well-known that many problems in
nonlinear analysis and optimization can be formulated as follows: find a point u € F

satisfying
0 € Au. (1.3.2)

We denote by A~'0 the set of all points u € C' such that 0 € Au. Such a problem

contains numerous problems in economics, optimization and physics, and is connected



with a variational inequality problem.

A well-known method to solve the problem (1.3.2) is call the proximal point
algorithm: zy € I/ and

Tpar = o, Tn, n=0,1,2,3, ..., (1.3.3)

where {r,} C (0,00) and .J,, are the resolvent of A. Many researchers have studies
this algorithm in a Hilbert space and in a Banach space.

Let F be a real Banach space, let £* be the dual space of F and let C' be a closed
subset of E. Let F' be a bifunction from C x C' to R, where R is the set of real
numbers. The equilibrium problem is to find

z € C such that F(z,y) >0, Vy € C.

The set of such solutions & is denoted by EP(F).

Numerous problems in physics, optimization and economics reduce to find a so-
lution of the equilibrium problem. Some methods have been proposed to solve the
equilibrium problem in a Hilbert space; see, for instance, Blum and Oettli [65], Com-
bettes and Hirstoaga [69]. On the other hand, Ibaraki and Takahashi [18] introduced a
new resovent of a maximal monotone operator in a Banach space and the concept of
a generalized nonexpansive mapping in a Banach space. Kohsaka and Takahashi [31],
Ibaraki and Takahashi [18] also studied some properties for generalized nonexpansive
retractions in Banach spaces. Recently, Takahashi and Zembayashi [50] consider the
following equilibrium problem with a bifunction defined on the dual space of a Banach
space. Moreover, they proved a strong convergence theorem for finding a solution of

the equilibrium problem which generalized the result of Combettes and Hirstoaga [69].

The aim of this project is to consider and study general systems of the general-
ized variational inequality problems for the single-valued and multi-valued nonlinear
mappings. We plan to fine common solutions of fixed points and the solution of the
variational inequality problems and also construct and discuss the convergence criterion
for the iterative algorithm to approximate the solutions of the problems above, specially,
we mainly focus to the generalized systems of resolvent equations and generalized sys-
tems of the variational inclusion problems for nonlinear mappings. Moreover, we will
apply our results to (system) mixed equilibrium problems and optimization problems.
However, it is worth mentioning that the class of variational inclusions inequality prob-

lems for nonlinear mappings have had a great impact and influence in the development



of several branches of pure, applied and engineering sciences. In the first year, we
will study and discuss some important basic results and consider some new theorems
about the general systems of (generalized) variational (inclusion) inequality problems
and fixed point problems for nonlinear mappings in the Hilbert spaces. In the second
year, we will focus our study to the heart of our project, that is, we will consider the
general systems of variational inclusion problems and general (system) mixed equilibri-
um problems with related optimization problems in the Banach spaces. In conclusion,
we point out that the results of this project are the extension and improvements of
the earlier and recent results in this field, and moreover, the study of this area is a
fruitful and growing field of intellectual endeavor. Much work is needed to develop

this interesting subject.

This research is divided into 7 chapters. Chapter 1 is an introduction to the research
problems. Chapter 2 deals with some preliminaries and give some useful results that
will be used in later chapters. Chapter 3 we prove strong convergence theorems
for finding a common element of the fixed point set. Chapter 4 we prove strong
convergence theorems for finding a common element of the systems of generalized
(mixed) equilibrium problems in Hilbert and Banach spaces. Chapter 5 we prove strong
convergence theorems for finding a common element of the systems of variational
inequality problems and the set of common fixed points. Chapter 6 we introduced
and prove strong convergence theorems for finding a common element of the set of
solutions of an equilibrium problem and the set of common fixed points which are
application to optimization problems, Furthermore, we also give some applications and
numerical example in the end of this section. The conclusion output of research is in
Chapter 7.



UNN 2
Preliminaries

2.1 Linear Spaces and Metric Spaces

Definition 2.1.1. Let X be a nonempty set, and assume that each pair of elements
x and y in X can be combined by a process called addition to yield an element
z in X denoted by v +y. Assume also that this operation of addition satisfies the
following condition (1)—(4):

(D (@+y)+z=v+y+2);

2)rv+y=y+ux;

(3) there exists a unique element in X, denoted by 0 and called the zero element,
or the origin, such that x +0 = x for all v € X;

(4) each x € X there corresponds a unique element in X, denoted by —x and
called the negative of x, such that v + (—x) = 0.

We also assume that each scalar o« € R and each element v in X can be
combined by a process called scalar multiplication fo yield an element y in X
denoted by y = ax satistying (5)—(8):

(5) a(fzx) = (af)z;

6) 1 -x=ux;

(7) (a+ Bz = ax + Px;

(8) a(r+y) = ar + ay.

The system (X, -,+) is called a linear space over R if it satisfies the conditions
(I)—(8). A linear space is often called a vector space, and its elements are spoken as

vectors.

Definition 2.1.2. Let X be a nonempty set. A mapping d: X x X — R, satistying
the following conditions for all x,y and z in X:

(AD d(z,y) =0 <=z = y;

(A2) d(z,y) = d(y, z);



(A2) d(z,y) < d(x,z) + d(z,y). The conditions (Al)-(A3) are usually called the
metric axioms.

The function d assigns to each pair (z,y) of element of X a nonnegative real
number d(z,y), which does not on the order of the elements; d(x,y) is called the
distance between = and y. The set X together with a metric, denoted by (X,d), is
called a metric space.

2.2 Normed Spaces and Banach Spaces

Definition 2.2.1. Let X be a linear space over the field K (R or C). A function
| -] : X — R is said to be a norm on X if it satisties the following conditions:
(D) ||z|]| > 0,Vz € X;
2 ||z|| =0 z=0;
3 e +yll <=l + llyll, v,y € X5
) |lazx| = |a|||z|,YVx € X and Va € K.

From this norm we can define a metric, induced by the norm || - ||, by

A linear space X equipped with the norm || - || is called a normed linear space.

Definition 2.2.2. A normed space (X, ||-||) is called strictly convex if for all z,y € X,
x#y, ||z|| = |yl = 1, we have ||A\x + (1 —N)y|| <1, VA € (0,1).

Definition 2.2.3. Let (X, || - ||) be a normed space. A sequence {x,} C X is said to
converge strongly in X if there exists v € X such that lim ||z, —x| = 0. That is,
if for any ¢ > 0 there exists a positive integer N such that |z, — x| < €,¥n > N.

We often write lim x, = x or x, — x to mean that v is the limit of the sequence

{2a}. o

Definition 2.2.4. A sequence {z,} in a normed spaces is said to converge weakly to
some vector x if lim,, ., f(x,) = f(x) holds for every continuous linear functional
f. We often write x,, — x to mean that {x,} converges weakly to x.

Definition 2.2.5. Let (X, || -||) be a normed space. A sequence {x,} C X is said to
be a Cauchy sequence if for any € > ( there exists a positive integer N such that
|Tm — xn|| < €,¥ m,n > N. That is, {x,} is a Cauchy sequence in X if and only

if ||y — || — 0 as m,n — oo.



Theorem 2.2.6. [173] Let {x,} be a sequence of a normed space (X, | -||), x € X
and let x, — x if and only if, for any subsequence {z,,} of {x,}, there exist a
subsequence {xnj} of {x,,} converging to x.

Definition 2.2.7. A normed space X is called complete if every Cauchy sequence in

X converges to an element in X.

Definition 2.2.8. A complete normed linear space over field K is called a Banach

space over K.

Lemma 2.2.9. [174] Let {z,} and {y,} be bounded sequences in a Banach space X
and let {3,} be a sequence in [0,1] with 0 < liminf, . 3, <limsup, . (G, < 1.
Suppose x,11 = (1 — B,)yn + Bnx, for all integers n > 0 and limsup,, . (||yns1 —
Ynll = lXnt1 — xnl]) < 0. Then, lim, . ||y, — x,] = 0.

Definition 2.2.10. Let F' and X be linear spaces over the field K.

(1) A mapping T : F' — X is called a linear operator if T(x +y) = Tx + Ty
and T(ax) = oTx,Vr,y € F, and Ya € K.

(2) A mapping T : ' — K is called a linear functional on F if T is a linear
operator.

Definition 2.2.11. Let F' and X be normed spaces over the field K and T : X — F
a linear operator. T is said to be bounded on X if there exists a real number M > (
such that ||T(x)|| < M||z||,Vz € X.

Definition 2.2.12. Sequence {x,}°, in a normed linear space X is said to be a
bounded sequence if there exists M > 0 such that ||z,|| < M,Vn € N.

Definition 2.2.13. A subset C' of a normed linear space X 1is said to be convex
subset in X if \x + (1 — )y € C for each x,y € C and for each scalar \ € [0, 1].

2.3 Inner Product Spaces and Hilber Spaces

Definition 2.3.1. The real-value function of two variables (-,-) : X x X — R s
called inner product on a real vector space X if for any x,y,z € X and o, € R
the following conditions are satistied:

(D {ax + Py, z) = alx, 2) + By, 2);

) {x,y) = (y, x);

(3) (x,x) >0 for each x € X and {(x,z) =0 if and only if x = 0.

A real inner product space is a real vector space equipped with an inner product.



Definition 2.3.2. A Hilbert spaces is an inner product space which is complete under
the norm induced by its inner product.

An inner product on X defines a norm on X given by ||z| = v/(z, x).

Lemma 2.3.3. [173](The Schwarz inequality) If x and y are any two vector in an

inner product space X, then
[(z, ) < llzllllyll-

Remark 2.3.4. In a Hilbert space H, weak convergence is defined by lim,,__...(r,,y) =
(xz,y) for all y € H. The notation x,, — x is sometimes used to denote this kind of

convergernce.
Remark 2.3.5. If x,, = = and x, — vy, then © = y.

Definition 2.3.6. Let H be a Hilbert space and let C' be a nonempty closed convex
subset of H. Let f be a function of C into (—o0, 0], where (—o0,00] = RU {o0}.
Then, f is called lower semicontinuous if for any a € R, the set {vr € C': f(z) < a}

1s closed.

Lemma 2.3.7. [173] Let X be an inner product space and {x,} be a bounded
sequence of H such that x,, — x. Then following inequality holds:

|z]| < lim inf||z,].
n—-aoo

2.4 Basic Concepts in Hilbert Spaces

Let C' be a closed convex subset of a real Hilbert space H with inner product and

norm are denoted by (.,.) and ||.||, respectively. We have the following are hold:
lz = ylI* = ll=[* = ly1* — 2z -, ), 2.4.1)
2+ yl* < el + 20y, 2 +y), (2.4.2)
lz + yll* > [l=]l* + 2(y, =), (2.4.3)
and
1Az + (1= Xyll* = Allzl® + (1= Vyl* = A0 = Nl — yf* (2.4.4)

for all z,y € H and \ € R.



Lemma 2.4.1. [176] Let (E,(.,.)) be an inner product space. Then for all x,y,z € E
and o, 3,v € [0,1] with a + §+~v =1, we have

law + By +~2* = allz]|* + BllylI* +vll2)1* — aBllz = ylI* — aylle — 2[|* = Bylly - =|*.
Lemma 2.4.2. [177] A Hilbert space H satisties the Opial condition that is, for any
sequence {x,} with x, — x, the inequality iminf, . ||z, —z| < liminf, . ||z, —
yl||, holds for every y € H with y # x.

Lemma 2.4.3. [178],[179] A Hilbert space H satisties the Kadec-Klee property that
is, for any sequence {x,} with x, — x and ||z,|| — ||x|| together imply ||z, —

z|| — 0.

2.5 Basic Concepts in Banach Spaces

Let E be a real Banach space and E* be the dual space of £ with norm || - | and
duality pairing between E and E* (-, -).

Definition 2.5.1. We set E** = (E*)*. If E be a Banach space, then there is a
natural assignment of each v € I/ to a continuous linear functional x** on E* given
by (z**, f) = (x, f) for all * € E*. Here ||z**|| = ||z|. We set b(x) = x*™*. It
b: E — E* is surjective, then E is called reflexive.

Definition 2.5.2. Let U = {x € E : ||z|| = 1}. A Banach space E is said to be

. Tty .
strictly convex if HTH <1 for all z,y € U with v # y.

Definition 2.5.3. Let U = {z € E : ||z|| = 1}. A Banach space E is said to
uniformly convex if, for any € € (0,2], there exists 6 > 0 such that, for any x,y € U,
|z —y|| > € implies ||=2|| <1 —6.

Remark 2.5.4. A uniformly convex Banach space is reflexive and strictly convex.

lz+tyll—[l=|]
0

Definition 2.5.5. A Banach space E is said to be smooth if the limit lim;_, .

exists for all x,y € U.

Definition 2.5.6. The modulus of smoothness of E is defined by

1
p(r) =sup{g(lle +yll +llw—yl) =1: 2,y € E | = L [lyll = 7},
where p : [0,00) — [0,00) is a function.

Definition 2.5.7. E' be an uniformly smooth if lim, g @ =0.
Definition 2.5.8. Let q be a fixed real number with 1 < q < 2. A Banach space E is
said to be g-uniformly smooth if there exists a constant ¢ > 0 such that p(t) < c7?

for all > 0.



2.6 Some Nonlinear Mappings in Hilbert Spaces

Let C' be a closed convex subset of a real Hilbert space H with inner product and norm
are denoted by (.,.) and ||.||, respectively. Let 7' : C' — C a nonlinear mapping. We
use F(T) to denote the set of fixed points of T, that is, F(T) = {x € C': Tx = x}.

Definition 2.6.1. A mapping S : C — C is called L-Lipschitz-continuous if there
exists a positive real number L such that

|Su — Sv|| < Llju—v|, Vu,veC. (2.6.1)

Definition 2.6.2. A mapping f : C — C' is called a contraction on C' if there exists
a constant o € (0,1) and x,y € C' such that

1f () = F)ll < el = yll. (2.6.2)

Definition 2.6.3. A mapping T is called nonexpansive if
[Tz =Tyl < ||z —yll, Ya,yeC. (2.6.3)

Theorem 2.6.4. [173] (Banach’s Contraction Mapping Principle) Let (X,d) be a
complete metric space and f : X — X be a contraction. Then f has a unique fixed
point, i.e. there exists a unique x* € X such that T'x* = x*.

Lemma 2.6.5. [181] Assume A is a strongly positive linear bounded operator on a
Hilbert space H with coefficient 7y > 0 and 0 < p < ||A||~!. Then ||I —pAl| < 1—p7.

Definition 2.6.6. The metric (nearest point) projection P from a Hilbert space H to
a closed convex subset C' of H is defined as follows: given x € H, Pcx is the only

point in C' with the property
| — Pox|| = inf{[le —y[| - y € C}.

For every point x € H, there exists a unique nearest point in C, denoted by Pox,
such that
|z — Pez| < [z —y| forall y € C.

It is well known that P is a nonexpansive mapping of H onto C and satisfies

(x —y, Pcx — Poy) > ||Pex — Peyl?,  Va,y € H; (2.6.4)
(x — Pox,Pox — z) >0, VzeC; (2.6.5)
|z —y||* > ||z — Pex|® + |y — Pex|?, Vxe H,yeC; (2.6.6)

and

Iz =) = (Pex = Pey)|I* = |l& = yl* — | Pox — Peyl®, Vx.ye H.  (2.6.7)



Definition 2.6.7. A mapping A of C into H is called monotone if
(Au— Av,u —v) >0, Yu,veC. (2.6.8)

Definition 2.6.8. A is called «-inverse-strongly monotone if there exists a positive

real number o such that
(Au — Av,u —v) > af|Au — Av|?>, Vu,v e C. (2.6.9)

Lemma 2.6.9. Let A: H — H be a a-inverse-strongly monotone mapping. If \ < 2aq,
for any A\ >0 and o > 0 then I — \A is a nonexpansive mapping from H into itself.
Proof. Let u,v € H and )\ > 0,

I(7 = AA)u — (I = AA)|* I(u = v) = AMAu — Av)|*
|uw — v||* = 2Mu — v, Au — Av) + N?||Au — Av|?

< Jlu— )2 + A — 2a)||Au — Av|]%.

O

Remark 2.6.10. It is easy to see that if A is an «-inverse-strongly monotone mapping

of C' into H, then A is é—LipschitZ continuous.

Definition 2.6.11. The mapping S : C' — C' is called a k-strict pseudo-contraction

mapping if there exists a constant 0 < k < 1 such that

1Sz = Sy||* < llo = ylI* + Kll(I = S)z — (I = SylI*, Vr,yeC.  (2.6.10)

2.7 Some Geometric Properties of Banach Spaces

In this section, we discuss geometric properties of Banach spaces. When we deal
with the nonlinear problems in Banach spaces, it is to hard to discuss them without
geometric properties of Banach spaces.

Definition 2.7.1. ([24]) Let £ and F' be vector space. A linear operator from FE
into F' is a function f : E — F' such that the following two conditions are satisfied
whenever z,y € E and o € F:

(1) flz+y)=f(z)+ f(y);
(2) flaz)=af(x)

Definition 2.7.2. ([24]) A linear functional f is a linear operator with domain in a
vector space F and range in the scalar field F = R or C.



Definition 2.7.3. ([24]) Let E be a vector space over the field F = R or C. A
linear functional f : F — [F is said to be bounded, if there exist £k > 0 such that
|f(x)| < K|z, for all x € E.

Definition 2.7.4. ([24]) Let E be a normed space. Then the set of all bounded linear
functionals on F constitutes a normed space with norm defined by

1l = sup @)

T£0eX [Ea

which ia called the dual space of E and is denoted by E*.
Theorem 2.7.5. ([47]) The dual space E* of a normed space F is a Banach space.

Definition 2.7.6. ([47]) Let E be a Banach space and let £* be it dual. With each
r € E, we associate the set J(z) = {f € E*| f(z) = ||z||* = || f]|*}. The multivalued
operator J : E — E* is called the duality mapping of E.

Theorem 2.7.7. ([47]) Let £ be a Banach space and let J be duality mapping of E.
Then:

(1) For z € E, J(z) is nonempty, bounded, closed and convex,
(2) J(0) = {0},

(3) for z € F and a real o, J(ax) = aJ(z),

(4) for x,y € E, f € J(x) and g € J(y), (x —y, f—g) >0,
(5) for z,y € E'and f € J(y), [|lz[1* = ylI* = 2(z — v, f)-

Definition 2.7.8. ([24]) Let E be normed space, for each = € E there corresponds a
unique bounded linear functional g, € E** given by ¢.(f) = f(x), f € E*. A mapping
C: E — E** defined by x +— g, is called the canonical mapping.

Definition 2.7.9. ([47]) Let E be a Banach space and let U = {z € F | ||z| = 1}.
Then a Banach space is said to be smooth provided the limit

t —
e+t = el

t—0 t

(2.7.1)

exists for each x,y € U. In this case, the norm of E is said to be Gateaux
differentiable. The space F is said to have a uniformly Gateaux differentiable norm
if for each y € U, the limit (2.7.1) is attained uniformly for € U. The norm of F is
said to be Fréchet differentiable norm if for each x € U, the limit (2.7.1) is attained
uniformly for y € U. The norm of E is said to be uniformly F'réchet differentiable
(and F is said to be uniformly smooth) if the limit (2.7.1) is attained uniformly for
(x,y) e U xU.



Remark We know the following: see [47] more details;
(1) If E is smooth, then J is single-valued;

(i) If £* is is strictly convex, then J is single-valued;

(ii1) If E is reflexive, then J is onto;

(iv) If E is strictly convex, then J is one-to-one;

(v) If E is strictly convex, then J is strictly monotone;

(vi) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on
each bounded subset of F.

2.8 Basic Concept of Convex Analysis

Definition 2.8.1. ([48]) Let H be a Hilbert space and let C' be nonempty closed convex
subset of H. Let f be a function of C into (—oo, 0], where (—oo, 0] = RU{o0}.
Then, f is called lower semicontinuous if for any a € R, the set

{reC: f(z) <a}
is closed. f is also called convex on if for any =,y € C' and t € [0, 1], then

ftz+ (1 —t)y) <tf(z)+ (1 —1t)f(y).

Theorem 2.8.2. ([48])(Minimization theorem)
Let C' be a nonempty bounded closed convex subset of a Hilbert space H and let f be

a proper lower semicontinuous convex function of C' into (—oo, oo]. Then there exists
xo € D(f) such that

f(zo) = min f(z).

zeC

Definition 2.8.3. ([48]) Let H be a Hilbert space and let f : H — (—o0, 00| be a

proper convex function. Then, we define the subdifferential 0f of f by

Of(x) ={z e H: f(y) 2 (y—x,2)+ f(r), Vy € H}

for all z € H. If f(x) = oo, then Of(z) = 0.



Lemma 2.8.4. ([48]) Let H be a Hilbert space and let f : H — (—o0, 00| be a proper
convex function. Let 2 € H. Then

0€0f(z) & f(z) = min f(x).

zeH

Lemma 2.8.5. ([48]) Let £ be a Banach space and let f : E — (—o0, 00| be a proper

lower semicontinuous convex function. Define the subdifferential of f as follows:

Of(x) ={a" € E: f(y) = (y —=z,2") + f(z), Vy € E}
for each x € E. Then, 0f is a maximal monotone operator.

Lemma 2.8.6. ([48]) Let H be a Hilbert space and let C' be a nonempty closed convex
subset of H. Define the indicator function i of C' by

() 0, =zeC,
lo\X) =
o0, otherwise.

Then, ic is proper, convex and semicontinuous and Jic is a maximal monotone oper-

ator.

Definition 2.8.7. ([48]) Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H and x € C. Then we define the set No(z) of H by

Ne(z) ={2€ H:(u—=z,z) <0,Yu e C}.
Such a set N¢(x) is called the normal cone of C.
Remark The set N¢(z) is a closed convex cone of H.

Definition 2.8.8. ([48]) Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Let B be an operator of C' into H. Consider the following
problem: Find x € C' such that

(Bx,y —z) >0

for all y € C. Such an x € C' is called a solution of the variational inequality of B.
We denote VI(C, B) the set of all solutions of the variational inequality.

Definition 2.8.9. ([48]) Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Let B be an operator of C' into H. Then B is called hemicotinuous
if for any u,v € C' and w € H, the function

t— (w, B(tu+ (1 —t)v))

of [0,1] into R is contonuous.



Theorem 2.8.10. ([48]) Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Let B : C' — H be monotone and hemicontinuous and let N (x)
denote the normal cone of C' at x € C'. Define

Bx+ Ngz, if vedl,

0, if v¢C.

Ty =

Then T : H — 2" is a maximal monotone and 0 € Tz iff x € VI(C, B).

Definition 2.8.11. ([48]) Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Let B be an operator of C' into H. Then B is called an inverse

strongly monotone operator if there exists 3 > 0 such that
(v —y, Bz — By) > f3||Bx — By|*
for all =,y € C. Such a B is called -inverse strongly monotone.

Remake. If B is a [-inverse strongly monotone operator of C' to H, then it is
obvious that B is %—Lipschitz continuous.

Lemma 2.8.12. ([48]) Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Let >0 and let B : C' — H be [-inverse strongly monotone.

If 0 < A <203, then I — AB is a nonexpansive mapping of C' into H.

Lemma 2.8.13. ([48]) Let H be a Hilbert space and let C' be a nonempty closed convex
subset of H. Let B be an operator of C into H. Let v € C. Then for A > 0,

ueVI(C,B) < u= Ps(I —AB)u.
where P is the metric projection of H onto C.

Theorem 2.8.14. ([48]) Let H be a Hilbert space and let C' be a nonempty bounded
closed convex subset of H. Let > 0 and let B : C — H be [-inverse strongly
monotone. Then VI(C, B) # (.

Definition 2.8.15. ([48]) Let H be a real Hilbert space and C' be a nonempty closed
convex subset of H. A mapping B of C into H is called monotone if (Bx — By, x —
y) >0 for all z,y € C.

Definition 2.8.16. ([48]) Let H be a Hilbert space and let C' be a nonempty bounded
closed convex subset of H. A mapping 7" : C' — (' is called strictly pseudocontractive
if there exists & with 0 < k < 1 such that:

1Tz = Tyl|* < llz — ylI* + k(I = T)z = (I = T)y|* for all z,y € C.

Remark. If £ = 0, then T is nonexpansive. Put B =1—T, where T : C' — (C'is a

strictly pseudocontractive mapping with k. Then B is %-inverse-strongly monotone.



YNN 3

Fixed Point Problems

3.1 Strong Convergence Theorems

The following lemmas will be useful for proving the convergence result of this
paper.

Lemma 3.1.1 ([327]). Assume {«,} is a sequences of nonnegative real numbers such
that
Apt1 S (1 - 7n)an + 57“ n Z 07

where {~,} is a sequence in (0,1) and {9, } is a sequence in R such that
@ 2211 Yn = OQ;
(i) limsup,,_ . 6,/ >0 or > 07 |d,] < oo.

Then lim,,__, o, €XISts.

Lemma 3.1.2 ([61], Lemma 3.2). Let C' be a nonempty closed subset of a Banach
space and let {T,,} be a sequence of nonexpansive mappings of C' into itself. Suppose
that Y >°  sup{|| 1412 —T,z| : z € C'} < co. Then, for each y € C, {T,,y} converges
strongly to some point of C'. Moreover, let T' be a mapping of C' into itself defined
by

Ty = nli_)moo T,y for all y € C.

Then lim,, ., sup{||T,z —Tz| : z € C} = 0.

3.1.1 A countable family of nonexpansive mappings

In this section, we prove some strong convergence theorems for monotone mappings

and a countable family of nonexpansive mappings.



Theorem 3.1.3. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let a« > 0 and let A be an «-inverse-strongly monotone mapping of C into
H. Let {S,} be a sequence of nonexpansive mappings from C into itself such
that (", F(S,) NVI(C,A) #0, and f be a contraction of C' into itself. Suppose
xy =x € C and let {z,} be the iterative sequence defined by

Tptr1 = anf(zn) + (1 — an)SpPe(x, — A\ Azy,),

for all n =0,1,2, ..., where {«,} is a sequence in (0,1) and {\,} C [a,b] C (0,2«)
satisty > o7 | Anp1 — An| < 00,

Jirroloan = O,Zan =00 and Z lan 1 — | < 00,
n=1 n=1
Suppose that Y " sup{||S,+12 — Spz|| : = € B} < oo for any bounded subset B
of C. Let S be a mapping of C into itself detined by Sz = lim,,__.., S,z for
all z € C and suppose that F(S) = (._, F(S,). Then {x,} converges strongly to
z e F(S)NVI(C,A), where z = Pps)nvi(c,a)f(2).
Proof. Let Q = Pr(s)nvi(c,a)- Then Qf is a contraction of H into C. In fact, there
exists k € [0,1) such that ||f(x) — f(y)|| < k||z —y]| for all x,y € H. So, we have that

1Qf(x) = QFW)II < If () = fFW)Il < Kllz =y

for all =,y € H. This implies that Jf is a contraction on H into C. Since H is
complete, there exists a unique element of z € H, such that z = Qf(z). Such a z € H
is an element of C.

Put y, = Po(z, — \pAxy,), for every n € NU{0}. Let u € FI(S)NVI(C,A). Since

I — X\, A is nonexpansive and u = Po(u — A\, Au), we have

[y —ull = |[Pe(zn — MAz,) — Po(u — A Au)|
< H@n = AnAzy) — (u— A Au)|
< T = AA) — (T — AuA]
< lwn —ull;

for all n € NU {0}. We note that
[2nr —ull = flan(f(zn) —u) + (1 = an)(Suyn — )]
anllf (zn) — ull + (1 = o) [[Snyn — ul
an(|[f(2n) = f] +[[f(u) = ul]) + (1 = an)llzn — ul
ank|zn — ull + anl[f(u) = ul| + (1 — an) |2 — ull
(1= (1 =k)an)[zn —ul + (1 = /f)an(flallf(w — ull)

IAN A A

IA

mac{ 2 — ull, —=— | f () — ]}



for all n € N. By induction, we get

1
|01 — ull < maxifles —ull, ;=21 F(w) —ull}, n 2 1. (3.1.1)
Therefore {z,} is bounded. Hence, we also obtain that {y,}, {S.y,} and {f(x,)} are
bounded.

Since I — A\, A is nonexpansive, we have

1Yn+1 — ynll = [|Po(@ns1 — AAzng1) — Po(xn, — M Ay,
< T = XAz — (I = AnA)n||
< T = Az = (= A Azl + [An = Ana|[| A
< @na — 2ol 4 [An = A || Az, (3.1.2)

for all n € N. So, we obtain

201 = @all = Nlonf(2n) + (1 = an)Suyn] = lon-1f(@n-1) + (1 = an-1)Sp-19n-1]]|
= llanl[f(2a) = f(@n-1)] + (0 — an-1) f(2n-1)

+(1 = ) (Sn¥n — Sn-1Yn-1) + (-1 — @) Sn—1Yn-1]|

ankl|lzn — x|l + [(om — ana|([1f (@n—1ll + [|Sn-1yn-1l])

+(1 = ) ([[S0yn = Snyn-all + [1Snyn-1 — Sn-19Yn-1l)

anklzn — |l + [(m — ama[(ILf (@n—1 ]l + [[Sn-19al)

(1 = ) lyn — yn-all + (1 — an) sup{[|Snz — Sp-12[| : 2 € {yn-1}}

anklzn — |l + |om — an1|( f2n-ll + | Sn-1yn-1l])

+(1 = an)(lzn — Tl + Moot = || Az || ((by 3.1.2)

+(1 — ) sup{||Snz — Sn_12]| : 2 € {yn}}

(1= (1= k)ap)||wn — zp-1]] + A1 — M| M + |y, — a1 |L

+(1 — o) sup{||Snz — Sn_12| : 2 € {yn}}s

IA

IN

IN

IA

for every n € N, where L := sup,,o {|[f2n_1[|+||Sn-1¥n-1]|} and M := sup,,», {|| Az, ||}
Since > 7 L, =00, Y o0 A —Apm1] <00, 7 | —an—1| < oo and > 7 {||Snz—
Sni12|l : 2 € {yn}} < o0, it follows by Lemma 3.1.1 that

lim ||z,01 — x,] = 0. (3.1.3)
n—-aoo
Then we also obtain lim,, . ||y,+1 — ya|| = 0. Moreover, we note that

|z — Satnll < |@n — Sn—1Yn—1l| + [1Sn=1Yn—1 — Sn¥n—1ll + |Sn¥n-1 — Sn¥nl|
= an—l”f(l'n—l) - Sn_lyn_1|| + Sup{HSn_lz — SnZH = {yn—l}}
+||Yn-1 — ynl||, for all n € N.

A



Thus, we have

From above, we obtain

|1 — ull®

IA

IA

IA

IN

and hence

IA

IN

Since a,, — 0 and ||z,,41 — 2, || — 0, it follows that || Az, —

obtain

[y — ul®

Thus, we have

IA

IA

Q| f () — ul® +

lim ||z, — Spyn| = 0. (3.1.4)
| f () = ull? + (1 = ) |Snyn — ull?
| f () = ull® + (1 = an) lyn — ul|?
an | f(zn) _u||2 + (1 = an) || Po(rn — AnAxy,) _u||2
| f(zn) = ull? + (1 = an) I = A A)zy — (I = Xy A)ul?
| f () = ull® + (1 = an)([[2n — ull® + An(Xn = 20) || Ay, — Aul|?)
|| f(@n) — ull® + [lan — ul]® + (1 — a)a(b — 20) || Az — Aul|®
—(1 — ayp)a(b — 2a)|| Az, — Au”2
| f (@) = ull® + |20 — ull® = (|20 41 — ul®

(lzn = ull + lzna = ulDllznia = @nll

Au|| — 0. Further, we

| Po(zn — ApAxy,) — Po(u — A\, Au)||)?
((xp, — MAzy,) — (u — N\, Au),
(/2 (N (@0 = AaAzy) = (u = X Aw)|* + [|yn — ul|?

~N[(zn = AnAzy) = (u = XA Au)] = (g — u)[*}

(/2 {2 = ull® + llyn — wll* = [0 = yn) = Au(Azn — Aw)|*}
(L/2){llwn — ull* + llyn — ull* = [[(z0 — ya)|I?

22 (T — Yy Az — Au) — N2 || Az, — Aul|?}.

yn_u>

[y —ull® < 2 —ull® = |l2n — yal?
+2An<$n — Un, Azn - Au) - A?LHAZEn - ‘AUH2
and hence
||$n+1 - u||2 = ||anf($n) + (1 - an)Snyn - U||2
< apll () = ull® + (1 = an)llyn — ull?
< apl| f () = ull® + [Jon — ull® = |20 — ynll?
20Ty — Yy Az — Au) — N2 || Az, — Aul?.



Since a,, — 0, ||zp41 — @n|| — 0 and ||Az, — Au|| — 0, we have
|2 — ynll — 0. (3.1.5)

>From ||S,yn — Ynll < |Snyn — 2nll + ||2n — ynl|, We obtain

| Snyn — ynll — 0. (3.1.6)

Next we show that

limsup(f(2) — 2, Snyn — 2) <0,

n—:aoQ

where 2 = Pp(s)nvi(c,a)f(2). To show it, choose a subsequence {y,,} of {y,} such
that

lim sup(f(Z) — % Snyn - Z) = lim <f(2) — % Snym - Z)‘

n—s00 i—00

Since {y,,} is bounded, there exists a subsequence {ynij} of {y,,} converges weakly to
w. We may assume without loss of generality that y,,, — w. Since ||S,yn — yn|| — 0,
we obtain S, y,, — w. We now show that w € F(S)NVI(C, A).

First, it follows by the same argument as in the proof of [258, Theorem 3.1, pp.
346-347] that z € VI(C, A). Let us show that w € F(S). Assume w ¢ F(S). From
Opial’s condition, we have

liminf ||y,, — w|| < liminf ||ly,, — Sw||
= liminf ||y, — Sn,Yn, + Sn;Un; — SYn, + SYn, — Sw||
< liminf ||Sy,, — Sw||

< lim inf ||y, — w]|
1—00

This is a contradiction. Thus, we obtain w € F'(S). Therefore w € F(S)NVI(C, A).

Since z = Pps)nvi(c,a)f(2), we have

lim Sup(f(Z) - Z>7 Snyn - Z) = hm <f(Z) — % Snym - Z)

n—-—uoo



for all n > m. For all n > m, we have

|z = 217 = llanf(za) + (1 = an)Spyn — 2|
= [lan(f(2n) = 2) + (1 = @) (Suyn — 2)|I?
< apll(f(@n) = 2P + 200 (1 — @) {f (wn) = 2, Sy — 2)
+(1 = an)’|[Spyn — 2II?
< apll(f(za) = 2)II° + (1 = )|z — 2|
+200(1 — o ) (f(2n) = f(2), Sy — 2)
+2a, (1 — ) (f(2) — 2, Spyn — 2)
< apll(f(@a) = 2P + (1 = 200 + a7) 2 — 2|
200, (1 — ) E||2n — 2]|* + 20 (1 — o)) (f(2) = 2, Sn¥yn — 2)
= [1 —2ay, + a2 4+ 2ka, (1 — )]z, — 2||* + 2| f(zn) — 2|
+2a, (1 — ) (f(2) — 2, Spyn — 2)
= (1= an)|lzn — 2[* + @b,
where

a, = 2an+ai+2kan(1—an),

3, = anllf(@n) = 201> + 2(1 — o) (f(2) — 2, S — 2).
! 2+ a, + 2k(1 — ay)

It is easily see that &, — 0,> -, &, = oo and limsup, B, < 0. Hence, by
Lemma 3.1.1, we obtain x,, — 2 = Pp(g)nvi(c,4)f(2). This completes the proof. O

Putting f(y) = = € C for all y € H in Theorem 3.1.3, we have the following
result.

Theorem 3.1.4. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let a« > 0 and let A be an «-inverse-strongly monotone mapping of C' into
H. Let {S,} be a sequence of nonexpansive mappings from C' into itself such that
o2, F(S,) NVI(C,A) # 0. Suppose ©1 =z € C and {x,} is given by

n=1
Tpa1 = nTp + (1 — ay) S, Po(z, — MAxy,),

for all n =0,1,2, ..., where {a,} is a sequence in (0,1) and {\,} C [a,b] for some
a,b e (0,2a) with 37 | | A1 — An| < 00,

o0 o
lim «,, =0, g o, = oo and g |1 — ap| < o0,
n—oo 1

- -

Suppose that Yy " sup{||Sn+12 — Spz|| : z € B} < oo for any bounded subset B
of C and S be a mapping of C' into itself defined by Sz = lim,_ ., S,z for all



z € C and suppose that F(S) = () _,F(S,). Then {x,} converges strongly to

n=1
A F(S) N VI(C, A), where z = PF(S)QV](QA)I’;[.
Proof. It follows by Theorem 3.1.3 that z,, — z, where 2 = Pr(s)nvrc,a)r1. O
Setting S,, = S in Theorem 3.1.3 and 3.1.4, we have the following results.

Corollary 3.1.5. (Chen, Zhang and Fan [?]) Let C' be a nonempty closed convex
subset of a real Hilbert space H. Let o > 0 and let A be an «-inverse-strongly
monotone mapping of C into H. Let S be a sequence of nonexpansive mappings
from C' into itself such that F(S)NVI(C,A)# 0. Let f be a contraction of C' into
itself. Suppose 1 = x € C and {z,} is given by

Tpt1 = anf(zn) + (1 — ) SPe(x, — M\ Axy,),

for all n =0,1,2, ..., where {a,} is a sequence in (0,1) and {\,} C [a,b] for some
a,b € (0,2a) with Y77 | | A1 — An| < 0,

o0 o
lim «,, =0, g o, = 0o and g lan 1 — | < 0.
n—oo

n=1 n=1

Then {x,} converges strongly to z € F(S)NVI(C,A), where z = Prps)nvi(c,a)f(2).

By using the same argument in the proof of Theorem 3.1.3, we have the following

theorem.

Theorem 3.1.6. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let {S,} be a sequence of nonexpansive mappings from C' into itself such that
o, F(S,) # 0 and f be a contraction of C into itself. Suppose x; = x € C' and
let {x,} be the iterative sequence defined by

Tt = anf(zn) + (1 — an)Shzn

for every n € N, where {,} is a sequence in (0,1). Suppose that >~ | sup{||Sn+12—
Snz|| : 2 € B} < 0o for any bounded subset B of C. Let S be a mapping defined
by Sz = lim,_.., S,z for all z € C and suppose that F(S) = (', F(S,). Then
{xn} converges strongly to z € ¥(S), where z = Pypg)f(2).

Proof. Putting () = Pp(s) and y, = x, in the proof of Theorem 3.1.3. Then, by
using the same argument as in the proof of Theorem 3.1.3, we can show that {x,}
converges strongly to a point z € F(S), where z = Pp(g)f(2). O

Lemma 3.1.7. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let F be a bifunction from C x C into R satisfying (A1)-(A4). Let {r,} be a
sequence of positive integers and T, be the mapping. Let {r,} be a sequence in
(0,00) such that inf{r, :n € N} >0 and Y ", |rnt1 —rn| < 00, then the following
hold:



@ > o sup{||T,,,z —T,,2|| : z € B} < oo for any bounded subset B of C,

(i) F(T)=_,F(T,,) where T is a mapping defined by Tx =lim,,__... T, x for

n=1

all x € C.
Using Theorem 3.1.3 and Lemma 3.1.7, we have the following theorem.

Theorem 3.1.8. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let I be a bifunction from C x C into R satistying (A1)-(A4). Let A be an
a-inverse-strongly monotone mapping of C' into H such that VI(C, A)NEP(F) # @.
Let f be a contraction of H into itself. Let {x,} and {u,} be sequences generated
by x; € C and

1
F(unay) + _<y — Up, Up — yn> 2 Oa vy € Ca

n

Tn+1 = anf($n> + (1 - an)un7

for all n € N, where {a,} is a sequence in [0,1] and {\,} C [a,b] C (0,2«) satisfy
Yoo A — Al < oo with lim, oo, = 0, 00 = 00, ) 0 g — ap| <
oo and {r,} is a sequence in (0,00) with liminf, . r, > 0 and Y~ |rps1 —
rn| < oo. Then {x,} converges strongly to w € VI(C,A) N EP(F), moreover

w = PEP(F)nVI(C,A)f(w)-
Using Theorem 3.1.6 and Lemma 3.1.7, we have the following theorem.

Theorem 3.1.9. Let C' be a nonempty closed convex subset of a real Hilbert space H.
Let F be a bitunction from C x C' into R satisfying (A1)-(A4) with EP(F) # () and
let f be a contraction of C' into itself. Let {x,} and {u,} be sequences generated
by x1 =z € C and
1
F(un,y) + —(y — up,up —x,) >0, VyeC,

n

Tn+1 = anf($n> + (1 - an)un7

for all n € N, where {a,} is a sequence in [0,1] with Y " «, =00 and {r,} is a
sequence in (0,00) with liminf, . r, >0 and Y " |rn41 — rn| < 0o. Then {z,}

converges strongly to w € EP(F'), moreover w = Pgp(r)f(w).

3.1.2 Accretive operators

In this section, we consider the problem of finding a zero of an accretive operator.

Let £ be a real Banach space. Let p be a fixed real number with p > 2. A



Banach space £ is said to be p-uniformly convex if there exists a constant ¢ > 0
such that d(e) > ceP for all ¢ € [0,2]. Observe that every p-uniform convex is
uniformly convex. One should note that no a Banach space is p-uniform convex for
1 < p < 2. It is well known that a Hilbert space is 2-uniformly convex, uniformly
smooth. For each p > 1, the generalized duality mapping J,: E — 27 is defined
by Jy(z) = {z* € E* : (z,z*) = ||z||?, ||=*|| = ||z||P~'} for all x € E. In particular,
J = Js is called the normalized duality mapping. If E is a Hilbert space, then J = I,
where [ is the identity mapping. An operator A C F x E is said to be accretive if for
each (z1,y1) and (x9,ys) € A, there exists j € J(x; — x2) such that (y; — y2,75) > 0.
An accretive operator A is said to satisfy the range condition of D(A) C R(I + \A)
for all A > 0, where D(A) is the domain of A, R(I + AA) is the range of I + \A, and
D(A) is the closure of D(A). If A is an accretive operator which satisfies the range
condition, then we can define, for each A > 0, a mapping J, : R(I + AA) — D(A) by
Jy = (I —XA)~!, which is called the resolvent of A. We know that .J, is nonexpansive
and F(J)) = A71(0) for all A > 0. An accretive operator A is said to be m-accretive
if R(I+ \A) =FE for all A >0 (see also [61])

Lemma 3.1.10. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let T C H x H be an accretive operator such that T='(0) # (0 and D(T) C C C
N,so RU +7rT), and {r,} be a sequence in (0,00). If inf{r, : n € N} >0, and

> |Tng1 — ra] < oo, then the followings hold:
@ > sup{|[Jy,.. 2 — Jr.2|]| 1 2 € B} < 0o for any bounded subset B of C,

(i) F(S) = .2, F(J.,), where S is a mapping defined by Sz = lim,, ., J,, =

n=1

for all x € C.
Using Theorem 3.1.3 and Lemma 3.1.10, we have the following theorem.

Theorem 3.1.11. Let T C H x H be an m-accretive operator with T~(0) # () and
let C := D(T). Let « > 0 and let A be an «-inverse-strongly monotone mapping
of C into H and let f be a contraction of C into itself. Let {x,} be a sequence

generated by vy = x € C' and
Tt = o f(xn) + (1 — an)dy, Po(zn — A\Axy,)

for all n € N, where {«a,} is a sequence in [0,1], {r,} is a sequence in (0,0c0)
and {\,} C [a,b] C (0,2ct) satisfy Y ", |[Any1 — An| < 00. Suppose that S is a
mapping defined by Sx = lim,, ., J, x for all x € C. If lim, o, = 0, 220:1 o, =
00, Y 7 |1 — ay| < oo, inf{r, :n € N} >0, and > 7 | |rp41 — 7| < 00, then

{z,} converges strongly to z € T~'(0) N VI(C,A), where z = Pr-1onvic,a f(2).



Proof. Since H is Hilbert space C' = D(T) is closed and convex. By Lemma
3.1.10, we have the following

F(S) = (F(J,) =T7'(0) # 0.

Therefore, by Theorem 3.1.3, we obtain {x,} converges strongly to z = Pp(s)nr-1(0).f (2).
[
Using Theorem 3.1.6 and Lemma 3.1.10, we have the following theorem.

Theorem 3.1.12. Let T C H x H be an m-accretive operator with T=*(0) # () and

let C := D(T). Let f be a contraction of C into itself. Let {x,} be a sequence
generated by vy = x € C' and

Tnt+1 = anf(xn) + (1 - an)JrnIna

for all n € N, where {a,} is a sequence in [0,1], {r,} is a sequence in (0,0c0).
If lim, oo, = 0,7 a, = 00,Y >~ |1 — an| < oo,inf{r, : n € N} > 0,
and Y7 | |rps1 — ra| < oo, then {x,} converges strongly to = € T~1(0), where
z = Pr-1) f(2).

3.1.3 Strictly pseudocontractive mappings

A mapping 7" : C' — (' is called strictly pseudocontractive on C' if there exists k with
0 <k <1 such that

1Tz = Ty||* < |z — ylI* + k(I = T)z+ (I = T)y|*, for all z,y € C.

If £ = 0, then T is nonexpansive. Put A = [ — 7T, where T : ' — (C 1is a
strictly pseudocontractive mapping with k. We know that, A is %— inverse strongly
monotone and A~(0) = F(T') (see [258]).

Now, using Theorem 3.1.3 we state a strong convergence theorem for a pair of a

nonexpansive mapping and strictly pseudocontractive mapping as follows.

Theorem 3.1.13. Let C' be a closed convex subset of a real Hilbert space H. Let
{S,} be a sequence of nonexpansive mappings of C into itself. Let T be a strictly
pseudocontractive mapping with constant k of C' into itself such that N>, F(S,) N
VI(C,A)# 0. Let {x,} be a sequence generated by 11 =z € C' and

Tt = o f(xn) + (1 — ) SpPo((1 — Ap)zn + A T'xy)

for all n € N, where {a,} is a sequence in [0,1], {r,} is a sequence in (0,00)
and {\,} C [a,b] C (0,2ct) satisfy Y ", |Any1 — An| < 00. Suppose that S is a



mapping defined by Sz = lim, .., S,z for all z € C. If lim, o, =0, > .07 o, =
00, Y o0 a1 — ap| < oo, inf{r, :n e N} >0, and Y07 | |rpp1 — 1| < 00, then
{xn} converges strongly to z € ¥(S) N F(T), where z = Pyp(s)nr ) f(2).

Proof. Put A =1 —T. Then A is %—inverse-strongly monotone. We have that

F(T) is the solution set of VI(A,C) ie., F(T)=VI(A,C) and
Po(zp, — MAzxy,) = (1 — Nz + ATz,

Therefore, by Theorem 3.1.3, the conclusion follows. O

Setting f(y) = « for all y € C' in Theorem 3.1.13, we have the following corollary.

Corollary 3.1.14. Let C' be a closed convex subset of a real Hilbert space H.
Let {S,} be a sequence of nonexpansive mappings of C into itself and let T
be a strictly pseudocontractive mapping with constant k of C' into itself such that
N, F(S,) NF(T) # 0. Let {x,} be a sequence generated by x, = x € C' and

Tpr1 =t + (1 — ) SR Po(1 — A\p)zp — A\ T'zy)

for all n € N, where {«a,} is a sequence in [0,1], {r,} is a sequence in (0,0c0)
and {)\,} C [a,b] C (0,2«0) satisfy Y " [Any1 — An| < 00. Suppose that S is a
mapping defined by Sz = lim, .., S,z for all z € C. If lim, o, =0, > .07 o, =
00, Y o0 a1 — ap| < oo, inf{r, :n e N} >0, and Y07 | |rpp1 — 1| < 00, then
{xn} converges strongly to z € F(S) N F(T'), where z = Pp(s)nr(1)®1-

3.2 Convergence Theorems by the Hybrid Projection Method

Let C be a closed and convex subset of £, a mapping T : C' — C is called
nonexpansive if | Tx — Ty|| < ||x — y|| for any z,y € C. A point x € C is a fixed
point of T provided Tx = x. Denote by F(T) the fixed point set of T’; that is,
F(T)={x € C:Tx = x}. Consider the functional defined by

oz, y) = llz)* = 2(z, Jy) + [ly |, (3.2.1)

where J is the normalized duality mapping.

If C is a nonempty, closed and convex subset of a Hilbert space H and P : H — C
is the metric projection of H onto C, then FPc is nonexpansive. This fact actually
characterizes Hilbert spaces and consequently, it is not available in more general Banach
spaces. In this connection, Alber [319] introduced a generalized projection [Io from E
into C' by

¢ (z) = argmin, - d(y, z). (3.2.2)



It is obvious from the definition of ¢ that

Iyl = ll=[)* < ¢y, x) < (lyll + =])?,  Va,y € E. (3.2.3)

If E is a Hilbert space, then ¢(y,z) = ||y — z||* and IIo becomes the metric projection
of F onto C. The generalized projection Il : E — C' is a map that assigns to an
arbitrary point x € E the minimum point of the functional ¢(x,y), that is, Ilcx = Z,
where 7 is the solution of the minimization problem

o(z,x) = inf ¢(y, z). (3.2.4)

yelC

The existence and uniqueness of the operator Il follows from the properties of the
functional ¢(y,x) and the strict monotonicity of the mapping J (see, for example,
[55, 319, 65, 69, 92]). In 2006, Wu and Huang [325] introduced a new generalized
f-projection operator in Banach space. They extended the definition of the generalized
projection operators introduced by Abler [318] and proved properties of the generalized
f-projection operator. Next, we recall the concept of the generalized f-projection
operator. Let G : C' x E* — R U {+o0} be a functional defined by

G, @) = llgl* — 26, @) + [l=|* + 20/ (6), (3.2.5)

where £ € C, w € E*, p is positive number and f : C' — RU{+oc} is proper, convex
and lower semicontinuous. From the definition of G, it is easy to see the following

properties.
(1) G(&,w) is convex and continuous with respect to @ when ¢ is fixed;
(2) G(&,w) is convex and lower semicontinuous with respect to £ when w is fixed.

Definition 3.2.1. Let £ be a real Banach space with its dual E*. Let C be a
nonempty, closed and convex subset of E. We say that 7T£~ B — 2¢ is a

generalized f-projection operator if

rhw={ueC:Gu,w) = gggG(S,w), Vo € E*}.

Definition 3.2.2. Let C be a nonempty subset of E and let {T,}>°7 be a countable
family of mappings from C into E. A point p in C' is called an asymptotic fixed
point of {T,,}5°, [82] if C contains a sequence {x,}>° , which converges weakly to
p such that lim,, . ||z, — T,x,|| = 0. The asymptotic fixed point set of {1,,}>° | will
be denoted by F({T,}>,). A mapping T, from C into itself is called countable
family of relatively nonexpansive mappings (see [89]) if

(R1) F({T,}s2,) is nonempty;



(R2) ¢(p, Tox) < ¢(p,x) for all x € C and p € F({Tn}72,);

(R3) F({Tu}iey) = FUT.I2)-

A sequence {T,}>°, is called countable family of relatively quasi-nonexpansive
mappings ( or countable family of quasi-p-nonexpansive mappings) if conditions (R1)
and (R2) hold. It is obvious that a countable family of relatively nonexpansive map-
pings is a countable family of relatively quasi-nonexpansive mappings but the converse
is not true. In order to explain this better, we give the following example.

Example 3.2.3. Let F = R with the usual norm. We define a mapping T,, : F — E

by
0, ifzx<2:
T, (x) = ’ -
(z) {%,ﬁx>g

for all n > 0 and for each x € R.
Then ﬂ;’ozl F(T,) = F(T,) ={0} and

¢(0, Thx) = [|0 = Toz|| < [0 = z[| = ¢(0,z), Vo € R.

Hence, T is a relatively quasi-nonexpansive mapping but not a relatively nonexpansive
mapping.

Definition 3.2.4. A point p in C is called an asymptotic fixed point of T' [82] if
C' contains a sequence {x,} which converges weakly to p such that lim,_.. ||z, —
Tz,|| = 0. The asymptotic fixed point set of T will be denoted by ﬁ(T) A mapping
T from C into itself is called relatively nonexpansive (see [77, 86, 96]) if

(R1) F(T) is nonempty;

(R2)" ¢(p, Tx) < ¢(p,x) for all x € C and p € F(T);

(R3) F(T) = F(T).

A mapping T is called relatively quasi-nonexpansive ( or quasi-¢-nonexpansive) if
conditions (R1)" and (R2)" hold. Obviously, relatively nonexpansive mappings implies
relatively quasi-nonexpansive mappings but the converse is not true. Moreover, Defin-
ition 3.2.4 is a special case of Definition 3.2.2 when 7;, = T, for all n > 0. Relatively
quasi-nonexpansive mappings are sometimes called hemirelatively nonexpansive map-
pings. The asymptotic behavior of a relatively nonexpansive mapping was studied in
[62, 63, 64]. The class of relatively quasi-nonexpansive mappings is more general than
the class of relatively nonexpansive mappings (see [62, 63, 64, 75, 84]) which requires
the strong restriction: F(T) = F(T). Furthermore, Su et al. [87, 88] gave an ex-

ample of relatively quasi-nonexpansive mappings which is not relatively nonexpansive

mapping.



Example 3.2.5. (cf. [87, 95]) Let E be any smooth Banach space and let xq # 0 be
any element of E. We define a mapping ' : © — E by

(L Dyag, ifz=(L+ %
T(z)=4q 27270 ° 22
—, if © # (5 + 57)%0-

Then T' is a relatively quasi-nonexpansive mapping but not a relatively nonexpansive
mapping. Actually, T above fails to have the condition (R3)'.

For other examples of relatively quasi-nonexpansive mappings such as the general-
ized projections others see [79, Examples 2.3 and 2.4].

There are many methods for approximating fixed points of a nonexpansive mapping.
In 1953, Mann [74] introduced the following iterative scheme

Tt =ty + (1 — o) Ty, (3.2.6)

where the initial guess element x; € C' is arbitrary and {«,} is sequence in [0, 1].
Mann iteration has been extensively investigated for nonexpansive mappings. One of
the fundamental convergence results is proved by Bauschke and Combettes [58]. In an
infinite-dimensional Hilbert space, Mann iteration can conclude only weak convergence
(see [59, 68]). Attempts to modify the Mann iteration method (3.2.6) so that strong
convergence is guaranteed have recently been made. Bauschke and Combettes [58]

proposed the following modification of Mann iteration method

(21 =2 €C is arbitrary,

Yn = Ty + (1 — )Ty,

Co=1{2€C |y — 2| < lm — #II} (3.2.7)
Qn=1{2€C: (v, —2z,0—1x,) >0},

Tp+1 = Po,ng,x, n=1,2,3,..

\

They proved that if the sequence {«,} bounded above from one, then {xz,} defined
by (3.2.7) converges strongly to Pppyz. Let {T,,} be a sequence of nonexpansive
mappings from C' into itself such that ()~ , F/(T,,) # 0 satisfy the following condition:
if for each bounded subset B of C'

> sup{[|Tos12 — Toz|| - 2 € B} < 0. (3.2.8)
n=1
Assume that if the mapping 7" : C' — C' defined by Tz = lim,, .., T,z for all z € C,
then lim,, o sup{||7z — T,,z|| : z € C'} = 0. Aoyama et al. [61, Lemma 3.1] proved
that the sequence {7,,} converges strongly to a point in C' for all = € C.



Very recently, Takahashi et al. [91] studied the strong convergence theorem by
the new hybrid method for a family of nonexpansive mappings in Hilbert spaces:
xg € H,Cy = C and 1 = Pg, 7 and let

Yn = QpTy + (]- - an)Tnxna
Cop1={2 € C:|lyn — 2| < |z — 2|}, (3.2.9)
Tn+1 = PCn+1'r07 n €N,

where 0 < v, < a < 1 forall n € N and {T,} is a sequence of nonexpansive mappings
of C into itself such that ()~ F/(T,,) # 0. They prove that if {T,,} satisfies some

appropriate conditions, then {z,} converge strongly to Pree | F(r,)To-

The ideas to generalize the process (3.2.6) from Hilbert spaces have recently been
made. Matsushita and Takahashi [75] proposed the following hybrid iteration method
(CQ method) with generalized projection for relatively nonexpansive mapping 7" in a

Banach space E:

xg € C' chosen arbitrarily,

Un = J N anJz, + (1 — ay)JTx,),

Ch=12€C:0(z,yn) < 0(2,2,)}, (3.2.10)
Q.={z€C:{x, — 2z, Jrg — Jx,) > 0},

[ Znt1 = Lle,nq, o-

They proved that {z,} converges strongly to Ilp(1)zo. Many authors studied methods
for approximating fixed points of countable family of (relatively quasi-) nonexpansive
mappings (see [60, 61, 70, 77, 282, 83, 85, 93]). Plubtieng and Ungchittrakool [282]
introduced a method for finding common fixed point of countable family of relatively
nonexpansive mappings in a Banach space. Let C and C be two nonempty, closed
and convex subsets of a uniformly smooth and uniformly convex Banach space £ such
that C C C' and let {T,} be a sequence of relatively nonexpansive mappings such that
N~ F(T,) # 0. Define {x,,} in the following ways:

Xo € é,
C,=C,
T = P01x07

3.2.11
Un = J Hanxn + (1 — an)Thxy), ( )

C1n-i—1 - {Z S Cn . Cb(zayn) S ¢(Zaxn)}7
\ xn—i—l == H0n+1x0




and

Xo € é,
C= Ca
Un = J N anx, + (1 — an)Thxy,), (3.2.12)

C'n+1 = {Z S Cn : ¢(Z7yn> S ¢(Z7‘TTL>}7

xn—i—l - H0n+1x0

\
where «,, C [0, 1] satisfies some appropriate conditions. They proved that the processes

(3.2.11) and (3.2.12) converge strongly to a common fixed point of a countable family
of relatively nonexpansive mappings {7,,} provided that {7, } satisfies some appropriate
conditions.

Recently, Li et al. [73] introduced the following hybrid iterative scheme for ap-
proximation fixed points of relatively nonexpansive mapping using the generalized
f-projection operator in a uniformly smooth real Banach space which is also uniformly

convex: g € C and

yn = J HanJz, + (1 — ) JTx,),
Cpir ={w e C,: G(w, Jy,) < G(w, Jx,)}, (3.2.13)

— 11/

et
They obtained strong convergence theorem for finding an element in the fixed point set
of T'. The result of Li et al. [73] extended and improved the results of Matsushita and
Takahashi [75].

On the other hand, Nakajo et al. [76] introduced the following condition. Let C'
be a nonempty, closed and convex subset of a Banach space F, let {7,,} be a family
of mappings of C' into itself such that F := ()", F/(T,,) # 0 and w,(z,) denotes the
set of all weak subsequential limits of a bounded sequence {z,} in C. The sequence

{T,,} satisfy the NST-condition if for every bounded sequence {z,} in C
lim ||z, — Thzs|| =0 implies  wy(2,) C F.

Recall that a mapping 7' : C — C' is closed if for each {z,} in C, if z,, — =
and Tx, — y, then Tx = y. Let {T,,} be a family of mappings of C into itself with
F = (\._, F(T,) # 0. The sequence {7, } satisfy the (x)-condition [60] if for each
bounded sequence {z,} in C'

lim ||z, — Thzal =0 and lir}r'l z, =z imply z € F. (3.2.14)

It follows directly from the definitions above that if {7,,} satisfies NST-condition, then
{T,} satisfies (x)-condition. Hence the (x)-condition weaker than the NST-condition.
If 7, =T and T is closed, then {7} satisfies (x)-condition (see [60, 76] for more de-
tails). Now we give an example of a countable family of relatively quasi-nonexpansive

mappings which are satisfy the (x)-condition.



Example 3.2.6. Let £ = R. A mapping T, : E — FE defined by Example 3.2.3.
Hence, we have (\_, F'(T,) = F(T,) = {0}. For each bounded sequences z, €
E, we observe that T,z, =+ — 0 as n — oo and hence z = lim, .o 2, =
lim, oo Tp2n, = 0 as n — oo, this implies that z = 0 € F(T,,). Therefore, T, is a

relatively quasi-nonexpansive mapping and satisfy the (x)-condition.

The following questions naturally arise in connection with the above results.

Question 1 Can the algorithms (3.2.11), (3.2.12) and (3.2.13) still valid for rela-
tively quasi-nonexpansive mappings which more general than relatively nonexpansive
mappings?

Question 2 Is it possible to construct an approximate fixed point sequence for
finding common fixed points of an infinite family of relatively quasi-nonexpansive
mappings in more general Banach spaces?

The purpose of this section is to answer the above questions. Motivated and inspired
by the works mentioned above, we introduce a new hybrid projection algorithm of the
generalized f-projection operator which modify the iterative method introduced by Li
et al. [73] for a countable family of relatively quasi-nonexpansive mappings in a
uniformly smooth and uniformly convex Banach space by using the (x)-condition. By
improving the main result of Li et al. [72] and Plubtieng and Ungchittrakool [282],
we propose the new sufficient and uncomplicated condition in our main result which
is more general than the formerly result. Our condition is weaker than the Plubtieng
and Ungchittrakool’s condition [282] in the reason that just only one condition will be
needed. As applications, we apply our results to obtain new results for finding zeroes of
general B-monotone and maximal monotone operators in a Banach space. The results
presented in this paper generalize and improve previous results.

For the generalized f-projection operator, Wu and Hung [325] proved the following
basic properties.

Lemma 3.2.1. (Wu and Hung [325]). Let E be a real reflexive Banach space with
its dual E* and C' be a nonempty, closed and convex subset of E. The following
statement hold:

(1) Wéw is a nonempty, closed and convex subset of C' for all w € E*;

(2) if E is smooth, then for all w € E*, x € wlw if and only if
(r —y,@w—Jo) +pfly) = pf(x) 20, Yy € C;

(3) if E is strictly convex and [ : C — RU{+oc} is positive homogeneous (i.e.,
f(tx) =tf(zx) for all t > 0 such that tx € C where = € C), then wlw is single
valued mapping.



Recently, Fan et al. [323] show that the condition, f is positive homogeneous,

which appeared in [323, Lemma 2.1 (iii)] can be removed.

Lemma 3.2.2. (Fan et al. [323]). Let £ be a real reflexive Banach space with its
dual E* and C be a nonempty, closed and convex subset of E. If FE is strictly

convex, then ﬁéw is single valued.

Recall that J is single value mapping when £ is a smooth Banach space. There
exists a unique element w € E* such that w = Jx where x € E. This substitution in
(5.3.8) give

G(&, Jx) = [IE]* = 2(&, Ja) + ||=[* +2p£(€). (3.2.15)

Now we consider the second generalized f projection operator in Banach space (see
[73D.

Definition 3.2.7. Let E be a real smooth Banach space and let C' be a nonempty,
closed and convex subset of . We say that Hé : E — 2Y s generalized f-projection
operator if

e ={uecC:Gu,Jr)= gggG(g, Jzx), Yo € E}.

Lemma 3.2.3. (Deimling [66]). Let E be a Banach space and let f : E — RU{+o0}
be a lower semicontinuous convex function. Then there exist v* € E* and a € R
such that

f(z) > (z,2") +«, Yo € E.

Lemma 3.2.4. (Li et al. [73]). Let E be a reflexive smooth Banach space and let
C be a nonempty, closed and convex subset of E. The following statements hold

(1) Héx is nonempty, closed and convex subset of C' for all x € E;
(2) for all z € E, & € I,z if and only if

(T —y,Jo—Ji)+pfly) — pf(2) >0, Yy € C;

(3) if E is strictly convex, then Hé is single valued mapping.

Lemma 3.2.5. (Li et al. [73]). Let E be a real reflexive smooth Banach space, let
C be a nonempty, closed and convex subset of E, x € E and let & € Héx. Then

Remark 3.2.6. Let £ be a uniformly convex and uniformly smooth Banach space and
f(z) =0 for all z € F, then Lemma 3.2.5 reduces to the property of the generalized
projection operator considered by Alber [319].



Lemma 3.2.7. (Qin et al[79]). Let E be a real uniformly smooth and strictly
convex Banach space and let C' be a nonempty, closed and convex subset of F. Let
T:C — C be a closed and relatively quasi-nonexpansive mapping. Then F(T) is a

closed convex subset of C.

3.2.1 A countable family of relatively quasi-nonexpansive mappings

In this section, by using the (*)-condition, we prove the convergence theorem for
finding a common fixed points of a countable family of relatively quasi-nonexpansive

mappings, in a uniformly convex and uniformly smooth Banach space.

Theorem 3.2.8. Let C' be a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let {T,}5°, be a countable family of
relatively quasi-nonexpansive mappings of C' into E that satisfy the (x)-condition and
let f: E— R be a convex and lower semicontinuous function with C C int(D(f)).
Assume that F =\, F(T,)) # 0. For an initial point ©, € E with x; = Hélxo and
Cy = C, we define the sequence {x,} by

Yo = J HapJz, + (1 — ) JJT,1,),

Coy1={2€C,:G(z,Jy,) < G(z,Jx,)}, (3.2.16)
xn+1 = Hén+lx0

where {a,} is a sequence in [0,1]. If liminf, (1 —a,) >0 then {x,} converges

strongly to H;_-xo.

Proof. We split the proof into five steps.
Step 1. We first show that (), is closed and convex for each n € N.

Clearly €} = C' is closed and convex. Suppose that C), is closed and convex for
each n € N. Since for any z € C,, we know that G(z, Jy,) < G(z, Jx,) is equivalent
to

2(z, Jwn — Jyn) < llnll* = llyal®

Therefore, C),, is closed and convex. This implies that Hénﬂxo is well defined.
Step 2. We will show that F C C), for all n € N.

Next, we will show by induction that F C ), for all n € N. It is obvious that
F CcC1=C. Suppose that F C C,, for some n € N. Let ¢ € F and since {7,} is



relatively quasi-nonexpansive mappings, we have

G(q,Jyn) = G(q,anJr, + (1 — ay)JT,x,)
= |qll* = 2{q, anJxn + (1 — ) JTpzyn) + ||anJzy + (1 — ) J T, ||* + 2pf (q)
lal1? = 20 (g, Jan) — 2(1 — an){q, JTnzy)
‘I'O‘nHJInH2 + (1 - O‘n)||JTna7n||2 +2pf(q)
= a,G(q,Jx,) + (1 — a,)G(q, JT,xy)
a,G(q, Jx,) + (1 — a,)G(q, Jx,,)
G(q, Jzy,).

IA

IA

(3.2.17)
This shows that ¢ € C,, 1 which implies that 7 C C,,;. Hence F C C, for all
n € N and the sequence {x,} is well defined.
Step 3. We will show that {z,} is a Cauchy sequence in C' and lim,, .., G(z,, Jzo)
exist.
Since f : E — R is convex and lower semicontinuous function, from Lemma 3.2.3,
we known that there exist z* € £* and o € R such that

fly) > (y,2") + a,Vy € E.

Since x, € F, it follows that

G(@n, Jao) = ||l@nl® = 2(@n, J20) + [|lz0]l* + 201 (22)
>zl = 2(zn, Jo) + [|70l|* + 2p(2n, ) + 2pa
= ||za||* = 2z, Jzo — px*) + |20 ||* + 2000 (3.2.18)

> laall® = 2llzalllJzo — pa*|| + [[zo]|* + 2pcx
(lzall = 1Tz0 = pa*[[)* + llwol* = [[ o — pa*||* + 2p0x.

For each ¢ € F and z,, = Hén:)so, we have
G(q, Jxo) > G, Jxo) > (Jzall = [[Tz0 — p*||)* + [lzo]l* = | Jzo — pz*||* + 2pa.

This implies that {x,} is bounded and so are {G(z,, Jzo)} and {y,}. From the fact

that z,,, = Hénﬂxo €eC,yy CC,and x, = Hénxo, it follows from Lemma 3.2.5
0 < (|zner — |2nl)? < d(@pi1, 20) < G(Tngr, J20) — G(20, J20). (3.2.19)

This implies that {G(z,, Jzo)} is nondecreasing. Hence, we obtain that lim,, .., G(x,, Jxq)
exist. For any m > n, z, = Hén:)so, Ty = Hémxo e C,, C C, and from (3.2.19), we
have

(T, n) < G(ap, Jxo) — G(20, J20).

Taking m,n — oo, we have ¢(z,,,x,) — 0. It follows that ||z, — ,,|| — 0. Hence
{z,} is a Cauchy sequence and by the completeness of £ and the closedness of C, we
can assume that there exists p € C' such that x, — p € C.



Step 4. We will show that z, — p € F.
In particular, since lim,,_.., G(x,, Jxo) exist from (3.2.19), we also have

nll—{go d(xpi1, n) = 0. (3.2.20)
It follows that
nlirgo |Tnst1 — zn|| = 0. (3.2.21)

Since J is uniformly norm-to-norm continuous on bounded subsets of £, we also have
lim ||Jz,1 — Jx,| = 0. (3.2.22)
Since x,41 = Hénﬂxo € Chy1, We get
G(xn+17 Jyn) S G(xn-‘rla an)

is equivalent to
¢(xn+17 yn) S ¢<xn+17 xn)

Then, we get
lim ||z,41 — yal| = 0. (3.2.23)

Since J is uniformly norm-to-norm continuous, we obtain
lim ||Jz,1 — Jya|| = 0. (3.2.24)
Assume that

| Jzni1 — Jynll = ||JTns1 — anJz, — (1 — o) JThx,||
(1 —ap)Jxnis — (1 — o) JThx, + anJr, i — apJx,||
> (1= ap)|[Jrpgr — JTaw,|| — anl|J2n — JTnya ),

(3.2.25)
and therefore

| JZny1 — JTzn|| < (1 JZns1 — Tynll + || J2n — J2041]]) (3.2.26)

1
(1—ay)
since liminf, (1 —a,) >0, (4.2.91) and (4.2.101), one has

lim ||Jx,1 — JT,z,] = 0. (3.2.27)
Since J~! is uniformly norm-to-norm continuous, we obtain
lim ||zp41 — Thz,|| = 0. (3.2.28)

Using the triangle inequality, we have

|2 = Thznl] < |20 = Zoga|| + |2ne1 — Thwn]|-



From (4.2.90) and (3.2.28) we obtain
lim ||z, — T,x,| = 0. (3.2.29)

Since x, — p, it follows from the (*)-condition that p € F = ('~ F(T},).

Step 5. We will show that p = IT%.

Since F is closed and convex set from Lemma 3.2.4, we have Hfr:)so is single value,
denote by v. By definition x,, = Hén:)so and v € F C C,,, we also have

G(zy, Jxg) < G(v, Jxg),Vn > 1.

By the definition of G and f, we know that, for each given x, G(&, Jx) is convex and
lower semicontinuous with respect to £. So

G(p, Jxo) < liminf G(z,, Jzo) < limsup G(z,, Jxo) < G(v, Jzo).

n—oo n—oo

From the definition of Hfrxo and since p € F , we conclude that v =p = Hfrxo and

Tn, — p as n — oo. This completes the proof. U

Corollary 3.2.9. Let C' be a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let {T,}°2, be a countable family
of relatively quasi-nonexpansive mappings of C into E that satisfy the NST-condition
and let f : E — R be a convex and lower semicontinuous function with C C
int(D(f)). Assume that F = (\_, F(T,,) # 0. For an initial point xy € E with
T = Hélxo and C, = C, we define the sequence {x,} by

Un = J HanJz, + (1 — ) JJThay),

Chi1 =1{2€C,:G(z,Jyn) < G(z,Jx,)}, (3.2.30)
Lp+1 = Hén+1l’0

where {a,} is a sequence in [0,1]. If liminf,, (1 —a,) >0 then {x,} converges
strongly to p € F, where p = Hfrxo.

Remark 3.2.10. Theorem 5.3.11 extends and improves the results of Li et al. [73] and
Plubtieng and Ungchittrakool [282] from relatively nonexpansive mappings to a more

general class of a countable family of relatively quasi-nonexpansive mappings.
Setting 7,, = T in Theorem 5.3.11, then we obtain the following result.

Corollary 3.2.11. Let C' be a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let T : C — E, be a relatively quasi-

nonexpansive mapping and let f : E — R be a convex and lower semicontinuous



function with C' C int(D(f)). Assume that F(T) # (). For an initial point xo € E
with x| = Hélxo and Cy = C, we define the sequence {x,} by

Yn = J HapJz, + (1 — ) JTz,),

Chi1={2€C,:G(z,Jy,) < G(z, Jx,)}, (3.2.31)

_1/
LTpt+1 = ch+1$0

where {a,} is a sequence in [0,1]. If liminf,, (1 —a,) >0 then {x,} converges
strongly to H{;(T):co.

Remark 3.2.12. Corollary 3.2.11 extends and improves the result of Li et al. [73]
from relatively nonexpansive mappings to more general relatively quasi-nonexpansive

mappings.

Taking f(z) = 0 for all z € E, we have G(£,Jz) = ¢(&,z) and 1Lz = T,
From Theorem 5.3.11 we obtain the following corollaries.

Corollary 3.2.13. Let C' be a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let {1,,}°, be a countable family
of relatively quasi-nonexpansive mappings of C' into E that satisfy the (x)-condition.
Assume that F := N> F(T,) # 0. For an initial point o € E with x, = g,z and
Cy = C, we define the sequence {x,} by

Yo = J HapJz, + (1 — an)JT,1,),
C'n+1 = {Z € Cn : ¢(Zayn> < ¢(Z,$n)}, (3.2.32)

Tp41 = HC7L+1 Zo

where {a,} is a sequence in [0,1]. If liminf,, (1 —a,) >0 then {x,} converges
strongly to 1l zxg.

Corollary 3.2.14. Let C' be a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let {T,}°°, be a countable family of
relatively quasi-nonexpansive mappings of C' into E that satisfy the NST-condition.
Assume that F := N, F(T,) # 0. For an initial point o € E with x, = lg,xy and
Cy = C, we define the sequence {x,} by

Yo = J HapnJz, + (1 — ) JJThx,),
Coi1=42€C,:0(z,yn) < 0(2,2,)}, (3.2.33)

Tp41 = HC7L+1 Zo

where {a,,} is sequences in [0,1]. If liminf, (1 — «,) >0 then {z,} converges
strongly to Il zxy.



Remark 3.2.15. Corrollary 3.2.13 and 3.2.14 extend and improve the results of Plub-
tieng and Ungchittrakool [282] from relatively nonexpansive mappings to a more gen-
eral class of a countable family of relatively quasi-nonexpansive mappings.

Corollary 3.2.16. Let C' be a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let {T,}°, be a countable family
of relatively nonexpansive mappings of C into E that satisfy the (x)-condition and
let f: E— R be a convex and lower semicontinuous function with C' C int(D(f)).
Assume that F = N>, F(T,) # 0. For an initial point vy € E with ©; = Hélxo and
Cy = C, we define the sequence {x,} by

Y = J HanJz, + (1 — ay,)JJThz,),
Coi1 =1{2€C,:G(z,Jyn) < G(z,Jx,)}, (3.2.34)
Tn+1 = Hén+1l’0

where {a,,} is a sequence in [0,1]. If liminf,, (1 —«,) >0 then {x,} converges
strongly to Hfrxo.

Remark 3.2.17. Corollary 3.2.16 extends and improves the result of Li et al. [73] from
a single relatively nonexpansive mapping to the class of an infinite family of relatively
quasi-nonexpansive mappings.

3.2.2 Zeroes of B-monotone mappings.

Let B be a mapping from F to E*. A mapping B is called
(1) monotone if (Bx — By,x —y) > 0 for all z,y € E}
(2) strictly monotone if B monotone and (Bx — By, x —y) = 0 if and only if x = y;

(3) (- Lipschitz continuous if there exist a constant $ > 0 such that ||Bx — By|| <
Bz — y|| for all z,y € E.

Let M be a set-valued mapping from E to E* with domain D(M) = {z € E : Mz # 0}
and range R(M) =J{Mz: 2z € D(M)}. A set value mapping M is called

(i) monotone if (x; — x3,y; — yo) > 0 for each x; € D(M) and y; € Mz;,i=1,2;

(ii) r-strongly monotone if (x1 — x9,y; — yo) > r||x1 — 22| for each z; € D(M) and
Y € Mx;,1=1,2;

(iii) maximal monotone if M is monotone and its graph G(M) = {(z,y) : y € Mz}
is not properly contained in the graph of any other monotone mapping;



(iv) general B-monotone if M is monotone and (B + AM)E = E* holds for every
A > 0, where B is a mapping from £ to E*.

We consider the problem of finding a point x* € E satisfying 0 € Mzx*. We
denote by M0 the set of all points z* € C' such that 0 € Mxz*, where M is maximal

monotone operator from E to E*.

Lemma 3.2.18. (Li et al. [73]). Let E be a Banach space with the dual space E*,
let B: E — E* be a strictly monotone mapping, and let M : E — 2F" be a general
B-monotone mapping. Then M is maximal monotone mapping.

Remark 3.2.19. (Li et al. [73]). Let E be a Banach space with the dual space
E*, let B: E — E* be a strictly monotone mapping, and let M : E — 2F" be a
general B-monotone mapping. Then M is a maximal monotone mapping. Therefore,
M7'0={z€ D(M):0€ Mz} is closed and convex.

Lemma 3.2.20. (Alber. [319]). Let E be a uniformly convex and uniformly smooth
Banach space, dg(€) is the modulus of convexity of E and pg(t) is the modulus of

smoothness of E, then the inequalities

8d05([lx — €ll/4d) < ¢(x,€) < 4d”pp(dl|lx — €|/d)
hold for all x and ¢ in E, where d = +/(||z[]2 + [|£]]2)/2.

Lemma 3.2.21. (Xia and Huang. [97]). Let E be a Banach space with the dual
space E*, let B: E — E* be a strictly monotone mapping, and let M : E — 2F" be

a general B-monotone mapping. Then
(1) (B4 AM)™" is single valued;

(2) if E is reflexive and M : E — 2E" js a r-strongly monotone, then (B + \M)~*

is Lipschitz continuous with constant 5 (r > 0).

Let E be a Banach space with the dual space £*, B : E — E* a strictly monotone
mapping, and M : E — 2% a general B-monotone mapping, for every A\ > 0 and z* €
E*. From Lemma 3.2.21 there exists a unique x € D(M) such that x = (B+ M)~ tz*.
We define a single valued mapping T) : E — D(M) by Thx = (B + AM)~'Bz. It is
easy to see that M~'0 = F(T)) for all A > 0. Indeed, we have

zeM0 & 0e Mz
& 0e€e Mz
& Bze(B+AM)z (3.2.35)
& z=(B+AM)'Bz="T\z
& ze F(T)).

Motivated by Li et al. [73] we obtain the following result.



Theorem 3.2.22. Let C' be a nonempty closed and convex subset of a uniformly
convex and uniformly smooth Banach space E with 0p(e) > ke? and pp(t) < ct?
for some c,k > 0. Let B: F — E* a strictly monotone and [3-Lipschitz continuous
mapping and let M : E — 27" be a general B-monotone and r-strongly monotone
mapping with r > 0. Let {T),} = (B+X\,M)™'B and Iet f : E — R be a convex and
lower semicontinuous function with C' C int(D(f)) and suppose that for each n > 0
there exists A\, > 0 such that 64c(5* < min{3kA2r*}. Assume that F := M0 # 0.
For an initial point vy € F with x1 = Hélxo and Cy = C, we detine the sequence
{za} by

Un = J HanJz, + (1 — ) JJTh, T0),

Coi1={2€Cy,:G(z,Jy,) < G(z,Jx,)}, (3.2.36)

Tpa1 = Hénﬂxo
where {«a,,} is a sequence in [0,1]. If liminf, (1 —ay,) > 0, then {x,} converges
strongly to Hfrxo.

Proof. We will show that {7 } is a family of relatively quasi-nonexpansive map-
pings with common fixed point (>~ , F(T,) = M~'0. We only need to show that
o(p,Th,q) < ¢(p,q) for each ¢ € E,p € F(T),),n > 1. From Lemma 3.2.20, and

since B is a f-Lipschitz continuous mapping, we have

o(p, Tr,q) = ¢(Th,p,Th,q)

4|| Ty, p—T
4d2pE( I An:nd Anqll)

64c||Tx,p — T, q||?
64c||(B + A\,M)™'Bp — (B + X\, M)~ Bq||?
5% | Bp — Bql|?

)\%732
S |lp — gl

INIA

(3.2.37)

VARPAN

and we also have

é(p,q) > 8d25p(12=tly > 1k|p — ¢||. (3.2.38)

Since |
64c* < §k)\ir2
it follows from (3.2.37) and (3.2.38) that ¢(p,Th,q) < &(p,q) for all ¢ € E,p €

F(T)\,),n > 1. Therefore {T), } is a family of relatively quasi-nonexpansive mapping.
Hence the result follows from Theorem 5.3.11. U

3.2.3 Zeroes of maximal monotone operators

In this section, we apply our results to find zeros of maximal monotone operator. Such
a problem contains numerous problems in optimization, economics, and physics. The

following result is also well known.



Lemma 3.2.23. (Rockafellar. [80]). Let E be a reflexive strictly convex and smooth
Banach space and let M be a monotone operator from E to E*. Then M is maximal
if and only if R(J + AM) = E* for all \ > 0.

Let £ be a reflexive strictly convex and smooth Banach space, B = J and let M
be a maximal monotone operator from £ to E*. Using Lemma 3.2.23 and the strict
convexity of E, we obtain that for every A > 0 and x € E, there exists a unique x)
such that Jz € (Jx)+ AMz,). Then recall the single valued mapping J : £ — D(M)
by Jy = (J+ AM)~'J and J, is the resovent of M. We known that M 10 = F(J,)
(see [90, 92]).

Theorem 3.2.24. Let C' be a nonempty closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let M C E X E* be a maximal
monotone mapping such that D(M) C C C J YNy, ~oR(J+\,M). Let {J\,} = (J+
A\oM)™YJ where N, >0 and let f : E — R be a convex and lower semicontinuous
function with C C int(D(f)). Assume that F := M~'0 # (). For an initial point
xo € B with x1 = Hélxo and Cy = C, we define the sequence {x,} by

Y = J HapJa, + (1 — ) J ]y, 20),
Coi1 =1{2€C,:G(z,Jyn) < G(z,Jx,)}, (3.2.39)

11t
2fn+1—Hc Zo

n+1
where {a,,} is a sequence in [0,1]. If liminf, (1 —a,) >0 then {x,} converges
strongly to p € F, where p = Hfrxo.

Proof. First, we have (', F(J,,) = M~'0 # (. Secondly, from the monotonicity of
M, let pe(\,_, F(Jy,) and ¢ € E, we have

o, Inq) = |IplI> —2(p, JIr,q) + | Ir.all?
= |pl® +2(p, Jq — JJr,q — Jq) + || Jx,ql?
= |Ip|*+2(p, Jq — J 5, q) — 2(p, Jq) + || Jx.q

(

(

( ?
= pl* = 2(Jna —p = Ina. Ja — JIr.0) — 2(p. Jq) + || )r.q

(

(

(

| 2

= |pll> = 2(Jr.q — p. Jg — JInq) + 2(Jr.q, Jq — JIx.q) — 2(p, Jq) + || Ix.ql?

< pl?+2(Jna Jg — JInq) — 2(p, Jq) + || ]n,ql)?

= pl* =2, Jg) + llall® = 1 7x.all* + 2(Ix.q: Tq) — [lgl®
= ¢ q) — 9(Jr. ¢ 9)

< ¢(p,q)

for all n > 1. Therefor {J,,} is a family of relatively quasi-nonexpansive mapping,
for all A, > 0 with common fixed point set (), F(Jy,) = M~'0. Hence the result
follows from Theorem 5.3.11. U



U 4
Equilibrium Problems

Let {f;}ier : C xC — R be a bifunction, {¢; };cr : C' — R be a real-valued function,
and {B;}icr : C — E* be a monotone mapping, where I' is an arbitrary index set.

The system of generalized mixed equilibrium problems is to find = € C' such that
filz,y) + (Bix,y —x) + ¢i(y) —¢i(x) 20, i€l VyeC. (4.0.1)

If ' is a singleton, then problem (4.0.1) reduces to the generalized mixed equilibrium

problem, which is to find x € C' such that
f(@,y) + (Br,y —x) + o(y) — () 20, VyeC. (4.0.2)
The set of solutions to (5.2.1) is denoted by GMEP(f, B, ), i.e.,
GMEP(f,B,p) ={z € C: f(x,y)+(Bx,y—x)+p(y) —p(z) >0, Vy € C}. (4.0.3)

If B = 0, the problem (5.2.1) reduces into the mixed equilibrium problem for f,
denoted by MEP(f, ), which is to find € C such that

flz,y) + ¢(y) —p(x) >0, Vyel. (4.0.4)

If f =0, the problem (5.2.1) reduces into the mixed variational inequality of Browder
type, denoted by VI(C, B, ¢), which is to find z € C such that

(Br,y —z) + ¢(y) — p(x) >0, Vyel. (4.0.5)

If B=0 and ¢ = 0 the problem (5.2.1) reduces into the equilibrium problem for f,
denoted by EP(f), which is to find z € C such that

f(xz,y) >0, VyeCl. (4.0.6)

If f =0, the problem (5.2.3) reduces into the minimize problem, denoted by Argmin(y),
which is to find x € C such that

o(y) —e(z) >0, VyeCl. (4.0.7)



The above formulation (4.0.5) was shown in [5] to cover monotone inclusion prob-
lems, saddle point problems, variational inequality problems, minimization problems,
optimization problems, variational inequality problems, vector equilibrium problems,
Nash equilibria in noncooperative games. In addition, there are several other problems,
for example, the complementarity problem, fixed point problem and optimization prob-
lem, which can also be written in the form of an EP(f). In other words, the EP(f)
is an unifying model for several problems arising in physics, engineering, science, op-
timization, economics, etc. In the last two decades, many papers have appeared in
the literature on the existence of solutions of EP(f); see, for example [5, 10] and
references therein. Some solution methods have been proposed to solve the EP(f); see,
for example, [5, 10, 302, 15, 79, 93] and references therein.

4.1 The System of Generalized Mixed Equilibrium Prob-
lems in Hilbert Spaces

In this section, we prove a strong convergence theorem of the new shrinking pro-
jection method for finding a common element of the set of fixed points of strictly
pseudocontractive mappings, the set of common solutions of generalized mixed equi-
librium problems and the set of common solutions of the variational inequalities with
inverse-strongly monotone mappings in Hilbert spaces.

For solving the mixed equilibrium problem, let us give the following assumptions
for the bifunction F, the function A and the set £

(A1) F(x,z) =0 for all x € E;

(A2) F is monotone, i.e., F'(z,y) + F(y,z) <0 for all z,y € E;

(A3) for each z,y,z € E, lim;__o F(tz + (1 — t)z,y) < F(x,y);

(A4) for each x € E,y — F(z,y) is convex and lower semicontinuous;
(A5) for each y € E,x +— F(z,y) is weakly upper semicontinuous;

(B1) for each x € H and r > 0, there exist a bounded subset D, C E and y, € F
such that for any z € E'\ D,,

1

F(z,yz) + o(yz) — ¢(2) + ;<yz — 2,2 —1x) < 0; 4.1.1)

(B2) FE is a bounded set.



By similar argument as in the proof of Lemma 4.1.1, we have the following lemma
appearing.

Lemma 4.1.1. Let E be a nonempty closed convex subset of H. Let F': ExXFE — R
be a bifunction satisfies (Al1)-(A5) and let ¢ : E — RU {400} be a proper lower
semicontinuous and convex function. Assume that either (B1) or (B2) holds. For

r>0 and x € H, define a mapping TY : H — E as follows:

Tf(x):{zeE: F(z,y)+<p(y)—go(z)—i—%(y—z,z—@20, VyEE},

for all z € H. Then, the following hold:
(1) For each x € H,TF (x) # 0;
(2) TF is single-valued;
(3) TF is firmly nonexpansive, i.e., for any z,y € H,

||TTF‘T - TrFyH2 < <TTF'T - TrFy7x - y>7

(4) F(T) = MEP(F, ¢);

(5) MEP(F,p) is closed and convex.

4.1.1 The shrinking projection method for common solutions of gen-
eralized mixed equilibrium problems

Theorem 4.1.2. Let E be a nonempty closed convex subset of a real Hilbert space H.
Let Fy and F5 be two bifunction from E X E to R satistying (Al1)-(A5) and let ¢ :
E — RU{+o0} be a proper lower semicontinuous and convex function with either
(B1) or (B2). Let Ay, Ay, B,C' be four p,w, (3, £-inverse-strongly monotone mappings
of E into H, respectively. Let S : E — E be a k-strictly pseudocontractive mapping
with a fixed point. Define a mapping Sy : B — E by Syx = kx+(1—k)Sxz, Vx €
E. Suppose that

0 1= F(S)NGMEP(F,, 0, A)) N GMEP(Fy, 0, A) N VI(E,B)NVI(E,C) # 0.



Let {z,} be a sequence generated by the following iterative algorithm:

(

xw€eH, Fh=F v, =PFPgxy, u, €L, v, €L,

Fy(un, w) + @(u) = @(tn) + (A1, U = tn) + 7-(U = Up, Up — 20) > 0, VYu € E,
Fy (v, 0) + p(v) — o(vn) + (Asxp, v — v,) + i(v — Up, U — Tp) >0, Yo € E,
Yn = Pz, — \yBxy), 2z, = Pr(z, — unCxy),

t, = ozg)Skxn + ag)yn + ozg’)zn + ozgfl)un + 04515)11”,

Eppr={w e B, : |[t, —w| < ||z, —w]},

L Tp+1 = PEn+1ZL'0, Vn 2 0,

(4.1.2)
where {aﬁf)} are sequences in (0,1), where 1 =1,2,3,4,5, r, € (0,2p), s, € (0,2w)
and {\,}, {p.} are positive sequences. Assume that the control sequences satisfy

the following restrictions:
€ YL o =1,
(C2) lim,_.o ) = a® € (0,1), where i = 1,2,3,4,5,
(C3) a<r,<2p and b < s, < 2w, where a,b are two positive constants,
(C4) c <\, <203 and d < p, < 2¢, where c,d are two positive constants,
(C5) lim, . [ A1 — An| = limy, oo |1 — pn] = 0.
Then, {x,} converges strongly to Pgx.
ﬁg’?]ﬂ( Let p € © and Lemma 4.1.1, we obtain
p= Pp(p— X\Bp) = Pe(p — 1nCp) = TF (I — r, Ar)p = TP (I — s, 42)p.

Note that u, = T (I — r,Ay)x, € dom ¢ and v, = T/>(I — s,As)x, € dom ¢, we
have

lun —pll = T = rpA)a, = T = r, AVpl| < llzn —pl  (4.1.3)
and
o —pll = IT2(I = spAs)w, — T22(I — s, Ao)pl| < |z —pll. (4.1.4)

Next, we will divide the proof into six steps.
Step 1. We show that {z,} is well defined and FE,, is closed and convex for any
n > 1.



From the assumption, we see that /1 = E is closed and convex. Suppose that Ej
is closed and convex for some k& > 1. Next, we show that Fj., is closed and convex
for some k. For any p € Ej, we obtain

Itk =p <z —pl

is equivalent to
| te —p I* +2(ts — x, 21 — p) < 0.
Thus Fj; is closed and convex. Then, FE, is closed and convex for any n > 1. This
implies that {x,} is well defined.
Step 2.We show that © C E,, for each n > 1. From the assumption, we see that
© C EF = FE,. Suppose © C Ej for some k > 1. For any p € © C FE}. Since
Yn = Pp(x, — \y,Bz,) and 2, = Pg(x, — p,Cx,). For each A\, <273 and pu, < 2¢ by

Lemma ??, we have I — A\, B and [ — p,,C' are nonexpansive. Thus, we obtain
|y —pll = [Pe(zn — ABzn) — Pe(p — A Bp)|

[(zn = AnBin) — (p — A Bp)|
(I = AnB)zn — (I = A B)p

IA

and
< @ = pnCn) — (0 — unCp)||
= (I = Oz — (I — 1 C)p

From previous Lemma, we have Sy is nonexpansive with F(Sy) = F(5). It follows
that

It, =l = [leVSka, + Py, + Pz, + aPu, + aPv, — p|
< 0k — pll + 02l — pl + 0P 20— pll + 0 s — I + 0 —
< o llan = pll + a2 s = pll + oz = pll + P llzn = pll + Pz — p

ln = pll

It follows that p € Ejy;. This implies that © C FE),, for each n > 1.
Step 3. We claim that lim,,_ . ||z,4+1 — 2] = 0 and lim,,_. ||z, — ¢,|| = 0.

From z,, = Pg, x,, we get

(xo — Tp,Tpn —y) >0



for each y € E,. Using © C E,,, we have

(xg — Tp,x, —p) >0 for each p € © and n € N.

Hence, for p € ©, we obtain

It follows that

OS <x0_xn7xn_p>

= (2o — T, Tn — To + To — D)

—(xg — T, Ty — Tp) + (To — T, To — D)

< —llzo = 2all* + llwo — zallllzo — pIl.

|xo — x| < ||xo —p||, forall p e ©® and n € N.

From z, = Pg,xg and v,,41 = Pg,,, 7o € E,1 C E,, we have

(T — Ty, Ty, — Tny1) > 0. (4.1.5)

For n € N, we compute

and then

0 < (zo—Tn,Tp — Tnt1)

(To — Ty, Ty, — T + T — Tpy1)

—<ZL'0 — Tn, Ty — xn) + <£L’0 — Tn,To — lﬁ—i—l)

IN

_||$0 - xn||2 + <$0 — Tn, Ty — xn-i—l)

IN

—llwo — 2 ll* + llzo — zallllzo — @l

|0 — zn|| < ||xo — Zpya]|, for all n € N.

Thus the sequence {||x,—zol||} is a bounded and nondecreasing sequence, so lim,, . ||z,—

xo|| exists, That is, there exists m such that

From (4.1.34),

|l — @

m= lm |z, — zol|. (4.1.6)
we get

= ||lzp —zo+ 20 — 36’n+1H2

= |20 — zol|* + 2(zn — 20, To — Tny1) + ||T0 — Tppa|?

lzn = @oll* + 2{xn — 20, 2o — @ + Tn = Tns1) + |20 — T [|”

@0 — 2o||* + 2(x — @0, To — Tn) + 2(Tp — To, Tn — Tns1) + [|[To — Tng|?

— [l — 20ll* + 2(xn — 20, Tn — Tny1) + |20 — Znga ||

IN

—llzn = @oll* + llzo — Tnall*.



By (4.1.35), we obtain

nliinoo |€n — Znya]|| = 0. (4.1.7)
Since z,41 = Pg,,, 70 € E,11 C L, we have

[z = toll < [0 = Zngall + 1201 — tall < 2f2n — znga-
By (6.4.13), we obtain
nhinm |z, — ta]] = 0. (4.1.8)
Step 4. We claim that the following statements hold:

(SD) lim,, o ||zn — un|| = 05
(S2) lim, oo |20 — ynl| = 03
(S3) lim,, oo ||n — 20| = 05
(S4) lim,, o ||zn — vs]| = 0.
For p € ©, we note that

|z —plI* = |Pe(zn — paCn) = Pe(p — 1.Cp)|1?
||($n - ,uncxn) - (p - ,unCp)H2
(20 = p) = pn(Cy — Cp)|1?

IN

< Nlaw — plP = 2un{zn — p, Cy — Cp) + | Cyy — Cpl|?
< lwn = plI* + pin(pn — 26)[|Cy — Cpl|?
= |l = plI? = 1a(26 = pn)||C, — Cp%. (4.1.9)
Similarly, we also have
||yn _p||2 S ||xn _p||2 - )‘n(Qﬁ - )\n)Han - Bp||2 (4'1'10)

We note that

lun = plI* = T = rpAy)a, = T =1, Ayl
< T = Az, — (I —ra Ayl
= (@0 = p) = ra(Arz, — Aip)|I?
= o = pl* = 2ra(zn — p, Aven — Arp) + 7o || v, — Arpl®
< Nl = plI? = 2rpll Avz, — Avpl|? + 73| Avy, — Arplf?

| zn — p||2 + 7u(rn — 2p) || A1y — A1p||2
= |z =l = ra(20 — ) | A, — Ap|®. (4.1.11)



Similarly, we also have
v = plI? < |20 — plI? = 502w — 8,) || Agzn — Aap||:. (4.1.12)
Observing that

Itn — plI*
o |Skwn = plI* + a2 llyn = pI? + Pz = plI* + P lwn = plI* + P [lvn - pl?

IA

< aPzn = plI* + Py — plI* + P20 — 2> + a{P Jun — plI* + o [J0n — plI*.
Substituting (6.1.28), (6.1.29), (4.1.11) and (6.1.30) into (4.1.41), we obtain
[t — plI?
< aPlzn = pl* + aP{ ||z = pI> = Ma(28 = A | B, — Bp|*}
+ P lan = pI? = pn(2€ = i) |Ca — O}
P lan = pI = 7020 = ra) [ s, — Aupll*}
+ P lan = pI = sn(2 = 50) [ Az — Aspl|*}
= |o, - pH2 - 05512»‘”(26 — )| By, — Bp||2 - agzg)ﬂn@g — i) [|C 2y, — Cp“2
- aﬁf‘)rn@p — ) || Az, — Arp|* — aﬁf’)sn(Qw — 5,) || Az, — Agpl]?. (4.1.13)
It follows that
a1 (26 = pin) | C, — Cp
20 = plI*> = lltn = plI> = afPXu(28 = M) || Bz, — Bp|)?
- agf)rn(Qp - 7ﬂn)HAlxn - Alp”2 - agf)sn(%‘) - Sn)||A2xn - A2p||2
S (Hxn _pH + th _pH)Hxn - tn”

IA

From (C2), (C4) and (4.1.39), we have
lim ||Cz, — Cp| =0. (4.1.14)
Since s, € (0,2w), we also have

s (20 — 50) || Asar, — Agpl|?
< ln = pl* = llte = pl* = P An(28 = Xo) || Bar — Bpl|?
—a (26 = )| Ct — Cpl* — afPra(2p — 1) [ Az — Arpl|?
< (llen = pll + [ltn = plD 20 — tal-
From (C2), (C3) and (4.1.39), we obtain

lim || Asz, — Agp|| = 0. (4.1.15)



Similarly, (4.1.14) and (4.1.15), we can prove that
lim ||Bz, — Bp|| = lim |[Ajz, — Aip| = 0. (4.1.16)

On the other hand, let p € © for each n > 1, we get p = T (I — r,A;)p. Since T
is firmly nonexpansive, we have

ln = pI? = NTET = raAv)an = T2 = raA)pl?
< <([ —rpAy)x, — (I — 1, A)p,uy — p>
e L[ PR S v N P
(1 = ra Az, = (= o Anp = (= p)|*}
< 5 {len = Bl + lun = B = 0 =) = sz — Arp)]?}
< 5 {llon =PI+l = P = o =+

2t = wall| Arn = Awpl| = r? | Avza — Aip|*}.
So, we obtain
litn = pl? <l = 9 =l = uall? 4 202 = ol s = Arp](4.1.17)

Observe that

lyn =PlI* = 11Pe(wn = A\uBa,) = Polp = AuBp)*

< <([ - AnB)xn - (I - AnB)p, Yn _p>
1

= S{IT=XB)zw = (1= \B)pI* + g — ol
(T = \aB)an = (I = MB)p = (9 — p) 1}

< 2 —pl? —pl|* - — ) — A (Bz,, — Bp)|?

< S{lla =PI+ Iy = Pl = ll(zn = 9) = An(Ban — Bp)|
1

< S{llwn = bl + v = I = llow = vl = A2 B = Byl
+2)\n<xn = Yn, an - Bp)},

and hence

lyn =27 < N = pl* = 20 — yal® + 2\al20 — yall| Bzn — Bpl|. (4.1.18)
By using the same argument in (4.1.51) and (4.1.18), we can get

lon =2l < Nlzw = plI* = llzn = vall® + 28ullwn — val|[| A2, — Azp| (4.1.19)



and

lzn =2l < Nz = pl* = llzn = 20ll* + 240/l — 2all|C2 — Cp]|. (4.1.20)

Substituting (4.1.51), (4.1.54), (4.1.54) and (4.1.54) into (4.1.41), we obtain

ltn—pl2 < a®lzn = pl2 + a@lyn — pI? + a@120 — plI? + aPflun — p2 + P v, — p|?
< alan = plP + 0@ {ln = I = 0 = 9all* + 20allz0 = gl | B — Byl |

+af{ e = pI* = llzw = zall? + 2ptallea = 2allllC2 — Cpl }
a2 = Bl = o = 2 + 20l = | sz — Arp }

+ a@{ e = pI2 = llzw = vall® + 2sullzn — vallllAsza — Aopll |
= Jlan = Pl = a2 =yl + 20027, = || B, — B
<3>||xn—zn||2+2un Dl = 2all|Cz = Cl
Hxn - unH2 + ana Hxn — un ||| A1z, — A1p||

Dz, — vl|? 4 28,0 ||z — v ||| Az — Asp]). (4.1.21)
It follows that

i [l — un? < ngn —p||2 tn = 2l = a2 [0 = yall* + 2AnaP ||z — yull || B — Bp|
ln = 2all* + 2100 |20 — 2| ||an - Cpl|

+2rpalM |z, — ||| Arzn — Aupl| = |z — val|?

+ 25,0 |20 — vp|||| Az — Asp|

(lzn — P|| +ltn = D20 = tall + 20002 [ — yall|| B, — Bp|

20,0020 — 20| Cn = Cpl| + 2rnal) |2 — || Arz, — Asp|

IN

+25,0 ||z, — v ||| Ao, — Agp]|.
From (C2), (4.1.39), (4.1.14), (4.1.15) and (4.1.16), we have
nli_r)noo |xn — un|| = 0. (4.1.22)
By using the same argument, we can prove that
dm =yl =l -zl =l e, vl =0 4123)
Applying (4.1.39), (5.4.21) and (4.1.23), we can obtain
dm =l = Bl =gl = dim [l = 2 = T = v = 0. (4.1.24
Step 5. We show that

2 € F(S)NGMEP(Fy, ¢, A\) N GMEP(Fy, 0, A) N VI(E,B)NVI(E,C).



Assume that \, — X\ € [¢,20] and p, — p € [d, 2€].
Define a mapping P : £ — L by

Pz = oV Siz4+a® Pp(1-AB)z+a® Py (1—pC)z+aD T (T—r A))a+a® T (T —s Ay,

Vo € E, where lim, .ol = a® € (0,1), when i = 1,2,3,4,5. By (Cl), then we

havezg’:1 o' = 1. Since Lemma 7?7, we have P is nonexpansive and

F(P) = F(Sy)NF(Ps(1—AB))NF(Pp(l—puC))NF(TH (I —rAr)) N F(TP(I - sAy))
= F(Sy)) NGMEP(F,p, A1) NGMEP(F,, 0, Ay)) N VI(E,B)NVI(E,C).(4.1.25)

We note that

| Pxy — 20|

< ||Pxn - tn“ + th - an

[a(l)Skxn + oz(2)PE(1 — AB)z, + oz(?’)PE(l — pCxy,

+aOTP(T — 1Az, + D TE(T — sAy)x,

- [aﬁll)Skxn + ag)PE(l — Bz, + aﬁf’)PE(l — Oy, + an)TTFl([ —rA)T,

T (I = sAz)ea] || + 1w —

< JatV — aM|[[ Sk
+a@||Pg(I — AB)x,, — Pg(I — A\ B) || + |a® — a@|||Pp(I — M\ B)zy||
+a® || Pg(I = pC)ay — Pe(I — pinC)zn| + [0 — aP || Pe(I — pinC) |
+ oW — oW = r Az + 10 — DT (1 = sAg)zn|| + [[tn — @
< ot = aM[[[Spanll + a® Ay = Al| Bl + [0 — aP| [ Pe(I — A\ B)ay |

+ oy — | Canll + 10" — P Pe(] = pnC)al
+a® = a1 = rAda,| + [0 — oD (I — sAz)n|| + [t — .|

5
< K (Z |O‘(i) - O‘S)‘ + A = Al + o — N‘) + [[tn — zall,
i=1

where /(7 is an appropriate constant such that

Ky = max{sup TP = r Az, sup [T - sAa)a,l. sup |Po(l — A, B .
n>1 n>1

n>1

sup || Pe(! — p1nC)an ||, sup || Bay||, sup [|Cayl, SupHSkan}-
n>1 n>1 n>1 n>1
From (C2), (C5) and (4.1.39), we obtain

lim ||z, — Pz,|| = 0. (4.1.26)



Since {z,,} is bounded, There exists a subsequence {z,,} of {x,} which converges
weakly to z. Without loss of generality, we may assume that {z,,} — z. It follows
from (4.1.26), that

=0.

lim ||@,, — Pz,
It follows that z € F'(P). By (4.1.25), we have z € O.
Step 6. Finally, we show that x,, — z, where z = Pgxy.

Since © is nonempty closed convex subset of H, there exists a unique 2z’ € © such

that 2/ = Pgxg. Since 2/ € © C F,, and =, = Pg, xy, we have
20 — @nll = |20 — P, wol| < [lz0 — /|| (4.1.27)

for all n > 1. From (6.4.15), {x,} is bounded, so w,(z,) # (. By the weak lower
semicontinuity of the norm, we have

2o — z|| <liminf [|zg — x| < ||xo — 2. (4.1.28)
11—
Since z € wy(z,) C O, we obtain
lzo = 2'l| = llzo — Powoll < [0 — 2[|.

Using (6.4.15) and (6.4.15), we obtain 2’ = z. Thus w,(z,) = {z} and z,, — z. So,
we have

|zo — 2'|| < |lwo — 2| < liri}o%f [0 — || <limsup [lzg — 24| < [lzo — 2. (4.1.29)

1—>00

Thus,

lzo = 2Il = lim [lzg — 2| = [lzo — 2|
1—>00
From z,, — z, we obtain (xy — z,,) — (z¢ — z). Using Lemma 6.4.19, we obtain that
lzn = 2[| = [I(zn — 20) = (2 = @0)| = O
as n — oo and hence z,, — 2z in norm. This completes of the proof. 0]

If the mapping S is nonexpansive, then S, = Sy = S. We can obtain the following
result from Theorem 4.1.2 immediately.

Corollary 4.1.3. Let E be a nonempty closed convex subset of a real Hilbert space
H. Let Fy and F, be two bifunction from FE x E to R satistying (Al)-(A5) and let
¢ : B — RU{+o0} be a proper lower semicontinuous and convex function with
either (B1) or (B2). Let A, Ay, B,C be four p,w,(3,¢-inverse-strongly monotone



mapping of E into H, respectively. Let S : E — E be a nonexpansive mapping
with a tixed point. Suppose that

Let {x,} be a sequence generated by the following iterative algorithm (6.5.3), where
{a!P} are sequences in (0,1), where i = 1,2,3,4,5, r, € (0,2p), sp € (0,2w)
and {\,}, {p.} are positive sequences. Assume that the control sequences satisty
(C1)-(C5) in Theorem 4.1.2. Then, {x,} converges strongly to Pgx.

If p =0 and A; = Ay = 0 in Theorem 4.1.2, then we can obtain the following

result immediately.

Corollary 4.1.4. Let E be a nonempty closed convex subset of a real Hilbert space
H. Let Fy and F, be two bifunction from E X E to R satistying (Al)-(A5) and let
¢ : B — RU{+o0} be a proper lower semicontinuous and convex function with
either (B1) or (B2). Let B,C be two [3,¢-inverse-strongly monotone mapping of E
into H, respectively. Let S : E — FE be a nonexpansive mapping with a fixed
point. Suppose that

©:=F(S)NEP(F\)NEP(F,)NVI(E,B)yNVI(E,C) #0.
Let {x,} be a sequence generated by the following iterative algorithm:

( ro€ H, Fh=FE, 1= PFPgxy, u, €E, v, €L,
Fi(up,u) + %(u — Up, Uy — Tp) >0, Yu € E,
FQ(Un,U)_‘_i(U_Un,fUn_xn) >0, Vv € E,
zn = Pg(x, — p,Cx,),

Yn = Pg(x, — \,Bxy,),

t, = ag)Szn + ag)yn + ag’)zn + ag)un + aﬁ{r’)vn,

Eppr ={w e Ey - [ty — ]| < [lz, = wl]},

[ Tn41 = Pg, x9, Vn=>1,

where {aﬁf)} are sequences in (0,1), where i = 1,2,3,4,5, r, € (0,00), s, € (0,00)
and {\,}, {p.} are positive sequences. Assume that the control sequences satisfy

the condition (C1)-(C5) in Theorem 4.1.2. Then, {x,} converges strongly to Poxy.

If B=0,C =0 and Fi(u,,u) = Fi(v,,v) = 0 in Corollary 4.1.4, then Pgp = I
and we get u, =y, = x, and v, = z, = ,, hence we can obtain the following result

immediately.



Corollary 4.1.5. Let E be a nonempty closed convex subset of a real Hilbert space
H. Let S: E — FE be a k-strictly pseudocontractive mapping with a fixed point.
Define a mapping Sy : E — E by Syx = kx + (1 — k)Sz, VYx € E. Suppose that
F(S)# 0. Let {x,} be a sequence generated by the following iterative algorithm:

To € H, Ei=FE z,= PEle
tn = anSkry + (1 — ay)zy,

Epppn={w e B, : [ty —w| < ||z, —w]},

{ Tny1 = Pp, 0, VR 2>1,

where {«,,} are sequences in (0,1). Assume that the control sequences satisfy the
condition lim,, .., a,, = o € (0,1) in Theorem 4.1.2 Then, {x,} converges strongly

to a point Pr(s)xo.

4.1.2 Convex Feasibility Problem

Finally, we consider the following Convex Feasibility Problem (CFP): finding an x €
ﬂjj‘il C;, where M > 1 is an integer and each C; is assumed to be the solutions of
equilibrium problem with the bifunction Fj, 7 = 1,2,3,..., M and the solution set of
the variational inequality problem. There is a considerable investigation on CFP in
the setting of Hilbert spaces which captures applications in various disciplines such as

image restoration [220], computer tomography and radiation therapy treatment planning.

The following result can obtain from Theorem 4.1.2. We, therefore, omit the proof.

Theorem 4.1.6. Let I be a nonempty closed convex subset of a real Hilbert space
H. Let {Fj}jvil be a family of bifunction from E x E to R satisfying (Al)-(A5)
and let p : E — RU {400} be a proper lower semicontinuous and convex function
with either (B1) or (B2). Let A; : E — H be pj;-inverse-strongly monotone
mapping for each j € {1,2,3,...,.M}. Let B, : E — H be [;-inverse-strongly
monotone mapping for each i € {1,2,3,... . N}. Let S: E — FE be a k-strictly
pseudocontractive mapping with a fixed point. Define a mapping Sy : E — E by
Spx = kx + (1 — k)Sz, Vx € E. Suppose that

O i= F(Sy) N (MY, GMEP(F;, 0, A7) 0 (WX, VI(E, By)) £ 0.



Let {z,} be a sequence generated by the following iterative algorithm:

(
ro € H, F1=F, 1’1:PE1£L'0, V1, Vg, ..., U0 € F,

Fi(vp1,v1) + 0(v1) — @(0n1) + (A1, v1 — Up1) + {01 — Up1, Ut — Ty)

1
Fy(vn2,v2) + @(v2) — p(vn2) + (Aopn, va — Uy 2) +

v

, Yv € FE,

0
L{vg = Vpo, Vo — 1) >0, Vo € E,

2
Frr(nar, o) + (o) — (V) + (Ap@n, O — V) + $<UM — UM, Un M — Tn) > 0,
Yoy € F,

Yn1 = PE(% - )\n,llen)7

Yn2 = PE(l'n - )\n,zB217n)>

Yn, N = PE(% - )\n,NBN%),
N M
tn = Qn0SkTn + Zi:l O iYn,i + Zj:l G iUn,j,

Epp ={w € Ey - [ty — ]| < [lz, = wl]},

| Tnt1 = Pg, . vo, Vn2>1,
/ / / N
where a0, On,1, Qna, - -y and Ay, 1,05, o, .., 5 € (0,1) such that Y ;" au, i+
M . .
>y = 1, {A\;} are positive sequences in (0,1). Assume that the control

sequences satisty the following restrictions:

(C1) lim,,__.~ ol = o) ¢ (0,1), for each 0 <i < N,

(C2) lim,__.o al?) = /) € (0,1), for each 1 < j < M,

(C3) a; <r; <2p; , where a; is some positive constants for each 1 < j < M,
(C4) ¢; < \,; <2B; , where c¢; is some positive constants for each 1 <1 < N,
(C5) lim,, o |[Ant1i — A\ni| =0, for each 1 <i < N.

Then, {x,} converges strongly to Pgxy.

If Aj =0, for each 1 < j < M and Fj(v,;,v;) = 0, for each 1 <¢ < N in Theorem

4.1.6, then v, ; = z,,, hence we can obtain the following result immediately.

Theorem 4.1.7. Let E be a nonempty closed convex subset of a real Hilbert space H.
Let ¢ : E — RU{+oc} be a proper lower semicontinuous and convex function with
either (B1) or (B2). Let B; : E — H be [3;-inverse-strongly monotone mapping for
each i € {1,2,3,...,N}. Let S: E — E be a k-strictly pseudocontractive mapping



with a fixed point. Define a mapping Sy : E — E by Syx = kx+ (1—k)Sx, Vz €
E. Suppose that

0 := F(S,) N ("X, VI(E, B;)) # 0.

Let {z,} be a sequence generated by the following iterative algorithm:

(
ro € H, By =FE, 11 = Pp, o,
Yn,1 = PE(xn - )\n,llen)a
Yn2 = PE(xn - )\n,2B2xn)7

Yn,N = PE(xn - )\n,NBN'In)a
tn = an,OSkxn + sz\il O ilYn,is

B =A{w € By |[tn —wl| < [lzn —wl]},

[ Tn41 = Pg, x9, Vn2>1,

where a0, 01,02, ..., 0N € (0,1) such that Zi]\io ani =1, {\,;} are positive
sequences in (0,1). Assume that the control sequences satisty the following restric-
tions:

(C1) lim,— oo o) = o € (0,1), for each 0 <i < N,

(C2) ¢; < \,; <20B; , where ¢; is some positive constants for each 1 <i < N,
(C3) lim,— 0 [Ant1i — Ani| =0, for each 1 <i < N.

Then, {x,} converges strongly to Pgxy.

If B, =0, for each 1 <¢ < N in Theorem 4.1.6, we get y,,; = x,,. Hence we can
obtain the following result immediately.

Theorem 4.1.8. Let & be a nonempty closed convex subset of a real Hilbert space
H. Let be a {F;}})L, be a family of bifunction from E x E to R satistying
(A1)-(A5) and let ¢ : E — R U {400} be a proper lower semicontinuous and
convex function with either (B1) or (B2). Let A; : E — H be pj-inverse-strongly
monotone mapping for each j € {1,2,3,...,M}. Let S: E — E be a k-strictly
pseudocontractive mapping with a fixed point. Define a mapping Sy : E — E by
Sgr = kx + (1 — k)Sx, Vx € E. Suppose that

6 = F(5,) N (N, GMEP(E;, . A,)) 0.



Let {z,} be a sequence generated by the following iterative algorithm:

p
ro€ H, F1=F, 1'1:PE1£L'0, V1, Vg, ..., U0y € F,

Vv

Fi(va1,v1) + 0(v1) — @(0n1) + (A1, v1 — Un1) + {01 — Up1, Ut — T)

1

0
Fy(vp2,v2) + @(v2) — @(vn2) + (A2Tn, Vg — Uy o) + . (Vg — Up2yUpo — xy) >0, Yuy € E,

T2

1
TM

FM('Un,Ma UM) + (P(UM) - SO('Un,M) + <AM:E7L7'UM - UH7M> +
Yoy € E,
tn = O{n7(]Sk.Tn + Zyj\il O{;/LJ'/UTLJH

Epp ={w € Ey - [ty — ]| < [lz, = wl]},

L Tn+1 = PEn+1l’0, Vn 2 1,

M
where an and oy, 1,5, ..., € (0,1) such that ay o+ 52, oy ; = 1. Assume

that the control sequences satisty the following restrictions:

(€D lim,_.c oY = a© € (0,1),

(C2) lim,__.o al) = /) € (0,1), for each 1 < j < M,

(C3) a; <r; <2p; , where a; is some positive constants for each 1 < 5 < M.

Then, {x,} converges strongly to Pgxy.

4.1.3 Hybrid algorithms of generalized mixed equilibrium problems

and the common variational inequality problems

In this section, we prove a strong convergence theorem for finding a common element
of the set of solutions of a common of generalized mixed equilibrium problems, the
common solutions of the variational inequality for inverse-strongly monotone mapping
and the set of fixed points of infinite family of nonexpansive mappings in the set of
Hilbert spaces.

Theorem 4.1.9. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let F\,F, be a bifunction of C' x C into real numbers R satisfying (Al) —
(A4) and let p1,p2 : C — R U {+o0} be a proper lower semi-continuous and
convex function. Let A, B,D,E be «, (3,0, n-inverse-strongly monotone mapping of
C' into H, respectively. Let {T;}5°, be an infinite nonexpansive mapping such that
© =N, F(T,))NGMEP(Fy,p1,AA\NGMEP(Fy, p2, BYNVI(C,D)NVI(C, E) # (.

, Yuv € FE,

(UM — Unos U — ) > 0,



Assume that either (B1) or (B2) holds. Let {x,} be a sequence generated by
o € C, Ol,i = C, Cl = ﬂ;’ilCLi, xr1 = Pcll’() and

(

t, = Tr(fl’sol)(xn — r,Azy,),
Uy = Ts(,’?’m)(xn — s$pBx,,),

wy, = & Po(un, — AnDuy,) + (1 = &) Po(tn — pnEty),

Yni = OniTo + (1 — au i) Tiwy,

Cor1i = {2 € Co ¢ [y — 2I1* < Nlwn — 201 + ani([|20]* + 2(zn — w0, 2)) },
Cny1= ﬂ;-x’lcnﬂi,

Tny1 = Po

\ n+1

(4.1.30)
for every n > 0, where {r,},{s,} C (0,00), A\, € (0,20) and p,, € (0,2n) satisfying
the following conditions: (). 0 < a <7, <b < 2q;

(). 0 <c<s,<d<20;

(iii).Jim,, . v, ; = 0;

(v)dim, . &, =& € (0,1);

V) 0<e<\, < f<20;

(Vi) 0< g< i <j<2n.

Then, {x,} converges strongly to Pgx.

Proof. Let p € © then, p = T\/™ S01)( — 1,Ap), p = Ts(f%m)(p — 5,Bp), p =

Po(p — \nDp) and p = Po(p — pnEp). By nonexpansiveness of P, Tr(fl’W) and
T{%2) e have
lws — pl|?

= ||€nPC(un - )\nDun) + (1 - gn)PC(tn - ,unEtn) - gnPC'(p - )\nDp)
—(1=&)Pc(p— paEp)|I?
2
En{ Po(un = AnDun) — Po(p = A Dp)} + (1 = E){ Pty — pinEl,) — Po(p — i Ep) } H

< &all(n = MDun) = (0= MDp) P+ (1= &)t = i Btn) = (b = )|
= &l(un = p) = Ma(Dutn = Dp) |2+ (1= &) (tn = p) = ia( Bt — Ep)*
= &u{llun = pI* = Aa(28 = A} Dy, — Dp|* |
(1= &) {ltw = pI* = (20 — )1 B, — Ep|*}
< & I8 (0 = suBra) = T8 (p = 5, B0)|F = Aa(20 = Aa) [ D — Dyl }
+(1 = &) ITE) (0 = raAwa) = T (p = 10 AD)* = (20 — )| Bt — Ep|*}
< &lll(en = suBra) = (0= s Bp)PH+ (1= &) {1 (@0 — radza) = (0= raAp)|?} (4.1.3D)
< Gallrn = pIP + (1= &)l — ol
< Jlan =l



Since both I — r,A and [ — s, B are nonexpansive for each n > 1, we have

lup —pl|> = |T>2(1 = 5,B)x, — T>9)(I — 5, B)p||”
< (I = s,B)x, — (I — s, B)pl
< Nln = plI? + sn(sn — 28)|| Bz, — Bp||? (4.1.32)
< Nl —pl?

and

[tn —pl> = [T = r,A)z, — T (1 — 1, A)pl)?
< (I =rpA)z, — (I —r,A)p|?
< Hxn - p||2 + Tn(rn - 204)“14:% - ApH2
< @, —p|* (4.1.33)

Therefore we obtain, ||u, — p|| < ||z, —p|| and ||t, — p|| < ||z, — p||.

Next, we will divide the proof into four steps.

Step 1. We show that {z,} is well defined. Let n = 1, then C,; = C' is closed and
convex for each 7 > 1. Suppose that C,; is closed convex for some n > 1. Then, by
definition of (), ;, we know that C,;; is closed convex for n > 1. Hence, C,,; is
closed convex for n > 1 and for each ¢ > 1. This implies that C), is closed convex for
n > 1. Moreover, we show that © C C,. Forn =1, © C C = (4. For n > 2, let
p € ©. Then,

lown,i(xo = p)* + (1 = ) (Tiw, — p)|?
anillzo = plI* + (1 = ans)lJw, — plf?

[wn = plI* + ani(llzo — plI* = llwn — plI?)
< lwn = pl* + ana(llzoll® + 2(z, — 20, ),

[ Yni — pl|®

IA

which shows that p € C,,;, Vn > 2, Vi > 1. So, © C C,,;, Vn > 1, Vi > 1. Therefore,
it follows that () # © C C,,, Vn > 1. This implies that {x,} is well defined.
Step 2.We claim that lim,,_ . ||€,+1 — 2] = 0 and lim,,_. ||yn; — .|| = 0.

From z, = P, xq, we get

<x0—xn,xn—y) 20

for each y € C),. Since © C C,,, we have

(rog — Tp, T —p) >0 for each p € ©® and n € N.



Hence, for p € ©, we obtain

OS <x0_$n>$n_p>

= (T — T, Tn — To + To — D)

—(xg — T, Ty — Tp) + (To — T, To — D)

< —llzo = @all* + llzo — 2allllzo — p.
It follows that
|xo — x| < ||xo —p||, forall p € ©® and n € N.

From z,, = P, x¢ and x,11 = Po,, 29 € Cphyq C O, we have

n+1
(xog — T, T — Tpa1) > 0. (4.1.34)

For n € N, we compute

0 S <$0—$n,l’n—$n+1>

(To — Ty, Ty, — T + T — Tpy1)

= —(xg — Tp,To — Tp) + (To — Tn, To — Tnt1)

IN

_||$0 - xn||2 + <$0 — Tn, Ty — xn-i—l)

IA

—llwo = zull* + |20 — Zallllzo — Znsa |

and then

|0 — zn|| < ||xo — Zpya]|, for all n € N.

Thus, the sequence {||z,—xo||} is a bounded and nondecreasing sequence, so lim,,_ ||z, —

xo|| exists. That is, there exists m such that
m= lim |z, — zol. (4.1.35)
n—-mamQ0

Hence, {x,} is bounded and so are {Ax,}, {Bz,}, {u,}, {Du,}, {t.}, {Et.}, {w.}, {Tiw,}
and {y,;} for i =1,2,..., and n > 1. From (4.1.34), we get

lzn = 20l = llzn — 20 + 20 — T |

= |20 — zol|* + 2(zn — 20, To — Tny1) + ||T0 — Tppa|?

lzn = @oll* + 2{xn — 20, 2o — @ + Tn = Tns1) + |20 — T [|”

1z = 2ol = 2{@n — 20, T — o) + 2(wn — T0, Tn — Tnt1) + [|T0 — Tnsa [|*

— [l — 20ll* + 2(xn — 20, Tn — Tny1) + |20 — Znga ||

IN

—llzn = @oll* + llzo — Tnall*.



By (4.1.35), we obtain

Since z,+1 = P¢

Hm ||#n — Zpse| = 0. (4.1.36)

1o € Cpyr C Cp, we have

[Yni — Toall? < Nan — T |* + ang([|zoll* + 2(z0 — 20, 2041)). (4.1.37)

By (ii1) and (6.4.13), we get

It follows that

Bm [Yns — Znsa|| = 0. (4.1.38)

[Yni = zall < NYng = ol + l2n = 2asa -

By (6.4.13) and (4.1.38), we have

Bm [yns — 2l =0, i =1,2, ... (4.1.39)

Step 3. We claim that the following statements hold:

(S3) lim,— oo [y, — || = 0.

For (4.1.31), we note that

[ Yni — plI?

IN

IA

IA

angillzo = plI* + (1 = an) | Tiw, — plI?

anillzo = plI* + (1 = an)llws — pl|?

anillzo = pl* + (1 = ani) {&all(@n — s0Bxn) — (p — 5, Bp)||?

+(1 = &)ll(zn — rnAz,) — (p — 2 Ap)|1*}

anillzo = plI + (1 = ani) {& (l2n — pII® + 50 (50 — 20)|| Bz, — Bpl|?)
(1= &) ([2n = pII® +ra(rs — 200) || Az, — Ap*) }

anillzo = plI* + (1 = ani) {[ln — plI* + Ensn(sn — 26)|| Bz, — Bp|?
+(1 = &)ra(rn — 2a)|| Az, — Ap|®}

anillzo = plI* + [z = plI* + (1 = ani)nsn(sn — 28)|| Bz, — Bp|)?
+(1 = api)(1 = &)rn(r, — 20)|| Az, — Ap)|)® (4.1.40)
anillzo = plI* + |z = plI* + (1 = ani)énsn(sn — 26)|| Bz, — Bpl|*.



Since 0 <c<s,<d<28, 0<k <a,; <h; <1, we have

(1= hi)€e(28 — d)|| Bz, — Bp[* < amgllvo — plI* + 2 — plI* = llyni — pI”
< anillwo = plI* + lyni — zall(len — pll + llyni — 2ll).

By condition (iii) and (4.1.39), then lim,,_.. ||Bz, — Bp|| = 0. By using the same
method with (6.1.29). Hence, from (6.1.28) since 0 < a <71, < b <2a, 0<k; <
oy < h; <1, we have

(1= hi)(1 = &)a2a = b)l| Az, — Ap||* < angllzo — plI* + 20 = plI* = llyn;: — pII*

am,illzo = pII* + llyni — @all (|2 = pll + lyni — plI)-

IA

By condition (iii) and (4.1.39), then we have lim,,_., ||Ax, — Ap|| = 0. On the other
hand, we compute

= pl = T = 5, B)a, = T = 5,B)p*
< ((¥n — suBzn) — (p — $.Bp), un — p)
1
= 3{I@0 = 5B2) = (0 = 5 Bp)|I* + llun — p?
(o = suBra) = (0 = 5uBp) — (1 = p)[I*}
1
< S{llwn = bl + i = pl? = |0 = 50B2a) = (p = 52Bp) = (wn = P)|I* |
1
= S{ =PI+ = P =l = 0 + 250 (@0 — i, B = Bp)
~s2||Ba, — Byll*}
and hence

lun —pII> < Nl@n — plI? = lJun — @0 ||* + 280 (20 — y, Bz, — Bp)
—s5|| Bz, — Bp||?
lzn — plI* — |tn — 20l|? + 28|20 — wn|||| Bz, — Bpl|. (4.1.41)

IN

By using the same method as (4.1.41), we also have

[ _pH2 < o, — p”2 — [[tn — anz + 2rp(zn — tn, Az, — Ap)
—r2 || Az, — Apl®
< laew = pIP = lltn — zl® + 20l — talll| Az — Apl|. (4.1.42)



Furthermore, we observe that

1Yni — pII
anillzo — plI? + (1 — an ) | Tiw, — p|?

= anm,illro — plI* + (1 — ang)llwn — pl?

)
)
)
)

(4.1.43)

| Bz, — Bpl|)

(4.1.44)

< amllzo = plI* + (1 = an) {16 Pe (tn — AnDuy) + (1 — &) Po(ty — pnBty) — pl|*}
< angllzo = pl* + (1 = ani) {&allun = plI* = An(26 = Xo)[| D, — Dpl?)
+(1 = &) ([tn = plI* = pa (20 — pn) | EL, — Ep||*)}
< anllzo = plI* + (1 = ) {&nllun — pI” + (1 = &) Itn — 2l }
< anllzo —pl* + (1 - an7i){€n(||$n = pl1* = llun = @al? + 25|20 — wn|
H(1 = &) (llen = plI* = [Itn — zall* + 27520 — tall| Az — Ap||)}
< anllzo =l + llzn — plI* = (1 — ani)éallun —
+(1 = an)én28n |20 — un| | Bxn — Bpll = (1 = i) (1 = &) [ltn — @
(1 = i) (1 = &) 2rnl|@n — ta|[| Az, — Apl]]
< angillzo = plI* + |0 — plI?

—(1- an,l)gnnun - len||2 + (1 - an,i)§n25n”a7n — ||| Bz, — Bp||
+(1 - O‘n,i)(l — &) 2|7y — to|||| Az, — Apl.

By condition (i)-(iv), (4.1.39), lim,, . || Az, — Ap|| = 0 and lim,, ., || Bx,, —
then we get

(1- O‘n,z)gnnun - len”2

Bp|| =0,

(4.1.45)

< amillwo = plI* + llzn = pI* = s — pI* + (1 = n)€n28ullzn — alll| Bz, — Bpl|
H(L = o) (1= &)2rn |20 — ta|[| Az — Apl|
< angllwo = pII* + llzn = yaill (e — 2l + lYni — )

+(1 = ani)n28nllTn — un||[| Bz, — Bp|
(1 = ani) (1 = &) 2rn|zn — tal| | Az, — Ap]|.

Therefore, we have
lim ||z, —u,|| = 0.
n—oo

Similary (6.4.31), from (4.1.43) by conditions (i)-(iv), (4.1.39), lim,, ., ||Az,

(4.1.46)

(4.1.47)

—Ap|| =



0 and lim,, . || Bz, — Bp|| = 0, then we get

(1= i) (1 = &n) It —

< apillmo = plIP + llzn = 21> = Nlyni — pI” + (1 — ani)én28n|2n — unll|| Bz, — Bp||
+(1 - O‘n,i)(l — &) 2|7y — to||[| Az, — Ap||
< anillwo = plI* + |20 — Yl (120 — pIl + lymi — 2ll)

+(1 = on,i)6n28n|| 0 — ual| | Bz — Bp|
+(1 — ) (1 — &) 2r, ||z, — tl|| Az, — Ap)|. (4.1.48)

Therefore, we have

lim ||z, —t,|| = 0. (4.1.49)

From (4.1.30), (4.1.32) and (4.1.33), we have

[wn = plI* = N€nPo(tn = AnDuy) + (1 = &) Pty — pinEtn) — €.Po(p — X Dp)
—(1=&)Po(p— pnEp)|I?
= &ullPo(un — AnDuy) — Po(p — A Dp) ||?
+(1 = &)I[Petn — pnEty) — Pe(p — i Ep)||?
En{llun = PII* = A(26 = Xo) || Duy — Dpl*} + (1 = & ){ [t — plI*
— (20 = o) || Et, — Epl*}
Endllzn — P + sn(sn — 20)||Ban — Bpl|* — An(20 — X)) || Dun, — Dp|1?}
+H(1 = &) {llzn = plI? + 7l = 20)[| Az, — Apl|® — pn (20 — pa) | Bt — Ep|1*}
2 = pII* + Ensn(sn — 20)|| Ben — Bpl|* — .20 (26 — M) || Duy — Dp||?
+(1 = &)rn(rn = 20) | Az, — Apl|? — (1 = &) pn (20 — pn) || Bty — Epl|.
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Furthermore, we observe that

lyni = pI* < anillzo = plI* + (1 = ang)| Tw, — pl*

anillzo — plI* + (1 = o) |Jw, — pl|?

< apllzo = plIP + (1 — ani){llzn — plI* + &nsn(sn — 26)|| Bz, — Bp||?
—EuAn(20 = X)) [ Dy — Dpl* + (1 = &)rn (1 — 20)[| Az, — Ap|?
—(1 = &) in(2n — pn) | Etn — Ep|*}

< anllzo — pl? + [lan — pl?
+(1 = ni)€nsn(sn — 20)|| Bz, — Bpl|?
—(1 = ap1)€uAn(20 — Ayl Duy, — Dp|?
+(1 = i) (1 = &)rn(ry — 20)|| Ay, — Ap)|?
—(1 = ) (1 = &) (20 — o) || EL, — Eplf?

< angillzo = plI* + |20 = plI* + (1 = ani)&nsn(sn — 26)|| Bz, — Bpl|®

—(1- O‘n,i)gnkn(zé — )| Duy, — Dp”2
‘l’(l - an,i)(l - gn)rn(rn - QQ)HAZL'n - Ap||2

Since 0 <e <\, < f <2, 0<k; <a,; <h; <1, we have

(1= hi)ée(26 — f)|Du, = DplI* < anillzo = plI* + 20 = plI* = [[yni — pII?
+(1 = ani)énsn(sn — 28)|| Bz, — Bpl|?
H(1 = ) (1 = &)ralrn — 20)|| Az, — Ap]|?
< angllzo = pII* + Yni = zall (2 = 2l = [yni — 2l
+(1 = ani)énsn(sn — 28)|| Bz, — Bpl|?
+(1 = ap) (1 = &)rn(r, — 2a)|| Az, — Apl*.

By conditions (i)-(v), (4.1.39), lim,, ., ||Ax, — Ap|| = 0 and lim,, ., || Bz, — Bp|| =0,
then lim,, .. ||Du,, — Dp|| = 0. By using the same method with (4.1.50). Hence, from
(4.1.50) and since 0 < g < p, <j <2, 0<k; <o,; <h; <1, we have

(1= R)(1 = &)g(2n = | Ety — Epll* < anillwo = plI* + 20 — plI* = lyni — pl?

+(1 = ani)énsn(sn — 28)|| Bz, — Bpl|?

(1 = ) (1 = &)ralrn — 20)|| Az, — Ap]|?
anillzo = pI* + lyni = zall (2 = 2l = llyns — pI)
+(1 = ani)énsn(sn — 28)|| Bz, — Bpl|?

+(1 = ap) (1 = &)rn(rn — 2a)|| Az, — Apl*.

IA

By conditions (i)-(iv), (vi), (4.1.39), lim, . ||Az, — Ap|| = 0 and lim,_. || Bz, —



Bpl|| = 0, then lim,,_,, | Et,, — Ep|| = 0. From (4.1.30), we have

Jw, — p||?
2
< et Potun = AaDuw) = Polp = ADp)} + (1 = &) {Po(tn — tnBta) = Polp — imEp)}|
< Gllug, — pl* + (1= &)t — plI*. (4.1.50)

Assume that u!, = Po(u, — A\,Duy,) and t,, = Po(t, — punEt,). By nonexpansiveness
of I —\,D and I — i, F/, we also have

IA

HPC([ - >\nD>un - PC([ - )‘nD>p||2

((un — AnDuy,) — (p — A\ Dp), uy, — p)

1

{10 = MDun) = (0 = XaDp) 2 + [, = p*
|t = AaDit) = (p = A\uDp) = (1, = p)|I*}

1 / !/
S{ =PI + 1, = pl* = 1l (un = M Do) = (0 = \uDp) = (i, = p)|I* |

s, = pII®

IA

IN

1 2
{8, — 5, B = T (o 5, B + 1, = pI = s — o
+2\n (U, — ul,, Du,, — Dp) — A2||Du,, — Dp||2}

1

< 3{llan =PI+ ey = I =l = W + Mu(hn = 26) | D, = Dp|2}.
It follows that

i, =pl? < e = pI? = lln = 12+ A(hn = 26) [ Du = Dpl*. (4.1.51)
Similaly (4.1.51), we obtain

1t = ol < aw —pl* = lta — tL11> + pn(pn — 20)||Et,, — Ep||*. (4.1.52)

Substituting (4.1.51), (4.1.52) into (4.1.50)

IN

Ealluy, = plI* + (1 = &)t — pl®

Enlllen = plI* = llun — wplI* + An(An — 20) [ Dus — Dp]|*}

(1= &)l = pII* = [[tn = 611 + s — 20) || Bt — Ep|*}
2 = pII* = &alltn — w,[I* + Eadn(Nn — 20) | Duy, — Dpl|?

—(1 = &)lltn = tlI* + (1 = &) pn(pn — 20) | Bty — Epl*. (4.1.53)

lwn — p]*

IN

IN



By (4.1.53), we have

1Yni — plI>
nillzo — pl|* 4+ (1 — o) | Tiw, — pl|?

VAN

= angllzo = plI* + (1= ) wn — I
= analleo = I + (1 = ) { e = pI1> = allun —
Féad(An = 20) 1Dty = Dpl2 = (1= &)lltw = L2 + (1= &)ptn (1 — 20) | Bt — Epl*}
= anallo = Bl + llzw =PI = (1 = an)éallun — ul |
(1= an )M — 20)]| Dt — Dpl* = (1= 0 ) (1= &) [t — 14
(1 = i) (1= &) pn (i — 20) || Bty — Epl|?
= anallo = pIP + llzw = pIP = (1 = an)éallun — ul |
(1= an)éndn(An = 20)l| Dt = Dpl + (1= ) (1 = )t lptn — 20) | Bt — Bl

It follows that

(1- an,l)gnnun - u/n||2

< angillro = plI* + 2 — plI* = llyni — pl”
+H(1 = i) An(An = 20) [ Duy = Dpl|* + (1 — i) (1 = &) (i — 20)|| Bt — Ep|®
< angillzo = pI* + lzn = yaill(J2n = pll + llyni — pl)

+H(1 = ap,i)&adn(An = 20) [ Duy — Dp|| + (1 = ) (1 = &) ptn(ptn — 20)|| Bty — Ep|*.

By conditions (iii)-(vi), (4.1.39), lim,, . || Du,—Dpl|| = 0 and lim,,_, || Et,—Ep|| = 0,

then we get

lim ||u, — || = 0. (4.1.54)

n—oo

By using the same argument (4.1.54), we can prove that

lim [|t, — ¢ || = 0. (4.1.55)

n

Applying (4.1.47) and (4.1.54), we also have

nh_)n;o |z, — || = 0. (4.1.56)
From (4.1.49) and (4.1.55), we obtain

11113010 |z, —t || = 0. (4.1.57)

n

Since u!, = Po(u, — A\pDuy,) and t,, = Po(t, — u,Et,), we have

Wy — Ty = En(uy, — ) + (1= &) (8, — 1),



By (4.1.56) and (4.1.57), we obtain
nh_r)go |wy, — || = 0. (4.1.58)
By condition (iii), we have v, ; = a, ;o + (1 — ay ;) T;w, which implies that
[Yni — Town|| = amllzo — Tiwn|| — 0, n — oo, Vi> 1.

From (4.1.39) and lim,, . ||yn: — Tiw,|| = 0, we have

|2 — Tl < |[Yni — Tawn|| + ||Yni — 2nl — 0, n — oo, Vi > 1. (4.1.59)
Since

[wn = Tiwn|| < lwn — 2| + (|20 — Tiwnl|

By (4.1.58) and (4.1.59), hence lim,, .., ||w, — Tyw,| =0, Vi=1,2,....
Step 4. We show that z € © := (N2, F(T;))NGMEP(Fy, 01, AANGM EP(F,, s, B)N
VI(C,D)NVI(C,E).

First, we show that z € N°, F'(T;). Assume that z ¢ N, F(7;). Since lim,, .« ||w,—
x| = 0 and lim, . |x, — z|]| = 0, we have that lim, . ||w, — z|| = 0. By
lim, . [|w, — 2| = 0 and lim, . ||w, — Tyw,|| = 0, ¢ = 1,2,..., from Opial’s

condition, we have

liminf; . o||w,, — 2| liminf;  ||lw,, — T;z||

<
< liminf; oo ([[wn, — Tiwn, || + | Tiwy, — Tiz]])
<

liminf; . ||lw,, — 2|,
which is a contradiction. Thus, we obtain z € N2, F(T;).
Next, we show that z € GMEP(Fy, ¢, A). Since t,, = Tr(fl’%)(xn—rnAxn), n>1,
we have for any y € C that

1
Fi(tn,y) +o1(y) — o1(tn) + (Axp, y — t,) + r—(y —tpytn — ) >0, VyeC.

n

From (A2), we also have

1
4,01(19) - ‘Pl(tn> + <A$nuy - tn) + 7,_<y —tny o — xn) > Fl(yutn)v vy € C.

For t with 0 <t <1landy € C, let y, =ty+ (1 —1t)z. Since y € C and z € C, we
have y, € C. Then, we have

(Y — s, Ayr)

(e = tngs Aye) — 01(ye) + 01(tn,) — (Y — oy, Azny) — (Ye — tns, tm_%> + Fi(ye: tn,)
= (A= AR+ (Al — Ar) — () + ()

M> + Fi(Ye, tn;)-

Vv

_<yt - tma

ng



Since ||t,, — zn,|| — 0, we have || At,,, — Az,,|| — 0. Further, from an inverse strongly
monotonicity of A, we have (y; — t,,, Ay, — At,.) > 0. So, from (A4) and the weak

. . . tn, —Tn,; ..
lower semi-continuity of ¢y, “i — 0 and t,, — z, we have at the limit
ng

(e — 2, Ay) > —o1(ye) + o1(2) + Fi(ye, 2) (4.1.60)

as © — oo. From (A1),(A4) and (4.1.60), we also get

0 = Fu(ys,y) +e1(ye) — p1(yr)
< Ry y) + (L= 0O F (s 2) + tei(y) — (1= Dei(2) — o(ye)
= Py y) +e1(y) — e1(y)] + (1 = O[F1(ye, 2) + 01(2) — o1(ye)]
< P (Y y) +e1(y) —er(y)] + (1 =)y — 2, Ayr)
= t{Fi(ye,y) +1(y) — @1(we)] + (1 = t)t{y — 2, Aye),
0 < Fi(yny) +e1(y) — er(ye) + (1 —t){y — 2, Ays).

Letting t — 0, we have, for each y € C|

Fi(zy)+e1(y) —o1(2) + (y — 2, Az) >0

This implies that = € GMEP(F}, p1, A). By following the same arguments, we can
show that z € GM EP(Fy, @9, B).

Lastly, by the same proof of [258, Theorem 3.1, pp. 346-347], we can show that
ze€ VI(C,D) and z € VI(C, E). Therefore, z € (N2, F(T;)) N GMEP(Fy, @1, A) N
GMEP(Fy, 02, ByNVI(C,D)NVI(C,E) that is z € ©.

Noting that since z,, = Pg, xo. By (7?), we have

<$0_$my—$n> < 0, VyECn

Since © C (), and by the continuity of inner product, we obtain from the above

inequality that
<$0—Z,y—z> < 07 VyGC

We conclude that z = Pgxy. This completes the proof. U

4.1.4 Complementarity Problem

Let C' be a nonempty closed and convex cone in H and E be an operator of C' into
H. We define the polar of C' in H to be the set

K*:={y* € H:(z,y*") >0, Vx € C}.



Then the element u € C' is called a solution of the complementarity problem if
FEue K*, (u, Eu) = 0.

The set of solution of the complementarity problem is denoted by C'(C, D), C'(C, E).
We shall assume that D, F satisfies the following conditions:

(E1) D, E are §, n-inverse-strongly monotone mapping;
(E2) C'(C, D), C'(C, E) # 0.

(B1) For each x € H and r > 0, there exist a bounded subset D, C C and y, €
C N dom(p) such that for any z € C'\ D,,

Flepa) + (0) + Hye = 2.2 — ) < p(2);

(B2) C' is a bounded set.

Corollary 4.1.10. Let C' be a nonempty closed convex subset of a real Hilbert
Space H. Let Fy,F5 be a bifunction of C' x C into real numbers R satistying
(A1) — (A4) and let 1, : C — RU{+00} be a proper lower semi continuous and
convex function. Let A, B,D,E be «, (3,0, n-inverse-strongly monotone mapping of
C into H, respectively. Let T1,T5,... be infinite nonexpansive mapping such that
©: =N, F(T;) NGMEP(Fy,p1,A)NGMEP(Fy, ps, B)NC'(C,D)NC'(C, E) # 0.
Assume that either (B1) or (B2) holds. Let {x,} be a sequence generated by
o€ C, Cy;,=C, C; =nNx2,C,, 1 = Poyxy and

(t, =T\ (2, — rpAzy),
Uy = Ts(fQ’m)(xn — spBx,),
wy, = §n Po(un — A Duy) + (1= &) Poltn — unEtn),
Yni = 0niTo + (1 — au i) Tiwy,
Corts = {2 € Cus  lns = 2P < 12 — 217 + s ol + 2z, — 20, 2)) .
Cri1 =02, Cri4,

L Tpt+1 = PCn+1*T0'

(4.1.61)
for every n > 0, where {r,},{s,} C (0,00), A\, € (0,20) and wu, € (0,2n) satisfy
the following conditions:

1. 0<a<r,<b<2aq
(). 0<c<s,<d<20;
(i) Jit oo s = 0
(iv)lim, ... &, =& € (0,1);



V) 0<e<\, < f<20;
vi). 0<g<p, <j<2n
Then, {x,} converges strongly to Pgx.

Proof. Using Lemma 7.1.1 of [239], we have that VI(C,D) = C'(C,D) and
VI(C,E) = C'(C,E). Hence, by Corollary 4.1.10 we can conclude the desired

conclusion easily. This completes the proof. U

4.2 A System of Generalized Mixed Equilibrium Problems
in Banach Spaces

For solving the equilibrium problem for a bifunction f : C' x C' — R, let us assume

that f satisfies the following conditions:

(A1) f(x,z)=0 for all x € C}
(A2) f is monotone, i.e., f(x,y) + f(y,x) <0 for all z,y € C}
(A3) for each x,y,z € C,

ltilrglf(tz +(1—=t)z,y) < f(z,y);

(A4) for each z € C, y — f(x,y) is convex and lower semicontinuous.
For example, let A be a continuous and monotone operator of C' into £* and define
f(!lf,y):(A[E,y—l’), vx??/ec'

Then, f satisfies (A1)—(A4). The following result is in Blum and Oettli [5].
Motivated by Combettes and Hirstoaga [10] in a Hilbert space and Takahashi and

Zembayashi [50] in a Banach space, we obtained the following lemma.

Lemma 4.2.1. Let C' be a closed convex subset of a smooth, strictly convex and
reflexive Banach space E. Assume that f be a bifunction from C'x C' to R satistying
(Al)—(A4), A : C — E* be a continuous and monotone mapping and ¢ : C' — R
be a semicontinuous and convex functional. For r > 0 and let x € E. Then, there
exists z € C' such that

Q(z,y) + %(y —z,JJz—Jx) >0, VyeC,

where Q(z,y) = f(z,y) + (Bz,y — 2) + ¢(y) — ¢(2),z,y € C. Furthermore, define a
mapping T, : E — C as follows:

Trx:{zEC:Q(z,y)—i—%(y—z,Jz—Jx)ZO, VyEC}.

Then the following hold:



(1) T, is single-valued;

(2) T, is firmly nonexpansive, ie., for all x,y € FE, (T,x — Ty, JT,x — JT,y) <
(Tyx — Toy, Jr — Jy);

—_—

(3) F(T:) = F(T,) = GMEF(f, B, ¢);
(4) GMEP(f, B, ) is closed and convex;

(5) o(p, Trz) + &(T,2,2) < ¢(p, 2), Vp € F(T,) and z € E.

4.2.1 A new modified block iterative algorithm for a system of gen-
eralized mixed equilibrium problems

In this section, we prove the new convergence theorems for finding the set of solutions
of system of generalized mixed equilibrium problems, the common fixed point set of
a family of closed and uniformly quasi-¢-asymptotically nonexpansive mappings, and
the solution set of variational inequalities for an a-inverse strongly monotone mapping

in a Z-uniformly convex and uniformly smooth Banach space.

Theorem 4.2.2. Let C' be a nonempty closed and convex subset of a 2-uniformly
convex and uniformly smooth Banach space E. For each j =1,2,...,m let f; be a
bifunction from C' x C' to R which satisfies conditions (A1)—(A4), B; : C' — E* be
a continuous and monotone mapping and ¢; : C — R be a lower semicontinuous and
convex function. Let A be an «-inverse-strongly monotone mapping of C into E*
satisfying ||Ay|| < ||Ay—Aul|, Vy € C and u € VI(A,C) # 0. Let {S;}2,:C — C
be an infinite family of closed uniformly L;-Lipschitz continuous and uniformly quasi-
¢-asymptotically nonexpansive mappings with a sequence {k,} C [1,00), k, — 1
such that F := (N2, F(S;)) N (ML, GMEP(f;, B, ¢;))(NVI(A,C)) is a nonempty and
bounded subset in C. For an initial point vy € E with 1 = llg,xg and Cy = C, we

define the sequence {x,} as follows:

(v, = e (Jz, — MAz,),
2n = J Han o, + >0y i SIMy),
Yn = J_l(ﬁw]xn + (1 - ﬁn)JZn)a
U, = TQm Tmel e TQ2 TQI y
n Tm,n™ Tm—1,n ron T rindm

C'n—l—l = {Z S Cn : ¢(Z,Un) S ¢(Z,I‘n> + 9”}7
{ Tny1 = e, 20, VN 2>1,

(4.2.1)

where 0, = sup,cp(kn, — 1)¢(q, xn), for each i > 0, {an;} and {B3,} are sequences
in [0,1], {r;,} C [d,00) for some d > 0 and {\,} C [a,b] for some a,b with



0 <a<b< c®af2, where %

Yoo @ni =1 for all n >0, liminf, (1 —4,) > 0 and liminf, . o, o0,; > 0
for all i > 1, then {x,} converges strongly to p € F, where p = llpx,.

is the Z2-uniformly convexity constant of FE. If

Proof. We first show that C),; is closed and convex for each n > 0. Clearly,
Cy; = C is closed and convex. Suppose that C), is closed and convex for each
n € N. Since for any z € C,, we know ¢(z,u,) < ¢(z,x,) + 0, is equivalent to
2(z, Jx, — Jup) < ||za||* = |unl|® + On- So, Cyyq is closed and convex.

Next, we show that ¥ C C, for all n > 0. Since u, = Q™y,, when ) =
T%LTgijfn TR T 5 =1,2,3,...,m, Q) = I, by the convexity of | - [|*, property
of ¢, and by uniformly quasi-¢-asymptotically nonexpansive of .S,, for each ¢ € ' C C,,
we have

¢(Qu un)

o(q, 0'Yn)

?(q,Yn)

O(q, T (Budn + (1 = Bn)J 20)

lall®> = 2(q, Badxn + (1 = Bu) T 20) + [|Bad @ + (1 = Ba) Iz ||

lqll® = 28 (g, Jzn) = 2(1 = Bu) (g, J2n) + Bullznll® + (1 = Ba)llzall?
Bnd(q, zn) + (1 = Ba)d(q, 2n) (4.2.2)

IA I IA

and

¢(Qa Zn) = ¢(Q> J_l(an,OJl’n + Z;)i1 O‘n,iJSinvn))
= lall* = 2(q, ano Tz + 372, i T SFvn) + [latn0 T2 + D272, T SPvn|?
= lall* = 200,0(q, Jz3) — 23775, niq, TSFvn) + [ltn,0 T2 + 2572 i TSP

< gl - 200,0(q, Jn) — 2 Zzl g, J ST n) + an70||<]a7n||2 + Zzoil O‘n,i||<]5invn||2
— 0 09| SV — JST ]|

= lgll* = 2an0(q, Jon) + anoll Jzal* = 23772, cnilg, TS vn)
+ Zzoil O‘n,iHJSinUnH2 — Q0 00 59| Ty — JS;‘LUnH

= an,0¢(Q> fn) + Zzoil an,i¢(q> Sinvn) - O‘n,OO‘n,J’gHJUn - JS?UnH

< nof(q, Tn) + D002 Qn,ikn®(q, V) — o jg || Jvn — JSFv,|.

(4.2.3)
It follows that

¢(Qa Un) = ¢(Q> HC'J_I(Jl’n - )\nAxn))

< o(q, J Y Jx, — N\Axy))
= Vg, Jx, — N\ Axy)
< Vg, (Jzn, — MAxy) + M Axy,) — 2(J Tz, — MAxy) — q, \Azy,)

Vg, Jxzn) — 20 (J2p — M\ Azy) — q, Azy,)

&(q, Tn) — 20 (T — q, Azy) + 2(T (T — MAZy) — T, — A ATy).
(4.2.4)



Since ¢ € VI(A,C) and A is an a-inverse-strongly monotone mapping, we have

=2\ (xy — q, Axy) = =2\ (x, — q, Az, — Aq) — 2\ (x, — q, Aq)
< =2\ (z, — q, Az, — Aq) (4.2.5)
< —2a)\,||Az, — Aq)*.

From ||Az,| < || Az, — Aq||, Yq € VI(A, C), we also have

2(J 7N Jwy — MAxy) — 20, =M Azy) = 2(J7Y(Jz, — NAz,) — T (), =\ Axy,)

2| TN (T — MAxy) — T H T2 || A Azy|
NTT (T — AAzy) — JT (T2 ||| A Az |
Sl Jzn — AAz, — Jx,|||| A Ay ||

2 A Az, |®

Al Az 1®

(VANVAN

< ZA| Az, — Aql*.
(4.2.6)
Substituting (4.2.80) and (4.2.81) into (4.2.3), we obtain
(b(% Un) < (b(% xn) - Qa)\nHAxn - AQ||2 + ;12)‘%”141% - AqH2
= (b(% xn) + 2>\n(c%>\n - O‘)HAIn - AqH2 (427)

< o(q x).
Substituting (4.2.82) into (4.2.3), we also have
¢(q7 Zn) S an,0¢(Q7 xn) + 221 an,ikn¢(Q7 xn) — O‘n,OO‘n,ngJUn — JS]nUnH
<

an,Okn¢(Qa xn) + 221 an,ikn¢(Q> l’n) - O4n,005n,j.g||J'Un - JS]”UH ||
(@, 0) = o0 g T0n = TS0

< ¢(Q7 xn) + Supqu(kn - 1)(25((], l’n) - Oén,oOén,ngJUn — JS]nUnH
= &(q,2n) + On — an ot gl Jv, — JST0,||
< d(q, zn) + Oy,
(4.2.8)
and substituting (4.2.83) into (4.2.79), we also have
(g, un) < B(qx0) + 0y (4.2.9)

This shows that ¢ € (', implies that F' C (), and hence, F' C C,, for all n > 0.
This implies that the sequence {z,} is well defined. From definition of C,; that
xo, € Cpy1 C C,, we have

z, = lg,vo and x,1, = 1l¢,

QS(In,fL'()) S ¢(xn+1>I0)a vn Z 0. (4'2'10)

Hence, we get
¢(xn,20) = ¢(Ilg, 0, 7o)
< &(q,z0) — (g, ) (4.2.11)
< ¢(q,x0), VqeF.



From (4.2.85) and (4.2.86), then {¢(z,, o)} are nondecreasing and bounded. So, we
obtain that lim ¢(x,, zo) exists. In particular, by (3.2.3), the sequence {(||z,||—||zo|)*}

is bounded. This implies {z,} is also bounded. Denote

M = sup{||z,||} < occ. (4.2.12)
n>0

Moreover, by the definition of ¢, and (5.1.21), it follows that
0, — 0 as n — oo. (4.2.13)

Next, we show that {x,} is a Cauchy sequence in C. Since z,, = Il¢, o € C,, C

C,, for m > n, we have

¢<xm7 xn) = ¢(xm7 1_ICnQUO>
< O(@m, x0) — ¢(Ilc, To, 7o)
= ¢($M>$0) - ¢(l’n,l’o).

Since lim,,_o, ¢(z,,xo) exists and we take m,n — oo, we get ¢(x,,,x,) — 0.Then,
we have lim, o ||zm — 24| = 0. Thus, {z,} is a Cauchy sequence, and by the
completeness of F, there exists a point p € C' such that x,, — p as n — oo.
Now, we claim that ||Ju, — Jz,| — 0, as n — oo. By definition of x, = Il x(,
we have
A(Tni1,2n) = O(@pg1, e, 20)
< O(Tnt1,70) — ¢(1le, o, To)
= O(Tp+1,T0) — G(Tn, To).

Since lim,, .o, ¢(x,, o) exists, we also have

lim ¢(x,41,2,) =0. (4.2.14)
Again we have that
T [l = ]| = 0 42.15)

Since J is uniformly norm-to-norm continuous on bounded subsets of F, we obtain
nh_)rgo |Jxpi1 — Jzn|| = 0. (4.2.16)
Since x,41 = Il¢, 79 € Cpy1 C O, and the definition of ()4, we have
O(Tnt1, Un) < A(Tpy1, Tn) + bn.
By (4.2.13) and (4.2.89) that

lim ¢(zpe1,u,) = 0. (4.2.17)

n—oo



Again, we get
lim |41 — ual = 0. (4.2.18)

Since
|tn — 20l = [Jtn — Tng1 + Tog1 — 2|

< un = T ||+ |70 — 24

It follows from (4.2.90) and (4.2.93) that
71113010 | un, — x| = 0. (4.2.19)
Since J is uniformly norm-to-norm continuous on bounded subsets of £, we also have
nh—>r20 | Ju, — Jx,|| = 0. (4.2.20)

Next, we will show that p € F':= NL,GMEP(f;, Bj, ;) N (N2, F(S;)) N VI(A, C).
(a) We show that p € N2, F(S;). Since x,41 = e, 20 € Cpy1 C Gy, it follow
from (4.2.83), we have

¢($n+1, Zn) S (b(xn—l—lv xn) + Hna

by (4.2.13) and (4.2.89), we get

lim ¢(x,11,2,) =0 (4.2.21)
it follows that
nlinolo |Tni1 — 2za|| = 0. (4.2.22)

Since J is uniformly norm-to-norm continuous, we obtain
lim || Jz,41 — Jz,] = 0. (4.2.23)
From (4.2.78), we note that

i = Toll = 1nes — (o n + 52, ansdStun)|
|0 Trs1 — Qnod Ty + D ooy Ui Lo — D gy Qi S SPUL|
= |lano(JTni1 — Jzn) + 221 Wi (JTns1 — JS] ) ||
12221 ni(J2nsr = TS 0n) = amo(J2n — T2 )|
> i il S — JSPn|| — anpl| Sz = Jxpall,

and hence

|Jxpi1 — JSIu,|| < L (| Jzps1 — T2 + ol Jn — JTnt1])). (4.2.24)

Y1 0my

From (4.2.91), (4.2.101) and liminf, . > ;° a,,; > 0, we obtain that

nlinolo |Jxpi1 — JSIv,|| = 0. (4.2.25)



Since J~! is uniformly norm-to-norm continuous on bounded sets, we have
lim ||z,41 — SPo,|| = 0. (4.2.26)
n—oo

Using the triangle inequality that

|2 = Sivnll = [T — Tng1 + Tng1 — Sivn||

< lzn = zpgall + |znga — Sionll-

From (4.2.90) and (4.2.104), we have
lim ||z, — Sv,|| = 0. (4.2.27)
On the other hand, we note that

¢(Q7xn> - ¢(Q7un> + en = Hxn||2 - HunH2 - 2<Q7 an - Jun> + en
< Nan = wnl[([znll + lunll) + 2[qll[|Jzn = Jup|| + 6,

It follows from #,, — 0, ||z, — u,|| — 0 and ||Jx, — Ju,|| — 0, that
&(q, ) — ¢(q,up) + 6, — 0 as n — oc. (4.2.28)

From (4.2.79), (4.2.3) and (4.2.82) that

H(q,un) < O(q,Yn)
< Bnd(a,20) + (1= Ba)9(q, 2n)
< ﬂnﬁb(% xn) + (1 - 6n)[an,0¢(% xn) + Z;ﬁ1 an,ikn¢(q7 Un)
— Q0 i G || S — J ST U]
= ﬁn¢(Qa xn) (1 - ﬁn)an 0¢(Q> in) + (1 - ﬁN) Zf; an,ikn¢(Q> Un)
(1 — Bn) 00, jgl| Jvn — J ST,
< (q, xn) (1 - @L)O‘n 0¢(q7 xn) (1 - ﬁn) Zil an,ikn(ﬁ(qv Un)
< Bud(qxn) + (1 = Br)an,00(q, Tn)
( n)z —1 Onyi N[Cb(fbfn) _2)‘71(0‘_ C%An)||AIn—AQ||2]
< Bn@(q; 2n) + (1= Bn)om okn (g, Tn)
(1 - 6n) Zz 1 ®¥nyi n‘b(Qu xn)
—(1 = Ba) 32321 Qnikn2An(a = ZAn) || Az — Ag|®
< Bnknd (g, n) + (1= Bu)knd(q, 2n)
—(1 = 8a) 3272, anikn2Xn(@ = )| Az, — Ag|?
= kn(b(q? xn) - (1 - 6n) Z;)il an,iknz)‘n(a - C%ATJHA:CH - Aq||2]
< (b(Qu xn) + SqueF(kn - 1)¢(Qa xn)

—(1 = Bn) Yoy anikn2X (a0 — 3 N,)|| Az, — Agl]?
= ¢(Qa xn) + 0, — (1 - ﬁn) Zzoil O‘n,ikn2)‘n(a - c%)‘n)HAZBn - AQ||2a



and hence

2a(a — B)|| Az, — Ag]? 22X, (o — 2\, || Az, — Agl?

(4.2.29)
(1-8r) Zlfil an,ikn (¢(Q> [L’n) - ¢(Q> un) + 971)

<
<

From (4.2.28), {\,} C [a,b] for some a,b with 0 < a < b < a/2, liminf, (1 —
Bn) > 0 and liminf, . oy, 0y, > 0, for i > 0 and k, — 1 as n — oo, we obtain
that

nh—>r20 |Az,, — Agq|| = 0. (4.2.30)

From (4.2.81), we compute

A(xp,vn) = O(zy, o H(Jz, — N\yAT,))
< Pan, TN Jx, — M Axy))
= V(zg, Jr, — \JAxy,)
< V(zn, (Jr, — MAzy) + MAzy,) — 2(J 7Tz, — MAzy,) — 20, M Azy,)
A, ) + 2(T (T2 — NAzy) — Ty =N Axy,)
= 2(J Y Jz, — N\Ax,) — 2, — A\ Axy)
< YAz, — Ag|?
< W) A, — Agl?.

From (4.2.108) that

lim ||z, —v,|| =0 (4.2.31)
and we also obtain
lim || Jx, — Ju,| = 0. (4.2.32)

Since S} is continuous, for any 7 > 1
nh_}rrolo |Six, — Siv,|| = 0. (4.2.33)
Again by the triangle inequality, we get
[0 = SPanll < lan = Svnll + 115700 — SPn]-
From (4.2.105) and (4.2.111), we have
nh_}rgo |xn — SPx,|| =0, Vi>1. (4.2.34)
By using triangle inequality, we get
157 20 — pll <1570 — 2nll + lon —pll, Viz1.
We know that z,, — p as n — oo and from (4.2.112)

Stx, — p for each 7 > 1.

(2



Moreover, by the assumption that Vi > 1, S; is uniformly L;-Lipschitz continuous, and

hence we have.

157+ e = SPanll < 11SP e — S gl + 157 enis — T
+||xn+1 - xn” + Hxn - Sznan

< (Lit Dllwnss = zall + 157 21 = @l + l2n — SFaall.
(4.2.35)

By (4.2.90) and (4.2.112), it yields that ||S/""x,, — Sz, || — 0. From Sz, — p, we
have S""'x, — p, that is S;S!'z,, — p. In view of closeness of S;, we have S;p = p,
for all ¢+ > 1. This implies that p € N2, F'(.S;).

(b) We show that p € NJL,GMEP(f;, B;, ¢;).
Let u, = Qmy,, when Q) = T T2 ... 7@ T@ 5 =123 .. mand O = I,

Tjim=Tj—1,n T2n T T1n?
we obtain
olq,un) = (¢, 0'yn)
< ¢(QaQnm_lyn>
< (g, 0 ?yn) (4.2.36)
< (b(Qquzyn)

By Lemma (4.2.1)(5), we have for j =1,2,3,...,m

(Y Yn, Yn) + On (0, Yn) — O(q, V) + 0

¢(Q> l’n) - ¢(Qa un) + 6)n

VAN VANVAN

From (4.2.13) and (4.2.28), we get ¢(y,,y,) — 0 as n — oo, for j =1,2,3,...,m

and implies that

Since z,1 =1, 29 € C,i1 C C,, it follows from (4.2.79) and (4.2.83) that

n+1

¢($n+1, yn) S ¢($n+1, xn) + en

By (4.2.13) and (4.2.89), we have

lim ¢(xn+la yn) = 0.

n—~o0

Applying previous Lemma that

nlLIEO |Tns1 — ynll = 0. (4.2.39)



Using the triangle inequality, we obtain
20 =yl < llzn = zpall + (201 — -
From (4.2.90) and (4.2.39), we get
nh—>nolo |zn — ynl| = 0. (4.2.40)

Since x,, — p and ||z, — y,|| — 0, we have y, —» p as n — oo.
Again by using the triangle inequality, we have for j =1,2,3,...,m

Ip = Yyull < 2= yall + lyn — Lyl
From (4.2.38) and y, — p as n — oo, we get
lim flp — Qyall =0, Vi=1,23,...,m. (4.2.41)
By using the triangle inequality, we obtain
1y = Bl < ¥y — pll + llp — 7 -
From (4.2.41), we have
nh_)Iglo 1y, — Wy, || =0, Vj=1,2,3,...,m. (4.2.42)

Since {r;,} C [d,00) and J is uniformly continuous on any bounded subset of E,

lim W2 —I% wall _ g yi— 123 m. (4.2.43)

n—oo Tjmn
From Lemma 4.2.1, we get for j =1,2,3,...,m

Qi( Ut y) + ——(y = Vyn, Sy = JU9a) 20, Yy e C.
Jn
From (A2),
T—(y — Wy, SV y, — JU ) > Qi(y, Yy,), Vyel, Vji=1,2,3,...,m.
Jn

From (4.2.41) and (4.2.43), we have
0>Q;(y,p), Vyel, Vj=1,23,...,m. (4.2.44)

For t with 0 <t <1 and y € C, let y, = ty + (1 — t)p. Then, we get that y, € C.
From (4.2.44), and it follows that

Qj(y,p) <0, VYyel, Vji=1,2,3,...,m. (4.2.45)



By the conditions (A1) and (A4), we have for j =1,2,3,....m

Qj(yt, yt)
tQ;(ye. y) + (1 = )Q;(ye, p)
tQ;i (e, y)
= Qi(ysy).

From (A3) and letting ¢ — 0, This implies that p € GMEP(f;, B;,p;), Vi =
1,2,3,...,m. Therefore p € NTL,GMEP(f;, B}, ;).
(c) We show that p € VI(A, C). Indeed, define U C E x E* by

Uy = { Av+ Ne(v), v e C;

0

(4.2.46)

IAINA

4.2.47
0, vé¢C. ( )
Since U is maximal monotone and U~'0 = VI(4,C). Let (v,w) € G(U). Since
w € Uv = Av 4+ N¢g(v), we get w — Av € N¢(v).
From v, € C, we have
(v — v, w — Av) > 0. (4.2.48)

On the other hand, since v, = II¢J " }(Jxz, — A\ Ax,). Then, we have
(v —vp, Ju, — (Jx, — N\yAx,)) > 0,

and thus

<v — vy, Lzazdtn _ Axn> <0. (4.2.49)

It follows from (4.2.117), (4.2.118) and A is monotone and é-Lipsohitz continuous
that

(v —vp,w) > (v—uvy,,Av)
> (0= v, Av) + (v — vy, LT~ Ag,)
= (v—v,, Av— Az,) + <v — 22Uy, J“"/’"Ai_n*]U”>
(U — U, Av — Avy,) + (v — vy, Av, — Azy) + <v — Up, %>
2l = vl el — o — v || Regeed
> _H (uvn;xnu X ||J:cn;Jvn||) 7

where H = sup,,, [|[v — v,||. Take the limit as n — oo, (4.2.109) and (4.2.110), we
obtain (v—p,w) > 0. By the maximality of B we have p € B0, that is p € VI(4, C).
Hence, from (a), (b) and (c), we obtain p € F.

Finally, we show that p = [Ipxy. From z,, = [I¢, xy, we have (Jzog—Jx,, x,—2) >
0, Vz € C,,. Since I' C C,,, we also have



Taking limit n — oo, we obtain
(Jeg— Jp,p—y) >0, VyeF

We can conclude that p = Ilpzy and x, — p as n — oo. This completes the proof. []

4.2.2 A modified hybrid projection method for solving generalized

mixed equilibrium problems

In this section, we prove the new convergence theorem for solving the set of solutions
of a generalized mixed equilibrium problems and the common fixed point set of a
family of closed and uniformly quasi-¢-asymptotically nonexpansive mappings in a
uniformly smooth and strictly convex Banach space £ with Kadec-Klee property.

Theorem 4.2.3. Let C' be a nonempty, closed and convex subset of a uniformly
smooth and strictly convex Banach space E with Kadec-Klee property. Let B :
C — E* be a continuous and monotone mapping and let ¢ : C — R be a convex
and lower semi-continuous. Let f be a bifunction from C x C' to R satisfying (Al)-
(A4). Let B be a continuous monotone mapping of C' into E*. Let {S;}2,:C — C
be an infinite family of closed uniformly L;-Lipschitz continuous and uniformly quasi-
¢-asymptotically nonexpansive mappings with a sequence {k,} C [1,00), k, — 1 such
that F:= N2, F(S;))NGMEP(f, B, ) is a nonempty and bounded subset in C. For
an initial point o € E with x1 = llg,z9 and Cy = C, we define the sequence {z,}

as follows: )

Zn = J N oy + > ooy Qi JSTTy),

Yn = J_l(ﬂnjxn + (1 - ﬂn>*]zn>7

u, € C such that u, = K, yn, (4.2.50)
Cry1 =1{z € Cp 1 ¢(z,un) < 9(2,20) + Cu},

Tnp1 = e, 29, Vn >0,

where (, = sup,cp(kn — 1)0(q, 75), {an:},{Bn} are sequences in [0,1] and {r,} C
la,00) for some a > 0. If Y 2 ;=1 for all n >0 and liminf, . a,oa,; >0

for all i > 1, then {x,} converges strongly to p € F, where p = Ilpx.

Proof. We first show that C),; is closed and convex for each n > 0. Clearly C| = C
is closed and convex. Suppose that C', is closed and convex for each n € N. Since for

any z € C,,, we known
¢(Zaun) < Cb(z»xn) + G & 2<Z> Jx, — Jun) < ||In||2 - ||un||2 + Cn.

So, C,+1 is closed and convex. Therefore Ilpxy and Il zy are well defined.



Next, we show that F' C C,, for all n > 0. Indeed, since u, = K, vy, for all
n > 0. It is clear that /' CCi=C. Suppose F' C (), for n € N, by the convexity of
| - |?, property of ¢, and uniformly quasi-¢-asymptotically nonexpansive of S,, for each
qg € F C C,, we observe that

¢(Q>un) = ¢(Q>Krnyn)

< (4, ¥n)

= ¢lg, J " (Budzn + (1= Bn)J2n))

= lgl® = 2{q, BuJwn + (1 = B0) T 20) + | Bnd 0 + (1 = Bn)J za1?

< gl = 28ulp, Jxn) = 2(1 = Ba)(gs T2n) + Ballzall* + (1 = Ba) | 20|

6n¢(q7 xn) + (1 - ﬂn)¢(Q7 Zn) (4251)
and

(¢, 20) = (g, T HomoJ T + D00, i Sl )
= ||Q||2 - 2<Q> O‘n,OJfLﬁ + Zzl O‘n,zjsznxn> + ||Ofn,0t]xn + Zzoil O‘n,iJSinxn||2

< gl - 200,0(q, Jn) — 2 Zil g, ST ) + |lamo ST, + Zil anvi‘]Sinanz
< gl - 200,0(q, Jn) — 2 Z;)il g, J ST ) + O‘n,0||‘]xn||2 + Z;)il an7i||<]5?xn||2
— 0 00 G| JTn — S},
= |lgll* = 2cn0(q, Jon) + anoll Jal* = 23772, cnilg, TSP an)
+ Zzoil O‘n,i||<]5?xn||2 — Q0 g || 20 — J5f93n||
= n00(q,Tn) + Doy Qi ®(q, SFTn) — o0 jgl| JTn — ST,
< anoknd(q, zn) + Zzoil U ikin®(q, Tn) — Qn 000,39l JTn — JS]T.anH
< kno(q, zn).
(4.2.52)
Substituting (4.2.52) into (4.2.79), we get
(g, un) < Bnd(qzn) + (1= B)d(q, 20)
< ﬁn¢(Q> in) + (1 - ﬁn)kngb(q’ xn)
< Bud(q,n) + (1= Bn)[d(q, ) + 2gg(kn — 1)o(g, zn)]
< (g, n) + (1= Fn) ?ele(k" — 1o(g, zn)
< (¢, 2n) + Cn- (4.2.53)

This show that ¢ € C,,,; implies that F' C C,,; and hence, ' C C, for all n > 0.
Since F' is nonempty, C, is a nonempty closed convex subset of E and hence [ls,
exist for all n > 0. This implies that the sequence {x,} is well defined.

From definition of C,,; that z,, = I,z and 41 = Il 79, we have

O(Tn,20) < G(Tni1,70), Vn 0. (4.2.54)



We note that

¢($n, xO)

gb(chxo, 930)
< ¢(p, 7o) — &(p,Tn) (4.2.55)
< ¢(p,x), VpeF cC,, ¥n>0.

From (4.2.85) and (4.2.86), then {¢(z,, o)} are nondecreasing and bounded. So, we

obtain lim ¢(z,, 7o) exists. In particular, by (3.2.3), the sequence {(||z.| — ||zol)?}

n—~o0

is bounded. This implies {z,} is also bounded. Denote

K = sup{||z,||} < oc. (4.2.56)
n>0

Moreover, by the definition of {(,} and (5.1.21), it follows that
Cp — 0, n —> oo. (4.2.57)

Since

liminf, . ¢(xn, x0) = liminf, . {||zal|® — 2(xn, Jz0) + ||20]|*}
> Pl = 2(p, Jzo) + [lzo]|* = ¢(p, 20),

it follows that

¢(p, x0) < liminf ¢z, x) < limsup ¢(xn, 20) < ¢(p, Zo)-

This implies that lim,, . ¢(x,, x9) = &(p,xo). Hence, we get ||z,|| — |lp|| as
n — o0. In view of the Kadec-Klee property of £, we obtain that

lim x, = p.

n—-—uoo

Now, we claim that ||Ju, — Jx,|| — 0, as n — oo. By definition of Il x4, one
has
H(Tni1,70) = A(Tngr, o, 70)
< O(@n+1, 20) — ¢(Ilc, To, 7o)
= O(Tnt1,%0) — ¢(@n, o).

From the lim ¢(x,,xo) exists, we obtain

n—oo

lim ¢(x,41,2,) =0. (4.2.58)

n—o0

Since x,1 =1l¢, 29 € C,r1 C C, and the definition of C,,,;, we have

n+1
¢(xn+17 un) S ¢(xn+17 xn) + Cn
By (4.2.57) and (4.2.89), we also have

lim ¢(zpe1,un) = 0. (4.2.59)

n—oo



From (3.2.3), we see that
|un]| — |lpl|, as n — oo. (4.2.60)
It follows that
[ Junll — [|Jpl], as n — oo. (4.2.61)

This implies that {||Ju,||} is bounded in E*. Note that E is reflexive and E* is also
reflexive, we can assume that Ju, — x* € E*. In view of the reflexive of E., wee see
that J(E) = E*. Hence there exist © € F such that Jz = z*. It follows that

G(nsrtn) = NTngal® = 2(@ni, Jun) + [Jun]?
l2n i1 1* = 2(zns1, Jun) + (1w .

Taking liminf,, .., on the both sides of equation above and in view of the weak lower

semicontinuity of norm || - ||, it yields that

0 = [Ipl* = 2(p,2*) + [|l=*|*
= |lpll* = 2{p, Jz) + || Jz|?
= |lpll* = 2{p, Jz) + [|l=|]?
= ¢(p,@).
Thai is, p = x, which implies that x* = Jp. It follows that Ju, — Jq € E*. Since
(3.2.3) and the Kadec-Klee property of E that

lim u, = p. (4.2.62)

n—aoo

Since ||z, — uy|| < ||z, — p|| + ||p — wn||. It follows that

lm ||z, — | = 0. (4.2.63)

n

From J is uniformly norm-to-norm continuous on bounded subsets of £, we obtain
lim || Ju, — Jz,| = 0. (4.2.64)

Next, we will show that p € F':= GMEP(f, B,p) N (N2, F(S;)).
(a) First, we show that p € GM EP(f, B, ¢). It follows from (4.2.79) and (4.2.52),
that ¢(p, y,) < &(p, ) + (n- By (4.2.57) and u,, = K, y,, we have

¢(una yﬂ) = ¢<Krnym yn)
< ¢(p> $n) - qb(p, Kr’nyn) + Cn
= o(p,zn) — O(p,uy) + ¢ — 0 as n — o0.



From (3.2.3), we see that

[unll — [lynll, as n — oo. (4.2.66)
In view of u, — p as n — oo, wee see that

[ynll — [Ipll, as n — oo. (4.2.67)

It follows that
| Jun|| — || p]|, as n — oo. (4.2.68)

Since E* is reflexive, we may assume that Jy, — z* € E*. In view of the reflexive
of E, wee see that J(E) = E*. Hence there exist z € £ such that Jz = z*. It follows

that
¢(umyn> = ||unH2 - 2<un= Jyn> + ||yn||2
= lunll® = 2(un, Jyn) + || Jynl*.

Taking liminf, ., on the both sides of equality above yields that

= |plI* = 2(p, Jz) + || J=z||?
= |Ipll* = 2(p, J2) + || =|*
= ¢(p, x).

Thai is, p = z, which implies that z* = Jp. It follows that Jy, — Jq € E*. Since
(3.2.3) and the Kadec-Klee property of £ that

0 > [IplI* = 2(p, 2*) + [Iz"|1”

Jy, — Jp — 0 as n — oo. (4.2.69)

Since J~! is norm-weak*-continuous. It follows that y, — p. Since (4.2.67) and E
enjoys the KKadec-Klee property, we obtain that

Yn — P as N — 00. 4.2.70)
It follows by (4.2.62) and (4.2.70), that
nh—>nolo |lwn, — yn|l = 0. (4.2.71)
Since J is uniformly norm-to-norm continuous, we get
nh—>r20 | Ju, — Jyn|| = 0. (4.2.72)
From (A2), that

go(y) - Qp(un) + <Byna Yy — un> + %<y — Un, Jun - Jyn> Z _f(umy) Z f(ya un)> Vy € Ca



and hence

P(y) = ¢(un) + (Byn, Y = tn) + (y = tn, 7277) > f(y,up), VyeC. (4.2.73)

For t with 0 <t <1 and y € C, let y, =ty + (1 — t)p. Then y;, € C and hence

0> —o(r) + @(un) = (BYn, gt — tn) = (yr — tn, 22270 + f(yp, up), Yy € C.
It follows that

<Byta Yt — un> > <Byta Yt — un> - @(yt) + Qp(un) - <Byn>yt - un) - <yt — Un; ‘]unri;‘]%ﬁ
+f(ys, un), Yy €C
= By, ye — un) — oY) + 0(un) — (Bun, Yt — tn) + (Bun, Yt — tn)
~(BYn, Yt — un) — (Y — Un, Ju%nt]yw + f(Yeun), Yy €C
= (BYr — Bun, yr — un) — 9(y) + o(un)
Bty — BYn, Y — un) — (Y1 — Un, Junri:]yw + [y un), Vye € C.

By (4.2.97), we get u,, — p and y,, — p as n — oco. By the continuity of B, we obtain

Jun—Jyn .
M—%)asnﬁoo. Since

that Bu,, — By, — 0 as n — oo. From 7r,, > 0 then
B is monotone, we know that (By, — Bu,,y; — u,) > 0. Thus, it follows from (A4)
that

Fyep) = oye) +p) < Nminf £y, un) — oY) + @ (un)
< JLH;JB%, Yt — Un)

= (By,y: — D).
From the conditions (A1) and (A4), we obtain

0 = (yt>yt)+ ( ) ( )
< tf(yey) + (L =8)f(ye, p) + tp(y) + (1 = t)p(p) — oY)
= tf(yny) +te(y) —te(y) + (1 =) f(yep) + (L = t)p(p) — (1 — t)p(w)
< t(fyey) +ey) — () + (1 —)((Bys, ye — p)
< t(fyey) +e(y) — () + (1 — ) By,,y — p)

dividing by ¢, we get
0< flye.y) +y) —(y) + (1 — 1) (By,y — p).-
Letting ¢ — 0, we have

0 < f(p,y) +v(y) —w(p) + (Bp,y —p), VyeC.

This implies that p € GMEP(f, B, ).
(b) We show that p € N2, F(S;). For any j > 1 and any ¢ € F, it follows from
(4.2.79), (4.2.52) and (4.2.3) that

an,oan,jg(H‘]xn - JS;LG||) S ¢(Q>$n) - ¢(Q>un) + Cn — Oa n — oQ.



From the condition liminf, . a;, 00, ; > 0, we see that
gl Jzn — JS}as||) — 0, n — oc.
It follows from the property of ¢ that
lim, o ||[Jzn, — JSPx,|| =0, Vi>1. (4.2.74)

Since x, — p and J is uniformly continuous, it yields Jx, — Jp. Thus from
(4.2.113), we have
JStr, — Jp, Vi> 1 (4.2.75)

Since J~!': E* — FE is norm-weak*-continuous, we also have
Stx, = p, Vi > 1. (4.2.76)
On the other hand, for each i > 1, we observe that
153 @nll = [Ipll] = [1T(SFzn) [| = 1Pl < [[J(S]"2n) = Jpl|-

In view of (4.2.114), we obtain ||S'z,|| — ||p| for each ¢ > 1. Since E has the
Kadee-Klee property, we get

Sl'x, — p for each 7> 1.

By the assumption that for each ¢ > 1, S; is uniformly L;-Lipschitz continuous, so we
have

157 = SPag|l < 1S an — S gl + 157 2t — T | + ([ 201 — 24|
+Hzn — Sznan

< (Lt Dlwnss = zall + 157 20i1 — 2| + llon — Sfan]-
(4.2.77)

By (4.2.62) and (4.2.115), it yields that ||S"* 'z, — Sz, || — 0. From Sz, — p, we
get Sy, — p, that is S;SPx,, — p. In view of closeness of S;, we have S;p = p, for
all ¢ > 1. This imply that p € N2, F'(S;).

Finally, we show that x,, — p = llpzy. Let ¢ = Illpzy. From =z, = Ilo, ¢ and
qg € F cC,, we have

d(xn, o) < P(q,x9), Vn >0.
This implies that
¢(p, o) = lim (w0, ) < ¢(g, o).

By definition of p = Ilgpxy, we have p = ¢. Therefore z, — p = Ilpxg. This
completes the proof. U



4.2.3 Convergence theorems for mixed equilibrium problems and vari-

ational inequality problems

In this section, we prove the new convergence theorems for finding the set of solutions
of a mixed equilibrium problem, the common fixed point set of a family of closed
and uniformly quasi-¢-asymptotically nonexpansive mappings, and the solution set of
variational inequalities for an a-inverse strongly monotone mapping in a 2-uniformly

convex and uniformly smooth Banach space.

Theorem 4.2.4. Let C' be a nonempty closed and convex subset of a 2-uniformly
convex and uniformly smooth Banach space E. Let f be a bifunction from C x C
to R satisfying (Al)-(A4) and ¢ : C — R is convex and lower semi-continuous.
Let A be an a-inverse-strongly monotone mapping of C' into E* satistying ||Ay|| <
|Ay — Aull, Yy € C and v € VI(A,C) # 0. Let {S;}32, : C — C be an
infinite family of closed uniformly L;-Lipschitz continuous and uniformly quasi-¢-
asymptotically nonexpansive mappings with a sequence {k,} C [1,00), k, — 1 such
that F := N2 F(S;)NMEP(f, o) NVI(A,C) is a nonempty and bounded subset in
C. For an initial point xo € E and Cy = C, we define the sequence {x,} as follows:

;

vp = e Tz, — A\ Azy),

Zn = J N nod @y + o) anid Siuy),

Yn = J_l(ﬂnjxn + (1 - ﬂn>*]zn>7

Fun, y) + @(Y) = o(un) + =y = wn, Jun = Jyn) >0, Yy e C,

Cn+1 - {Z E Cn . ¢(Zaun) S ¢(Za Zn) S ¢(Z,$n) + 971}7
{ Tt = e, 20, VN >0,

(4.2.78)

where 0, = sup,cp(k, — 1)¢(q,2,), for each i > 0, {an:},{B,} are sequences in
0,1], {r.} C [d,00) for some d >0 and {\,} C [a,b] for some a,b with 0 < a <
b < Ca /2, where % is the 2-uniformly convexity constant of E. If Zio oy =1 for
all n >0, liminf, (1 —f,) > 0 and liminf, . oy, 00, >0 for all i > 1, then

{z,} converges strongly to p € F, where p = llpx,.

Proof. We first show that C),,; is closed and convex for each n > 0. Clearly
Cy; = C is closed and convex. Suppose that C, is closed and convex for each
n € N. Since for any z € C,, we known ¢(z,u,) < ¢(z,z,) + 6, is equivalent to
2(z, Jxy, — Jup) < ||| = ||unll® + 0n. So, Cypq is closed and convex.

Next, we show that F' C (), for all n > 0. Indeed, put u,, = T,. vy, for all n > 0. On
the other hand, one has 7T, is relatively quasi-nonexpansive mappings and F' CC,=C.
I

Suppose F' C C,, for n € N, by the convexity of || - ||*, property of ¢ and by uniformly



quasi-¢-asymptotically nonexpansive of S, for each ¢ € F' C C,,, we have

o(q,un) = 0(q, T, yn)

< (4, 9n)

= ¢(q, J ' (Budwn + (1 = Bu)J 20)

= lall* = 2(q, BuJwn + (1 = Ba) T 20) + |Bn 0 + (1 = Bn) J 2012

< gl = 28u(g, Jz) — 2(1 = Ba)(g; T2n) + Bullzall* + (1 = Ba)l|2a]”

= ﬁn¢(Qa xn) + (1 - ﬁn)gb(% Zn) (4.2.79)
and

0(q,20) = O(q, T HanoJTn + Doy i J SI0y))
= ||Q||2 - 2<Q> O‘n,OJl’n + Zzl an,iJSinUn> + ||an,0jxn + Zzoil O‘n,iJSinUn||2
||Q||2 - 20%,0(% Jr,) — 2 Zil an7i<Qa JSz'nUn> + HamOJIn + Zil anvi‘]SinvnHz

< lqll* - 200,0(q, Jn) — 2 Z;)il g, J ST Un) + an70||<]a7n||2 + Zzoil O‘n,i||<]5invn||2
— Q00 g || T — J ST, ||

= lql® = 2an0{q, Jon) + anoll Jon||* = 2 3772, anilg, JSFvn)
+ Zzoil O‘n,i||<]5invn||2 — Q00 g || JOn — JS?UHH

= 00(q, Tn) + Zzoil i 9(q, Si'vn) — Q00 9| v, — JS?UnH

< n00(q, Tn) + D072 O iknd(q; Vi) — o gl Jvn — JSTU,|.

It follows that

&(q, e J YTz, — N\Axy,))

o(q, TN Tz, — N\ Axy,))

Vg, Jx, — M\Azy,)

Vg, (Jxn — MAz,) + MNAzy,) — 2(TH(Jx, — N Axy,) — ¢, M Axy,)
Vg, Jxy) — 22 (J (T2, — N\ Axy) — q, Azy,)

A(q, xn) — 2\ (0 — q, Azy) + 2(T YTz — NAxy) — 10, — A Ay).

o(q,vn)

IA

IN

Since ¢ € VI(A,C) and A is an a-inverse-strongly monotone mapping, we have

=2\ (x, — q, Axy,)

=2\, (zp, — q, Az, — Aq) (4.2.80)
—2a\, || Az, — Aq|*.

IA A



From | Ax,| < ||Az, — Aq||, Yq € VI(A,C), we also have

2 YTz, — MATy,) — 20, — N\ Axy,) 2T Tz, — MAzy,) — T (Jxy), =\ Azy,)

2| TN (T — MAxy) — T H Tz || A Azy||
STT T2y — ANAzy) — JT 7Tz ||| A A
Sl Jzn — AAzy, — Jx, ||| A Az, |

%H)‘nAanz

2l Az, |?

< ;%AiHAxn — Aq|)*

IA A

(4.2.81)
Substituting (4.2.80) and (4.2.81) into (4.2.3), we obtain

¢(q,vn) < B(q, xn) — 200, || Ay — Ag|]® + 57| Az, — Ag?
= &(q,2n) + 20 (Z A0 — )| Az, — Ag]? (4.2.82)
< é(q, ).

Substituting (4.2.82) into (4.2.3), we also have

Cb(% Zn) an,0¢(Qa xn) + Zfil an,ikn¢(Qa xn) - an,Oan,jg||JUn - JS]T'L’UnH

U 0kn®(q; Tn) + 221 O, ikn®(q, T0) — Qi 000 g || Jn — JS?UHH
kn®(q, Tn) — Q00 3|l JUn — TSy ||

$(4,20) + 51D (b — 1)(e, 70) — Aot 39Tt — TSP
O(q, Tn) + On — Ao gl Jvn — TS0, ||

&(q, ) + On.

(VANVAN

IA

IN

(4.2.83)
and substituting (4.2.83) into (4.2.79), we also have

O(q,un) < (g, xn) + O (4.2.84)

This show that ¢ € C,,,; implies that F C ()., and hence, F' C C, for all
n > 0. This implies that the sequence {z,} is well defined. Since z,, = Ilg, zo and

Tni1 = e, w9 C Cpyq C C), we have

n+1
O(@n,70) < G(Tni1,@0), V0> 0. (4.2.85)

Then, we get

O(n,20) = ¢(llc, w0, 7o)
(g, xo) — P(q, ) (4.2.86)
¢(¢,20), Vg€ F.
From (4.2.85) and (4.2.86), then {¢(z,,x¢)} are nondecreasing and bounded. So, we
obtain that lim ¢(z,, o) exists. In particular, by (3.2.3), the sequence {(||z,||—|lzo)*}
is bounded. This implies {z,}, {v.}, {un},{y.} and {z,} are also bounded. Denote

<
<

M = sup{||z,||} < 0. (4.2.87)
n>0



Moreover, by the definition of {6,} and (5.1.21), it follows that
0, — 0 as n — oo. (4.2.88)

Next, we show that {z,} is a Cauchy sequence in C. Since x,, = ll¢, zq € C,, C

C,,, for m > n, we have

¢<xm7 xn) ¢($m7 HCnx0>
(T 20) — ¢(Ie, 2o, o)

O(Tm, T0) — G(Tn, To).

IN

Since lim,,_ ¢(x,, o) exists and we taking m,n — oo then, we get ¢(x,, x,) — 0.
Then, we have lim, . ||Z; — @,|| = 0. Thus {z,} is a Cauchy sequence and by the
completeness of E and there exist a point p € C' such that x,, — p as n — oc.
Now, we claim that ||Ju, — Jx,|| — 0, as n — oco. By definition of Ilo, xy, we
have
¢($n+laxn) = ¢($n+17HCnfEO)
< O(@n+1, 20) — ¢Ile, zo, 7o)
= O(Tny1,T0) — @(Tn, To).

Since lim ¢(z,,xy) exists, we also have

n—oo

nlirilo (Tpy1,x,) = 0. (4.2.89)
It follows that
T [|7 g1 — ]| = 0. (4.2.90)

From J is uniformly norm-to-norm continuous on bounded subsets of E, we obtain
lim ||Jz,1 — Jx,| = 0. (4.2.91)
n—oo

Since x,41 = Il¢, 79 € Cpy1 C O, and the definition of ()4, we have

¢(xn+1> un) S Cb(xn-l—la xn) + Hn

By (4.2.89), that

lim ¢(zpe1,un) = 0. (4.2.92)
Then, we have
lim ||z,11 — u,|| = 0. (4.2.93)
Since
Hun - xn” = Hun — Tpt1 + Tpt1 — zn”
< Hun - zn-i-lH + Hxn-i-l - xn”



It follows that
lim ||u, — z,|| = 0. (4.2.94)

Since J is uniformly norm-to-norm continuous on bounded subsets of £/, we also have
Tim [|Ju, — Jay|| = 0. (4.2.95)

Next, we will show that p € F':= MEP(f,¢) N (N2, F(S;)) NVI(A,C).
(a) First, we show that p € M EP(f, ). From (4.2.79)-(4.2.83) and (4.2.88), we
get &(q,yn) < ¢(q,x,). Sine u,, = T,, y,, we observe that

¢(unvyn) = ¢( rnynayn)
¢(q: yn) — &(q, T, Yn)
(

<
< &g, zn) — 9(q, Tryn)
¢(q; vn) — 0(q; un) (4.2.96)
= lgll* = 2{q, Jon) + llzall* = (lgl® = 2(g, Jun) + [Junl?)
= lzall® = lJunll® = 2{q, Jon — Jun)
< lzn — wal[Clzall + [[uall) + 2lglll| Jzn — Jun.

From (4.2.94) and (4.2.95), we have
nh_)n;o |wn, — yn|l = 0. (4.2.97)
Again since J is uniformly norm-to-norm continuous, we also have
nh_)Iglo | Jw, — Jy,|| = 0. (4.2.98)
From (A2), that
P(y) = p(un) + =y = up, Ju, = Jyn) > f(y,un), Yy € C,

P(y) = plun) + (y — up, LDy > f(y,u,), Yy € C.

|Jun_=]yn||
Tn

From r,, > 0 then | — 0 and u,, — p as n — oo, we obtain

f(y,p) +w(p) —¢(y) <0.

For t with 0 <t <1 and y € C, let y, = ty + (1 — t)p. Then y, € C and hence
f(ys, p) +¢(p) —@(y:) < 0. By the conditions (A1), (A4) and convexity of ¢, we have

0 = fynye) + o) — o)
< tf(Woy) + (L =) f(ye,p) +te(y) + (1 = t)o(p) — w(y:)
< tf(yey) +ey) —e(w) + (1 =) (f (v, p) +o(p) — @(y1)
< t[f(ysy) + o(y) — p(y)]-



From (A3) and the weakly lower semicontinuity of ¢, we also have f(p,y) + ©(y) —
o(p) >0, Vy e C. This implies p € MEP(f, ).

(b) We show that p € N2, F(S;). From definition of C,;, we have ¢(z,z2,) <
(2, x,) + 0, Since 41 = e, 20 € Cpyr, We get O(Tni1, 2n) < A(Tpt1, ) + On.
It follows from (4.2.89), that

Tim (241, 20) = 0 (4.2.99)
it follows that
nh—>nolo |Tni1 — 2zal| = 0. (4.2.100)

Since J is uniformly norm-to-norm continuous, we obtain
lim ||Jz,i1 — Jz,] = 0. (4.2.101)
From (4.2.78), we note that

|20t — Jzall = [[JZps1 — (no o0 + 322, i SPvn) ||
= |lanoJTnt1 — Qo Tn + Doy QnidTpsn — D ooy i J S0, ||
= lomo(Jznsr — Jan) + 2275 ani(Jonrs — JST )|
122721 ni(JTpsn — JSfon) — ano(Jan — Jznia)|]
> Zzoil O‘n,i||J$n+1 — JSPn|| — O‘n,OHan — Jxpqa],

and hence

HJSL}L_H — JSZnUnH S W(HJSL}L.H — JZnH + Oén70||JLL’n — an-i—l“) (42102)

1
i=1%n,i

From (4.2.91), (4.2.101) and liminf }">°, a,; > 0, we obtain that

nh_)ngo |Jxpi1 — JSIv,|| = 0. (4.2.103)
Since J~! is uniformly norm-to-norm continuous on bounded sets, we have
nlLIEO | X1 — Slu,|| = 0. (4.2.104)
Using the triangle inequality, that

|z = Sfvnll = [T — Tng1 + Tng1 — STn||

< on = 2ppa|l + [ 2ngs — SPoall.
From (4.2.90) and (4.2.104), we have
lim Ja, — 57w, = 0. (4.2.105)
On the other hand, we note that

¢(Q>$n) - ¢(Qa un) + en = ||xn||2 - ||un||2 - 2<Q> JZL'n - Jun> + 9n



It follows from 6, — 0, ||z, — u,|| — 0 and ||Jx,, — Ju,| — 0, that

From (4.2.79),

¢(Qv un)

and hence

2a(a —

I IA A IA

IA A

IA

IN IA

IA

2 Az, — Aq)®

(g, ) — d(q, up) + 6, — 0 as n — oo. (4.2.106)
(4.2.3) and (4.2.82), that

¢(¢, Yn)
Bnd(q, 2n) + (1 = Bn) (g, 2n)
/Gnﬁb(% In) + (1 - ﬁn)[an,0¢(Q> 3771) + Zzoil an,ikn¢(q> Un)
— 0 09| SV — JST,][]
6n¢(% xn) (1 - 6n)05n O(b(Qu xn) + (1 - ﬁn) Zzoil an,ikn¢(qv Un)
(1 — Bn)n,00 G| Jvn — JSFun|
0 0(¢: n) + (1= Bn)n,00(q, Tn) + (1 = Ba) D272, aniknd(q, vn)
2 0(q,2n) + (1 = Ba)on,00(q, 2n)
( Ba) 3o ik [0(g, 2n) — 2Xn(e = ZA) [ Az, — Ag|?]
n0(q, ) + (1 — Bn)an,oknd(q, ,) + (1 — Bn) Zzoil n,ikn®(q; Tn)
—(1 = B) 2o nikn2Mn (@ = Z ) || Az, — Ag]?
/Gnknﬁb(% in) + (1 - ﬁn)kn¢(Qa xn)
—(1 = Ba) 372 anikn2n(a = ZA0)|| Az, — Agl?
knd(q, vn)
—(1—05n) Zzoil O‘n,iknz)‘n(a - C%Ar)“Axn - AQ||2]
¢(q; Tn) + supgep(kn — 1)9(q, 75)
(1= 80) 322 anikin2n (@ — ZA) | Az, — Ag)?
¢(Qv$n) + 0, — (1 - 6n) Z;)il an,iknz)‘n(a - C%Anwan - Aq||2

2\n(a = 2 \,)|| Az, — Ag||?

(4.2.107)
T o (A0, ) — 6(g un) + 0n).

IA A

From (4.2.106), {\,} C [a,b] for some a,b with 0 < a < b < c*a/2, liminf, (1 —

Bn) > 0 and liminf, . oy, 0y, > 0, for i > 0 and k, — 1 as n — oo, we obtain

that

nlingo |Az,, — Ag|| = 0. (4.2.108)



From (4.2.81), we compute

Oz, vn) O, Mo Tz, — AMAxy))
¢y, J N Tz — ApAxy))

V(xy, Jx, — \yAxy,)

V(zn, (J, — NAxy,) + M\Axy) — 2(T YTz, — \oAzy) — 20, M Ay,
A, ) + 2(T (T2 — MNAzy) — Ty =N Axy,)

2J YTz — NAxy) — 20, — A Axy,)

Do || Az, — Ag]P?

2| A, — Ag]l.

IN

IN

(VANVAN

Applying by (4.2.108) that

nh—{go |xn —va]| =0 (4.2.109)
and we also obtain
lim_|[|Jz,, = Jva|| = 0 (4.2.110)

From S} is continuous, for any ¢ > 1
7}13;10 |Sra, — Siv,|| = 0. (4.2.111)
Again by the triangle inequality, we get
lon = Sizall < l2n — S20al| + 1570, — Sl
From (4.2.105) and (4.2.111), we have
Tim |z, = SPa,|| =0, ¥i>1. (4.2.112)
Since J is uniformly continuous on any bounded subset of F, we obtain

iy o || J2 — JSPa,|| =0, Vi> 1. (4.2.113)

Since x,, — p and J is uniformly continuous, it yields Jz,, — Jp. Thus from
(4.2.113), we get
JSr'r, — Jp, Vi> 1 (4.2.114)

Since J~!': B* — E is norm-weake*-continuous, we have

Stx, — p, for each > 1. (4.2.115)

On the other hand, for each 7 > 1, we have

1S5 nll = NPl = 1T (SF )l = (TPl < 1(SF2n) = Jpl.



In view of (4.2.114), we obtain || S}z, || — ||p|| for each ¢ > 1. Since E is uniformly

convex Banach spaces then £ has the Kadec-Klee property, we get
Sl'x, — p for each i > 1.

Moreover, by the assumption that Vi > 1, S; is uniformly L;-Lipschitz continuous,

hence we have.
157+ ey — SPagll < ISP — S g |+ 157 pn — T |
+||xn+l - xn” + Hxn - S?‘TnH
< (Li + Dllzngr — znll + 157 2ps1 — g || + |20 — S|

By (4.2.90) and (4.2.112), it yields that || Sz, — SPx,|| — 0. From Sz, — p, we
have S/*'z, — p, that is S;SPx,, — p. In view of closeness of S;, we have S;p = p,
for all ¢ > 1. This imply that p € N2, F(S;).

(c) We show that p € VI(A, C). Indeed, define B C E x E* by

By — { Av 4 No(v), veC; (4.2.116)

0, ve¢cC.

Since B is maximal monotone and B~'0 = VI(A,C). Let (v,w) € G(B). Since
w € Bv = Av+ N¢o(v), we get w — Av € Ng(v).
From v,, € C, we have

(v — vy, w— Av) > 0. (4.2.117)

On the other hand, since v, = II¢J~*(Jz, — A\,Ax,). Then by Lemma ??, we have
(v — vy, Jv, — (J,, — \yAzy,)) >0,

and thus
(v — vy, L2 Tn — Az) <0, (4.2.118)

It follows from (4.2.117), (4.2.118) and A is monotone and é-LipSChitZ continuous,
that

<U_Umw> > <U—Un,A’U>
> (v — vy, AV) + (v — vy, L= — A, )
<U — Un, A'U - Axn> + <'U — Up, an)\_njvn>
> —||v— v, IIvn;mnH — [Jv = va| ||Jmn;Jvn||
> _G(Ilvn;xnn + ||Jmn;Jvn||)7

where G = sup,,» ||[v — vy ||. By (4.2.109), (4.2.110) and take the limit as n — oo, we
obtain (v—p,w) > 0. By the maximality of B we have p € B~10, that is p € VI(A, C).



Finally, we show that p = [1zz,. From z,, = Il¢, xo, we have (Jxg—Jx,, x,—2z) >
0, Vz € C,,. Since F' C C,,, we also have

Taking limit n — oo, we obtain
(Jzo —Jp,p—y) 20, Vy€eF

Then, we can conclude that p = [lpxy and x,, — p as n — oo. This completes the

proof. U



UNN 5
Variational Inequality Problems

5.1 Generalized Systems of Variational Inequalities for In-

verse Strongly Monotone Operators
Consider the following problem of finding (z*,y*) € E x E such that (see cf. Ceng et
al. (2008) [299].)
MNy*+2* —y* e —2*) >0, VrekFE,
(uBx* +y* —z*,x —y*) >0, VrekE,

(5.1.1)

which is called general system of variational inequalities (GSVI) where A > 0 and
i > 0 are two constants. In particular, if A = B, then problem (5.1.1) reduces to
finding (z*,y*) € £ x E such that

MNMy* +2* —y*x—2*) >0, VrekFl,

(WAz* +y* —a*,x —y*) >0, VreFE,
which is defined by Verma (1999) [309] and Verma (2001) [310], and is called
the new system of variational inequalities. Further, if x* = y*, then problem (5.1.2)

(5.1.2)

reduces to the classical variational inequality VI(A, E) i.e., find z* € E such that
(Az*,x —2*) >0,V € E

We can characteristic problem, if z* € F(S) N VI(A, E), then it follows that
x* = Sx* = Pglx* — pAx*], where p > 0 is a constant.

In 2008 Ceng et al [299], introduced a relaxed extragradient method for finding
solutions of problem (5.1.1). Let the mappings A, B : E — H be a-inverse-strongly
monotone and [-inverse-strongly monotone, respectively. Let S : £ — FE be a

nonexpansive mapping. Suppose ;1 = u € E and {z,} is generated by

Tn4+1 = Qplh + ﬁnxn + ’}/nSPE(yn - )\nAyn)a

(5.1.3)



where A € (0,2a),u € (0,25), and {a,}, {B.}, {7} are three sequence in [0, 1] such
that o, + 8, + v, = 1,Vn > 1. First, problem (5.1.1) is proven to be equivalent to a
fixed point problem of nonexpansive mapping.

In this paper, motivation by above we consider generalized system of variational
inequalities as follows:
Let F be a nonempty closed convex subset of a real Hilbert space H. Let A, B,C :
E — H be three mappings. We consider the following problem of finding (z*, y*, z*) €
E x E x E such that

MNy*+2* —y* e —2*) >0, VrekFE,
(uBz* +y* —z*, o0 —y*) >0, VreE, (5.1.4)
(tCx* 4+ 2 —a*, 0 —2") >0, Veek,

which is called a general system of variational inequalities where A > 0, p > 0 and
7 > 0 are three constants.

In particular, if A = B = C, then problem (5.1.4) reduces to finding (z*, y*, z*) €
E x E x E such that

MNMy*+x* —y*x—2*) >0, VeeFE,
(WAz* +y* — 25z —y*) >0, VreE, (5.1.5)
(TAz* + 2" —a*,x —2") >0, VrekFkE

Next, we consider some special classes of the GSVI problem (5.1.4) reduce to the
following GSVI:
(i) If 7 = 0, then the GSVI problems (5.1.4) reduce to GSVI problem (5.1.1).
(i) If 7 = p = 0, then the GSVI problems (5.1.4) reduce to classical variational
inequality VI(A,E) problem.
The above system enters a class of more general problems which originated mainly from
the Nash equilibrium points and was treated from a theoretical viewpoint in [300, 301].
Observe at the same time that, to construct a mathematical model which is as close
as possible to a real complex problem, we often have to use constraints which can be
expressed as one several subproblems of a general problem. These constrains can be
given for instance by variational inequalities, by fixed point problems or by problems
of different types.

This section deals with a relaxed extragradient approximation method for solving
a system of variational inequalities over the fixed-point sets of nonexpansive map-
ping. Under classical conditions, we prove a strong convergence theorem for method.
Moreover, the proposed algorithm can be applied for instance to solving the classical

variational inequality problems.



In this section, we introduce an iterative precess by the relaxed extragradient ap-
proximation method for finding a common element of the set of fixed points of a
nonexpansive mapping and the solution set of the variational inequality problem for
three inverse-strongly monotone mappings in a real Hilbert space. We prove that the
iterative sequences converges strongly to a common element of the above two sets.

In order to prove our main result, the following lemmas are needed.

Lemma 5.1.1. For given x*,y*,2* € EXE X E, (x*,y* 2*) is a solution of problem
(5.1.4) if and only if x* is a tixed point of the mapping G : E — FE defined by

G(z) = Pp{Pg|Prp(z—7Cx)—puBPg(x—7C2)|—AAPg | Pp(z—7Cx)—pBPg(x—7Cx)|},

Vo € E, where y* = Pg(z* — uBz*) and z* = Pg(a* — 7Cx*).

Wgal.
MNy*+2* —y* e —2*) >0, VrekFE,
(uBz* +y* —z*, o0 —y*) >0, VreE,
(tCa* + 2" —a*,x —2*) >0, Vrek,
=
((—y* + NAy*) + 2%, —2*) >0, VreE,
(—2*+uBz*) +y*,x—y*) >0, VeekE,
(—z* +7Cx*) + 2", 2 —2*) >0, VreE,
=
((y" = NMy*) —z*,2* —x) >0, VrekE,
((z" —uBz") —y"y*—x) >0, Vrek,
((z* —7Cx*) — 2", 2" —x) >0, Vrek,
54

x* = Pg(y* — MAy*)
y* = Pg(z* — nBz")
2* = Pg(a* — 7Cx*),

& 1" = Pg[Pr(z" — uBz*) — NMAPg(2* — uBz")).
Thus

" = Pp{Pg|Pg(x"—7Ca")—uBPg(z*—7Cx")|-A\APg|[Pg(x*—7Cx"*)—uBPg(z*—7Cx")] }.
U

Lemma 5.1.2. The mapping G detined by Lemma 5.1.1 is nonexpansive mappings.



ﬁg’?]ﬂ( Forall z,y € E
I6) ~ W)
= ||Pg{Pg[Pr(x — 7Cx) — uBPg(x — 7Cx)] — NAPg[Pg(x — 7Cx) — uBPg(x — 7Cx)|}
—Pp{Pp[Pp(y — 7Cy) — pBPp(y — 7Cy)] = AAPg[Pp(y — 7Cy) — uBPg(y — Cy)]}

< | [PE(x —7Cx) — uBPg(x — TCSL’)} — \APg [PE(x —7Cx) — pBPg(x — TCI)]
—[Poly = 7Cy) — uBPoly — 7Cy)| — AAPs[Po(y — 7Cy) — B Po(y — 7Cy)] |
= (I = AA)[Pp(x — 7Cx) — pBPp(z — 7Cx)] — (I = AA)[Pp(y — 7Cy) — uBPp(y — 7Cy)]|
< |[Pr(zx — 7Cx) — puBPg(x — 7Cx)] — [Pp(y — 7Cy) — uBPr(y — 7Cy)]||
= (I = pB)[Pe(z — 7Cx)] = (I — uB)[Pe(y — Cy)]|
< ||Pp(x —7Cx) — Pp(y — 7Cy)||
< |z —=7Cz) = (y = 7Cy)|
= [ =7C)(z) = —7C)(y)|
<l =yl
This shows that G : E — E is a nonexpansive mapping. 0]

Throughout this paper, the set of fixed points of the mapping G is denoted by I'.

Now, we are ready to proof our main results in this paper.

Theorem 5.1.3. Let I be a nonempty closed convex subset of a real Hilbert space
H. Let the mapping A,B,C : E — H be «-inverse-strongly monotone, (3-inverse-
strongly monotone and ~y-inverse-strongly monotone, respectively. Let S be a nonex-
pansive mapping of E into itself such that F(S)NT # (. Let f be a contraction of
H into itself and given x, € H arbitrarily and {x,} is generated by

2 = Pg(z, — 7Cxy)
Tni1 = O f(Tn) + Bnn + S Pe(Yn — AAy,), n >0,

where A € (0,2a),p € (0,20),7 € (0,2y) and {a,},{0n},{7n} are three sequences
in [0,1] such that

(i) lim, ., =0 and Y 7, o, = 00,
(iii) 0 < liminf, . 3, <limsup, . G, < 1.

Then {z,} converges strongly to T € F(S)NI', where T = Ppnrf(Z) and (Z,7, Z)
is a solution of problem (5.1.4), where



y = Pp(Z — nBZ) and
z = Pp(z — 707).
Proof. Let z* € F(S)NTI. Then z* = Sz* and z* = Gz*, i.e. ,
" = Pg{Pg[Pg(z*—17C2")—puBPg(x*—17Cx")| - AAPg|Pgp(2* —7Cx*)—uBPg(z* —7Cx")] }.
Put 2* = Pg(y* — My*) and ¢, = Pp(y, — MNAy,). Then z* = Pg[Pg(z* — pBz*) —

ANAPg(z* — pBz*)] implies that y* = Pg(z* — uBz*), where z* = Pg(z* — 7Cz").
Since I — MA, I — uB and I — 7C' are nonexpansive mappings. We obtain that

[t, — 2" = IPe(yn — AAyn) — 27|
= || Pe(yn — AMyn) — Pe(y™ — My")||
< l(yn — Ayn) — (y" — A"
= [[(I = AA)yn — (I = AA)y"||
< Nlyn =yl (5.1.7)
= |lyn — Pp(z" — uBz")||
= [[Pp(2n — uB2,) — Pp(z" — pB2")||
< [[({ = pB)zn — (I — uB)z"||
<z = 27, (5.1.8)
and
|20 = 2" = [[Pp(z, — 7Cxy,) — Pg(z* — 7Cz7)|
< |z, — 7Cx,) — (2" — 7Cz")|
= ||({ =7C)x, — (I — 7C)x"||
< lzn =27 (5.1.9)

Substituting (5.1.9) into (5.1.8), we have

tn — 2*|| < [lzn — 27|, (5.1.10)

and by (5.1.7) also have

lyn — I < o — 2*. (5.1.11)



Since =11 = o f(zy) + Bnxn + Y0 Stn, We compute

o (f(2n) — %) + Bu(Tn — %) + Y0 St — 27)||

[T — 2]

< onl[f(n) = 27| + Bullen — 27| + | Stn — 27
< anlf(wn) = 271+ Bullan — 27| + vnlltn — 27|
< anllf(wn) = 271+ Bullan — 27| + vnllwn — 27|
= an|f(zn) = 2% + (1 = )z — 27|
anllf(zn) = f(@7) + f(&7) = 27| + (1 = an)[Jen — 27
< anlf(@n) = fEO) + anllf(27) = 27 + (1 = an)[lzn — 27|
< ankllzn — 27 + ol f(27) = 27 + (1 = )z — 27|

(ank + (1= o)) [[n — 27 + | f(27) — 27|
(1= an(l = k))l[zn — 27| + an f(27) — 27|

. T*) —x*
= (1= an(l—k)llzn — 2| + an(l — k)%.
By induction, we get
l2ns1 — ™|l < M,
where M = max{||zo—z*||+ g2 [l f(z*) —2*[[}, n > 0. Therefore, {x,} is bounded.

Consequently, by (5.1.7),(5.1.8) and (5.1.9) the sequences {t,},{St.},{yn}, {Aun},
{zn},{Bz.},{Cx,} and {f(x,)} are also bounded. Also, we observe that

12041 — 2all = |Pp(Tps1 — 7Cp11) — Pr(zn — 7C,)||
< NI =7C)zni1 — (I = 7C)2, ||
< Napsr — zall, (5.1.12)
and
[tne1 = tall = 1Pe(¥ns1 — Ayni1) — Pe(yn — My, ||
< [[(Ynt1 = AAYnt1) = (Y — AAy,)||
= (I = AA)ynt1 — (I = AA)y,|
< N Ynr1 = vall (5.1.13)
= ||Pe(2n+1 — pBznt1) — Pr(zn — pBz)||
|
< [#ngr — @l

Let x,+1 = (1 — B,)w, + Bnz,. Thus, we get

o= 1_671 1_671 B 1_671




it follows that

Wn41 — Wy
. O‘n+1f($n+1) + Y415t nt1 _ O‘nf(xn> + 1Sty
B 1- /Gn-‘rl - ﬁn
U1 f(Tng1) | Yoa1Stayr  uaf(Tn) | ang f(2,) _ an f(2n) _ Yn Sty

1- ﬁn—i—l 11— ﬁn—i—l 1- /Gn-i-l 1— /Gn-i-l 1- /Gn 11— ﬁn

o Opt1 Qnit1 Oy, Tn+1 Stn—l—l anStn
- (F(nn) = Fln)) + (2 = T2 ) + -

=B I=Buws 15,
= (i) = fon) + (2~ T )

+%+1Stn+1 _ TSt n Ynt15tn  YnSta

T=Bust 1= Bt 1= Bt 1B,

= o ) = fla) + (25— o )

Iy St = S0+ (1~ )8
= T U n) = S) + (2 = ) ) (5.1.14)
_ 1f"ig;l(f(a:nﬂ) = flen) + (5 f”;;ﬂ -1 f"ﬂn)(f(:cn) (5.1.15)

+St) + —EL(Stayr — St).
1- ﬁn—i—l




Combining (5.1.13) and (5.1.14), we obtain

[ wny1 — W] = [|Tng1 — 2|
< g I ) = Sl 1325 = 7 1 ) + St
T St = Stall = 21 — ]
n+1
< ‘%WH%LH — ol + 1 i‘"ﬁzl - i‘"ﬁnmf(xn) + S|
HT 2 = tall = s =]
< I%WHM —all + 5 f”g;l = f"ﬂnmf(xn) + St
Hp 2l = 2all = o =
_ |lfn75:+1|k”1'n+l — anll + 15 f”;;l -1 i‘"ﬁn|||f(;gn) + St
e e e [P
_ |lfn7;_:“|k”1'n+l — x| + |1 f"g;l -3 i‘"ﬁn|||f(;gn) + St
Hp gl — ol

This together with (i), (ii) and (iii) imply that

tin sup(fjewn.1 = wnll = flzn = 2a)) < 0.
Hence, we have
T}Lrilo||wn—xn|| =0. (5.1.16)
Consequently,
e =l = lim (1= 8w, =] = 0. (5.1.17)

From (5.1.12) and (5.1.13), we also have ||z,+1 — 2,|| — 0 ||tas1 — tn]| — 0 and

|Yns1 — Ynll — 0 as n — oo. Since
Tntl — Tn = Oénf(l’n) + 6nxn + anStn — Tp = O‘n(f(xn> - l’n) + an(Stn - «Tn)v
it follows by (ii) and (5.1.17) that

lim ||z, — St,|| = 0. (5.1.18)



Since z* € F(S)NT and from (5.1.11), we get

INIA

IA

IN

IA

21 — 27|

+Yn [Hyn — 417 = 22Xy — ¥, Ay — Ay") + N[ Ay, — Ay*lﬂ

| f(@a) = 2|2+ Bullzn — 2|

50 [l = 4112 = 22| Ay — Ay |12+ X2 Ay — Ay*|I

anllfn) = "2 + Ballz = 22 + 30 g = 57 + A = 20)]| Ay — Ay ]

nllfa) = "2+ Ballwn = 212 + a1z = "2+ A = 20) | Agn — Ay* ]

anllf (2n) — 2|7 + (1 = aw)l|wn — 27[* + 3 AA = 20) || Ay, — Ay*|)*

)
)
nllf(@n) = 2" |* + Ballzn — 21" + nllon — 2|1 + 1A (X = 20) | Ay, — Ay*||*
)
)
nllf(@n) = 2" |* + llzn — 271 + 1A (A = 20) | Ay, — Ay*||*.

(
(
anllf (@n) = 2" + (Ba + ) |20 — 27* + AN = 20)[| Ay — Ay”|?
(
(

Therefore, we have

—YAA = 2a) || Ay, — Ay*|?

< ol f(@n) — 2P + |z — 2*|° = |20 — 27|
= anllF(xn) — 272 + (2n — 2] + |T0ss — ) (|20 — 27| = |T0g1 — 7))
< anllf(@n) = 2P+ (Jen — 2™ + 2ty — 2|20 — npa ] (5.1.19)

From (ii), (iii) and ||zp11 — @,|| — 0, as n — oo, we get ||Ay, — Ay*|| — 0 as

n —— OQ.



Since z* € F(S)NT, from (5.1.7), we get

|41 — 2|

IN N

A

IA

IA

(zn) + By + VnStn — *||?

|l f(@n) = 2|* + Balln — 2*|* + Yalltn — 2"

anl f(@n) = 2|1 + Ballwn — 271 + vallyn — v

anll f(wn) =" |* + Ballzn — 2" [1* + 7l Pe(20 — uBzy) — Pe(2* — pB2")|
(@) = 2*|* + Ballwn — 2|1 + yall (20 — pBz,) — (2" — uB2")|?

anllf(@n) = 2| + Ballzn — 2" |* + Wl (20 — 2°) = (B2 — uBz")|?

anll f(zn) = 2" |* + Bullzn — 2*|* + 7 [||Zn = 2*|1* + pu(p — 2B)|| B2n — BZ"|?

anll f(wn) =" [* + lwn — 2" 1* + yups(p — 28) | Bz, — B2,

Thus, we also have

—Ynpi(pp — 2)|| Bz, — Bz*|?

< anllf(@n) = @I + llon — 27 = [|@nss — 2"
= | fza) = 2" + (lon — 2"l + 21 = 2" D (|20 = 2" = [|2asr — )
< ol f(zn) =277 + (lzn — 2" + @i — 2" )ll2n — zasall (5.1.20)

By again (ii), (iii) and (5.1.17), we also get || Bz, — Bz*|| — 0 as n — oo.
Let z* € F(S)NT, again from (5.1.8), (5.1.9), we get

1 — 2"

VAN VAN VAN VAN

IA

Again, we have

_fyn/]-
anll.f
= anf

< au|f

IA

—~

~—~~ o~

latnf (20) + Bun + 7 St, — 2*||?

| f(xn) = 2** + Bullzn — 2™ |* + yalltn — 2"

anlf(@n) = 2|1° + Ballwn — 27(1° + yallzn — 2"

an|lflx,) — 2| + Bollzn — 2%)* + Yl (20 — 7Cxp) — (2% — 7Cz¥)||?
nll f () — 2| + Ballzn — 2| + 1 [HZL’n —z*|? + 7(r — 29)||Cx, — O™
anllf(@n) = 2| + zn — 2*|* + u7(T = 29)[|Cpy — Ca™|*.

T —29)|Cx, — Cz*||?

n) = &7 + |z — 27| = [|lzne — 27|

n) = & * 4 (l2n — 2| + lznsr — 2" D20 — 27| = 2041 — 27]))
n) = 27| + (lon — 2| + lzne — 2" Dllzn — 2ol (5.1.21)

Similarly again by (ii), (iii) and ||z, — Z,41]] — 0 as n — oo, from (5.1.21), we
also that ||Cz, — Cz*|| — 0.



On the other hand, we compele that

l2n — 21"
= ||Pe(z, — 7Cx,) — Pg(z* — 7Cz*)|?
((z, — 7Cx,) — (¥ — 7C2"), Pp(x, — 7Cx,) — Pp(x* — 7Cx"))
(x, — 7Cx,) — (2" — 7Cx"), 2, — 27)
= 5[ = rCz) = @ = 7€)+ 2 = 2 = i — 7C)
~(a* = 70a") = (z = )

IA

(I = 7C)z — (I = 7C)2"|* + 2w — 2"[I* = [|(@n — 7C2n)

DN | —

(@ —7CT) = (2 — z*)||2:

1- * * * * *

< 5l =21+ o = 2 = (@ = 20) = 7(Can = Ca) = (2" = )]
1— * * * * *

= S [len =21z = 1P = 1[0 = 20) = (" = 2] = 7(C — Ca") ]
1- * * * *

= Sl =21 e = P = e = 2) = (&7 = )P

+27((zp — 2n) — (" — 27),Cxp, — Cx™) — 7‘2||C£En - C’:L"*||2].
So, we obtain
20 — 217 < o — 2|2 = [[(20 — 20) — (2" = 27)|?

+27((2y — 2) — (2% — 2%),Cxp, — Cz*) — 7%||Cx,, — Cz*|2.

Hence, it follows that

[Zner = 2"* = llowf (@) + Ban + 70 St — 2|

< apl f(zn) = 2| 4 Ballon — 2|° + yal| St — 2|

< ke, = 2P+ Ballwn — 2P+ nlltn — 2"

< apkllzn = 2P+ Ballzn — 27+ Anllzn — 2"

< agkllzn = 2? + Ballzn — 2+ llon — 2P =yl (@0 = 20) = (27 = 2
27V, (2, — 2) — (2 — 2¥),Cxp, — C2*) — 727, ||Czp, — C*||?

= aghllzn —2"* + (1= aw)llzn — 2|7 = yall(za = 20) = (&7 = )|
427, (2, — 2n) — (2 — 2¥),Cxp, — Cx*) — 727, ||Cxpy — C*||?

< agkllzg = 2|+ o — 2|7 =l (@ — 20) = (@7 = 2|
+27, (2, — 25) — (¥ = 27), Cx,, — Cx™)

< agkllzg — 2P+ o — 2P =l (@ — 20) — (@7 = 22

27| (Tn — 20) — (2" = 2)||[|C2n — Ca™|],



which implies that

Yall(@n = 20) = (&" = )P < ankllzn — 2" + |20 — 27 = 2040 — 277

27| (20 — 20) — (2% = 2")[|[| Oz — Ca”|
apkl|zy — 2 |* + 2907 (20 — 20) — (2" = 2)|||C, — O]
Hllzn — ol (ll2n — 2| + 201 — 2*)). (5.1.22)

IA

By (ii), (iii), ||z, — zp11|| — 0 and ||Cz, — Cz*|| — 0 as n — oo from (5.1.22)

we get

I Gn —

IA

IN

IA

IN

zp) — (x* — 2*)|| — 0 as n — oo. Now, observe that

(20 = ta) + (2" = 2)|I?

120 = Pr(yn — Ayn) + Prly™ — AMy") — 27|

|20 — Pe(yn — AMuyy,) + Pe(y* — My*) — 2* + pBz, — pBz, + pnBz* — uBz*|?
20 — pBzy — (2" — uB2") = [Pp(yn — AMy,) — Pe(y* — AAy")] + (B2, — Bz")||”
20 = uBzy — (2" — uBz") — [Pe(yn — AMya) — Pe(y" — AMy")]||*

+2u(Bz, — Bz*, z, — uBz, — (z* — uBz") — [Pe(yn — My,) — Pe(y™ — ANAy")]
+u(Bz, — Bz"))

20 — uBzy — (2" — uBz") = [Pe(yn — AMya) — Pe(y" — AMy")]||*

+2u(Bz, — Bz*, (2, — tn) + (" — 2%))

20 — uB2zy = (2" = pB2*)|* = | Pe(yn — AAya) — Pe(y” — XAy")|®

+2u| Bz, — B2"([[|(zn — ta) + (27 — 27)||

20 = uBzy — (2" = uBz")||* = |SPe(yn — MaAyn) — SPe(y” — M Ay") |

+2u| Bz, — B2"([[|(zn — ta) + (27 — 27)||

20 — pB2zn — (2" — uBz")||* — ||St, — Sa*|?

+2p]| Bz — B2*||[|(zn — tn) + (2" = 27)|

|20 — pBzn — (2% — pBz") — (Stn — 27)]|

X([|zn — pBzn — (2% — pB2")|| + || St — 27])

+2u|| Bz, — B2*||||(zp — tn) + (2" — 2%)]|. (5.1.23)

Since ||St,—xz,| — 0, ||(xn,—2,)— (z*—2*)|| — 0 and || Bz, — Bz*|| — 0,as n —

00, it follows that

Since

|(zn — tn) + (2" = 2%)|| — 0, as n — oo.

1Stn = tall < NStn = zall + (20 = 20) = (&7 = 2| + [[(z0 = tn) + (2" = 27,



from above, we obtain

lim [[St, —t,| = 0. (5.1.24)

Next, we show that

limsup(f(z) — z,x, — ) <0,

n—aoo

where T = Ppg)rf(Z).
Indeed, since {t,} and {St,} are two bounded sequence in F, we can choose a
subsequence {t,,} of {t,} such that t,, of t, such that ¢,, — z € E and

limsup(f(z) — z, St, —z) = lim (f(Z) — &, St,, — 7).

n—-aoo 1—>00

Since lim,, . ||St, — t,]| = 0, we obtain St,, — z as i — oco. Now we claim that
z€ F(S)NT. It is easy to see that z € F'(S).
Since ||St, — t,|| — 0, ||St, — z,|| — 0 and

|t — xnl| = ||tn — Stn + St — z,||
< th_Sth + ||Stn_1'n||
=[Sty — tall + ISt — znll,

we conclude that ||t,, — z,,|| — 0 as n — oo. Furthermore, by Lemma 5.1.2 that G

is nonexpansive, then

[t = Gl = [[G(zn) — G(tn)|l
< o, =t

Thus lim, . ||[t, — G(t,)|| = 0. Then, we obtain z € T'. Therefore there holds
ze F(S)NT.

On the other hand, it follows that

limsup(f(z) — z,z, — ) = limsup(f(z)— z,St, — )

= lim (f() — 7,5, — 1)
= (f(x) - 2,2 —7)

< 0. (5.1.25)



Finally, we show that x,, — Z, by (5.1.10) that

||Z’n+1 - j||2 = Hanf(xn> + ﬂnxn + ’YnStn - j||2
< |Ba(zn — 2) + 7 (Stn — *'Z')||2 + 200, (f(T0) — T, Tpy1 — T)
< |Bul@n = ) +1(Sty — D)|* + 200 (f (20) — f(Z), 2pi1 — T)

+20,(f(Z) — T, 241 — T)

[Ballzn = ZI* + 1| St — Z(°] + 20| f (20) = f(@)[[[J2ns1 — ]
+20,(f(Z) — T, 241 — T)

Bullzn = 2|7 + yulltn = Z(°] + 20nallz, — Z[[[l2n — 7]

+2an<f(j) - jv Tpy1 — j)

IN

IA

IN
_
I
=

3

Nz = Zl* + ana(llen = 27 + zps — Z(°)

which implies that

2(1 — a)a o?
» =12 < 1— SN )en 7 2 _n " 2
few el < (= 2Dy gy Sy g
200,
o (@) = T2 = 7)
= (1 -0y —Z||* + 6, n >0,
where o,, = 2(11__;1:" and 0, = l_aj‘an |20 — Z||* + 222 (f(Z) — T, Tpy1 — 7). Therefore,

by (5.1.25), we get that {z,,} converges to z, where T = Pp(s)nrf(Z). This completes
the proof.
Setting A = B = C' we obtain the following corollary:

Corollary 5.1.4. Let E be a nonempty closed convex subset of a real Hilbert space
H. Let the mapping A : E — H be «-inverse-strongly monotone. Let S be
a nonexpansive mapping of E into itself such that F(S)NT # (. Let [ be a
contraction of H into itself and given xy € H arbitrarily and {x,} is generated by

zn = Pg(x, — TAx,)
Yn = Pp(z, — pAzy,) (5.1.26)

where \, u, 7 € (0,2«) and {o,}, {0}, {1} are three sequences in [0,1] such that
(1) O‘n+6n+7n =1,

(i) lim, o, =0 and Y 7 a, = 00,



(iii) 0 < liminf, . 6, <limsup,_ . G, < 1.

Then {x,} converges strongly to T € F'(S)NTI, where T = Pps)nrf(Z) and (Z,7,%)
is a solution of problem (5.1.5), where

Pp(z — pAz) and

Ny
I

Y

= Pp(z — TAZ).

Setting A = B = 0 (the zero operators), we obtain the following corollary for
solving the foxed points problem and the classical variational inequality problems.

Corollary 5.1.5. Let E be a nonempty closed convex subset of a real Hilbert space
H. Let the mapping A : E — H be «-inverse-strongly monotone. Let S be a
nonexpansive mapping of E into itself such that F(S)NVI(A,E) # (. Let [ be a
contraction of H into itself and given xy € H arbitrarily and {x,} is generated by

Tonr1 = o f(xn) + Bun + VS Pe(r, — ANzy,), n>1, (5.1.27)
where A € (0,2«a) and {a,},{0.}, {7} are three sequences in [0,1] such that
1) an+Bp+m =1,
(i) lim, ., =0 and Y 7 o, = 00,
(iii) 0 < liminf, . 6, <limsup,_ . G, < 1.
Then {x,} converges strongly to & € F(S)NVI(A, E), where T = Prs)nvia,e)f(T).

We recall that a mapping 7' : ' — E is called strictly pseudocontractive if there
exists some k with 0 < k < 1 such that

1Tz = Ty||* < |z —ylI* + k(I = T)z — (I = T)yl*, Va,y € E.

For recent convergence result for strictly pseudocontractive mappings. Put A =1 —T.

Then we have
I(Z = A)z — (I = Ay|* < o — yl* + k[ Ax — Ay|*.
On the other hand,
I(7 = A)z — (I = Ayl* < llz — ylI* + |4z — Ay|]* — 2(z — y, Az — Ay).

Hence we have Lk
(z—y, Az — Ay) > %HASC — AylP*.
Consequently, if 7': F — FE is a strictly pseudocontractive mapping with constant £,
then the mapping A =1 — T is (1 — k)/2-inverse-strongly monotone.
Setting A=1—-7T, B=1—-V and C =1 — W we obtain the following corollary:



Theorem 5.1.6. Let & be a nonempty closed convex subset of a real Hilbert space
H. Let T,V,W be strictly pseudocontractive mappings with constant k of C' into
itself and let S be a nonexpansive mapping of E into itself such that F(S)NT # (.
Let f be a contraction of H into itself and given xo € H arbitrarily and {x,} is

generated by

zn = —7)x, + TW2,)
Tn+1 = Oénf(l‘n) + BnZn + 7n5(<1 - )‘)yn + )\Tyn)v n>1,

where A € (0,2a),p € (0,20),7 € (0,2y) and {a,},{0n},{Vn} are three sequences
in [0,1] such that

(i) lim, o, =0 and Y 7 a, = 00,
(iii) 0 < liminf, . 3, <limsup,_ . G, < 1.

Then {x,} converges strongly to T € F'(S)NTI, where T = Pps)nrf(Z) and (Z,7,%)
is a solution of problem (5.1.4), where

Pg(z — uBz) and

<
Il

zZ = Pp(z — 707).
Proof. Since A=1—-T,B=1—V and C =1 — W, we have

Pp(z, —1Cx,) = (I — )z, + TW ),
PE(yn - >\Ayn) (I - )‘)yn + ATy,
Pe(zn — uBzn) = (I — p)zn + pV z,.

Thus, the conclusion follows immediately from Theorem 5.1.3.
If f(z) =x9, Vo € E and T =V =W in Theorem 5.1.6, we obtain the following

corollary.

Corollary 5.1.7. Let E be a nonempty closed convex subset of a real Hilbert space
H. Let T be strictly pseudocontractive mappings with constant k of C into itself
and let S be a nonexpansive mapping of E into itself such that F(S)NT # (). Given
xo € H arbitrarily and {x,} is generated by

zn = —7)x, +7T2,)
Un = (I — p)zn + Tz, (5.1.29)
Tn+1 = CpTo + ﬁnxn + anS((l - A)yn + )\Tyn>7 n Z 17



where A € (0,2a),p € (0,20),7 € (0,2y) and {a,},{0n},{Vn} are three sequences
in [0, 1] such that

(i) lim,, oo, =0 and 3 7 | a, = 0,
(iii) 0 < liminf, . 3, <limsup,_ . G, < 1.

Then {x,} converges strongly to = € F'(S)NT, where © = Pp(s)nr® and (Z,7,Z) is
a solution of problem (5.1.5), where

Pgp(z — nAz) and

|
Il

z = Pp(7 — 7AZ).

5.2 General System of Variational Inequalities for Inverse

Strongly Accretive Operators

Let S : C' — C' a nonlinear mapping. Let A be a monotone operator of C' into H. The
variational inequality problem, denote by VI(C, A), is to find z* € C such that

(Ax* x —x*) >0,

for all x € C. Recall that an operator A of C' into E is said to be accretive if there
exists j(x —y) € J(xz — y) such that

(A — Ay, j(x—y)) 2 0

for all x,y € C. An operator A : C' — E is said to be (-strongly accretive if there
exists a constant 5 > 0 such that

(Av — Ay, j(x —y)) = Bl — y|I* Yo,y e C.
An operator A of C' into F is said to be (3-inverse strongly accretive if, for any 3 > 0,
(Az — Ay, j(z - y)) = Bl| Az — Ay|”

for all x,y € C. Evidently, the definition of the inverse strongly accretive operator is
based on that of the inverse strongly monotone operator.

Recently, Aoyama et al. first considered the following generalized variational in-
equality problem in a smooth Banach space. Let A be an accretive operator of C' into
E. Find a point x € C' such that

(Az,j(y —z)) >0, (5.2.1)



for all y € C. In order to find a solution of the variational inequality (5.2.1), the
authors proved the following theorem in the framework of Banach spaces.

Theorem AIT. Let E be a uniformly convex and 2-uniformly smooth Banach space
and C' a nonempty closed convex subset of E. Let Qo be a sunny nonexpansive
retraction from E onto C, a >0, and A be an «-inverse strongly accretive operator
of C' into E with S(C,A) # (), where

S(C,A)={z" € C: (Ax" j(xr —x%)) >0, ze€C}.

If {\.} and {a,} are chosen such that \, € [a, 3%], for some a >0 and a,, € [b,c],
for some b,c with 0 < b < ¢ < 1, then the sequence {x,} defined by the following

manners: xr1 —x € C' and
Tpi1 = @y + (1 — o) Qo — \pAxy,),

converges weakly to some element z of S(C,A), where K is the 2-uniformly s-
moothness constant of E and ()¢ is a sunny nonexpansive retraction.

Let A:C — E be an f-inverse strongly accretive mapping. Find (z*,y*) € C' x C
such that

{ Ay + 2" —y*,jlz —2)) >0 Vo el (5.2.2)

(A" +y* —a*, j(x —y*)) >0 Vo e C.
Let C be nonempty closed convex subset of a real Banach space E. For given two
operators A, B : C' — E, we consider the problem of finding (z*,y*) € C x C such
that

5.2.3
(UBr* 4y — 2", j(e—y")) >0 Ve C, -2

where \ and p are two positive real numbers. This system is called the system of

{ AAy* + 2" —y* j(z —2*)) >0 VzeC,

general variational inequalities in a real Banach spaces. If we add up the requirement
that A = B, then the problem (5.2.3) is reduced to the system (5.2.2).

An interesting problem to extend the above results to find a solution of a general
system of variational inequalities.

In this section we introduce viscosity iterative scheme for finding solutions of
a general system of variational inequalities (5.2.3) for two inverse-strongly accretive
operators with a viscosity of modified extragradient methods and solutions of fixed point
problems involving the nonexpansive mapping in Banach spaces. Then, we prove that
the sequence {z,} defined by (5.2.6) below converge strongly to Z = Qr()nr(s)f(Z)
which (Z,y) is a solution of the system of general variational inequalities (5.2.3), where
Y= Qc(z — nBI).

In this section, we always assume that £ is a Banach space. Let D be a subset of
C and @ : C — D. Then @ is said to sunny if

Q(Qr +t(r — Qr)) = Qu,



whenever Qz + t(x — Qx) € C for x € C and t > 0. A subset D of C' is said to be
a sunny nonexpansive retract of C' if there exists a sunny nonexpansive retraction ()
of C onto D. A mapping ) : C — C is called a refraction if Q* = Q. If a mapping
Q@ : C — C'is a retraction, then )z = z for all z is in the range of ).

The following result describes a characterization of sunny nonexpansive retractions
on a smooth Banach space.

Proposition 5.2.1. Let E be a smooth Banach space and let C be a nonempty subset
of E. Let Q : E — C be a retraction and let J be the normalized duality mapping
on E. Then the following are equivalent:

(i) Q is sunny and nonexpansive;

(i) |Qx — Qy|* < (x —y, J(Qv — Qy)), Yo,y € E;

i) (x — Qz, J(y — Qz)) <0,Vx € E,y € C.

Proposition 5.2.2. Let C be a nonempty closed convex subset of a uniformly convex
and uniformly smooth Banach space E and let T be a nonexpansive mapping of C
into itself with F(T) # (). Then the set F(T) is a sunny nonexpansive retract of C.

For the class of nonexpansive mappings, one classical way to study nonexpansive
mappings is to use contractions to approximate a nonexpansive mapping [109, 144].
More precisely, take ¢ € (0,1) and define a contraction S; : C' — C' by

Six =tu+ (1 —1t)Sx, VxeC,

where u € C is a fixed point. Banach’s contraction mapping principle guarantees that
S; has a unique fixed point z; in C. that is

We need the following lemmas for proving our main results.

Lemma 5.2.3. Let C' be a nonempty closed convex subset of a strictly convex Banach
space E. Let S, and S, be two nonexpansive mappings from C' into itself with a

common tixed point. Define a mapping S : C — C' by
Sz =0S1x + (1 —9)Ssx, Vr e,
where 0 is a constant in (0,1). Then S is nonexpansive and F(S) = F(Sy) N F(S,).

Lemma 5.2.4. Let E be a real 2-uniformly smooth Banach space with the best
smooth constant K. Then the following inequality holds:

lz+yl* < llzl* +2(y, Jz) + 2| Ky|?,  Va,y € E.



Lemma 5.2.5. Let {z,} and {y,} be bounded sequences in a Banach space X and let
{B.} be a sequence in [0,1] with 0 < liminf, . 3, < limsup,_,., 5, < 1. Suppose
Tor1 = (1 = Bo)yn + Buzxy, for all integers n > 0 and limsup,, . (||yns1 — Yl —

|Zns1 — 2a]|) < 0. Then, limy, .o ||y — || = 0.

Lemma 5.2.6. ([311]) Assume {a,} is a sequence of nonnegative real numbers such
that
an1 < (1 —ay)a, + 6, n>0

where {o,} is a sequence in (0,1) and {0,} is a sequence in R such that
(D 302 o =00
(2) limsup,,__, ., i—’; <0 or > 7 |0, < oo.

Then, lim,,__.. a, = 0.

Lemma 5.2.7. ([306]) Let (E,(.,.)) be an inner product space. Then for all z,y,z €
E and o, (3, €[0,1] with a+ §+~v =1, we have

law + By +v2I* = allz|* + Bllyl* +112* — aBlle — ylI* — aylle — 2* = Bylly — =*.

Lemma 5.2.8. Let C be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space E. Let the mapping A : C — E be [(3-inverse-strongly accretive.

Then, we have
I(1 = AA)z — (I = AA)y[* < [z = ylI* + 20AK* = B)[| Az — Ay|)*.
If 3> MNK?, then I — \A is nonexpansive.

Proof. For any =,y € C, from Lemma 5.2.4, we have

I(I = AA)z — (I = AA)y[* = |l(z —y) — A(Az — Ay)||*
<l =yl = 2M(Az — Ay, j(z — y)) + 2V K3 || Az — Ay|]®
<l =yl = 228)| Az — Ayl + 2N K?|| Az — Ay]|?
= [lz =yl + 2A(AK* - B)[| Az — Ay]*.

If 3> AK?, then I — A\A is nonexpansive. O

Lemma 5.2.9. Let C be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space E. Let Q- be the sunny nonexpansive retraction from E onto
C. Let the mapping A,B : C — E be (-inverse-strongly accretive and ~y-inverse-
strongly accretive, respectively. Let G : C — C' be a mapping defined by

G(x) = Qc(Qe(xr — uBz) — MAQc(x — uBz)) Vr e C.

If 3> \K? and v > pK?, then G is nonexpansive.



Lemma 5.2.10. Let C be a nonempty closed convex subset of a real smooth Banach
space E. Let Q¢ be the sunny nonexpansive retraction from E onto C. Let A, B : C —
E be two possibly nonlinear mappings. For given x* y* € C, (z*,y*) is a solution
of problem (5.2.3) if and only if ©* = Qc(y* — NAy*) where y* = Qc(z* — uBzx™*).

Proof. From (5.2.3), we rewrite as

(" = (y" = My"), j(w —2%)) 20 Ve, 524
(y* = (2% = pBa*), j(z —y*)) 2 0 Vo e C. o
From Proposition 5.2.1 (iii), the system (5.2.4) equivalent to
g QC(y* yf’ (5.2.5)
y* = Qc(z" — pBz").
O

Remark 5.2.11. From Lemma 5.2.10, we note that
2" = Qe(Qe(a* — pBa*) — MAQc(a* — pBx)),

which implies that x* is a fixed point of the mapping G.
Throughout this paper, the set of fixed points of the mapping G is denoted by F(G).

In this section, we prove a strong convergence theorem.

Theorem 5.2.12. Let E be a uniformly convex and 2-uniformly smooth Banach space
with the best smooth constant K and C be a nonempty closed convex subset of E.
Let S : C — (' be a nonexpansive mapping and (Qc be a sunny nonexpansive
retraction from E onto C. Let A,B : C — E be [-inverse-strongly accretive with
B > MK? and ~-inverse-strongly accretive with ~v > ukK?, respectively. Let f be a
contraction of C' into itself with coefficient o« € (0,1) and suppose the sequences
{on.},{Bn} and {~,} in (0,1) satisty o, + B+, =1, n > 1. Suppose F # () where
G defined by Lemma 5.2.9 and let \, i are positive real numbers. The following
conditions are satisfied:

(CI). lim, o, =0 and )" o, = 00;

(C2). 0 < liminf, o G, < limsup,,_., G, < 1.

For arbitrary given xo = x € C, the sequences {z,} generated by

Yn = Qc(rn — pBwy,),
Up = QC(yn - )\Ayn)a (5'2'6)
Lp41 = O‘nf(xn) + Bpay, + ’Yn[(ssxn + (1 - 5)Un]7

then {x,} converges strongly to © = Qrf(Z) and (Z,y) is a solution of the problem
(5.2.3), where §y = Qc(z — uBZ) and QF is a sunny nonexpansive retraction of C
onto F.



Proof. First, we prove that {z,,} bounded. Let z* € F, from Lemma 5.2.10, we see

that

t" = Qc(Qc(a” — pBr") — AMQc(z* — uBa™)).

Put y* = Q¢(z* — pBx*) and v, = Qc(yn — AAy,). Then z* = Qo (y* — NAy*). From

Lemma 5.2.8, we have

v = 2" = [|Qc(yn — Ayn) — Qc(y™ — AAy")||
< [(yn — AMyn) — (y" = AAyY)||
= [[( = AA)yn — (I = AA)y"|
< lyn =yl
= |Qc(zn — pBx,) — Qo(x* — pBa™)||
< |(zn — pBx,) — (2 — pBa™)||
= (I = pB)z, — (I — pB)z"||
< lwn — 2| (5.2.7)

and put e, = §Sz,, + (1 — 0)v,. From (5.2.7), we obtain

We observe that

[n 1 — 2]

IN A

IA

|05z, + (1 — §)v, — x|

0| Sz — ¥ 4+ (1 = 0) v — 27|

Ollzn — 2| + (L = &)l — 2]

= ||z, — 2" (5.2.8)

len — 7]

IN A

|t f () + Butn + Ynen — 27|
|l f(xn) — || + Bullwn — 2| + Yallen — 27|
ay||r, — || + o[ f(2") — 2| + Bullwn — 27| + Yullzn — 27|

(1= an + aan)lan —2*]| + el fa") ]
(1= a1 = @) fen = ] + an(1 — ) L=

e =l

max{||x; — z*|

This implies that {z,} is bounded, so are {f(x,)}, {y.}, {v.}, {en}, {Ay,} and

{Bzx,}.



Next, we show that lim,, . ||z,+1 — || = 0. Notice that

|vne1 = vnl] = [[Qc(Ynt1 — AYng1) — Qc(yn — AAyy) ||

[ (Y1 — Ayni1) — (Yo — AAyn) ||
(I = AA)yp1 — (I — AA)y,||

IN

it follows that

IA

IN

IA

< [Ynt+1 — vall
= [|Qc(wnir — pBrpyr) — Qo(xn — pBay)||
< N(@nt1 = pBxng1) — (20 — pBa,)||
= (I = puB)zpsr — (I — pB)ay||
S ||$n+1 - zn” (5'2-9)
lens1 —enll = [[[0STnt1 4+ (1 = 6)vps1] — [6Szn + (1 = 6)us]|
< OSzps1 — Saal + (1 = 6)|[vasr — vall
< Olwngr — @l + (1= 0)||@nt1 — ]
= [Tt — ol (5.2.10)
Setting x, 1 = (1 — 3,)2, + Bnx, for all n > 0, we see that z, = %, then
12041 — 2n]
H Tpt2 — ﬁn+1$n+1 i Tpy1 — ﬁnxn ||
1— ﬁn—l—l 1— ﬁn
H an+1f(xn+1> + Yn+1€n+1 N O‘nf(xn> + Yn€n ||
1— 6n+1 1— ﬁn
|| an+1f(xn+1> + Yn+1€n+1 o O‘n+1f(xn> + O‘n+1f(xn> _ Tn+1€n + Yn+1€n
11— /Gn-i-l 11— /Gn-i-l 1— /Gn-i-l 11— ﬁn—i—l 1— /Gn-i-l
0 f(Tn) + Wmén
e |
Q41 Yn+1 Q41 Qp
I () = F@) + T2 (e — e0) + (o = 1250 )
Tn41 Tn
_I_ - 677,
(1 — By 1 —ﬂn) |
Q041 Yn+1 Qnt1 Oy,
——||Tn — In +76n — €n + - .fxn
P =l 2 e — el 1 = )]
1_ﬁn 1 — Qpy1 1_6n_05n
+| - = — [llenl]
1— ﬁn—l—l 1— ﬁn
Q041 Tn+1
—— Tl — Tp|| + ———||Tpe1 — T,
T =l 2 e —
Qnt1 Qp,
+ - .f Tn + €n
7 5o 1 _ﬁnl(ll (@) + llenll)
Ay 11 Qpq1 On
— | Tpa1 — Tp|| + — o)l + llenll) + | Tna1 — Tnll-
P s — |+ 1 = P (Ul lleal) s —



Therefore

Qlp 11 Qpt1 On
Znal — Zoll = |Zne1r — 20l < ————||Tpe1 — znl| + - flx )l =+ llenll)-
2041 | = [t | T |Znt1 I+ 15 —G5o 1 _ﬁnl(ll (zn)[l + llenll)
It follows from the condition (C1) and (C2), that
hmsuP(Hzn—i-l - Zn” - ||a7n+1 - zn”) <0.

n—oo

Applying Lemma 5.2.5, we obtain lim,, . ||z, — z,|| = 0 and we also have
|Znt1 — znll = (1 = Bo)llzn — @ull — 0, n — o0

Hence

Hm [|2ns1 — 2 = 0. (5.2.11)

Next, we show that x* € F. Define a mapping 7' : C' — C by
Tr =054+ (1-0)Qc(I —AA)Qc(I — uB), VxeC.
From Lemma 5.2.3 and Lemma 5.2.8, we see that 7' is a nonexpansive mapping with

F(T) = F(S)NF(Qo(I - A\A)Qo(I — uB3))

Therefore, we have z* € F.

Next, we show that limsup,,_, . ((f — 1)z, J(x, — Z)) <0, where £ = Qxf(Z).
Since {z,} is bounded, we can choose a sequence {z,,} of {z,} which z,, — x* such
that

limsup((f — 1)@, J (2, — 7)) = lim ((f — )7, J(2n, — T)). (5.2.12)

PN 1—00

Now, from (5.2.12), Proposition 5.2.1 (iii) and since J is strong to weak® uniformly

continuous on bounded subset of £, we have

limsup((f = )z, J(zp — 7)) = b ((f = 1)z, J(zn, — 7))

n—oo 1—00

= ((f=Dz,Jz*—7) <0. (52.13)
From (5.2.11), it follows that

limsup((f — Iz, J(zpt1 — 7)) < 0. (5.2.14)

n—oo



Finally, we show that {x,} converges strongly to = = Qxf(Z). Observe that

21 — 7|

= (Tns1 — T, J(Tn41 — T))

= {anf(zn) + Bun + Ynen — T, J(Xni1 — T))

= (an(f(za) =) + Bu(@n — Z) + Yalen — ), J (041 — T))

= an{f(zn) = f(Z), (@01 — ) + ulf(T) — T, I (Tp41 — T))
+0n{xn — T, J(Xps1 — T))
Tnlen — T, J(Tn1 — T))

< aoyllry, = Zl|||Tn — 2| + an(f(Z) = 2, J(Tng1 — 2)) + Bullzn — Z|[|vn — 2
+nllen — Z||||znt1 — 2

< aap|zn = 2|z — Tl + an(f(Z) = Z, J(Tnt1 — 7)) + Ballzn — Z|||| 201 — Z|
+Ynll2n — Z|| |20 — Z||
aoy, + By, + Yn _ _ _ _ _

= 5 (2w = Z|* + lzns1 — ZI°) + o (f(2) — &, J (2031 — T))
oo, +1— o _ B B B B

= f(llxn — Z|* + (|1 — ZI°) + an(f(2) — &, J (2ps1 — Z))
1—a,(1-a) _ _ N - _

= 5 (lzn = ZI* + (|01 — Z1?) + an(f(2) = T, J (241 — T))
1 —a,(l—a) B ~ ~ - -

< 5 Hfﬁn—$|l2+§||fcn+1 —Z|” + an(f(2) = T, J (241 — T))

which implies that
|z — Z))° < (1= (1 —))||zn — Z||> + 200 (f(Z) — T, J(2py1 — TY5.2.15)

Now, from (C1), (5.2.14) and applying Lemma 5.2.6 to (5.2.15), we get ||z, —Z|| — 0
as n — 0o, where T = Q£ f(Z). This completes the proof. O

5.3 Existence and Algorithm for the System of Mixed
Variational Inequalities

We first introduce and consider the system of mixed variational inequalities (SMVI):
is to find z, y, Z € C such that

<52T29:"+J?)—J§77?J—§>+f2( ) — f2(9) >0, Vy € C, (5.3.1)
(0139 + J2 — Jg,y — 2) + f3(y) — f3(2) = 0,
where §; > 0, T, : C — E*, f; : C — RU {+oc0} fo
is the normalized duality mapping from £ to E*.

o]

j =1,2,3 are mappings and J



As special case of the problem (5.3.1), we have the following.
If fj(x) =0 for j =1,2,3, Vz € C, (5.3.1) is equivalent to find Z, y and 2 € C such

that
(0hz+Ji—Jz,y—12) >0, Yy € C,

(0T + Jy — Ji,y—g)y >0, Vy € C, (5.3.2)
(03139 +Jz—Jy,y—2) >0, Vy € C.
The problem (5.3.2) is call the system of variational inequalities. We denote by (SVI).
If Ty =13, fox) = f3(x), Vo € C and y = Z, then (5.3.1) is reduced to find z,y5 € C
such that

(5.3.3)

0Ty +Je—Jyg,y—2)+ fily) — f1(2) >0, Yy € C,
(0Tox + Jy— J2,y — 9) + faly) — fo(y) >0, Vy € C,

which is studied by Zhang et al. [338].
IfE7T="T =T,="T;, filr) = folr) = f3(x), Ve € C and & = gy = z, (5.3.1) is
reduced to find z such that

(Tz,y—2) + fily) — f(Z) >0, Vy € C. (5.3.4)
This iterative method is studied by Wu and Huang [326].
If fi(x) =0,Vzx € C, (5.3.4) is reduced to find & such that
(Tz,y—1z) >0, Vy € C. (5.3.5)

which is studied by Alber [319, 320], Li [72] and Fan [322]. If £ = H is a Hilbert
space, (5.3.5) which is known as the classical variational inequality introduced and
studied by Stampacchia [324].

If £ = H is a Hilbert space, then (5.3.1) is reduced to find z, ¢,z € C such that

(nThz+2—-2,y—2)+ fily) — fr(z) >0, Vy € C,
(0359 + 2 — 0,y — 2) + f3(y) — f3(2) >0, Yy € C.

If f;(z) =0 for j=1,2,3, Vx € C, (5.3.6) reduces to the following (SVI):

(hWhz+xz—2,y—1x)>0, Vy € C,
(T2 +9—2,y—9) >0, VyeC, (5.3.7)
(03T39 +2—19,y—2) >0, Vy € C.

The purpose of this paper is to study the existence and convergence analysis of solutions
of the system of mixed variational inequalities in Banach spaces by using the generalized
f-projection operator. The results presented in this paper improve and extend important
recent results in the literature.

We also need the following lemmas for the proof of our main results.



Lemma 5.3.1. (Xu[327]) Let ¢ > 1 and r > 0 be two fixed real numbers. Let E be
a q-uniformly convex Banach space if and only if there exists a continuous strictly
increasing and convex function ¢ : [0,4+00) — [0, +00), ¢g(0) = 0, such that

Az + (1= Myl|* < Al + (1 = Mlyll* = (Mg (ll= = yll)

for all x,y € B, ={x € E: ||z|| <r} and X € [0,1], where ¢,(\) = A1 — \)?+
A(1=N).

For case ¢ = 2, we have
Az 4+ (1= Nyll* < Al + (1 = Vlyl? = 21 = Ng(llz = yl)-

Lemma 5.3.2. (Change[321]) Let E be a uniformly convex and uniformly smooth
Banach spaces. We have the following holds:

lo + @[1* < [|9]* + 2(®, J*(¢ + @)), Vo, P € E”.

Next we recall the concept of the generalized f-projection operator. Let G :
E* x C — RU{+o0} be a functional defined as follows:

G(&,x) = |I€l* — 2(¢, @) + ||=l* + 2pf (2), (5.3.8)

where £ € E*, p is positive number and f : C' — R U {400} is proper, convex and
lower semi-continuous. From definitions of G' and f, it is easy to see the following

properties:
(1) (€l = Nlz)* +2pf(x) < GE&2) < (€]l + l2])* + 2pf (2);
(2) G(&, ) is convex and continuous with respect to x when ¢ is fixed;
(3) G(&, ) is convex and lower semicontinuous with respect to & when z is fixed.

Definition 5.3.1. Let E be a real Banach space with its dual E*. Let C be a
nonempty closed convex subset of EE. We say that Hé . E* — 2Y is generalized
f-projection operator if

Mg = {u € C: G(§u) = inf G(§.y)}, Ve € B
Yy
In this paper, we fixed p = 1, we have

G(&§ 2) = [I€]° — 2(&, 2) + ||=[* + 2f (x).

For the generalized f-projection operator, Wu and Hung [326] proved the following
basic properties.



Lemma 5.3.3. (Wu and Hung [325]) Let E be a reflexive Banach space with its
dual E* and C' is a nonempty closed convex subset of E. The following statement

holds:

(1) Hég is nonempty closed convex subset of C' for all £ € E*;
(2) if E is smooth, then for all ¢ € E*, x € TIL¢ if and only if
(€ —Jw,x—y)+pfly) —pf(z) 20, Vy € C;
(3) if E is smooth, then for any £ € E*, Hég = (J + pof)~1, where Of is the
subdifferential of the proper convex and lower semi-continuous functional f.
Lemma 5.3.4. (Wu and Hung [325]) If f(z) >0 for all x € C, then for any p > 0,
G(Jz,y) < G y) +2pfly), VE€ E*, y € C, x € IILE.

Lemma 5.3.5. (Fan et al. [323]) Let E be a reflexive strictly convex Banach space
with its dual E* and C' is a nonempty closed convex subset of E. If f :(C —

R U {+o0} is proper, convex and lower semi-continuous, then

(1) IIL, : E* — C is single valued and norm to weak continuous;

(2) if E has the property (h), that is, for any sequence {x,} C E, z, =~z € E
and ||x,| — ||x|, implies x, — x, then 11, : E* — C' is continuous.

Defined the functional G5 : E x C' — R U {+o0} by
G2(‘T7y) = G(J{L’,y), Ve E7 Y€ C.

5.3.1 Generalized Projection Algorithms

Proposition 5.3.6. Let C' be a nonempty closed and convex subset of a reflexive
strictly convex and smooth Banach space E. If f; : C — RU{+o0} for j =1,2,3
is proper, convex and lower semi-continuous, then (Z,7y, %) is a solution of (SMVI)

is equivalent to finding t,v,z such that

§ =32 (Jz — 6Thz), (5.3.9)
f:

Proof. From Lemma 5.3.3 (2) and F is a reflexive strictly convex and smooth Banach
space, we known that J is single valued and Héj for j = 1,2,3 is well defined and
single valued. So, we can conclude that Proposition 5.3.9 holds. U

For solving the system of mixed variational inequality (5.3.1), we defined some

projection algorithms as follow:



Algorithm 5.3.7. For an initial point x,z, € C, we define the sequences {x,},{yn}
and {z,} as follows:

Tpi1 = (1 — )z, + oanél(Jzn —6T1z,),
Yn+1 = Hg(anH - 52T2$n+1)7 (5.3.10)
Znir = B (Jyni1 — 05Tsyns1),

where 0 < a < a, <b< 1.

If fi(x) =0, j7=1,2,3, for all z € C then Algorithm 5.3.7 reduces to the following
iterative method for solving the system of variational inequalities (5.3.2).

Algorithm 5.3.8. For an initial point x,z, € C, we define the sequences {x,},{y,}
and {z,} as follows:

Topr1 = (1 —ap)zn + oo (Jz, — 61T 2,),
Ynt1 = Hc(anH - 52T2$n+1)7 (5.3.11)
Zn+1l = HC(Jyn—H - 53T3yn+1>7

where 0 < a < a, <b< 1.

For solving the problem (5.3.6), we defined the algorithm as follows:
It £ = H is a Hilbert space, then Algorithm 5.3.7 reduces to the following.

Algorithm 5.3.9. For an initial point x,z, € C, we define the sequences {x,},{yn}
and {z,} as follows:

Tpi1 = (1 — )z, + oanél(Jzn —6T1z,),
Yns1 = 5 (J2ps1 — 62ToTns1), (5.3.12)
Zp+l = Hé?(Jyn-l—l - 53T3yn+1)7

where 0 < a <, <b< 1.

If fi(x) =0, j =1,2,3, for all x € C, then Algorithm 5.3.9 reduces to the
following iterative method for solving the problem (5.3.7) as follow:

Algorithm 5.3.10. For an initial point xy,zy € C, we define the sequences {x,},{yn}
and {z,} as follows:

Tpr1 = (1 —apn)zn + anPo(Jz, — 61T 2,),
Ynt1 = PC(anH - 52T2$n+1)7 (5.3.13)
Zn4+1 = PC(Jyn+1 - 53T3yn+1)7

where 0 < a < a,, < b < 1.



5.3.2 Existence and Convergence Analysis

Theorem 5.3.11. Let C' be a nonempty closed and convex subset of a uniformly
convex and uniformly smooth Banach space E with dual space E*. If the mapping
T; : C — E* and f; : C — R U {400} which is convex lower semi-continuous

mappings for j = 1,2,3 satisty the following conditions:
1) (Tjx,J*(Jx —0,;T;x)) >0, Ve € C for j=1,2,3;
(i) (J — 6;1;) are compact for j =1,2,3;
(iii) f;(0) =0 and f;(x) >0, Vo € C and j =1,2,3.

Then the system of mixed variational inequality (5.3.1) have a solution (&,7,Z2)
and sequences {x,},{y.} and {z,} defined by Algorithm 5.3.7 have convergent
subsequences {x,,},{yn,} and {z,,}such that

T, — T, 1 — 00,

Yn; — Y, © — 00,

Zn, — 2,1 — 00.

7

Proof. Since FE is uniformly convex and uniform smooth Banach spaces, we known
that J is bijection from E to E* and uniformly continuous on any bounded subsets of
E. Hence Héj for j =1,2,3 is well defined and single value implies that, {x,}, {y,}
and {z,} is well defined. Let Go(z,y) = G(Jx,y), for any z € C and y = 0, we have

Go(z,0) = G(Jx,0)
= [[Jz]]* = 2(J=,0) + 2f(0)
= ||z

(Bl

(5.3.14)

By (5.3.14) and Lemma 5.3.4, we have

Go(ITh (T2 — 01 T12,),0) = G(JTIE(J 2z — 6:T12,)), 0)
S G(Jzn — 51T12’n, O) (5.3.15)
= ||JZn - 51T12n||2.

From Lemma 5.3.2, and for all x € C, (T1x, J*(Jx — §;T1z)) > 0, so for z, € C, we

obtain

||JZn — 51T12n||2 S HJZnHZ — 2<51T12n, J*(J,Zn — (51T12n>>
< |zl (5.3.16)
<

(A



Again by Lemma 5.3.2, for all z € C, (Tyx, J*(Jx — §T5x)) > 0, and for x,; € C,

we have

Y1112

(VAN VAN VAN VAR VAN

G2(Yn+1,0)

G(Jyn-l-b 0)

G(Jﬂg(anH — 05T52,41),0)

G(Jxpy1 — 02152041, 0)

[T 241 — 02 ToTp

| Jxpi1||? = 2(02Tox i1, J*(Jpi1 — 62ToTni1))

(5.3.17)

In similar way, for all z € C, (T3x, J*(Jx — 05T5z)) > 0, and z,.; € C, we also have

1012

IA

(VANVAN

G(Jzn-i-la O)

G(JYnt1 — 03T3Yn+1,0)

1 Y11 — 03T 54n41) ||? (5.3.18)
1 Tyns1l1? = 2003 T3yns1, J* (JYnt1 — 03T5Yn11))

Y.

It follows from (5.3.17) and (5.3.18) that

Izl < g ll?, V0 € N. (5.3.19)

From (5.3.17) and (5.3.18), we compute

[Et

< (1= an)|all + TG (20 — 61 T12) |

< (1= o) llznll 4 anllzall

< (1= an)llzall + anllyall (5.3.20)
< (1= an)llwnll + anllzal

I
El
El

This implies that the sequences {x,}, {yn}, {2} and {IT (Jz, —,T12,)} are bounded.
For a positive number r such that {z,}, {yn}, {z.}, {Il}(Jz, — 0,T1z,)} € B,, by

Lemma 5.3.1, for ¢ = 2 there exists a continuous, strictly increasing and convex

function g : [0,00) — [0, 00) with g(0) = 0 such that for «, € [0, 1], we have

[E2rtn

IA

(1 = ) n + anlli (T2, — 6,11 2,)] 2

(1= an)l|za® + an|[ T2 (S 20 = 6:T12,)

—an(1 = ap)gllan — TE (T2, — 61 T12,)|| (5.3.21)
(1 = )|z |? + 0nGo(TIE (J 2 — 6:T1.20, 0))

—a, (1 —ay)g||lx, — Hél(Jzn —nTiz,)]-



Applying (5.3.15), (5.3.16) and (5.3.19), we have

(1 = ap)gllzn — TE (T2, — 6:Th2,) |
(1 — ap)||nl? = |Tnt1ll? + nGo (113 (T2, — 61 T12,), 0)
(1 — an)l|zal? = |20 [|” + ozl

[l I* = [l 1.

(5.3.22)

IA A

Summing (5.3.22), for n =0,1,2, 3, ..., k, we have

k
Y anl(l = an)gllan —UE (T2 — 61 Thza) || < Jloll® = Nawsa | < ol

n=0

taking k — oo, we get
Sootg an(l = an)gllen — TG (Jzn — 61 T1z0) || < ol (5.3.23)
This show that series (5.3.23) is converge, we obtain that
lim,, oo (1 — ) gz — Hél(Jzn —0nTiz,)]| = 0. (5.3.24)
From 0 < a < a,, <b < 1 for all n, thus >~ a,(1 —a,) > 0 and (5.3.24), we have
limy, oo gl|2n — T2 (J 2, — 0:T12,)|| = 0. (5.3.25)
By property of functional g, we have
limy, oo |20 — T (J 2 — 01 T12,) | = 0. (5.3.26)

Since {z,} is bounded sequence and (J — 6;7}) is compact on C, then sequence

{Jz, — 01T12,} have a convergence subsequence such that

{Jzn, — 01T 20, } — wy € E* as i — 0. (5.3.27)
By the continuity of the Hél, we have

1y o0 115 (2, — 01T 20,) = 115 (wy). (5.3.28)

Again since {z,}, {y,} are bounded and (J — §,73), (J — d373) are compact on C,
then sequences {Jx, — d2Trx,} and {Jy, — 0373y, } have convergence subsequences
such that

{Jxpn, — 6wy, } — ug € E* as i — oo, (5.3.29)

and
{JYn; — 03T3Yyn,} — vo € E* as i — 0. (5.3.30)



By the continuity of Héz and Hég, we have

1y oo T2 (J 2, — 09Toy,) = 1122 (up), (5.3.31)

and
1y o0 113 (Jyn, — 03T5yn,) = 115 (o). (5.3.32)

Let
115 (wo) = 4, (5.3.33)
1122 (up) = 4, (5.3.34)
115 (vy) = 2. (5.3.35)

By using the triangle inequality, we have
|, = 21 < Nlawn, = T (Jzn, = 61 T1z0) | + [TE (J20, = 61 T12,) = 21].

From (5.3.26) and (5.3.28), we have

lim; o Tp, = 2. (5.3.36)
By definition of z,,, we get

lzne =21 < ITE(Tyn, — 05Tsyn,) — 2]I-

It follows by (5.3.32) and (5.3.35), we obtain

lim; o0 2n, = 2. (5.3.37)
In the same way, we also have

lim; oo Yn, = 9. (5.3.38)

By the continuity properties of (J —0,71), (J—321%), (J—0d373) and Héj for j =1,2,3.
We conclude that
i =10 (J2 - 6,T12)

This complete of proof. U

Theorem 5.3.12. Let C' be a nonempty compact and convex subset of a uniformly
convex and uniformly smooth Banach space E with dual space E*. If the mapping
T; : C — E* and f; : C — R U {400} which is convex lower semi-continuous

mappings for j = 1,2,3 satisfy the following conditions:



() (Tyx, J*(Jx — §;T;x)) >0, Vo € C for j =1,2,3;
) f;(0) =0 and f;(z) >0, Ve € C for j=1,2,3.

Then the system of mixed variational inequality (5.3.1) has a solution (Z,y,%) and
sequences {r,},{y,} and {z,} defined by Algorithm 5.3.7 have a convergent sub-
sequences {x,,},{yn,} and {z,,} such that

Tp, — T, 1 — 00,

yni - g? Z — 00,

Zp; — 2, 1 — 00.

Proof. In the same way to the proof in Theorem 5.3.11, we have
limy, oo || 20 — T (J 2 — 01 T12,) | = 0. (5.3.39)
Hence there exist subsequences {z,,} C {z,} and {z,,} C {z,} such that
iy g ||, — T2 (T2, — 01 T120,)|| = 0. (5.3.40)
From the compactness of C, we have that
{zp,} — Tasi — o0

and

{zn,} — Zasi — oo,
where &, Z are points in C. Also for a sequence {y,} D {yn,} — ¢ as ¢ — oo, where
g is a points in C. By the continuity properties of J, 15, T3 Héz and Hég , we obtain
that

g =12 (Ji — 6,Thi)

and

z

[ (i) — 0T5).
From definition of z,1, we get
T2 (T2, — 01Th20,) — 2|
= ||Hé1(sz — 0T zn,) — T4 Tpe1 — (1 — )y, — anﬂg(sz — 0T z,,)
= ||zp41— 2+ (1 — an)(Hél(sz — 0T zn,) — Xn,
< = &)+ (1= an)|[@n, = T8 (20, — 6:1T120,)

By (5.3.36) and (5.3.39), we have
& =T0(J2 - 6,T12).

This complete of proof. U



Corollary 5.3.13. Let C' be a nonempty closed and convex subset of a uniformly
convex and uniformly smooth Banach space E with dual space E*. If the mapping
T;:C — E* for j =1,2,3 satisty the following conditions:

() (Tyz, J*(Jo — 6,Tjz)) > 0, Yo € C for j = 1,2,3;
(i) (J — ;1) are compact for j =1,2,3.

Then the system of mixed variational inequality (5.3.2) have a solution (&,7,Z2)
and sequences {r,},{y.} and {z,} defined by Algorithm 5.3.8 have convergent
subsequences {x,,},{yn,} and {z,,} such that z,, — &, i — 00, y,, — U, i — oo and

Zp;, = 2, 1 — O0.

If £ = H is a Hilbert space, then H* = H, J* = J = I, so we obtain the following

corollary.

Corollary 5.3.14. Let C' be a nonempty closed and convex subset of a Hilbert space
H. If the mapping T; : C — H and f; : C' — R U {400} which is convex lower
semi-continuous mappings for 7 = 1,2,3 satisty the following conditions:

@) (Tyw,x — 6;T;z) > 0 for j = 1,2,3;
(ii) f;(0) =0 and f;(x) >0 for all x € Cfor j =1,2,3.

Then the system of mixed variational inequality (5.3.6) have a solution (&,7,Z2)
and sequences {z,},{y,} and {z,} defined by Algorithm 5.3.9 have a convergent
subsequences {x,,},{yn,} and {z,,} such that z,, — &, i — 00, Y, — y, i — 00 and

Zn, — 2, 1 — O0.

Corollary 5.3.15. Let C' be a nonempty closed and convex subset of a Hilbert space
H. If the mapping T; : C — H for j = 1,2,3 satisfy the conditions: (T;x,v —
0;Tjxy > 0 for j = 1,2,3. Then the system of mixed variational inequality (5.3.7)
have a solution (Z,y,%) and sequences {x,},{y.} and {z,} defined by Algorithm
5.3.10 have a convergent subsequences {x,,},{yn,} and {z,,} such that x,, — %, i —

00, Yn, — Y, @ — 00 and z,, — Z, i — 00.

Remark 5.3.16. Theorem 5.3.11, 5.3.12 and Corollary 5.3.13 extend and improve the
results of Zhang et al. [338] and Wu and Huang [326].



5.4 Variational Inequality Inclusion and Nonexpansive Semi-
groups

Let B : H — H be a single-valued nonlinear mapping and M : H — 2 be a
set-valued mapping. The variational inclusion problem is to find £ € H such that

0 € B(&) + M(%), (5.4.1)

where 6 is the zero vector in H. The set of solutions of problem (5.4.1) is denoted
by I(B,M). A set-valued mapping M : H — 2 is called monotone if for all
x,y € H, f € M(x)and g € M(y) imply (z —y, f —g) > 0. A monotone mapping
M is maximal if its graph G(M) := {(f,z) € H x H : f € M(x)} of M is not
properly contained in the graph of any other monotone mapping. It is known that a
monotone mapping M is maximal if and only if for (z, f) € Hx H, (x—y,f—g) >0
for all (y,g9) € G(M) imply f € M(x).

Definition5.4.1. A family S = {S(s) : 0 < s < oo} of mappings of C into itself is
called a nonexpansive semigroup on C' if it satisfies the following conditions:

(1) S(0)z = x for all z € C}

(2) S(s+1t) = S(s)S(t) for all s,t > 0;

3) ||1S(s)x — S(s)y|| < ||z —y|| for all z,y € C and s > 0;

(4) for all z € C, s+ S(s)zx is continuous.

We denoted by F'(S) the set of all common fixed points of S = {S(s) : s > 0},
i.e., F(S) = Ns>oF(S(s)). It is know that F'(S) is closed and convex.

Definition5.4.2. Let n : C' x C — H 1is called Lipschitz continuous, if there exists a
constant L > 0 such that

In(z,y)|| < Lljz —yl|, Vz,y € C.

Let I : C' — R be a differentiable functional on a convex set C', which is called:

(1) n-convex if
Ky) - K(@) = (K/(2),n(y,2)), Va,y € C,

where KC'(z) is the Fréchet derivative of K at x;
(2) n-strongly convex if there exists a constant o > 0 such that
o
K(y) - K(@) = (K@) n(y,2)) = Tl = yl]%, Va,y € C.

In particular, if n(x,y) = z —y for all z,y € C, then K is said to be strongly

convex.



Definition5.4.3. Let M : H — 2% be a set-valued maximal monotone mapping, then
the single-valued mapping Jys » : H — H defined by

Jur(@) =T+ M) (2), 2€H (5.4.2)

is called the resolvent operator associated with M, where A is any positive number
and [ is the identity mapping. The following characterizes the resolvent operator.
(R1) The resolvent operator Jy » is single-valued and nonexpansive for all A > 0,
that is,
| Tax(z) = T < |l =y, Yo,y € H and VYA > 0.

(R2) The resolvent operator Jy, » is 1-inverse-strongly monotone; see([252]), that
1s,
[ Tpa (@) = Tia@)1* < (& =y, Jua(x) — Jua(y)), Yo,y € H.
(R3) The solution of problem (5.4.1) is a fixed point of the operator Jy; (I — AB)
for all A > 0, that is,
I(B,M) = F(Jux(I—=AB)), YA >0.

(R4) If 0 < A < 24, then the mapping Jy (I — AB) : H — H is nonexpansive.
(R5) I(B, M) is closed and convex.

Lemma 5.4.4. [252] Let M : H — 2" be a maximal monotone mapping and let
B : H — H be a Lipshitz continuous mapping. Then the mapping L = M + B :

H — 2" js a maximal monotone mapping.

Lemma 5.4.5. Let C be a closed convex subset of H. Let {x,} be a bounded

sequence in H. Assume that

(1). The weak w-limit set w,(x,) C C,

(2). For each z € C, lim,, ., ||z, — z|| exists.
Then {x,} is weakly convergent to a point in C.

Lemma 5.4.6. [232]. FEach Hilbert space H satisties Opial’s condition, that is,
for any sequence {zr,} C H with x, — z, the inequality liminf, |z, — z| <
liminf,, . ||z, — yl||, hold for each y € H with y # .

Lemma 5.4.7. [239] Each Hilbert space H, satisties the Kadec-Klee property, that is,

for any sequence {x,} with v, — v and ||z,|| — ||z|| together imply ||z, —z| — 0.

For solving the system of mixed equilibrium problem, let us assume that function
F,:CxC—TR, k=1,2,..., N satisfies the following conditions:



(H1) Fj is monotone, i.e., Fy(x,y) + Fi(y,z) <0, Vz,y € C,
(H2) for each fixed y € C, x +— Fi(z,y) is convex and upper semicontinuous;
(H3) for each fixed x € C,y — Fi(z,y) is convex.

Lemma 5.4.8. [223] Let C' be a nonempty closed convex subset of a real Hilbert
space H and let ¢ be a lower semicontinuous and convex functional from C to R.
Let F' be a bifunction from C' x C' to R satistying (H1)-(H3). Assume that

(i) n:C x C — H is k Lipschitz continuous with constant k > 0 such that;

@ n(z,y) +nly,z) =0, Vr,yel,
(b) n(-,-) is affine in the first variable,

(c) for each fixed v € C, y — n(z,y) is sequentially continuous from the

weak topology to the weak topology,

(i) K : C — R is n-strongly convex with constant o > 0 and its derivative K' is

sequentially continuous from the weak topology to the strong topology;

(iii) for each x € C, there exist a bounded subset D, C C and z, € C such that
for any y € C\D,,

1
F(y,2) + ) = o) + —(K'(y) = K'(@).n(z0,9) ) < 0.
For given r > 0, Let KF : C — C be the mapping defined by:

1 ! /
KE @) = {u € € Fl) +0() =0 + 1 (K0) - K@)tz = 0, v
(5.4.3)
for all x € C. Then the following hold

(1) KF is single-valued;

(2) KF' is nonexpansive if K' is Lipschitz continuous with constant v > 0 such

that o > kv;
(3) F(KT) = MEP(F, ¢);
(4) MEP(F,p) is closed and convex.

Lemma 5.4.9. [184] Let V : C' — H be a -strict pseudo-contraction, then
(1) the fixed point set F(V) of V is closed convex so that the projection Pp(y) is



well defined;
(2) define a mapping T : C — H by

Ter=ter+ (1-t)Vx,Vr el (5.4.4)
Ift € [£,1), then T is a nonexpansive mapping such that F(V) = F(T).

A family of mappings {V; : C — H}$°, is called a family of uniformly -strict
pseudo-contractions, if there exists a constant £ € [0, 1) such that

[Viz = Vgl < llz =yl + €I(T = Vi)z — (I = Vi)yl®, Va,y € C,Vi> 1.

Let {V;: C — C}2, be a countable family of uniformly ¢-strict pseudo-contractions.
Let
{T;: C — C'}32, be the sequence of nonexpansive mappings defined by (5.4.4), i.e.,

Tx=te+(1—-t)Via,Ve e C\Vi>1,te[{,1) (5.4.5)

Let {7;} be a sequence of nonexpansive mappings of C' into itself defined by (5.4.5)
and let {y;} be a sequence of nonnegative numbers in [0,1]. For each n > 1, define a

mapping W,, of C into itself as follows:

Un,n+1 = I7
Unn = pnLaUppsr + (1= pa)l,
Upn-1 = tn1Th1Upn + (1 — p_1)1,
(5.4.6)
Uni = eTiUpjgr + (1 — pi)l,
Upp—1 = p—1Tp-1Upnp + (1 — p—1)1,

Upo = poThUys+ (1 — o),
Wo=Un1 = mTiUps+ (1 — )l

Such a mapping W, is nonexpansive from C to C and it is called the WW-mapping
generated by 13,75, ...,T, and p, pto, ..., ptn. For each n, k € N, let the mapping U, s
be defined by (6.1.4). Then we can have the following crucial conclusions concerning
W,.

Lemma 5.4.10. [238]. Let C' be a nonempty closed convex subset of a real
Hilbert space H. Let T1,Ts,... be nonexpansive mappings of C into itself such
that N2, F(T;) is nonempty, let ji1, s, ... be real numbers such that 0 < pu; <b <1
for every © > 1. Then, for every v € C' and k € N, lim,,_. U,y exists.



Using this Lemma, one can define a mapping Uy and W : C' — C as follows
Uso k= lim,, oo Uy, @ and

Wz := lim W,z = lim U, 2,V € C (5.4.7)

n—oo n—oo

Such a mapping W is called the W -mapping. Since W, is nonexpansive and F(W') =
N2, F(T;), W :C — C is also nonexpansive. Indeed, observe that for each x,y € C
such that

[We Wyl = lim Wy — Wy < [l — ]|

Lemma 5.4.11. [238] Let C be a nonempty closed convex subset of a Hilbert
space H, {T; : C — C} be a countable family of nonexpansive mappings with
N2, F(T;) # 0, {p:} be a real sequence such that 0 < p; < b < 1,Vi > 1. Then
FW) =Nz, F(T).

Lemma 5.4.12. Let C' be a nonempty closed convex subset of a Hilbert space H,
{T; : C — C} be a countable family of nonexpansive mappings with N, F(T;) # 0,
{p;} be a real sequence such that 0 < p; < b < 1,Vi > 1. If D is any bounded
subset of C, then

lim sup [|[Wx — Wy,z| = 0.

n—oo ZBED

Lemma 5.4.13. Let C' be a nonempty bounded closed convex subset of a Hilbert
space H and let S = {S(s): 0 < s < oo} be a nonexpansive semigroup on C, then

for any h > 0,
1/ 1 [
¥/0 T(s)xds—T(h)(;/O T(s)xds)

Lemma 5.4.14. Let C be a nonempty bounded closed convex subset of H, {x,} be

lim sup
t——00 zeC

o

a sequence in C and S = {S(s) : 0 < s < oo} be a nonexpansive semigroup on C.

If the following conditions are satistfied:
1) xp — 2
(ii) limsup,__,  limsup,_ . ||S(s)x, —x,|| =0, then z € F(S).

Theorem 5.4.15. Let C' be a nonempty closed convex subset of a real Hilbert space
H, let {F,:CxC—TR, k=1,2,...,N} be a finite family of mixed equilibrium
functions satistying conditions (HI1)-(H3). Let S = {S(s) : 0 < s < oo} be a
nonexpansive semigroup on C and let {t,} be a positive real divergent sequence.
Let {V;: C — C}2, be a countable family of uniformly &-strict pseudo-contractions,
{T; : C — C}2, be the countable family of nonexpansive mappings defined by
Tix =tex+ (1 —t)Vx,Ve € C\Vi > 1,t € [¢,1), W,, be the W -mapping defined by



(6.1.4) and W be a mapping defined by (6.1.5) with F(W) # (. Let A,B:C — H
be -, 3-inverse-strongly monotone mappings and M, M, : H — 2% be maximal
monotone mappings such that

©:=F(S)NFW)n (ML, SMEP(F,))NI(A, M)NI(B, M) # 0.

Let r, > 0,k = 1,2,..., N, which are constants. Let {x,}, {yn}, {vn}, {z.} and
{u,} be sequences generated by ©o € C, C, =C, 1 = Pe,xo, u, € C and

( .

xg =x € C chosen arbitrary,

FN Fn_1 Fn_2 F 1
=K. N K. KON LK K T,

Yn = JMQ,(Sn(un - 5nBun)a
Up = JMl,)\n (yn - )‘nAyn)u

1 tn
Zn = U, + (1 — an)t— / S(s)Wyv,ds,
n Jo

2
oy = {zECn:Hzn—sz < [ln = 2)” = an(l — an) 3

(5.4.8)
where Kt : C'— C, k=1,2,...,N is the mapping defined by (5.4.3) and {ay}
be a sequence in (0,1) for all n € N. Assume the following conditions are satistied:

tn
Uy, — i/ S(s)Wvnds
tn Jo

n e N,

\ 'ITL"F 1 — PCnJrl

(Cl) n, : C x C — H 1is Ly-Lipschitz continuous with constant k =1,2,... N such
that

@ mi(2,y) +m(y,x) =0, Vz,yedl,
(b) x — ni(x,y) is affine,
(c) for each fixed y € C, y — ni(x,y) is sequentially continuous from the

weak topology to the weak topology;

(C2) Ky : C — R is n-strongly convex with constant o, > 0 and its derivative
. 1s not only sequentially continuous from the weak topology to the strong
topology but also Lipschitz continuous with a Lipschitz constant vy, > 0 such

that o, > Lyv;

(C3) For each k € {1,2,...,N} and for all x € C, there exist a bounded subset
D, C C and z, € C such that for any y € C\D,,

Fily, %)+ 9() = 9(y) + (K (y) = K (), n(ze,) )< 0

Tk

(C4) {ay,} C[c,d] for some c,d € (&,1);



(C3) {\,} C[ai,bn] for some ay,b; € (0,27];
(C6) {0,} C [ag,by] for some ay, by € (0,20];

(C7) liminf, .7y, >0 for each k €1,2,3,...,N.
Then, {x,} and {u,} converge strongly to z = Pgxy.

Proof. Pick any p € O. Taking SF = Kri’anékjnKTi’“jn...KTI,”;%“KE{n for k €
{1,2,3,...,N} and Q% = I for all n € N. From the definition of Kf; - is nonexpansive
for each k£ =1,2,3,..., N, then S} also and p = Sf* p, we note that u,, = SN z,,. If
follows that |

lun = pll = 19720 = SR pll < ll2n = pll-
Next, we will divide the proof into eight steps.

Step 1. We first show by induction that © C C,, for each n > 1.

Taking p € ©, we get that p = Jy, \ (P — MeAp) = Ja s, (p — 0xBp). Since
Iy n.s Jans, are nonexpansive. From the assumption, we see that © C C = (4.
Suppose © C (), for some k > 1. For any p € © = C}, we have

lve = pll = [[Jan e Wk — MeAyr) — Jana (P — AeAp)||
[ (yr — AeAyr) — (p — \Ap) ||

IN

< T = MeA)yre — (I = XMA)p||

< lye — 2l (5.4.9)
and

lye =2l = |Jass, (ur — OxBur) — Jasys,(p — 0xBD)||

< |[(ux — pBug) — (p — 0x Bp)||

< lue —pl|

< —pl. (5.4.10)
Which yield that
fa=pl = [t =)+ =) (- [ S6Wiands =)

IA

ook = p|I> + (1 — Oék

/ ) Wivpds — pH

vk——/ S(s kakdsH

—Oék(l — Oék

IA

1 [t 2
arllon — plI2 + (1 — ap)lloe — p|I? — ax(1 —ak)Hvk _ ﬁ/ S(S)kakdsH
0

1 [ 2
llve — plI* — a1 — ak)Hvk ~ / S(s)kakdsH : (5.4.11)
0

IN



Applying (5.4.9) and (5.4.10), we get

2
. (5.4.12)

1 [%
e =l < llow = ol - au1 = aw)ue = - [ S(6)Wiwnds
kE Jo

Hence p € C41. This implies that © C C), for each n > 1.
Step 2. Next, we show that {z,} is well defined and C,, is closed and convex for any
n € N.

It is obvious that C; = C is closed and convex. Suppose that (' is closed and
convex for some k£ > 1. Now, we show that Cj., is closed and convex for some k.
For any p € Cj, we obtain

2 = pII* < lox — p®

is equivalent to
2k — 2l + 2(2k — 2k, 26 — p) < 0. (5.4.13)

Thus Cjy; is closed and convex. Then, C), is closed and convex for any n € N. This
implies that {x,} is well-defined.
Step 3. Next, we show that {z,} is bounded and lim,,_. ||, — zo|| exists. From
Tn = Po,xo, we have

(xo — Tp,Tpn —y) >0

for each y € C,,. Using © C C),, we also have
(rto — xp,zp—p) >0, VYpeO® and neN.
So, for p € ©. We observe that

0 S <$0_$naxn_p>

= (g — Tp, Ty — To+ To — P)

—<ZL'0 — Tn, Ty — xn) + <£L’0 — T,y Lo _p>

IN

—llwo = zul* + llwo — allllzo — plI-
This implies that
|lzo — x| < ||xo —pll, Yp€©® and neN.

Hence, we get {z,} is bounded. It follows by (5.4.9)-(6.4.13), that {v,}, {y,} and

{W,v,} are also bounded. From x, = P¢, zo, and x,.1 = Pc, ., 20 € Cpyq1 C Cy, We

n+1
obtain

(20 — T, Tn — Tny1) > 0. (5.4.14)



It follows that, we have for each n € N

0

It follows that

<x0 — Tp, Tp — :Cn—l—l)

(g — Ty, Ty — To + To — Tpy1)

= —(xg — Tp,To — Tp) + (To — T, To — Tnt1)

IA

—llwo = @ull* + llzo — Zullllzo — Zasall.

[0 = all < N0 = Znpa]-

Thus, since the sequence {||x, — xo||} is a bounded and nondecreasing sequence, so

lim,, .o ||z, — xo|

exists, that is

m= lim |z, — x| (5.4.15)

Step 4. Next, we show that lim,, . [|z,41 — 2,]| = 0 and lim,, . ||z, — z,]| = 0.

Applying (5.4.1

10 — @il =

<

4), we get

|zn — 20 + 20 — Tpyr ||?

@0 — @ol|” + 2(xn — %0, To — Tns1) + [|T0 — Tnta||?

|zn — zol|* + 2(xp — 20, To — Tn + Tn — Tny1) + ||T0 — Tny1?

|zn — z0|* — 2(zn — 0, T — 20) + 2{Tn — T0, Tp — Tny1) + ||To — Tny1]|?
—[lzn = @ol* + 2{z0 — w0, Tp — Tag1) + |20 — Tnia||?

—llzn = @oll* + llzo — Tl

Thus, by (5.4.15), we obtain

On the other hand,

Hm || %, — Zpaa|| = 0. (5.4.16)

from z, .1 = Po, 29 € C,o1 C C,, which implies that

n+1

[Znt1 = 2ol < [[Tnt1 — 2. (5.4.17)

It follows by (5.4.17), we also have

120 = 2nll < 120 = @l + long1 = 2all < 2[|20 = 2]

By (5.4.16), we obtain

Step 5. Next, we show that

lim ||z, — 2| = 0. (5.4.18)
lim ||S%z, — SF 12, =0 (5.4.19)

n—-:aoo



for every k € {1,2,3,..., N}. Indeed, for p € O, note that Kf;kn is the firmly nonex-

pansie, so we have

ISz — Shpll® = 1K, S0 e, — K plf?

Tk,n

< <%kxn p,\s _1 L, _p>

= U — P 95w — I — [ — ).
Thus, we get
IS, — Shpll? 1S5 2, = pl)* = [ISha, — S, |
It follows that
[un —plI* < ISz, — Shpl?
< NSE =l — 1Sh e, — S |
< lwn = pl]* = |88z, — S5 | (5.4.20)

By (5.4.9), (5.4.10), (6.4.13) and (5.4.20), we have for each k € {1,2,3,..., N}

2o —plI* < lvn —pl?
< lun —pl?
< aw —pl? = |SE2, — S, |7

Consequently, we have

-1

I1Sh2n = Sh 7 2l < llwn — 0l = llzn — pII?

AN
£
3

= 2| (lzn = 2l + [lz0 = pIl)-

Since (5.4.18) implies that for every k € {1,2,3,..., N}

lim ||SF2, — S, || = 0. (5.4.21)

n—--:mQ0

Step 6. Next, we show that lim,, . ||y, — va|| = 0 and lim,, . [|IC, Wy v, — v, || = 0
where [, = = [ S(s)ds

For any glven p €O, N €(0,29], 9, € (0,208] and p = Japa,(p — \Ap) =
Ity 5, (p — 6, Bp). Since I — A\, A and I — §,,B are nonexpansive, we have

lva = pI* = T2t 0, (U = AnAyn) = Jarn, (0 — AnAp) |

1(yn — AAys) — (p — A\ Ap) ||
(o — p) — Au(Ay, — Ap)|?

IN

< lgn = plI? = 220 Yn — P, Ay — Ap) + A2|| Ay, — Ap||?
< Nlan = ol = 2271 Ay, — Ap|?> + A2|| Ay, — Ap||?
< an = plI? 4+ An(An — 27) | Ay, — Ap|)®. (5.4.22)



Similarly, we can show that

lyn — 21> < lww —p|* + 6,(6, — 28)|| Bu,, — Bp||*. (5.4.23)

Observe that

e —pl? = |

< allon — p|l? <1—an> / S()W,vds — o

1

—a, (1 — — andsH
tn 0
2
< anllon — I + (1 — o) / S(s)W,ads — o
n 0

< onllmn = plP 4+ (1= o) flvn — pl|*- (5.4.24)

Substituting (6.1.28) into (6.1.33) and using conditions (C4) and (C5), we have

lza = pI* < anllen —pl* + (1 = @) {llzn = pII* + Aa(An — 29) | Ays — Ap||*}
= Jon = pl* + (1 = an)Aa (A — 29) | Ays — Apl|*.

It follows that

(1= d)ar(2y = 0) Ay — Al < (1= an)a(2y = M) || Ayn — Aplf?
< lza = plI* = llzn = pII?
< an = zall(llzn — 2l + 20 — pll)-
By (5.4.18), we obtain
nli_)moo | Ay, — Apl| = 0. (5.4.25)

Since the resolvent operator Jy, », is 1-inverse-strongly monotone, we obtain

lvw =217 = 17000 (Un — AaAYn) = Jarn, (p — M Ap) |2
= | Janr (I = XMA)yn — Jan o, (I — X A)p|)?

< <(I - )\nA)yn - ([ - )\nA)p> Un _p>
1
ST = MAYg = (T = XAl + o = pI?

(T = XAy = (I = MAYp = (00 = D)}

1

< 5 {lvn = 1P+ ow =PI = 15 — v0) = Al Ay — AD)*}
1

< S{llwn =PI+ lvw =PI = llg = val?

- )‘iHAyn - Ap“2 + 2)‘n<yn — Up, Ayp — Ap>}7



which yields that

lvn = pII* < ll2n = pII* = Y0 — vall* + 2Xnllyn — valll| Aya — Apll. (5.4.26)
Similarly, we can obtain

yn =PI < llwn = pII* = lun = yall® + 26, wn — yalll| Bun — Bp- (5.4.27)
Substituting (6.1.36) into (6.1.33), and using condition (C4) and (C5), we have

20 =Pl < aullen = plP + (1 = au)on = I
llan = pI? + (1 = @n){ 1 = I = lyn = vl + 2Xulg = vallll Ay — Ap] }
= Jlan = I = (1= @n)llyn = vall® +2(1 = ) Auln = valll Ayn = Apl.

IA

It follows that

(L= an)llyn —vall® < llow = plI* = 120 = pII* + 201 = @) Ml — vallll Ay — Apl|

< lan = zall(l2n = Pl + 120 = 2l + 2(1 = an) Anllyn — vall | Ayn — Apll.
By (5.4.18) and (6.1.35), we get
lim ||y, — v,| = 0. (5.4.28)

From (5.4.12) and (C4), we also have

2

IA

an(l _an> Hx”_p||2_ Hzn_p||2

1 [
Uy, — —/ S(s)Wyvnds
tn Jo

IA

l2n = zal|(ll2n = pll + |20 = p)-

Since IC,, = % f(f” S(s)ds, we obtain (5.4.18), we have

lim (|, W0, — v, = 0. (5.4.29)

Since {W, v, } is a bounded sequence in C, from Lemma 5.4.13 for all h > 0, we have

tn tn
- / S(s)annds—Sw)(ti / S(S)annds)H:O.
e " (5.4.30)

It follows from (5.4.29) and (5.4.30), we get

lim (| Wit —S (R Wity = lim

n—oo

v = S(s)vnl] < on = KoWava|| + |KCaWhvn — S(8)IKC, Wovl| + [|S(s) KW, — S(s)v,]]
< 2l|v, = KoWoua|| + || Whv, — S(8)K,Wav,]|-

So, we have
lim [[v, — S(s)v,|| = 0. (5.4.31)



Step 7. Next, we show that ¢ € © := F(S) N F(W)n (N\_,SMEP(Fy)) N
I(A, M) N I(B, My) # 0.

Since {v,,} is bounded, there exists a subsequence {vm.j} of {v,,} which converges
weakly to ¢ € C'. Without loss of generality, we can assume that v,, — q.

(1) First, we prove that ¢ € F(S). Indeed, from Lemma 5.4.14 and (5.4.31), we
get g € F(S), i.e., g = S(s)q, Vs > 0.

(2) We show that ¢ € F(W) = N2, F(W,,), where F(W,,) = N2, F(T;),Vn > 1
and F(W,11) C F(W,). Assume that ¢ ¢ F'(1/), then there exists a positive integer m
such that ¢ ¢ F(T,,) and so ¢ ¢ NI, F(7;). Hence for any n > m, ¢ ¢ NI, F(T;) =
F(W,), ie., ¢ # W,q. This together with ¢ = S(s)g, Vs > 0 shows ¢ = S(s)q #
S(s)Wy,q, Vs > 0, therefore we have ¢ # K, W,q, Vn > m. It follows from the
Opial’s condition and (5.4.29) that

liminf ||v,, — ¢|| < liminf||v,, — IC,, W, q||
71— 00 17— 00
< hgc{gfﬂlvn KW vn || + | Ko, Wi, vn, — Ko, )
< hmlnf anz - QH,
1—00

which is a contradiction. Thus, we get ¢ € F(IV).
(3) We prove that ¢ € M_,SMEP(Fy, ). Since S} = Kk k=1,2,...,N and

n
k _ ck
u, = Sy, we have

PS5, w)+o(2)—p(Shwn)+- </c’( ) =K (12, n(a, %an)> >0, VeeC.
k
It follows that

i(lC’(%’iixm)—/C’(%;lxm),n(x,%ﬁ w)) = = Fu(Sh 2,,2) = o) + (3%, 6:332)

Tk

for all z € C'. From (5.4.21) and by conditions (C1)(c) and (C2), we get

1

n;—00 I i

By the assumption and by the condition (H1), we know that the function ¢ and the
mapping x —— (—F(z,y)) both are convex and lower semicontinuous, hence they are

weakly lower semicontinuous.
K/ (3% @n,) =K' (Sn; an,)

Tk

Tk

These together with

— 0 and S z,, — ¢, we have

lim inf

n;—00

e, S5 2,,) ) > liminf{—Fy(Sh 2, 2) — p(2) + (S22}

n;—00

Then, we obtain

Fi(q,z) + o(z) —p(q) >0, Vzel, Vk=1,2,...,N. (5.4.33)



Therefore ¢ € NY_, SMEP(F}, ¢).

(4) Lastly, we prove that ¢ € I(A, My) N I(B, M,).

We observe that A is an 1/~-Lipschitz monotone mapping and D(A) = H. From
Lemma 5.4.4, we know that M; + A is maximal monotone. Let (v,g) € G(M; + A)
that is, g — Av € M;(v). Since vn, = Jur n,, (Yn; — An; AYn, ), We have

Yn;, — )‘mAynz S (I + )‘niMl)<Uni)7

that is, )
)\—(yni — Up, — An, AYn,) € My (vp,). (5.4.34)
By virtue of the maximal monotonicity of M; + A, we have
1
<v — Up,, g — Av — )\—(ynz — Up; — )\niAyni)>2 0, (5.4.35)
and so
1
<v — vni,g> > <v — Up,, Av + )\—(yn — Up, — )\nAyn)>
1
= <v — Up,, Av — Av,, + Av,, — Ay, + )\—(ynl — Unz.)>5.4.36)
1
Z 0+ <U - Um‘vAvni - Aynz> + <U — Un;, )\—<ynz - Um)>

By (5.4.28), v,, — ¢ and A is inverse-strongly monotone, we obtain that lim,, . || Ay,—
Av,|| =0 and it follows that

lim (v —w,,9) =(v—q,9) >0. (5.4.37)

n; —00

It follows from the maximal monotonicity of M; + A that § € (M; + A)(q), that is,
q € I(A, M;). Since {y,,} is bounded, there exists a subsequence {ynij} of {yn,}
which converges weakly to ¢ € C. Without loss of generality, we can assume that
Yn, — ¢. In similar way, we can obtain ¢ € I(B, M), hence g € I(A, My) N I(B, M,)
Step 8. Finally, we show that x,, — z and u,, — 2, where z = Pgxy.
Since © is nonempty closed convex subset of H, there exists a unique 2z’ € © such
that 2’ = Pgxg. Since 2/ € © C C,, and x,, = P¢,x, we have

|70 — znl| < ||wo — Po, ol < [Jzo — 2| (5.4.38)

for all n € N. From (5.4.38) and {z,} is bounded, so w,(z,) # 0.

By the weakly lower semicontinuous of the norm, we have

| — 2[| <liminf [lzg — 2, || < [lzo — 2. (5.4.39)



However, since z € w,(x,) C ©, we have
[zo — 2| < |0 — Pe, ol < llwo — 2.

Using (5.4.38) and (5.4.39), we obtain 2z’ = z. Thus w,(z,) = {2z} and z,, — z. So,
we have

|lzo — 2'|| < ||wo — 2|| < liminf||zg — z,|| < limsup ||xg — x| < ||xo — 2’|
n——-~oo

n—:aoQ

Thus, we obtain that
|20 — 2|l = lim |lzg — @]l = [lzo — &/
n——-maoo

From z,, — z, we obtain (xg — z,) — (xo — 2). Using the Kadec-Klee property, we
obtain that

[ =zl = [[(zn = 20) = (2 = 20)[| — 0 as n — o0

and hence x,, — z in norm. Finally, noticing ||u, — z|| = [|SNz, — SNz2|| < ||z, — 2|

We also conclude that u,, — 2 in norm. This completes the proof.



UNN 6
Optimization Problems

6.1 Optimization Problem

Definition 6.1.1. Let A be a strongly positive bounded linear operator on H if there

exists a constant v > 0 with the property
(Az,x) > 7|z|?>, Vze . (6.1.1)

A typical problem is that of minimizing a quadratic function over the set of the
fixed points of a nonexpansive mapping on a real Hilbert space H:
1
in —(A —(z,b 6.1.2
xg}l(%ﬂ( z, ) — (z,b), (6.1.2)
where A is a nonexpansive mapping and b is a given point in H.

Optimization problem (for short, OP) as the following
 min P L u? -
OP: min - (Az, z) + 2||x ul|* — h(z), (6.1.3)

where ' = Ny ,C,,, Cy,Cs, - are infinitely closed convex subsets of H such that
N, C, # 0, ue H, p >0 is a real number, A is a strongly positive linear bounded
operator on H and h is a potential function for vf (i.e., h'(x) = vf(x) for z € H).

Lemma 6.1.2. [180] Let C' be a nonempty closed convex subset of a real Hilbert
space H, and g : C — R U {oco} be a proper lower-semicontinuous differentiable

convex ftunction. If z is a solution to the minimization problem

9(2) = inf g(2),

then
<g'(x),x - z> >0, zeC.

In particular, if z solves problem OP, then

<u+ [Vf—(f+uz4)]z,x—z> <0.



Lemma 6.1.3. [231]. Let E be a nonempty closed convex subset of H and let f
be a contraction of H into itself with o € (0,1), and A be a strongly positive linear
bounded operator on H with coefficient ¥ > 0. Then , for 0 < v < g,

(@ =y (A=vflz=(A=1fly) = 7 - ay)llz —yl*, @yeH
That is, A — ~f 1is strongly monotone with coefficient 7 — ay.

Lemma 6.1.4. [231]. Assume A be a strongly positive linear bounded operator on
H with coefficient ¥ > 0 and 0 < p < ||A||~'. Then ||I — pA| <1 — p7y.

For solving the mixed equilibrium problem for an equilibrium bifunction © : E X

E — R, let us assume that O satisfies the following conditions:

(H1) © is monotone, i.e., O(x,y) + O(y,z) <0, Vz,y € E;

(H2) for each fixed y € E, x — O(x,y) is convex and upper semicontinuous;
(H3) for each = € E,y — O(x,y) is convex.

Let n : £ x F — H, which is called Lipschitz continuous if there exists a constant
A > 0 such that
[n(z, )l < Alz =y, Vz,yekE.

Let K : E — R be a differentiable functional on a convex set F, which is called:
(K1) n-convex [223] if

K(y) = K(z) = (K'(z),n(y, v)), Y,y € E,

where K'(z) is the Fréchet derivative at x;

(K2) n-strongly convex [243] if there exists a constant o > 0 such that

K(y) = K(@) = (K'(@).n(y,2)) = Slle =y, Vo.y € B.

Let £ be a nonempty closed convex subset of a real Hilbert space H, let ¢ : E — R
be a real-valued function and © : £ x F — R be an equilibrium bifunction. Let r be
a positive parameter. For a given point z € E, the auxiliary problem for MEP consists
of finding y € £ such that

Oy, 2) + 9l2) — p(y) + ~(K'(y) — K'(2). (=) > 0, Vze E.

r



Let S, : E — F be the mapping such that for each = € E, S,(x) is the solution set
of the auxiliary problem MEP, that is,

Se(z)={y € E: @(y,z)+<p(z)—<p(y)+%<K’(y)—K'(:c),n(z,y)) >0, Vze€FE}, VreeE.

Definition 6.1.5. Let {T,,} be a sequence of nonexpansive mappings of E into itself
and let {j1,} be a sequence of nonnegative numbers in [0,1]. For each n > 1, define
a mapping W,, of E into itself as follows:

Un,n+1 = I7
Unn = pnLaUppsr + (1= pa)l,
Upn-1 = tn1Th1Upn + (1 — p_1)1,
(6.1.4)
Uni = eTiUpjgr + (1 — pi)l,
Upp—1 = pr—1Tp-1Upnp + (1 — p—1)1,

Upo = pToUys+ (1 — po)l,
Wo=Us1 = wmTiUps+ (1 —p)l.

Such a mapping W, is nonexpansive from E to E and it is called the W -mapping
generated by 11,15, ....,'T,, and [y, [i2, ..., [bn.

For each n,k € N, let the mapping U, be defined by (6.1.4). Then we can have
the following crucial conclusions concerning W,. You can find them in [238]. Now

we only need the following similar version in Hilbert spaces.

Lemma 6.1.6. [238]. Let E be a nonempty closed convex subset of a real Hilbert
space H. Let 11,T,,... be nonexpansive mappings of E into itself such that
N> F(T,) is nonempty, let ji1, s, ... be real numbers such that 0 < p, <b <1 for

every n > 1. Then, for every x € I/ and k € N, the limit lim,,__,., U, ,x exists.
Using Lemma 6.1.6, one can define a mapping W of E into itself as follows:

Wz = lim Wyr = lim U,z (6.1.5)

n—aoo n—ao0o

for every x € E. Such a W is called the IW-mapping generated by 77,75, ... and
41, f2, ... Throughout this paper, we will assume that 0 < p,, < b < 1 for every n > 1.
Then, we have the following results.



Lemma 6.1.7. [238]. Let E be a nonempty closed convex subset of a real Hilbert
space H. Let 11,T,,... be nonexpansive mappings of E into itself such that
N> F(T,) is nonempty, let ji1, s, ... be real numbers such that 0 < p, <b <1 for
every n > 1. Then, F(W) =N, F(T,).

Lemma 6.1.8. [314]. If {z,} is a bounded sequence in E, then lim, . |[Wz, —
Wyax,|| = 0.

Lemma 6.1.9. [307]. Let {x,} and {v,} be bounded sequences in a Banach space X
and let {(,} be a sequence in [0,1] with 0 < liminf, . (3, <limsup, . G, < 1.
Suppose 1 = (1 — B,)v, + Buxy, for all integers n > 0 and limsup,,_, . (||[vpe1 —

Unll = [|Tne1 — xa||) < 0. Then, lim,__ ||v, — x| = 0.

Lemma 6.1.10. Let H be a real Hilbert space. Then the following inequalities hold:
D) |lz+ylI* < ll=l* + 2(y, = + y)s
@ Nz +yl? = ll=* + 2y, z);

for all x,y € H.

Lemma 6.1.11. [311]. Assume {a,} is a sequence of nonnegative real numbers such
that
An41 S (]- - ln)an + On, vn Z 07

where {l,,} is a sequence in (0,1) and {o,} is a sequence in R such that
(D>l =
(2) limsup,,__ ., 7= <0 or 3 7 |o,| < oc.

Then lim,,__, a,, = 0.

Next, we prove a strong convergence theorem of a general iterative method (6.1.6) to
compute the approximate solutions of the mixed equilibrium problems and optimization

problems in Hilbert spaces.

Theorem 6.1.12. Let E be a nonempty closed convex subset of a real Hilbert space
H and let ¢ be a lower semicontinuous and convex functional from E to R. Let
© be a bifunction from E x E to R satisfying (H1)-(H3), let {T,,} be an infinite
family of nonexpansive mappings of E into itself and let B be a &-inverse-strongly
monotone mapping of C' into H such that

=N, F(T,)NMEPNVI(E,B) #0.



Let ft >0, v >0 and r > 0 be three constants. Let f be a contraction of E into
itself with o € (0,1) and let A be a strongly positive linear bounded operator on H
with coefficient ¥ > 0 and 0 < 7 < % For given vy € H arbitrarily and fixed
u € H, suppose the {z,}, {kn}, {yn} and {z,} are generated iteratively by

[ Oz, @) + (@) = plz0) + 2K () = K'(wn), n(x,20)) 2 0, Va € C,
Yn = PE(Zn - 5nBZn>7

( Tn+1 = en(u+vf(Wan)) + Bnn + (1 = Bu)I — €n(I + pA) )W, Pg(ky — 7, Bky),
(6.1.6)
for all n € N, where W, be the W-mapping defined by (6.1.4) and {¢,}, {a,} and

{0.} are three sequences in (0,1). Assume the following conditions are satistied:

(Cl) n: E x E— H is Lipschitz continuous with constant A > 0 such that;

@ n(z,y) +n(y,x) =0, Ve,yeckE
(b) n(-,-) is affine in the first variable,

(c) for each fixed y € F, v — n(y,z) is sequentially continuous from the
weak topology to the weak topology;

(C2) K : E — R is n-strongly convex with constant o > 0 and its derivative K' is
not only sequentially continuous from the weak topology to the strong topology
but also Lipschitz continuous with constant v > 0 such that ¢ > \v;

(C3) for each x € F, there exist a bounded subset D, C E and z, € E such that
for any y € E\D,,

Oy, 2) + ¢(2) — 9(y) + (K" (y) — K'(2), 1(z0. ) < 0
(C4) lim, o, =0, lim, e, =0 and Y~ €, = o0;
(C5) 0 < liminf,, . 3, <limsup,,__ O < 1;
(C6) lim,, . [ Nps1 — An| = lim,, o [Op1 — On| = limy, oo [Trp1 — 7u| = 0;
(C7) {1}, {\}, {00} Cla,b] for some a,b € (0,2€).

Then, {xz,} and {z,} converge strongly to z € I' == F(T,)NMEPNVI(E,B)
provided S, is tirmly nonexpansive, which solves the following optimization problem:

 min * Dz — w2 =
OP.I£1€11132<AQJ,$)+2||$ ul|* — h(x). (6.1.7)



Proof. Since ¢, — 0 by the condition (C4) and (C5), we may assume, without loss of
generality, that ¢, < (1 — 3,)(1+ ul||A]|)~! for all n € N. First, we show that [ — 7, B
is nonexpansive. Indeed, from the &-inverse-strongly monotone mapping definition on

B and condition (C7), we observe that

I = mB)z— (I =mByl*> = |(z—y)—7(Bz - By)|*
|l = y|* = 27 (x — y, Bx — By) + 7;/|| Bz — By||?

< |l —y||* = 2m.¢||Bx — By|| + 7| Bz — By|?
= |z — yl|* + mu(m — 26)|| Bz — By|? (6.1.8)
<z =yl

if 7,, < 2¢ then the mapping [ — 7, B is nonexpansive, and so are / —\,,B and [ —9,, B,
if provided A, d,, < (0,2¢£). On the other hand, since A is a strongly positive bounded

linear operator on H, we have
[A]] = sup{[(Az,2)| : = € H, ||z[| = 1}.
Observe that
(=B = en(I + pA))z, ) = 1= = €n — (A, 7)

0,

ARV

this shows that (1 — 3,)I — €, (I + pA) is positive. It follows that

[(1 = Bn)] —en(I + pA)|| = sup{[(((1 = Bu)] — en(I + pA))z, z)| - v € H, [|lz]| =1}
= Sup{l - 6n —€n — enu(Ax,x> HEES H7 ||JIH = 1}
< 1—0,— €, — € u7.

We shall divide the proof into five steps.
Step 1. We claim that {z,} is bounded. Indeed, pick any p € I' := N2, F(T,,) N
MEPNVI(E,B). From the definition of S,, we note that z, = S,z,. If follows that

lzn = pll = [1Sr2n = Sepl| < l[an = pll.

Since I — A\, B, I — 0,B, Pg and W,, are nonexpansive and p = W, Pg(p — \,,Bp) =
W,,Pe(p — 6,Bp), we have

lyn —pll = [[WaPe(2n — 6,Bzn) — WoPr(p — 0,Bp)||

= (I =bnB)zn — (I = 0uB)p)|| < [lzn — pll < [l — pl|-



It follows that

1 = 2l lan (20 = p)

IA

ap||Tn

IN

||y

o ||z — pl| +

IA

ap||Tn

IN

||z
which yields that

2011 = P

IA

+enllvf(Wozn) —

IN

+ el vf (Whay,) —

IN

IA

+ eyalz,

—pll + (1 = )| Pe(yn — AnByn)
—pll+(1—-ay

(1—a,
—pl+ (1 -
—pll+ (1 —ay

||€nu + En('yf(ann) -
+((1 = B —e,(I + pA) (W, Pg(k, — 7,Bk,)
(1= Bn — (L + WPl = 7B)ky — pll + Bullzn

(1—0,—e(14+p

(1 =B —en(l+p
+ e[ f(Wazy) —
— (1 + )30 —
—pll + enllvf(p) —
(1 — &1+ )7+ enya)|lzn
(1= (1 + )y = ya)en)||lzn —
(L= ((1+ )y —a)e

+((1+ )y —ya)e,

+ (1 - an)(WnPE(yn - Antn) _p)H

— Pp(p — A\ Bp)|
(p — X\ Bp)l
(I - )‘nB)pH

[(Yn — AnBYn) —
(I = AB)yn —
-7l
-7l

||yn

|Zn

~— o ~—

(I + pA)p) + Bn(n — p)

— )|l

—pll + enllull

(L + pA)p|l

)W kn = pll + Ballzs

(I + pA)p|

)W En = pll + Ballzn — pll + €nllull

F@) + enllvf(p) — (I + pA)pl|

pll+ Ballzn — pll + € llull

(L + pA)p|l

—pll + e(llvf(p) -
pll + en(llvf(p) —

— pll =+ enlfull

(I + pA)pll + [lul))
(I + pA)pl + [[ull)

It follows that (6.1.9) and induction that

lom — o]l < max{nxl ol

I/ (p) = (I+/~LA)P|| + [lul
(Ll ¢ o] (6.1.9)
1/ () ag:)gf)ﬂl* I } n>1  (6.1.10)

Hence, {x,} is bounded, so are {z,}, {kn}, {yn}, {f(Wozn)}, {Bzn}s {Bkn}, {Byn}s

{Wy,k,,} and {W,y,}.

Step 2. We claim that lim,, . ||Z,41
Observing that z, = S,z,, and z,,1 =

| Zn41 — 2nll

— 2| =0 and lim,, o |Wy0, — z,,|| = 0.

SyT,41, from the nonexpansive of S,., we get

||Srzn+1 - ernH < ||I7L+1 - INH (6'1-11)



Put 0, = Pg(k, — 7,Bk,) and ¢, = Pg(y, — \y,By,). Since I — 7,8, I — \,B and
I — 9, B are nonexpansive, then we have the following estimates:

|Ynr1 = ¥nll < [[Pe(2n41 — Ony1Bzny1) — Pe(zn — 6, B2,)|

< [l(znt1 = Ons1Bzns1) — (20 — 0 Bza) ||

= |(zn41 = Ont1Bzni1) — (20 — 0nr1B2zn) + (05 — Oni1) B2l

< (21 = Ons1Bzns1) — (20 = O Bzn) || + [0 — Gnsa ||| Bzn||

= (I = dnt1B)znt1 — (I = p1B)zpl| 4 |05 — Onsa[[| Bza|

< lznts = zall + 100 = Gnga|[| Bzn||

< l@ner = 2all + 100 = dna || Bzal, (6.1.12)
[@n1 = ull < 1Pe(Yn+1 — Aat1BYns1) — Pe(yn — A Byn) ||

< | Wnt1 = A1 BYns1) = (Un — AnByn) ||

< [(Yns1 = A1 BYnt1) — Un — Aas1BYa)[l + A — Ania[[| Byl

= [[( = Ms1B)Yns1 — (I = X1 B)ul| + (A — A || Byl

< yner = gl + A0 = Ansa [ Byn | (6.1.13)

and

1ns1 = bnll < 1Pe(knt1 — Tay1 Bhny1) — Pe(kn — 70 Bk, )|

< NFnt1 = Tap1 Bhingr) — (ko — 7B,

< NFnsr = T Bhingr) = (kn = Taa Bl || 4 [0 — T ||| B||

= (I = 1 B)knsr — (I = Tu1 Bkl + 700 — T || Bl |

< lknsr = Eall + [70 = Taga [ Bkall. (6.1.14)

Since 7; and U, ; are nonexpansive, we have

||Wn+1¢n - Wn¢n” ||M1T1Un+l,2¢n - ,ulTlUn,2¢n||

S M1||Un+1,2¢n - n,2¢n||

= M1||M2T2Un+1,3¢n - M2T2Un,3¢n’|

< papee||Uns1,300 — Up 30, ||

S Hifo - - ,UnHUn—i-l,n-‘,—lQSn - n,n+1¢n||

< M ][m (6.1.15)
i=1

where M, > 0 is a constant such that ||Up1n+10n — Unni1¢n|| < Ms for all n > 0.

Similarly, we can obtain that, there exist nonnegative numbers M3 such that

||Un+l,n+19n - Un,n—i—lenH S M?n



and so 1S

(W16 — Wb || < My T i (6.1.16)
i=1

Observing that

kn = apTy + (1 - an)Wn¢n

ki1 = ani1Zns1 + (1 — a1 ) Wi,

we obtain

kn - kn-i-l = O‘n(in - $n—i-1) + (1 - QN)(Wn¢n - Wn+1¢n+l) + (Wn+1¢n+1 - xn-l-l)(an-i-l - an)>

which yields that

||k:n - kn-‘,—l” S OZnH'I’n - xn-{—l” + (1 - an)||Wn¢n - Wn+1¢n+l||

FHng1 — an||Waisi1@ni1 — Tnga ||

< anlltn = Zaga ||+ (1= @) {IWait10nis = Wagadnll + [[Was16n — Waonl|}
+ |an+1 - O4n| ||Wn+1¢n+1 - lﬁ—i—l”
S OZnH'I’n - xn-{—l” + (1 - an)||¢n+l - ¢n|| + ||Wn+1¢n - Wn¢n”

+ ‘an+1 - Oén\||Wn+1¢n+1 - $n+1||- (6.1.17)

Substitution of (6.1.13) and (6.1.15) into (6.1.17) yields that

1kn = kgl = anllzn = 2 ll + (1= ) {l[gns1 = vall + A0 = il Byall}

+ M2 H Mg + |an+l - an| ||Wn+l¢n+1 - xn-i—l”

i=1

= onllzn — 2ol + (1= an)llynses = gl + (1 = ) A = Mg || Byl

+ My [ | s + s — anl[Was16ns1 — 2|

=1

|| Tn = Tpga || + (1 = an) |[Ynr1 — ynll + Mo H,Uz'
=1
+M4(|>\n—)\n+1\+\ozn+1—ozn\), (6118)

IN

where M, is an appropriate constant such that My = max{sup, >, || Byn||,sup, > [|[Wn¢n—

[}



Substitution of (6.1.12) into (6.1.18), we obtain

1kn — Knall < anllzn — 2ol + (1 = an) |Yns1 — ynl| + Mo H,Ui
i=1
+M4(‘)‘n - >\n+1| + |an+1 - an|)

pl|zn — o || + (1 — an){l[@ns1 — @all + [0 — Onsa ||| Bza|} + Mo H,Ui
i=1

IN

+M4(‘)‘n - >\n+1| + |an+1 - an|)

= |20 = Zasrll + (1 = an)|20s1 = @all + (1 = @n) |8y = Gura || Bzall + M ] [ 1
i=1

+M4(|)‘n - )\n+1| + |an+1 - an|)

S Hxn - xn—l—l” + M2 H,uz + M5(|>\n - )\n—l—l‘ + ‘Oén—l—l - O‘n‘ + ‘5n - 5n+(16v119)
i=1
where Ms is an appropriate constant such that Mz = max{sup, >, ||Bz,||, Ms}. Substi-
tuting (6.1.19) into (6.1.14), we obtain

101 = Onll < [[Bni1 = Knll + |70 = Tosa ||| BRa|

< o = Tpga || + Mo H,Ui + Ms([|An = Anga] + g — an| + [0 — dnga])
=1
+ 170 = Tnga| | Bk

< o = Tpga || + Mo HM:’
=1

+ Ms(|An = Mg ] + |1 — o + [0n = Opgr| + [T — Tt ]), (6.1.20)

A

where Mg is an appropriate constant such that Mg = max{sup, >, || Bk, Ms}.
Let x,11 = (1 — 8,)vn + Bnxn, n > 1. Where
I Butn  en(u+yf(Wozyn)) + (1 = Bu)I — en(I 4+ pA))Wy0,
" 1 - ﬂn B 11— ﬂn .

Then we have

€n+1(u + ’Yf(Wn-HfEn-H)) + ((1 - ﬂn+1)[ - €n+1(I + ,UA))Wn—i-len—i-l
11— /Gn-i-l
w1 f(Woa)) + (1= BT — enll + pA) Wb,
1-— /Gn
€n+1

— 1_76n+1(u + 1 (Whi1@n41)) —

€n €n+1 W,
1— ﬂn( 2 ) 1— 6n+1( 2 ) +1Yn+41

€n
T (2 (Waaznsn)) = (T + A Waiifusn)
n+

- j"ﬁ (I + pA) Wby —u — v f (Wazs))

+ Wn—l—len-l—l - Wn—i—len + Wn-i—len - Wnen (6°1°21)

Un+1 — Up =

€n

1_6n

(U + Vf(Wnl’n)) + Wn-i—len—i-l - Wnen




It follows from (6.1.16), (6.1.20) and (6.1.21) that

[ns1 — Vnll = | 201 — 24| (6.1.22)
€n
< TG Ul I f Va4 1T+ g A Wi
€n
+1o 3 (I + p )Wl | + [Jull + |7 f (Wazn)|])

+ HWn+1‘9n+1 - Wn—l—lenH + ||Wn+19n - Wnen“ - ||xn+1 - :L’nH

€n
< T2 (el + I Wasszne)ll + 10+ 1AWl

€n
t1 3 (I + pAYWoO, | + |lull + [[vf Wozn)|) + 1001 — O]
+ ||Wn+19n - Wnen” - Hzn—i-l - znH

€n
< L (full + 1y f W)+ [+ gAY W18 ]])

I 6n+1
€n n
15 (1T + pAY Wb | + N[l + 1y f (W) ) + M ] ]
" i=1
+ M, Hﬂi + Ms(| Ay — A1 | + a1 — | + 60 — S| + |70 — Tnia])
i=1
€n
< 1_—;+1<||u|| I Wosr s | + (I + A Wii10na )
€n n
M (1T + pAYWabnll + ull + Iy f (Waan) ) + 2L ] ]
" i=1
+M6(|)\n - )\n+1| + |an+1 - an| + |5n - 6n+1| + |7-n - 7_n-i-1|)> (6123)

where L is an appropriate constant such that L = max{Ms, M3}.
It follows from condition (C4), (C5), (C6) and 0 < pu; < b < 1,Vi > 1)

linrggop(llvnﬂ — Upll = [[#n1 — zal) <0.
Hence, by Lemma 6.1.9, we obtain
nli_r)noo [on — @l = 0.
It follows that

lim [|2ns1 — @ol| = lim (1= B,)|[vn — 2] = 0. (6.1.24)

Applying (6.1.24) and condition in Theorem 5.4.15 to (6.1.11), (6.1.12), (6.1.14) and
(6.1.20), we obtain that

lim Hzn—l—l - Zn“ = lim ||yn+1 - ynH = lim ||kn+1 - kn“ = lim ||9n+1 - enH =0.
n—-0o00 n—-0o0 n—aoo n—>00

(6.1.25)



By (6.1.25), (6.1.13), (C6) and 0 < p; < b < 1,Vi > 1), we also have
nh—r>noo ||¢n+l - ¢n|| =0. (6'1'26)

Since z,41 = €, (u +vf(Whxy,)) + Buzn + (1 — o) — €,(1 + pA))W,0,, we have

[0 — Wb
< lwn = wngall + e — Wbl
= lzn = Zngall + llen(u +7f (Wazn)) + Bozn + (1= Bu) I — en(L + pA))Wybn, — Wby |
= Non = znpall + llen((u +7f (Wazn)) = (I + pAYWobn) + Bn(2n — Wb)||

< lan = g + el + I f Wazn) || + (1 + pA)YWabn ) + Bullzn — Wity

that is

1 €n
- |2n — T || + W(HUH + v f Wz || + [+ pA)Wabn ).

By (C4), (C5) and (6.1.24) it follows that

|20 — Woab|]

nliinoo IW,0, — z,|| = 0. (6.1.27)
Step 3. We claim that the following statements hold:
(1) lim, o0 ||Xn — 6,]] = 05
(2) lim, .o ||Wab, — 0,|| = 0.

Since B is a &-inverse-strongly monotone, by the assumptions imposed on {7, } for any
pel =N, F(T,)"MEPNVI(E,B), we have

HWnen_sz < HPE(kn_Tann)_PE(p_Tan)||2

< (ko = 7uBky) = (p — 7 Bp)|®

= ||(kn = p) — Tu(Bkn — Bp)|I?

< ko — plI* = 27 (kn — p, Bk, — Bp) + 7| Bk, — Bp|?

< Nan —plI* = 27(kn — p, Bk, — Bp) + 7. || Bk, — Bp||’

< Nl = pl? + a7 — 26)|| Bk, — Bp|)*. (6.1.28)

Similarly, we have



Observe that

21 — plI?
= (1= BT — en(I + pA))(Waby, — p) + Bul@n — p) + €n(u+7f (Wazn) — (I + pA)p)|?
= [[((1 = Bu)I — en(I + pA)) Wabn — p) + Bnln — p)II° + €2 llu+ 7 f (Wazn) — (I + pA)p|?
+ 26060 (0 — p,u + v f(Warn) — (I + pA)p)
+26, (1 = BT = en(I + pA)) (Wb — p),u+ v f (Wown) — (I + pA)p)
(1= BT = en(I + pA) Wby — pll + Bullzn — pll* + xllu+ v f (Wazn) — (I + pA)p|?
+ 2806 (0 — pyu+ v f(Wan) — (I + pA)p)
+26,(((1 = B)I = en(I + pA)) (Wb, — p),u+ v f (Wazy) — (I + pA)p)
(1= 50 — en — ) [Wabn — pl| + Bullzn — pll] + ¢n
= (1= P — €n — €7’ [[Wab — plI> + B2l| 20 — plI?
+2(1 = By — en — €nt7) BulWnbr, — pllzn — pll| + cn
(1= B = €n — €)W — pl|* + B3 ]|2n — plI?
+ (1= B — en =€) Bu([[Wibh — plI + |20 — plI*) + cn
= [(1—en — enp)* = 2(1 = € — 7)) B + Bl Wil — plI* + B2 |20 — plI?
+((1 = en — €up7) B = B2) (Wb — P> + 20 — pII?) + cn
= (1= en =) = (1 = €0 — V) Bl Wb — plI” + (1 = €0 — €upY) Bulln — plI” + cn
= (1= en— ) (1 = B — €0 — €)W — pl|®
(1= €n — enpi7) Bulltn — Pl + cns (6.1.30)

IN

IN

IN

where

e = ellutyf(en) — (I +pA)pl” + 2Bnen(zn — p,u+~vf(Wazn) — (I + pA)p)
+26,((1 = Bu)I — €x(I + pA)) (Wb — p),u+ v f(Woxy) — (I + pA)p).

It follows from condition (C4) that

lim ¢, =0. (6.1.31)

n—aoo

Substituting (6.1.28) into (6.1.30), and using condition (C7), we have

[2ne1 —plI> < (1 — €0 — €ap¥) (1 = B — en — upd){l|zn — plI> + 70 (70 — 26)|| Bk, — Bpl*}
+ (1= €en — €p¥) Bullwn — plI* + cn
= (1—en — up¥)?||zn — pl?
+ (1= €n — €)1 = Bn — €n — €npt7) T (T — 28) || Bk — Bp||* + ¢
< law — pIP + 7 (70 — 26) | By — Bpl|? + cn.



It follows that

a(2§ = b)|| Bk, — Bpl|* < 70(26 — 7.)|| Bk — Bp|®

IN

lzn = pII* = lznss = pII* + cn
= (lzn = pll = l#nts = PID U0 = Pl + 2041 = pl) +
< llen = zpa || (lzn = pll + [lena = pll) + cn.

Since ¢, — 0 as n — oo and (6.1.24), we obtain

lim ||Bk, — Bpl|| = 0. (6.1.32)
Note that
[En —2l* = llan(zn —p) + (1 = an)(Wagn — p)|I”
< apllzn = pll + (1 = o) [Waon — pl|?
< apllzn = pl* + (1= an){llzn — pIIP + Aa(An — 28| Byn — Bpll*}

2n — p||* + (1 = ) An (A — 26)|| By, — Bpl|>. (6.1.33)

Using (6.1.30) again, we have

||xn+1 _pH2 < (1 — €y — 6"”7)(1 — Bn — €0 — Enﬂf_Y)HWnen _pH2
+ (1 — €n — Enﬂv)/@nnxn - p||2 + Cn

+ (1= en = €at7)Ballzn — pl* + e

+(1 — €n _Enﬂv)ﬂnnxn _p||2+cn' (6134)

Substituting (6.1.33) into (6.1.34), and using condition (C4) and (C7), we have

IN

<

€41 — pl|®

(1— e — enpi¥)(1 = B — €n — e {llzn — plI> + (1 = an) A (A — 26)|| Byn — Bp||*}
+ (1= €0 — €p¥) Bullen — plI” + cn

(1—en — €)1 = B — €0 — €np¥) (1 — ) An(An — 26) || By, — Bp||?

+ (1= e — npy)?||n — plI? + cn

2 = plI* + (1 = an) An(An — 26) | By — Bpl|* + cn.

It follows that

(1 — an)a(26 = b)|| By, — Bpl* < (1= an)(Aa(2€ = Aa)|| By — Bpll*
< o = pl? = lzne =2l + e
< len = pal| (lzn = pll + 2042 = 2l + cn-



Since ¢, — 0 as n — oo and (6.1.24), we obtain
nli_r)noo ||By,, — Bp|| = 0. (6.1.35)

By (6.4.20), we also have

160 —plI* = ||Pe(kn — 70Bkn) — Pe(p — 7.Bp)|*
|1Pg(I = 7, B)kn — Pe(I — 7, B)pl”
(I = 10 B)kn = (I = 7uB)p, b0 — p)
S0 = 7Bk — (1= 7Bl + 16— I
— (I = 7aB)kn — (I = 7 B)p — (6 — p)|I*}
< %{Hkn = plI* + 116w — plI* = | (B — 02) — 7Bk — Bp)||*}

A

< %{len — ol + 116 = plI* — [|Kn — 6n]|?
— 72| Bk, — Bp||* + 27, (k,, — 0,,, Bk,, — Bp)},
which yields that
10, = pII* < lzn = plI* = kn = 01> + 270 [ ke — 0,][|| By — Bl (6.1.36)
Substituting (6.1.36) into (6.1.30), we have
[
< (1= en — i) (1 = B — €n — €)W — p|?
+ (1= en = enp¥) Bullen = plI* + cn
< (1= en =€) (1 = B — €0 — enpi)) |00 — pl?
+ (1= €en — €np¥) Bullwn — plI* + ca
< (1= en = €)1 = B — €0 — eup) {20 = pII” = [[k0 — 6,12
+ 27k — O l[l| B — Bpll} + (1 — € — €ae¥)Ballzn — pl|* +cn
= (1= e — )’z = plIP = (1 — &0 — €up)(1 = Bn — €0 — €apt7) |k — 0a1?
+2(1 = € — €upuY)(1 = B — €0 — €atY)Tallkin — Oull|| Bk, — Bp|| + cn
<l = pl* = (1= en — V) (1 = B — €n — €ni¥) [k — Oa1?

+2(1 = €5 — €uu) (1 = Bu — € — €ut7)Tallkn — Oull| Bk, — Bp|| + cy.
It follows that
(1= en — enp7) (1 = B — €n — €upa7) [k — 0,
< Nl = ol = @ — plI? +2(1 — e — enpry)
(1= By — €n — €apt¥)Tullkn — 0,||| Bkn — Bpl| + cn
< Nzn = zpall(lzn =PIl + lZ041 — 2l

+2(1 — &, — €uuY)(1 = By — €0 — €uu¥) || kny — On ||| B, — Bp|| + cn.

A



Applying ||z,41 — 2n|| — 0, ||Bk, — Bp|] — 0 and ¢, — o0 as n — oo to the
last inequality, we have
lim ||k, — 6,] = 0. (6.1.37)

On the other hand, we have
IWab —plI* < ||Pe(kn — 7uBkn) — Pe(p — 7.Bp)|?
|1Pe(I = 7,B)ky — Pu(I — 7,B)pl|?
(I —1,B)ky, — (I —1,B)p, W,,0,, — p)
S0 = 7Bk, — (1 = 7Bl + Wb — pl?
— (I = 7Bk — (I = 7uB)p = (Wab — p)|1*}
%{Ilk‘n = plI* + Wb = plI* = [|(kn — Wabh) — 7a(Bka — Bp)||’}

IA I

IN

IA

Sl — 0l 4 Wb — pI — e — W
—72||Bk,, — Bpl||* + 27,,(k,, — W,,0,,, Bk,, — Bp)},
which yields that
[Wobs = plI* < llww = plI* = Von = Waball* + 270l — Wb ||| Bk — Bpl|. (6.1.38)
Similarly, we can prove
IWadn = plI* < llzn = plI* = [lyn = Wadall® + 2Xullyn — Wadnl| By — Bpl|. (6.1.39)
Substituting (6.1.38) into (6.1.30), we have
lznsr = pI* < (1= €0 = €)1 = Ba — €0 — €)Wl — pl|?
+ (1= €0 — €ut7)Bullzn — plI* + e
< (I=en =)L = B — en — eati){l[an = plI* = [[kn — Wb |?
+275 [k — Wabu ||| Bk — Bpl|} + (1 — €0 — €ap67) Bullzn — pl* + cn
= (1= en = e’z = plI = (1 — €0 — €upr) (1 = B — €0 — €ups) | kn — Warbn||?
+2(1 = en = €ap¥)(1 = Bo = €0 — €pY)Tullkn — Waba ||| B — Bp|| + cn
<l =2l = (1 = e = €nF) (1 = Ba — €0 — a7k — Woby||?
+2(1 = en — €ap¥)(1 = Bo = €0 — €pY)Tullkn — Waby ||| By — Bp|| + ca,
which yields that
(1= €n = et (1 = B = €0 — i}k — Wby ||?
< o =l = llzaes — 2l
+2(1 = en = €ap¥)(1 = Bo = €0 — €ptY)Tullkn — Waby ||| Bk — Bp|| + cn
< len = znal(len = pll + [0 = pll)

+2(1 — €n — Enlfy)(l — Bp — €n — Enﬂ7)7n||kn - WnenHHBkn - Bp|| + Cn-

A



Applying (6.1.24) and (6.1.32) to the last inequality, we have

lim ||k, — Wpb,| = 0. (6.1.40)

Using (6.1.34) again, we have

€1 — pl|®
< (1= en— &) (1= B — en — enp)) lkn — plI> + (1 — € — €u7) Bullzn — pII° + ¢
< (1= en =€) (1= B = en = enpiy){llan(zn — p) + (1 = @) Watn — p)[I°}
(10— ) H ol e
< (1= e — €)1 = B = en — enpiy){anllzn — plI> + (1 — @) Wt — pl*}
+ (1 —€n — €17)8 || —pl* + cn
= (I=én = &) (1 = Bn — € — ety )|z, — p||”
+(1—€ — € W)(l - ﬁn — en — i) (1 — ) [Wath — plI?
+(1— e = enpiV) Bullzn — plI* + o
< (1—e en/w)(l B — €n — enptY )|z — plI?
+(1—en — €p7)(1 = B — €n — €up7) (1 — ) {l|zn — pII> = lyn — Watal?
+ 22y = Wadnlll| Byn — Bpll} + (1 = e — enpr¥) Bullzn — plI* + 2
= (1= en— ) (1 = B — €0 — €qpi) |z — p|I?
+ (1 — €& — i) (1 = B — €n — €upY) (1 — o) ||z — p|?
—(1— e = enpi7)(1 = B — €n — €npt7) (1 — ) 1y — Whn|?
+ (1= € — ) (1 = Bu — €0 — €uu7) (1 — ) 2A0[|yn — Waonl||| Byn — Bp||
+ (1= en — €nt7) Bullwn — plI” + cn
= (1 —€n— ) (1 = B — €n — €|z — p||
— (L= — i) (1 = B — €n — €7 (1 — ) [y — Wathn|?
+ (1 =€ — ) (1 = Bu — €0 — €uu7) (1 — )20 ||yn — Watnl||| Byn — Bp||
+ (1= €0 — €p¥) Bullen — plI* + cn
= (1= en = enpi)?[|zn — plI* = (1 — €0 — i) (1 = B — €n — €V (1 — ) [y — Whn ||
+ (1 —€en — €)1 = Bn — €0 — €apt¥) (1 — )20,y — Wotbn ||| Byn — Bpl| + ¢n
< lan —plIP — (1 — €n = npi¥) (1 = B — €n — €apt7) (1 — ) lyn — Whn|?

+ (1 =€ — enpy) (1 = Bn — €n — €npty) (1 — )20 ||y — Waonl||| Byn — Bp|| + cn



which implies that

(1 — €p — En:w?)(l — Bn— € — En:w?)(l - O‘N)Hyn - Wn¢n||2

< lew = pIP = |20 — ol
+ 2(1 —€p — 5n/~¢’7)(1 — Bn — €0 — En/f?)(l - O‘n)>\n’|yn - Wn¢n’| HByn - BpH +Cn
< Nzn = Zpa | (lzn — pll + (201 — pll)

+2(1 = €&n — enpY)(1 = Bn — €n = €apt7) (1 — ) Anl|yn — Waon|[| Byn — Bp|| + cn.

From (6.1.24) and (6.1.35), we obtain

1im ||y, — Wagn| = 0. (6.1.41)
Note that

ky — Watn = an(x, — Whoy)

Since «,, — 00 as n — 00, we also have

nhinm |k, — Waon|l = 0. (6.1.42)
From (6.1.41) and (6.1.42), we have

il — Fall = 0. (6.1.43)

On the other hand, we have

1y = plI> < |1Pe(20 = 6,Bz,) — Pe(p — 6,Bp)|
< |[(z0 = 6uBzn) = (p — 6, Bp)|
= |l(z0 — p) — 0u(Bz, — Bp)|I?
< lza = plI> = 204(20 — p, Bz — Bp) + 62| Bz, — Bp||
< |lwn — plI* = 200(2n — p, Bzn — Bp) + 6. Bz, — Bp|?
< Nzn — 2l + 6,(8, — 26)|| Bz, — Bpl|%. (6.1.44)



Using (6.1.34) again, we obtain that

|1 = pII?

It follows that

a(2¢ — b)|| Bz, — Bp||*

IA

IA

IA

IN

IN

(1= €n — enpt7) (1 = Bo — €n — €t n — P2

+(1 = en — €p7) Bullzn — plI> + cn

(1—en = enptY) (1 = B — €n — €Y || (ki — y) + (Y0 — D)
+ (1= €n — €p¥) Bullwn — plI* + cn

(1—en = enptY) (1 = B — €0 — etV {1 kn — wall* + llgm — plI?
+2[kn = yallllyn — 21} + (1 = €0 — €0p7)Ballzn — pl* +cn
(1= €0 — et (1 = B — €n — i) n — Yul®

+(1 = en — enpi7)(1 = B — €n — €np¥)|lyn — I

+2(1 = €5 — ) (1 = B — €0 — €ni)|[kn — Y llllyn — Dl

+ (1 = € — €nt¥) Bullzn — p|I> + ¢ (6.1.45)
[

I

(1 —en — enpt7)(1 = B — €0 — €apt) |k — Y
(1= en — 7)1 = B — € — enp){ |20 — pl|* + 6,(8n — 26)|| B2, — Bpl|*}
+2(1 —€en — €up)(1 = Bn — €0 — €)1k — Yullllyn — pll

+ (1 = e — enpt¥) Bullwn — plI* + cn

(1 —€n — €npt7)(1 = B — €0 — €at) |k — Y
+(1 = en — enpiY)(1 = B — €0 — €)= plI?

+(1—€en — €up7)(1 = B — €n — €ut7)0n (05 — 26)|| Bz, — Bpl|*

+2(1 = €p — €upY) (1 = Bn — €n — €n i) || kn — ynlllyn — pll

+ (1= €n — €p¥) Bullwn — plI* + cn

(1= €0 = ) (1 = B — €0 = €upiY) 1kn — yall* + (1 = €0 — €npr)? |20 — plI?
+ (1= €0 — €apt¥)(1 = B — €0 — €as7)0n (6, — 26)|| Bz, — Bp|®

+2(1 = e — €upy)(1 = B — €0 — €ntt7)|kn — Yullllyn — pll + cn

1B = ynll? + 0 = plI* + 00(60 — 26)|| B2n — Bpl|

+2(1 = e — €upy)(1 = B — €0 — ent) 1k — Ynllllyn — Il + cn-

I

IN

0n(2€ — 0n) || B2n — Bp|®
2 = pII* = llznsr = pII* + 1% = yn

+2(1 = en — ) (1 = B — €0 — €atsV) | kn — yullllyn — Il + cn
I

IN

I*

IN

[0 = Tnial[(lon = pll + [[2n41 = pll) + [[Fn = yn
+ 2(1 — €p — en/ﬂ)(l — Bn — €0 — 6nﬂ7)||kn - yn” ||yn - p” +Cn



Since ¢, — 0 as n — 00, (6.1.24) and (6.1.43) ,we obtain

lim ||Bz, — Bp|| = 0. (6.1.46)
We note that
lyn —pI” = IPe(20 — 0,Bz,) — Pu(p — 6,Bp)|

|1 Pe(I — 6,B)zn — Pp(l — 5nB)p||2

(T = 6uB)2w — (T~ 5, B)p, 0 — p)

ST = 6Bz — (1= 5,B)pl + [l —

(T = 5B)z0 — (T = 6uB)p — (v — )1}

< iz =0l + = I = 1z — ) — 5Bz — Bp)?

IA

IA

1
§{||$n —pI> + llyn — 21> = |20 — yall?
— 02| Bz — Bp||* + 26,(2, — yn, Bz, — Bp)}.

Then we derive

lyn = 2l < llwn = pII* = 20 = yall® + 200l 20 — yull | B2w — Bpll. (6.1.47)



Using (6.1.45) again, we obtain that

[z = plIP < (1= €0 = €upd)(1 = B — 0 = €at?) ||k — yu®
+(1 = en — enpi7) (1 = B — €n — €np¥)|lyn — I
+2(1 — € — €up) (1 = B — €0 — €nt) [k — ynll[lyn — 2|
+ (1= €0 — €up¥) Bullen — plI* + cn

< (-0 — &) (L — By — €0 — att¥)|kn — yul®
+(1 — en — enpy) (1 = B — €n — enpiy) {20 — plI* = |20 — wall?
+20n/[20 = yalll Bz, — Bpll}
+2(1 = €, — € (1 = B — €0 — €ni)|[kn — Y|y — Dl
+ (1= en — €p¥) Bullen — plI* + cn
< (1= en— i) (L= Bu — n — i) kn — yul®
+(1 = en — eniV)(1 = B — €n — €npu) || — plI?
—(1 =€ — eapt¥)(1 = Bo = €n — i) || 20 — Y|’
+2(1 = €y — €up7)(1 = B — €n — €upt7)0nll 20 — ynlll| Bzn — Bp||
+2(1 = €5 — € (1 = B — €0 — €ni)|[kn — Yullllyn — Dl
+ (1= €n — €p¥) Bullen — plI* + cn
= (1= €0 — et (L= By — €n — €M)k — vl + (1 — & — €ut7)?[|2 — p]?
—(1— €0 — €at¥) (1 = Ba — €n — i) || 20 — Yul|?
+2(1 — € — €7 (1 = B — €0 — €upt7)0nll20 — ynllll Bzn — B
+2(1 — € — €up¥) (1 = B — €0 — €npt¥) |kn — Ynlllvn — pll + cn
+ (1= €0 = €ut7) Bulln — plI* + cn
< k= yall? + N2 — Dl = (1 = €0 — ent) (1 = B — €n — enpt?) |20 — yll®

+ 2(1 —€p — En,u’j/)(l - ﬁn — €p — 6nﬂ7)5n||zn - ynHHan - Bp”
+ 2<1 —€p — En/’l/f?)(l — By — € — Enluj/)”kn - yn”Hyn - p” + Cp.

It follows that

(1= €en — €att¥)(1 = Bu — €0 — €ntt¥) |20 — yall?

< law = pIP = s — pIP + [[Fn — wall?
+2(1 = € — &) (1 = B — €0 — €nt7)0nll2n — Ynll | Bz — Bp||
+2(1 =€ — €)1 = B — €0 — €ntt7) |k — Ynllllyn — pll + cn
< wn = @i [(lzn = pll + [20s1 = pID) + ke — vl

+ 2(1 —€p — En,u’j/)(l - ﬁn — €p — 6nﬂ7)5n||zn - ynHHan - Bp”
+ 2(1 — €, — en,uﬁ)(l — 571 — €p — 6nﬂ7)||k:n - yn””yn - p” + Cp.



Applying ||z,11 — x,|| — 0, ||yn — kn|| — 0, || B2z, — Bp|| — 0 and ¢,, — oo as

n — oo to the last inequality, we have

Hm |2 — gl = 0. (6.1.48)

On the other hand, we observe that

lzn = Oull < Nl2n = ynll + [lyn — Knll + [1kn = On]l.

Applying (6.1.37), (6.1.43) and (6.1.48), we have

lim ||z, — 6, = 0. (6.1.49)

Let p e I' := N, F(T,) "N MEPNVI(E,B). Since z, = S,z, and S, is firmly
nonexpansive (Remark ??) , then we obtain

lzo = plI* = Sz0 — S|l
S <Sr$n - Srpu Ly — p>
= <Zn — P, Ty _p>

1
5 lzn = pI” + llen = pII* = llzn = 2ull").

So, we have

120 = pI* < llza = pII* = llzn — 2all*.



Therefore, we have

IA

IN

IA

IN

IA

[

(1= €n — €np7)(1 = B — €n — €7 |00 — I

+(1 = & = D) Bullzn — pl* + cn

(1 —€n = €npt¥)(1 = Bn — €0 — €t [(0n — 20)

(2 = DIIP + (1= €0 — €apt) Bullan — plI* + cn

(1= en — €np7)(1 = B — €n — ) {100 — zull” + [l20 — PI* + 2(0n — 20, 20 — )}
+ (1= en — ) Bullwn — plI* + cn

(1= en — eV (L = B — €0 — i) |16 — 2

+(1 = €n — eV (1 = By — €0 — €npi)||20 — DI

+2(1 = €5 — ) (1 = B — €0 — €uptY)[|0n — 2ullll2n — Dl

(1 = €0 — €at7)Bullzn — plI* + cn

(1= en — enpi)(1 = B — €n — €npi) |00 — za1?

+ (1= en — €)1 = B — & — enpiV) {1z — pII° = 120 — 24/}

+2(1 — en — €up7)(1 = B — €0 — i) 100 — zall [ 20 — pll

+(1 = €0 — €ut7)Ballzn — pl* +cn

(1= en — enpi)(1 = B — €n — €npi) |00 — za?

+ (1= €en = €up7)(1 = B = €0 — €upi?) |20 — p|?

—(1— €0 — eap7) (1 = B — €n — i) |2 — 2a1?

+2(1 = €0 — ) (1 = B — €0 — €uptY)[|0n — 2ullll2n — Dl

(1 = €0 — €ut7)Bullzn — plI* + cn

(1= en = ) lon = plI* = (1 = € — up¥) (1 = B — €0 — i) 20 — 20|

+ (1= en — 7)1 = B — €0 — )| 00 — 2|

+2(1 = &0 — 7)1 = B — €0 — )60 — 2allll20 — Pl + n

(1= 26,(1+ )7 + en (1 + )7z = plI* = (1 — €0 — €ap7)(1 = B — €0 — €apt7) |20 — 20|?
+ (1= en — ) (1 = B — €0 — i) [|0n — 2|

+2(1 = e — ) (1 = B — €n — enpiY)|0n — 2ullllzn — Il + cn

2 = plI* + en (14 0?7120 — plI* = (1 = €0 — €ap7)(1 = B — €0 — €npt¥) |20 — 24|
+ (1 —en — 7)1 = B — €0 — )| 00 — 2|

+2(1— e — €at¥) (1 = Bo — €0 — €7 |00 — 2alll| 20 — Pl + Ca-



It follows that

(1= €n — etV (1 = Bn — € — €np7) |20 — 20|?

< e = plI? = e = ol + (1 + 1)*3% |20 — I

+(1— e — ) (1 = B — €n — €npi7) |00 — 20|

+2(1 — €6 — €uu)(1 = B — €0 — €npt)[|0n — 2ullllzn — pll + ¢
< Nlwn = zpall(J2n = pll + ll2ns = pl) + €5 (1+ ©)*3? ||z — pl1?

+ (1 =€ — upuy)(1 — Bn — €0 — ) ||0n — Zn||2
+2(1 —€p — En,uﬁ/)(l — Bn — €n — En,uﬁ/)Hen - Zn” Hzn _pH + Cn-

Using €, — 0, ¢, — 0 as n — 00, (6.1.24) and (6.1.49), we obtain
nli_r)noo l|zn — xa|| = 0. (6.1.50)
Note that
[0 = Onll < [lzn — znll + |20 — bnll,
thus from (6.1.49) and (6.1.50), we have
nli;rnoo |zn — 0,]| = 0. (6.1.51)

Observe that

Wby, — Oull < ([Wabn — | + [[2n — bn].

Applying (6.1.27) and (6.1.51), we obtain
lim ||W,.0, —6,] = 0. (6.1.52)

Let W be the mapping defined by (6.1.5). Since {6,} is bounded, applying Lemma
6.1.8 and (6.1.52), we have

WO, — 6, < ||W, — W0, + [[Wpb,, — 6, — 0 as n — oo. (6.1.53)
Step 4. We claim that
limsup(u + [vf — (I + pA)]z,z, —2) <0,

n—-—uoo

where z is a solution of the optimization problem:

 min © Lig — w2 —
OP.I;1€1%12<A:c,x)+2||:c ul|* — h(z).



To show this inequality, we can choose a subsequence {6, } of {6,} such that

lim ((u+[yf — (I +pA))z,0,, —2) = limsup{u+ [yf — (I +pA)]z, 0, —z). (6.1.54)

1—00 n—-s00

Since {6,,} is bounded, there exists a subsequence {Gnij} of {0,,} which converges
weakly to w € E. Without loss of generality, we can assume that 6,,, — w. From
|\W6, — 6, — 0, we obtain W6,, — w. Next, we show that w € I', where
:=n,F(T,) "NMEPNVI(E,B). First, we prove w € MEP. Since z, = S,x,

we have
O(zn, x) + o(x) — p(zn) + %(K'(zn) — K'(z,),n(x,2,)) >0, Vzed.

From (H1), we also have

%<K’(Zn) — K'(zn),n(x, 2n)) + (z) = p(2n) 2 =O(2n, 7) 2 O(, 21)

and hence

K'(zn,) — K'(n,)

r

(

T

W(%Zm» + (p(l’) - QO(ZTL) > @(x7zni)'

Since — 0 and z,, — w, from the weak lower semicontinuity of ¢
and ©(x,y) in the second variable y, we also have O(z,w) + ¢(w) — p(z) < 0 for
all z € C. For t with 0 <t <1 and z € E, let x; = tx + (1 — t)w. Since v € FE
and w € E, we have z; € E and hence O(x;, w) + ¢(w) — p(z:) < 0. So, from the

convexity of equilibrium bifunction ©(x,y) in the second variable y, we have

0 O (1, z¢) + (1) — @(x1)
< tO(xy, x) + (1 — 1)O(zy, w) + to(z) + (1 — t)p(w) — @(z4)

< tO(wy, ) + o(2) — @(x4)],

and hence O(x, ) + p(x) — @(x;) > 0. Then, we have O(w, z) + p(z) — p(w) > 0 for
all z € F and hence w € MEP.

Next, we show that w € N>°, F(T,,). By Lemma 6.1.7, we have F(W) = N, F(T,).
Assume w ¢ F(W). Since |z, — 0,| — 0 we know that 6,, — w (i — o0) and
w # Wuw, it follows by the Opial’s condition (Lemma 6.1.3) that

liminf ||6,,, —w| < liminf |6, — Ww||
< liminf([|f,, = W, || + [[W6,, — Ww])

< liminf ||6,, — w|,
1—>00

which is a contradiction. Thus, we get w € F(W) = N>, F(T,).



Finally, we show that w € VI(E, B). Define

Bw; + Ngw,, wi € E,
T’LUl =
@, w1 ¢ FE.

Then, 7" is maximal monotone. Let (wy, wy) € G(T'). Since wy— Bw; € Npw; and 0,, €
E, we have (w; — 0, wy — Bwy) > 0. On the other hand, from 0,, = Po(k,, — 7,,Bk,),
we have

<w1 - ena Hn - (kn - Tann» Z Ov

and hence
0, —k,
(wy — 6,, —— + Bk,) > 0.
Therefore, we have
(wy = Op,,w) > (wy — by, Bwy)
0, — k,.
Z <’UJ1 — Gni, Bw1> — <UJ1 — Hni, e + Bknz>
6, — k.
= <'LU1 — 9m., B’LUl — Bknz — %)
0, —k,.
= (wy — O,, Bv— B8,,) + (w; — 6,,, BO,, — Bk,,) — (w, — 0,,, ———)

ng

O, — ki,

> <'LU1 — HM,BQM — Bk‘nz> — (w1 — Qni, 1 >

ng

Noting that ||6,,, — k|| — 0 as i — oo and B is Lipschitz continuous implies that
(wy — w,wy) > 0.

Since 7' is maximal monotone, we have w € T~'0 and hence w € VI(E, B). That is
wel =M, F(T,)NMEPNVI(E, B). Therefore, from Lemma 6.1.2, ||z, —0,| —
0 as n — oo and (6.1.54), we have

limsup(u + [vf — (I + pA)|z,x, — z) = limsup(u+ [vf — (I + pA)]z, 6, — 2)

= i (ut+[f = (I +pA)z, 0h = 2)
= (u+[vf— U+ pA)z,w— z) <61.55)

It follows from the last inequality, (6.1.27) and (6.1.51) that

limsup(u + [vf — (I + pA)|z, W,.0,, — z) <0. (6.1.56)

n—-—uoo



Step 5.  Finally, we prove {x,} and {z,} converges strongly to z € I'. From
(6.1.6), we obtain

IN

IN

IA

VAN

201 = 2|7

len(u+ 7 f(Wazn)) + Bazn + (L= Bu)I — en(I + pA))W,b,, — 2|

1((1 = Ba)T = eI + pA)) (Wib — 2) + Bu(@n — 2) + €n(u + 7 f (Wawn) — (I + pA)2)|
1((1 = Ba)T = en(I + pA)) (Wob — 2) + Bu(an — 2)|* + 3llu+ v f (Woan) — (I + pA)2|*
+ 20n€n @y — 2z, u + v f(Wyxy,) — (1 + pA)z)

+ 26, {((1 = B — e, (I + ppA)) Wb,y — 2),u + v f (Whxyn) — (I + pnA)z)

(1= 8o = a1+ N Wi — 21| + Bullzn — 2|] + exllu+ 7 f(Waz,)

—(I + pA)z|* + 2Bueny(zn — 2, f(Wazn) = f(2)) + 2Bu€n(an — 2,u+7f(2)

—(I + pA)z) + 2(1 = Bp)ven(Wnbn — 2, f(Waan) — f(2))

+2(1 = Bo)en(Waby — 2, u+7f(2) — (I + pA)z)

=262 {(I + pA) Wb, — 2),u +vf(2) — (I + pA)z2)

(1= By — &L+ DW= 2l| + Ballan — 2] + enllu + 7 f (W) — (1 + pA)z|*
+ 2B8penllzn = 2| Lf (Wazn) — f(2)] + 2Bnenf@n — 2,u + 7 f(2)

—(I 4+ 1A)z) + 2(1 = Bn)ven [Waby — z[[[[f (Waza) — f(2)]]

+2(1 = Bn)en (Wb, — z,u + v f(2) — (I + pA)z)

—22((I + pA)Y (Wb, — 2),u + vf(2) — (I + pA)z)

(1= By = en(L+ )00 — 2l + Bullwn — 2] + exllu+ v f (Wazn) = (I + pd)z|?

+ 2Bnenyllzn — 2|lf (Wazn) — f(2)|| + 2Bnen(zn — 2, u +7f(2) = (I + pA)z)

+2(1 = Bu)venl|fn — 2|lLf (Waan) — f(2)]]

+2(1 = Bn)en(Wob, — z,u + v f(2) — (I + pA)z)

=26, ((I + pA)(Wybhy — 2),u+vf(2) = (I + pA)z)

(1= 8o = ea(L+ )20 — 2l + Bullzn — 2l[]° + € lu+ 7 f(Wazn) — (I + pA)z|f?

+ 2Bnenyal|Tn — 2||* + 2Bnen(Tn — z,u + Y (2) — (I + pA)z2)

+2(1 = Bo)venallzn — 2| +2(1 = Bo)en (Wb — z,u + v f(2) — (I + pA)z)

= 2ep (I + pA) (Wb — 2),u+ 7 f(2) = (I + pA)z)

(1= en(1 + )7)? + 2Bnenyal

+2(1 = Ba)vena]llzn — 2)1* + exllu+ v f (Wawn) — (I + pd)z|?

+26nen{xn — 2z, u+7f(2) — (I + pA)z) + 2(1 — Bo)en(Winb, — z,u+vf(2) — (I + pA)z)
= 2ep (I + pA)(Wob — 2),u+ 7 f(2) = (I + pA)z)



IN

[1=2((1+ p)y — ay)enlllzn — 2|

+en(L+ )"l — 2l + enllu + 7 f (Wazn) — (I + pA)z|?

+26€n{xn — 2z, u+7f(2) — (I + pA)z) + 2(1 — Br)en(Winb,, — z,u+vf(2) — (I + pA)z)
+ 265 (1 + pA) (Wbl — 2)[[[lu + 7 f(2) — (I + pA)z||

= [1=2((1+ w7 — aenlllzn — 2l° + endenl (L + 0)*7° (|20 — 2|

Hu+ 7 f (Wazn) — (1 + pA)z|?

+2[|(L + pA) Wby — 2)||[lu +~f(2) = (I + pA)z[]] + 265 (20 — 2,u +7f(2) — (I 4+ pA)z)
+2(1 = Bn) (Wil — z,u+~vf(2) — (I + pA)z)}.

Since {z,}, {f(W,z,)} and {W,6,,} are bounded, we can take a constant M/ > 0 such
that (14 p0)*32 (|l — 2[1* + llu+ 7 f (Wazn) = (1 + pA)2]|* + 2/ (I + pA) (Wabr — 2) | [[u+
vf(z) = (I + pA)z|| < M, for all n > 0. It follows that

| Tt — z||2 < (1 —=1)||zn — z||2 + €,0n, (6.1.57)

where

b = 2((1+ 1)y — ay)en,
On = EnM + 26n<'rn -z U +7f(z) - (I + MA>Z>
F2(1 = Bo) (Wb, — z,u + 7 f(2) — (I + pA)2).

Using (C4), (6.1.55) and (6.1.56), we get [, — 0, Y, I, = oo and limsup,,_, o <
0. Applying Lemma 6.1.11 and (6.1.55) to (6.1.57), we conclude that z, — =z in
norm. Finally, noticing ||z, — z|| = ||Sy2n — Sp2|| < ||z, — 2||. We also conclude that

z, — 2z in norm. This completes the proof.

6.2 Multi-Objective Optimization problem

In this section, we study a kind of multi-objective optimization problem by using the
result of this paper. We will give an iterative algorithm of solution for the following
optimization problem with nonempty set of solutions

min 5y (z)
min  hy(z) (6.2.1)
x € (),

where h(z) is a convex and lower semi-continuous functional and define C' is a closed
convex subset of a real Hilbert space H. We denote the set of solutions of (6.2.1)



by M(hy) and M(hs). Let F; : C' x C — R be a bifunction defined by F;(z,y) =
hi(y) — h;(x). We consider the equilibrium problem, it is obvious that EP(F;) =
M(h;), i = 1,2. Therefore, from Theorem 4.2.4, we obtained the following corollary.

Corollary 6.2.1. Let C' be a nonempty closed convex subset of a real Hilbert Space
H. Let F\, F, be a bifunction of C x C into real numbers R satistying (Al) — (A4)
and let 1,99 : C — R U {400} be a proper lower semi continuous and convex
function. Let A,B,D,FE be «,[(,06,n-inverse-strongly monotone mapping of C' into
H, respectively. Let Ty,T5,... be an infinite nonexpansive mapping such that © :=
N2, F(T)NMEP(F, 1) N MEP(Fy, 02) NVI(C,D)NVI(C,E) # (). Assume that
either (B1) or (B2) holds. Let {x,} be a sequence generated by x, € C, C); =
C, Cy =nx,Ch,, 1 = Po,xy and

( ha(t) = ha(tn) + 2t —to, ty — x,) >0, Vi€,
ho(u) — ho(u,) + %(u — Uy, Uy, — b)) >0, Vu € C,
wy, = §n Po(uy — A Duy) + (1= &) Poltn — i Etn),
Yni = 0o + (1 — ap i) Tiwy,
Corri = {2 € Cui i = 21 < llvw = 21+ (ol + 24 — 70,2},
Cri1 =02, Cri4,

L Tn+1 = Pcn+1l’0.

(6.2.2)
for every n > 0, where {r,},{s,} C (0,00), A\, € (0,25) and p, € (0,2n) satisfy
the following conditions:

(1).Jim,, . v, ; = 0;

(i) lim, o0 &, = € € (0, 1);
(). 0 <e <\, < f <20;
(1v). 0 <g <, <j<2n.

Then, {x,} converges strongly to Pgx.

Proof. From Theorem 4.2.4 put Fi(t,,t) = hi(t) —hi(t,), Fa(up,u) = ho(u) — ho(uy,)
and A, B, ¢1, @2 = 0. The conclusion of Corollary 6.2.1 can be obtained from
Theorem 4.2.4 immediately. U

6.3 Minimizer of a continuously Frechet Differentiable

Convex Functional

In this section, we study the problem for finding a minimizer of a continuously Frechet
differentiable convex functional in a Hilbert space.

First, we use the following lemma in our result:



Lemma 6.3.1. [252] Let E be a Banach space, let f be a continuously Frechet
differentiable convex functional on E and let V[ be the gradient of f. If Vf is

é-LjpschjtZ continuous, then V [ is an a-inverse-strongly monotone.

Let f1, fo be functionals on H which satisfies the following conditions:

(C1) f1, fo be a continuously Frechet differentiable convex functional on H and
Vfi, Vf; be %, %- Lipschitz continuous,

(C2) (V)10 ={a € H: fi(z1) = minyen fi(y1)} # 0 and (Vf2)7'0 = {z €

H : fo(2) = ming,cy fa(y2)} # 0.

Corollary 6.3.2. Let H be a real Hilbert Space. Let I, F, be a bifunction of H x H
into real numbers R satistying (Al) — (A4) and let p1,p3 : C — RU {400} be a
proper lower semi continuous and convex function. Let A, B be «, 3-inverse-strongly
monotone mapping of H into H, respectively. Let T1,T5, ... be infinite nonexpansive
mappings. Let f,, fo be functionals on H which satisties the conditions (C1) and
(C2). Suppose that © := N2, F(T;) N\GMEP(Fy, 1) N\GMEP(Fy, p2) N (V f1)7'0N
(Vf2)7'0 # 0. Assume that either (BI) or (B2) holds. Let {x,} be a sequence
generated by xo € C, Cy; =C, C; =N<,Ci,;, x1 = Poyxg and

(t, = Tgﬂl’@l)(xn — r,Azy,),
U, = Ts(fQ’W)(xn — s, Bxy,),
Wn = En(tn — AV fi(tn)) + (1 = &) (tn — 1V f2(t0)),
Yni = 0o + (1 — ap i) Tiwy,
Crtn = {2 € O s — 21 < lw = 212 + (ol + 20w — 20,2)) )
Cni1 = N21Ch114,

L Tnt1 = Pcn+1l’0.

(6.3.1)
for every n >0, where {r,},{s,} C (0,00), A\, € (0,20) and p, € (0,2n) satisfying
the following conditions: (). 0 < a <71, <b < 2q;

(). 0<c<s,<d<20;

(iii).Jim,, . v, ; = 0;

(iv)lim, ... &, =& € (0,1);

V) 0<e<\, < f<20;

(vi). 0<g<p, <j<2n.

Then, {x,} converges strongly to Pgx.

Proof. We know form condition (C1) and Lemma 6.3.1 that Vf;, Vf, are 9, n-
inverse-strongly monotone operators from H in to itself. The conclusion of Corollary
6.3.2 can be obtained from Theorem 4.2.4 immediately. U



6.4 Minimization Problem

Iterative methods for nonexpansive mappings have recently been applied to solve con-
vex minimization problems. Convex minimization problems have a great impact and
influence in the development of almost all branches of pure and applied sciences. A
typical problem is to minimize a quadratic function over the set of the fixed points of
a nonexpansive mapping on a real Hilbert space H:

0(z) = %(A:)s,x) —{z,y), Vz € F(S), (6.4.1)

where A is a linear bounded operator, F'(S) is the fixed point set of a nonexpansive
mapping S and y is a given point in H [263].

In 2006, Marino and Xu [263] introduced a general iterative method for nonexpan-
sive mapping. They defined the sequence {z,} generated by the algorithm z, € C,

where {a,,} C (0,1) and A is a strongly positive linear bounded operator. They proved
that if C' = H and the sequence {«,} satisfies appropriate conditions, then the sequence
{z,} generated by (6.4.2) converge strongly to a fixed point of S (say = € H) which

is the unique solution of the following variational inequality:
(A=~f)Z,x —7) >0, Yo € F(S), (6.4.3)

which is the optimality condition for the minimization problem
1

I A —h 4.4
meF(g)l%%P(F)2< 7,) (). 644

where h is a potential function for v f (i.e., h'(z) = vf(x) for x € H).

For finding a common element of the set of fixed points of nonexpansive mappings
and the set of solution of the variational inequalities. Let P be the projection of H
onto C. In 2005, Iiduka and Takahashi [258] introduced following iterative process
for o € C,

Tpi1 = ou + (1 — o) SPe(x, — A\Axy), Vn >0, (6.4.5)

where u € C, {a,} C (0,1) and {\,} C [a,b] for some a,b with 0 < a < b < 20.
They proved that under certain appropriate conditions imposed on {«a,} and {\,}, the
sequence {x,} generated by (6.4.5) converges strongly to a common element of the set
of fixed points of a nonexpansive mapping and the set of solutions of the variational
inequality for an inverse-strongly monotone mapping (say = € (') which solve some

variational inequality

(T—u,x—x) >0, Ve e F(S)NVI(C,A). (6.4.6)



In 2008, Su et al. [268] introduced the following iterative scheme by the viscosity
approximation method in a real Hilbert space: xi,u, € H

F n + L — UWUnp, Un T Ln Z 07 v S Ca
(Un, y) + 7Y — Un, p — Tp) y 647)
To1 = anf(zn) + (1 — an)SPo(u, — A\ Auy,),

for all n € N, where {a,} C [0,1) and {r,} C (0,00) satisfy some appropriate
conditions. Furthermore, they proved that {z,} and {u,} converge strongly to the
same point z € F'(S)NVI(C, A) N EP(F), where z = Pps)nvic,anepr)f(2)-

Let {7;} be an infinite family of nonexpansive mappings of H into itself and let
{\i} be a real sequence such that 0 < \; <1 for every i € N. For n > 1, we defined
a mapping W,, of H into itself as follows:

Un,n+1 = I7
U = M TaUpir + (1 — M),

Un,k = )\kaUn’kJ,_l -+ (1 — )\k)f, (648)

Un72 = )\QTQUmg + (1 — )\2)[,
Wn =Up1 = )\1T1Un,2 -+ (1 — )\1)]

In 2011, He et al. [274] introduced following iterative process for {7, : C' — C}
which is a sequence of nonexpansive mappings. Let {z,} be the sequence defined by

Zni1 = eVf () + ([ — )W, K} K2 - KE 2. VneN (6.4.9)

r1,nT T ram TR,

The sequence {z,} defined by (6.4.9) converges strongly to a common element of the
set of fixed points of nonexpansive mappings, the set of solutions of the variational
inequality and the generalized equilibrium problem. Recently, Jitpeera and Kumam
[275] introduced the following a new general iterative method for finding a common
element of the set of solutions of fixed point for nonexpansive mappings, the set
of solution of generalized mixed equilibrium problems and the set of solutions of the
variational inclusion for a [-inverse-strongly monotone mapping in a real Hilbert space.

In this section, we modify the iterative methods (6.4.2), (6.4.7) and (6.4.9) by
purposing the new general viscosity iterative method. We show that under some
control conditions the sequence {x,} converges strongly to a common element of the
set of common fixed points of nonexpansive mappings, the solution of the system of
mixed equilibrium problems and the set of solutions of the variational inclusion in a real
Hilbert space. Moreover, we apply our results to the class of strictly pseudocontractive

mappings. Finally, we give a numerical example which support our main theorem in



the last part. Our results improve and extend the corresponding results of Marino and
Xu (2006), Su et al. (2008), He et al. (2011) and some authors.

Lemma 6.4.1. [327] Assume {a,} is a sequence of nonnegative real numbers such
that
any1 < (1 =,)a, + 6,, Y0 >0,

where {v,} C (0,1) and {J,} is a sequence in R such that
(D) D0y Tn = 00
(ii) limsup,,__., = <0 or 3277, |6,] < oo.

Then lim,,__,. a, = 0.

Lemma 6.4.2. [251] Let C be a closed convex subset of a real Hilbert space H and
let T': C' — C' be a nonexpansive mapping. Then I —'T" is demiclosed at zero, that
IS,

z, =~z and x, — Tz, — 0

implies x =Tx.

Lemma 6.4.3. [274] Let C be a nonempty closed and convex subset of a strictly
convex Banach space. Let {T;};,cy be an infinite family of nonexpansive mappings
of C into itself such that NienyF(T;) # 0 and let {\;} be an real sequence such that
0< )\ <b<1 for every i € N. Then F(W) = NienF(T;) # 0.

Lemma 6.4.4. [274] Let C be a nonempty closed and convex subset of a strictly
convex Banach space. Let {T;} be an infinite family of nonexpansive mappings of
C into itself and let {\;} be a real sequence such that 0 < \; < b < 1 for every
t € N. Then, for every x € C' and k € N, the Iimit lim,,__., U, exist.

In view of the previous lemma, we define

Wz := lim U,z = lim W,x.

n—aoo n—aoo

Next we stat our main result, we show a strong convergence theorem which solves
the problem of finding a common element of the common fixed points, the common
solution of a system of mixed equilibrium problems and variational inclusion of inverse-

strongly monotone mappings in a Hilbert space.

Theorem 6.4.5. Let H be a real Hilbert space, C be a nonempty close and convex
subset of H and B be a [3-inverse-strongly monotone mapping. Let ¢ : C—R be
a convex and lower semicontinuous function, f : C — C be a contraction mapping
with coefficient a( 0 < o < 1 ), M : H — 2" be a maximal monotone mapping.

Let A be a strongly positive linear bounded operator of H into itself with coefficient



¥y > 0. Assume that 0 < v < 1 and X\ € (0,28). Let {T,} be a family of
nonexpansive mappings of H into itself such that

0=, F(T,) N (NY_SMEP(F,))NI(B, M) # 0.

Suppose that {x,} is a sequence generated by the following algorithm for xo € C
arbitrarily and

Fy_ Fy_
Up = KFv RIS RN KR KPR p Wne N

Tn,n r2,n T1,n

(6.4.10)
Tpy1 = Polenyf(xn) + (I — €, A)WoJpra(wyn — ABuy,)]

for all n = 1,2,3,..., where

1

F;

Krzn(:l:’) = {un eC: Fz(una y) + go(y) - @(un) +

(Y = Un, un — ) >0, Yy € C}

2,

for all v =1,2,3,..., N and the following conditions are satistied
(CD: {e,} C (0,1), lim,_ge, =0, D7 €, =00, Y o0 |€nt1 — €] < 00;
(C2): {r,} Cle,d] with ¢,d € (0,20) and Y 7| |rp41 — 1] < 00.

Then, the sequence {z,} converges strongly to q € 0, where q = Py(vf+I1—A)(q)
which solves the following variational inequality:

(vf —A)g,p—q) <0, Vpeb, (6.4.11)
which is the optimality condition for the minimization problem
.1
min ~(Aq, q) — h(q), (6.4.12)
qeb 2
where h is a potential function for yf (ie., W (q) =~vf(q) for q € H).

Proof. Since condition (C1), we may assume without loss of generality, then
en € (0,]] AJ|7Y) for all n. Then, we have ||I —e, Al < 1—¢,7. Next, we will assume
that [|1 — All < [|1 = 7.

Next, we will divide the proof into six steps.

Step 1. First, will show that {z,} and {u,} are bounded. Since B is (-inverse-



strongly monotone mappings, we have

(I = AB)x — (I = AB)y|> = ||[Iz — ABx — Iy + ABy||?
= ||z —y — ABx + ABy|?
= |[(x —y) = A(Bz + By)||*
< |l —y[* = 2X\z — y)(Bz + By)
+X*|| Bz — By|®

< lz —yl* = 2A8|| Bz + By|]?
+A?|Bx — By||?
< |z —yl> + A(A = 28||Bz + By|*> (6.4.13)

if 0 < A< 23, then I — X B is nonexpansive.
Put y,, := Jya(u, —ABuy,), n > 0. Since Jy, and [ — AB are nonexpansive mapping,
it follows that

lyn —dll = [[Jua(un — ABuyp) — Jua(g — ABq)||
< |(un — ABuy,) — (¢ — ABq)||
< ug —ql|- (6.4.14)

By Lemma ??, we have

_ kN | pcFN-1 | cFN—2 K R
Uy = Krmn Krnfl,n Krnf%n Kmn Krl’n Tp, for n>0
k _ rFre | pcFe-1 72 7
th= kP KPR KR for ke {0,1,2, ., N}

and 70 = I forall n € N, q=1*q, wu,=1) yz, Then, we have

lun = gl* = ll75 070 — 70al?
= lz. — ql* (6.4.15)

Hence, we get

lyn — qll < llzn — 4l (6.4.16)



From (6.4.10), we deduce that

Hxn+1 - QH = HPC(En'Vf(xn) + ([ - EnA)Wnyn> - chH
< len(vf(2n) — Ag) + (I — €, A)(Woyn — q)||
< enlvf(zn) — AQ)ll + (1 — &) (yn)) — 4l
< 57€n||xn - q“ + EnH”Yf(Q) - AQH
+(1 = &) |7 — g (6.4.17)
= (1= —v9e)llwn —qll — enllvf(q) — Aql|
B _ [7f(q) — Aqll
= (1-0- )| Tn —qf + (Y — nT =
(1= (7 —ve)en)llzn — all + (7 — ve)e Ep——
17f(q) — Aql]
< max{”xn—q”, ﬁ}
It follows by induction that
fou =l < maxfleo— ol PLO=2y s 0 Gy

,7
Therefore {z,} is bounded, so are {y,}, {Bu,}, {f(z,)} and {AW,y,}.

Step 2. We claim that lim,, . ||z,11 — 2] = 0 and lim,, . ||yns1 — yn|| = 0.
From (6.4.10), we have

[0t = zall = [[Polearf(@n) + (I — e A)Woyn) — Po(€n17f (n-1) + (I — €1 A) Wiy ||
< (I — e A)Woyn — Woyn—1) — (€n — €n—1) AWpyn_1 +

Veu(f(@n) = f(2n-1)) +7(en — €n—1) [ (n-1)]]

(1 = en)yn = yn-rll + len = ena[l| AWy | + veen]|2n — 2|

+ylen — enalll f(zn-1)l]- (6.4.19)

IA

Since Jy) and I — AB are nonexpansive, we also have

|9 = Ynall = [Iua(un — ABup) — Jya(tn—1 — ABuy, 1)
|(w, — ABuy,) — (tp—1 — ABuy,_1)| (6.4.20)

< lun = up-al-

IN

On the other hand, from u,_y =7\, 2,1 and u, = 7\ 2, it follows that

1

F(un_1,9)+9y) —o(un_1)+ (Y= Up_1,Up_1—Tp_1) > 0, VyeCl (6.4.21)

T'n—1
and

1
F(un,y) + o(y) — (un) + — (Y — tn, up —x,) > 0, VyeC. (6.4.22)

n



Substituting y = u,, into (6.4.21) and y = u,,_; into (6.4.22), we get

1

Tn—1

F(un—h un) + QO(Un) - Qo(un—l) + <un — Up—1,Up—1 — xn—1> Z

and

1

F(tn, Uny1) + @(Ung1) — @(Un) + —(Upi1 — Up,un —x,) > 0.

From (A2), we obtain

Up—1 — Tn-1 Up — Tp,

(Un — Un_1, - ) >0,
T'n—1 Tn

and

T'n—1

<un — Up—-1,Un—-1 — Tpn—-1 — (un - zn)> Z 0,
Tn

SO,

T'n—

<un — Up—1,Un—1 — Un + Up — Tn-1 — Z ' (un - [L’n)> Z 0.
n

It follows that

Tn—1
Tn

<un — Up—1, Up—1 = Up + Up — Ty, — (Un - x”)) > 07

and

Tn—1
T'n

(Up, = Up—1, Un—1 — Up) + (U — U1, (1 — )ty — x,)) > 0.

(6.4.23)

(6.4.24)

(6.4.25)

(6.4.26)

(6.4.27)

(6.4.28)

Without loss of generality, let us assume that there exists a real number ¢ such that

rn—1 > c > 0, for all n € N. Then, we have

||un - un—l||2 S <un — Up-—1, <]- - Tn_l)(un - In)>

T'n
Tn—1
Jan = 2 }

< lun = w1 -

n

and hence

1
|t = tpa|l < |l — 2paf| + r_|rn — T |[un — 0]
n

M,
<z — 2| + T|Tn — Tp—1],

(6.4.29)

where M; = sup{||u, — x| : n € N}. Substituting (6.4.29) into (6.4.20), we have

M,
Hyn - yn—IH < ||xn - xn—IH + T‘Tn - Tn—l"

(6.4.30)



Substituting (6.4.30) into (6.4.19), we get

s = zall < (1= ) (0 = a4 2 = o) + e — €nca [ AW |
eenllzn = zui | +2len = en il f (@0l
= (1 et~ Tl + (0= ) = ] + e — e | AWl
#9¢enllzn = zui ]| +2len = el fl@ns)]

IA

_ M,
(1= (5 = 1)l = a4 2, = s+ e = x| AW,
+ylen — €na||| f(@n1)||

M
< (1= —v9en)llzn — vl + Tl|rn — Tp1| + Malen — €1,

where M, = sup { max{||AW,yn_1]|, || f(zn-1)|| : n € N}}. Since conditions (C1)-(C2)
and by Lemma 6.4.1, we have ||z, — z,|| — 0 as n — oco. From (6.4.30), we also

have ||yn,+1 — ynl| — 0 as n — oc.
Step 3. Next, we show that lim,_. ||Bu,, — Bq|| = 0.
For g € 6 hence ¢ = Jy (¢ — ABq). By (6.4.13) and (6.4.15), we get

[ 7317 (1 = ABuy) = Jya(g — ABg)|I?

|(un — ABu,,) — (¢ — ABq)|)?

[un — gl + AMA — 23)|| Bu,, — Bg]|*

|z, — gl + A(X — 28)|| Bu, — Bql|. (6.4.31)

1y — ql|®

IN AN IA

It follows that

s = all® = |Polenyf(@a) + (I = e A)Waga) = Pe(0)|?

lea(rf (@a) = Ag) + (I = ea ) (Wayn = o)

(eallf () = Agll + (1 = D)1y — all)’

nll 7 (@a) = Adll* + (1 = eD)llya — all

+26n (1 — &)l f (2n) — Agllllyn — 4l (6.4.32)
all 1 (@) = Adll? + 260(1 = ) [1F @) = Adllyn — gl

+(1 = &)l = all* + A\ = 28) | Bus, — Bq?)

el f(a) = Agl* + 260(1 = e 7F (@) — Adllllyn — al
llon = gl + (1= ea?)AN = 26)|| Bun — Ball*.

IAN AN A

IA

IA



So, we obtain

(1 = e 7)A28 — )| Buy, — Bq|)*
< enllvf(@n) — Al + llzn — @il (l2n = all + 2 — all) + &, (6.4.33)

where &, = 2¢,(1 — ¢,%)||vf(xn) — Aqlll|lyn — ¢||- By conditions (C1),(C3) and
lim,, o ||Zns1 — @,|| = 0, then, we obtain that ||Bu,, — Bq|| — 0 as n — oc.

Step 4. We show the followings:
() limy, oo (|2 — unl| = 0;
(i) limy,—oo [[tn — yull = 0;
(i) limy, oo |yn — Waynl = 0.

Since K, (x) is firmly nonexpansive, we observe that

hin =l = U7 @0 =7 al?
S <xn_Q>un_Q>
1
= 5 (lan = allP + lfuw = al* = llzw = q = wa = al?) ~ (6.434)
1
< 5 (llzw = all?+ lluw = gl = o = wa?)

it follows that
Jun — qlI” <l — qll? = lzn — un|®.

Since Jj ) is 1-inverse-strongly monotone, we compute

lyn = all* = 137Gt = ABun) = Jasala = ABo)|?
< ((un — ABuy) — (¢ — ABq),yn — q)
1
= 5 (I = ABuw) = (4= ABg) 2 + llgn — all
|t = MBun) = (4 = \Bg) — (5 — )|*) (6.4.35)
1
< 5 (= gl + 1y = all* = (0 = ) = A(Buo = Bo)|I?)

1
= 5 (lhn =l + Iy = al” =l =

+2A\{ty — g, By — Bg) — N[ Bu, — Bq|*),



which implies that
lya = all® < Nun = all” = lun = yall* + 2\ [Jun — yul|[| Bus — Bql|. (6.4.36)

Substitute (6.4.36) into (6.4.32), we have

IN

|1 — gl?

IA

126, (1 — e,7)||7f (2n) — Aql|||lyn — ql|-

Then, we derive

||xn - un||2 + Hun - yn||2

IN

enllvf (@) = Agl* + 2w — all* = llznss — gl

+2M[un = yalll| Bun — Ball + 2en(1 = en)[[7.f (20) — Agllllyn — gll-

= eullvf(@a) = Al + |20 = zurall Iz = gll + l2041 = gl]) (6.4.38)
2 un = ynlll[Bun — Bal| + 26, (1 — exy)|[7.f (2n) — Agllllyn — all-

By condition (C1), lim,, . ||©, — Z,41|| = 0 and lim,, ., || Bu,, — Bql| = 0.

So, we have ||z, — u,| — 0, ||up, —ynl| — 0 as n — oo. It follows that

|lTn —unll < |l — unll + ||tn — ynl|| — 0, as n — oo. (6.4.39)

From (6.4.10), we have

[0 = Wayall <z = Wayn-all + [Wayn-1 — Wayal|

< |Pe(enavf(@na) + (I = an a1 AYWoyn-1) — Po(Woyn1)|
HYn-1 = Yl (6.4.40)
en—1][7fTn-1 — AWnyn1l + [[Yn-1 — ynll-

IN

By condition (C1) and lim,, o [|[¥n—1 — ¥all = 0, we obtain that |z, — Wyy,| — 0 as
n — oo.

Hence, we have

zn — Woa|l < |20 — Watiall + Wt — Wit ||
< |z = Waynll + |y — xa]|- (6.4.41)

By (6.4.39) and lim,, ., ||z, —W,y,|| = 0, we obtain ||z, — W, x,| — 0 as n — oc.

Moreover, we also have

Hyn - WnynH S Hyn - $n|| + ”In - WnynH

enllvf(xn) = Aql* + [lyn — all* + 26.(1 = ex7) 17 f (20) — Adll[lyn — al
enll 7 () = Al + (llun = @l = Nl = gall® + 2Aalltn = || Bun — Ball)

(6.4.37)



By (6.4.39) and lim,,_, ||z, — Woyn|| = 0, we obtain ||y, — W,y,|| — 0 as n — oc.

Step 5. We show that ¢ € 6 := (\°2, F(T,,) N (N, SMEP(F},)) N I(B, M) and
limsup, . ((vf — A)qg, Woyn, — q) < 0. It is easy to see that Py(vf + (I — A)) is a
contraction of H into itself.

Indeed, since 0 < v < z, we have

[Po(vf + (I — A))x — Py(vf+ (I = Ayl < Allf(x) = fF)l + [T = Allllx -yl
< vellz =yl 4+ (1 =)z — yl[(6.4.42)
< (IT=F+79)lz =yl

Since H is complete, then there exists a unique fixed point ¢ € H such that ¢ =
Py(vf + (I —A))(q). Hence, we obtain that ((vf — A)g,w —¢) <0 for all w € 0.

Next, we show that limsup,,_ . ((vf — A)g, Woyn — q) < 0, where ¢ = Py(vf +
I — A)(qg) is the unique solution of the variational inequality ((vf — A)q,w —q) >
0, Yw € 0. We can choose a subsequence {y,,} of {y,} such that

lim sup((’yf - A)Qv Wnyn - Q> = ZE}noo«fyf - A)Qu Wnym - Q>’ (6443)

n—-—:uoo

As {y,,} is bounded, there exists a subsequence {ynij} of {y,,} which converges
weakly to w. We may assume without loss of generality that y,,, — w.
Next we claim that w € 6. Since ||y, — Woy,|| — 0|z, — Wya,|| — 0 and
%y — yn|l — 0 and by Lemma 6.4.2, we have w € (|, — F(T,).

Next, we show that w € (-, SMEP(Fy). Since u, = 7, , @, fork =1,2,3,..., N,
we know that

1
Fi(un,y) + o(y) — o(un) + —(y — up,up — x,) >0, VyeC. (6.4.44)

n

It follows by (A2) that

1
o(y) — p(un) + — (Y — Up, Uy — Tn) > Fr(y,u,), VyeC. (6.4.45)

Hence, for £ =1,2,3,..., N, we get

1
o(y) — p(un,) + —Y — Un;, Un; — Tn;) = Fr(y,uy,), Yy e C. (6.4.46)

For t € (0,1] and y € H, let y, = ty + (1 — t)w. From (6.4.46), we have

1
0 Z Qp(yt) + (p(unz) - _<yt = Up,;y Up; — xm> + Fk(yt> um) (6447)

ng



Since ||u,, — xp,|| — 0, from (A4) and the weakly lower semicontinuity of ¢,
ni =) () and U,, — w. From (A1), (A4) and we have

T,

0

Fi(ye, ye) — o(ye) + o)
< Ry y) + (1= ) Fu(y, w) + to(y) + (1 =t e(w) — o(y:)
< tHF(yy) +o(y) — o(ye)]- (6.4.48)

Deviding by ¢, we get
Fiu(y, y) + o(y) — o(ye) = 0.

The weakly lower semicontinuity of ¢ for £ =1,2,3,..., N, we get

F(w,y) + ¢(y) = o(w).

So, we have
Ey(w,y) +¢(y) —p(w) >0, Vk=1,2,3,...,N.

This implies that w € (,_,SMEP(F}).

Lastly, we show that w € I(B, M). In fact, since B is §-inverse strongly monotone,
hence B is a monotone and Lipschitz continuous mapping. It follows that M + B
is a maximal monotone. Let (v,g9) € G(M + B), since g — Bv € M(v). Again
since yn, = Jyua(un, — ABuy,,), we have wu,, — ABu,, € (I + AM)(y,,), that is,
3 (Un; — Yn; — ABuy,) € M(yy,). By virtue of the maximal monotonicity of M + B, we
have

1
<U ~Yn;n 9 — Bv — X(unz — Yn; — )\Bunz>> > 07

and hence

1
<U_ym’g> > <'U_ymvB'U+X(um_ym_)‘Buni)>
= (v —Yn,, B — Byn,) + (V — Yn,, Byn, — Bu,,)  (6.4.49)
T
v yma)\um ym .

It follows from lim,, . ||u,—yn| = 0, we have lim,,_, || Bu,—By,|| = 0 and y,,, — w,
it follows that

lim sup(v — y,,, g9) = (v —w, g) > 0. (6.4.50)

n—~o0

It follows from the maximal monotonicity of B + M that § € (M + B)(w), that is,
w € I(B, M). Therefore, w € §. We observe that

limsup((7f = A)g; Wayn — g) = lim (7] = A)g, Woyn, — ¢) = (7] = A)g,w = q) < 0.

n—aoo



Step 6. Finally, we prove x,, — ¢. By using (6.4.10) and together with Schwarz

inequality, we have

|1 — gl

IAIA

IA

IN

VAN

IA

VAN

IA

1P (envf (20) + (I = ea A)Woyn) — Po(q)|1?

len(vf(20) = Ag) + (I — €, A)(Woyn — )|

(I — en AP | (Woyn — )|1* + €xll7f (2n) — Ag]|?

+26,((1 — € A)(Woyn — @), 7f(zn) — Aq)

(1= €a7)?llyn — all? + 2 llvf (z0) — Agl?

+2e, (Wt — ¢,7f (0) — Ag) — 26 (A(Woyn — ), 7f (2) — Ag)

(1= en¥)?[lzn — qlI” + 217 S (2n) — Agll + 260 (Woym — ¢,7f (20) — 7 (q))
+26, (Woyn — 4,7f(q) — Aq) = 26, (AWoyn — q), v f (20) — Ag)

(1 —en¥)?lzn — al* + €17 f (2n) — Agl® + 260 [Wayn — qllIvf (2n) — v £ (@)
+2e,(Woyn — ¢,7f(q) — Ag) — 2e5(A(Woyn — q), 7S (0) — Ag)

(1= ea¥)?lln = ql” + Xllvf (2n) — Agll® + 2veenllyn — gllllzn — g

+2e, (Wt — ¢,7f(q) — Aq) = 265 (A(Woyn — q), 7S (n) — Ag)

(1 — en3)?[lzn — ql” + €2l f (2n) — Aql]® + 2veen ||z — gl)?

26, (Woyn — ¢,7f(q) — Ag) — 265 (AWoyn — q),7f (2n) — Ag)

(1= e7)? + 25ee0) n = all* + en{ enllf (20) — Ag?

+2(Wan — 0,7F(a) — Ag) — 26l AW — )l () — Ag|}

(1 =267 = 19)e) 7w = all* + en{ nll7f (@) — Aq?
F2(Wo — 0.7 (0) — Ag) — 2en| AW — ) [1f () — Ag]
ten?len — al}. (6.4.51)

Since {z,} is bounded, where 1 > ||vf(z,) — Aq||* — 2|l AW,y — @)1 f (zn) —
Aql| + 72|z, — g||* for all n > 0. It follows that

|lznes = al* < (1 =203 = ve)en) |20 — dlf* + €nd, (6.4.52)

where 0, = 2(W,yn —¢,7f(q) — Ag) +nav,. Since limsup, . ((vf —A)q, Wayn—q) <
0, we get limsup,, . 0, < 0. Applying Lemma 6.4.1, we can conclude that x,, — gq.

This completes the proof. U

Corollary 6.4.6. Let H be a real Hilbert space, C be a nonempty closed and convex

subset of H. Let B be (3-inverse-strongly monotone and ¢ : C' — R is convex and

lower semicontinuous function. Let f : C — C' be a contraction with coefficient «



(0<a<1), M:H— 2" be a maximal monotone mapping and {T,} be a tamily
of nonexpansive mappings of H into itself such that

0 =N, F(T,) N (N_,SMEP(F,))NI(B,M) #0.

Suppose {x,} is a sequence generated by the following algorithm for xo, u, € C
arbitrarily:

Uy = KPn CRIN VRN o KPR KR g Yne N
& > b (6.4.53)
Tp1 = Peolenf(an) + (I — En)WnJM,A(un — ABu,,)]

for all n =0,1,2, ..., and the conditions (C1)-(C3) in Theorem 6.4.5 are satistied.
Then, the sequence {x,} converges strongly to q € 0, where q = Py(f + I)(q)
which solves the following variational inequality:

(f=1)g,p—q) <0, Vpeo.

Proof. Putting A = [ and 7 = 1 in Theorem 6.4.5, we can obtain desired conclusion

immediately. 0]

Corollary 6.4.7. Let H be a real Hilbert space, C be a nonempty closed and convex
subset of H. Let B be [3-inverse-strongly monotone, ¢ : C' — R is convex and lower
semicontinuous function and M : H — 2% be a maximal monotone mapping. Let
{T,} be a family of nonexpansive mappings of H into itself such that

0 =N, F(T,) N (M, SMEP(F,))NI(B, M) # 0.

n=1

Suppose {x,} is a sequence generated by the following algorithm for xy,u € C' and
u, € C:

Uy = KFN KN KN L CKP K g Yne N
o e e o o (6.4.54)
Tpy1 = Polesu+ (I — €)Wy Jua(u, — ABuy,))

for all n =0,1,2, ..., and the conditions (C1)-(C3) in Theorem 6.4.5 are satistied.
Then, the sequence {x,} converges strongly to q € 0, where q = Py(q) which

solves the following variational inequality:
(u—qp—q) <0, Vpeb.

Proof. Putting f(z) = u, Vo € C in Corollary 6.4.6, we can obtain desired

conclusion immediately. U



Corollary 6.4.8. Let H be a real Hilbert space, C be a nonempty closed and convex
subset of H and B be [(3-inverse-strongly monotone mapping, A a strongly positive
linear bounded operator of H into itself with coefficient v > 0. Assume that 0 <
v< 2. Let f:C — C be a contraction with coefficient oo (0 < ow < 1) and {T,}

be a tamily of nonexpansive mappings of H into itself such that
0:=n2,F(T,)NVI(C,B) #0.

Suppose {x,} is a sequence generated by the following algorithm for xy € C' arbi-
trarily:
Tns1 = Po [m Flan) + (I — e AYWy Po(ty — ABay) (6.4.55)

for all n =10,1,2,..., and the conditions (C1)-(C3) in Theorem 6.4.5 are satistied.
Then, the sequence {x,} converges strongly to q € 6, where q = Py(vf+1—A)(q)

which solves the following variational inequality:

(vf—A)g,p—q) <0, Vpeb.

Proof. Taking F' =0, ¢ =0, u,, = 2, and Jy;» = Pc in Theorem 6.4.5, we can

obtain desired conclusion immediately. 0]

Remark 6.4.9. Corollary 6.4.8 generalizes and improves the result of Klin-eam and
Suantai [260].

6.5 Some Applications

In this section, we apply the iterative scheme for finding a common fixed point of

nonexpansive mapping and strictly pseudocontractive mapping.

Definition6.5.1. A mapping S : C — C is called strictly pseudo-contraction if there

exists a constant 0 < k < 1 such that
1Sz — Syl* < [l — y||* + &|(I = S)z — (I = S)yl*, Va,y e C.

If kK =0, then S is nonexpansive. In this case, we say that S : C' — C is a k-strictly

pseudo-contraction. Putting B = I — S. Then, we have
I(I = B)z — (I = B)y|]? < llz — yl|* + x| Bx — By|, Va,yeC.
Observe that

I(I = B — (1 = Byl = llx — yl> + | Bz — By|> — 2(z —y, Bx — By), Va,yeC,



Hence, we obtain

1_
(x—y, Br - By) > ——||Bx — Byl Va,yeC.

Then, B is a 1_T"@—inverse—strongly monotone mapping.

Using Theorem 6.4.5, we first prove a strongly convergence theorem for finding a

common fixed point of a nonexpansive mapping and a strictly pseudo-contraction.

Theorem 6.5.2. Let H be a real Hilbert space, C' be a nonempty closed and convex
subset of H and B be an [3-inverse-strongly monotone, ¢ : C — R 1s convex
and lower semicontinuous function, f : C — C be a contraction with coefficient
a (0 < a< 1) and A be a strongly positive linear bounded operator of H into
itself with coefticient ¥ > 0. Assume that 0 < v < Let {T,} be a family of
nonexpansive mappings of H into itself and let S be a k-strictly pseudo-contraction
of C' into itself such that

o

0 =N, F(T,) N (N_SMEP(F,)) N F(S) # 0.

Suppose {x,} is a sequence generated by the following algorithm for xy,u, € C
arbitrarily:

Uy = KEN KN KON K KR, Yne N 65.1)
Lp41 = PC[Eanf(xn> + (I - EnA)Wn(l - )‘)xn + )\Sl’n] o

for all n =0,1,2, ..., and the conditions (C1)-(C3) in Theorem 6.4.5 are satistied.
Then, the sequence {x,} converges strongly to q € 0, where q = Py(vf+1—A)(q)
which solves the following variational inequality:

(Wf—A)g,p—q <0, Vpeb

which is the optimality condition for the minimization problem

1
min =(Ag, q) — h(q), (6.5.2)

qeb 2

where h is a potential function for vf (ie., h'(q) =~vf(q) for ¢ € H).

Proof. Put B = I — T, then B is 5% inverse-strongly monotone and F(S) =
I(B,M) and Jya(x,, — ABxy,) = (1 — Nz, + A\T'z,,. So by Theorem 6.4.5, we obtain

the desired result. |

Corollary 6.5.3. Let H be a real Hilbert space, C' be a closed convex subset of H and

B be (-inverse-strongly monotone, ¢ : C' — R is convex and lower semicontinuous



function. Let f: C — C be a contraction with coefficient o (0 < o < 1) and T,, be
a nonexpansive mapping of H into itself and let S be a k-strictly pseudo-contraction
of C into itself such that

0 =N, F(T,) N (N_SMEP(F,)) N F(S) # 0.

Suppose {z,} is a sequence generated by the following algorithm for xo € C arbi-
trarily:
Up = KFN CKIN L CKIN U KP KPR g Yne N
" ’ ’ > b (6.5.3)
Tpt+1 = Pc[an(l’n) + (I - en)Wn((l - )‘)un + )\SUn)]
for all n =0,1,2, ..., and the conditions (C1)-(C3) in Theorem 6.4.5 are satistied.
Then, the sequence {x,} converges strongly to q € 6, where q = FPy(f + I)(q),

which solves the following variational inequality:

(f=T)g.p—q) <0, Vpeb

which is the optimality condition for the minimization problem

1
min ~(Aq, q) — h(q), (6.5.4)

qe0 2

where h is a potential function for vf (ie., h'(q) =~f(q) for ¢ € H).

Proof. Put A= 1 and v =1 in Theorem 6.5.2, we obtain the desired result. U

6.6 Numerical example

Now, we give a real numerical example in which the condition satisfy the ones of
theorem 6.4.5 and some numerical experiment results to explain the main result theorem
6.4.5 as follows:

Example 6.6.1. Let H = R,C =[-1,1],T,, =1, \, =3 € (0,1), n € N, Fy(z,y) =
07v'r7y E C,Tn’n = 17 k E {1727 37 "'7N}7 SO(‘,'U) = 07 vx e C7 B = A = I7 f(x) =

%x, Ve € H, A = % with contraction coefficient o = 1—10,

N and v = 1. Then {z,} is the sequence generated by

€n = % for every n €

(1 3
Tnt1 = (5 — —
9 T 1on

and z,, — 0 as n — oo, where 0 is the unique solution of the minimization

)Tn (6.6.1)

problem

2
min = —-x .
zeC 5 4



Proof. We prove the Example 6.6.1 by step 1, step 2, step 3. By step 4, we give two
numerical experiment results which can directly explain the sequence {z,} strongly
converges to 0.

Step 1. We show

KQIY”:L':PC{L" Ve e H Fy € {172737-“aN}7 (6.6.2)
where
oy TE H\C
Pex = (6.6.3)
x, xedC.

Indeed, since Fi(z,y) =0, Vx,y € C, n € {1,2,3,..., N}, due to the definition of
K. (x), Vx € H, as lemma ??, we have

K.(r) = {uGC’: (y — u,u — ) zO,VyEC}.

Also by the equivalent property of the nearest projection P from H — C, we
obtain this conclusion, when we take x € C, K,lf; N, = Pox = Iz. By (iii) in lemma

7?7, we have

N
(VSMEP(F,) =C. (6.6.4)

k=1

Step 2. We show
W, = 1. (6.6.5)
Indeed. By (6.4.8), we have

W1 - U11 - )\1T1U12 + (1 - )\1)] == )\1T1 + (1 - )\1)], (666)

Wo=Usn = MTiUs+ (1 — M) = M (ATolUss + (1 — Ao)I) + (1 — \y)I
= MANTI T+ A(1—A)Ty + (1= A,

Wi =Us = MU+ (1= M) = M1 (ATeUss + (1— A)I) + (1= \y)I
= MM ToUss + M (1= X)Th + (1= M),
= AT TAT3Uss + (1= A1) + M (1 — A)Ty + (1= M),
= MAATITT + M1 — MTiTo + M (1 — ATy + (1= M)



Compute in this way by (6.4.8), we obtain

Wn = Unl — )\1)\2 Tt )\nTlT2 e Tn + )\1)\2 e )\n—l(l - )\n)TlT2 e Tn—l
"‘)\1)\2 ct )\n_g(l - )\n_l)TlTQ e Tn_Q + ctt + )\1(1 - )\2)T1 —|— (1 —_ )\1)]

Since T,, =1, \, =3, n € N, thus
W,=[8"+8""(1=8)+ - +B(1-p)+(1-p)I =1

Step 3. We show
1 3

Tyl = (5 — lo—n)xn and x,.1 — 0, as n — o0, (6.6.7)
where O is the unique solution of the minimization problem
2
min = -z .
zeC 5% 4

Indeed, we can see A = I is a strongly position bounded linear operator with
coefficient ¥ = %, v is a real number such that 0 < v < g, so we can take v = 1. Due
to (6.6.1 ), (6.6.3 ) and (6.6.5 ), we can obtain an special sequence {x,} of (6.4.10)
in theorem 6.4.5 as follows:

Tny1 = (% - min)xn
Since T, = I, n € N, so,
N F(T,) = H,

n=1

combining with (6.6.4), we have

0= F(T,) N (My_,SMEP(F,))NI(B,M)=C = [-1,1].

By Lemma 6.4.1, it is obviously that z, — 0, O is the unique solution of the

minimization problem

2,
min = —
xEIC 5:(: 7

where q is a constant number.

Step 4. We give the numerical experiment results using software Mathlab 7.0 and
get the figure 1 to figure 4, which show that the iteration process of the sequence {z,}
is a monotone decreasing sequence and converges to 0, but the more the iteration steps
are, the more showily the sequence {z,} converges to 0.

Now we turn to realizing (6.4.10) for approximating a fixed point of 7. We take
the initial valued x; = 1 and x; = 1/2, respectively. All the numerical results are given
in Tables 1 and 2. The corresponding graph appears in Figure 1 (i) and (ii).



Table 1 This table shows the value of sequence {z,} on each iteration steps (initial

value 1 = 1)

Tn n Tn
1.000000000000000 | 31 | 0.000000000054337
0.200000000000000 | 32 | 0.000000000026643
0.070000000000000 | 33 | 0.000000000013072
0.028000000000000 | 34 | 0.000000000006417

AW NN =3

19 | 0.000000301580666 | 39 | 0.000000000000184
20 | 0.000000146028533 | 40 | 0.000000000000091
21 | 0.000000070823839 | 41 | 0.000000000000045

29 | 0.000000000226469 | 47 | 0.000000000000001
30 | 0.000000000110892 | 48 | 0.000000000000000

Table 2 This table shows the value of sequence {z,} on each iteration steps ( initial

value z; = %)

Tn n Tn
0.500000000000000 | 31 | 0.000000000027168
0.100000000000000 | 32 | 0.000000000013321
0.035000000000000 | 33 | 0.000000000006536
0.014000000000000 | 34 | 0.000000000003208

AW NN =3

19 | 0.000000150790333 | 39 | 0.000000000000092
20 | 0.000000073014267 | 40 | 0.000000000000045
21 | 0.000000035411919 | 41 | 0.000000000000022

29 | 0.000000000113235 | 46 | 0.000000000000001
30 | 0.000000000055446 | 47 | 0.000000000000000

The numerical results that support our main theorem as shown by calculating and

plotting graphs using Matlab 7.11.0.
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