

## บทคัดย่อ

รหัสโครงการ: MRG5380060

ชื่อโครงการ: การสังเคราะห์และสมบัติทางเทอร์โมอิเล็กทริกส์ของ  $\text{Ca}_3(\text{Co}_{1-x}\text{M}_x)_4\text{O}_9$

ชื่อนักวิจัย: อ.ดร. สุปรีด พินิจสุนทร มหาวิทยาลัยขอนแก่น

อีเมล : psupree@kku.ac.th

ระยะเวลาโครงการ: 2 ปี

โครงการวิจัยนี้ได้ทำการสังเคราะห์ผลึกนาโน  $\text{Ca}_3\text{Co}_4\text{O}_9$ , โดยใช้วิธีการสลายตัวทางความร้อนโดยใช้น้ำซึ่งยังไม่เคยมีรายงานผลมาก่อน เทคนิคการสลายตัวทางความร้อนโดยใช้น้ำ เป็นที่รู้จักกันดีในการผลิตวัสดุเพื่อให้ได้ออนุภาคนาโนที่ละเอียด มีการกระจายตัวของขนาดอนุภาคต่ำ และมีสารเจือปนในปริมาณที่น้อย วัสดุที่สังเคราะห์ได้จะนำไปใช้ในอุปกรณ์เทอร์โมอิเล็กทริกส์ สาร  $\text{Ca}_3\text{Co}_4\text{O}_9$  ที่สังเคราะห์ได้โดยวิธีนี้แสดงสมบัติทางเทอร์โมอิเล็กทริกส์ที่ดีกว่าวัสดุที่สังเคราะห์โดยวิธีอื่นๆ โครงการวิจัยนี้สามารถแบ่งเป็นสองส่วนหลักคือ

ในส่วนแรก ได้ทำการสังเคราะห์สาร  $\text{Ca}_3\text{Co}_4\text{O}_9$  บริสุทธิ์โดยกระบวนการสลายตัวทางความร้อนโดยใช้น้ำ สารตั้งต้นในรูปของเกลือโลหะของแคลเซียมและโคบอลต์จะถูกนำมาผสมให้เข้ากัน จากนั้นจะเพิ่มอุณหภูมิให้อยู่ในช่วง 600 ถึง 900 °C โดยให้เวลาต่างกันตั้งแต่ 3 ถึง 6 ชั่วโมง เพื่อให้ได้ผงผลึกนาโนของ  $\text{Ca}_3\text{Co}_4\text{O}_9$  ผงที่ได้ถูกวิเคราะห์ด้วยเทคนิค TG-DTA, XRD, SEM-EDX และ TEM. จากนั้น ผงถูกอัดด้วยความดันสูงเพื่อขึ้นรูปให้ได้เป็นรูปทรงที่ต้องการ และนำไปเผาบนอุณหภูมิที่ใช้ในการเผาเนื้อพิจารณาจากผลการวิเคราะห์ TG-DTA โครงสร้างจุลภาคของก้อนวัสดุ  $\text{Ca}_3\text{Co}_4\text{O}_9$  ถูกวิเคราะห์อีกครั้งหนึ่งด้วย XRD, SEM-EDX และ Raman spectroscopy เพื่อยืนยันผลและโครงสร้างของวัสดุ ได้ทำการวัดสมบัติทางเทอร์โมอิเล็กทริกส์ของชิ้นงานด้วยเครื่อง ZEM-2 และเทคนิค laser flash ตั้งแต่อุณหภูมิห้องถึงอุณหภูมิ 1000 °C จากนั้นวิเคราะห์หาความสัมพันธ์ระหว่างโครงสร้างจุลภาค องค์ประกอบทางเคมี และสมบัติทางเทอร์โมอิเล็กทริกส์ของวัสดุ

ในส่วนที่สอง ได้ทำการเจือธาตุโลหะทรายสิชั้น (Cr, Fe<sub>x</sub>) เข้าไปแทนที่บางส่วนของอะตอม Co เพื่อศึกษาผลของการเจือ วัสดุซึ่งมีสูตรทางเคมีเป็น  $\text{Ca}_3(\text{Co}_{1-x}\text{M}_x)_4\text{O}_9$  และถูกสังเคราะห์ด้วยวิธีการสลายตัวทางความร้อนโดยใช้น้ำ และวิเคราะห์ด้วยเทคนิคอื่นๆ เมื่อนับชิ้นงานที่ไม่มีการเจือ นอกจากนี้ ได้ทำการศึกษาสมบัติทางเทอร์โมอิเล็กทริกส์เพื่อเปรียบเทียบผลที่ได้กับวัสดุที่ไม่มีการเจือโลหะทรายสิชั้น

คำหลัก: เทอร์โมอิเล็กทริก,  $\text{Ca}_3\text{Co}_4\text{O}_9$ , การสังเคราะห์, ค่าพิกเกอร์อฟเมอริต

## Abstract

---

**Project Code:** MRG5380060

**Project Title:** Synthesis and thermoelectric properties of  $\text{Ca}_3(\text{Co}_{1-x}\text{M}_x)_4\text{O}_9$

**Investigator:** Dr. Supree Pinitsoontorn      Khon Kaen University

**E-mail Address:** psupree@kku.ac.th

**Project Period:** 2 years

In this project, nanocrystalline  $\text{Ca}_3\text{Co}_4\text{O}_9$ , was synthesized, using a novel thermal hydro-decomposition method for the first time. The thermal hydro-decomposition technique is well known for producing fine nanoparticles, with a very narrow size distribution and relatively low impurities. The synthesized materials were used for thermoelectric applications, and the synthesized  $\text{Ca}_3\text{Co}_4\text{O}_9$  exhibited superior thermoelectric properties than the materials synthesized by other methods. The project can be divided mainly into two parts.

In the first part of this project, the undoped  $\text{Ca}_3\text{Co}_4\text{O}_9$  will be synthesized by a thermal hydro-decomposition technique. The starting materials were the metal salts of calcium and cobalt, thoroughly mixed. The mixture was heated in the range of 600–900 °C with different durations from 3 h to 6 h to obtain nanocrystalline powder of  $\text{Ca}_3\text{Co}_4\text{O}_9$ . The thermal hydro-decomposition prepared  $\text{Ca}_3\text{Co}_4\text{O}_9$  powders were then characterized by TG-DTA, XRD, SEM-EDX and TEM. The powder was hydraulically pressed into a desired shape and then sintered. The sintering temperature was determined from the TG-DTA results. The microstructure of the bulk  $\text{Ca}_3\text{Co}_4\text{O}_9$  was characterized again by XRD, SEM-EDX and Raman spectroscopy to confirm phases and microstructures. Thermoelectric properties of the bulk samples were investigated using ZEM-2 and Laser Flash techniques over the temperature range from room temperature to 1000 °C. The thermoelectric properties were related to the microstructure and the chemical components of the samples.

In the second part, the transition metals (Cr, Fe, Ni, and Zn) were partially substituted in the place of Co in order to investigate the effects of doping. The  $\text{Ca}_3(\text{Co}_{1-x}\text{M}_x)_4\text{O}_9$  was again thermal hydro-decomposition synthesized and characterized using the same techniques carried out for the undoped samples. The thermoelectric properties of the doped samples was also investigated, and the results were compared with the undoped samples.

**Keywords :** thermoelectric,  $\text{Ca}_3\text{Co}_4\text{O}_9$ , synthesis, figure-of-merit