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Abstract

Project Code: MRG5380060

Project Title: Synthesis and thermoelectric properties of Cas(Co4,M,)4Oq

Investigator: Dr. Supree Pinitsoontorn Khon Kaen University

E-mail Address: psupree@kku.ac.th

Project Period: 2 years

In this project, nanocrystalline Ca;Co,0O4, was synthesized, using a novel thermal hydro-
decomposition method for the first time. The thermal hydro-decomposition technique is well known for
producing fine nanoparticles, with a very narrow size distribution and relatively low impurities. The
synthesized materials were used for thermoelectric applications, and the synthesized Ca;Co,Oq
exhibited superior thermoelectric properties than the materials synthesized by other methods. The
project can be divided mainly into two parts.

In the first part of this project, the undoped Ca;Co,04 will be synthesized by a thermal hydro-

decomposition technique. The starting materials were the metal salts of calcium and cobalt,

thoroughly mixed. The mixture was heated in the range of 600-900 °C with different durations from 3
h to 6 h to obtain nanocrystalline powder of Ca;Co,0,. The thermal hydro-decomposition prepared
Ca;Co,04 powders were then characterized by TG-DTA, XRD, SEM-EDX and TEM. The powder was
hydraulically pressed into a desired shape and then sintered. The sintering temperature was
determined from the TG-DTA results. The microstructure of the bulk Ca;Co,O, was characterized
again by XRD, SEM-EDX and Raman spectroscopy to confirm phases and microstructures.

Thermoelectric properties of the bulk samples were investigated using ZEM-2 and Laser Flash

techniques over the temperature range from room temperature to 1000 °C. The thermoelectric
properties were related to the microstructure and the chemical components of the samples.

In the second part, the transition metals (Cr, Fe, Ni, and Zn) were partially substituted in the
place of Co in order to investigate the effects of doping. The Ca;(Co,,M,),O4 was again thermal
hydro-decomposition synthesized and characterized using the same techniques carried out for the
undoped samples. The thermoelectric properties of the doped samples was also investigated, and the

results were compared with the undoped samples.

Keywords : thermoelectric, Ca;Co,0,, synthesis, figure-of-merit
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Wonsundavaslansasasduluin DI Wazaadnuudsiluvinlwusts aniwihluBeeinas
wWisuulasmeamusausionadia TG/TDA Naﬁvl@ﬁmméﬁgﬂﬁ 3.1 anguhaziuldi iiensgyae
ﬁmﬁfﬂLﬁﬂﬁawadmiﬁuﬁqmﬁgﬁ 323 - 473 K Semaandumisansdivesasslsznausasasdian
la1asau09m3aIfuLed Ca uaz Co [39] @amLﬁumsgzyL%Uﬁ’mﬁﬂﬁ%mwﬂizmm 25 % ﬁqm‘mgﬁ
627 K %amaﬁ'uﬂa@ﬂsWWmimsmm'?augaﬁ"ﬁgwnaa TDA LLazﬁﬂ’linyL%m{mﬁfﬂﬂszmm 12 %
maﬁuUa@ﬂﬂ%lmimUmw%augaLﬂuﬁuﬁuaaaﬁqmwgﬁ 637 K Sermaadnumniaiinnainaziinen
nasasdvassslsznaveaiuniniialiifiaans CaCO, uaz Co,0, msgzyL%mf’mﬁfﬂﬁmmm
Fanainlesn AamaEesinenyUsznm 9 % maﬁ'uﬁﬂmsg]@mm%'auﬁ 944 K Fgvinaziflunisvin
Ufjfis8189 CaCO; NU Co,0, ielfiAaua Cay,Co,0, [40] ﬁqmﬁgﬁ&yﬁu@i 973 K n1w2849 TG 1Jn
LEUATITILBIBALLNG x uaasinlidnsaswedasinrinuesans %amﬁmﬂumiﬁuﬁumqqfwgﬁ
sl,umsl,ﬁ@LWau%qﬂT;maa CasC0,0, U3 HlgunuSLaN a8 IHA XRD lugﬂ‘ﬁ' 2 Lfiaqamgﬁgmﬂ’h
1199 K mmsaéﬁmmﬁumigtyL%Uﬁmﬁﬂﬁmﬁﬂﬁaﬂ Fofunamnanmsfswnann  Ca,Co,0,
1JulWe CayCo,0f [41].
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u19fe XRD maamﬁmuﬁaﬁqmﬂgu 873 B9 1173 K 1w 4 52lag me"l,@i”@i”agﬂﬁ 3.2
mﬂgﬂanﬁﬂﬁd’lLWadaulﬁcyﬁWU%é'aannLmﬁqm*mgﬁ 873 K fia CaCO, uaz Co,0, ijmﬁuqmﬁgﬁ
i 973 K 395wz iiaiduine Ca,Co,0, mufidasnisudfissfiiwauas Caco, iU Cos0,
v\aamﬁaag ﬁqmﬁqﬁ 1073 K U7038132%919 CaCO; Nu Coz0, Lﬁ@"L@Tasmauyiri 93 997N
N7 XRD %aﬁammﬁmﬁ'auﬂaﬁqﬂ%{mao Ca;Co0,0, %amaﬁué’ﬂwmzﬂﬁw“'lmgmmw JCPDS
mia (21-139) uazudazialugdsansnszyasiiliameildana Masset unzamie [20]. wonanii
sefsznaumaniidsialagmaiin EDX uaz PIXE ugassamsinazaanues Ca:Co tiu 3:4 oy
SANEIUBIBDNTLIBAINNEATN IR IT R BNENTEE FoTunTEuTUNTAANAN8S Ca,Co,0,
Lﬁaqmﬂgﬁmnmgaﬁa 1173 K 019037228901 & Ca,Co,0, LUAAN LANFINITOITFILNALAKANT

Wagwdwna Ca,Co,0, [41].

18



* CaC03 0 C0304 + C33C0409 X Ca3C0206

1173 K

Xy X X

-
- c o~

; o\ qﬁf\l g ~~
— = SI= & S
= |~ = . <887 T _ g 1073 K
: (=T + i -~ &= [se]

< =P = S 8l
N + :'l' +\-« a -’ -’
= + + T+ o+ o+
et HI-J“

20 (Degree)

a o

311 3.2 3919WA XRD 84H3 CayCo,0, NiHNNgannilana g

U

ANBUATUTIUVBING CayCo,0, uaadlilug SEM lugﬂﬁ 33a wedsaTeRladanwa iy
LLNuﬁﬁLﬁumuquﬁﬂmaﬂszmm 1.0 lulaswas wddmanszanmudnuiuduann sUan TEM lu
gﬂﬁ' 3.3¢ UAAIANBILNNINITINAINUVBIARAA é’m:ﬁ’dmmvl,ﬁmngﬂLﬂué’ﬂwmwadmisﬁauﬁuﬁu
YDILNWHANTAATY JUH B UA WA WA TEILA TN Ca;C0,0, MuLnaiialoa-1aa Tuwy
é’ﬂwmwaaa%mﬂﬁtﬂmmu Lwiné'mﬂumgmﬂﬁvl&iﬁgﬂiwﬁLLu',uau [13, 42] TINRINIFILATNER AT
ﬂijﬁ‘%m"uaauﬁdLLU‘U@%Lauﬁvl,;iwumgmﬂﬁﬁé’fﬂwmuﬂmwm [43] mgmﬂ‘ﬁ'ﬁé’nwmuﬂmmummzmu
ab LﬂuﬁfﬁuadwzmmmLﬁumm"l,aiaumm’l,uaw%mdmaﬂw‘él,ﬁnﬂ%ﬂefﬁ%uﬁ'uﬁﬂmﬂﬁ St
Figure of Merit ZT ‘ﬁﬁ@hﬂ'awﬂ”ngqﬁwuiuawuﬁﬁ'ﬂﬁaﬂaﬁaﬂm@31mmﬂmgmﬂﬁﬁﬁﬂﬂmuﬂmmu 3
3.3d useadzl TEM ﬁﬁmmauﬁmga Fauaassrmasuaafialussmnufasanniufianis (100] andslu
EﬂLLﬁ@dﬁd%ﬂmﬁaﬁWUaﬂ Ca0-CoO-Ca0 FauURLTUIas CoO, sasfiuaafizaauuwinny ¢ aldden
T 10.8 S9ansan TesaandasnunuIsefidwun [20] 31 SEM maa%umuﬁgﬂifugﬂﬁm%% hot-press

LLam"L@T@ﬁgﬂﬁ 3.3b ﬁaLLde’lmazgﬂé"@sluﬁﬂwml,l,uuqu LL@i%ua'mﬁﬁmﬂmeLuugo LRSLRAIAINIT

P [

FedarvadnIwluiiananansa (ANUWIRNAT)

U
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H 1 a o a I&/ U a
31N 3.3 31ty SEM 2849 a) W9 Ca,Co,0, , Uaz b) HITauinUaTiIng CagCo,0, NIUFUMELAT

hot press, c) 3Utny TEM 183w9Ca;Co,0, , Uaz d) 3tne TEM swau%‘wgﬂuﬁﬂma [100] LRAITH

\NRBAUVEI CaO-CoO-CaO rocksalt FAUNUTUVES CoO,

a a a { o &/ v a v
sudanamasludidnninduasaing Ca,Co,0,NN133U3LAILIT hot press uanldasgyl
{ ] @ ' { A a & . @ A o 2 o o
71 3.4 dnanmanudunulnihiidaasuliogungiifiniu ugasiisguszwgdduuuasiaai

nalnmsi nihaesiaglunuidsil mleunufiaslinmonuuineu [44] fanmshWilnieziie

1

4 A . o . .
INMINTzlaavadlnansan dalarinnInaaanIINIznINg N T 22aNNIDFWIAIAN
>3 v YV & { =Y 1 1 Q a Ar { a Y 1
wmmum:@;uvlmﬂuo.mB eV ﬁqmﬁgugamw 570 K mauﬂizawﬁ%mﬂ'ﬁqmmﬂwaaﬁmﬂsxmm

' ]
' o al

{ a AI J e a Qr U {
217 WK uaziilogmnn it suldnsfiualdannsilasddgansszana 180 LLV/K 71 570 K

q

A & & ' { ' o @ ' d
waANIudnasIaudentszanm 200 LV/K 7 880 K sramwinanuionliugasmstasuutlasaia
a o - o ' = o v A A 14 o,
E}]m%ﬂ&l&nﬂuﬂ(ﬂaa(ﬂﬁﬁd"fl“ﬂﬁlﬂqi'ﬂﬂ AARYVBIRMWUIANUTDWNAUTENI I 1.2 Wm K B3%UIn

& o oA o o av A, P ° @ T a
WuadlatnguNUBIBNNIBUN [45-47] mwamwmmmiau"l,uLﬂaﬁmmmqummuu 1
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enInuauIgIwInT ZT %:"L@mmgﬂ‘ﬁ 3.4b @1 ZT g&q@ﬁmtflu 0.23 ﬁqnmgu 880 K T9@ih

wuiludn ZT Ngsgarifiasiinguindmiuiag Ca,Co,0, Nlilinildl Ngmnniiiduiiu [45-47]

{ wa a a i o PN a @ a £ )
3UN 3.4 sudGmanesludianninanduiugunpiizenaning Ca,Co,0, : a) ANUIZAMTFIUANL

FNNAwBINAN waz b) snwshausaw uas ZT
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& A 2+ 3+ 2+ A & A o o
11w CaCo,,M Oy tia M = Fe ', Fe , Mn~ hi3unmwaasanstaadn x = 0.03, 0.10 Laz 0.90 §IKRIU
2 A s { { A
Fe' amlasau (I) ezfiaa alaviiangmnilunsuiiny 800 °C iiasanuanisifigunnd
d199 Ngunniiilawainadu  Ca,Co,0, uazlinuimiatu IHialunsmriiiu 4 wlag
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8135U52nau Ca,Co,0, Adunu liiinaiuasuutas uaziilatvuySuna Fe(l) Wu x = 0.1 lassade

2 A A =3 @ @ [ A a [ 3 A [ ' o a
wandinsifRsuudasdndaslasdinanananinilonidunazaanafimnadodwldursain ansu
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gﬂﬁ 3.5 XRD pattern uaasn3t3atuansisznay Ca,Co,,Fe,0, @38 Fe(ll) 310 iron acetate
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3111 3.7 XRD pattern LRAINTTIIUURIIUTENAY CasCo,, Fe,0, 738 Fe(lll) 31N Fe(NO,); 9H,0

3.2.2 HAYAINI3LI8A2Y Cr

gﬂﬁ 3.8 LAAIANLUZVEI XRD pattern VoIK4 Ca,Co,. Cr O, fileFunlasAFnsamudims
anusoulagldiin ﬁ'ﬂmngmLuuﬁwmmmsm:ﬂﬁﬁmwavsﬁ"ﬂﬁa Ca;C0,0, MUNIANINTZIN
(PDF 21-0139) uazfsmaandasnunanmsanmnountiit (48] aghilsfiana sluuumMIdsILYes
Ca,Co, .Cr.0, 7l 0.05< x <0.283uaAWaAY 15% Co,0, Ca,Co,0, Hanant msldd cr favhliians
L‘gﬂaLuuLﬁ'auvlﬂﬂ'wquﬁ@ima %\1Lﬂumm@;mmmﬂmsﬁ%ﬂmaaaumaa Co uaz Cr ensrin Seilleadind
Tnaasamtunnuas Cr waz Cr (0.87 A, snwuzatludn 0.755 A) fenlnaidsanusaileaiinues co™
(0.745 A, amueailug) uwaz vwiawas Cr (0.69 A) Iandszanmiaillasafinuas Co /Co™ (0.545 A,
LS/0.53 A, HS) [49, 50]. 9lniiin asdilsznaumataiivesiuiuidaialasmnaiia EDS uas PIXE
LEAISATEINEZABNES Ca, Co waz Cr ludamaufidainis laadmaiuninzaslSanmeandian

a 13 v
LWBIERNUB Y

31/11 3.8 XRD patterns 283K CazCo,,Cr,0q o< x <0.2.
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3U7 3.9 usasgLing SEM 28904 Ca,Co, Cr,0, itfianas x e 9in aziiunldinglinsansd
o & | a A o . ) =a v o o .
snenuzduukuuazlinInszansvessafidnsnulugig 1-2 pm udnsifinanszanmudinwudungy
(3U7 3.9 a-f) :nn3 W TG-TDA 131l 3.10 13 Ca,Co, Cr,0, NYNINIUAININAA LUFAINTT
wWannudashningunpiidinii 1200 K dsuwnaunsaldisgmaritdniundseyndldnwas
wasluBiinrinangunnfigald udfigamnlgondt 1200 K sansngunaiunsgadsingn &
, a a a ao v v o . A &
Waziiannmadsuns J9uiseras gadvlanesninwe ca,Co,0, aztfuwdung Ca,Co,0,

Lﬁaqmﬂgﬁganiw 1200 K

7™ b) x = 0.03

;;fdﬁ 3.9 3udny SEM 2@4: W9 CazCo,,Cr,0q i a) x=0.01, b) x=0.03, ¢) x=0.05, d) x=0.07, e)
x=0.10, f) x=0.15

25



31]“7'; 3.10 3 TG-DTA 283W3 CayCo,, CrOq 1iia 0< x <0.2

snafunmIganauus i ug Iz usINANa 9L AUYBING CagC0s69Cro 106 UEAIIHARIIFLIN
3.11 Taquiganduuailugianusiaiugaanhilaaa Sdanuldidildnasengnnizduainizeau
o ° e o o o = A ' ' A
wasud luuauausaulldiunuai Aamiganfuusigigaadlutiininue1iniu 282-283 nm
(W38 4.4-4.3 eV) dnmiganauusiunInifsuliidugtasivununasnuunyliasslasaunis
2
QhV=E (hV-E) 1)
A o a £ A A [ A A A ' [
loy o feduisfndniganiuuas, hVAswasnulnaey, £ Aadain uaz £, Aatasinununaanu
JUENluzU7 3.11 UEAIAIBEINNINY E, VBIHI CagCo; 4sCro010p TIMMWITLIANNIIANIIAGAUNT X
. , E o a
Vo90NNTUBaINTIN 61 E, 28489 Ca,Co,,Cr,0p AnriutFanmmildy or lavaglugag 2.03-2.51 ev

té U Qs a aa s = { U =
Fygaanaainumsanelasmaia lWladivtw sidalasalnll Aldwauianuuaulszunm <2 eV
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511 3.11 UV-Visible absorption spectra of calcined Ca;Co;44Cr, 10O powder. The insert picture
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is an example calculated E of CazCo399Crg 10s.
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Thermoelectric Ca;CosOo powders were synthesized by a simple thermal hydro-decomposition method, which
is novel, simple and cost effective for preparing such materials. The stoichiometric ratio of the acetate salts
was mixed in de-ionized water and heated at 1073 K to obtain a single phase of Ca;Co040s, which was
confirmed by TG-DTA, XRD and chemical analysis. The electron micrograph showed plate-like particles
with a diameter of ~1 xm. The hot-pressed powders show the electrical resistivity of 11.6 mQcm, the Seebeck
coefficient of 200 £V/K, and the thermal conductivity of 1.2 Wm™'K™" at 880 K, which corresponds to a

dimensionless figure-of-merit Z7 of 0.23.

Keywords: Ca;Co40,, thermoelectric oxide, synthesis, figure-of-merit

1. INTRODUCTION

In recent years, thermoelectric oxides have attracted much
attention from a number of research groups due to the poten-
tial for thermoelectric power generation at high temperature.
Among various thermoelectric oxides, the misfit layered cal-
cium cobaltite (Ca;Co40) is a strong candidate due to its
high dimensionless figure-of-merit, close to unity in a single
crystal form.!"! The dimensionless figure-of-merit is defined
as ZT = S°T/px, where S, p, «;, T are the Seebeck coefficient,
the electrical resistivity, the thermal conductivity and abso-
lute temperature, respectively.

Although the single crystal Caz;CosOy shows excellent
thermoelectric properties, it cannot be fabricated in a large
quantity for any real application. The polycrystalline phase
of Ca;Co040y can be produced in a large amount but such
polycrystals show a relatively low figure-of-merit.”! How-
ever, Linderoth ef al."! have recently synthesized the heavily
doped polycrystalline Ca;Co40Oy and reported the recorded
dimensionless figure-of-merit of 0.65, approaching the value
of single crystal. Moreover, they reported performance sta-
bility at 1200 K in normal atmosphere up to 280 h.”! This
opens up the potential for using the polycrystalline Ca;C0409
for practical applications.

A conventional method to prepare Ca;CosOy powder is a

*Corresponding author: psupree@kku.ac.th
©KIM and Springer

solid state reaction starting from a mixture of calcium car-
bonate and cobalt oxide.”” The starting materials need to go
through several hours of mixing with intermediate grinding,
followed by a heating process at high temperature for more
than 20 h.™ Several tens of hours of mixing and high tem-
perature result in a high cost for the process. Alternatively,
sol-gel routes have been employed to synthesize the com-
pound.”*! In this process, the starting metallic salts were dis-
solved thoroughly in an acid. With continual stirring, an
appropriate polymer was added into the solution and then
heated up to obtain a gel. The gel was further heated to
obtain a powder precursor which was subsequently calcined
at high temperature for a few hours to obtain powder.
Although the calcined time of the sol-gel method is greatly
reduced, the process is relatively more complex; and several
parameters need to be controlled precisely and chronologi-
cally. On the other hand, the simple chemical solution
method has been derived for depositing Ca;Co4O, films onto
Si substrates.”” However, this method cannot be expanded
for fabricating bulk samples.

In this letter, we report a simple and cost effective method
to synthesize Ca;Co40y powders by thermal hydro-decom-
position, which was successfully employed for synthesizing
another oxide material."” We have shown a great reduction
in time, cost and complexity; plus, the prices of the starting
materials are comparable to the starting materials for the
other mentioned methods. To the best of our knowledge,
there have been no reports on this synthesis method for the
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Ca;C040y powders. The synthesized compound exhibits a
single phase of Ca;C040, and possesses a relatively large ZT
of 0.23 at 880 K.

2. EXPERIMENTAL

The Ca;Co040, samples were prepared by a simple thermal
hydro-decomposition method starting with the acetate salts
of calcium and cobalt. The acetate salts in stoichiometric
ratio were dissolved in de-ionized (DI) water with a ratio of
5:1 (volume/weight) of the DI water to the total acetate salts.
The mixed solution was stirred for 10 min at room tempera-
ture. After being completely dissolved, the solution was
heated up to high temperature with a heating rate of 5 K/min
and held at that temperature for 4 h in a furnace under nor-
mal atmosphere. To understand the decomposition process,
thermogravimetry (TG) and differential thermal analysis
(DTA) of the dried solution was carried out from room tem-
perature to 1273 K. To study the effect of synthesis tempera-
ture, the solutions were calcined at different temperature
ranging from 873-1173 K. The phase and the crystal struc-
ture of the synthesized powders was characterized by X-ray
diffraction (XRD) using an X-ray diffractometer with Cu K&
radiation (Phillips, PW3020). The morphology of the sam-
ples was analyzed by a scanning electron microscope (SEM:
LEO, 1450VP) and a transmission electron microscope
(TEM: Technai G2-T20). The chemical composition was
determined using an energy dispersive X-ray (EDX) tech-
nique and confirmed with a proton induced x-ray emissision
(PIXE) using a 2.0 MeV proton beam. For thermoelectric
measurement, the Ca;CosOy powder was ground and hot-
pressed at 1163 K for 2 h using a pressure of ~90 MPa to
form pellets with the density >90% of the theoretical density.
The resistivity and the Seebeck coefficient were measured
by ZEM-2 (Ulvac-Riko) in a temperature range of 300-900 K.
Thermal conductivity was determined from the thermal dif-
fusivity and the specific heat capacity measured by a laser
flash technique. The density of the sample was measured
using the Archimedes method.

3. RESULTS AND DISCUSSION

Fig. 1 shows the results of TG/DTA analysis of the dried
mixture. A small weight loss between 323-473 K is assigned
to the thermal dehydration of Ca and Co acetate hydrates. '
The first significant weight loss of 25% corresponding to the
largest exothermic peak at 627 K, and the second weight loss
of 12% corresponding to the second largest exothermic peak
at 637 K, are attributed to the decomposition of organic com-
pounds to form CaCO; and CosO,, respectively.”®! Another
weight loss of 9% with respect to an endothermic peak at
944 K is associated with the reaction of CaCO; and Co30; to
form the Ca;Co40, phase.""! The plateau in the TG curve

Fig. 1. TG-DTA curves of the dried mixture of raw materials.

Fig. 2. Powder XRD patterns of Ca;CosO powders at different cal-
cined temperatures.

clearly observed at the temperature over 973 K also confirms
the formation of the Ca;Co40O, single phase, which is in good
agreement with the XRD pattern in Fig. 2. Above 1199 K,
another small weight loss is observed which is probably due
to a transformation of the Ca;C0,0y to the Ca;C0,0; phase.!'”

The XRD patterns of the powders calcined at temperatures
between 873 to 1173 K for 4 h are shown in Fig. 2. It can be
clearly seen that most phases after calcining at 873 K are
CaCOs and Co;0,. Increasing the calcined temperature to
973 K, the Ca;Co040, phase starts to form but the second
phases of CaCO; and Co;0O; still remain. At 1073 K, the
reaction of CaCO; and Co;0;, has been completed, and only
the single phase Ca;Co40s is found at this calcined tempera-
ture, for which the XRD pattern is matched with the standard
JCPDS card (21-139), and the peaks can be identified
according to Masset et al..""*! In addition, the composition of
the samples measured by the EDX as well as the PIXE tech-

Electron. Mater. Lett. Vol. 0, No. 0 (0000)
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Fig. 3. SEM micrographs of (a) the calcined Ca;Cos0, powder, and (b) the fracture surface of the hot-pressed Ca;Co40y ceramic, (c) TEM micro-
graph of the calcined Ca;Co40 powder, and (d) the high resolution TEM image in [100] direction showing alternative layers of the CaO-CoO-

CaO rocksalt (RS) layers and the CoO, layers.

niques show the atomic ratio of Ca:Co as 3:4, with a slight
variation of the oxygen content, confirming the formation of
the Ca;CosOy crystals. When the calcined temperature
reaches 1173 K, despite the Ca;Co4O9 majority phase, a trace
of the transformation to the Ca;Co,Os phase can be
observed."”!

The morphology of the Ca;Co409 powder is shown in the
SEM image in Fig. 3(a). The powders have a plate-like
shape with a diameter of an order of ~1.0 xm, and are highly
agglomerated. The TEM image in Fig. 3(c) also shows the
agglomeration and the observed particles are a stack of sev-
eral plate-like crystals. The previous reports on Ca;Co409
powder synthesis by the sol-gel method did not observe
plate-like particles, but obtained unspecific shape particles.*'"
Neither did the conventional solid state reaction produce
such shapes.""! The plate-like particles along the ab plane are
well known to enhance the anisotropic thermoelectric prop-
erties. Thus, the large thermoelectric figure-of-merit obtained
in the present work may be attributed to the anisotropic par-
ticles. The high resolution TEM image in Fig. 3(d) shows the
lattice fringes in the [100] direction. The arrows indicate the
alternative stacking of the CaO-CoO-CaO rocksalt (RS) lay-
ers and the CoO; layers. The lattice constant along the c-axis
was measured to be 10.8 A, which is in good agreement with
the literature.!"” The SEM image of the hot-pressed sample
is shown in Fig. 3(b). Although the powders are loosely
packed in a random orientation, the bulk sample is very
dense and shows some grain alignments in the pressed direc-
tion (arrow).

The thermoelectric properties of the hot-pressed Ca;C040q

Fig. 4. Temperature dependence of thermoelectric properties of
Ca;C040y ceramics: (a) Seebeck coefficient and resistivity and (b)
thermal conductivity and dimensionless figure-of-merit.

Electron. Mater. Lett. Vol. 0, No. 0 (0000)
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ceramics are illustrated in Fig. 4. The electrical resistivity
shows a reduction with increasing temperature which sug-
gests a semiconductor-like behaviour. Similar to a previous
report,"'® the electrical conduction mechanism is likely to be
due to polaron hopping, and by plotting between In(o7) and
1/T, the activation energy was calculated to be 0.103 eV
above 570 K. The Seebeck coefficient at room temperature
was found to be ~217 ©V/K. As the temperature increases,
the Seebeck coefficient shows a drop with a minimum of
~180 4V/K at 570 K but rises again with a value of nearly
200 ©V/K at 880 K. The thermal conductivity does not
change significantly throughout the measurement tempera-
ture range. The measured values are constant at ~1.2 Wm 'K’
which is relatively low in comparison to the previous report
on such materials.*>'” The temperature invariance may be
attributed to defects in the samples, such as vacancies, pores,
or grain boundaries. When combining the thermoelectric
properties, the ZT is plotted in Fig. 4(b). The highest ZT was
found to be 0.23 at 880 K, which is so far the highest ZT for
the non-doped Ca;Co40s at the same temperature in compar-
ison to other reports.*>'”

4. CONCLUSIONS

We have exploited the thermal hydro-decomposition
method to prepare the single phase of Ca;CosOy powders
which were verified by TG-DTA, XRD and chemical analy-
sis techniques. The powder shapes are mostly plate-like, and
when forming a pellet, the plate-like grains were aligned
along the compaction direction. The semiconductor-like
behaviour of the Ca;Co40, ceramics was observed from the
electrical resistivity measurement with Seebeck coefficients
between 170-220 xV/K. With a relatively constant thermal
conductivity of ~1.2 Wm 'K ™', the ZT was calculated to have
a maximum of 0.23 at the temperature of 880 K, which is the
highest ZT for the non-doped Ca;Co40y at the same temper-
ature. With the doping effect explained by Linderoth,”! our
method is thus a promising method for the synthesis of
doped-Ca;Co4O powders for higher thermoelectric perform-
ance.
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Abstract The thermoelectric properties of the CazCoy
Oy, s and the transition metals-doped CazCos;gM(,0094 s
(where M = Cr, Fe, Ni, Cu and Zn) ceramics were
reported. Ca3Co40y, 5 single phase was checked by using
X-ray diffraction analysis performed for the Caz;Cosg.
My,0O9, s samples. The scanning electron micrographs
showed some degrees of grains alignment in the compacted
direction. The resistivity of the samples measured from 100
up to 700 °C varies in magnitude for different transition
metals substitution. The variation of resistivity was
explained by a change of carrier concentration induced by
the doped ions. The thermopower increased with increasing
temperature but showed no obvious change for any tran-
sition metals doping. The thermal conductivities changed
for the doped samples but were relatively independent of
temperature. The ZT was calculated to be the highest for
the Fe substitution for the whole measurement temperature
with the maximum value of 0.12 at 700 °C.

1 Introduction

Thermoelectric modules have a potential for generating
power from any source of waste heat. A module consists of
a number of interconnecting n-type and p-type thermo-
electric materials to produce output power. A good
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thermoelectric material must be a good electrical conduc-
tor, a good thermal insulator and must have a high ther-
mopower, since the energy conversion efficiency of any
particular material is defined by its dimensionless figure-
of-merit, ZT = SZT/ px, where S is the Seebeck coefficient,
p the electrical resistivity and x the thermal conductivity.
For any real practical use in power generator, the ZT should
be higher than 1 [1].

Thermoelectric materials are conventionally made of
metallic compounds such as Bi,Te; or PbTe [1], due to
their good efficiency at room temperature. However, such
compounds are not reliable and chemically instable at high
temperature. In general, oxides materials are chemically
stable at high temperature and, thus, can be used at the
temperature of several hundred °C [2]. Ca;C0409, s is one
of the potential candidates for thermoelectric applications
due to its interesting ZT close to 1 in a form of single
crystals [3] or thin films [4]. Such performances are
believed to be a result of Ca3;Co409, s crystallographic
structure, consisting of two misfit layers: the CaO-CoO-
CaO rocksalt-type layer and the Cdl,-type CoO, layer [5].
Ca3Co409_ 5 polycrystals, on the other hand, still exhibits
lower performances, with ZT' < 0.3 [6—10]. This has to be
improved before it can be implemented for any real
applications.

One way to improve the thermoelectric properties of the
polycrystalline Ca3zCo40y¢, 5 is to partially substitute some
elements into CazCo4Og s in order to reduce the electrical
resistivity and the thermal conductivity, and to improve the
thermopower simultaneously. The substitution can take
place either at the Ca-site or at the Co-site. There have been
a number of reports on partially substituted elements at
Ca-site, for instance, Na [11-14], Y [8], Ag [15-18], Bi
[12, 19], Ba [18], Nd [14], Gd [20], Yb [21], and other rare
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earth elements [22-24]. The effect of partial substitution at
the Ca-site is mainly to change the charge carrier con-
centration which results in a change in resistivity. How-
ever, elemental doping at the Co-site may have more
influential effect on thermoelectric properties since the
charge carrier transport of Ca3;Co40y, s is restricted mostly
to the CdI,-type CoO, layer [25], and also the Fermi level
lies at the top of the valence band of the CoO, [26]. There
have been a few experimental studies on partial substitu-
tion at the Co-site [6, 9, 24, 27-32], but very few studies
reported a complete set of thermoelectric properties
(resistivity, thermopower, and thermal conductivity) and
the figure-of-merit at high temperature [9, 24, 30]. Thus, in
this paper, following our previous work on synthesis,
mechanical and magnetic properties [33], we focused on
the thermoelectric properties of Ca;CosxMxOg s (Where
M is Cr, Fe, Ni, Zn, and Cu). The concentration of the
doped transition metals was maintained at x = 0.2 to study
the effect of different elemental substitution on the ther-
moelectric properties. The effects of the partial substituted
transition metals on the resistivity, thermopower and
thermal conductivity were discussed.

2 Experimental details

Nitrate salts of calcium, cobalt, chromium, iron, nickel, and
zinc, and the CuO powders were used as a starting mate-
rials in the sol-gel synthesis of the Ca3;Co404, 5 (CCO349)
and Ca3Co;z gM( 209, 5 (CCO-M) powders, where M = Cr,
Fe, Ni, Cu, Zn. The starting batch were mixed in the
stoichiometric ratio and dissolved in the citric acid solu-
tion. Polyvinyl alcohol (PVA) was added as a dispersant
agent. The solution were then heated at 80-100 °C and
subsequently calcined at 800 °C for 4 h in air to obtain
powders. The powders were ground, uniaxially compacted
at 400 MPa to form pellets and then sintered at 890 °C for
4 h in air. The sample densities were about 70-80% of the
theoretical density. The pore volume fraction of the
undoped sample was 31.2% while those of the samples
doped with Cr, Fe, Ni, Cu, Zn were 26.5, 24.6, 25.9, 19.7
and 26.5%, respectively.

The bulk samples were investigated using the X-ray
diffraction (XRD) analysis to verify the phase identifica-
tion by using the XRD diffractometer with Cu-Ko radia-
tion. Morphology of the samples was characterized using a
scanning electron microscope (SEM). The powder samples
were investigated under an ultraviolet—visible (UV—-Vis)
spectroscopy to obtain the absorption spectrum. For ther-
moelectric properties, the Seebeck coefficient and the
electrical resistivity were simultaneously measured per-
pendicular to the pressed direction by using ZEM-2, Ulvac-
Riko from 100 to 700 °C. The seebeck coefficient was

calculated from the measured voltage difference in the
temperature gradient while the electrical resistivity was
measured by a DC 4 terminal method using Ni electrodes.
The thermal conductivity was calculated from the specific
heat capacity and the diffusivity measured parallel to the
pressed direction using a laser flash method (TC-7000,
Ulvac-Riko) from 100 to 700 °C.

3 Results and discussions

The XRD patterns of the CCO349 and all CCO-M samples
can be matched with the standard JCPDS card (21-139) of
CagCo1,0,5, without any visible peak of a secondary
phase, indicating that the single phase of the transition
metals-doped CCO-M was formed. The intensities of the
(00l) peaks for the bulk samples are much stronger com-
pared with the other (hkl) peaks, indicating some grain
alignments along the (00/) plane of the CCO349 and
CCO-M npellets.

The cross-section SEM images of the sintered CC0O349
and CCO-M samples are shown in Fig. 1. The grain size
for all cases can be estimated to be in the range of 1-5 pm.
It can be seen from Fig. 1 that sheet-like or plate-like
grains are observed in every sample. This suggested some
grain alignments along the (00/) plane, as reported for the
case of the textured CCO349 [34, 35]. The observation is in
agreement with the XRD result for the high intensity of the
(00)) planes. However, as compared to the SEM images of
the recently published paper [36], our samples show a
much lower degree of texture. The stronger texture in the
present samples can be induced by utilizing other sintering
conditions, such as hot-pressing [9, 36], spark plasma
sintering [37] or thermoforging [34], for an improvement
of the thermoelectric properties of CCO349.

The electrical resistivity of the samples is shown in
Fig. 2. The resistivity of every sample does not vary sig-
nificantly throughout the measurement temperature range.
The lowest electrical resistivity belongs to the CCO-Cu
with p ~ 10 mQ cm throughout the measured tempera-
ture. From 200 to 400 °C, every sample show a semicon-
ductor type characteristic (a decrease in resistivity with
temperature), for which the charge transport process is the
hopping of a hole from Co** to Co®" in these compounds
[37]. On the other hand, over 400 °C all samples, except
CCO-Cr, exhibit a slight increase in resistivity with tem-
perature, suggesting metal type behaviour; the charge
carriers are transported in the valence or conduction band.
It is well known that CCO349 is highly anisotropic with a
metallic-like behavior in the a-b plane and a semicon-
ducting behavior along the c-axis [5]. Therefore, the
observed resistivity curves in Fig. 2 may be contributed
from the mixture of these two types of behavior in different
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Fig. 1 SEM micrographs of the sintered samples of a CCO349, b CCO-Cr, ¢ CCO-Fe, d CCO-Ni, e CCO—Cu, f CCO-Zn

proportion. The general equation for electrical conductivity
(o) of two carrier types is

g = e(p,p + yn) (1)

where e is the charge of an electron, p the hole
concentration, f, the mobility of hole, n the electron
concentration, and p,, the mobility of electron. It was found
from the Hall measurement that the hole -carrier
concentration in the polycrystalline doped CCO349
system is in the range of 24 x 10%° cm ™3 [9, 24, 29],
and the mobility of hole is ~ 1.0 cm?/Vs [24]. Putting in
these values into Eq. 1, the electrical conductivity from the
hole conduction is approximately 30-60 S/cm, which is in
the same order of magnitude with the present measurement.
Thus, it can be concluded that the majority carrier is
hole and the Eq. 1 can be simplified to a single charge
carrier as

@ Springer

0 = ep,p (2)

Compared to the previous results on the single crystal
CCO349, the measured resistivity in the present work is
about an order of magnitude larger than the single crystal
CCO349 [3]. An increase in the resistivity is partly due to a
relatively large amount of porosities as seen in the SEM
images. However, if we use a simplified Landauer model
for the electrical conductivity analysis by assuming zero
conductivity of pores, the conductivity of the solid phase
can be calculated according to the equation [38]

S— (3Vf2‘ 1) (3)

where ¢,,, 6, and V; are the measured conductivity, the
conductivity of the solid phase, and the volume fraction
of the solid phase, respectively. From this model, the
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Fig. 2 Temperature dependence of resistivity for CCO349 and
CCO-M

resistivity of the CCO phase alone would be roughly
halved, which still does not account for an order of mag-
nitude difference with the single crystal. The effect of grain
boundaries need to be included since they can scatter
charge carrier effectively causing higher resistivity. In
addition, Prevel et al. [34] showed that the highly textured
polycrystal exhibits much lower resistance (approaching
the value for single crystal) than the randomly oriented
CCO349. The present samples do not show high degree of
texture and that will contribute to a larger electrical
resistance.

Substitution of the transition metals for Co does change
the magnitude of the resistivity for a maximum of three-
fold. Partially replacing Co with Fe or Cu reduces the
resistivity whereas Cr, Ni and Zn doping results in a higher
resistivity. The possible explanations for the observation
are as follows. As mentioned prior that the major charge
carrier of CCO349 was hole, and assuming the mobility of
the carrier does not change significantly by doping, the
conductivity is directly proportional to the carrier con-
centration. Previous studies have shown that the ionic state
of the Co ions in the CC0O349 structure can be +2, +3 and
+4, with the average valence between 43 and +4 [5, 27,
29]. The usual valence states of Fe and Cu ions are Fe**/
Fe** and Cu2+, respectively [10, 39], which have the lower
charge than the average of Co ions. Therefore, partially
replacing Co ions with Fe or Cu ions increases the hole
concentration, and results in a reduction of the resistivity.
The lower resistivity of Cu-doping compared to Fe-doping
was accounted for the higher concentration of hole doping.
On the other hand, doping Cr at the Co site, increases the
resistivity. Consider the common valence state of Cr ion, it
can be +2, +3, and +4 [39]. If it is Cr*" or Cr’" substi-
tuted for Co ions, it should result in a decrease in the

resistivity in the similar manner as in the case for Fe or Cu
substitution. The opposite effect was observed, hence, we
are inclined to believe that Cr** should be dominant, which
would result in a reduction in hole concentration, and
higher resistivity. The effect for Zn or Ni substitution on
the change in resistivity is more complicated to be
explained. In the case of Zn, the only allowed valence state
is Zn>* [39, 40]. Then, Zn doping should enhance the hole
concentration of the system and result in the lower resis-
tivity. The contrary was observed and can be explained if
we look at the location of the Co-site for the Zn substitu-
tion. It is well known that there are two Co-sites in the
CCO349 structure: the Cdl,-type layer [CoO,], and the
rocksalt-like structure [Ca,CoOs3] [5]. The Co cation in
the CoO, layers are the mixture of Co*" and Co*" and
their ionic radii in six-coordination are 0.545 and 0.53 A,
respectively, whereas the Co cation in the rocksalt structure
is Co®* with the ionic radius in six-coordination of 0.745 A
[24]. The six-coordinated ionic radius of Zn>* is 0.74 A
[39] closer to Co”* than Co>/Co*". It is, thus, more likely
that Zn was substituted at the Co-site in the rocksalt
structure. The theoretical study [26] and the recent exper-
imental works [10, 25] showed that the conducting carrier
is a contribution from the CoO, layer. Therefore, the Zn
ions substituted in the rocksalt structure probably do not
disturb the carrier concentration of the system. The sub-
stitution might instead increase scattering sites and result in
a larger resistivity as previously reported [21]. Lastly, for
the case of Ni doping, the usual valence state of Ni are 42
and +3, with the ionic radii in six-coordination of 0.69 and
0.56 [39]. Ni** ions, thus, have the tendency to stay at Co-
site in the CoO, due to the same ionic size. If that is the
case, from the above argument we would expect a reduc-
tion in resistivity due to hole doping. On the other hand, if
Ni%* is the substitutional cation, the effect of the mismatch
of the ionic radii would affect the crystal distortion, pro-
duce more scattering sites and result in the larger resis-
tivity, as observed in the present work and similar to the
previous report [31].

The plot of the Seebeck coefficient (S) versus the tem-
perature is shown in Fig. 3. The thermopower of every
sample increases with the measured temperature. The
thermopower is at maximum at 700 °C for all samples with
S in the range of 170-200 uV/K. The values observed in
the present work are in the same order as the previous
studies on other doping at the Co-site for the similar tem-
perature range [9, 21, 24, 31]. The Seebeck coefficients in
Fig. 3 appear to be independent of different transition
metals doping. This point is different from previous studies
where they showed a dependence of the S on elemental
substitution [8, 10, 12-14, 17, 18, 20, 22, 24, 26, 30, 41].
However, the previous studies did not show any consis-
tency of the S dependence and different methods were used
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Fig. 3 Temperature dependence of Seebeck coefficient for CCO349
and CCO-M

to interpret different results. The first way is to use the
model based on the modified Heikes formula [17, 18, 20,
22, 26, 41]

KB 83 X
S=——{(In= 4
e ( g4l —x> @
where g3 and g, are the number of configuration of the
Co>* and Co™* ions, respectively, and x the concentration

of Co** ions. With the low spin state of Co>* (tgg) and

Co** (tgg) [27, 28], yielding g5 = 1 and g, = 6, and the

thermopower depends on the fraction of Co*". On the other

hand, some papers chose to explain their results on the

basis of the Mott formula [8, 10, 12-14, 24, 30]

g Ce k3T {6 In u(?)]
E=¢EF

(5)

n 3e Oe

where ¢, and u(e) are electronic specific heat and energy
correlated carrier mobility, respectively. If S increases with
decreasing n, it was usually interpreted as the predomi-
nance of the first term in Eq. 3. If the opposite effect was
found, the second term, which is closely related to the
electronic structure, was responsible for the dependence of
S. The equations above assume that the change in the
thermopower is a result of significant modification in the
electronic structure of the CCO349, particularly at near
the Fermi level. However, in our case, there is no obvious
change in the thermopower with different elemental dop-
ing. We can infer that the electronic structure near the
Fermi level was not disturbed significantly. The UV-Vis
absorption spectrums shown in Fig. 4 also provide the
evidence of our inference. The absorption peaks of every
sample are at the same wavelength of ~284 nm. The peak
widths are very similar though the peak intensity may vary
slightly. The similarity of the UV—-Vis absorption spectrum

@ Springer

Fig. 4 UV-Vis absorption spectrum for CCO349 and CCO-M

Fig. 5 Temperature dependence of power factor for CCO349 and
CCoO-M

implies that the electronic structure near the Fermi level of
all samples is not significantly different.

Combining the electrical resistivity and the Seebeck
coefficient, one can calculate the power factor (S?/p) as
shown in Fig. 5. Due to the insignificant variation of the
resistivity with temperature, the power factor, thus, follows
the same trend of the thermopower. The highest power
factor belongs to CCO-Cu for the whole measurement
temperature, and has the maximum value of ~2.4 x 10~
W/mK? at 700 °C.

The measured thermal conductivities are shown in
Fig. 6. Increasing temperature does not show much influ-
ential effect on the thermal conductivity. The undoped
CCO349 has the thermal conductivity of ~2.5 W/m/K for
most measurement temperature, which is the same order of
magnitude as the published data [8, 30]. In general, the
total thermal conductivity (x) is a result from two
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Fig. 6 Temperature dependence of thermal conductivity for CCO349
and CCO-M

contributions: the lattice thermal conductivity (x;) and the
electronic thermal conductivity (k,.)according to the
equation

K=K + K, (6)

From the Wiedemann—Franz’s law, k., is related to the
electrical conductivity by the equation

K, = LoT (7)

where L is Lorenz factor, 2.44 x 1078 WQK 2.
Temperature dependence k, of CCO349 is also plotted in
Fig. 6. The magnitudes of k, for other samples are nearly
the same. It can be seen obviously from Fig. 6 that the
electronic thermal conductivity does not have much
influence on the total conductivity, and the main
contribution must come from the lattice vibration.
Usually, by substituting other elements to a lattice causes
a distortion which would lead to a larger phonon scattering,
i.e. smaller x;. The result in Fig. 6 will be more pronounced
if we consider the effect of porosity and use the simplified
Maxwell-Eucken model to calculate thermal conductivity
of the solid phase (by assuming zero thermal conductivity
of pores) according to the equation [42]

" '“‘(11+ V32> ®
where k,,, k; and V, are the measured thermal conductiv-
ity, the thermal conductivity of the solid phase, and the
pore volume fraction, respectively. Putting the pore volume
fraction in this model, the thermal conductivities of the
solid phase in all doped samples are lower than the
undoped one. This, hence, supports the idea of lattice
distortion by substituting other elements. However,
porosity cannot explain the difference in thermal conduc-
tivity for the doped samples since there is no correlation

between thermal conductivity and pore volume fractions.
Other effects such as texture or defects should be consid-
ered. From Fig. 6 it can be seen that doping Cu and Zn
raised the thermal conductivity but doping Cr, Fe and Ni
showed a decrease. The SEM micrographs in Fig. 1 show
that the grain shape for CCO—Cr and CCO-Fe is less plate-
like (lower texture) compared to other samples. It was
found that a larger number of plate-like grains (higher
texture) exhibit higher thermal conductivity than the ran-
dom shape grains [43]; thus, the reduced thermal conduc-
tivity in CCO-Cr and CCO-Fe is possibly contributed from
the texture effect. In addition, the thermal conductivity of
every sample shows nearly a temperature independent
behaviour. The absence of a decrease in thermal conduc-
tivity with temperature implies that lattice disorder
(defects) has a strong effect compared to phonon—phonon
interactions; and thus the defects in samples may be the
main contribution to the difference in thermal conductivity
of the doped samples.

Figure 7 shows the temperature dependence of the
dimensionless figure-of-merit Z7. Although the power
factor was the highest for CCO-Cu, its large thermal
conductivity contributed to the reduction in Z7, according
to ZT = S2T/ px. On the other hand, CCO-Fe showed a
combination of the relatively high power factor and the low
thermal conductivity, resulting in the highest ZT for the
whole temperature range for the CCO-M series. The ZT of
CCO-Fe at 700 °C is ~0.12 which is approximately 70%
higher than the CCO349 at the same temperature. It may be
noted that the ZT in the present work is lower than some
reported data [9, 24, 30], but the sintering methods were
different. Most papers reported on the hot-press or the
spark plasma sintering methods used to obtain a very dense
sample [8, 9]. Thus, by optimizing the sintering methods,
the ZT in the present work can be larger.

Fig. 7 Temperature dependence of ZT for CCO349 and CCO-M
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4 Conclusions

The CazCo409,s and the transition metals-doped
Ca3Co;z §M( 209 s series (where M = Cr, Fe, Ni, Cu and
Zn) were successfully synthesized by using a sol-gel
method using PVA as a dispersing agent. Some grains
alignment along the c-axis was observed from the SEM
images, as a result of the uniaxial pressure. Doping tran-
sition metals at the Co-site showed an interesting effect on
the resistivity, which was explained by the charge and
radius of the doped ions. The thermopower, on the other
hand, showed no obvious change with doping. This might
suggest no significant change of the electronic structure as
can be seen from the similar position of the UV-Vis
absorption peaks. Partial substitution also played an
important role in a change in the thermal conductivities.
The sample with partial Fe substitution showed the highest
ZT of 0.12 at 700 °C, and can be improved by optimizing
the sintering method.
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' L yy s o A & 5 g
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A [

[y S A { @ %
nueenvasilymiiinemsmiiag laueadeen luadaouiil Inssadrelndifsadu 491uil 2003  Shikano

a

uag Funahashi Td5180uTaquaaidenTavea lnd (Ca,Co,0,, CCO) naasar ZT figai 0.87 Ngmmgil
973 1Aa3U (Shikano and Funahashi, 2003) Hdszansnmindifeanuiag Nco  ua bififlynuiosnn
a A = = A Aa o Y Y 2 vy wa =5
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VA o & o v 1w !
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(phonon scattering) ANANNITN (1)

1
Kk=—Cvl (1
3

3
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o w o o A & < Ay 4 o~ P
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- o 2 ; o w 4 { Y 19 o " 2
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U

A99%U (Koumoto et al., 2006)

Y v Y 1
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cco wasugdanuaniaer lihilunyndn a1 Z7 ndvaaasvaroin Tasa1 ZT d1msnidg

a

S

FA '
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A A = =~
N3ITIAINdUNUNUA DL BYN
T T T e 4 . - d
M35 aUY tounui Ca uaIuludag cco wnjesiiga Tasluriwsng Imsunui Ca
' v &£ S A A A + A D] ' 2+ = 9 =~
V1AIUAIY Na (Xu et al. 2002) Fawanfe O laraaauilenin Na' filszyiesni ca® szuuisdosd
E4 1 ' 4 ' E4 Y 4
s Tganindu ez iz lihauga b Wi 18830 dau S Taunudiu 198l Xu et al.
Y g 4 4 dyyw . A A F A Z
(2002) oMo TuKamININMINaNIWAdoUN 1A (mobility, ) VOIMMTAWNUTY uAAT K ALY
= 1 1 4 2 4 1 I o @
aows1z lopouves Na Hwiawind ca” A ZT gagaiiniuein 0.12 e luimerilu 0.18 dmsy
Ca, Na, .Co,0, Ngangil 1000 1AA3Y UBNIINMIAN Nafiesediufen aimade Ndwd lumud
Ca @70 figasmaniifie Ca,, Nd Na Co,0, (Pei et al, 2008) Hafl ldfio Nd™ Mlianududuminzana

= A & S0 q ¥y A L 9
p IUNVUU L!Glﬂ'ﬂﬂﬂ’i S INNAUAIY VINNDULLT NANFNNITUBE Mott (Rowe, 2006)

G 7k, [c?ln,u(g)j
n e & o=t

2
Tao n,u(e),c, ki anududuvoanive, anmmandeui ldveanme duius iy

WA (energy correlated carrier mobility), ﬂ’JHJ%qﬂ’JHJ%}fJu{]’HWW wazAnanved Tuandunl aud ey

namsveade Nd' §9ild x fisnaaauiieanin Nd winnd ca™ shldlda ZT geganiinu 0.28 0

1100 983U 11i) 2007 Prevel tazAaiy 51891UINT1D CCO NEWWUN Ca A20519 Tanz 1810 (rare carth,

4 g 1 A ) Yy A d?

RE) 288031991 11a Ca, (RE),.Co,0, 1A8 RE A0 Pr, Nd, Eu, Dy tiag Nb 9z 1nia p iindumse

o 13 o J A -4 % a

Snunmzlulassadnanas uanin o S uvudie Feosu1e ldanaunisves Mott (Prevel et al.,

2007) Wang tagaag lastsnumandien fulagmsidiosiglanemieinid iy Ca uapSuraiu@Ay

A A d? ' 1 Y 9 =} 1 = 12 1% @ Jou v A

msh S wdiu 019 lilswavesanududummzifisssdraufen ualinnuduiusnusai looouveesig

nden 1dde ez liimal¥anunivewnundsunazglsives pos wlaesu'ly (Wang et al.,

2010c) Nong tagame lakimImseniag CCO uaziios1alangyien fie Dy, Er, Ho Uag Lu unuil Ca

v Fd [ '
V19dI (Nong et al., 2011) uaz ldauiia TE NaUu Taslin1 ZT geia 0.35 oo Lu NoasiaiuTua
~ us/’ dy ~ J I J ~ -4 a [
Ca,Lu,,Co,0, (317 3) siimsildar ZT guiluwaniainar S figeiu Nong nazamz afunenm S

4
YUNUGATVOL Heikes

S——Fnp & ¥ 3)
e \g,1-x

A o

[ { ' @ [ @ ad
Tas  g,uazg, Aot INENYUZALANAINAUYEINITIAISEIAIVDIBIANATOU (number  of
configuration) Y84 Co” 11z Co' taz x AodAadIuved Co' NAWHMUIVDY Co WBUNUN Ca™ A28 Lu”"
szupdeeildszy iheglunnzauga dniudsdeaniudiuau co™ naznnaumsi 3) e lia S

A A a 3+ A = A o A aw .
qwumaﬂimm Lu 4u1nYU (Nong et al. 2011) fﬂiﬁlﬂ‘ﬁ1@liaﬂ$ﬂ1ﬂ1ﬂ8\ﬁ\lﬂu?ﬂﬂﬂlﬂ\1 Liu tagnue
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'
=

Y o A . Awv & o A Ay Y
#q'1d1mm3ve Gd (Liu et al., 2008) (ALIT1UIVYUDY Xu LALAUL FININITLD Yb (Xu et al. 2010a) wahn 1
Aomssulqeauia TE uaz'ldn1 gadie 0.25 §1%5D Ca, Gd,,Co,0, 182 0.17 @115 Ca, Yb,,Co,0,

- 4 H & ya o 4 4
UBAMTIDINNNANVININUAT Urata Hazaaz 1ae0 Bi i CCO uazmmiﬂizﬂaﬂmaa TE ioragu

k4
anudoudumasa Wi (Urata et al, 2007) Tugailszneulildrs  Ca, Bi, Co,0, Wudai nazil

Vv
1,0, Wudndudagiii 4 Tugagunsandandaa T ldanusdndgaga 1.0 Thad nag 14

CaMn,, Mo,

0.98

=t

Aasliihgegn 017 Jad igungil 1273 1na3u

E)

3UN 3 nsmlszndng ZT Auguvgil ved Ca, Ln Co,0, (Nong etal., 2011)

& o
0, Wutudu

Y /s ad o o4 ) . & &
31 4 Tugames Tudannsndnilsznou ldaeca, Bi, ,Co,0, 1luvai nazil CaMn, , Mo, ,0,

U

(Urata et al., 2007)

A A AI ¢
nMIRdTIAINAUNUNIADOAN
Tunguiaesnemsiosigous ounui Co unaimluiag cco sghgmimmmuidiulng
9 1 a o d' d' = v A Y A [ a v 1 dyd
launTangnsmddudus esnnivmavessal losoulndfesiu viuitensnlunquilie niuves Yao

wazAYE N1AINTIID Ni, Fe, Mn 1Az Cu U Co LAY (Yao et al,, 2005) tio1msiaauiia TE wun
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maasunlas puas S fuurTduldRemaRoatu narnfedmiunsise Ni, Fe oz Mn W puaz S
ﬁﬁnﬁ'wﬁuﬁa@: uddmIuMIEe Cu o uaz S fidanas Wang nazamz Taiinisnaassndion fuuaz
oFnorasina 13 dmsumsisede Fe uaz Mn leouvesTanzdhlumudi Co Tuduves Coo,
msrzdaiivelevoulndifeaiy uddmsunsdiveansifedny culooeuves cudhlumudi co ud
Ca,CoO, (Wang et al., 2010a) ToUANA19YDIIIUYBY (Yao et al. 2005); (Wang et al., 2010a) Ao NTHVDINS
30 Fe Wang nazamz wuilosauvea Fe oglugil Fe™ uio Fe'” dathlazquantosniives Co fioglugl
Co™ wip Co* Suiniiderte Fe Anmiduduveslaasziidunni duwalil p fsanas s S daimgaiu
milowdn eaninlosouves Fe i Tassad1edidnnseinduazdndinfiaanew (reduced chemical
potential, ) alasulluazaanal S wasulawaums
ky | (r+5/2)F. +3/2(c,)

g="8 _
e | (F432)F +1/2(c, )| " @

a J a a a o Ia
Tao 7 uaz E ADMITNADT MINTLIA (scattering parameter) 401 punniaesl (Fermi integral)

Y PN 4 2 2 ' ,
Wang Uagaue 91891 4NN S’t']ﬁ]aﬂaQLﬁfNi]1ﬂﬂ'lil,1/‘lllﬁu"llﬂQ‘W11’i$§l']11!1/l’f]11u5ﬂ"llﬂ\1ﬁllﬂ']§ﬁ 2) unn3

v
a

A adg a [ =} J o 4 wa
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v 4 v Y v 4 v
nau Ba'lniniu leeouwes Fedaldan xlda Z7T wivdiuniniaanliimeonatomi (Wang et al.,
4 i v
20102) WIFEFUAANIVBI Wang uazane udasn1 ZT ved CCO Nivadie Fe Noas1dIu Ca,Co, Fe, 0,
A A a A o & 1A A o o
fiAgadaion 0.4 1 1000 e (FUA smriudum Ngegad11sINYWANYD CCO (Wang ct al., 2010b)
' < Y (a a < 0o 9 ¥ wa \ o )
619 lsnawdlSunaves Fe mniiu 0.1 Tuanensh 1dauia TE ndaaldainsrearnuuea (Liu et al., 2006)
H . o W Yq Y a . A ¥
wennniu Liu uazamzdaldldmaia X-ray absorption spectroscopy (XAS) TGO RIGERAG ER N
ag A 4 ' < a o '
diannseilndiiiede Fe 1u CCO (Liu et al., 2007) wumsdemandn lisuades (<0.15 sasiaiu
o 1 ad Ao { [} @ .
Tua) sgshldanunuuniudianaseuves Co luoasiida 3d Haniuziligniuaes (unoccupied state)

1 o

Y T ad I o =} [l o A dg, £ g 1
anas uaazihldnnuruindianaseuves o luessiiaa 2p Taows lugndveeunniuduiudiu
dn i wanTeamiuiiu tazdwald 0 anas (Livetal, 2007) luanuIdvdnatiuimeouns Liv uag

o | Y= A ~ Y A £ gy Y o Ay A A Y
Ay 91AANYINTIID Mn UNUN Co ABmAin XAS ¥4 ldrnadenndoanunuiIdenideals Fe (Chen
etal, 2009) 1Tuil 2010 Xu nazamez 1d5109M@0TIR TE ¥09 CCO Ngnidodls Ti unuil Co UdIU WU
2/’ a d? A a3 . =} ' =2 o 1
M p ez S Umgeau iiesnnaudaanasouved Ti loeouiiuinnil Co 33 laaswiulea diu
A £ A A v v
aurgn S ey Xu tagauz 139ITuaMgINNMINANUTNTUIINEANAINNANNTUBY Mott (Xu
et al., 2010b) ¥BNA TarENTIUAFULAT Nong uazany 1A511M3199 Ga unuil Co veau i ldm p
2 4 2 4 a " °
anadaz S NUAU (Nong et al., 2010) M3ANTUYBYS Nong tazauy ofurenaimsihliihwes cco

4 9 9
Usznevldreaesdinfonndu Coo, nazdu Ca,Co0, AnuM S voa CCO Tansaiinegldnmanms
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g Fcmcoo, O oo,

Ca,CoO; S CoO,

O ca,co0, T Oco0, O ca,co0, T Oco0,

v k4 v
=) o o o o w =}
108 G0, 1102 O, 0, AOAMIMII ITBIH CoO, AU Ca,CoO, MUAAD MIUNUT Co

v
a

k4 4 v 4 4
36 Ga Tudu co0, Wi S, TAuindu nazdailimsiliihlassawiniudie Tuan3deil Nong

a

uazAMs Mo ZT gade 035 gl 1050 aadu (31 5v)

u

3UN 5 n3wlszndne ZT fugamgived (n) Ca,M Co, O, (Wang et al., 2010b) uaz (V) Ca,Ga Co, O,

(Nong et al., 2010)

=) d' Y a
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' Y A A Ay a o A Yy o & A
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i 9 wva A . 19 a a
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20 wt% (Mikami et al., 2005) #30 5.0 vol% (Xiang et al, 2008) H30 0.4 1A (Zhang et al., 2009) Ag %
@ I ~ @ [ a = wva
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1 a A A 1 < Y o EAl A o
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A A ad 4 A a = A . . A
CCO N30 Ag Angaone Ag luilSinaimmnzeay Aolszua 10 wi% (Mikami et al., 2005) 130 7.5

vol% (Xiang et al., 2008) %30 0.3 Tua (Zhang et al., 2009)
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funia Co azmsierodseansiszneuneuInda 911nuIsen 1ds1u5m11 MITeFIRUNTIAIY
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