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Abstract

This research studies the inventory management and routing problem in a two-level
supply chain where a single plant serves a set of warehouses, which in turn serve a set
of customers with stochastic demands. A set partitioning based probabilistic chance
constrained nonlinear integer programming formulation is provided for the combined
continuous inventory control and multi-depot vehicle routing problem while accounting
for probability of inventory capacity violation, order quantity capacity, service levels,
vehicle capacity restrictions and route duration limits. Two tabu search heuristics,
differing in the way initial solutions are generated, are applied to solve the problem.
Computational tests on standard tests networks reveal that integrating the inventory
management and routing decisions by solving the combined inventory management and
routing problem may yield cost savings of up to 14% over the sequential approach
where both problems are solved separately. The best objective function value obtained
by the tabu search heuristic was found to increase with increase in customer demand
variance but decrease with increase in order quantity capacity and route duration limit.
The safety stock levels, the reorder points and total holding costs were found to
increase with increase in customer demand variance. The available inventory capacity
was found to decrease with increase in customer demand variance. The total ordering
costs in the best solution increases with the decrease of the order quantity capacity,
whereas the total holding costs decreases with the decrease of the order quantity

capacity. The routing costs increases with the decrease of route duration limit.

Keywords : Continuous Inventory Control, Multi-Depot Vehicle Routing Problem,

Tabu Search



EXECUTIVE SUMMARY

This research studies a two-level supply chain where a single plant supplies a single
commodity to a set of warehouses which in turn serve a set of customers with
stochastic demands. This research provides a combined stochastic chance constrained
nonlinear integer programming formulation modeling the inventory management
decisions at the warehouses and the routing of goods from the warehouses to the
customers. The warehouses are assumed to manage the inventory using a continuous
inventory policy. The model accounts for the service level at each warehouse which
reflects the probability of available inventory meeting the demand during the lead
time, probability of violation of inventory capacity, and restrictions on order quantity
volume. The routing of goods from warehouse to customers is modeled as a route
duration constrained capacitated multi-depot vehicle routing problem. Two tabu
search heuristics — type 1 and type 2, differing primarily in the way initial solutions
are generated are developed to solve the combined model. The optimal order quantity
at each warehouse is approximated using the KKT conditions. Computational runs
are conducted on variations of the standard Solomon test instances available for
vehicle routing problems with time windows. Type 2 tabu search was found to
outperform type 1 tabu search for the 100 customer instance. For smaller customer
instances, both the heuristics were found to perform equally well. Integrating the
inventory management and routing decisions by solving the combined inventory
management and routing problem was found to yield cost savings of up to 14% over
the sequential approach where both problems are solved separately. The best
objective function value obtained by the tabu search heuristic was found to increase
with increase in customer demand variance, decrease with increase in order quantity
capacity and route duration limit. Variance of the customer demand was found to
have significant impact on the solution quality. The safety stock levels, the reorder
points and the total holding costs were found to increase with increase in customer
demand variance. As expected, the available inventory capacity was found to decrease
with increase in customer demand variance. It is unclear how the routing and
ordering costs change with the demand variances. This is because the demand
variance can influence the customer assignments to different warehouses, resulting in
different routing costs and ordering costs. We found that the order quantity capacity

and inventory capacity play a role in the trade-off between total holding costs and



total ordering costs. The total ordering costs in the best solution increases with the
decrease of the order quantity capacity, whereas the total holding costs decreases with
the decrease of the order quantity capacity. The routing costs increase with the
decrease of route duration limit. Thus, the combined inventory management and
routing model can be used to study the tradeoffs between inventory holding costs,

ordering costs, and routing costs.
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Chapter 1 Introduction

Fierce competition in today’s global market together with the global economic
recession and fuel-price fluctuation is forcing companies to better design and manage
their supply chain networks. An efficient supply chain design can decrease the
system costs such as inventory control costs and transportation costs, and more
importantly it helps save energy and reduce emissions. In this report, we consider a
two-level supply chain, in which a single plant serves a set of warehouses, which in
turn serve a set of end customers with stochastic demands. Inventory control
decisions and vehicle routing decisions are made at the operational level for each
warehouse. The inventory control problem (ICP) determines optimal order quantity,
reorder point and safety stock, so that the total ordering and holding costs are
minimal. The multi-depot vehicle routing problem (MDVRP) determines an optimal
set of vehicle routes for each depot to satisfy demands such that the routing costs are
minimal. Typically, these two problems are solved sequentially. Indeed, ICP and
MDVREP are interrelated. The inventory control decisions for a warehouse depend on
the demands incurred at this warehouse, which are determined from the demands of
customers assigned to this warehouse. The MDVRP decisions aim at minimizing
routing costs without considering the impact of the customer assignment on the
ordering and holding costs at warehouses. Therefore there is significant potential to
optimize the supply chain costs by solving ICP and MDVRP simultaneously (a.k.a.

inventory routing problem: IRP).

1.1 Literature Review

Depending on the nature of the application, several variants of IRPs have been
studied in the literature. Numerous studies focus on IRP application in a Vendor
Managed Inventory (VMI) setting where a single vendor delivers goods to multiple
customers and coordinates the routing and delivery decisions so that the customer
always has sufficient inventory (Bertazzi et al., 2002; Campbell and Savelsbergh,
2004). Depending on the nature of the time horizon for the decision making — IRP
can be classified into single day (Beltrami and Bodin, 1974; Federgruen and Zipkin,
1984), multi-day (Dror et al., 1985; Dror and Ball, 1987) or an long term horizon

operational problem (Anily and Federgruen, 1993; Bard et al., 1998; Jaillet et al.,
1



2002; Gaur and Fisher, 2004). Normally the long term horizon problem use
frequency as the decision variable and the shorter duration studies are normally time
based. In the context of long term operational problem, several studies have evaluated
the effectiveness of delivery policies using asymptotic analysis in an infinite time
period (Anily and Federgruen, 1990; Gallego and Simchi-Levi, 1990; Bramel and
Simchi-Levi, 1995). Note that due to the complexities of the IRP and based on the
nature of the application, several studies have focused on optimally timing the
deliveries to a single customer (Dror et al., 1985; Dror and Ball, 1987; Bard et al.,
1998). Savelsbergh and Song (2007, 2008) studied variants where the customers can
be served by multiple facilities depending on product availability. Federgruen and
Simchi-Levi (1995), Campbell et al. (1998) and Bertazzi et al. (2008) provide a
detailed review of the IRP variants and their solution methods. This research is
different from the past works as in our work the customers can be served by one
among multiple warehouses. Moreover we do not adopt a VMI approach. In our
model, the inventories are located at warehouses and not at the customers.

Similar to Miranda and Garrido (2004, 2006), we assume that each warehouse
follows the continuous inventory control policy, and we explicitly consider the
probabilities of unfulfilled demands, the probabilities of inventory capacity violation
and the order quantity capacity. The considered policy does not penalize unfulfilled
demands. Rather, a reorder point is determined such that after order submission to the
plant the inventory level should cover the demand generated during the lead time with
probability. Since the cost of alternative storage space especially in the urban areas is
high, it is essential to control the level of service associated with the inventory
capacity. The probabilities of inventory capacity violation are employed in the chance
constrained stochastic programming framework. The vehicle capacity restrictions are
common in the urban areas, and this can be taken into account by setting order
quantity capacity and through capacity constraints in the routing problem. In
MDVRP, we explicitly consider the route duration limit which arises in a number of
applications such as perishable goods delivery problems (Gorr et al., 2001) and time-

critical delivery problems (Berger et al., 2007).



1.2 Objectives

The objectives of this study are three-fold. The first objective is to formulate
the model for the combined continuous inventory control and MDVRP accounting for
route duration limits and stochastic inventory capacity constraints. The second
objective is to develop tabu search heuristics to solve the problem. The third
objective is to compare the performances of the proposed tabu search algorithms with
each other as well as against the sequential approach on hypothetical test networks

based on Solomon (1987)’s test problems.



Chapter 2 Mathematical Formulation

The inventory routing model is developed based on the works by Miranda and
Garrido (2006) and Berger et al. (2007). This combined model is a set partitioning-
based formulation that has the stochastic inventory capacity constraints and the order
quantity capacity constraints. Daily delivery demands of customers are assumed
independent and normally distributed. Each customer is served on exactly a route by

a warehouse, and a single commaodity is considered.
2.1 Continuous Inventory Control Policy

The proposed model embeds the continuous inventory control policy, which is briefly

reviewed here. At any warehouse i, we assume a continuous inventory control policy
(Qi, RP;) to meet normally distributed random demand I5i with the mean of ED;

(product units per day) and the variance of VD; (squared product unit per day). ED;
and VD; are variables, since they depend on the customers assigned to each warehouse
I. Qj is the order quantity at warehouse i, and RP; is the reorder point at warehouse i.
The plant takes a lead time LT; to fulfill an incoming order from warehouse i. The
evolution of the inventory level at warehouse i is shown in Figure 2.1. When the
inventory level falls below RP;, an order of Q; units is triggered, which is received
after LT; time units. When an order is submitted to the plant, the inventory level
should cover the demand generated during the lead time LT;, with probability 1-c.
This probability is known as the service level for the system Miranda and Garrido
(2004).

1,(1) )

\ - = t—+ICap;

N\ N |

RP, _

LT, LT, !

Figure 2.1. Continuous Inventory Control Policy with Stochastic Inventory Capacity

Constraint (Miranda and Garrido, 2006)
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The service-level constraint is:

Prob(D,(LT,)<RP) =1-« (2.1)

where [~)i - LT, is the normally distributed random demand generated during the lead
time at warehouse i with the mean of ED, - LT, and the variance of VD, - LT,. Eq.(2.1)

can be standardized:

D -LT,—ED,-LT, RP—ED, LT
< =7 )=1-«
JVD,-LT, JVD,-LT,

where z, _ is the value of the standard normal distribution, which accumulates a

Prob(z =

probability of 1-a. Then, RP; can be determined by the equation:

RP =ED,-LT +2z_,/LT,\VD (2.2)

The parameter z is assumed fixed for the entire network, determining a

1-a

homogeneous service level for the whole system. The first term in Eq.(2.2) is the
average demand during the lead time, and the second term (Z, /LT, VD, ) is the

average safety stock. Given that HC; is the holding cost per time unit for warehouse i
($/unit/day), and OC; is the fixed ordering cost at warehouse i ($/order), the expected

holding and ordering cost rate for each warehouse i ($/day) is:

HC, -z, /LT, VD, +%Hci Q +%EDi (2.3)

The first term in Eq.(2.3) is the average safety stock cost at warehouse i. The last two
terms in EQ.(2.3) represent the costs of the known Economic Order Quantity (EOQ)
model (Erlenkotter, 1990). This is the average inventory and ordering cost incurred

due to the ordering process, if the order size is always Q;. The peak inventory levels

take place when the orders arrive at warehouse, and equal to RP —[N)i LT, +Q,.

5



When setting maximum probability S to violate the inventory capacity 1™ at peak

levels, the inventory capacity constraint can be written as chance constraints (Miranda
and Garrido, 2006):

Prob(RP —D, - LT, +Q, < I"™)>1— g VieV,, (2.4)

Eq.(2.4) can be rewritten as nonlinear inequalities (Miranda and Garrido, 2004, 2006),

which are the stochastic inventory capacity constraints:

Q+(z, +2,,) LT, VD, < I™ VieV,, (2.5)

2.2 Proposed Mathematical Program

The sets, parameters and decision variables are defined, followed by the proposed

mathematical formulation.

Sets

V.ys = set of customer locations = {1,2,..., n.,s}
V,,y = set of warehouse locations = {1,2,..., n,, }

P. = set of all feasible routes (with respect to route duration limit and vehicle capacity

restriction) associated with warehouse i

Parameters

w; =mean of the daily demand for customer j

ajz = variance of the daily demand for customer j

N, = Number of warehouse locations

Neys = Number of customers to be served

RC, = transportation unit cost between the plant and warehouse i ($/unit/day)
Q™ = maximum order quantity (order quantity capacity) for warehouse i

|™ = inventory capacity for warehouse i



LT, = lead time that the plant takes to fulfill an incoming order from warehouse i
OC, = fixed ordering cost at warehouse i ($/order)

HC, = holding cost per day per product unit at warehouse i ($/unit-day)

Z, = value of standard normal distribution that accumulates the probability 1-«

Z, .= value of standard normal distribution that accumulates the probability 1-£

1-p
aj = 1if route k associated with warehouse i visits customer j; 0 otherwise

d, = cost of route k associated with warehouse i

Decision Variables

v, = 1 if route k associated with warehouse i is chosen; 0 otherwise.
Q, = order quantity for warehouse i

ED, = mean of the served daily demand by warehouse i

VD, = variance of the served daily demand by warehouse i

Z = total costs

Model
. oc,
minZ = Z Zdik'yik+ Z Z Zajik‘RCi'ﬂj'yikJr Z —ED,
ieVyy keP; ieVywy J€Veus kel ieVyyy Qi
+ . (Hci%+ HC,-Z, , -4/LT, -1/\_/Dij (2.6.1)
ieViyy
Subject to
z Zajik Vi =1 Vj €Veus (2.6.2)
ieVeown keP,
Q, +(Zlfa +Zlfﬁ) - LT, -JQDi < Iimax VieV,, (2.6.3)
> > u;-ay -y =ED, Vi eV, (2.6.4)
jeVeys keP;
Z fof Qi+ Y = VD, VieVyy (2.6.5)
ieVeys keP;
vy, €{0.5} VieVy,,vkeP (2.6.6)

0<Q <Q™ VieV,, (2.6.7)



Obijective (2.6.1) calculates the total costs Z composed four terms - total MDVRP
costs, total direct transportation costs between the plant and warehouses, total
expected ordering costs and total expected holding costs, respectively. Constraints
(2.6.2) enforce that each customer is served on exactly a route by a warehouse.
Constraints (2.6.3) are non-linear constraints assuring that the inventory capacity for
each warehouse is satisfied at least with probability 1-/4 and that the reorder point can
cover the stochastic demand during the lead time with probability 1-«. Constraints
(2.6.4) determine the mean of the served demands assigned to each warehouse.
Constraints (2.6.5) determine the variance of the served demands assigned to each
warehouse. Constraints (2.6.4) and (2.6.5) result from the assumption that demands
are independent and normally distributed across the customers; thus all the covariance
terms are zero. Constraints (2.6.7) constrain the order quantity to be within the order
quantity capacity, which is assumed homogeneous for each warehouse, and can be set
as the vehicle (from plant to warehouse) capacity.

The VRP is NP-hard (Lenstra and Rinnooy Kan, 1981), which is a special case
of the IRP. Thus, IRP is also NP-hard. The proposed formulation potentially contains
an exponential number of variables (y, ), and there exists nonlinearity in Eq.( 2.6.1)
and Eq.( 2.6.3). In effect, there is not an efficient solution method that guarantees an

optimal solution, and this essentially requires a metaheuristic approach. In this

research, we propose tabu search heuristics.



Chapter 3 Tabu Search Heuristics

The overview of tabu search can be found in Glover and Laguna (1997). It integrates
a hill-climbing search technique, which is based on a set of elementary moves, and a
heuristic to avoid the stops at local optima and the occurrence of cycles. The tabu
search was initially created with constant tabu tenure by Glover (1989); then, the
proper choice of tabu tenure is critical to the success of the algorithm. The tabu
tenure is the number of iterations that the algorithm prohibits past moves (a move is a
process that the algorithm uses to change the current solution to the new solution), so
that the algorithm will not visit the same past solutions (so a cycle is prevented) and
will be able to depart from local optima. The tabu tenure should be sufficiently long
to prevent cycles but short enough such that the search is not overly constrained.

In this report, we modify the tabu search heuristic for MDVRP by (Renaud et
al., 1996) in order to incorporate the continuous inventory control policy for
warehouses in the two-level supply chain, accounting for route duration limits and

stochastic inventory capacity constraints. Let G=(V,A) be a directed graph.

V ={Vyu:Veus} s a vertex set where Vi, ={vy,,Vgy,.e Vo, 3 1S the set of warehouse
(or depot) locations and Ve ={v;,V,,...,v, } is the set of customers.
A={(v;,v;):i=# j}is an arc set. Vertexv, €V,,, denotes a warehouse where m;
identical vehicles are based. mj is assumed unlimited. Vertexv; eV, denotes a
customer. With every arc (v;,v;)is associated a fixed nonnegative distance c;.

V' ={v,v,...V!, } is the vertex set associated with warehouse i; v, a warehouse
Cus

vertex; n.,s the number of customers assigned to warehouse i.

A least cost solution is determined such that:

e Total cost is minimized, including direct transport cost between the plant and
warehouses, MDVRP costs from warehouses to customers, ordering costs, and
inventory holding costs.

e The order quantity from warehouse v, to the plant may not exceed its

maximum value Q,™.



When an order is submitted to the plant by a warehouse, the reorder point can
cover the stochastic demand generated during the lead time with probability 1-
o

For each warehouse, the inventory level at peak levels may violate the
inventory capacity with the maximum probability 3.

A route starts and ends at a warehouse.

Each Customer in V is visited exactly once by exactly a vehicle based at a

warehouse.

Customer v; has an independent and normally distributed demand with the

mean of 4, and variance of &, whereas each warehouse v,; has a fixed zero

demand.

The total average daily demands served by a vehicle based at warehouse v,
may not exceed the vehicle capacity RD, ™.
Each city v, requires a fixed service time ¢, , and each warehouse v,; has no

service time.
The duration (travel plus service times) of any route beginning at warehouse

Voi

. and ending at the last customer visited on this route may not exceed the
m_ax
o

route duration limit

The tabu search algorithm consists of two phases: (1) construction of an initial

solution and (2) solution improvement as shown in Figure 3.1. Inspired by Campbell

and Savelsbergh (2004), we maintain the following information in our implementation

in order to save computational efforts:

For every route r, and warehouse i, the sum of the average delivery
quantities currently assigned to this route is qg; the duration (travel plus
service time) of round-trip route r, beginning and ending at warehouse i, is
rlr‘ll ; the duration (travel plus service time) of route r, beginning at warehouse

I, and ending at the last customer visited in route r, is plrill .

10



 For every warehouse i, the sum of average currently served demands is ED, ;

the sum of currently served demand variances is VD, .

With such information maintained, it is easy to verify the route feasibility of inserting

a customer into route r, associated with warehouse 1i,; i.e., check whether plril1 <Lg™

and g, < RDj™.

Phase I: Construction of an Initial Solution
(Type I or Type I1)

v

Phase 11.1: Fast Improvement
Iteratively apply the three steps until the stopping criterion is met:
Inter-warehouse, Intra-warehouse, and Three-Route.

\ 4
Phase 11.2: Intensification
Starting with the best known solution, iteratively apply the
intra-warehouse step until the stopping criterion is met.

A4

Phase 11.3: Diversification
Starting with the current solution, apply the two steps for 20
iterations: Vertex Reinsertion to Different Warehouse; Inter-
warehouse and Intra-warehouse Steps of Phase I1.1.

Figure 3.1 Flowchart of Proposed Tabu Search Heuristics

Before describing the two phases of tabu search algorithm, the heuristic
approximation for the continuous ICP with order quantity capacity and stochastic
inventory capacity constraints is described when the currently served average
demands (ED;) and demand variances (VD;) at warehouses are known.

3.1 Heuristic Approximation for (Q;, RP;)

When the means and variances of currently served demands (ED; and VD;) for

warehouses are known, the continuous inventory control policies (Qi, RP;) with

11



stochastic inventory capacity constraints and order quantity capacity constraints can
be heuristically approximated. In the inventory location models studied in Miranda
and Garrido (2004) and Daskin et al. (2002), the order quantity (in the former) and the
total orders (in the latter) are obtained through the first order optimality conditions of
the objective function. Thus, the outcome is analogous to the result of the EOQ
model and the corresponding ordering decisions (Q;) are not variables and hence
eliminated from the model. However, in our formulation, there are constraints on Q;
(see constraints 2.6.3 and 2.6.7). Two decision variables for the continuous ICP are
order quantities (Q;) and reorder points (RP;). RP; can be determined Eq.(2.2) when
ED; and VD;j are known. The heuristic approximation of an optimal order quantity for

warehouse i (Q,") is described below.

If constraints (2.6.3) and (2.6.7) are removed, Q  can be approximated

through the first order optimality condition. When the constraints on Q; are taken into
account, the first order optimality conditions for a constrained minimum is employed

to approximate Q; . The standard form of a minimization program is

minZ(X)
subjectto g;(x)=b; Vj :u;

]

where Z(x) is the objective function; x is the vector of decision variables; b; is a
constant; g;(x) is the function of x in constraint j; u; is the dual variable associated
with constaint j. Then, the first-order conditions (a.k.a. Karush-Kuhn-Tucker

Conditions) (Luenberger, 1973) are:

azai):*) By og;,() .

i o

u; 20 V]

Uj(bj_gj(X*)):O Vj

g,(x') b, Vj

The order quantity Q, correspond to x in the standard form. Constraints (2.6.3) and

(2.6.7) can be written in the standard form as:

12



-Q >(z_, +7,_,)yLT, JD, — 1 VieVyy,: U (3.1.1)
-Q=-Q™ VieViyy © Uy (3.1.2)

Q=0 VieV,,: u,

(3.1.3)

where u,;, U, and u, are dual variables associated with Eq.(3.1.1)-(3.1.3). The

Karush-Kuhn-Tucker (KKT) conditions for the minimum program (2.6.1), (3.1.1)-

(3.1.3) where only Q, are decision variables, are:

aZa(QQi*) = —Uy; — Uy + Uy Vi eV, (3.2.1)
u; >0;u,, >0;uy; >0 Vi eV, (3.2.2)
Uy -(Q + @y + 2 IWLT VD, = 1m™)=0 vieV,, (3.2.3)
Uy -(Q —Q™) =0 Vi eV, (3.2.4)
Uy -Q =0 VieV,, (3.2.5)
~Q 2 (2, +2,,)|LT, VD, - 1™ VieVy,: Uy (3.2.6)
-Q >-Q™ VieVy, : Uy (3.2.7)
Q >0 VieVy,: Uy (3.2.8)

For any warehouse with served demands, the optimal order quantity is naturally

greater than zero. Then, Eq.(3.2.5) implies that u, equal to 0. Then, Eq.( 3.2.1)

become:

zQ) __,
8Qi 1i

_uz,

(3.2.1a)

This implies that the stationary point with the property % =0 can be either within

the feasible range of Q; or greater than the feasible range of Q;. The stationary point
0Z(Q")
Q

cannot be less than the feasible range of Q;; otherwise,

becomes positive,

given that Z(Q) is assumed convex with respect to Q;. When the stationary point is

13



within the feasible range of Q;, the minimal point is the stationary point. Eq.( 3.2.3)

and (3.2.4) imply that u; =0 and u, =0, and Eq.( 3.2.1) yields %QQ):O. When

the stationary point is greater than the feasible range of Q;, the minimal point is not

the stationary point. Eq.( 3.2.1a) and the assumed convexity of Z(Q) imply that the
minimal point is at the boundary of either Eq.( 3.2.6) or Eq.( 3.2.7). Thus, Q; can be

determined from the equation:

o mm{ %G, B0 il 2. +z1_ﬁ>ﬁ¢v—oi}} @3

3.2 Phase I: Construction of an initial solution

The first phase of the proposed tabu search constructs an initial solution as follows.
Step I.1. Each customer is assigned to its nearest warehouse. Then, for each
warehouse, sort assigned customers in increasing order of the angle that they make

with the warehouse and a horizontal line.

Step 1.2. Create initial vehicle routes for each warehouse. This will be described in
the next subsections.

Step 1.3. Determine RP; and Q;, using Eq.(2.2) and (3.3), respectively.

Step 1.4. Determine the objective function value of the initial solution, using
Eq.(2.6.1)

We consider two alternatives to create initial routes in Step 1.2. The initial

solution type 1 is based on Cordeau et al. (1997) and the initial solution type 2 based
on Gendreau et al. (1994).

14



Construction of Initial Solution Type 1

For each warehouse i=1,..., n,,, , do
(@) Let vij be a customer randomly chosen among those closest to warehouse i

(vertex v;)

(b) Set m =1

(c) Using the customer vertex sequence (V',V| v

i i
Lt ngUS'Vl’"-’Vj—l)’ perform the
following steps for every customer assigned to warehouse i to obtain an initial

routing solution, S,,5uee ={Seovre 71 € Vi } -
e Insert each customer into the route m, based at warehouse i (vertex v;) using

the generalized insertion (GENI) algorithm by Gendreau et al. (1992).

o |If the insertion of customer in the route m, would result in the violation of

vehicle capacity or route duration limit, set m,= m, +1.

Construction of Initial Solution Type 2

For each warehouse i=1,..., n,,, , do

(@) Let v‘j be a customer randomly chosen among those closest to the depot

(b) Using the customer vertex sequence (V;,V; v\ Vj,..,Vi ), construct a tour on
(V]

e Vo
all vertices assigned to warehouse i by means of GENI procedure and Unstringing
and Stringing (US) procedure Gendreau et al. (1992).

(c) Start with warehouse i (vertex vy ), create m, vehicle routes by following the tour.

The first vehicle contains all customers starting from the first customer on the tour
and up to, but excluding, the first customer v whose inclusion in the route would
cause a violation of the capacity or route duration limit. This process is repeated,

starting from the city v, and until all customers have been included into routes.

The initial MDVRP solution is S,,5.ee ={Seovre 71 € Viyi } -

3.3 Phase II: Solution Improvement

The initial solution generated in Phase I is used as an input in Phase 1, which consists

of 3 sub-phases: fast improvement, intensification, and diversification. Three basic
15



procedures that are employed in these sub-phases are first described including one-
route, two-route and three-route procedures, followed by the descriptions of three sub-
phases. Then, the selection of routes for two-route and three route procedures in the

three sub-phases is described.

One-Route Procedure

The one-route procedure is a post-optimizer on single-vehicle routes. In this study,
the US algorithm by Gendreau et al. (1992) is employed while maintaining route
duration feasibility and vehicle capacity feasibility. Since the procedure improves the
sequence of customers on a particular route without reassigning any customer to

different warehouses, ED, and VD, are unaffected. Thus, the optimal order quantity

and reorder point as well as ordering and holding costs are not changed.

Two-Route Procedure
The two-route procedure moves vertices belonging to two different routes assigned to

one or two warehouses. Let (v, ,v;,v,,v,) and (v, ,v, Vv, ,V, ) be two sequences of
il 1 17 V) 2l

four consecutive vertices (possibly including a warehouse) from route r; based at
warehouse iy and route r, based at warehouse iy, respectively. Similar to Renaud et al.
(1996), the following 6 moves are attempted as long as a warehouse is not moved, and

vehicle capacity feasibility and route duration feasibility are maintained. The six
moves are described together with the calculation of changes in relevant !, rl!, pl},

ED,, and VD, .

(a)Insert v; between v, and v,
1 2 I2
The two vertex sequences become (v, ,v, ,V, ) and (v, ,v;,V; .V, ,V, ), respectively.

The changes in the round-trip lengths are A, =-¢, ; —¢; , +¢, , —J; and

jl’kl

A

=—C . +C . +cC. . +0. . If v, isthe last customer visited on route ry,
rl, hy,j, hy,J; 2 I 1

J1]

A —C, i —O

i, — 0, otherwise, A, =A,, . If v, is the last customer visited on route

ply -

r2, A, =C, ; +0;;o0therwise, A, =A, . The changes in the average delivery

pl

demands are Aq; =—-x; and Aq? =g, . If i, #i,, AED, =—p; , AED, =y, ,

16



AVD, =-o; and AVD, =07 . Otherwise, AED, = AED, =0and

AVD, =AVD, =0.

(b)Insert v, between v, and v,

2 i Il
The two vertex sequences become (v, ,v; ,V; v, .V, ) and (v, v, .V, ), respectively.
The changes in the round-trip lengths are A, =-¢, ; +¢, ; +¢

., T, and

A, =-C, . —C; , +C, , —0; . If v, isthe last customer visited on route r,

2 2.2 12.K2 2. K2 J2 1

A, =C, ; +0, ;otherwise, A, =A, . If v, isthe last customer visited on route r,
1 s )2 2 ply rh 12

Ay, =—C, ;, —0;, :otherwise, A, =A, . The changes in the average delivery

demands are Aq;' = u; and Aq;? =—p; . If i, =i,, then AED, =y, , AED, =-pu, ,
AVD, =o} and AVD, =-o; . Otherwise, AED, = AED, =0and

AVD, =AVD, =0.

(c) Swap v; and v;
The two vertex sequences become (v, v, ,v,,v,) and (v, ,v; .V, ,v, ). The changes
in the round-trip lengths are A, =-c, ; —¢; , +¢C, ;, +C; , —J; +0; and

A —C, . —C. . +C, . +C., —9. +0. . If v_isthe last customer visited on
2:K3 201 J1.K3 12 I h

r, = 2112 J

route ry, A —C. . +C. . —0. +0. ;otherwise, A, =A_ . If v. isthe last
hy,jy hy,jp I I2 ply rly I2

ply = 1]

customer visited onrouter,, A, =—C. . +C. . —J0. +0. ; otherwise, A, =A, .
pl, IPONPS hy, iy I2 h pl, rl,

The changes in the average delivery demands are Aq‘,i =—p; +u; and

AQ? = py — g - 10 =iy, then AED, =—p; +p; , AED; = p; — 1y,
AVD, =-o} +0; and AVD, =o; —o; . Otherwise, AED, = AED, =0and

AVD, =AVD, =0.

(d)Insert (v; ,v, ) between (v, ,v; )
The two vertex sequences become (v, ,v, ) and (v, ,V; .V, ,V; .V, ,V, ). The changes

in the round-trip lengths are A, = —c, Ci.k, — Ciu, T Chu, — 0, — 6, and

lljl - jl! 1
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Ay, ==Cy, j, +Ch, j, TCjk, TG

i, 70, +06, . If v, isthe last customer visited on

rl,

route ry, A, =-C, ; —C;, —9; — 9, otherwise, A=A, . If v, isthe last

ply = g

customer visited onroute r,, A, =c, . +¢c., +J. +0, ; otherwise, A, =A, . The
I, iy Juke h ky pl, rl,

p

changes in the average delivery demands are Aq; =—u; — x4, and AQ? = u; + 44, .
If il * i2, AEDi1 = _ﬂh _ﬂkl , AEDi2 = ﬂh +/lell A\/Dil — _ij_akf and

AVD, =07} +oy . Otherwise, AED, = AED, =0and AVD, =AVD, =0.

(e)Insert (v; ,v,, ) between (v, ,v; )
The two vertex sequences become (v, ,v; v, ,V;,V, .V, )and (v, ,v, ). The changes
in the round-trip lengths are A, =-¢, ; +¢, ; +C;, \ +C;, +J; +9J and

Ay, ==Ch, 5, ~Ci,k, ~ i, +Ch,, — 9

i, — O, Ifv, isthe last customer visited on

rl,

route ry, A +C, \ +0; +0, ;otherwise, A =A, . If v_isthe last customer
2:K2 2 2 ph rh 2

ply = Chlrl-z

visited onroute rp, A, =-C, , —C; , —0; —0, ;otherwise, A, =A,, . The changes

in the average delivery demands are Aqg = u;, + 4, and Aqg =—p;, —py, - 10 =10y,
AED; = u; +p, , AED; =—u; —p , AVD; :O'j22+0'kf and AVD; = —ai —akzz.

Otherwise, AED; =AED; =0and AVD; =AVD, =0.

(A)Swap (v; ,v, ) and (v ,v )
The two vertex sequences become (v, ,v, ,v, ,v, ) and (v, ,v;,v,,v, ). The changes

in the round-trip lengths are

Ay ==Cpj, =Cik ~Ci, +Chj, +Cpyu, +Cii, — 5, — 6y T, + 6, and

Ik

Ar,z =—Cy, 5, —Cik, —Cit, TCh i T Cik +Ci, —5].2 —5k2 +5h +5k1 Cf vy, Is the last

customer visited on route ry, A, =-C, ; —C;, +Cy ; +C;\ —J; —O +J; +J ;
otherwise, A, =A, . If v, isthe last customer visited on route r,

Ay, =Cn i tCik —Chi —Cik, +5jl +5k1 —51.2 —5k2; otherwise, Ay, =4y, The

changes in the average delivery demands are Aq‘é =—p; — iy + g+ and

Aqirz =M T TG, Ty Ifi =i, AEDi1 =M T M T MG T
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AEDi2 = 4+~ My~ My AVDil = —ij—akf+0j22+0'k2 and

2

AVD, =0 +0>-0; —o, . Otherwise, AED, = AED, =0and AVD, =AVD, =0.
These six moves are a subset of the larger family of moves considered within the A4 -
interchange procedure by Osman (1993), and Renaud et al. (1996) indicated that very
little quality is lost but much time is gained by concentrating on this restricted subset

of six moves in multi-depot vehicle routing problem.

Three-Route Procedure
The three-route procedure is an exchange scheme involving three routes (Renaud et

al,, 1996). Let (v, 1,Vi Viia)s (Vi 10V Vi Vi o W,) @nd (v v, ) be three

sequences of consecutive vertices (possibly including a warehouse) from routes ry,
and r3 with at least 3, 4 and 3 vertices respectively, based at warehouses i, i, and is.

For routes r, and rs, consider the sequences of two vertices (v. ,v, ) and (v.,v, )
j2? kg Jz? Tks
where v; =v, and v, =#v, . Then the following combination of moves is attempted

as long as vehicle capacity feasibility and route duration feasibility are maintained,

and a warehouse is not moved: insert v, between v, and v, , and insert v,
between v; and v, . The move is described together with the calculation of changes
inrelevant !, rl!, pl', ED,, and VD,. After three-route exchange, the three vertex
sequences become (v, ;v 1)y (Vi 13V a0 Vi, Vi Vi) @nd - (v v, v ). The
changes in the round-trip lengths are A, =-C, ,, —Cy 1 +Cy 1p 1= O s

Ar|2 = _Chz—l,hz - Chz,h2+l + Chz—l,h2+1 - 5h2 - Cjz,k2 + Cjz,h1 + Chl,kz + 5h1 and

A, =—C. . +C._, +C, . +0, . If v isthe last customer visited on route r,

3 J3.K3 13.My 2:K3 2 hy

A, =—C, ., — 9, ;otherwise, A, =A, . If v, is the last customer visited on route
ph =1y hy ply rly hy

2, Ay, =—Cy 1p, —6h, —Cik, TCion +Chx, T - If v, isthe last customer visited on

route ry,

Ay, ==Ch an, ~Chonoa T Chana — O +Cjp +6, - Otherwise, A=A, . If v, isthe
last customer visited on route rs, A, =c. . +0, . Otherwise, A, =A_, . The
pls ia:hy h, pl3 rl;

changes in the average delivery demands are Aq" = —Lhy Aq‘; =, — 4, and

h

AQe =, . I i =i, =iy, then

f3
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AED, =—p, , AED, =, -, , AED, =y, , AVD, =—c?, AVD, =0y -0, and
AVD, =o, . If i, =i, =i, thenAED, = AED, =0and AVD, =AVD, =0. If

i, =i, #i,, AED, =AED, =—y, , AED, =y, , AVD, =AVD, =—-o; and

AVD, = O'hz2 :

If i, =i, =i,, AED, =AED, =—p, + 4, ,

AED, =, —m, ,AVD, =AVD, = —O'hi+0'h§ and AVD, = Jé —ofz A= =1y,

AED, =-p, , AED, = AED, =y, , AVD, =—0’ and AVD, =AVD, =o .

Sub-Phase 11.1: Fast Improvement
The algorithm attempts to improve upon the incumbent by repeatedly applying the

following three steps:

e Inter-warehouse: Apply two-route procedure between routes of two different
warehouses.

e Intra-warehouse: Apply two-route procedure between routes of the same
warehouse.

e Three-Route: Exchange vertices between three routes, using three-route

procedure.

fast

These steps are repeated until the incumbent does not improve for n_,, consecutive

iterations. For each of the three steps, any move that yields an improvement is
immediately implemented. Otherwise, the best non-tabu deteriorating move is
implemented. Whenever a move is implemented, the one-route procedure is applied

to all routes involved in the move.

Sub-Phase 11.2: Intensification
This phase intensifies the search for better route, starting with the best known solution

and working on one warehouse at the time. It applies the intra-warehouse step to each

intens

warehouse in turn until no improvement to the incumbent has been produced for n,

consecutive iterations. Whenever a move is implemented, the one-route procedure is

applied to all routes involved in the move.
20



Sub-Phase 11.3: Diversification
The effect of the diversification phase is to perform a broader exploration of the
solution space. The following two steps are repeated 20 times.

e First, we seek the best reinsertion of a vertex from its current route into a route
belonging to a different warehouse; that is, apply the first move type of the
two-route procedure limiting to only two routes associated with different
warehouses. Choosing the same vertex for reinsertion is prohibited for the
next 10 applications of this step. Whenever a move is implemented, the one-
route procedure is applied to all routes involved in the move.

e Second, the inter-warehouse and intra-warehouse steps of the fast

FastDiver
max

improvement sub-phase are applied for n consecutive iterations without

improvement to the solution values obtained in the first step. Here the length
of the interval during which a move is tabu is randomly chosen in [15,20] and
no aspiration criterion is used. Whenever a move is implemented, the one-

route procedure is applied to all routes involved in the move.

Selection of Routes for Two-Route and Three-Route Procedures in the Three Sub-
Phases

The selection of routes to which two-route and three-route procedures are applied is
described Renaud et al. (1996). To define the distance between a route and a
warehouse or between two routes, each route is represented by its center of gravity.

In inter-warehouse, we consider exchanges between each warehouse i and the

L%JH warehouses closest to it. For each pair of warehousesi, and i,, we

. m; .
consider exchanges between the { 2'1—‘ routes of warehouse i, closest to warehouse

. m . . .
i, and the { 2'2—| routes of warehouse i, closest to warehouse i,. In intra-warehouse,

we consider all pairs of routes for each warehouse. In three-route procedure, the three
routes ry, rp, and rs are selected as follows. All routes with at least 3 vertices are

considered for route r;. Route r; is the closest neighbor of route r; and has at least 4
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vertices. Route r3 is the closest neighbor of route r, with r3 = r1, and route r3 has at
least 3 vertices.

Throughout Phase |1, the incumbent and its value are recorded. The current
solution is not necessarily the best known because the deteriorations of the objective
function are allowed. Whenever a customer is moved from its current route, moving

this customer back into the same route is declared tabu for @ iterations, where @ is

randomly chosen in [GF'ND QF'ND]: [4,10]. Random tabu durations help avoid cycling.

min  ? ¥'max
A tabu status may be overridden if implementing the corresponding move yields a

better incumbent.
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Chapter 4 Experimental Results

The tabu search heuristics are implemented in C++. These run on a computer with
1.73 GHz Intel Core i7 processor and 4 GB of RAM, running under Windows 7. The
data are first described. Then, the computational results of two experiments are

discussed.

4.1 Data

For IRP, there is not the standard set of instances for testing algorithms. We
generated instances similar to the types used in VRP. The customer locations are
generated from Solomon (1987)’s VRP with time windows instances. The Solomon
instances are divided into six groups, denoted R1, R2, C1, C2, RC1 and RC2. InR1
and R2, the customer locations are randomly generated from a uniform distribution,
and in C1 and C2, they are clustered. In RC1 and RC2, the customer locations are a
combination of randomly generated and clustered points. Because the (X,y)-
coordinates of the customer locations are the same for R1 and R2 and for RC1 and
RC2, the Solomon instances yield only four sets of distinct customer locations: C1,
C2, R1, RC1. In the same manner as Berger et al. (2007), we create five instances
corresponding to each group of customer locations. The first instance includes the
first 50 customers, the second instance the last 50 customers, the third instance the
first 75 customers, the fourth instance the last 75 customers, and the fifth instance all
100 customers. These are denoted by 50a, 50b, 75a, 75b and 100, respectively. Thus,
there are 20 instances of customer locations. The service times are set at 10 time units
for all customers. The average demands of customers are equal to the demands used
in Solomon (1987). The demand variances are based on the coefficients of variance
randomly generated from the range [0.45, 0.55]. The customer data for C1-100, C2-
100, R1-100 and RC1-100 are shown in Tables A1-A4, respectively, in Appendix A.
For the warehouse locations, we created two sets of 4 warehouse locations for
each customer instance. The first and second sets of candidate warehouse locations
are denoted by whl and wh2, respectively. We randomly generated the warehouse
locations from a uniform distribution, so that two criteria are satisfied. First, each
customer location could be reached by a singleton route with the associated route

duration to the last customer of at most 80 time units (M=80) from at least one
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warehouse. Second, each warehouse location must be assigned at least 10, 15 and 20
customers for the 50, 75 and 100 customer instances, respectively, when assigning
customers to their nearest warehouse. For all warehouse instances, homogeneous unit
holding costs of the four warehouses are $0.3, $0.6, $0.9, $1.2 per product unit per
day; the homogeneous ordering costs $450, $900, $1350 and $1800 per order. For all
warehouses, the lead times are two days; inventory capacity 2000 product units; order
quantity capacity 2000 product units; unit transport cost from the plant to warehouses
is zero. The distance matrix is determined based on Euclidean distance between all
vertex pair. The traveling speed is assumed 1 distance unit per time unit, and routing
cost is assumed $1 per travel time unit to cover variable vehicle costs. Personnel
costs and other vehicle related fixed costs are assumed to be considered outside the
inventory-routing decision. The route duration limits are 100 time units. The number
of available vehicles for each warehouse is unlimited with the homogeneous capacity
of 100 product units, which are less constrained than the route duration limit
constraints in all test problems. We identify each instance by an ID. The first part of
the ID specifies the problem group (R1, C1, C2 or RC1). The second part specifies
the customer subset (50a, 50b, 75a, 75b or 100). The third part specifies the set of
warehouse locations (whl or wh2). Thus, there are 40 problem instances. The
warehouse locations for the 40 problem instances are shown in Tables B1-B4 in

Appendix B.

4.2 Computational Results

fast r|intens and r]FastDiver ona

max ! max max

We calibrate the two tabu search algorithms by varying n

test problem, and found that the algorithm parameters suggested by Renaud et al.

(1996) perform best (n'=75, n"™ =300 and n *™“*=50). We conduct two

max max
experiments. The first experiment compares the performances of the type-1 and type-
2 tabu search heuristics in terms of computational time and solution quality against
the sequential approach. The sequential approach first solves MDVRP with route
duration limits, whose routing solutions are input to the continuous ICP with
stochastic inventory capacity constraints and order quantity capacity constraints. In
the second experiment, the sensitivity analysis is performed on problem instance
RC1-100-whl by varying the route duration limit (M=80 and 100), order quantity
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capacity (Q, =800, 1000 and 2000) and demand variance (-30%, 0% and +30%

changes). The demand variances are the product of the original demand variance and
demand variance factor (DVarF); thus, -30%, 0% and +30% changes in demand
variances correspond to DVarF values of 0.7, 1.0 and 1.3, respectively.

Table 4.1 shows the best objective values found and total computational time
by type-1 and type-2 tabu search algorithms and the sequential approach on the 40

problem instances.

Table 4.1. Computational Results of Sequential ICP and SDVRP, Sequential MDVRP
and ICP, and Combined ICP and MDVRP

Sequential MDVRP and Combined MDVRP and ICP
ICP Init. Sol. Type 1 Init. Sol. Type 2
CPU

Best Obj. Time Best Obj. % CPU Time Best Obj. CPU Time
($/day) (min) ($/day) Improve. (min) ($/day) | % Improve. (min)

50-Customers Problems
C1-50a-whl 3,727.02 1.36 3,599.25 3.43% 1.96 3,619.87 2.87% 1.67
C1-50a-wh2 3,821.86 1.26 3,727.73 2.46% 0.89 3,747.72 1.94% 0.79
C1-50b-wh1 4,083.87 0.66 3,728.71 8.70% 0.61 3,795.24 7.07% 0.78
C1-50b-wh2 3,999.61 0.74 3,478.46 13.03% 0.85 3,823.94 4.39% 0.71
C2-50a-whl 3,840.98 0.98 3,550.59 7.56% 0.88 3,528.95 8.12% 1.02
C2-50a-wh2 3,514.08 0.94 3,223.65 8.26% 0.95 3,369.86 4.10% 0.96
C2-50b-wh1 4,211.79 0.79 3,956.97 6.05% 0.53 3,905.52 1.271% 0.62
C2-50b-wh2 4,108.18 0.58 3,627.97 11.69% 0.69 3,588.85 12.64% 0.64
R1-50a-wh1 3,570.89 0.76 3,367.28 5.70% 0.65 3,235.19 9.40% 0.83
R1-50a-wh2 3,693.61 0.74 3,584.06 2.97% 0.55 3,485.92 5.62% 0.71
R1-50b-wh1 3,715.19 0.84 3,284.29 11.60% 0.80 3,190.68 14.12% 0.98
R1-50b-wh2 3,927.35 1.21 3,723.42 5.19% 0.65 3,588.96 8.62% 0.76
RC1-50a-wh1l 4,228.72 0.61 4,085.40 3.39% 0.53 4,029.67 4.71% 0.62
RC1-50a-wh2 4,414.56 1.12 3,844.28 12.92% 0.68 3,814.29 13.60% 0.53
RC1-50b-wh1l 3,707.06 0.64 3,270.56 11.77% 0.74 3,284.03 11.41% 0.82
RC1-50b-wh2 3,623.14 0.74 3,320.46 8.35% 0.31 3,203.86 11.57% 0.63

75-Customers Problems
C1-75a-whl 4,966.38 1.80 4,839.85 2.55% 1.76 4,885.40 1.63% 1.49
C1-75a-wh2 5,152.99 1.35 5,152.99 0.00% 1.06 5,014.38 2.69% 0.99
C1-75b-wh1l 5,545.76 1.09 5,393.16 2.75% 117 5,366.82 3.23% 1.23
C1-75b-wh2 5,375.33 1.03 5,249.51 2.34% 1.02 5,100.32 5.12% 0.78
C2-75a-whl 5,306.20 1.18 4,991.70 5.93% 1.05 5,022.92 5.34% 1.22
C2-75a-wh2 4,985.98 1.26 4,695.13 5.83% 1.19 4,834.15 3.05% 1.25
C2-75b-wh1l 5,528.38 1.22 5,311.50 3.92% 0.96 5,330.93 3.57% 1.17
C2-75b-wh2 5,338.21 1.28 5,210.52 2.39% 1.06 5,138.19 3.75% 1.01
R1-75a-wh1l 4,703.12 0.95 4,632.99 1.49% 1.02 4,535.88 3.56% 1.29
R1-75a-wh2 4,593.40 0.93 4,412.45 3.94% 0.88 4,497.09 2.10% 1.14
R1-75b-wh1l 4,788.27 1.34 4,378.67 8.55% 1.07 4,523.30 5.53% 1.11
R1-75b-wh2 4,763.60 1.81 4,536.31 A4.77% 1.19 4,490.63 5.73% 1.35
RC1-75a-wh1l 4,988.65 1.05 4,827.74 3.23% 0.61 4,815.07 3.48% 0.99
RC1-75a-wh2 5,236.32 1.07 5,104.13 2.52% 0.91 5,236.32 0.00% 0.88
RC1-75b-wh1 4,971.99 1.00 4,785.77 3.75% 0.68 4,760.34 4.26% 0.82
RC1-75b-wh2 4,987.55 1.03 4,745.55 4.85% 0.87 4,750.22 4.76% 1.02

100-Customers Problems
C1-100-wh1 6,061.05 1.71 5,815.44 4.05% 1.90 5,761.22 4.95% 1.75
C1-100-wh2 6,214.90 1.64 6,110.84 1.67% 1.42 6,005.50 3.37% 1.62
C2-100-wh1 6,142.82 1.50 5,872.85 4.39% 1.33 5,872.55 4.40% 1.25
C2-100-wh2 6,590.24 141 6,507.64 1.25% 1.28 6,380.97 3.18% 1.47
R1-100-wh1l 5,616.66 1.24 5,264.36 6.27% 1.23 5,227.34 6.93% 1.82
R1-100-wh2 5,574.31 1.97 5,430.94 2.57% 1.70 5,471.92 1.84% 1.49
RC1-100-wh1 6,112.11 1.43 6,016.59 1.56% 1.36 5,984.98 2.08% 147
RC1-100-wh2 6,324.67 1.32 6,258.55 1.05% 1.15 6,127.76 3.11% 1.39
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As expected, the proposed tabu search algorithms outperform the sequential approach
on all test problem instances. The computational times of all runs are less than two
minutes. On 50-customer and 75-customer problem instances, the two tabu search
algorithms perform approximately equally well, since the type-1 tabu search
outperform the type-2 tabu search on about 50 percent of problem instances. On 100-
customer instances, the type-2 tabu search outperforms the type-1 tabu search on
almost all instances except an instance R1-100-wh2.

Next, the sensitivity analysis is performed to see how the solution changes
with route duration limit, order quantity capacity and demand variance on problem
instance RC1-100-wh1l. We employ the type-2 tabu search in all runs as it performs
best on this problem instance. Table 4.2 and Figure 4.1 show the best objective value
found when varying route duration limits, order quantity capacity and demand

variances.

Table 4.2. Best Objective Values Found by Type-2 Tabu Search with Varying Route

Duration Limits, Order Quantity Capacity and Demand Variances

Route Duration Limit; Demand Variance Factor

Order Quantity Capacity 0.7 1 1.3
M100; Qmax2000 5902.68 5984.98 | 6030.5
M100; Qmax1000 5939.6 6003.1 | 6057.6
M100; Qmax800 6087.56 6194.37 | 6249.35
M80; Qmax2000 6328.16 6393.26 | 6449.12
M80; Qmax1000 6345.43 6411.14 | 6459.52
M80; Qmax800 6536.16 6601.42 | 6657.43
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Figure 4.1. Best Objective Values Found by Type-2 Tabu Search with Varying
Route Duration Limits, Order Quantity Capacity and Demand Variances

It can be seen that the best objective value increases with the increase of demand
variance, but decreases with the increase of order quantity capacity and route duration
limit. The best objective value is composed of three cost components: vehicle
routing, holding and ordering. Table 4.3 and Figure 4.2 show the three cost
components when varying route duration limit and order quantity capacity at

DVarF=1.0. Table 4.4 and Figure 4.3 show the three cost components when varying

route duration limit and demand variance at Q™ =2000. As can be seen from Table

4.3 and Figure 4.2, the total ordering costs in the best solution increases with the
decrease of the order quantity capacity, whereas the total holding costs decreases with
the decrease of the order quantity capacity. Evidently, the order quantity capacity as
well as inventory capacity plays a role in the trade-off between total holding costs and
total ordering costs. Intuitively, when the order quantity is more constrained, the
warehouse manager has to order more often and ordering costs are higher.
Meanwhile, the peak inventory levels are lower and the total holding costs are less.
Furthermore, Table 4.3 and Figure 4.2 show that the routing costs increases with the
decrease of route duration limit. Once the longer route duration limit is allowed, each
vehicle route may serve more customers, and the routing costs is less. Table 4.4 and
Figure 4.3 show that the holding costs increase with the increase of demand variance,

but it is unclear how the routing and ordering costs change with the demand variances.
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This is as expected as the demand variance is only directly related to the holding costs

as shown in Eg.(2.6.1). The demand variance can influence the customer assignments

to different warehouses, resulting in different routing costs and ordering costs.

Table 4.3. Routing Costs, Holding Costs and Ordering Costs with Varying Route
Duration Limits and Order Quantity Capacity (DVarF=1.0)

Route Duration Limit; Demand Variance Factor = 1.0
Order Quantity Capacity | Ordering Costs | Holding Costs | Routing Costs
M100; Qmax2000 1624.25 2013.05 2347.67
M100; Qmax1000 1817.97 1850.37 2334.77
M100; QOmax800 2266.31 1592.2 2335.85
M80; Qmax2000 1673.52 2072.03 2647.71
M80; Qmax1000 1907.1 1902.27 2601.77
M80; Qmax800 2365.88 1599.55 2636
7000
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Figure 4.2. Routing Costs, Holding Costs and Ordering Costs with Varying
Route Duration Limits and Order Quantity Capacity (DVarF=1.0)
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Table 4.4. Routing Costs, Holding Costs and Ordering Costs with VVarying Demand

Variances

a) Order Quantity Capacity=2000 and Route Duration Limit = 100

Route Duration Limit;
Order Quantity Capacity;
Demand Variance Factor

Ordering Costs

Holding Costs

Routing Costs

M100; Qmax2000; DVarF=0.7 1619.26 1943.43 2339.99
M100; Qmax2000; DVarF=1.0 1624.25 2013.05 2347.67
M100; Qmax2000; DVarF=1.3 1619.26 2061.02 2350.21

b) Order Quantity Capacity=800 and Route Duration Limit = 100

Route Duration Limit;
Order Quantity Capacity;
Demand Variance Factor

Ordering Costs

Holding Costs

Routing Costs

M100; Qmax800; DVarF=0.7 2227.5 1525.29 2334.77
M100; Qmax800; DVarF=1.0 2266.31 1592.2 2335.85
M100; Qmax800; DVarF=1.3 2266.31 1647.18 2335.85

a)Order Quantity Capacity=2000 and Route

Duration Limit = 100

b) Order Quantity Capacity=800 and Route

Duration Limit = 100

Figure 4.3. Routing Costs, Holding Costs and Ordering Costs with VVarying Demand

Variances

Figure 4.4 shows the continuous inventory control policies at four warehouses

in the best solution when varying order quantity capacity at L;™=80 and DVarF=1.0.

When the order quantity capacity (Q™=2000) is equal to the inventory capacity, the

optimal order quantity is equal to the EOQ formula according to Eq.(3.3). When the
order quantity capacity decreases to 1000 and 800, the customers as well as associated

mean demands are reassigned between warehouses 1002 and 1003. As such the
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reorder points and safety stocks of warehouses 1000 and 1001 are unaffected with the

change of order quantity capacity, but those of warehouses 1002 and 1003 are

affected. The optimal order quantities for the case Q™= 800 and Q™ =1000 are

equal to Q™ according to Eq.(3.3).

2000
1800
1600
@ 1400
£ 1200
‘g 1000
'g 800
o 600
400
200
0
depot | depot | depot | depot | depot | depot | depot | depot | depot | depot | depot | depot
1000 | 1001 | 1002 | 1003 | 1000 | 1001 | 1002 | 1003 | 1000 | 1001 | 1002 | 1003
Qmax2000 Qmax1000 Qmax800
EMean Demand (unit/day)| 417 476 505 326 1417 476 455 376 1417 476 487 344
msSD of Demand (unit/day) | 49 53 53 42 49 53 50 45 49 53 52 43
mOptimal Order Quantity 1118 | 1195 | 1231 989 1000 | 1000 | 1000 | 1000 200 200 200 200
HECO 1118 | 1195 | 1231 989 1118 | 1195 | 1168 | 1062 | 1118 | 1195 | 1209 | 1016
m Avail Icap 1731 | 1709 | 1708 | 1768 | 1731 | 1709 | 1722 | 1751 | 1731 | 1709 | 1711 | 1764
mReorder Point 969 1098 | 1156 768 969 1098 | 1049 877 969 1098 | 1118 206
Safety Stock 135 146 146 116 135 146 139 125 135 146 144 118

Figure 4.4. Continuous Inventory Control Policies at Four Warehouses with Varying
Order Quantity Capacity (Route Duration Limit=80; DVarF=1.0)

Figure 4.5 shows the continuous inventory control policies at four warehouses in the
best solution when varying demand variance at L;"=80 and Q™ =800. The

customers as well as associated mean demands assigned to the four warehouses are
unaffected with the change of demand variance. The safety stock levels and reorder
points at the four warehouses increase with the increase of demand variance, whereas
the available inventory capacities at the four warehouses decrease with the increase of
demand variance. This is intuitive as the safety stock is positively related to demand
variance, and the reorder point includes the safety stock as shown in Eq.(2.2). The

available inventory capacity is negatively related to demand variance (available

inventory capacity = 1™ —(Z,_, +Z, ;){LT, w/VDi ). The optimal order quantities are
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equal to the order quantity capacity according to Eq.(3.3). Table 4.5 shows the

MDVRP policies for the four warehouses when Lj =80 and Lj™=100. The number

of routes is decreases with the increase of route duration limits. This is because the
available vehicle capacity in each route is large enough to serve additional customers.
As can be noticed in Table 4.5, each route has the travel time to last customer less

than or equal to the route duration limit, and the mean demand of each route is less
than the vehicle capacity.

2000
1800
1600
1400
wy
2 1200
c
2
g3 1000
=]
o
2 800
600
400
200
0
depot | depot | depot | depot | depot | depot | depot | depot | depot | depot | depot | depot
1000 | 1001 | 1002 | 1003 | 1000 | 1001 | 1002 | 1003 | 1000 | 1001 | 1002 | 1003
DVarF=0.7 DVarF=1.0 DVvarF=1.3
mMean Demand (unit/day)| 417 476 487 344 117 476 487 344 117 476 487 344
W SD of Demand {unit/day) 1 14 14 36 49 53 52 43 55 60 59 49
mOptimal Order Quantity 200 200 200 200 200 200 200 200 200 200 200 200
BECQ 1118 | 1195 | 1209 | 1016 | 1118 | 1195 | 1209 | 1016 | 1118 | 1195 | 1209 | 1016
W Avail Icap 1775 | 1756 | 1758 | 1802 | 1731 | 1709 | 1711 | 1764 | 1693 | 1668 | 1671 | 1730
mReorder Point 947 1074 | 1095 787 969 1098 | 1118 206 987 1118 | 1139 823
mSafety Stock 113 122 121 99 135 146 144 118 153 166 165 135

Figure 4.5. Continuous Inventory Control Policies at Four Warehouses with Varying
Demand Variances (Route Duration Limit=80; Order Quantity Capacity=800)
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Table 4.5. Multi-Depot Vehicle Routing Policies for Four Warehouses with Varying Route
Duration Limits (Order Quantity Capacity =2000 and DVarF=1.0)

M80
depot 1000 depot 1001 depot 1002 depot 1003
No. of Routes 6 8 8 8
1000-98-55-69-82 1001-6-7-79-8 1002-65-90-96-94 1003-67-93-71
Routes 1000-88-60-78-73 1001-46-4-45-5-3 1002-95-92-91-80 1003-72-54-81
1000-14-47-17-16-15 1001-42-44 1002-66-56-84-64 1003-62

1000-59-97-75 1001-1-43-40 1002-83-57-24-22 1003-51-85-63

1000-9-13-87 1001-36-35-37 1002-20-49-19-18 1003-76-89

1000-10-11-12-53

1001-38-39-41

1002-48-21-23-25

1003-33-32-30-28-26

1001-70-61-68

1002-77-58

1003-27-29-31-34

1001-100-2

1002-74-86-52-99

1003-50

Mean Demands

61; 68; 80; 70; 43; 95

80; 90; 20; 70; 70; 60; 53; 33

71, 46; 70; 87, 80; 70; 27; 54

26; 34, 3; 27, 56, 70; 80; 30

Travel Times to
Last Customer

75.46; 77.83; 78.00;

73.52; 64.66; 55.24; 74.49;

76.91; 77.24; 76.56; 69.41;

57.10; 79.49; 15.83; 61.36;

76.68; 62.90; 72.08

79.54; 77.58; 62.61; 44.77

72.52; 78.78; 65.74; 78.36

52.26; 79.94; 75.18; 13.61

Travel Times
(begin and
end at depot)

81.78; 102.04; 97.65;

81.59; 73.66; 88.78; 113.54;

101.98; 93.52; 88.23; 90.99;

80.64; 112.91; 21.66; 74.36;

119.76; 85.75; 77.18

122.95; 113.60; 86.69; 45.77

104.80; 109.78; 98.55; 87.42

79.43; 105.02; 90.48; 17.21

M100
depot 1000 depot 1001 depot 1002 depot 1003
No. of Routes 6 6 6 6
1000-98-69-90-65-82 1001-2-6-7-8-46 1002-91-92-94-96-80 1003-67-93-71
1000-53-88-60-79-78 1001-4-45-5-3-1 1002-64-84-95-56-66 1003-85-62

Routes

1000-12-47-17-16-15-13

1001-42-44-43-40-39

1002-83-22-24-57

1003-51-76-89-63

1000-97-75-59

1001-36-35-37-38

1002-20-49-19-18-48-21

1003-33-32-34

1000-99-86-74-87-9

1001-81-54-72-41

1002-23-25-77-58

1003-31-29-27-26-28-30

1000-73-14-11-10

1001-70-61-68-55-100

1002-52

1003-50

Mean Demands

67, 98; 100, 70, 84, 85

90; 100; 80; 100, 54, 72

89; 76; 87, 100; 77, 3

26; 5; 81; 50; 100; 30

Travel Times
to last customer

87.24; 97.47; 93.83;

66.00; 64.47; 98.24,

92.71; 97.31; 76.47,

57.10; 43.57; 93.68;

90.76; 97.51; 87.34

93.14; 99.39; 99.68

96.52; 96.94; 21.66

57.32; 97.25; 13.61

Travel Times
(begin and
end at depot)

93.56; 114.50; 112.70;

71.66; 73.96; 136.45;

108.99; 103.39; 88.55;

80.64; 49.40; 106.68;

118.07; 112.38; 99.42

133.34; 135.40; 112.41

127.92; 129.74, 33.32

72.62;115.36; 17.21
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Chapter 5 Summary, Conclusions and Future Research

This research studies a two-level supply chain where a single plant supplies a single
commodity to a set of warehouses which in turn serve a set of customers with
stochastic demands. This research provides a combined stochastic chance constrained
nonlinear integer programming formulation modeling the inventory management
decisions at the warehouses and the routing of goods from the warehouses to the
customers. The warehouses are assumed to manage the inventory using a continuous
inventory policy. The model accounts for the service level at each warehouse which
reflects the probability of available inventory meeting the demand during the lead
time, probability of violation of inventory capacity, and restrictions on order quantity
volume. The routing of goods from warehouse to customers is modeled as a route
duration constrained capacitated multi-depot vehicle routing problem. Two tabu
search heuristics — type 1 and type 2, differing primarily in the way initial solutions
are generated are developed to solve the combined model. The optimal order quantity
at each warehouse is approximated using the KKT conditions.

Computational runs are conducted on variations of the standard Solomon test
instances available for vehicle routing problems with time windows. Type 2 tabu
search was found to outperform type 1 tabu search for the 100 customer instance. For
smaller customer instances, both the heuristics were found to perform equally well.
Integrating the inventory management and routing decisions by solving the combined
inventory management and routing problem was found to yield cost savings of up to
14% over the sequential approach where both problems are solved separately.

The best objective function value obtained by the tabu search heuristic was found to
increase with increase in customer demand variance, decrease with increase in order
quantity capacity and route duration limit. Variance of the customer demand was
found to have significant impact on the solution quality. The safety stock levels, the
reorder points and the total holding costs were found to increase with increase in
customer demand variance. As expected, the available inventory capacity was found
to decrease with increase in customer demand variance. It is unclear how the routing
and ordering costs change with the demand variances. This is because the demand
variance can influence the customer assignments to different warehouses, resulting in
different routing costs and ordering costs. We found that the order quantity capacity

and inventory capacity play a role in the trade-off between total holding costs and
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total ordering costs. The total ordering costs in the best solution increases with the
decrease of the order quantity capacity, whereas the total holding costs decreases with
the decrease of the order quantity capacity. The routing costs increase with the
decrease of route duration limit. Thus, the combined inventory management and
routing model can be used to study the tradeoffs between inventory holding costs,
ordering costs, and routing costs.

This research can be extended in multiple directions. The immediate next step
is to integrate warehouse facility location problem into the combined inventory

management and routing model.
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Table Al. Customer Data for Test Problem C1

APPENDIX A: Customer Data

Service | Mean Demand Service | Mean Demand

No [x |y | Time Demand | Variance No|[x |y | Time Demand | Variance
1| 45| 68 10 10 23.89 26 | 25 | 55 10 10 29.28

2145|70 10 30 208.21 27 | 23 | 52 10 10 27.51

3|42 | 66 10 10 25.79 28 | 23 | 55 10 20 113.51

4|42 | 68 10 10 26.12 29 | 20 | 50 10 10 22.02

5|42 | 65 10 10 25.40 30|20 |55 10 10 27.36

6| 40| 69 10 20| 116.36 31|10 |35 10 20 98.89

7140 | 66 10 20 119.04 32|10 |40 10 30 205.09

8| 38| 68 10 20 89.28 33| 8|40 10 40 | 389.72

9138| 70 10 10 21.88 34| 81|45 10 20 114.96

10 | 35| 66 10 10 20.76 35| 5|35 10 10 21.47
11| 35| 69 10 10 27.29 36| 5|45 10 10 23.09
12| 25| 85 10 20 105.87 37| 21|40 10 20 91.40
13| 22| 75 10 30 271.78 38| 0140 10 30 236.99
14 | 22 | 85 10 10 26.84 39| 01|45 10 20 91.27
15| 20 | 80 10 40 | 47391 40 | 35| 30 10 10 27.85
16| 20 | 85 10 40 480.16 4113532 10 10 21.22
17| 18 | 75 10 20 85.74 42 133 |32 10 20 85.88
18 | 15| 75 10 20 96.22 43133 |35 10 10 27.76
19| 15| 80 10 10 21.45 44132 |30 10 10 27.21
20| 30| 50 10 10 22.60 45|30 | 30 10 10 20.87
21| 30| 52 10 20 120.47 46|30 | 32 10 30 183.66
22 | 28 | 52 10 20 102.68 47130 |35 10 10 24.88
23| 28 | 55 10 10 21.77 48 128 | 30 10 10 28.14
24 | 25| 50 10 10 28.53 49128 |35 10 10 22.43
25| 25| 52 10 40 468.31 50| 26|32 10 10 20.38
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Table Al. Customer Data for Test Problem C1 (Continued)

Service | Mean Demand Service | Mean Demand
No |x |y |Time Demand | Variance No |x |y | Time Demand | Variance
51| 25| 30 10 10 22.76 76190 | 35 10 10 27.31
52| 25| 35 10 10 30.19 77188 |30 10 10 25.93
53(44| 5 10 20 93.77 78|88 |35 10 20 85.06
54 | 42 | 10 10 40 467.78 79 (87|30 10 10 24.83
55| 42| 15 10 10 22.75 80|85 25 10 10 20.69
56|40| 5 10 30| 199.65 818535 10 30| 271.79
57140 | 15 10 40 389.95 82|75 |55 10 20 93.05
58|38 | 5 10 30 219.18 83| 72|55 10 10 29.86
59|38 15 10 10 28.52 84 | 70 | 58 10 20 90.26
60| 35| 5 10 20 86.43 85 |68 | 60 10 30 211.05
61| 50 | 30 10 10 23.27 86 | 66 | 55 10 10 27.20
62 | 50 | 35 10 20 94.10 87 | 65 | 55 10 20 97.58
63 | 50 | 40 10 50 520.50 88 | 65 | 60 10 30 197.78
64 | 48 | 30 10 10 23.64 89 | 63 | 58 10 10 29.07
65| 48| 40 10 10 24.62 90 | 60 | 55 10 10 23.16
66 | 47 | 35 10 10 20.40 91|60 | 60 10 10 20.57
67 | 47 | 40 10 10 21.07 92 |67 |85 10 20 102.76
68 | 45| 30 10 10 25.61 936585 10 40 | 398.67
69 | 45| 35 10 10 21.01 94 165 |82 10 10 21.74
701 95| 30 10 30 230.62 95|62 |80 10 30 220.45
71195 35 10 20 98.61 96 | 60 | 80 10 10 21.76
721 53| 30 10 10 28.84 97 | 60 | 85 10 30 229.54
73192 | 30 10 10 25.69 98 | 58 | 75 10 20 83.39
74| 53 | 35 10 50| 534.26 99 | 55|80 10 10 29.73
75| 45| 65 10 20| 102.65| |100 |55 |85 10 20 84.91
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Table A2. Customer Data for Test Problem C2

Service | Mean Demand Service | Mean Demand

No |x |y |Time Demand | Variance No|x |y | Time Demand | Variance
1|52 75 10 10 21.09 26 | 8|62 10 10 20.38
2145|70 10 30 237.69 27 | 23 | 52 10 10 29.42
3|62 69 10 10 27.18 28| 455 10 20 94.88
4|60 | 66 10 10 24.63 29 | 20 | 50 10 10 24.64
5| 42| 65 10 10 25.56 30|20 | 55 10 10 21.55
6|16 | 42 10 20 85.37 311035 10 20| 103.10
715870 10 20 94.75 32|10 |40 10 30 268.15
8|34 | 60 10 20 92.42 33| 8140 10 40 333.34
9128|770 10 10 28.19 34| 8145 10 20| 110.83
10 | 35| 66 10 10 21.73 35| 5|35 10 10 24.31
11| 35| 69 10 10 25.45 36| 5|45 10 10 20.32
12| 25| 85 10 20 93.10 37| 21|40 10 20 110.00
13| 22| 75 10 30 187.07 38| 0140 10 30 184.39
14 | 22 | 85 10 10 23.68 39| 01|45 10 20 98.24
15| 20 | 80 10 40 | 387.23 40 | 36 | 18 10 10 28.34
16 | 20 | 85 10 40 335.03 4113532 10 10 24.98
17| 18 | 75 10 20 83.61 42133 |32 10 20 115.04
18| 15| 75 10 20 86.02 4313335 10 10 24.34
19 15| 80 10 10 25.98 44132 | 20 10 10 20.74
20| 30 | 50 10 10 23.51 4513030 10 10 20.47
21| 30| 56 10 20 | 106.98 46 | 34 | 25 10 30| 240.94
22 | 28 | 52 10 20 120.07 47130 |35 10 10 21.22
23 | 14 | 66 10 10 26.43 48 | 36 | 40 10 10 27.16
24 | 25| 50 10 10 22.43 49148 | 20 10 10 29.41
25|22 66 10 40 | 463.58 50 | 26 | 32 10 10 20.94
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Table A2. Customer Data for Test Problem C2 (Continued)

Service | Mean Demand Service | Mean Demand
No |x |y |Time Demand | Variance No |x |y | Time Demand | Variance
51| 25| 30 10 10 27.00 76190 | 35 10 10 20.47
52| 25| 35 10 10 25.13 77|72 |45 10 10 20.39
53144 | 5 10 20 93.80 78 | 78 | 40 10 20 103.12
54 | 42 | 10 10 40 438.08 79 (87|30 10 10 28.01
55| 42| 15 10 10 20.96 80|85 25 10 10 26.53
56|40| 5 10 30| 238.24 818535 10 30| 185.14
571 38| 15 10 40 471.20 82|75 |55 10 20 120.81
58|38 | 5 10 30 259.84 83| 72|55 10 10 23.47
59|38 10 10 10 29.01 84 | 70 | 58 10 20 96.64
60| 35| 5 10 20 108.91 85 |86 | 46 10 30 233.96
61| 50 | 30 10 10 21.30 86 | 66 | 55 10 10 25.41
62 | 50 | 35 10 20 81.04 87 | 64 | 46 10 20 90.23
63 | 50 | 40 10 50 555.76 88 | 65 | 60 10 30 232.82
64 | 48 | 30 10 10 23.85 89 | 56 | 64 10 10 28.91
65| 44| 25 10 10 21.69 90 | 60 | 55 10 10 24.60
66 | 47 | 35 10 10 29.84 91|60 | 60 10 10 21.88
67 | 47 | 40 10 10 24.79 92 |67 |85 10 20 85.50
68 | 42| 30 10 10 22.68 93 |42 |58 10 40 | 454.05
69 | 45| 35 10 10 25.21 94 165 |82 10 10 28.60
701 95| 30 10 30 236.35 95|62 |80 10 30 209.66
71195 35 10 20 94.66 96 | 62 | 40 10 10 27.69
721 53| 30 10 10 26.86 97 | 60 | 85 10 30 219.15
73192 | 30 10 10 20.61 98 | 58 | 75 10 20 96.59
74| 53 | 35 10 50| 539.30 99 | 55|80 10 10 23.91
75| 45| 65 10 20 117.35 100 | 55 | 85 10 20 96.42

38




Table A3. Customer Data for Test Problem R1

Service | Mean Demand Service | Mean Demand

No |x |y |Time Demand | Variance No |x |y | Time Demand | Variance
1|41 49 10 10 23.69 26 | 45| 30 10 17 60.20
2|35 17 10 7 13.82 27 13540 10 16 67.54
315545 10 13 40.99 28 | 41 | 37 10 16 52.17
415520 10 19 74.25 29 | 64 | 42 10 9 17.46
5|115] 30 10 26 201.42 30 |40 | 60 10 21 90.58
6| 25| 30 10 3 2.20 31[31]52 10 27 206.49
712050 10 5 5.12 323569 10 23| 130.94
8|10 43 10 9 16.66 33|53 |52 10 11 29.53
9155]|60 10 16 62.70 34 | 65| 55 10 14 40.20
10| 30 | 60 10 16 60.62 35|63 |65 10 8 17.26
11| 20| 65 10 12 34.39 36| 2|60 10 5 5.75
12 | 50 | 35 10 19 96.60 3712020 10 8 16.53
13130 | 25 10 23| 118.13 38| 5| 5 10 16 63.45
141 15| 10 10 20 106.09 396012 10 31 208.85
15130 5 10 8 18.07 40 140 | 25 10 9 22.02
16 | 10| 20 10 19 104.45 41142 | 7 10 5 7.23
17| 5|30 10 2 0.98 42 124 112 10 5 6.29
18 | 20 | 40 10 12 34.01 43123] 3 10 7 11.22
19 | 15| 60 10 17 65.32 44 |11 | 14 10 18 95.57
20| 45| 65 10 9 23.76 45| 6|38 10 16 65.61
211 45| 20 10 11 34.50 46| 2|48 10 1 0.27
221 45| 10 10 18 97.68 47| 8|56 10 27 208.38
23|55 5 10 29 200.13 48 | 13 | 52 10 36 272.63
241 65| 35 10 3 2.16 49| 668 10 30 257.56
25| 65| 20 10 6 10.43 50 | 47 | 47 10 13 47.35
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Table A3. Customer Data for Test Problem R1 (Continued)

Service | Mean Demand Service | Mean Demand
No |x |y |Time Demand | Variance No |x |y | Time Demand | Variance
51| 49 | 58 10 10 24.22 76 | 49 | 42 10 13 39.75
52| 27| 43 10 9 17.45 77153 |43 10 14 43.11
53| 37| 31 10 14 57.45 78 | 61 | 52 10 3 2.49
54| 57| 29 10 18 72.48 79 | 57 | 48 10 23 158.76
55| 63| 23 10 2 0.86 80 | 56 | 37 10 6 9.95
56 | 53 | 12 10 6 8.51 81|55 |54 10 26 182.44
57132 | 12 10 7 13.43 82 | 15 | 47 10 16 57.02
58 | 36 | 26 10 18 69.42 83|14 |37 10 11 32.81
59| 21| 24 10 28 215.24 84 11|31 10 7 11.91
60| 17 | 34 10 3 2.54 85|16 | 22 10 41 347.89
61| 12| 24 10 13 38.12 86| 418 10 35 327.76
62 | 24 | 58 10 19 101.27 872818 10 26 163.37
63 | 27 | 69 10 10 20.45 88 | 26 | 52 10 9 21.71
64 | 15| 77 10 9 23.90 8912635 10 15 99.41
65| 62| 77 10 20 | 103.50 90 | 31 | 67 10 3 1.92
66 | 49 | 73 10 25 173.11 91|15 19 10 1 0.26
6767 5 10 25 142.39 92 22|22 10 2 1.19
68 | 56 | 39 10 36| 32361 93|18 |24 10 22 | 129.86
69 | 37| 47 10 6 8.74 94 | 26 | 27 10 27 190.10
70 | 37| 56 10 5 7.16 9512524 10 20 102.09
71| 57| 68 10 15 62.41 96 | 22 | 27 10 11 34.27
72 | 47| 16 10 25 127.88 97 125|221 10 12 35.56
73144 | 17 10 9 18.03 9811921 10 10 22.27
741 46| 13 10 8 18.94 99120 26 10 9 19.34
75149 | 11 10 18 89.38 100 | 18 | 18 10 17 72.62
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Table A4. Customer Data for Test Problem RC1

Service | Mean Demand Service | Mean Demand

No |x |y |Time Demand | Variance No |x |y | Time Demand | Variance
1|25 85 10 20| 119.17 2619530 10 30| 229.69
212275 10 30 211.39 2719535 10 20 82.13
312285 10 10 26.40 28192 |30 10 10 23.80
4120 80 10 40 | 38391 29190 | 35 10 10 22.11
5|20 85 10 20 118.24 3018830 10 10 26.30
6|18 75 10 20| 110.12 318835 10 20 93.80
7| 15|75 10 20 88.65 3218730 10 10 25.22
8|15 80 10 10 23.54 3318525 10 10 28.46
9/10] 35 10 20 85.86 3418535 10 30| 251.74
10| 10| 40 10 30| 193.03 35|67 |85 10 20| 110.59
11| 8140 10 40 348.20 36 | 65|85 10 40 335.42
12| 8|45 10 20 99.34 376582 10 10 21.88
13| 5|35 10 10 23.92 3816280 10 30| 18291
14| 5145 10 10 28.26 39 160 |80 10 10 25.71
15| 21|40 10 20 84.52 40 160 | 85 10 30 192.42
16| 0] 40 10 20 98.61 41 58|75 10 20 120.76
17| 0] 45 10 20 109.11 42 155 |80 10 10 21.84
181 44| 5 10 20 104.76 43155185 10 20 94.81
19 | 42| 10 10 40 460.90 44 155 | 82 10 10 23.45
20 42| 15 10 10 22.61 45120 | 82 10 10 23.26
21140 5 10 10 22.08 46118 | 80 10 10 21.81
22| 40| 15 10 40 407.67 47| 2145 10 10 26.22
23138| 5 10 30 209.74 48 142 | 5 10 10 24.91
241 38| 15 10 10 22.91 49 142 |12 10 10 26.84
25]135| 5 10 20 112.18 50|72 35 10 30 222.54
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Table A4. Customer Data for Test Problem RC1 (Continued)

Service | Mean Demand Service | Mean Demand
No |x |y |Time Demand | Variance No |x |y | Time Demand | Variance
51|55] 20 10 19 90.90 76 |60 | 12 10 31| 279.89
521 25| 30 10 3 2.40 77123 ] 3 10 7 11.95
53 | 20 | 50 10 5 5.53 78| 8|56 10 27 216.47
54 | 55| 60 10 16 65.85 79| 6|68 10 30 210.17
551 30| 60 10 16 69.27 80 | 47 | 47 10 13 50.26
56 | 50 | 35 10 19 85.23 81|49 |58 10 10 28.62
57130] 25 10 23| 107.39 82 |27 |43 10 9 23.98
58 | 15| 10 10 20 85.21 8313731 10 14 48.15
59110 | 20 10 19 101.73 84 |57 | 29 10 18 66.70
60 | 15| 60 10 17 85.55 85|63 |23 10 2 0.86
61| 45| 65 10 9 22.70 86 21|24 10 28 213.91
62| 65| 35 10 3 2.14 8712 |24 10 13 39.19
63 | 65| 20 10 6 10.58 88 | 24 | 58 10 19 86.34
64 | 45| 30 10 17 61.25 89|67 | 5 10 25 175.88
65| 35| 40 10 16 74.73 90 | 37 | 47 10 6 8.16
66 | 41 | 37 10 16 66.18 91|49 |42 10 13 35.91
67|64 | 42 10 9 17.50 92 |53 |43 10 14 48.08
68 | 40 | 60 10 21| 111.88 93 |61 |52 10 3 2.39
69 | 31| 52 10 27 207.31 94 | 57 | 48 10 23 137.42
701 35| 69 10 23 153.42 95|56 | 37 10 6 8.92
71| 65| 55 10 14 55.13 96 | 55 | 54 10 26 190.91
72 | 63 | 65 10 8 16.26 97| 418 10 35| 339.80
73] 2|60 10 5 6.26 98 | 26 | 52 10 9 22.46
741 20| 20 10 8 19.13 9912635 10 15 46.14
/5] 5] 5 10 16 56.66 100 | 31 | 67 10 3 2.29
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APPENDIX B: Warehouse Data

Table B1. Warehouse Data for Test Problem C1

a) C1-50a-wh1

b)C1-50a-wh2

¢)C1-50b-wh1

d)C1-50b-wh2

Vertice | X |y Vertice | X |y Vertice | X |y Vertice | X |y
1000 | 41 | 59 1000 | 36 | 32 1000 | 50 | 63 1000 | 38| 8
1001 | 9|48 1001 | 36 | 43 1001 | 63 | 14 1001 | 73 | 53
1002 | 41 | 51 1002 | 40 | 44 1002 | 48 | 52 1002 | 67 | 70
1003 | 16 | 63 1003 | 12| 41 1003 | 81 | 55 1003 | 64 | 48

e) C1-75a-whl f)C1-75a-wh2 g)C1-75b-whi h)C1-75b-wh2

Vertice | X |y Vertice | X |V Vertice | X |y Vertice | X |y
1000 | 13 | 56 1000 | 54 | 57 1000 | 88 | 24 1000 | 65 | 29
1001 | 32| 81 1001 | 38| 6 1001 | 94 | 51 1001 | 40 | 10
1002 | 38 | 44 1002 | 47 | 82 1002 | 10 | 57 1002 | 91 | 59
1003 | 38 | 17 1003 | 58 | 45 1003 | 15| 5 1003 | 14 | 75

i) C1-100-wh1 j)C1-100-wh2

Vertice | X |y Vertice | X |y
1000 | 25 | 28 1000 | 12 | 10
1001 | 34| 72 1001 | 74 | 46
1002 | 42 | 43 1002 | 57 | 81
1003 | 54 | 22 1003 | 6|75
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Table B2. Warehouse Data for Test Problem C2

a) C2-50a-wh1l

b)C2-50a-wh2

¢)C2-50b-wh1l

d)C2-50b-wh?2

Vertice | X |y Vertice | X |y Vertice | X |y Vertice | X |y
1000 | 14 | 52 1000 | 27 | 41 1000 | 30 | 57 1000 | 74 | 10
1001 | 14| 78 1001 | 3|58 1001 | 84 | 10 1001 | 55| 40
1002 | 23 | 45 1002 | 48 | 71 1002 | 81 | 57 1002 | 48 | 51
1003 | 46 | 41 1003 | 32| 38 1003 | 73 | 69 1003 | 48 | 42

e) C2-75a-wh1l f)C2-75a-wh2 g)C2-75b-whl h)C2-75b-wh2

Vertice | X |y Vertice | X |y Vertice | X |y Vertice | X |y
1000 | 27 | 49 1000 | 36| 5 1000 | 67| 9 1000 | 65 | 29
1001 | 37 | 69 1001 | 22 | 75 1001 | 17| 7 1001 | 40| 10
1002 | 68 | 36 1002 | 56 | 17 1002 | 91 | 53 1002 | 91 | 59
1003 | 933 1003 | 1|47 1003 |32 | 71 1003 | 14 | 75

i) C2-100-wh1 j)C2-100-wh2

Vertice | X |y Vertice | X |V
1000 | 48 | 53 1000 | 43 | 73
1001 | 18 | 27 1001 | 12| 6
1002 | 62 | 58 1002 | 20 | 70
1003 | 55| 33 1003 | 75 | 67




Table B3. Warehouse Data for Test Problem R1

a) R1-50a-wh1l

b)R1-50a-wh2

¢)R1-50b-wh1

d)R1-50b-wh?2

Vertice | X |y Vertice | X |y Vertice | X |y Vertice | X |y
1000 | 43| 19 1000 | 53 | 52 1000 | 38 | 37 1000 | 39| 7
1001 | 48 | 59 1001 | 12 | 59 1001 | 29 | 26 1001 |59 | 9
1002 | 12 | 52 1002 | 46 | 36 1002 | 33 | 41 1002 | 22 | 75
1003 | 29 | 29 1003 | 21| 3 1003 | 13 | 28 1003 | 8| 6

e) R1-75a-wh1l f)R1-75a-wh2 g)R1-75b-whl h)R1-75b-wh2

Vertice | X |y Vertice | X |y Vertice | X |y Vertice | X |y
1000 | 54 | 10 1000 | 47 | 25 1000 | 8133 1000 | 55 | 46
1001 |19 | 31 1001 | 29| 8 1001 | 28 | 60 1001 | 14 | 16
1002 | 24 | 38 1002 | 64 | 53 1002 | 37 | 30 1002 | 55 | 38
1003 | 36 | 73 1003 | 11 | 67 1003 | 45 | 40 1003 | 12 | 40

i) R1-100-wh1 j)R1-100-wh?

Vertice | X |y Vertice | X |V
1000 | 8133 1000 | 47 | 25
1001 | 28 | 60 1001 | 29| 8
1002 | 37 | 30 1002 | 64 | 53
1003 | 45| 40 1003 | 11 | 67




Table B4. Warehouse Data for Test Problem RC1

a) RC1-50a-whl

b)RC1-50a-wh2

¢)RC1-50b-wh

d)RC1-50b-wh2

Vertice | X |y Vertice | X |y Vertice | X |y Vertice | X |y
1000 | 21 | 49 1000 | 76 | 32 1000 | 3|51 1000 | 33 | 52
1001 | 12 | 17 1001 | 21 | 56 1001 | 63 | 28 1001 | 38 | 25
1002 | 86 | 30 1002 | 11 | 27 1002 | 55 | 50 1002 | 47 | 66
1003 | 4|55 1003 | 14 | 57 1003 | 27 | 62 1003 | 28 | 20

e) RC1-75a-whl

f)RC1-75a-wh2

g)RC1-75b-whl

h)RC1-75b-wh2

Vertice | X | Y Vertice | X |y Vertice | X | y Vertice | X | Y
1000 | 2 |50 1000 | 0 |35 1000 |10 |37 1000 |43 |31
1001 |49 | 56 1001 | 50 | 50 1001 | 39| 67 1001 | 7 |52
1002 |68 | 35 1002 | 57 | 53 1002 |52 |33 1002 | 74 | 68
1003 |36 | 7 1003 | 15|58 1003 |63 |44 1003 |50 | 27

i) RC1-100-wh1

j)RC1-100-wh2

Vertice | X |y Vertice | X |V
1000 | 21 | 45 1000 | 62 | 29
1001 | 22 | 76 1001 | 9|44
1002 | 35 | 36 1002 | 21| 26
1003 | 70 | 32 1003 | 87 | 48
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Abstract: This article presents a new bi-level formu-
lation for time-varying lane-based capacity reversibility
problem for traffic management. The problem is for-
mulated as a bi-level program where the lower level is
the cell-transmission-based user-optimal dynamic traf-
fic assignment (UODTA). Due to its Non-deterministic
Polynomial-time hard (NP-hard) complexity, the genetic
algorithm (GA) with the simulation-based UODTA is
adopted to solve multiorigin multidestination problems.
Four GA variations are proposed. GAI is a simple GA.
GA2, GA3, and GA4 with a jam-density factor parame-
ter (JDF) employ time-dependent congestion measures in
their decoding procedures. The four algorithms are em-
pirically tested on a grid network and compared based
on solution quality, convergence speed, and central pro-
cessing unit (CPU) time. GA3 with JDF of 0.6 appears
best on the three criteria. On the Sioux Falls network,
GA3 with JDF of 0.7 performs best. The GA with the ap-
propriate inclusion of problem-specific knowledge and
parameter calibration indeed provides excellent results
when compared with the simple GA.

1 INTRODUCTION

Nowadays, many metropolitan areas have adopted var-
ious traffic management techniques (Adeli and Samant,

"To whom correspondence should be addressed. E-mail:
ampol.kar@kmutt.ac.th.

© 2011 Computer-Aided Civil and Infrastructure Engineering.
DOI: 10.1111/j.1467-8667.2011.00722.x

2000; Samant and Adeli, 2000, 2001; Karim and Adeli,
2002a,b, 2003a,b,c; Ghosh-Dastidar and Adeli, 2003;
Adeli and Jiang, 2003; Jiang and Adeli, 2004a,b, 2005;
Liu and Danczyk, 2009; Hamad et al., 2009; Mirchan-
dani et al., 2010; Ng et al., 2010; Sun and Kondyli,
2010; Ye and Zhang, 2010) to maintain an efficient
flow of traffic. Capacity reversibility strategy (a.k.a.
contraflow) is a traffic management method, which
essentially accommodates the unbalanced traffic flows
between two driving directions on a congested roadway
section during daily peak periods (Tuydes, 2005). Over
the past years, the literature on contraflow emergency
evacuation has considerably increased, especially in the
United States, due to natural and man-made disasters.
Tuydes (2005), Shen et al. (2007), Kalafatas and Peeta
(2009), and Xie et al. (2010) provided comprehensive
reviews on this topic. Because the contraflow strat-
egy becomes more widely accepted mainly for the
emergency evacuation, the previously described imple-
mentation issues on costs, safety, and control should
be resolved. Thus, the contraflow for daily traffic man-
agement may be reconsidered as a workable option,
especially for the urban cities with available contraflow
emergency evacuation plans. The practicality assump-
tions are made in this article, including acceptable cost,
viable safety policy, sufficient manpower, signage, and
potential of blockage actions, which are required to
divide a multilane roadway segment.

This article proposes a time-varying lane-based ca-
pacity reversibility (TVLCR) model based on the
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user-optimal dynamic traffic assignment (UODTA) for
peak-period traffic management on a daily basis. The
model embeds a traffic flow theoretical model, namely,
the cell transmission model (CTM, Daganzo, 1994) that
can capture traffic realisms such as shockwaves and
spillovers. It is noted that the CTM-based formula-
tions for traffic network design problem can be found
in Karoonsoontawong and Waller (2005, 2006, 2007,
2010), Kalafatas and Peeta (2009), and Ukkusuri and
Waller (2007). Because the proposed model is Non-
deterministic Polynomial-time hard (NP-hard), a global
optimization method that employs the simulation-based
UODTA is suitable for this problem because it can
overcome the local-optimum issue. A simple genetic al-
gorithm (GA) and three variations of problem-specific
knowledge-based GAs are proposed, and the perfor-
mances of these GA algorithms are compared on a test
problem. Then, the best performing algorithm and the
simple GA are applied to a larger size problem.

2 LITERATURE REVIEW

Due to the space limitation, only the most rele-
vant literature review is described here. The pro-
posed formulation is developed on the basis of the
works by Tuydes (2005) and Tuydes and Ziliaskopou-
los (2004, 2006). Tuydes and Ziliaskopoulos (2004) for-
mulated the system-optimal dynamic traffic assignment
(SODTA)-based capacity reversibility problem as a lin-
ear program (denoted by SODTA-CR), which prop-
agates traffic based on the CTM to better represent
vehicle-level movements, to capture spatiotemporal
changes in disaster conditions, and to enable op-
timal capacity reversibility calculation. SODTA-CR
has a major drawback on the continuous capac-
ity redistribution variables that allow an unrealistic
fraction-of-lane solution. Tuydes (2005) proposed three
extensions of SODTA-CR: lane-based capacity re-
versibility (SODTA-LCR), total-or-nothing capacity
reversibility (SODTA-TCR), and budgeted capacity
reversibility (SODTA-BCR). SODTA-LCR addresses
the drawback of SODTA-CR by using integer redis-
tribution variables (i.e., lane-based reversibility). The
deficiencies of lane-based capacity-reversibility models
(including our proposed formulation) are on the cost
of the street divisions and the risk in assigning contra-
dicting flows on the same highway. The SODTA-TCR
was developed to address these criticisms by allowing ei-
ther whole road segment reversibility or none. SODTA-
TCR is a restricted version of the SODTA-LCR,
which in turn is a restricted version of SODTA-CR.
SODTA-BCR accounts for the limited resources for the
operation and construction of the contraflow inter-
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change segments such as the required number of police
patrol cars to block the intersections at the beginning,
end, and along the reversed segments.

SODTA-CR, SODTA-LCR, SODTA-TCR, and
SODTA-BCR have two major assumptions. First, these
models assume that drivers fully follow the central in-
structions on the system-optimal evacuation paths as-
signed to different drivers. Thus, these models can
be single-level because the drivers and the evacuation
manager share the same objective in minimizing to-
tal system travel time (TSTT). Second, the capacity
reversibility is unchanged (static) over the simulation
period, so the models cannot determine the optimal
starting time and duration of reversibility. Tuydes and
Ziliaskopoulos (2006) pointed out that a deficiency of
the SODTA-based formulations is high computational
cost due to their analytical nature, and proposed a tabu-
based heuristic to address this deficiency. Because prob-
lems of this type have complex solution space, a major-
ity of the research efforts have focused on tackling this
stream of problems using meta-heuristics (e.g., Sarma
and Adeli, 2001; Fan and Machemehl, 2008; Ng et al.,
2009; Unnikrishnan et al., 2009; Zeferino et al., 2009;
Kang et al., 2009; Yang et al., 2007; Kaveh and Sho-
jaee, 2007; Paya et al., 2008; Mohan Rao and Shyju,
2010). Among various streams of meta-heuristics, the
GA has been widely used, and it is recognized as an ef-
fective search procedure for these types of difficult op-
timization problems. Since 1993, GAs have been used
in various civil engineering fields, such as construction
engineering (e.g., Al-Bazi and Dawood, 2010; Cheng
and Yan, 2009), transportation engineering (e.g., Vla-
hogianni et al., 2007; Teklu et al., 2007; Lee and Wei,
2010), highway engineering (e.g., Kang et al., 2009), and
design optimization (e.g., Adeli and Cheng, 1994a,b;
Hung and Adeli, 1994; Adeli and Kumar, 1995a,b;
Sarma and Adeli, 2000a,b, 2001, 2002; Kim and Adeli,
2001; Mathakari et al., 2007; Dridi et al., 2008), struc-
tural control (e.g., Jiang and Adeli, 2008), and envi-
ronmental pollution (e.g., Martinez-Ballesteros et al.,
2010).

Xie et al. (2010) proposed a bi-level model for the
combined lane-based capacity reversibility and cross-
ing elimination problem. The model is bi-level to cap-
ture different objectives between the roadway manager
(minimize TSTT) and the drivers (minimize individual
travel time). In other words, Xie et al. (2010) assume
drivers do not receive instructions from the roadway
manager, and behave in a user-optimal manner. Xie
et al. (2010) also assume static reversibility, and devel-
oped a Lagrangian relaxation-based tabu search.

Our proposed model is bi-level and allows lane-based
capacity reversibility, similar to Xie et al. (2010). How-
ever, our model allows time-varying reversibility with
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different reversibility durations for various candidate
link pairs, so that the optimal starting times and the
optimal reversibility durations for candidate link pairs
can be determined for peak-period traffic management
on a daily basis. In our solution method, we employ the
dual analysis results from Tuydes and Ziliaskopoulos
(2004) in developing decoding procedures for the pro-
posed GAs.

3 PROPOSED FORMULATION

Tuydes (2005) formulated the SODTA-based static
lane-based capacity reversibility problem as a mixed
integer program (SODTA-LCR). We extend SODTA-
LCR to become a mixed-zero-one continuous bi-
level program (BLP) for the combined UODTA and
TVLCR problem. The proposed model is denoted
by BLP-TVLCR. The upper-level problem minimizes
TSTT subject to the TVLCR constraints and the
UODTA (the nested program). It is noted that differ-
ent specifications of UODTA produce slightly different
models; that is, using the linear programming formula-
tion of Ukkusuri (2002) creates a mixed 0-1 continu-
ous linear bi-level program, but is only suitable for a
single destination. On the other hand, using the Visual
Interactive System for Transport Algorithms (VISTA)
simulator allows solution with multiple destinations, but
destroys the linear structure of the lower level.

This formulation allows us to devise an approxima-
tion algorithm to estimate the dual variables of the
lower-level linear constraints with respect to the upper-
level linear objective function in our proposed solu-
tion method. It is assumed that possible lane rever-
sal strategies for all candidate link pairs are limitedly
enumerated, including starting times, reversibility dura-
tions, and numbers of reversed lanes. The lane-reversal
starting time for each candidate link pair is within its
allowable range, and the lane-reversal duration for each
candidate link pair is within a common feasible range.
We do not allow the total link reversibility by setting
the minimum number of lanes for each direction to
one, so that the network connectivity problem is not re-
sulted. Over the simulation period, the lane reversal is
allowed at most once for each candidate link pair. Two-
way streets are considered in the formulation. However,
for a one-way street, an artificial link with zero capac-
ity can be added in the opposite direction to represent
the reversibility potential (Tuydes, 2005). In this way,
the total network capacity remains the same although
the number of links in the augmented network may be
increased. The proposed formulation (BLP-TVLCR) is
shown below and the notations are given in Table 1.

min D 2 () @
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M=l =1 Vit e U(E - £Y),
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x=[xVieCteT]; y=[yv@ j)eEteT]
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The candidate roadway sections for capacity re-
versibility are contained in the set E. A candidate
link pair & —&* has the total number of lanes of
l¢_¢«, and the link pair £ —&* is broken down into
cell pairs contained in the set W(§ —&*) according
to the CTM. The set of feasible numbers of lanes in
the redesigned network is Az g ={1,..., Lt_¢ — 1}
with the assumption that total capacity reversibility
is prohibited. The feasible capacity reversibility time
periods for link pair &€ — £* are contained in the set
®g_g. The set Pg_g(¢) contains the time period
¢ € dz_ that includes time interval t. The leader’s
objective function (Equation (1)) minimizes TSTT
subject to a set of time-varying capacity reversibility
constraints (Equations (2)-(9)) and the UODTA
program (Equation (10)). TSTT basically equals the
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Table 1
Notations for proposed mathematical formulation

Sets

E = set of candidate link pairs (§ — &* € E)
T = set of discrete time intervals
E; E; = set of cell connectors; set of sink cell connectors
FS(i)= set of cell connectors emanating from cell i
RS(i) = set of cell connectors emanating to cell i
W = set of candidate cell pairs for lane reversal implementation; ¥ € C
W (& — &*)=set of candidate cell pairs corresponding to link pair § — &*;
(Based on CTM, a link pair £ — £* is broken down into several cell pairs i — i* € W(§ — &*))
A¢_g+ = set of feasible numbers of lanes corresponding to link pair & — £* in the redesigned network;
ANegr = {1, ... lg_gx — 1}
®;_¢+ = set of feasible reversal time periods for link pair & — £* (Note: ®;_¢« must be enumerated based on allowable
ranges of reversibility starting time and reversibility duration) (see Table 2 for an example)
@ _¢+(t)=set of feasible reversal time periods covering time interval ¢ for link pair § — &*
T; _¢» = set of time intervals composing the time window for all feasible lane-reversal time periods for link pair £ — &*
(Note: T; _¢+ C T) (see Table 2 for an example)
T;_i~ = set of time intervals composing the time window for all feasible lane-reversal time periods for cell pair
i —i*(Note : Ti_j» = Te_g+ Vi—1i* € W(§ — £%))

Parameters

8! = ratio of link free flow speed and backward propagation speed for cell i and time interval ¢
N! = maximum number of vehicles in cell / at time interval ¢
N/_;» = maximum number of vehicles in cell pair i — i* at time interval ¢ (N_. = N + N.)
Q) = maximum number of vehicles that can flow into or out of cell i during time interval ¢
Q' _,» = max number of vehicles that can flow into or out of cell pair i — i* during time interval t; (Q!_,. = Q! + O'.)
l¢_g« = total number of lanes corresponding to link pair £ — &*

Variables

x; = number of vehicles in cell / at time interval ¢
y;;= number of vehicles moving from cell i to cell j at time interval ¢
% _g+ = 1 if number of lanes corresponding to link & is equal to kK and number of lanes corresponding to link £* is equal to
l;_g= — kin time interval ¢ in the redesigned network; equal to 0 otherwise. Vk € Ag_gx = {1, ..., [z_g+ — 1}
Di_i» = 11if the lane reversal is implemented in time interval ¢ on cell pair i — i*; 0 otherwise
vg_g= ¢ = 1 if the lane-reversal time period ¢ for link pair £ — &* is selected; 0 otherwise. V¢ € ®;_¢«
r} = ratio of redesigned capacity of cell i to the cell pair capacity in time interval ¢

difference between the summation of arrival times at the optimal solution). Equation (2) enforces that

the sink cell (3_; ;e g, 27 (£ - ¥;;)) and the summation only one capacity reversibility time period is chosen

of departure times from the source cells (a constant due for each candidate link pair; that is, ve_¢ » =1 and

to the fixed departure time OD demands assumption, Vigrp =0V # ¢/, € Pg_gr. Equation (3) deter-

so it can be dropped from the model without affecting mines the variable p;_,., where p;_,. = 1 if the cell pair
Table 2

Illustration of sets ®¢_gx, Py_g+(¢), and Tz_g-

Assume allowable range of reversibility starting time is [t2,t3] and
allowable range of reversibility duration is [1,2 time intervals].
Dy = (@1, 92, ¢3, 94); T+ = (12,13, 14}

¢l Deer (1) = P+ (15) = {}; Pe—e- (12) = {91, $2};

02 Op_e«(13) = {92, 93, p4}; De_e(t4) = (P4}

¢3
o4

tl t2 t3 t4 t5 Link reversal
time period
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i —i* at time interval ¢ adopts a capacity-reversibility
strategy, and p! .. =0 otherwise. Equation (3) guar-
antees that the cell pairs, belonging to the same link
pair, adopt the same capacity reversibility time period.
Equation (4) enforces z; .., Vk € Ag—¢ to be 0 if no
capacity reversibility strategy is adopted at time inter-
val ¢ on link pair & —&*(i.e., > yco, (1) Ve—t79 = 0)-
If a capacity reversibility strategy is adopted at time
interval ¢ (i.e., Y 4cq, .. () Ve—sr9 = 1), then Equa-
tion (4) redesigns the numbers of lanes for link
pair £ —&* at time interval ¢ (e.g, z _,., =1 and
Z g =0Vk#K, ke Asg). Apparently, the original
numbers of lanes for each link pair can be chosen; then,
it implies that the formulation allows a do-nothing op-
tion on each candidate link pair. Equations (5) and (6)
enforce v; ¢+ 4 and z;_,. , to be binary variables. Equa-
tion (7) determines the ratio of the redesigned capacity
of each cell pair i — i*. Equations (8) and (9) enforce the
variables p; ;. and z; .., to be 0 for the time intervals
outside the capacity-reversal time window 7;_;-, where
T: _¢+ contains possible time intervals to adopt capacity
reversibility.

The nested UODTA linear program (10) makes all
vehicles behave in the user-optimal manner; that is,
UODTA returns user-optimal flows (x and y) given in-
put parameters p and r. The constraints include the cell
mass conservation. The traffic flow between two cells is
constrained by the number of vehicles occupying the up-
stream cell, the remaining capacity of the downstream
cell, and the maximum flow that can get out of the up-
stream cell and into the downstream cell. The specific
modifications to UODTA are on the following three
constraint sets:

Z Vi < 8 (ri Ny + (1=pi_i) Nl — x{)
(jui)eRS(i)

Viev,teT (11)

Z Vi <riQii+(=pi_)Q YieWV,teT
(j.i)eRS(i) (12)

Z Vi <ri Qi+ (1-pj_p)Q View 1 eT
(i, ))eFS(i) (13)

Equations (11-13) concern candidate cell pairs. For
candidate cell pair i — i*, if the time interval ¢ is contained
in T\7;_;+, then p;_.. = 0 (see Equation (8)),r/ = 0 (see
Equations (7) and (9)), and Equations (11-13) result in
the constraints with original values of N and Q:. If the
time interval ¢ is contained in 7;_;«, then the upper-level
problem determines whether p;_,. =1 or p!_. =0.If
pi_;» =1, then Equations (3), (4), and (7) ensure that
rf > 0, and Equations (11-13) result in the constraints

with the associated redesigned values of N/ and Q. If
pi_;» =0, then Equations (3), (4), and (7) ensure that
rf =0, and Equations (11-13) result in the constraints
with original values of N/ and Q.

4 SOLUTION METHOD

A simulation-based heuristic approach is proposed in
this article. The lower-level program is replaced by the
simulation-based UODTA (Ziliaskopoulos and Waller,
2000), which uses a mesoscopic simulator based on
an extension of CTM, to propagate traffic and sat-
isfy capacity constraints as well as the first-in first-out
traffic property. The upper-level program (Equations
(1-9)) can be substituted by a metaheuristic algorithm.
In this article, the GA is adopted due to its evident
efficiency and effectiveness in literature (e.g., Lee and
Wei, 2010; Adeli and Cheng, 1994a,b; Sarma and Adeli,
2001; Mathakari et al., 2007; Teklu et al., 2007; Ng et
al., 2009; Unnikrishnan et al., 2009; Kang et al., 2009).
Because the proposed formulation is linear bi-level, the
dual variables of the lower-level constraints (Equations
(11-13)) with respect to the upper-level objective may
be approximated in a similar manner as Lin et al. (2008).
This inspires us to incorporate the approximated dual
variables in the decoding procedure of GA. Three de-
coding procedures are developed with the increasing
degree of randomness, yielding three problem-specific
GAs. These are tested against each other and the simple
GA in the next section. This study employs a C source
code named GENESIS Version 5.0 (Grefenstette, 1990)
for the GA implementation with major modifications
that will be described in the next subsections.

4.1 Decision variables and solution representations

There are three sets of decision variables for each
candidate link pair & —&* in the proposed GA: re-
versibility starting times (ST¢_g<), reversibility du-
rations (RD¢_g), and the modified numbers of
lanes in both driving directions after reversibility
(MNLg and MNLg-). Note that the reversibility ending
times (ET¢_¢+) is the summation of ST;_¢- and RD;_¢-.
Based on our initial experimental results, the direct use
of these variables regarding the capacity reversibility
time period and the redesigned numbers of lanes for
all candidate link pairs indeed did not yield a signifi-
cant improvement in TSTT. This caused us to introduce
randomness to the incorporation of problem-specific
knowledge. An additional decision variable for each
candidate link pair & — &* is created: the reversibility
indicator variable (RIV;_;-). The indicator variable
is equal to 1 if the reversibility is allowed for the
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candidate link pair, and equal to 0 if the reversibility
is prohibited. The reversibility indicator variable allows
randomness to play a role on the decision of capacity re-
versibility adoption for each candidate link pair. With-
out this variable, it is likely that the population would
be composed of similar chromosomes, and thus prema-
ture convergence of GA would result. The reversibility
indicator variable is employed to prevent the premature
convergence of GA.

The appropriate representation for RIV;_g is bi-
nary; those for ST;_¢- and RD;_¢+ are real-valued; and
those for MNL; and MNL;- are integers. That is, the
genetic structures are the vectors of mixed integers.
Because ST ;- and RD;_;- have to be within their
allowable ranges [/bsr, ubst] and [Ibgp, ubgrp], respec-
tively; thus, the fractional variables (ranged between 0
and 1) can be employed instead of the real-valued vari-
ables. Also, RIV;_¢-, MNL;, and MNLg- can be deter-
mined by fractional variables. The fractional variables
can be translated into a binary string. Thus, the vec-
tors of mixed integers can be encoded into binary string
structures.

4.2 Computer programming implementation for the
TVLCR

In our implementation, duplicated links corresponding
to candidate links are added to the network, and time-
based capacity factors associated with these candidate
and duplicated links are employed to represent various
capacity reversibility strategies. For example, a candi-
date link pair is link (A,B) and link (B,A) (i.e., from
nodes A to B and from nodes B to A, respectively). The
duplicated links (A’,B") and (B',A’) are added to the
network such that (A’,B’) is a copy of (A,B) and (B',A’)
is a copy of (B,A). To incorporate different TVLCR
strategies, a set of time-based capacity factors associ-
ated with each candidate link is employed. A capac-
ity factor, which is ranged between 0 and 1, indicates
the proportion of the original link capacity for a candi-
date link during a time period. To illustrate, links (A,B)
and (B,A) represent two-lane roadways, and a TVLCR
strategy states that the link (A,B) should have three
lanes during the second hour of the three-hour simu-
lation period (in other words, a lane should be reversed
from the second direction to the first direction during
the second hour). Then, from 0 to 3,600 seconds and
from 7,201 to 10,800 seconds (i.e., during the first hour
and the third hour), the capacity factors of the original
links (A,B) and (B,A) are equal to 1, and the capacity
factors of the duplicated links (A’,B’) and (B’,A’) are
equal to 0. This implies no capacity reversibility in the
first hour and the third hour. From 3,601 to 7,200 sec-
onds (i.e., during the second hour), the capacity factors
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of (A,B) and (A’,B’) are equal to respective 1 and 0.5,
and those of (B,A) and (B',A’) are equal to respective
0.5 and 0. This implies three lanes in the first direction
(i.e., an original two-lane roadway and a lane reversed
from the coupled link) and one lane in the second di-
rection (i.e., an original two-lane roadway becomes a
one-lane road). Formally, the capacity factors of link
pair § — &* can be determined from the subprocedure
below.

Subprocedure DetermineCF (§ — &%)
CFe(t) =1, CFe(t) =1, CFe(t) = 0, CFen(t) = 0;
vVt € [0, ST) U (ET, SimDuration)]
Fort € [ST, ET)
if MNLs < ONL;
CFg(t) = MNL&/ONL&, CF;’&/(I) =0; CFg*(l) =1;
CF¢v = (MNLg« — ONLg)/ONLg-
else CF;(I) =1; CFg/(l‘) = (MNLg - ONLE)/ONLg,
CFe:(t) = MNLg«/ONLgs; CFen(t) =0
where

CF¢(t) and CF¢-(t) = capacity factor for the original
links & and &* at time ¢;
CF¢(t) and CF¢-(t) = capacity factor for the dupli-
cated links &’ and &% at time f;
MNL; and MNL;- = modified number of lanes after
reversibility for links & and &*
ONL; and ONL;- = original number of lanes of links
& and &%

4.3 Problem-specific knowledge for development of
GA2, GA3, and GA4

In the development of GA2, GA3, and GAA4, the
problem-specific knowledge of BLP-TVLCR is heuristi-
cally taken from the dual variable analysis of the analyt-
ical SODTA-CR in Tuydes (2005), which was employed
in the tabu-based heuristic approach for the evacuation
contraflow problem (Tuydes and Ziliaskopoulos, 2006).
The relationship between the dual variable of the lower-
level program and the upper-level objective in BLP-
TVLCR is not known, but it may be approximated by
the analysis of the single-level system-optimal counter-
part. This approximation approach is in a similar man-
ner to Lin et al. (2008). The dual variable analysis of the
SODTA-CR is briefly described here. Over the analysis
period, the total marginal cost of reversing one more
unit of capacity in the direction of one cell will have
the same marginal cost as that of reversing in the di-
rection of the coupled cell (Tuydes and Ziliaskopoulos,
2004). The total marginal costs are the dual variables
associated with the constraints Equations (11-13) in the
proposed model. These dual variables are nonzero only
when the corresponding constraints are binding (i.e., the
storage or flow capacities are fully used). The marginal
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costs of reversing a unit capacity in a link can be
approximated by a congestion measure: the total num-
ber of times over the analysis period that link capacities
are used at the maximum levels.

In our work, the modified congestion measure is
determined as follows. To account for time-varying
reversibility, the simulation period (SimDuration) is
divided into many time slices where the duration of
time slice is called SecPerSlice. The congestion measure
of link & in time slice j is a binary variable RC;;, which
equals to 1 if it is congested, and 0 otherwise. In time
slice j, the traffic count per lane on candidate link
& is calculated from the simulation-based UODTA
flows:  link_count_per lanes; = l’('g;wfmt“ Hink-county;

§(/)+CFy(j))-ONLg
where link_count;; and link_county; = traffic counts
on original link & and duplicated link &’ in time slice
j; CF¢(j) and CFg(j) = link capacity factors of link &
and &’ during time interval j.

If the traffic count per lane on link £ exceeds the fac-
tored jam density per lane during a time slice j, RC;;
is set to 1, indicating the congestion on this link at this
time slice j. The jam density per lane is calculated from
the link length divided by the vehicle length, and the
factored jam density per lane is equal to the product of
common jam-density factor (JDF, an algorithm param-
eter) and the jam density per lane. Note that the fac-
tored jam density per lane is employed as a congestion
criterion on links, and this is not used in the proposed
math formulation. In our experiment, we use the vehi-
cle length of 20 feet, which is determined from the sum
of the default vehicle length and distance headway. The
JDF of 0.5 is initially employed in the experiment as we
assume that at 50% of the jam density, the traffic flow
reaches capacity.

For each candidate link pair, the difference in the
congestion measures over each time slice can be calcu-
lated, and this difference indicates the driving direction
that should be assigned more lanes reversed from its
coupled link during this time slice. For candidate link
pair (&, &%), if the direction of link £ is the first direction
and that of link £* is the second direction, then we define
ARC¢_¢« j = RCij — RC;+j. Then, ARC;_;- ; equals to
1 (i.e., RC;j =1 and RCg-; =0), implying the link &
should receive more lane(s) reversed from the link &*
during time slice j. ARC;_;- j equalsto-1 (i.e., RC¢; = 0
and RC;-; = 1) implies the opposite. A RC;_¢- ; equals
to 0 (i.e., RC;j =0 and RCi-; =0; or RC;; =1 and
RC+j = 1), implying no reversibility should be adopted
in time slice j. FTSg_¢- is the first time slice j with
the nonzero value of ARC;_¢+ ; and within the range
of allowable starting time [lbgsr, ubsr]. FTSs_¢ is set
to -1 if there is not such time slice. If FTS¢_¢- is
not equal to -1, ARC;¢_¢- stores the nonzero value of

ARC;_g- j LTS; ¢ is the last successive time slice that
has this same congestion-measure difference value; that
is, the time slices j+1,j+2,..., LTS;_¢ have the
same congestion-measure difference value (ARC;_¢-)
value as the time slice j (ARC;_z- = ARC;_- ).

4.4 Encoding procedure and decoding procedure

The lower bound, upper bound, and required preci-
sion of each decision variable must be specified. A de-
cision variable i (gene i) can be replaced by a frac-
tional variable f;. The decision variables share the
same lower bound (f™" = 0) and upper bound ( f™* =
1). That is, the TVLCR constraints are replaced by
boundary constraints (because a decision variable is
determined by the corresponding fractional vari-
able and feasible range). The fractional variables
have the same required precision (prec after deci-
mal point). The required bits (m) for each decision
variable is determined from (Goldberg, 1989). 2! <
((fmax _ fminy . qoprec 4 1) < 2™, We consider the re-
quired precision of 2 is sufficient (m = 7). The total
bits required to represent a solution (i.e., the length of
a chromosome) are Length = m - Ny, | E|, Wwhere Nyar
is the number of variables per candidate link pair; |E|
the number of candidate link pairs. Ny, for GA1, GA2,
GA3, and GA4 are respective 4, 2, 2, and 3. | E| for the
grid and Sioux Falls networks are 12 and 14. Further,
the GA implementation translates the binary structures
into the packed bit arrays based on the octal number
representation to maximize both space and time effi-
ciency in manipulating structures (Grefenstette, 1990).
Figure 1 shows binary string structures as well as asso-
ciated decoded variables employed in four GA varia-
tions. In GA1, GA2, GA3, and GA4, we employ respec-
tive 4, 2, 2, and 3 fractional variables per candidate link
pair; for example, the fractional variables f;_z« 1, fe—¢- 2,
fe—e+3, fe—ex 4 are used to determine the decision vari-
ables RIVy_g+; STe_g«; RDg_g»; MNLg; and MNLg- in
GALl.

The decoding procedure translates a binary string
into a set of real numbers (real;) corresponding to a
set of fractional variables (f;); then, f; is determined
from f; = Z'f,“f‘l Vi=1,2,..., Nar - |E|; where real; is a
real number corresponding to the binary string associ-
ated with the ith decision variable. For BLP-TVLCR,
there are only two constraint sets: TVLCR constraint
and UODTA conditions. Recall that the former con-
straint set is replaced by the boundary constraints. Be-
cause fMn" =0 and f™ =1, this decoding procedure
always satisfies the boundary constraints. Also, because
the simulation-based UODTA is employed for func-
tional evaluation, the UODTA conditions are always
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GA Blnary Strlng for Link Pair £ — &'/ Fractional Variables /Decoded Decision Variables

GAL | ____ _ _ 5 _ 5 ___ | feea;feea; feea; fega/RIVe g ; STeg; RDe g MNLgzand MNL s
GA2 | __ _ _ _ _ _ . / f.f—fkl ,fé_éf*z / RIVf_gz* RD.f_é:fk

GA3 | _ e /fg gl,ff &2 / RIV,;f*' MNLfandMNLg

GA4 | ______ _ o o / f§ f‘lﬂff EZsff 5*3/ RIV:{ MNL/;andMNLE,Rfo*

Fig. 1. Illustration of binary string structures in proposed GA variations.

satisfied. Thus, the constraint handling mostly based on
the concept of penalty functions that penalize infeasible
solutions, is not required. The decoding procedures for
GAL1 are shown below.

Decoding Procedure for Candidate Link Pair & — £* in
GAl
RIVi_ g =0 if fig1 €[0,0.5) and 1 if figq €
[0.5,1]
IfRIV; & =1
STE,%&* = lbsr + (MbST - leT) . fg,g*’z;RDg,g* =Ibgrp
+ (ubrp — Ibrp) - fier3
ET¢ ¢ =STs_g+ + RDeg_e; MNL; =1+ | (ONL:g+
ONLg —2+40.999999) - fe_g+ 4]
MNLg = ONLg + ONLg- — MNL;
Call subprocedure DetermineCF (& — £*)
Else if RIVE g = 0
RIVe ¢ = —1;8T¢_g« = 0;RD¢ ¢ = SimDuration;
ET¢ ¢+ = STs_g+ + RDg g
MVLE = ONLg; MNLg- = ONLg-
CF:(t) = 1;CFex(t) = 1;CFe(t) = 0; CFe () =0
vt € [0, SimDuration]

The decoding procedures in GA2, GA3, and GA4
are developed based on the described problem-
specific knowledge (specifically, FTSs_g«, A RC;_g+, and
LTS;_¢+). Apparently, these variables indicate the time
period that the unbalanced traffic densities takes place
and the driving direction with higher traffic density.
Based on our initial experimental results, the direct use
of these variables regarding the capacity reversibility
time period and the redesigned numbers of lanes did
not yield a significant improvement in TSTT. Thus, we
devise three decoding algorithms for GA that employ
some variables from F7S;_¢, ARC;_g«, and LTSz ¢ to-
gether with the genes to determine the reversibility time
period and the redesigned numbers of lanes. These are
named GA2, GA3, and GA4 with the increasing degree
of randomness.

GA2, GA3, and GA4 determines the variable
RIV:_g from the corresponding gene in the chromo-
some for link pair & — £*. If FTS:_¢- is not equal to -1
(i.e., this link pair have unbalanced traffic densities,
and may have capacity reversibility), then the variable
RIV;_g- is unchanged; otherwise, RIV_;- is set to 0.
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GAZ2 determines the starting reversal time from F7T'Sg_¢-
GA2 employs ARC;_¢+ to indicate the driving direc-
tion to be improved; then, it deterministically adds a
lane in that direction and decreases a lane in the op-
posite direction. GA2 allows the corresponding gene in
the chromosome to determine the variable RD;_¢- (i.e.,
randomness plays a role here). GA3 is similar to GA2
except two points. First, the variable RD;_;- is deter-
mined from LTS¢_¢, FTS;_¢-, and its lower and upper
limits. Second, the redesigned numbers of lanes are de-
termined from the corresponding genes in the chromo-
some for link pair & — £*. GA4 is the combination of
GA2 and GA3. GA4 determines the variable RD;_;. in
the same way as GA2, but determines the redesigned
numbers of lanes in the same way as GA3. Formally,
the decoding procedures of GA2, GA3, and GA4 are
shown below.

Decoding Procedure for Candidate Link Pair & — £* in
GA2, GA3 and GA4
RIVE*E* =0 if fg,s*,l € [0, 05) and 1 if f&—,é—*& €
[0.5,1]
If FTS; ¢ =—1 (i.e., the evidence shows that re-
versibility is not necessary), set RIV;_g = 0.
IfRIV: & =1
ST _g+ = FTS:_g - SecPerSlice;
Ibrp + (ubRD — leD) . féfé*,Z for GA2
max(Ibrp, min(ubgp, (LTSg_g* — FTS: ¢
+1) - SecPerSlice)) for GA3
lbgrp + (LtbRD — leD) . fé—é*,S for GA4

ET: s = STe ¢ + RD;_¢.
If ARC; ¢ = 1,

min(MNL; + 1, ONL; + ONLg — 1)
for GA2
L(fe—er2 - (ONLg + ONLgx — 1 — MNLg+
0.999999)] + MNL; for GA3 and GA4

MNL;. = ONL; + ONL;. — MNL;
Else if ARC&,S* = —1,

min(MNLg +1, ONLg + ONLg+ — 1)
for GA2

[ fi—er2 - (ONLgx + ONLge — 1 — MNLg+
0.999999)] + MNLg- for GA3and GA4

MNL, =

MNL;. =
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MNL; = ONL; + ONLg. — MNLg.

Else if RIVg_g* = 0, set RIV;_E*, ST&_E*, RDE—E*’
ET: ¢, MNL;, MNL;- to the incumbent.

Call subprocedure DetermineCF(§ — &%)

4.5 Fitness evaluation

After converting the chromosomes to the vectors of de-
cision variables, the UODTA with the decoded TVLCR
strategy is solved by the simulation-based UODTA.
TSTT for each solution is used to calculate a fitness
measure. Because the objective of the problem mini-
mizes TSTT, the functional form shown in Step 2 is
adopted to ensure that the less TSTT corresponds to
the greater fitness value. TSTT is determined from the
UODTA flows. For GA2, GA3, and GA4, the con-
gestion measures (FTSz_g+, ARCs_g+, and LTS;_¢-) are
calculated from the UODTA flows. This study em-
ploys the UODTA module in the VISTA (Ziliaskopou-
los and Waller, 2000) to evaluate different TVLCR
strategies for larger-size problems. The UODTA mod-
ule in VISTA is a departure-time-based version of the
simulation-based UODTA approach using RouteSim
(Ziliaskopoulos and Lee, 1996), which is a mesoscopic
simulator based on an extension of CTM, to propa-
gate traffic and satisfy capacity constraints. The DTA
module iteratively employs the time-dependent shortest
path algorithm (Ziliaskopoulos and Mahmassani, 1994)
to generate vehicle paths, and the inner approximation
dynamic user equilibrium (IADUE) algorithm (Chang,
2004) for equilibration.

5 COMPUTATIONAL EXPERIENCE

We consider a grid network and the Sioux Falls net-
work. These test problems are first described. Then,
the performance comparisons of GA1l, GA2, GA3, and
GAA4 on the grid network are discussed. The sensitivity
analysis of JDF is performed. Subsequently, the iden-
tified best GA variation and the simple GA are ap-
plied to a Sioux Falls network. All experiments are per-
formed on a Linux machine with an Intel(R) 3.00 GHz
Xeon(TM) CPU and 32 GB memory, running under Fe-
dora Core 10.

5.1 Test problems

Figure 2 shows the grid network composed of 9 nodes,
24 links. All links are three-lane and 2-miles long with
the free flow speed of 49.5 miles per hour (mph) and
the capacity of 1,000 vehicles per hour per lane (vphpl).
The simulation period is 3 hours (6:00-9:00 AM). All
12 link pairs are candidates for TVLCR. We consider
20 O-D pairs (nodes 1, 3, 5, 7, and 9 are both sources
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Fig. 2. Grid network (12 candidate link pairs).

and sinks). The O-D demands from node 5 to each of
the other four sinks are 500 vehicle trips. The O-D de-
mands from each of the other four sources to node 5 are
3,250 vehicle trips. The other O-D demands are 1,250
vehicle trips. Then, the total vehicle trips are 30,000.
The static demands are distributed over the first 12
10-minute time slices by the weights: 0.05, 0.05, 0.05,
0.1, 0.1, 0.15, 0.15, 0.1, 0.1, 0.05, 0.05, and 0.05, respec-
tively. Within each time slice, the demands are assumed
uniformly distributed. The allowable ranges of rever-
sal starting time and reversal duration are, respectively
[6:20 AM, 7:30 AM] and [30 minutes, 90 minutes]. The
TSTT of the original network is 2,035.12 hours.

Figure 3 shows a Sioux Falls network composed of
24 nodes and 76 arcs. Fourteen link pairs with dashed

Fig. 3. Sioux Falls (14 candidate link pairs).
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arrows are candidates for TVLCR. The network is the
aggregated network of the city of Sioux Falls, South
Dakota, used by many researchers in the literature. All
links are two-lane with the capacity of 1,200 vphpl and
the free flow speed of 49.5 mph. The link lengths can be
determined from the distance scale in Figure 3. We con-
sider 33 O-D pairs (see Karoonsoontawong and Waller,
2009) with 65,443 vehicle trips. The static demands are
distributed over the first 12 15-minute time slices (i.e.,
first 3 hours) by the following weights: 0.05, 0.05, 0.05,
0.1, 0.1, 0.15, 0.15, 0.1, 0.1, 0.05, 0.05, and 0.05, re-
spectively. The simulation period is 4 hours (6:00-10:00
AM). The allowable ranges of reversal starting time and
reversal duration are respective [6:20 AM, 8:30 AM]
and [30 minutes, 120 minutes]. The TSTT of the origi-
nal network is 20,313.30 hours.

5.2 Performance comparison of proposed GA
variations on grid test problem

The following GA parameters obtained from the
GA parameter calibration for dynamic network de-
sign problem in Karoonsoontawong and Waller (2006)
are employed for all GA runs: population size of 50,
crossover rate of 0.6, and mutation rate of 0.001. Given
the same parameter sets, the performance of the four
GA variations can fairly be compared in terms of so-
lution quality, convergence speed and computational
time. In the comparison of GA variations, JDF of 0.5

is employed. After identifying the best GA variation,
the sensitivity analysis of JDF will be performed. GA2,
GA3, and GA4 determine time-dependent congestion
measures, so GA2, GA3, and GA4 spend more CPU
time per functional evaluation (trial) than GA1. A gen-
eration of GA1, GA2, GA3, and GA4 may have differ-
ent numbers of trials, so we choose to compare the algo-
rithm performance by the number of trials. We run the
four GA variations for 1,000 trials. Figure 4 shows the
convergence characteristics of the four algorithms. Ta-
ble 3 presents the results of the best solutions obtained
from the four algorithms. Apparently, GA3 outper-
forms GA1, GA2, and GA4 in terms of solution quality,
CPU time found best and convergence speed; and GA1
appears second best. Interestingly, GA2 and GA4 yield
worse results. Thus, the problem-specific knowledge has
to be properly included to achieve excellent results.
Because GA3 is identified as the best GA varia-
tion, we then perform sensitivity analysis of JDF on
GA3. Each run is for 1,000 trials. Figure 5 shows the
convergence characteristics of GA3 with different JDF
values, and Table 4 shows best solutions found from
different JDF values. The JDF of 0.6 yields the much
improved best solution found with the percentage im-
provement of 45.22 (i.e., the best solution found yields
the improved TSTT that is 45.22% better than the ini-
tial TSTT), CPU time found best of 2.36 hours, and the
trial found of 91. This reiterates that GA with the appro-
priate incorporation of problem-specific knowledge and

ceedhees GAL —%—GA2 —e—GA3 - » -GA4
1700 [
1600 |- ™"
1%
£ 1500 1
o | Aiw
-
g 1400 ¢ ;(—)'\-‘-'--'-'-'H"'_"-"'"---.. S,
1S < H \
] Aodhohe Xkt oBheeceoheere i
2 1300 ; T ——— - aia
1200 o —— g 5 I e e A
] *—=0 *-0—& < \ s LKA oo O 3
. g . g -0 0-00-0— 00— —=OQ—0
1100
0 100 200 300 400 500 600 700 800 900 1000
Trial

Fig. 4. Convergence characteristics of four GA variations on grid network.

Table 3
Best solutions from GA1 to GA4 on grid network

Best obj. Percentage improvement Trial CPU time found Total CPU
Algorithm value (TSTT) from original TSTT found best (hours) time (hours)
GAl 1164.77 4271 745 18.34 24.50
GA2 1176.18 4221 779 24.32 31.56
GA3 1124.35 44.75 505 13.95 29.41
GA4 1280.47 37.08 867 24.01 27.48
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Fig. 5. Convergence characteristics of GA3 with different JDF values on grid network.

Table 4
Best solutions from GA3 with different JDF values on grid network
Best ob;j. Percentage improvement Trial CPU time found Total CPU

JDF value (TSTT) from original TSTT found best (hours) time (hours)
0.2 1252.36 38.46 977 28.95 29.60
0.3 1130.32 44.46 449 12.62 28.03
0.4 1248.78 38.64 896 21.21 23.52
0.5 1124.35 44.75 505 13.95 29.41
0.6 1114.79 45.22 91 242 25.97
0.7 1183.89 41.83 646 19.64 28.86
0.8 1194.70 41.30 446 13.20 29.23

Table 5

Best solution found on grid network

Link pair Capacity reversibility time period Duration (minutes) Number of lanes
(14) & (4,1) 6:00-7:00; 7:00-7:30; 7:30-9:00 60; 30; 90 3&3;4&2;3&3
4,7 & (74) 6:00-6:50; 6:50-7:30; 7:30-9:00 50; 40; 90 3&3;2&4;3&3
(3,6) & (6,3) 6:00-7:20; 7:20-7:50; 7:50-9:00 80; 30; 70 3&3;5&1;3&3

with a parameter calibration (GA3 with JDF = 0.6) in-
deed provides much better results when compared with
simple GA (GA1). The best solution found is shown in
Table 5.

In the initial traffic condition, among the 12 can-
didate link pairs, there are four candidate link pairs
with unbalanced traffic densities; namely, link pairs (14,
41), (12,21), (23,32), and (36,63). The traffic on under-
lined links is congested (here defined as traffic den-
sity greater than 0.5 x jam density) and the other
link in the pair is not. The four link pairs have unbal-
anced traffic densities during the respective time peri-

ods 6:30-7:50, 6:50-7:50, 7:20-7:50, and 6:30-7:00. Af-
ter implementing the time-varying capacity reversibility
in Table 5, the number of link pairs with unbalanced
traffic densities is reduced to three link pairs, namely
(14,41), (36,63), and (78,87) during respective time pe-
riods 6:50-7:40, 6:50-7:20, and 7:00-7:10. The link pairs
with unbalanced traffic densities are more spread out
over the network and the durations of unbalanced
traffic densities are shorter than the initial traffic flow
condition. Although the initial traffic density condition
indicates that the four link pairs in the northern part of
the network have unbalanced traffic densities, the best
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Fig. 6. Convergence characteristics of GA3 with different JDF values on the Sioux Falls network.
Table 6
Results of sensitivity analysis of JDF for GA3 on the Sioux Falls network
Best obj. Percentage improvement Trial CPU time found Total CPU
JDF value (TSTT) from original TSTT found best (hours) time (hours)
0.2 19669.73 317 13 5.86 100.08
0.3 19752.94 2.76 5 2.76 95.02
0.4 19492.35 4.04 57 22.55 73.06
0.5 19905.42 2.01 36 14.89 74.06
0.6 19905.42 2.01 36 14.89 65.54
0.7 19106.19 5.94 82 31.45 78.16
0.8 19543.05 3.79 8 3.98 79.62

solution found does not simply adopt the capacity re-
versibility on these four link pairs. Only two of the four
link pairs and another link pair in the southern part of
the network implement the capacity reversibility strate-
gies. This is the nature of bi-level solution; the proposed
bi-level formulation accounts for the dynamic user equi-
librium behavior (the lower level) while the objective
minimizes TSTT (the upper level).

5.3 Application of GA3 on the Sioux Falls problem

The simple GA (GA1) and the best GA variation iden-
tified from the previous section (GA3) are applied to
the Sioux Falls network with the same set of GA pa-

rameters as that employed on the grid network. The
sensitivity analysis of the parameter JDF is conducted
for GA3 as shown in Figure 6 and Table 6. The stop-
ping criterion of 200 total trials is employed. GA1l
finds its best objective value of 19,776.38 at trial 13,
whereas GA3 with the JDF of 0.6 does not yield a
better solution (its best objective value of 19,905.42
at trial 36). Apparently, the optimal JDF value of 0.6
found on the grid network no longer yields a best re-
sult on the Sioux Falls network, and GA3 with JDF of
0.7 yields a best solution (objective value of 19,106.19
at trial 87). This reiterates the fact that the param-
eter JDF should be calibrated on new problems to
achieve satisfactory results. Table 7 shows the best

Table 7

Best solution found on

the Sioux Falls network

Link pair Capacity reversibility time periods

Duration (minutes) Number of lanes

(10,11) & (11,10)
(15,19) & (19,15)

6:00-8:10; 8:10-9:20; 9:20-10:00
6:00-6:40; 6:40-8:40; 8:40-10:00

130; 70; 40
40; 120; 80

2&2;3&1;2&2
2&2;3&1;2&2
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solution found by GA3 on the Sioux Falls problem.
The best solution found yields the improved TSTT that
is 5.94% better than the initial TSTT. In the initial traf-
fic condition, among the 14 candidate link pairs, there
are 5 candidate link pairs with unbalanced traffic densi-
ties; namely, link pairs (1112,1211), (1011,1110), (1016,
1610), (1423,2314), and (1522,2215). The traffic on un-
derlined links is congested (here defined as traffic den-
sity greater than 0.5 x jam density) and the other link
in the pair is not. The five link pairs have unbalanced
traffic densities during the respective time periods 7:10—
7:50, 8:10-8:40, 7:20-7:30, 7:10-8:00, and 7:30-7:50. Af-
ter implementing the time-varying capacity reversibil-
ity in Table 7, the number of link pairs with unbal-
anced traffic densities is reduced to 3 link pairs, namely
(1112,1211), (1011,1110), and (1423,2314) with respec-
tive time periods 7:10-7:50, 7:30-8:00, and 7:10-8:20.

6 SUMMARY AND CONCLUSIONS

A new formulation for TVLCR for daily traffic man-
agement application is proposed. Due to the NP-hard
complexity of the formulation, the GAs with
simulation-based UODTA are developed to solve
multiorigin multidestination problems. The decision
variables are starting times, reversal durations, and
redesigned numbers of lanes for candidate link pairs
(instead of cell pairs in the analytical model). An
additional decision variable for a candidate link pair
is the capacity reversibility indicator variable, which is
added for the GA to prevent premature convergence.
Four GA variations are proposed. GA1 is a simple
GA. GA2, GA3, and GA4 are developed (with the
JDF) based on problem-specific knowledge with in-
creasing degrees of randomness. The problem-specific
knowledge is adapted from the dual variable analysis
of the analytical model, and involves the time-varying
congestion measures. The experiment is conducted to
compare the performances of the four GA variations
on a grid network. The performance comparison is
considered on three criteria: solution quality, conver-
gence speed, and CPU time found best. We find that
GA3 performs best on the three criteria on a grid test
problem, whereas the simple GA appears second. A
sensitivity analysis of JDF on GA3 shows that the
best solution found can much further be improved
when using the optimal JDF of 0.6. Furthermore, the
identified best GA variation (GA3) and GAl are
performed on the Sioux Falls network where we found
that GA3 with JDF of 0.7 outperforms GA1l and GA3
with other JDF values on the three criteria. In the best
solution found on both networks, there is less number
of link pairs with unbalanced traffic densities and the

durations of unbalanced densities are also shorter when
compared with the initial condition. Based on our
computational experience, the GA with the appropri-
ate inclusion of problem-specific knowledge and with
a parameter (i.e., JDF) calibration indeed provides
excellent results when compared with simple GA. The
future research may extend the proposed formulation
to account for the limited resources (or budgets) for the
operation and construction of the lane-based capacity
reversibility.
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ABSTRACT:

This paper proposes a mathematical formulation and a solution method to the enhanced
combined trip distribution and traffic assignment. The trip distribution is a doubly-constrained
gravity model. The traffic assignment is the paired-combinatorial-logit stochastic user equilibrium
accounting for effects of congestion, stochastic perception error and path similarity. This is an
enhancement to existing multinomial-logit (MNL)-based model. The proposed solution method
iIs a disaggregate simplicial decomposition agorithm. 1 find that the relationship of O-D flow
difference and dispersion factor is unclear, whereas link flow patterns from the two models
are more identical at higher dispersion factors. The enhanced model assigns less flow to a
path with higher average similarity index and higher path cost than MNL model. The enhanced
model generally assigns less flow to links with more paths passing through than MNL model. The
relationship between O-D flow allocation and the average similarity indices for O-D pairs is not
obvious.

Key Words:. stochastic user equilibrium, gravity model, combined travel demand model

1. INTRODUCTION select optimal routes to benefit themselves the

most. SUE assumes that trip assignment
The combined distribution and assignment follows a probabilistic route choice model.
(CDA) problem is an instance of combined The multinomia logit-based SUE model
travel demand models. CDA simultaneously (MNL-SUE) is widely adopted in the
determines the distribution of trips between literature. Evans (1976) formulated the CDA
origins and destinations in a transportation problem that integrates the gravity-model trip
network and the assignment of trips to routes distribution and  user-equilibrium  trip
in each origin-destination pair. The trip assignment (CDA-UE). Erlander (1990)
distribution is mostly assumed to be a gravity formulated the CDA that integrates the
model with a negative exponential deterrence gravity-model trip  distribution and
function. The static trip assignment is either multinomial-logit stochastic-user-equilibrium
user equilibrium model (UE) or stochastic assignment (CDA-MNL-SUE). Lundgren and
user equilibrium moded (SUE). UE assumes Patriksson  (1998) outlined the solution
that drivers have complete and accurate algorithms for CDA-UE and CDA-MNL-
information on the state of the network when SUE.

they make their route choices, and drivers
27
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With the property of independence of
irrdlevant aternatives (I11A) in the MNL
model, the MNL-SUE has an infamous
deficiency in the incapability to account for
similarities  between  different  routes.
Although the multinomia probit-based SUE
model by Daganzo and Sheffi (1977) can
account for similarity between different
routes, it is not attractive due to the lack of
closed form of probability function. Over the
past years, researchers adopted other discrete
choice model structures to SUE in order to
capture the similarity between routes on the
perceptions and decisions of drivers while
keeping the analytical tractability of the logit
choice probability function. The SUE models
based on the modifications of MNL are C-
logit model and path-size logit model. The
SUE models based on the generalized
extreme value theory are paired combinatorial
logit model (Prashker and Bekhor, 2000),
cross-nested logit model, logit kernel model,
link-nested logit model, and generalized
nested logit model. Chen et al. (2003) pointed
out that among these extended logit models,
the paired combinatoria logit model (PCL) is
considered the most suitable for adaptation to
the route choice problem due to two features
that can be employed to address the IIA
property in the MNL model.

In this paper, | propose a combined gravity-
model distribution and pairedcombinatorial -
logit stochastic-user-equilibrium assignment
formulation (CDA-PCL-SUE) and develop a
disaggregate  simplicial decomposition
algorithm. The trip distribution model is
doubly constrained such that both the total
flow generated at each origin node and the
total flow attracted to each destination node
are fixed and known.
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2. EQUIVALENT MATHEMATICAL
FORMULATION

Denote by CDA-PCL-SUE the proposed
combined distribution-assignment  (CDA)
equivalent mathematical model. The
underlying route choice in CDA-PCL-SUE is
a hierarchical route choice model that
decomposes the choice probability into two
levels. The upper level computes the marginal
probabilities P(kj) of choosing an unordered
route pair k and j, based on the similarity
index and the systematic utility.

The lower level is a binary logit model that
computes the conditional probabilities of
choosing a route given the chosen route pair:
P(klkj) and P(jlkj). The underlying trip
distribution in CDA-PCL-SUE is a doubly
constrained model that requires the O-D flows
out of an origin node and into a destination
node to be equal to the known origin demands
and destination demands, respectively.

The definitions of sets, parameters, decision
variables and mathematical formulation are
given below, followed by the first-order
conditions that are shown to be identical to
the PCL-SUE equations and gravity-model
based trip distribution equations.

Set

K s = set of routes between originr and
destination s

Lrs = set of unordered route pairs between
origin r and destination s

R = set of origins

S = set of destinations

RS= set of origin-destination (O-D) pairs

A =setof arcs
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Parameters
O, = total trips originated from origin r

D, = total trips destined to destination s

6 = dispersion coefficient

By = measure of dissimilarity index between
routes k and j connecting O-D r-s
(Bg =1-oy

oy, = measure of similarity index between
routes k and j connecting O-D r-s
o =1if arc aison route k connecting
originr to destination s; O otherwise

Decision Variables
x, = flowonlink a

t, =travel timeonlink a
0, = demand between origin r

and destination s

fi, = flow on route k of route pair kj

between origin r and destination s

Mathematical Formulation

mnz=1z+1z,+z, (Eq.1.2)
z=> J.ta(w)dw (Eq.1.1a)
acA o
_ = rSf rs In k(kj)
j=k
(Eq.1.1b)
PHIIS
- reR seS k=1 j=k+1
foon + 8
(L= B (figy + F o)) In—E 0
K
(Eq.1.1¢)
Subject to
> >ty =0s VreRseS  (Eql2)
keK,s jeK g
j#k
> 0,=0 VreR (Eq.1.3)
seS
> 0.=D, VseS (Eq.1.4)

reR
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fk'(sm>0 VkeK ,kieL ,reRseS

(Eq. 1.5)

X = ZZ z Zé‘rs fk(kj) Vae A(Eq. 1.6)

reRseSkeK,s jeK s
j=k

rs? rs?

The objective function (Eq.1.1) is composed
of three components, similar to the objective
of the PCL-SUE model. Eg.1.1a accounts for
the congestion effects. EQ.1.1b and 1.1c are
two entropy terms that represent the marginal
and conditional probabilities in a hierarchical
route choice model. Dissimilarity indices are
incorporated into the objective function
(Eg.1.1b and Eq.1.1c), alowing the model to
capture the similarity effect and stochastic
perception error effect in addition to the
congestion effect (Eq.1.1a). Eg.1.2 enforces
the summation of all path flows connecting an
O-D pair to be equal to the O-D flows (q,,) of

this O-D pair. EQ.1.3 and Eq.1.4 are the O-D
flow balance constraints for the origin nodes
and destination nodes, respectively. EQg.1.5
are the non-negativity constraints for al path
flow variables. EQ.1.6 determines the link
flow variable from the summation of al path
flows passing through this link. It is easy to
show that the optimality conditions of the
proposed formulation equal to the PCL
formula in Eq.5.7-5.8 and the gravity-model
based trip distribution equation:

Qs = ABsOr Dsg(crs) VreR, VseS
(Eq.2)
Where
0, 1) e

A_ ()r 1 Mg T DS

c" = vector of route travel times of O-D pair r,s;

’
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g(c®)=

&I’S
o %)
keKis jeKys ac's oc's A
O expl K |+ exp —— L
ﬂkj ﬂkj

3. DISAGGREGATE SIMPLICIAL
DECOMPOSITION ALGORITHM

The proposed algorithm for CDA-PCL-SUE
is based on the disaggregate simplicial
decomposition algorithm by Lundgren and
Patriksson (1998) and Larsson and Patriksson
(1992). The proposed agorithm alternates
between two phases. In phase | (the restricted
master problem), given known subsets of

routes between O-D pars K, cK,.

Vr e R se S, of the total sets of routes in the

network, the corresponding restriction of
CDA-PCL-SUE (denoted by CDA-PCL-SUE-
R) is solved approximately using a partial
linearization descent algorithm, which is a
descent algorithm for continuous optimization
problems. In phase 2 (the column generation
problem), at the approximate solution to
CDA-PCL-SUE-R, the subsets K. are
augmented by the generation of new routes,
through the solution of a set of shortest path
problems, given appropriately chosen link
costs.

3.1. Phase | : Restricted Master Problem

The problem CDA-PCL-SUE-R is solved by
a partia linearization descent agorithm
(Patriksson, 1993). The projection of CDA-
PCL-SUE-R onto the set of feasible route
flows is employed. Given a feasible route

flow vector f"={ fk(kj)} at some iteration n,

an approximation of CDA-PCL-SUE-R is
roughly solved in order to define an auxiliary
feasible solution and a search direction. The
approximate problem is constructed by

30

70

linearizing the first term (z;) of the objective
function of CDA-PCL-SUE-R. The effect of
this linearization is that the link costs are

fixed at their levels given the current flow f"

o) _
afkr(skJ)

costs are calculated as: ¢ =Y 5, t,(X))

;e =c'* . The corresponding route

acA

vkeK,reRseS, where X is the flow

on arc a corresponding to the route flow f".

The partially linearized problem (denoted by
CDA-PCL-SUE-R-PL) becomes:

Formulation of CDA-PCL-SUE-R-PL

(the solution is denoted by ik(k))
mInZ:zl+22+zg (Eq.3.1)
Z=>> Z Zc . B (Eq.3.1a)
reRseSkeK,q JEKrs
#k
IBI‘S
;{SZ;I(ZK: 'ZE: K 'k(K) ﬂ
(Eq.3.1b)
)
- reRSeS k=1 j=k+1
f rs
(1= B¢ )W fg + Fiag)In fuio + Tito
Py
(Eq.3.1¢)
Subject to
> > D& =0 VvreR (Eq.3.2)
SESkEKrs IEKrs
Z Z Z fy =Ds VseS (Eq.3.3)

rERKEKrs JEKrs
j#k

fis,20vke K, kel reRseS(Eq34)

rs? rs?

It is noted that in CDA-PCL-SUE-R-PL only
fiqae decision variables, since g, are
Z Z fg - !

substituted by @, = next
kEKrs]EErs
1#

consider the following equivalent formulation
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to CDA-PCL-SUE-R-PL, which is the
projection of CDA-PCL-SUE-R-PL onto the
demand space, in order to solve the problem
CDA-PCL-SUE-R-PL.

Equivalent Formulation to CDA-PCL-SUE-
R-PL

minU (q) (Eq.4.0)
Subject to
> 0q,=0 VreR (Eq.4.2)
seS
qus =D, VseS (Eq.4.3)
reR

s=20VreRseS (Eq.4.4)
WhereU(Q)=Z +Z +Z (Eq.4.5)
Subject to

Z Z fkr(skj) =0 VreR,seS (Eq46)
keK jERrs

J#k

fiaq) 20 Vke K.kiel,reRseS(Eql?)

This equivalent formulation utilizes the fact
that the solution to Eq.4.5-4.7 (i.e. the
restricted PCL-SUE) is easily obtained by the
use of the PCL formula:

ey = P(ki)-P(k|k)-q,. By performing

k()
the substitution of the PCL formulain Eq.4.5
(i.e. fkr(skj) = P(K), - P(k|kj)n‘ Ors and
fjr(skj) = P(kj)n -P(] |kl)n Qs ae substituted
in U(Q)=7+7 +72), it can be proved that
the implicit function U(g) actually has the
explicit form of the entropy maximization
problem (problem Eqg.5.1-5.8 in Phase 1.1).
Hence, it is clear that CDA-PCL-SUE-R-PL
is solved through the solution of the entropy
maximization problem followed by the
application of the PCL formula. Specifically,
an optimal solution to the equivalent
formulation of CDA-PCL-SUE-R-PL is
obtained by Phases 1.1-1.3.

Phase 1.1 Entropy Maximization Problem (the
solution isdenoted by " Vr e R se S)
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mnY > y-g.+ve-G.-Ing,  (Eq5.1)
reRseS
Subject to
>q.,=0 VreR :q (Eq.5.2)
seS~
2.9.,=D, VseS 4 (Eq.5.3)
reR”
Gs20Vre RseS (Eq.5.9)
Where
| P(K), - P(k|Kj), - ]
rs" 1 rs
c’s =B,
> 3| % o
yo =1 il | PO, - PKIK),
pi _
|Krs|*l |Krs| 1 s ) P k ]
+30 3 La- gy Py, InF
1 jaad By
(Eq.5.5)
1 rs H -
> 2 Eﬁkj -P(K), - P(k k),
keK,s jeK s
Vn — j=k
* Resl-1 Kl 1 .
+ 2, 2 o 0=57)-PK),
k=1 j=k+1
(Eq.5.6)
S g s 4 ;
) = Alexpeay® 1) et 1 )
"R Rd .
S Sdemrast et 1)
meL |=md
(Eq.5.7)
ex _a:rs”/ rs
P(KIK), = PE 1By

exp(-0c | ) +exp(-6c> 1 B)
(Eq.5.8)

The entropy maximization problem EQ.5.1-
5.8 can be solved by Bregman’'s balancing
method (Lamond and Stewart, 1981;
Bregman, 1967), and the result is an auxiliary
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demand q" ={q}. The balancing method is
briefly described below.

Bregman’ s Balancing Method
Initialization of Balancing Method:
q_roS =exp(-1-yrlvy) VIeRseS

(see (21) for the derivation of initial
auxiliary O-D flows)

t« 0 (tisiteration counter for the
bal ancing method)

i« 1 (iisthe constraint counter of
the entropy maximization problem)

General Sep of Method
(Balancing Constraint i):

Find the unique solution £ and ¢ of:

Balancing

vilnge'-vilng, —éa =0 VreRseS

(Eq.6)

rseRS

The derivation of Eq.6 and EQ.7 is referred to
Bregman (1967). Then, EQ.6 can be written
asEq.8.

g =0 eXp(gan‘S] VreRseS (Eq8)

rs

which is then substitute into Eq.(7), yielding:
2.8 G exp(%}b. (Eq.9)

whereif b =0, and £ =¢, if 1<i<|R|
b =Dandé =4 if |R|+1<i<|R|+]|S]|

¢ isdetermined by Newton’s method, since it
cannot be solved analytically.

Then, determine g.;* from Eq.8:
| < (imodulo(|R|+|S])+1
t—t+1

For each pass of the agorithm (when all
origins and destinations are balanced once), if
q. isconverged, terminate the algorithm.

32

72

Phase |.2 The solution ( f f("kj)) of CDA-PCL-

SUE-R-PL is obtained by applying the PCL
formula

™ =P(k), q" VkeK reRseS

—k

Where
P(K), = D> P(K), - P(k|k),

jeK,s
j=k

Phase 1.3 (Line Search)
An approximate line search is then made with

respect toz=2z+2z+2z (the objective
function of CDA-PCL-SUE-R) in the
(feasible) direction of f"—f" and q"-q",

resulting in the new solution f™' and gq"™.

Notethat f"and q"are the auxiliary solutions

to the auxiliary (partially linearized) problem
CDA-PCL-SUE-R-PL; whereas f" and "
are the current solution to CDA-PCL-SUE-R
a iteration n. The process is repeated with
n=n+l until a convergence criterion
terminates the solution of CDA-PCL-SUE-R.

3.2. Phase | 1: Column Generation Problem

The partial linearization algorithm in Phase |
solves the restricted master problem, given
the subsets of routes between O-D pairs

K,.cK,VreRseS. Thequality of travel
pattern solution obtained from Phase |
depends on the quaity of K_in
approximating K,. Damberg et al. (1996)

suggested and evaluated two route generation
strategies based on the calculation of shortest
paths given the solution of the restricted
master problem. | adopt Damberg et a.’s first
route generation strategy for Phase Il. Routes
are generated from the solution of shortest
path problems based on the deterministic
travel times; i.e. random components of travel
times are temporarily ignored. At the solution
to this restricted master problem, the link
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travel times are updated accordingly, and the
subsets K.cK,.VreRseS are

augmented by the generation of new routes
using the shortest path algorithm.

It is worth noting that the agorithm is not
guaranteed to converge to the unique optimal
solution of CDA-PCL-SUE. However, it is
guaranteed to solve the restriction of CDA-
PCL-SUE to any set of routes generated. In
the proposed agorithm, it terminates when
the root mean square error of link flows and
O-D flows from two successive iterations are
within a user-specified tolerance.

4. |LLUSTRATIVE EXAMPLES

The test network is a smple network with
five nodes, eight links and four O-D pairs as
shown in Figure 1. The Bureau Public Road
link cost function is employed:

ﬂa
1+ aa(éj ]
Sa

The parameters tl,s,,a,and p,are aso
given in Table 1, and the length of link a is
st to t°. Two congestion levels are

considered as follows. For higher-congestion
level  (lower-congestion level), origin
demands of origin nodes 1 and 2 are 45 and
50 trips (22 and 25 trips), respectively;
destination demands of destination nodes 4
and 5 are 35 and 60 trips (17 and 30 trips),
respectively. The employed tolerances are

ta(xa) = tg

gSmpIiciaJ = gBregman = ENenton = €Linesearch =0.001.

The CDA-MNL-SUE results are obtained
from the agorithm in Lundgren and
Patriksson (1998). The algorithms for both
CDA-PCL-SUE and CDA-MNL-SUE are
implemented in C. These run on a computer
with 1.73 GHz Intel Core i7 processor and
4 GB of RAM, running under Windows 7.
The CPU times of al runs on the test network
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are within 1 minute. | compare the results
from CDA-PCL-SUE and CDA-PCL-MNL to
examine the effects of congestion, travelers
stochastic perception error and path similarity
to simultaneously solve doubly-constrained
trip distribution problem and stochastic user
equilibrium problem.

The dispersion parameters are set at various
values for two congestion levels. The
differences in O-D flows and link flows from
the two combined distribution and assignment
solutions is measured by the root mean square
errors:

1 . .
WZ(Xa,PCL - Xa,MNL)Z
acA

Where x; ., and X ,,, are the converged link

flows in CDA-PCL-SUE and CDA-MNL-
SUE, respectively.

RMSE, :\/

1 . .
Tkt Z(qrs,PCL - qrs,MNL)2

RM =
SEOD \/l RS | rseRS

Where g, . and g, ae the converged

O-D flows in CDA-PCL-SUE and CDA-
MNL-SUE, respectively. Figure 2 shows the
values of RMSE, and RMSE,, with various

dispersion factors at two congestion levels.
RMSE,, appears fluctuated at the higher-
congestion level, whereas at the lower-
congestion level RMSE,; appears smooth

over the disperson factors. At both
congestion levels, RMSE, decreases with the

increase of the dispersion factor. The decrease
rateof RMSE, isgreater when the dispersion

factor is close to O, and the decrease rate at
the higher-congestion level is greater than that
of the lower-congestion level on both
networks. Based on the empirical results, the
link flow patterns from CDA-PCL-SUE and
CDA-MNL-SUE are closer as the dispersion
factor increases on both congestion levels.
The O-D flow patterns from both models
differ in different degree over various
dispersion factors.
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Since the proposed agorithm employs the
column generation phase to generate paths, it
Is possible that the generated paths from
CDA-PCL-SUE are not the same as those
from CDA-MNL-SUE. Then, it may not be
comparable in terms of route flows.
However, | found that the dispersion factor of
0.125 yields the same path set in both models.
Thus, this is employed for path flow
comparison. Table 2 shows the path flow
results obtained from CDA-PCL-SUE and
CDA-MNL-SUE a the higher-congestion
level. Ascan be observed in Table 2, the path
costs for each O-D pair in both CDA-PCL-
SUE and CDA-MNL-SUE are not equal, and
both models disperse travel demands to many
paths for each O-D pair. These are the effects
of travelers stochastic perception error
captured by both models. For each O-D pair,
the similarity index is calculated for each
route pair connecting this O-D par. The
similarity index of each route par is
completely independent of that of other route
pairs. Prashker and Bekhor (2000) indicated
that this property is highly desirable for route
choice models. Table 2 shows the average
similarity index for each route, which is the
mean value of al similarity indices involving
thisroute.

CDA-PCL-SUE generally considers a route
with a high vaue of similarity as less
atractive in route flow alocation. CDA-
PCL-SUE accounts for the overlapping paths
in route choice such that a path with a higher
value of average similarity index and higher
path cost will be assigned less flows. As can
be seen in Table 2, in the CDA-MNL-SUE
model, the cost of path 3 is 7.76% and 5.83%
higher than paths 1 and 2, and assigns less
flows to paths 3 (85.05% and 88.34% of
flows assigned to paths 1 and 2, respectively).
In contrast, CDA-PCL-SUE accounts for the
path overlapping effect. The average
similarity index of path 3 of O-D 1-4 is
101.09% higher than paths 1 and 2 connecting
this O-D pair, and in the CDA-PCL-SUE
model the cost of path 3 is 4.09% and 2.68%
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higher than paths 1 and 2. Then, CDA-PCL-
SUE assigns much less flows to path 3
(51.82% and 53.24% of flows assigned to
paths 1 and 2, respectively) than CDA-MNL-
SUE does.

Table 3 shows the O-D flow results of the two
models.  Apparently, the O-D flows are
distributed differently in the two models. As
can be seen in Table 3, the total O-D flows
out of each origin in both models are the
same, and the total O-D flows into each
destination in both models are equal. These
are due to the doubly constrained trip
distribution embedded in the two models.
Table 3 aso shows the average similarity
index for each O-D pair, which is the mean
value of the average similarity indices for all
paths connecting this O-D pair. The weighted
average path cost for each O-D pair is
calculated by the summation of the products
of path costs and route choice probabilities.
| will explore the results to check whether
| can relate the attractiveness of an O-D pair
in doubly-constrained O-D trip distribution in
CDA-PCL-SUE to the average similarity
index for each O-D pair and the weighted
average path cost of each O-D pair.
| consider the O-D flow distribution for origin
node 1. From Table 3, the weighted average
path cost of O-D 1-4 in CDA-PCL-SUE is
19.78% higher than that of O-D 1-5, whereas
in CDA-MNL-SUE it is 23.09% higher. The
average similarity index of O-D 1-4 is
31.26% higher than O-D 1-5. The O-D flows
alocated to O-D 1-5 is 14.00% higher than
O-D 14 in CDA-PCL-SUE, whereas in
CDA-MNL-SUE, it is 41.34% higher. It
seems that CDA-PCL-SUE may assign more
flows to O-D 1-4 with higher similarity index
than CDA-MNL-SUE does. Next, | consider
the O-D flow distribution for destination node
5. The weighted average path cost of O-D
1-5 in CDA-PCL-SUE is 45.99% higher than
that of O-D 2-5, whereas in CDA-MNL-SUE
it is 50.06% higher. The average similarity
index of O-D 1-5is284.71% higher than O-D
2-5. The O-D flows allocated to O-D 2-5 is
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50.29% higher than O-D 1-5 in CDA-PCL-
SUE, whereas in CDA-MNL-SUE, it is
27.67% higher. In this case, CDA-PCL-SUE
assigns less flow to O-D 1-5 with higher
similarity index than CDA-MNL-SUE does.
Apparently, it cannot be concluded how
CDA-PCL-SUE distributes O-D flows among
different O-D pairs, given weighted average
path cost and average similarity index. This
Is because CDA-PCL-SUE aso has the origin
flow balance constraints and destination flow
balance constraints that must be satisfied. In
fact, the trip distribution in CDA-PCL-SUE
can be determined by EQ.(2); i.e. it is based
on the path costs, dispersion factor, dual
variables of origin and destination flow
balance constraints, and similarity indices.
The average similarity indices and weighted
average path costs are not directly employed
in determining the trip distribution.

Table 4 shows the link flow results. The
traffic flow patterns are different as the two
models have different objective functions
used in the trip distribution and route choice
to capture the effects of congestion, stochastic
perception error and path overlapping. Links
with more paths passing through mostly have
smaller flows assigned by CDA-PCL-SUE
when compared with CDA-MNL-SUE such
as links 1, 3, 4, 6 and 8. CDA-PCL-SUE
assigns less number of flows to these links
than CDA-MNL-SUE does.

5. SUMMARY AND CONCLUSIONS

The enhanced combined trip distribution and
traffic assignment formulation is proposed.
It combines the doubly-constrained gravity-
model based trip distribution and the paired-
combinatorial-logit stochastic user
equilibrium assignment. The proposed
solution method for CDA-PCL-SUE is a
disaggregate ~ simplicial decomposition
agorithm. A test network with two
congestion levels are employed. The results
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from CDA-PCL-SUE are compared to those
from CDA-MNL-SUE in order to illustrate
how CDA-PCL-SUE distributes O-D flows
and route flows when accounting for
similarity effects in addition to the congestion
effect and stochastic-perception-error effect.
| found that the relationship of O-D flow
difference and dispersion factor is unclear,
whereas link flow patterns from the two
models are more identical at higher dispersion
factors. CDA-PCL-SUE assigns less flow to
a path with higher average similarity index
and higher path cost than CDA-MNL-SUE.
CDA-PCL-SUE generdly assigns less flow to
links with more paths passing through than
CDA-MNL-SUE. The relationship between
O-D flow adlocation and the average
similarity indices for O-D pairs is not
obvious.

The future research is to include the
singly-constrained gravity-based trip
distribution version and to incorporate trip
generation and modal split.
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Table 2 Path Flow Results of CDA-PCL-SUE
and CDA-MNL-SUE (Total O-D Demand =
90 Trips, Dispersion Factor = 0.125)

Origin Destination

O-D Link Average Route Choice
Seq Similarity Probability
Index PCL MNL
14 14 0.2198 0.4014 | 0.3555
2-6 0.2198 0.3907 | 0.3422
1-36 0.4420 02079 | 0.3023
Destiration 15 15 0.2811 0.2984 | 0.3250
_ 2-7 0.0000 0.4415 | 0.3632
Figure 1 Test Network 1-3-6-8 0.3072 0.1231 | 0.1433
1-4-8 0.3072 0.1370 | 0.1685
Table 1 Parameters of Test Network 2-4 4 0.0000 0.5204 0.5404
36 0.0000 04796 | 0.4596
Gk [ s [ © | a | B 2-5 5 0.0000 0.3600 | 0.3393
a a a 3-7 0.0609 0.3136 | 0.3350
(12) | 25 | 40 | 015 | 40 3-6-8 0.1164 0.1455 0.1497
(13 | 25 | 52 | 015 | 40 4-8 0.0556 0.1809 0.1760
(23) | 30 | 1.0 | 015 | 40
24 | 15 | 50 | 015 | 4.0 OD | Link Path Flow Path Cost
(25) | 15 | 50 | 015 | 40 Seq 5oL T MNL 1 PaL VINL
(34) | 15 | 40 | 015 | 4.0 14 | 14 | 843 | 662 | 1595 | 1668
35 | 15 | 40 | 015 | 4.0 26 821 | 638 | 1617 | 1698
(45 | 30 | 10 ] 015 | 40 136 | 437 | 563 | 1661 | 17.97
15 15 717 | 856 | 1217 12.45
7 2-7 | 1059 | 957 | 1218 11.56
5 1368 | 293 | 3.77 | 17.63 19.00
c M RMSE of 148 | 326 | 444 | 16.97 17.70
T v Link Flows 24 4 727 | 883 | 1123 11.58
s . (Total 36 670 | 751 | 11.88 12.88
e’ Trips=95) 2-5 5 12.99 | 1141 | 7.45 7.36
37 | 1131 | 11.27 | 7.89 7.46
1 T +(F§'\D/' SF'EOSJS 368 | 522 | 503 | 12.90 13.90
0 (Total 4-8 649 | 592 | 12.25 12.61
0 1 2 Trips=95)
Dispersion Factor (theta) Table 3 O-D Flow Results of CDA-PCL-SUE
and CDA-MNL-SUE (Total O-D Demand =
Figure 2 Root Mean Square Errors 90 Trips, Dispersion Factor = 0.125)
O-D | Average Weighted O-D Flow
Similarity | Average Path
Index Cost

PCL MNL PCL MNL

1-4 0.2939 1618 | 17.17 | 21.02 | 18.64

1-5 0.2239 1350 | 1395 | 23.97 | 26.35

2-4 0.0000 1155 | 1218 | 13.97 | 16.35

2-5 0.0582 9.25 9.30 | 36.02 | 33.64
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Table4 Link Flow Results of CDA-PCL-SUE and CDA-MNL-SUE
(Total O-D Demand =90 Trips,

Dispersion Factor = 0.125)

Link

Number of Paths Passing Through®

OD1 )| ODb2 | OD3 | O-D4

2 3 0 0

o|o|r|o|r|r|o
N|R Rk |kr|N| o

O INOO|D|WIN|F-

o|o|Nv|o|k| k|-
N|R|R|Rr|Rkr k|~

37

7

Link Link Flow Link Cost

PCL MNL PCL MNL
1 26.19 29.04 472 5.09
2 18.80 15.95 5.45 5.32
3 30.55 33.24 1.16 1.22
4 25.47 25.82 11.23 11.58
5 20.16 19.98 7.45 7.36
6 27.44 28.35 10.72 11.65
7 21.91 20.84 6.73 6.23
8 17.92 19.17 1.01 1.02
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Service Life Analysis and Maintenance
Program of Pavement Markings in Thailand

Ponlathep Lertworawanich and Ampol Karoonsoontawong

Pavement markings are one of the most important highway assets. Good
pavement markings provide good visibility for traffic, whereas poor pave-
ment markings can adversely affect traffic operations on highways. How-
ever, a limited amount of research has been conducted on the effects of
working conditions on the service life of pavement markings. This
paper presents duration models for retroreflectivity of thermoplastic
pavement markings in Thailand. This approach allows the service life
of pavement markings to follow probability distributions in which model
parameters are assumed as a function of relevant independent variables
such as traffic volumes. The maximum likelihood estimation technique
was used to estimate means and standard errors of the model param-
eters. Retroreflectivity data of thermoplastic pavement markings were
collected from the eastern highway network of Thailand, which con-
sists of more than 5,000 km of highways in various traffic conditions.
The analysis results showed that traffic volumes had negative effects on
the service life of the pavement markings. This paper proposes a pre-
emptive goal program for approximating required budgets to ensure the
maintenance of the percentages of good condition pavement markings
over the planning horizon. The first-priority goal is to maintain the per-
centage of control sections that are in good condition, and the second-
priority goal is to minimize total maintenance costs. In the illustrative
example, the inconsistency between the Thailand Department of High-
ways’ specifications and field practices caused estimated required
annual budgets and the deterioration of pavement markings to greatly
fluctuate over the planning period. For more consistency between
specification and field practice, the proposed models will be applied
in a pavement marking management system.

Driving safely at night requires highway markings to be reflective to
help drivers navigate in a low-visibility condition. Retroreflectivity is
the property that measures the ability of the marking to reflect the light
from the headlamp back toward the driver’s eyes. Good visibility of
pavement markings is needed because it helps reduce the likelihood
of traffic accidents, as discussed in Smadi et al. (1). Retroreflectivity
is obtained by dropping glass beads on the top of marking materials.
Good quality control in painting operations with the right proportion
of painting materials and glass beads results in high retroreflective
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and long-lasting pavement markings. The ability to predict the service
life of pavement markings is crucial for maintenance management
and operations. Many researchers have studied the retroreflectivity
properties to explain the causes of deterioration and suggest service
life. Lee et al. (2) used the 15-m geometry device to collect retro-
reflectivity data on 50 test sites and evaluated the performance of
marking materials with linear regression analysis. The accuracy of
the prediction models was relatively low with the R? varying between
.14 and .18. Snowplow activity was the most significant factor while
annual average daily traffic (AADT), speed limit, and percentage
of heavy vehicle traffic did not correlate with the retroreflectivity
degradation. Abboud and Bowman (3) studied the service life, cost
of application, and cost associated with crashes related to marking
retroreflectivity and proposed logarithmic regression models to
predict the degradation curves. The unique aspect of the model was
the use of vehicle exposure variables, defined by AADT and age of
markings. This model did not depend on types of road surfaces, which
have been used as an independent variable by many researchers. In
Sarasua et al. (4), the South Carolina Department of Transportation
sponsored the joint research between Clemson University and the
Citadel to study the effective life cycle of pavement marking retro-
reflectivity. The data were collected with the 30-m geometry on
150 sites throughout the South Carolina interstate system. Traffic
wearing was initially thought to cause degradation in retroreflectiv-
ity; however, the statistical test showed nonsignificance, so this vari-
able was dropped from the models. Their final degradation models
were presented by the difference in retroreflectivity over time. In
Kopf (5), Washington State Transportation Center used the mobile
retroreflectometer with the 30-m geometry to collect field data of
waterborne and solvent-based paints on 80 sites throughout the
state. Data were categorized by marking materials, colors, levels of
traffic, and geography into several groups and analyzed with linear
or logarithm models. Some models showed poor prediction because
of a large variation in data, whereas some models showed a high value
of R?, but the data points were either too few or not well spread
throughout the service lifetime. The recent study by Sitzabee (6) and
Sitzabee et al. (7) provided a comprehensive degradation model for
a variety of pavement markings. The project included data from
30,000 mi (48,000 km) of road throughout the state of North Caro-
lina. A large number of data were categorized into several groups
and the group that had complete information was analyzed by linear
regression analysis. The degradation models for the paints depended
on the initial value of retroreflectivity (R, ;) and time, whereas the
models for thermoplastics depended on R, ;,, time, AADT, lateral
locations of markings, and colors. In addition to the pavement mark-
ing literature, a review was conducted on a related subject, state
transition probabilities of bridge decks. Mishalani and Madanat (8)
studied transition probabilities of infrastructures using stochastic
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duration models. In their study, the distributions of time intervals
between state transitions were computed. Assuming a Weibull dis-
tribution, relevant model parameters were estimated with maximum
likelihood estimation (MLE) where the hazard rates were found to be
an increasing function. This indicates that the aging process reduces
the service life of bridge decks. Expectation of state transition time
intervals can also be predicted from their model.

In summary, most studies use ordinary linear regression models
to fit the relation between the retroreflectivity of pavement markings
and the relevant independent variables. These models cannot provide
good fits with data. The service life should itself be a prime factor of
interest. If an ordinary regression model is fitted to the measured
retroreflectivity of markings, pavement markings with the retro-
reflectivity below the minimum requirement are normally omitted
from consideration. This omission leads to a truncation bias. There-
fore, a new modeling approach rather than ordinary regression models
should be investigated. In recent years, the Department of Highways
(DOH) in Thailand has increased awareness of pavement marking
performance with the aim of improving road safety. The DOH has
a specification on thermoplastic pavement markings that all yellow
markings should have a minimum retroreflectivity (R.) of 100 milli-
candelas per lux per square meter (mcd/Ix/m?) and all white markings
should have a R, of 150 mcd/Ix/m? with the 15-m geometry measure-
ment, a former ASTM E1710 standard. The DOH also requires that all
thermoplastic markings have at least 2 years of service life. In 2008,
the DOH launched a pilot project to conduct a field survey of pave-
ment markings. The survey aimed at assessing marking conditions in
the eastern part of Thailand and establishing a pavement marking
database for future research. In this paper, the database from this
pilot project is analyzed to examine the service life of thermoplastic
pavement markings and to study the effects of traffic conditions on
thermoplastic pavement markings. In addition, a pavement markings
budgeting module is also developed to optimally approximate the
required budget to maintain pavement markings in a good condition.
As a result, the objectives of this study are

e To collect the retroreflectivity of thermoplastic pavement
markings in field conditions,

e To develop a service life model of thermoplastic pavement
markings based on the duration modeling, and

o To develop a pavement markings budgeting module based on
an optimization formulation.

In the remainder of this paper, the data collection scheme is pre-
sented followed by the proposed methodology to predict the ser-
vice life of the thermoplastic pavement markings based on duration
models in which the MLE technique is utilized to estimate param-
eter values. These models can be used to predict the service life of the
thermoplastic pavement markings. Next, an optimization formulation
is proposed to approximate the required budget to optimally maintain
pavement markings during the planning horizon and to search for an
optimal maintenance pattern during the planning horizon. The paper
closes with conclusions and recommendations for future research.

FIELD DATA COLLECTION

In this section, an outline of the field data collection scheme is
briefly provided. The eastern highway network of Thailand consists
of 5,000 km of highways, most of which are multilane highways.
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FIGURE 1 Location of study area.

The study area consists of five provinces located east of Bangkok.
Figure 1 shows the location of the study area in Thailand.

To collect data, this study employs a retroreflectometer, ZRM6013,
capable of measuring R and Qq (day visibility) with the 30-m geom-
etry according to the ASTM E1710-05 standard. However, for a com-
parison to be made with the DOH standard, which is based on the
15-m geometry of measurement for R, an experiment to find the
relationship between the 15-m geometry and the 30-m geometry mea-
surements was set up. In this study, the DOH uses two devices: (a) the
ZRM®6013 for the 30-m geometry and (b) the Mirolux for the 15-m
geometry, to measure several markings on the same locations. Then, a
simple regression is conducted to find a relation as shown in Figure 2.

800
Ri1s = 1.5334R, 4

700 R2 = 0.96

600
500
400

300

Ry 15 (mcd/lux/m?)

200

100

0 100 200 300 400 500
R\ 30 (Mcd/lux/m?)

FIGURE 2 Relationship between 15-
and 30-m geometry measurements.
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From Figure 2, it is found that the 15-m geometry measurement
is approximately 1.53 times the 30-m geometry measurement. This
number is used to convert the values of the 30-m geometry measure-
ments to the equivalent 15-m geometry ones so that the comparison
to the DOH can be made. The ZRM6013 device can provide both
15-m and 30-m geometry values of retroreflectivity. In the data col-
lection scheme, there must be at least one sampling for every 100 m?
of the markings. In the case of two-lane highways, samples are col-
lected at an interval of 800 m, with R, of markings measured at two
locations, the shoulder line (white line) and the direction-separating
line (yellow lines), as shown in Figure 3a. For highways of four or
more lanes, samples are collected at an interval of 400 m and R, of
markings is measured at three locations, the shoulder line (white
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line), the lane-separating line (white dotted line), and the median
line (yellow line), as shown in Figure 3b.

One measurement is the average of the five readings from the
same location. In total, the number of measurements comes up to
5,000 samples through the course of the data collection scheme.
The geographic information system (GIS) coordinates of each
location are also collected to represent the GIS map of the study
area. In addition, other relevant prevailing information is col-
lected, such as AADT, percentage of heavy vehicles, and number
of lanes at the measurement sites. This information will be used as
explanatory variables in the service life models of the pavement
markings. The data set consists of several variables as summarized
in Table 1.

(@)

(b)

FIGURE 3 Data collection locations for (a) two-lane highways and (b) highways of four

or more lanes.
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TABLE 1 Analysis Variables

Variable Description

AADT_LANE Annual average daily traffic per lane (vehicles/day/lane)

PHV Percentage of heavy vehicles (percent)

Ruiis Marking retroreflectivity measured with 15-m instrument
(mcd/Ix/m?)

Age Age of pavement marking at the time of observation
(days)

Surf Wearing surface type: 1 = concrete, 0 = asphalt

PAVEMENT MARKING SERVICE LIFE
MAINTENANCE MODELS

In this section, the methodology to represent the service life of the
thermoplastic pavement markings is presented based on the dura-
tion modeling analysis. The service life of the thermoplastic pave-
ment markings is assumed to follow a certain distribution in which
the distribution parameters are a function of relevant field variables
such as traffic volumes. The optimal parameters are estimated with
the MLE. This section consists of two parts. The first part presents
details of the MLE of the service life distribution parameters and the
second part presents an application of the model to estimate the field
data parameters.

MLE of Service Life Model

In this research, the service life of the pavement markings is
assumed to follow a Weibull distribution in which the distribu-
tion parameters are a function of traffic volume per lane and
other relevant variables at each site. The Weibull distribution is
selected because it has widely been used to model service life
distribution of pavements and bridges as mentioned in Mishalani
and Madanat (8). The service life probability density function
(pdf) can be expressed as

f,(t)= p?»"’tp‘le_(%) t>0 @

where

fr(t) = pdf of the service life of pavement markings;
A = elorbrreBoXer 4Bk gcale parameter of Weibull distribution;
Bi = model parameters to be estimated;
X; = exogenous variables; and
p = shape parameter of Weibull distribution to be estimated.

The mean and the variance of the Weibull distribution can be
expressed as

E(T):X-F(1+%)
and

Var(T)=A? {r(n %) - r2(1+ %)}

where T is a random variable representing the service life of pavement
markings and I'(z) is the gamma function,

@
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When p = 1, the distribution becomes a negative exponential dis-
tribution. When 0 < p <1, the hazard rate is a decreasing function.
When p > 1, the hazard rate is an increasing function. The hazard rate
function is the conditional probability that a pavement marking will
fail (its retroreflectivity is below the minimum requirement) between
time t and t + dt, given that the pavement marking has not failed up
to time t. The hazard rate function can be defined as follows:

f(t)

1- T (t) (3)

h(t)=

where h(t) is the hazard rate function of pavement markings, and F+ (t)
is the cumulative distribution function (cdf) of pavement markings.
Given the field data observations, there are two categories of data:

1. Data from the markings that have already failed at the time of
data collection. This means that the retroreflectivity of the markings
is below the minimum requirement at the time when the measurements
were made. This type of data is called failed category.

2. Data from the markings that have not yet failed at the time of
data collection. This means that the retroreflectivity of the markings is
above the minimum requirement at the time when the measurements
were made. This type of data is called the not failed category.

To use the MLE technique to estimate the model parameters for
the retroreflectivity data from field collection, the likelihood func-
tion is specified. Because the data come from two categories, the
likelihood of each observation can be expressed into two groups as
shown in Equations 4 and 5.

Category 1 or failed category:

-p
_tP .[eﬂo*hxi*ﬁlez*“ +B X ]
e

P[T <ti]:]fT (t)dt:l—e{[ﬂp =1- (4)

Equation 4 represents the probability that the service life of the
marking observation i is less than its age at the time of observation
(P[T <t]). In other words, it is the probability that the i observation
is in the failed category at the time of observation.

Category 2 or not failed category:

1

P[T >ti]= I f; (t)dt = ei[Iljp =

-p
P [eﬁo‘rﬂlxi"ﬁleg‘r B X }
el

®

Equation 5 represents the probability that the service life of the
marking observation i is more than its age at the time of observation
(P[T >1t]). In other words, it is the probability that the i observation
is in the not failed category at the time of observation.

As a result, the log-likelihood (LogL) function can be expressed
as follows:

Ny N xi 17°
LOgL (BO,Bl,BZ o ,BK) — zln[l_ e,tip.[eﬁwﬁl 1 +B2Xp+ 4Bk K] :I

i=1

N [ o [Posnxepoxhe b | :|
+2In 1—gticte (6)

i=1



Lertworawanich and Karoonsoontawong

where

LogL(Bo, B1, B2 - - -, Bx) = log-likelihood function,

N; = number of observations in failed
category,

N, = number of observations in not failed
category,

B; = model parameter to be estimated,

t; = age of the pavement marking obser-
vation i, and

X! = value of the j independent variable of
the observation i.

To obtain the mean values of each parameter, the log function is
differentiated with respect to each model parameter and is equated
to zero. The covariance matrix of the model parameters is esti-
mated from the inverse of the negative of the Hessian matrix of the
log-likelihood function.

Application of Service Life Model to Field Data

In this section, the proposed methodology is applied to the collected
data to obtain the model parameters that can be used to estimate the
mean service life of the thermoplastic pavement markings. There are
three types of pavement markings investigated: (a) white shoulder
(solid) lines, (b) white lane-separating (dotted) lines, and (c) yellow
lines. On the application of the proposed MLE to estimate the service
life, the following results are found.

The significant variables are shown in Table 2. The AADT per lane
is the most important factor contributing to deterioration of pavement
markings. Obviously, AADT per lane has a negative effect on the
service life of pavement markings. As the traffic volume increases,
the service life of pavement markings decreases as a result of wear
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TABLE 2 MLE of Service Life of Thermoplastic Pavement Markings

Standard
Variable Coefficient Error t-Statistic p-Value
MLE Results for Thermoplastic White Shoulder (Solid) Lines®
Intercept 6.1534 0.1577 39.01 .000
AADT_LANE -2.38x10™ 0.13x10™* -5.64 .000
p (shape) 0.3476 0.0431 8.06 .000
MLE Results for Thermoplastic White Lane-Separating (Dotted) Lines”
Intercept 5.8416 0.2781 21.01 .000
AADT_LANE -2.30x10™ 5.72x10°° -4.01 .000
p (shape) 0.3309 0.0583 5.68 .000
MLE Results for Thermoplastic Yellow Median Lines*®
Intercept 6.9740 1.040 6.71 .000
p (shape) 0.527593 0.0385 13.704 .000

Censoring information: number in not failed state, 341; number in failed state,
1,311; log-likelihood = —765.264.

°Censoring information: number in not failed state, 134; number in failed state,
687; log-likelihood = —326.374.

“Censoring information: number in not failed state, 768; number in failed state,
995; log-likelihood = —1,168.349.

and tear from traffic. The results indicate that the service life of yel-
low lines is not significantly affected by the amount of traffic. Yellow
lines are used at medians to separate traffic directions and drivers in
Thailand are required to drive on the shoulder lane except for pass-
ing maneuvers; therefore, traffic has no effect on the yellow lines.
The mean service life can also be estimated from the MLE results.
The mean of the Weibull distribution can be calculated with Equa-
tion 2. The average service lives of pavement markings are estimated
by expressions in the following table and represented in Figure 4:

Yellow Lines

4,715 veh/day/lane

5,100 veh/day/lane

12,500 15,000 17,500 20,000

AADT per lane (veh/day/lane)

FIGURE 4 Average service life of thermoplastic markings in Thailand (veh = vehicles).
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Marking Type Average Service Life (months)

White shoulder line (5.152 x 8153238 x 104 AADT_LANE) /31y
White lane-separating line (6.169 x 584222951104 AADT_LANE) /31y
Yellow median line 65

For thermoplastic white shoulder (solid) lines, the average service
life is less than 24 months in most traffic conditions, except for low-
AADT conditions [less than 5,100 vehicles per day per lane (vpdpl)].
Similarly for white lane-separating (dotted) lines, all of them have
less than 24 months of service life by average, except for low AADT
(less than 4,715 vpdpl). They also possess the lowest service life
among the different marking types, because their installation location
is subjected to lane-changing traffic. It is noteworthy that the service
lives of white shoulder (solid) lines and white lane-separating (dotted)
lines are almost alike for high traffic volumes (above 7,500 vpdpl).
Yellow lines can provide an average service life of more than
24 months, as required by the DOH specification, because their
installation location near medians is away from traffic. In other words,
the installation location of the markings has a significant effect on
the service life of the markings. This finding is relevant to the find-
ings of Sitzabee (6) and Sitzabee et al. (7), which indicate that the
lateral location of markings affects the service life of the markings.
In addition, the DOH specification on yellow thermoplastic mark-
ings is less restrictive than that of white thermoplastic markings,
which requires that yellow thermoplastic markings should have a
minimum R, of 100 mcd/Ix/m? and white thermoplastic markings
should have a minimum R, of 150 mcd/Ix/m? with the 15-m geometry
measurement.

PAVEMENT MARKING MAINTENANCE
OPTIMIZATION MODEL

Pavement marking maintenance is an important activity. Every year
the DOH spends a lot of money on pavement markings. As a result,
there is a need for an optimization program to estimate required
annual budgets for a given percentage of control sections with retro-
reflectivity above the minimum DOH specification and to optimally
allocate budgets to each highway control section. The DOH uses the
jurisdiction boundary to decide the extent of each control section
and most of these sections are less than 10 km in length. The opti-
mization model is formulated as a mixed-integer program with the
following model assumptions:

e The planning horizon is 4 years in length. Each year consists
of four periods or quarters as shown in Figure 5.

Planning horizon = 16 periods = 4 years

At

15 16 17

1 period (quarter) = 3 months

FIGURE 5 Planning horizon.
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e The maintenance decision is made at the beginning of each
period and each period is 3 months in length (At).

e The service lives and remaining lives are integral units of a
period length. Remaining lives of pavement markings are known at
the beginning of the planning horizon.

o |n the same control section, all markings are simultaneously
repainted. Remaining lives and service lives of markings are
determined from the minimum remaining lives and service lives of
all markings in the same control section.

o The warranty period of thermoplastic paints is 2 years. Pavement
markings that are in the warranty period cannot be repainted.

The proposed pavement marking maintenance optimization model
is described, followed by a case study.

Description of Proposed Budget Approximation
Optimization Model

The budget approximation module is used to approximate required
budgets in each year of the planning horizon. The module is for-
mulated as a preemptive goal program to minimize the total main-
tenance cost while maintaining percentage of control sections with
retroreflectivity above the minimum DOH requirement. Gener-
ally, the approach of goal programming is to establish a specific
numeric goal or an aspiration level for each of the objectives, to
formulate an objective function for each objective, and then to
seek a solution that minimizes the (weighted) sum of deviations of
these objective functions from their respective goals. There are
three possible types of goals:

1. A lower one-sided goal sets a lower limit that one does not
want to fall below.

2. An upper one-sided goal sets an upper limit that one does not
want to exceed.

3. Atwo-sided goal sets a specific target that one does not want
to miss on either side.

Goal programs can be categorized according to how goals com-
pare in importance. In one case, called nonpreemptive goal program-
ming, all goals are roughly of comparable importance. In another
case, called preemptive goal programming, there is a hierarchy of
priority levels for the goals, so that the goal of primary importance
receives first-priority attention, that of secondary importance receives
second-priority attention, and so forth if there are more than two pri-
ority levels. For further information on goal programs, see Hillier
and Lieberman (9) and Sherali and Soyster (10). The proposed goal
program will provide a compromising solution of maintenance
budget. The first-priority goal is to maintain the percentage of
control sections that are in good condition and the second-priority
goal is to minimize total maintenance cost. The parameters and deci-
sion variables are first defined, followed by the proposed budget
approximation formulation.

Parameters

The parameters are defined as follows:

N = total number of control sections;
T = total number of time periods;
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C;: = pavement marking maintenance cost of control section i
in time period t;
P. = percentage of control sections in good condition in each
time period;
S; = service life of new pavement marking of control section i;
Warr;, = 1if control section i is still on a warranty in time period t,
0 otherwise;
M = sufficiently large positive number (e.g., 100); and
z0; = initial remaining life (in time period unit) of control
section i.

Decision Variables

The decision variables are defined as follows:

dcost, dcost” = downside and upside deviation from the aspi-
ration target of zero maintenance cost;
dr, dif = downside and upside deviation from the aspira-
tion target of proportion of control sections in
good condition (i.e., with retroreflectivity above
the minimum requirement) in time period t;
xir = Lifcontrol section i is selected for maintenance
in time period t, 0 otherwise;
yir = Lif control section i has its remaining life greater
than or equal to 1 time period at time period t
or control section i is selected for maintenance
at time period t, O otherwise;
z;; = remaining life (in time period unit) of control
section i at the beginning of time period t; and
S,=1ifz;<land0ifz,<0.

Formulation

The proposed budget approximation formulation is

lex min {zz,; 2z, } 7
where lex min is the lexicographic minimization and
T
7z, =) d; (7.1
t=1
7z, =d cost” (7.2)
subject to
z,, < M§,, Vi=12,...,N;Vvt=12,...,T 8)
z,21-M(1-8,) Vi=12...,N;vt=12...,T ©)
2,,<7,-1+M(1-8,) Vi=12...,N
vt=12...,T-1 (20)
2,22, -1-M(1-8,) Vi=12...,N
vt=12,...,T-1 (11
21 < SX; —1+ M, Vi=12,...,N
vt=12...,T-1 12
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7, 25X, —1-M§,  Vi=12...,N
vt=12,...,T-1 (13)

T N
Y. Y C,-x,+dcost —dcost” =0 14)
t:li:l‘v

N
l’ilﬂ.zyl-t-‘rd;_d::l)cr Vt:l‘z”T (15)

i=1
t+7
Yx.<1  Vie=12...,N;vt=12...,T-7 (16)
m=t
VuSX +8,  Vi=12...,N;vt=12....T 17)
X, < 1- Warr, Vi=12...,N;vt=12,...,7 18)
z;,= 20, Vi=12,...,N (19)
z,, integer vi=12...,N;vt=12...,T (20)
yef01}  Vi=12... NiVt=12....T (1)
x,€{01}  Vi=12... N;vt=12...T (22)
8,€{01} Vvi=12... N;vt=12....T (239
d;20,d; 20  Vvt=12...,T (24)
dcost™ 2 0,dcost”" >0 (25)

The objective functions in Equations 7.1 and 7.2 are minimized in
lexicographical order, yielding two optimization programs that are
solved in a sequence. First, the objective (Equation 7.1) is minimized
subject to constraints (Equations 8 to 25). The aspiration level in the
first program is the specified percentage (P.,) of control sections with
retroreflectivity above the minimum requirement. After results are
obtained from the first optimization program, the optimal downside
deviations from the desired percentage of good condition control
sections (d; *) are then fixed in the second program. The second pro-
gram minimizes the objective (Equation 7.2) subject to constraints
(Equations 8 to 25) and an additional constraint set (Equation 26):
d-<d;  vt=12...,T (26)

Constraint 26 implies that while minimizing total maintenance
costs, no larger downside deviation from the aspiration level is
retained. The aspiration level in the second program is the total
cost of zero (see Constraint 14), which means that one wants to
minimize the total maintenance costs. Constraints 8 to 9 enforce that
&= 1 when the remaining service life is at least one time period and
5 = 0 otherwise (i.e., 8;; =0 if and only if z;; < 0; otherwise &;; =1
if and only if z;, < 1). Constraints 10 to 13 determine the remaining
service life in the next time period based on the remaining service
life and the maintenance decision at the current time period (i.e.,
Zi,t+1 = Zi,t - 1 |f 8i.t = 1, and Zi’H,l = Xi.t Si - 1 |f 6“ = 0)

Equation 14 implies that total maintenance cost is equal to
d cos t* —d cos t". Because Constraint 25 indicates that d cos t*
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and d cos t™ are nonnegative and the objective minimizes d cos t*,
the optimal d cos t* is the total maintenance cost, and d cos t~
equals 0. That is, Equation 14 is an upper one-sided goal that sets
an upper limit of zero maintenance cost that one does not want to
exceed, and the upside deviation from this goal is total mainte-
nance cost. Equation 15 represents a lower one-sided goal constraint
on percentage of control sections with retroreflectivity above the
minimum requirement for each period. One does not want to fall
under the desired percentage of control sections in good condition in
each time period. Equation 16 guarantees that no control section is
repainted within 2 years, which is a warranty period of thermoplas-
tic markings. Equation 17 and the objective (Equation 7) determine
the variables y;, as follows. If control section i is not selected for
maintenance at time period t (i.e., X;; = 0) and its remaining life is
less than or equal to O (i.e., &;; = 0), then Equation 17 forces y;,to O,
implying that the control section i is not in good condition at time t.
If control section i is selected for maintenance at time period t (i.e.,
Xir = 1) or its remaining life is greater than 0 (i.e., &;; = 1), then the
model will force y;, to 1, implying that the control section i is in
good condition at time t. Equation 18 states that the maintenance of
the control sections from time periods 1 to 7, which are under war-
ranty because of the repaint before the analysis period, is forbidden.
Equation 19 set up the initial remaining service life for each control
section. Constraint 20 is an integer constraint for variables z;;. Equa-
tions 21 to 23 are binary constraints for variables y;,, x;;, and &,
respectively. Constraints 24 and 25 are nonnegativity constraints.

Budget Approximation Optimization Model

The proposed budget approximation optimization model is applied
to estimate the required quarterly budget during the planning hori-
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zon for the study area, which consists of 109 control sections. The
aspiration level of the percentage of control sections with retrore-
flectivity above the minimum requirement is set at 100%. Solutions
may not attain to the aspiration level because some control sections
are still under warranty, even though their retroreflectivity is below
the minimum requirement. Therefore, these control sections cannot
be repainted. The result of the application of the proposed model to
the study area is shown in Figure 6.

The result shows that the aspiration level of 100% is not attainable
during the planning horizon because some control sections are still
under warranty even though their retroreflectivity is below the mini-
mum requirement, which indicates an inconsistency between the
DOH specification and the field practice in Thailand. The fifth quarter
acquires the highest budget of 45.616 million bahts ($1.52 million;
30 bahts = $1.00, 2011 U.S. dollars) and the third quarter acquires
the lowest budget of 3.488 million bahts ($0.116 million) in the plan-
ning horizon. In Figure 6, the pavement marking system gradually
deteriorates from 95.41% with the approximated annual budget of
45.616 million bahts ($1.520 million) in Quarter 5 to 77.98% with the
annual budget of 18.909 million bahts ($0.630 million) in Quarter 10
before it is gradually improved to reach its new high percentage
in Quarter 15. This phenomenon appears to cycle over the plan-
ning period mostly because of the inconsistency between the DOH
specification and the field practice.

Alternatively, Table 3 shows an annual view of the approximated
budget and associated average percentages as opposed to the quar-
terly view in Figure 6. The annual budget for Year 2 is 3.01, 1.52,
and 1.78 times higher than those for Years 1, 3, and 4, respectively,
whereas the annual average percentage of good condition control
sections in Year 2 is 7.11% and 10.19% better than those in Years 1
and 3, respectively, but 1.40% worse than that in Year 4. The annual

FIGURE 6 Pavement marking maintenance budget approximation result at study area.

86



Lertworawanich and Karoonsoontawong

TABLE 3 Approximated Annual Budget and Average Percentage
of Control Sections in Good Condition over Planning Period

Annual Average Percentage

Approximated Annual Budget of Control Sections in

Year [million bahts (US$ millions)] Good Condition
1 41.176 (1.373) 83.03
2 124.042 (4.135) 90.14
3 81.582 (2.719) 79.95
4 69.502 (2.317) 91.54

average percentages in Table 3 are the best possible values without a
budget constraint given the 2-year warranty specification of DOH.
The approximated annual budgets are not uniform and greatly fluctu-
ated over the 4 years. The proposed budget approximation optimiza-
tion program can further be enhanced to smooth the annual budgets
over the planning period by adding relevant constraints. For instance,
the control sections belonging to certain areas and highway func-
tional classifications should be guaranteed to receive the minimal
annual budgets. This can be incorporated in the proposed model.

CONCLUSIONS AND RECOMMENDATIONS

In this study, field data collection on thermoplastic pavement marking
retroreflectivity was conducted in Thailand to examine the service life
distribution of thermoplastic pavement markings. Unlike most studies
on pavement marking retroreflectivity, the duration model is employed
instead of ordinary multiple regression models. This approach consid-
ers a probabilistic nature of the service life of the markings. The pro-
posed model is based on the MLE technique. The data are categorized
into failed markings and not failed markings, depending on their ret-
roreflectivity, compared to the minimum requirements at the time of
measurement. The likelihood function is developed from these two
categories of data. On the completion of this research, it was found that
AADT per lane has a significant negative effect on the service life of
the thermoplastic white shoulder lines and the thermoplastic white
lane-separating lines because it is an indicator of marking exposure.
However, it does not have a significant effect on the deterioration of
thermoplastic yellow median lines mainly because of Thailand’s
requirement to drive on the shoulder lane except for passing maneu-
vers. The other variables, including percentage of heavy vehicles and
wearing surface type, were not found to have a significant effect. In
terms of estimated average service life, thermoplastic yellow median
lines can provide an average service life of more than 24 months, as
required by the DOH specifications. The thermoplastic white lines at
shoulders and lane-separating lines mostly have less than 24 months
of service life. The white lane-separating lines have the lowest service
life among pavement marking lines because they are subjected to
lane-changing activities.

Furthermore, the budget approximation optimization model was
developed to determine required annual budgets in each year over
the planning horizon such that the percentages of good condition
control sections over various time periods are maintained. The pro-
posed model is a mixed-integer program based on the preemptive
goal programming. The first-priority goal is to maintain percentage
of control sections in a good condition and the second-priority goal
is to minimize total maintenance cost. From the illustrative exam-
ple, it was found that the aspiration level of 100% is not attainable
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during the planning horizon because certain control sections are still
in the warranty period of 2 years, even though their retroreflectivity
is below the minimum requirement. This indicates the impact of the
inconsistency between the DOH specification and the field practice.
As such, the deterioration of pavement markings in the study area
and the estimated quarterly budgets, as well as annual budgets,
greatly fluctuate over the planning period.

In the future, the authors plan to collect more data to validate the
estimated average service life of thermoplastic pavement markings.
Furthermore, an asset management program for pavement markings
will be developed from the findings from this research to financially
plan an optimal maintenance schedule for pavement markings. The
proposed budget approximation optimization model can incorporate
additional constraints, such as the smoothness of estimated annual
budgets and the minimum annual budgets for pavement markings in
certain areas and highway functional classifications. Also, the budget
allocation optimization model can be developed to help DOH opti-
mally allocate limited available budgets to the system of pavement
markings.
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ABSTRACT

The equivalent mathematical formulation of the combined doubly-constrained gravity-based trip
distribution and paired-combinatorial-logit stochastic user equilibrium assignment problem
(CDA-PCL-SUE) is proposed. Its first order conditions are shown to be equal to the gravity
equations and PCL formula. The proposed solution method is a disaggregate simplicial
decomposition algorithm that iterates two phases. Phase | employs the partial linearization
descent algorithm to approximately solve the restricted CDA-PCL-SUE, and Phase Il is the
column generation phase. In Phase |, the partially linearized problem is decomposed into an
entropy maximization problem on O-D flow space that can be solved by Bregman’s balancing
algorithm and a PCL SUE problem that can be solved by PCL formula. CDA-PCL-SUE is
compared with its multinomial-logit counterpart (CDA-MNL-SUE) on two test networks at two
congestion levels. We found that the relationship of O-D flow difference and dispersion factor is
not necessarily clear, whereas the link flow patterns from the two models are more identical at
higher dispersion factors on the two networks at two congestion levels. At a fixed dispersion
factor, CDA-PCL-SUE assigns less flow to a path with a higher average similarity index and
higher path cost than CDA-MNL-SUE does. CDA-PCL-SUE generally assigns less flow to links
with more paths passing through than CDA-MNL-SUE does. The relationship between O-D
flow allocation and the average similarity indices for O-D pairs is not obvious, since the gravity-
based trip distribution equation is based on additional variables and the origin and destination
demand constraints must be satisfied.
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1. INTRODUCTION

The well-known four-step transportation planning process consists of trip generation, trip
distribution, modal split and traffic assignment. These are typically solved in a fixed sequence.
The output from one model is the input for the next. This sequential approach has its inherent
drawback such as the lack of a unifying rationale that would explain all aspects of demand
jointly (1). Furthermore, to achieve a consistent output from the process, the four steps have to
be repeated with a feedback mechanism although the convergence cannot be guaranteed. An
alternative approach is to simultaneously consider certain steps in combined travel demand
models. A comprehensive review of combined travel demand models can be found in (1)-(2).

The combined distribution and assignment (CDA) problem is an instance of such
combined travel demand models. CDA simultaneously determines the distribution of trips
between origins and destinations in a transportation network and the assignment of trips to routes
in each origin-destination pair. The trip distribution is mostly assumed to be a gravity model
with a negative exponential deterrence function. The static trip assignment is either user
equilibrium model (UE) or stochastic user equilibrium model (SUE). UE assumes that drivers
have complete and accurate information on the state of the network when they make their route
choices, and drivers select optimal routes to benefit themselves the most. SUE assumes that trip
assignment follows a probabilistic route choice model. The multinomial logit-based SUE model
(MNL-SUE) is widely adopted in the literature. Evans (3) formulated the CDA problem that
integrates the gravity-model trip distribution and user-equilibrium trip assignment (CDA-UE).
Erlander (4) formulated the CDA that integrates the gravity-model trip distribution and
multinomial-logit stochastic-user-equilibrium assignment (CDA-MNL-SUE). Lundgren and
Patriksson (5) outlined the solution algorithms for CDA-UE and CDA-MNL-SUE.

With the property of independence of irrelevant alternatives (I11A) in the MNL model, the
MNL-SUE has an infamous deficiency in the incapability to account for similarities between
different routes. That is, in the MNL-SUE, overlapping routes are treated as uncorrelated, and
this may cause counterintuitive assignment results. Although the multinomial probit-based SUE
model by (6) can account for similarity between different routes, it is not attractive due to the
lack of closed form of probability function. Over the past years, researchers adopted other
discrete choice model structures (a.k.a. extended logit models) to SUE in order to capture the
similarity between routes on the perceptions and decisions of drivers while keeping the analytical
tractability of the logit choice probability function. The SUE models based on the modifications
of MNL are C-logit model (7) and path-size logit model (8). The SUE models based on the
generalized extreme value theory are paired combinatorial logit model (9,10,23), cross-nested
logit model (11), logit kernel model (12), link-nested logit model (13), and generalized nested
logit model (14).

Chen et al. (10) pointed out that among these extended logit models, the paired
combinatorial logit model (PCL) is considered the most suitable for adaptation to the route
choice problem due to two features that can be employed to address the 1A property (i.e. the
overlapping-route problem) in the MNL model. The first feature is that each pair of routes can
have a similarity relationship that is completely independent of the similarity relationship of
other route pairs. Second, the PCL model can be scaled to account for perception variance with
respect to different trip lengths. In this paper, we proposed a combined gravity-model
distribution and paired-combinatorial-logit stochastic-user-equilibrium assignment formulation
(CDA-PCL-SUE) and developed a disaggregate simplicial decomposition algorithm. The trip
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distribution model is doubly constrained such that both the total flow generated at each origin
node and the total flow attracted to each destination node are fixed and known.

The remainder of the paper is organized as follows. Section 2 proposes the equivalent
mathematical formulation of the CDA-PCL-SUE problem and derives the first-order conditions
that can be used in algorithmic design. Section 3 describes the solution algorithm and highlights
the details of each algorithmic step. Section 4 presents empirical analysis undertaken with two
sample networks. Section 5 concludes the paper.

2. EQUIVALENT MATHEMATICAL FORMULATION
We extend the paired combinatorial logit-based stochastic user equilibrium (PCL-SUE)
equivalent mathematical program by (9,10) to account for doubly-constrained trip distribution.
Denote by CDA-PCL-SUE the proposed combined distribution-assignment (CDA) equivalent
mathematical model. The underlying route choice in CDA-PCL-SUE is a hierarchical route
choice model that decomposes the choice probability into two levels. The upper level computes
the marginal probabilities P(kj) of choosing an unordered route pair k and j, based on the
similarity index and the systematic utility. The lower level is a binary logit model that computes
the conditional probabilities of choosing a route given the chosen route pair: P(k|kj) and P(j|kj).
The underlying trip distribution in CDA-PCL-SUE is a doubly constrained model that requires
the O-D flows out of an origin node and into a destination node to be equal to the known origin
demands and destination demands, respectively.

The definitions of sets, parameters, decision variables and mathematical formulation are
given below, followed by the first-order conditions that are shown to be identical to the PCL-
SUE equations and gravity-model based trip distribution equations.

2.1. Descriptions of Equivalent Mathematical Formulation
Set
K, = set of routes between origin r and destination s

L., = set of unordered route pairs between origin r and destination s

R = set of origins

S = set of destinations

RS = set of origin-destination (O-D) pairs
A= set of arcs

Parameters
O, = total trips originated from origin r

D, = total trips destined to destination s
6 =dispersion coefficient
B =measure of dissimilarity index between routes k and j connecting O-D r-s (57 =1-o0y;)

o, =measure of similarity index between routes k and j connecting O-D r-s

O =1 if arc ais on route k connecting origin r to destination s; 0 otherwise

Decision Variables
X, = flow on link a
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t, = travel time on link a

0, = demand between origin r and destination s

fkr(skn
* = travel time on route k connecting O-D pair r,s.

Note that f,,= f(j - Forinstance, given K, ={1,2,3}, the expression fj, ke K, j#Kk

includes six variables: f5,, 5o, T35, s, faay . and f, . The expression f,i

vk =1..| K¢ |[-LVj=k+1..[K,] includes three variables: f.7,, f;,and fi, .

= flow on route k of route pair kj between origin r and destination s

Mathematical Formulation

minz=z+12, +z, (1.1)
z,=) jta (w)dw (1.1a)
acA o

rs

fy ki
:_ZZ Z Z 'Brs fkr(skl)l ,B(r-S) (11b)

reR seS keKs jeKg
j=k

|KI'S| l |Krs|

er
L= LSS @A ¢ i L (110)
reR seS k=1 j=k+1 IBkj

Subject to

> > fo =Gs VreRseS (1.2)
keK,s jeErs

Y.4,=0, VreR (1.3)
seS

> q.=D, VseS (1.4)
reR

fion =0 VkeK KielreR,seS (1.5)

X, =2 > > > on-fhy VaeA (1.6)

reRseS keKs jeK
J7k

The objective function (1.1) is composed of three components, similar to the objective of the
PCL-SUE model. Eg.(1.1a) accounts for the congestion effects. Eq.(1.1b) and (1.1c) are two
entropy terms that represent the marginal and conditional probabilities in a hierarchical route
choice model. Dissimilarity indices are incorporated into the objective function (Eg.1.1b and Eq.
1.1c), allowing the model to capture the similarity effect and stochastic perception error effect in
addition to the congestion effect (Eq.1.1a). EQ.1.2 enforces the summation of all path flows
connecting an O-D pair to be equal to the O-D flows (q,) of this O-D pair. Eqg.1.3 and Eq.1.4

are the O-D flow balance constraints for the origin nodes and destination nodes, respectively.
Eq.1.5 are the non-negativity constraints for all path flow variables. Eq.1.6 determines the link
flow variable from the summation of all path flows passing through this link.
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2.1.2. First-Order Conditions

We use the projection of CDA-PCL-SUE onto the set of route flows. That is, Eq.(1.3) and
Eq.(1.4) are substituted by Eq. (1.2), yielding Eq.(1.7) and Eq.(1.8):

D> > 5y =0, VreR LU, (1.7)

seS keK jeKrs
#k

22 Z fit) =Ds VseS A (1.8)

reR keK jeKrS
=k

where u, and v, are the dual variables corresponding to Eq.(1.7) and Eq.(1.8), respectively. The

projected program consists of the objective (1.1), the nonnegativity constraints (1.5) and Eq.(1.7)
and Eq.(1.8). This is an equivalent CDA-PCL-SUE program, and its first-order conditions must
be identical to the equilibrium equations and doubly-constrained gravity equations. These
conditions can be derived by forming and analyzing the Lagrangian, which, for this program, is
given by

L(f,quVv)=2+2,+Z,+2,+Z

where

2,=2 U0, -2 > > fi)
reR seS keK g JeKrS
5= (D, =D > Z fica)
seS reR keKs jeKg

J#k
The minimum of this Lagrangian with respect to the path flow variables has to be subject to the
nonnegativity constraints Eq.(1.5). The maximum of the Lagrangian with respect to uand Vv, is
unconstrained. The first-order conditions for a saddle point of this Lagrangian program are
given by
oL(?)

~~>0 VkeK kel ,reRseS
61:k(kl)
feca) 8Lr§) 0 VkeK,,kjeL,,reR,seS

8fk(ki)

fiagy 20 VkeK Kiel,reR,seS
) =0 vreR

ou,
an =0 VseS

S
oL 0z, 0z, 0z, 0z, 0z,
af rs = afrs +af rs +af rs +afr5 +af rs
k(i) k(Kj) k() k() k(kj) k()

_Ck _u _V +— + ’BkJ I fkr(SkJ) + 1_ﬂkjs In fkr(skj)+ flr(skl)
6 0 ;Bkj 0 ﬂkj
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If £%,>0, then —= ~0, yielding
k(kJ)

rs rs
i -5

ﬁi Ay
frs frs 4 frs 0 1
In| —<D +In| =X i(kj) =u, +V, —C;S _=
;Bkj :Bkj 0

ﬁrs 1- ﬂkrjs

fkr(sknJ [fk(kn + fjrfkn} —exp(u v, —C" _ij
ﬂkj ﬂkj 0

Both sides are raised to the power ofirs :
K

L/ e, 1 ey
£l f o + f B =y ﬁk'f -exp —S———|-exp (2
k(kn( k() J(kl)) (ﬁ B B ] ( B ]
rs aL H H
If fj4,>0, then —— =0, yielding Eq.(3)
ﬁfJ(kJ)
A tu, v, 1 &y
fioo Fn + fiog ) & =B ﬂk'f -exp ——— |.exp| ——= (3)
J(kl)( k(kj) J(kl)) (ﬂ :Bkj ﬂkj J [ :Bkj

The summation of Equations (2) and (3) yields Eq.(4) and Eq.(5).

o o, 1 oy &y
£ 4 Vi AU exp —s——||exp +expl ——L (4)
( k(kj) (kn) ki [,3 BE B ] L ( B ] B
B
i . &:I’S a:rs
(fk(kj) + f](kj)) ﬂkj 'exp(éur +&/s _1) exp(_ :fs ]J’_exp(_ sz ] (5)
,Bkj lBkJ

Substitute m and | for k and j in Equation (5) and add the summation operators:

Ko1K Kbt I o o’ B
Z(fmriml) + fl[?nl)):exp(a'lr + 6, _1) z Z B EXp(_ J"‘eXp( s ] (6)
m=1l l=m+1 m=1l l=m+1 mI ml

Eq.(5) is divided by Eq.(6), yielding the marginal probability of choosing route pair k,j among all
possible pairs m,l:

I
rs 6brs 6bf5

: 8 '[exp( B ]”Xp{ e H
Fea * i) — P(kj)= ki

[Kesl=1 K|

rs rs K1 Ky s rs )P
ZI |§+1(fm(m') i) 2 2. P '[exp(— ! }Jrexp( Hcrs D
m=1 l=m+1 ﬂm| ﬂml

()
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Substituting Eq.(4) in Eq.(2) yields:

:BkrjS 'exp(ajr + 0‘/5 _1)'exp(_ i;:llfs ]

rs kj

fédy = o A
exp[— &fs J + exp(— L j
ﬁkj ﬂkj

Equation (8) is divided by Equation (5), yielding Eq.(9) the conditional probability of choosing
route k from route pair k,j:

e’
rs exp - rs
feoy — _ P(k | kj) = By

(8)

T : ®
ked) T Tiod) ( &ESJ ( &; ]
exp| —— - [+exp ——
ﬂkj ,Bkj
Substituting (8) in (1.2) yields Eq.(10):
s a:l’s
B -exp[— ﬂﬁs]

0, = exp(@u, —1)-exp(ev,) > > i VreR,seS (10)

keK,s jeKs rs a:rs liﬂkrjs
ok &y &
exp rs +exp s
ﬂkj ﬂkj

The O-D flow conservation constraints (Eq.1.3 and Eq.1.4) are substituted by Eq.(10), yielding
Eq.11 and Eq.12:

exp(ajr _1) = Or rs
2.exp(v) D) > ’ 1-p
seS keKys jeKp rs 6brs !
7K exp(——X) + exp(——%
,Bkj :Bkj
S S vreR (12)
D exp(&v)g(c”)
seS
exp(6h;) = >,

ol )
>explou, -1) Y Y 9

reR keK,, jeK @’ @ar -Aq
7K expl = < |+ exp| —
p rs p rs
B B

DS
- > expleu, ~1)g(c”)

reR

VseS (12)
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ﬂif'exp(— f:]
where g(c®)= Y > Py (13)

keKs jeKyg rs &rs A
7k _& B
exp s | T exp s
By B

To obtain the result in a more familiar form, we denote
_exp(eu, -1)
A 0]
g, = XP(EV.)
DS

Eq.(10) can now be written as a gravity-model based trip distribution model:

r

. = AB.O,D.g(c") VreR, VseS$S

where g(c")is the function defined in Eq.(13) and c" is the vector of route travel times of O-D
pair r,s.

3. DISAGGREGATE SIMPLICIAL DECOMPOSITION ALGORITHM

The proposed algorithm for CDA-PCL-SUE is based on the disaggregate simplicial
decomposition algorithm by (5,22). The proposed algorithm alternates between two phases. In
phase | (the restricted master problem), given known subsets of routes between O-D pairs
K, cK,VreR,seS, of the total sets of routes in the network, the corresponding restriction
of CDA-PCL-SUE (denoted by CDA-PCL-SUE-R) is solved approximately using a partial
linearization descent algorithm, which is a descent algorithm for continuous optimization
problems (15). Phase | is composed of three sub-phases: Phase 1.1, Phase 1.2 and Phase 1.3.
Phase 1.1 is an entropy maximization problem that can be solved by Bregman’s balancing
algorithm to determine the auxiliary O-D flows. Phase 1.2 applies the PCL formula to determine
the auxiliary route flows. Phase 1.3 is the line search for the next solutions (route flows and O-D
flows) to the CDA-PCL-SUE-R. In phase 2 (the column generation problem), at the
approximate solution to CDA-PCL-SUE-R, the subsets K,, are augmented by the generation of

new routes, through the solution of a set of shortest path problems, given appropriately chosen
link costs.

3.1. Phase I: Restricted Master Problem

The problem CDA-PCL-SUE-R is solved by a partial linearization descent algorithm. The

projection of CDA-PCL-SUE-R onto the set of feasible route flows is employed. Given a
feasible route flow vector f" ={fkr(5k"j)} at some iteration n, an approximation of CDA-PCL-SUE-

R is roughly solved in order to define an auxiliary feasible solution and a search direction. The
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approximate problem is constructed by linearizing the first term (z;) of the objective function of
CDA-PCL-SUE-R. The effect of this linearization is that the link costs are fixed at their levels

oz, (")
afrs

k()
=Y st () Vke Krs,r eR,seS, where x; is the flow on arc a corresponding to the

aeA

route flow f". The partially linearized problem (denoted by CDA-PCL-SUE-R-PL) becomes:

given the current flow f"; i.e = c;s" . The corresponding route costs are calculated as:

Formulation of CDA-PCL-SUE-R-PL (the solution is denoted by " )

—k(kj)
minZ =z, +7,+12, (14.1)

ZZ Z ZC ) (14.1a)

reR seS keKrs ]eKrs
J#k

rs

f
Z—ZZ Z Z By Ty In ;kj) (14.1b)

reRseS keK, jeK,s ki
J=k
|Krs| -1 |Krs| er. + fFS
LYY 3 Y (- ARy + )i 0 (14.1c)

rERSeS k=1 j=k+1 ﬂkj
Subject to
2 Z Z fiosy =0r VreR (14.2)
SES kEKrs JEKTS

=k

Z Z Z feay =Ds VseS (14.3)
rERkEKrs JEErs

1#

f5, >0 VkeK
It is noted that in CDA-PCL-SUE-R-PL only f,; are decision variables, since g, are

kjeL reR,seS (14.4)

rs? rs?

substituted by q,, = Z Z fiaq) - We next consider the following equivalent formulation to

keK,,S ]EKIrs
JE2S

CDA-PCL-SUE-R-PL, which is the projection of CDA-PCL-SUE-R-PL onto the demand space,
in order to solve the problem CDA-PCL-SUE-R-PL.

Equivalent Formulation to CDA-PCL-SUE-R-PL

minU (q) (15.1)
Subject to
qus =0, VreR (15.2)
seS
> q.=D, VseS (15.3)
reR

s 20VreR,se$S (15.4)
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where U(Q) =7+ Z, + Z, (15.5)
Subject to
> > Gy =0 VreR,;seS (15.6)
kel&rs jeklzrs
1#

fey 20 VkeK,kiel,reRses (15.7)

rs? rs?

This equivalent formulation utilizes the fact that the solution to (15.5)-(15.7) (i.e. the restricted
PCL-SUE) is easily obtained by the use of the PCL formula: fj,, = P(kj)-P(k|kj)-q,. By

performing the substitution of the PCL formula in (15.5) (i.e. f,;, = P(kj),- P(k[kj),- g, and

fio =Pk, -P(jlkj),-q, are substituted in U(q)=Z +Z,+Z), it can be proved that the

implicit function U(q) actually has the explicit form of the entropy maximization problem
(problem (16.1)-(16.8) in Phase 1.1). Hence, it is clear that CDA-PCL-SUE-R-PL is solved
through the solution of the entropy maximization problem followed by the application of the
PCL formula. Specifically, an optimal solution to the equivalent formulation of CDA-PCL-
SUE-R-PL is obtained by Phases 1.1-1.3.

Phase 1.1 Entropy Maximization Problem (the solution is denoted by grr‘s VreR,se€S)

minzzyrns'qrs+vrns'qrs'lnqrs (161)
reRseS - - -
Subject to
> 4,=0, VreR :a, (16.2)
seS
>0,=D, VseS A (16.3)
reR
G, 20VreR,seS (16.4)
where
. . w1 o [P, - P(k| ki),
>y {P(knn-P(Mkj)n {ck =B .m( (), - Pk 1) m
kEKrS jel{rs ﬂkj
Ye=y (16.5)
K1 [Kps 1 . _ P (ki
303 Lao g -pa), - PW:
k=1 j:k+10 ﬂk]
R .
2. 2. 5B P, - Pk,
keKs jeKys
R T (16.6)
Rl 2 Rl 1 B} _
+ z Z 5(1_ﬂkj)' P(kj)n
k=1 j=k+1
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B (exp( 490rS !B ) +exp(- 490rS ! Bg) ¥
Rsl-1 K|

> Bn (exp( &= 185 +exp(-&” 1 B5%) "

m=1 l=m+1

P(kj), = (16.7)

P(k | i), = XpC 1/5) (16.8)
T oexp(-6c 1) +exp(-6&cT 1 ByY)

The entropy maximization problem (16.1)-(16.8) can be solved by Bregman’s balancing method
(16), and the result is an auxiliary demand 9” :{g'r”s}. The detailed development of Bregman’s

balancing method for (16.1-16.8) is described in Appendix. The balancing method is briefly
described below.

Bregman’s Balancing Method
Initialization of Balancing Method:
q_fs =exp(-1-y./vy) VreR,seS

(see Appendix for the derivation of initial auxiliary O-D flows)
t <0 (tis iteration counter for the balancing method)
i <1 (iis the constraint counter of the entropy maximization problem)

General Step of Balancing Method (Balancing Constraint i):
Find the unique solution q”l and & of:

velngy* —vilng, —&a, =0 VreR,seS (7
and Zal rs q:l - i : (18)

rseRS
The derivation of Eqg.(17) and Eq.(18) can be found in Appendix. Then, Eqg.(17) can be written
as Eq.(19).

0’ = 0, exp(@' “5} VreR,se$S (19)
which is then substitute irsnto Eq.(18), yielding Eq.(20):
Za, < exp( fi' 'SJ b, (20)
where b, =0, and 5:0: if 1<ig|R]|
b =Dand &=4 if [R|+1<i<R|+]|S|

Determine £ by Newton’s method (since it cannot be solved analytically):

Let h(§w):2ai'rs-q_ﬁsexp[£;“]—oi =0 and h(&)= Z— qL exp(é"] if 1<i<|R|.

rs S is is

100



10
11
12

13
14

15
16
17

18
19

20

21
22

23
24
25

26

27
28
29
30

31
32
33

Karoonsoontawong and Lin 13

Let h(£,)=>a, -q_ﬁsexp[é"L;”“J —-D, =0and h'(£,) = Zin : q_ﬁi,exp( <o J , where

rs r Vri’ Vrni’
i'=i—|R[,if |[R|+1<i<|R|+|S]|.

Initialization of Newton’s Method: &, <—0 and @« 0
_h(&)
h'(é,)
If|1&,.,—¢, |I<e,stopandreturn £=& ;.
Otherwise, @ «— @ +1

General Step of Newton’s Method: &, =&,

rs

Then, determine gi;* from Eq.(19): qi;* = exp(é’&a—‘fj VreR,seSs.
14

i« (imodulo(|R|+|S])+1
tet+1

For each pass of the algorithm (when all origins and destinations are balanced once), if gy, is
converged (see the employed convergence criterion in Section 3.3), terminate the algorithm.

Phase 1.2 The solution (if("kj)) of CDA-PCL-SUE-R-PL is obtained by applying the PCL

formula:
" =P(k), " VkeK

T reR,seS

rs?

where
P(k), = D P(ki), - P(k|kj),

J:EKI'S
IR

Phase 1.3 (Line Search)

An approximate line search is then made with respect to z = z, + z, + z, (the objective function of
CDA-PCL-SUE-R) in the (feasible) direction of f"—f" and q"—q", resulting in the new
solution ™" and q"*'. Note that f"and q"are the auxiliary solutions to the auxiliary (partially

linearized) problem CDA-PCL-SUE-R-PL; whereas f" and q" are the current solution to CDA-

PCL-SUE-R at iteration n. The process is repeated with n=n+1 until a convergence criterion (see
the employed convergence criterion in Section 3.3) terminates the solution of CDA-PCL-SUE-R.

It is noted that the algorithm described above is an instance of the partial linearization
algorithm which is analyzed in (15,17). According to Patriksson (17)’s Lemma 1 and Patriksson

(15)’s Theorem 2.1, i" = f" holds if and only if f" solves CDA-PCL-SUE-R; otherwise, the

direction of i“ = f" is a feasible descent direction with respect to the objective function z of

CDA-PCL-SUE-R. Since z is strictly convex in f, the sequence { f "} of route flows converges
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to the unique solution of the restricted master problem from any feasible initial flow f°; see
Patriksson (15)’s Theorem 2.2; the same property holds for the sequence {q" } of demands.

3.2. Phase I1: Column Generation Problem

The partial linearization algorithm in Phase | solves the restricted master problem, given the
subsets of routes between O-D pairs K, c K, VreR,seS. The quality of travel pattern

solution obtained from Phase | depends on the quality of Rrs in approximating K. Damberg et

al. (18) suggested and evaluated two route generation strategies based on the calculation of
shortest paths given the solution of the restricted master problem. We adopt Damberg et al.’s
first route generation strategy for Phase Il. Routes are generated from the solution of shortest
path problems based on the deterministic travel times; i.e. random components of travel times are
temporarily ignored. At the solution to this restricted master problem, the link travel times are
updated accordingly, and the subsets Krs c K, VreR,seS are augmented by the generation of
new routes using the shortest path algorithm.

It is worth noting that the algorithm is not guaranteed to converge to the unique optimal
solution of CDA-PCL-SUE. However, it is guaranteed to solve the restriction of CDA-PCL-
SUE to any set of routes generated. In the proposed algorithm, it terminates when the root mean
square error of link flows and O-D flows from two successive iterations are within a user-
specified tolerance.

3.3. Pseudocode of Proposed Simplicial Decomposition Algorithm

Initialization

Generate an initial path for each O-D pair

Step 1. Set x° =0,t° =t,(x°),vac A and K =¢ VreR,s€S.
Step 2. Set iteration counter: n=1.

Step 3. Solve the shortest path problem for all origins k! .

KN =K" Ufks} VreR,seS
Step 4. Perform all-or-nothing traffic assignment: f{f" =q" VreR,seS where . =g, isan
initial O-D demand obtained from input file such th;t it satisfies the origin flow constraints and
the destination flow constraints.
Step 5. Assign path flows to links: x] =>'>" > £ .5 vacA

reRseS kers

CDA-PCL-SUE Solver
Step 6. Increase iteration counter: n=n+1
Step 7. Update link travel time: t =t,(X] ") Vae A

n

Step 8. Solve a shortest path problem: k! VreR,se$S

Step 9. Determine whether k! exists in the path set K™
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If k" ¢ K'? then K" = KM U{k"}.

rs !

Otherwise, K" = K",

Step 10. Update route costs: ¢ Z&kr; () Vke Krs, reR,seS
acA
Step 11. Compute similarity index between routes k and j:
L A
Sk =1..|K | j=1...|K';reR,seS

o-lzjs - rs rs
NI
Where L is the length of the common part of route k and j.
Then, compute dissimilarity index between routesk and j: A7 =1-oy;
Step 12. Compute y,. and v, for VreR,seS from Eq.(16.5)-(16.6):

Step 13. Compute the auxiliary O-D flows by Bregman’s balancing method (the O-D trip-
demand solution q" VreR,seS to CDA-PCL-SUE-R-PL):

Initialization: qrs =exp(-1-yn/vy) VI,S
t «— —1 (tis iteration counter for the balancing method)

Do
{ Repeat the following steps for each origin and destination i
{ w+«-1,&«—0andt«t+1
Do
{ w—w+l
zal i qrs exp{ é:w i,rs _Oi
Spn=6,—— Vs if i is an origin
1 el S
Z n qis exp n
S is _ Vis
a,
Z irs qrs exp(gwll’s - Di
Epn=6,—— = if i is a destination
1 texol S
Z n qri exp n
r Vi T Vii
ywhile( S =% | 516 sl Enenton)
C.JE §w+l and q:gl_qrsexp(fal rsj erRaSES-
VFS
}Whlle (\/I R ” S | - S q:;rl _qrs)2 > ‘9Bregman7vr7s)

Set grs = % VreR,seS, where T=number of iterations for Bregman’s balancing algorithm.
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Step 14. Compute auxiliary route flows (the route-flow solution i,{fkr}) to CDA-PCL-SUE-R-PL):
¥ =P(k),-q" VkeK

k

where P(k), = ZP(kj)n -P(k|kj), . P(kj), and P(k|kj),are determined from Eq.(16.7)-(16.8).
jeKy,
J#=k

Step 15.Assign auxiliary path flows to auxiliary link flows:

=2 Z&;ﬁ-if” Vae A

reRses keK,,
Step 16.Perform line search using the golden section algorithm:
Ming., (X" +as (X" = X))+ 2,(F"+ o (f" = ")+ ,(F" + o (F" = 7))
Step 17.Update path flow and demand:
B = 1 el (7 - £°7) VkeKLreRses

reR,seS

rs?

q:s = q;:l + alrjs (9:5 - qpsil) VreR,seS
Step 18.Assign route flows to links:

X =33 355 £ vaeA

reRseS keKPs

Step 19.Determine the root mean square error of the link and O-D flows:

_ E n_ yn-1y £ n_ 4n-1f
RMSE‘JM%(X& Y ¢ e 20 )

Step 20.Check convergence: RMSE < &g, then stop; otherwise go to Step 6.

4. ILLUSTRATIVE EXAMPLES

Two test networks with two congestion levels are first described. Then, the results from CDA-
PCL-SUE are compared with those from CDA-MNL-SUE in order to see the effects of
congestion, stochastic perception error and similarity in overlapping paths on the O-D flow, link
flow and route flow allocations.

4.1. Two Test Networks
Network 1

Network 1 is a simple network with five nodes, eight links and four O-D pairs as shown in
Figure 1. The Bureau Public Road link cost function is employed:

Pa
t,(x,) = t§[1+ aa[ﬁj }
Sa

The parameters t_,s, ,a,and f3,are also given in Figure 1, and the length of link a is set to t_.

Two congestion levels are considered as follows. For higher-congestion level (lower-congestion
level), origin demands of origin nodes 1 and 2 are 45 and 50 trips (22 and 25 trips), respectively;
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destination demands of destination nodes 4 and 5 are 35 and 60 trips (17 and 30 trips),
respectively. The employed tolerances are &g iciai = €aregnan = Enewton = ELinesearch =0-001.

Network 2
Network 2 is a network used in (19) with 13 nodes, 19 links and four O-D pairs as shown in
Figure 2. The link cost functions are linear:

ta(xa) = aa +ﬂaxa
The parameters «,and £, are given in Figure 2, and the length of link a is set to «,. Two

congestion levels are considered. For higher-congestion level (lower-congestion level), origin
demands of origin nodes 1 and 4 are 1,200 and 800 trips (600 and 400 trips), respectively;
destination demands of destination nodes 2 and 3 are 1,000 and 1,000 trips (500 and 500 trips),
respectively. The employed tolerances are g piciar = 0-01; €gregman = Enewton = Evinesearch =0-001.

4.2. Comparison of CDA-PCL-SUE and CDA-MNL-SUE Results

The CDA-MNL-SUE results are obtained from the algorithm in Lundgren and Patriksson (1998).
The algorithms for both CDA-PCL-SUE and CDA-MNL-SUE are implemented in C. These run
on a computer with 1.73 GHz Intel Core i7 processor and 4 GB of RAM, running under
Windows 7. The CPU times of all runs on Networks 1 and 2 are within 1 minute. We compare
the results from CDA-PCL-SUE and CDA-PCL-MNL to examine the effects of congestion,
travelers’ stochastic perception error and path similarity to simultaneously solve doubly-
constrained trip distribution problem and stochastic user equilibrium problem.

The dispersion parameters are set at various values for two congestion levels on both
networks. The differences in O-D flows and link flows from the two combined distribution and
assignment solutions is measured by the root mean square errors:

1 N .
RMSE, = \/mZ(Xa,PCL - Xa,MNL)2

acA

where X; ,c, and X, ,, are the converged link flows in CDA-PCL-SUE and CDA-MNL-SUE,
respectively.

1 . .
RMSE,, = \/ﬁ Z(qrs,PCL - qrs,MNL)2
rseRS

where gy, pe and Gy are the converged O-D flows in CDA-PCL-SUE and CDA-MNL-SUE,
respectively. Figure 3 shows the values of RMSE, and RMSE, with various dispersion factors
at two congestion levels on Networks 1 and 2. RMSE,, appears fluctuated at the higher-
congestion level on both networks, whereas at the lower-congestion level RMSE, appears
smooth over the dispersion factors. At both congestion levels on both networks, RMSE,

decreases with the increase of the dispersion factor. The decrease rate of RMSE, is greater

when the dispersion factor is close to 0, and the decrease rate at the higher-congestion level is
greater than that of the lower-congestion level on both networks. Based on our empirical results,
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the link flow patterns from CDA-PCL-SUE and CDA-MNL-SUE are closer as the dispersion
factor increases on both congestion levels. The O-D flow patterns from both models differ in
different degree over various dispersion factors. Figure 4 shows the converged O-D flows of
CDA-PCL-SUE and CDA-MNL-SUE models on Networks 1 at the higher congestion level.
Figure 5 shows the converged link flows from CDA-PCL-SUE and CDA-MNL-SUE on
Networks 1 at the higher congestion level. This figure reiterates the findings that the link flow
patterns from the two models are more identical at higher dispersion factors. Note that the
similar graphs for Network 2 are not shown due to the space limit.

Since the proposed algorithm employs the column generation phase to generate paths, it
is possible that the generated paths from CDA-PCL-SUE are not the same as those from CDA-
MNL-SUE. Then, it may not be comparable in terms of route flows. However, we found that
the dispersion factor of 0.125 yields the same path set in both models on both networks. Thus,
this is employed for path flow comparison on both networks. Table 1 shows the path flow
results obtained from CDA-PCL-SUE and CDA-MNL-SUE on Networks 1 and 2 at the higher-
congestion level. As can be observed in Table 1, the path costs for each O-D pair in both CDA-
PCL-SUE and CDA-MNL-SUE on both networks are not equal, and both models disperse travel
demands to many paths for each O-D pair on the two test networks. These are the effects of
travelers’ stochastic perception error captured by both models. For each O-D pair, the similarity
index is calculated for each route pair connecting this O-D pair. The similarity index of each
route pair is completely independent of that of other route pairs. Prashker and Bekhor (9)
indicated that this property is highly desirable for route choice models. Table 1 shows the
average similarity index for each route, which is the mean value of all similarity indices
involving this route. For example, on network 1, there are three routes in the generated path set
for O-D 1-4, yielding three unordered route pairs. The similarity index between routes 1 and 2 is
0 and that between routes 1 and 3 is 0.4396. The average similarity index of route 1 connecting
O-D 1-4 is the mean value of 0 and 0.4396, yielding 0.2198.

CDA-PCL-SUE generally considers a route with a high value of similarity as less
attractive in route flow allocation. CDA-PCL-SUE accounts for the overlapping paths in route
choice such that a path with a higher value of average similarity index and higher path cost will
be assigned less flows. As can be seen in Table 1 for Network 1, in the CDA-MNL-SUE model,
the cost of path 3 is 7.76% and 5.83% higher than paths 1 and 2, and assigns less flows to paths 3
(85.05% and 88.34% of flows assigned to paths 1 and 2, respectively). In contrast, CDA-PCL-
SUE accounts for the path overlapping effect. The average similarity index of path 3 of O-D 1-4
is 101.09% higher than paths 1 and 2 connecting this O-D pair, and in the CDA-PCL-SUE model
the cost of path 3 is 4.09% and 2.68% higher than paths 1 and 2. Then, CDA-PCL-SUE assigns
much less flows to path 3 (51.82% and 53.24% of flows assigned to paths 1 and 2, respectively)
than CDA-MNL-SUE does. Similar results can be observed on Network 2 in Table 1.

Table 2 shows the O-D flow results of the two models on Networks 1 and 2. Apparently,
the O-D flows are distributed differently in the two models on both networks. As can be seen in
Table 2, the total O-D flows out of each origin in both models are the same, and the total O-D
flows into each destination in both models are equal. These are due to the doubly constrained
trip distribution embedded in the two models. Table 2 also shows the average similarity index
for each O-D pair, which is the mean value of the average similarity indices for all paths
connecting this O-D pair. The weighted average path cost for each O-D pair is calculated by the
summation of the products of path costs and route choice probabilities. We will explore the
results to check whether we can relate the attractiveness of an O-D pair in doubly-constrained O-
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D trip distribution in CDA-PCL-SUE to the average similarity index for each O-D pair and the
weighted average path cost of each O-D pair. On Network 1, we consider the O-D flow
distribution for origin node 1. From Table 2, the weighted average path cost of O-D 1-4 in
CDA-PCL-SUE is 19.78% higher than that of O-D 1-5, whereas in CDA-MNL-SUE it is 23.09%
higher. The average similarity index of O-D 1-4 is 31.26% higher than O-D 1-5. The O-D flows
allocated to O-D 1-5 is 14.00% higher than O-D 1-4 in CDA-PCL-SUE, whereas in CDA-MNL-
SUE, it is 41.34% higher. It seems that CDA-PCL-SUE may assign more flows to O-D 1-4 with
higher similarity index than CDA-MNL-SUE does. Next, we consider the O-D flow distribution
for destination node 5. The weighted average path cost of O-D 1-5 in CDA-PCL-SUE is 45.99%
higher than that of O-D 2-5, whereas in CDA-MNL-SUE it is 50.06% higher. The average
similarity index of O-D 1-5 is 284.71% higher than O-D 2-5. The O-D flows allocated to O-D 2-
5 is 50.29% higher than O-D 1-5 in CDA-PCL-SUE, whereas in CDA-MNL-SUE, it is 27.67%
higher. In this case, CDA-PCL-SUE assigns less flow to O-D 1-5 with higher similarity index
than CDA-MNL-SUE does. Apparently, we cannot conclude how CDA-PCL-SUE distributes
O-D flows among different O-D pairs, given weighted average path cost and average similarity
index. Similar observations can be found in Table 2 for Network 2. This is because CDA-PCL-
SUE also has the origin flow balance constraints and destination flow balance constraints that
must be satisfied. In fact, the trip distribution in CDA-PCL-SUE can be determined by Eq.(10);
I.e. it is based on the path costs, dispersion factor, dual variables of origin and destination flow
balance constraints, and similarity indices. The average similarity indices and weighted average
path costs are not directly employed in determining the trip distribution.

Table 3 shows the link flow results on Networks 1 and 2. The traffic flow patterns are
different as the two models have different objective functions used in the trip distribution and
route choice to capture the effects of congestion, stochastic perception error and path overlapping.
Links with more paths passing through mostly have smaller flows assigned by CDA-PCL-SUE
when compared with CDA-MNL-SUE such as links 1, 3, 4, 6 and 8 on Network 1; and links 1, 3,
6, 10, 12, 14, 15, 16, and 18 on Network 2. CDA-PCL-SUE assigns less number of flows to
these links than CDA-MNL-SUE does.

5. SUMMARY AND CONCLUSIONS

We proposed the equivalent mathematical formulation (CDA-PCL-SUE) that combines the
doubly-constrained gravity-model based trip distribution and the paired-combinatorial-logit
stochastic user equilibrium assignment. The first-order conditions were derived to show that
these conditions are equivalent to the paired-combinatorial-logit stochastic user equilibrium
equations and doubly-constrained gravity equations. The proposed solution method for CDA-
PCL-SUE is a disaggregate simplicial decomposition algorithm that iterates between two phases
until convergence. Phase | approximately solves the restriction of CDA-PCL-SUE by the partial
linearization descent algorithm. Phase | iterates three sub-phases until convergence: Phases 1.1,
.2 and 1.3. Phase I.1 is the entropy maximization problem that is solved by Bregman’s
balancing algorithm to obtain the auxiliary O-D flows. Phase 1.2 applies the paired-
combinatorial-logit formula to determine the auxiliary route flows. Phase 1.3 performs the line
search to obtain the next solution to the restriction of CDA-PCL-SUE. After achieving an
approximate solution to the restriction of CDA-PCL-SUE, Phase 2 generates a new set of
shortest paths in order to augment the path set used in Phase 1 in the next iteration.
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In our illustrative example, two test networks with two congestion levels are employed.
Network 1 is a simple network, and Network 2 is the network in (19). The proposed algorithm is
employed to determine the O-D flows, link flows and route flows on the two networks at two
congestion levels. The results from CDA-PCL-SUE are compared to those from CDA-MNL-
SUE in order to illustrate how CDA-PCL-SUE distributes O-D flows and route flows when
accounting for similarity effects in addition to the congestion effect and stochastic-perception-
error effect. When varying dispersion factors on the two test networks at two congestion levels,
we found that the O-D flow patterns from CDA-PCL-SUE and CDA-MNL-SUE differ in
different degree such that the relationship of O-D flow difference and dispersion factor cannot be
concluded. The link flow patterns from CDA-PCL-SUE and CDA-MNL-SUE are more identical
at higher dispersion factors on the two test networks at both congestion levels.

At the dispersion factor of 0.125 where the generated path sets from CDA-PCL-SUE and
CDA-MNL-SUE are the same, the path flow patterns from the two models on the two test
networks at the higher congestion level are compared. We illustrated that CDA-PCL-SUE
assigns less flows to a path with a higher average similarity index and higher path cost than
CDA-MNL-SUE does because CDA-PCL-SUE considers the similarity effect whereas CDA-
MNL-SUE does not. That is, CDA-PCL-SUE generally considers a route with a high value of
similarity as less attractive in route flow allocation, whereas CDA-MNL-SUE does not.

Next, we cannot conclude the relationship between the O-D flow allocation and the
average similarity indices and weighted average path costs for O-D pairs for CDA-PCL-SUE.
This is because the average similarity indices and weighted average path costs for O-D pairs are
not directly employed in the doubly-constrained gravity-based trip distribution equations. In
terms of link flow patterns, we found that CDA-PCL-SUE generally assigns less flows to links
with more paths passing through than CDA-MNL-SUE. This reiterates that CDA-PCL-SUE can
account for similarity in path overlapping while CDA-MNL-SUE cannot.

The future research directions are the following. The proposed CDA-PCL-SUE and
solution method can be used to better represent the lower-level problem in modeling capacity
flexibility of transport networks in (20) by substituting CDA-MNL-SUE with CDA-PCL-SUE so
that it can account for similarity in path overlapping. The model can be modified for the singly-
constrained gravity-based trip distribution version. Furthermore, the proposed model can be
extended to incorporate trip generation and modal split. Other extended logit models such as
cross-nested logit and generalized nested logit may be employed in the combined distribution
and assignment.

ACKNOWLEDGMENTS

The first author gratefully acknowledges the support from The Thailand Research Fund under
contract number MRG5380066 and King Mongkut’s University of Technology Thonburi
Research Fund. The second author would like to acknowledge the National Science Council,
Taiwan, R.O.C. for the funding support under project number NSC 100-2410-H-006-069-MY 3.

108



g ~rwWNPRE

10

11
12

13
14
15

16

17
18

19
20
21

22

23
24
25
26
27
28
29

30
31

Karoonsoontawong and Lin 21

APPENDIX: PROOF OF VALID APPLICATION OF BREGMAN’S BALANCING
METHOD IN PHASE I.1

The entropy maximization problem (16.1)-(16.8) can be rewritten as

min f(g)= > yn -0 +ve-Gs-Ing, (A1)
rseRS

subjectto »"a g, =b Vi=12..,m (A2
rseRS
qeE®,g>0 (A.3)

where RS is the set of O-D pairs; m is the total number of origins and destinations (i.e. |S|+|R]).
a; cequals to 1 if i is the origin of O-D pair r-s and equals to 0 otherwise for i=1,2,...,|S|, a; ,
equals to 1 if i — |S] is the destination of O-D pair r-s and equals to 0 otherwise for i=|S|+1 ,...,
ISI+|RI. E is the set of real numbers. Denote by S the set {qe E"™'|q>0} and 7., >0,v}, >0

Vrs e RS . The constraint set (A.2) can be written as Aq =b where A is the coefficient matrix
or Ag=b Vi=12,.,m, where A isthe i™-row of the coefficient matrix A.

The function f(q) = Z%ns, -0, + V5 -0, - INQ, is astrictly convex differentiable function
rseRS _ _ _

over the convex set S. Bregman (21) showed that if f(q) is a strictly convex differentiable
function over the convex set S« ER! | the function D(q, p) = f(q)— f(p)-VI(p)-(@-p)

satisfies conditions (i)-(iv) in (21). Condition (vi) and condition 1 in (21) are satisfied if S is
closed and f (g) is continuously differentiable. Substituting f(q) = Z?/rns -%wg “Os - INQ in

rseRS

the function D(q, p) yields:
D(,p) = D Vi P —ViiGss + Vi A (NG — 1N P,,) (A4)

rseRS

p
(21) showed that Zvjyj —V;X; +V;X;(Inx; =Iny;) with v; =1,V]j satisfies condition (v) in (21).
j=1

Clearly, D(q,p)= D Vi Py — VG, +VaG,(Ing, —In p.) with v, >0 VrseRS also satisfies
rseRS _ _ _ -
condition (v) in (21). Thus, the function in (A.4) satisfies conditions (i)-(vi) and condition 1 in

(21). Bregman’s balancing method is valid for the function D(q, p) defined over S xS and
satisfying conditions (i)-(vi). Condition 1 is satisfied; then, the relaxation sequence {q_t} has a
unique limiting point g" €.

Given g' €S, ' which is the D-projection of the point g onto the set
A =1ae DY 2 e lis =B, 1)} can be determined (where i (') is the index from the

rseRS
control of relaxation {i,(q°),i,(q').... }):

D(Lﬂvq_t) = minzeAiﬂS D(z’q_t) where Ai :{9 € ElRS‘ | Zai,rs% = b|}

rseRS
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=minD(z,q') = f(2) - f(q") - Vi (4')(z~q")
subjectto > a, .z, =b,

rseRS

z.>20 VrseRS

rs —

1,Is=rs

Since f(q_t) and Vf (q_t)-q_t are constant, they can be dropped from the objective function
without affecting the optimal solution. Lagrangian of this program is

L(Z 5)_ f(Z) Vf(Q) Z+§(b - Zalrs rs

rseRS

subjectto z, >0 VrseRS
The first-order conditions of the Lagrangian problem are:
V,L(@"&)=0 (A.53)
ﬁ-VZL(E,é) =0 (A.5b)
V,L(@™,¢)=0 (A.5¢)
‘>0 VrseRS (A.5d)

s -

From (A.5a) and (A.5b), if g >0, then
V,L(g"™, &) =Vf(@™) - Vf(q')-¢A =0 (A.6)

Since Vf(q) =y, + Vi +Vy Ing,, , then (A.6) becomes

q:g'l - qrs exp( VI = ) vrs (A7)
The equation (A.5c) is
Zal rs q:1 - i (A8)
rseRS
The substitution of (A.7) into (A.8) yields
D A exp(—ga‘n”) =b, (A.9)
rseRS ’ - Vrs

where b, =0, and & = ¢, if constraint i is associated with originr; b, = D, and & = A if
constraint i is associated with destination s.

As can be seen from (A7), if g; €S, then also g;'eS (recall S={qecE™|q>0}).

Consequently, with a suitable relaxation control, the conditions of Theorem 3 in (21) are satisfied.
Therefore, the relaxation sequence {q_‘} obtained from the balancing process will converge to

the point ", that is, to the solution of the entropy maximization problem in Phase 1.1, if the
point of a;solute minimum of the function (11.1a), i.e. q_fs Vvrs e RS, is chosen as the initial
approximation. q are determined from Vf (q_°) =0. Thus,

qp = exp(jl— yrIvl) VrseRS (A.10)
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(7.8 5 |0.0125 (133) | 11 | o.01
(711) | 9 ]0.0125

Destination

Figure 2 Test Network 2
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Table 1 Path Flow Results of CDA-PCL-SUE and CDA-MNL-SUE on Two Test Networks

O-D | Path Link Average Route Choice Path Flow Path Cost

No. Sequence Similarity Probability
Index PCL | MNL PCL | MNL PCL [ MNL
Network 1 (Total O-D Demand = 90 Trips, Dispersion Factor = 0.125)

1-4 1 1-4 0.2198 0.4014 0.3555 8.4398 6.6279 | 15.9593 | 16.6825
2 2-6 0.2198 0.3907 0.3422 8.2145 6.3813 16.1777 | 16.9872
3 1-3-6 0.4420 0.2079 0.3023 4.3734 5.6373 16.6120 | 17.9777

1-5 1 1-5 0.2811 0.2984 0.3250 7.1710 8.5644 12.1739 | 12.4549
2 2-7 0.0000 0.4415 0.3632 10.5941 9.5702 12,1817 | 11.5661
3 1-3-6-8 0.3072 0.1231 0.1433 2.9374 3.7782 | 17.6311 | 19.0027
4 1-4-8 0.3072 0.1370 0.1685 3.2699 4.4407 16.9784 | 17.7075

2-4 1 4 0.0000 0.5204 0.5404 7.2707 8.8368 | 11.2365 | 11.5888
2 3-6 0.0000 0.4796 0.4596 6.7017 7.5167 | 11.8892 | 12.8840

2-5 1 5 0.0000 0.3600 0.3393 12.9972 11.4164 7.4511 7.3613
2 3-7 0.0609 0.3136 0.3350 | 11.3171 | 11.2729 | 7.8932 7.4630
3 3-6-8 0.1164 0.1455 0.1497 5.2219 5.0370 | 12.9083 | 13.9091
4 4-8 0.0556 0.1809 0.1760 6.4915 5.9201 12.2556 | 12.6139

Network 2 (Total O-D Demand = 2000 Trips, Dispersion Factor = 0.125)

1-2 1 1-5-7-9-11 0.1477 0.1856 0.1928 103.55 115.60 59.08 58.62
2 2-17-8-14-15 0.1199 0.1806 0.1696 96.86 101.71 59.75 59.64
3 2-18-11 0.2676 0.6338 0.6376 380.31 382.25 49.26 49.05

1-3 1 1-5-7-10-16 0.3411 0.2269 0.2079 173.32 124.86 63.67 63.93
2 2-17-8-14-16 0.3075 0.2089 0.1843 122.53 110.64 64.90 64.89
3 1-6-13-19 0.2049 0.1927 0.1830 11541 109.83 66.68 64.95
4 1-5-8-14-16 0.4844 0.1640 0.2092 129.15 125.65 63.79 63.88
5 1-6-12-14-16 0.4311 0.2076 0.2156 78.87 129.47 63.01 63.64

4-2 1 3-5-7-9-11 0.2758 0.2564 0.2110 112.87 84.51 59.74 59.23
2 3-6-12-14-15 0.4210 0.2021 0.2173 92.53 87.03 58.52 58.99
3 4-12-14-15 0.3167 0.1771 0.1513 79.57 60.58 61.71 61.89
4 3-5-8-14-15 0.4677 0.1756 0.2109 80.52 84.43 59.30 59.23
5 3-5-7-10-15 0.3899 0.1888 0.2095 53.79 83.89 59.18 59.28

4-3 1 4-13-19 0.0884 0.1654 0.1399 68.02 55.89 70.53 68.46
2 3-6-12-14-16 0.4088 0.2320 0.2369 113.69 94.68 63.67 64.25
3 3-5-8-14-16 0.3728 0.2165 0.2299 103.32 91.85 64.45 64.49
4 3-5-7-10-16 0.3069 0.2496 0.2284 59.69 91.26 64.33 64.54
5 4-12-14-16 0.3933 0.1365 0.1649 35.99 65.87 66.86 67.14
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Table 2 O-D Flow Results of CDA-PCL-SUE and CDA-MNL-SUE on Two Test Networks

O-D Origin Destination Average Weighted O-D Flow
No. Node Node Similarity Average Path
Index Cost
PCL MNL PCL MNL
Network 1 (Total O-D Demand = 90 Trips, Dispersion Factor = 0.125)
1 1 4 0.2939 16.180 | 17.178 21.028 18.646
2 1 5 0.2239 13.508 | 13.956 23.972 26.354
3 2 4 0.0000 11.550 | 12.184 13.972 16.354
4 2 5 0.0582 9.253 | 9.300 36.028 33.646
Network 2 (Total O-D Demand = 2000 Trips, Dispersion Factor = 0.125)
1 1 2 0.1784 52.977 | 52.689 580.71 599.56
2 1 3 0.3538 64.389 | 64.220 619.29 600.44
3 4 2 0.3742 59.658 | 59.591 419.29 400.44
4 4 3 0.3140 65.573 | 65.435 380.71 399.56
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1
2  Table 3 Link Flow Results of CDA-PCL-SUE and CDA-MNL-SUE on Two Test Networks
Link Number of Paths Passing Through” Link Flow Link Cost
O-D1 0O-D2 O-D3 O-D4 PCL MNL PCL MNL
Network 1 (Total O-D Demand = 90 Trips, Dispersion Factor = 0.125)
1 2 3 0 0 26.191 | 29.04858 | 4.723 5.09364
2 1 1 0 0 18.809 15.95142 5.450 5.32929
3 1 1 1 2 30.551 | 33.24212 1.161 1.22616
4 1 1 1 1 25.472 | 25.82563 | 11.236 11.5888
5 0 1 0 1 20.168 19.98084 | 7.451 7.36131
6 2 1 1 1 27.449 28.3505 10.728 11.6579
7 0 1 0 1 21.911 | 20.84303 | 6.732 6.23683
8 0 2 0 2 17.921 19.17613 1.019 1.02504
Network 2 (Total O-D Demand = 2000 Trips, Dispersion Factor = 0.125)
1 1 4 0 0 600.30 605.40 14.50 14.57
2 2 1 0 0 599.70 594.60 15.00 14.95
3 0 0 4 3 616.42 617.65 15.16 15.18
4 0 0 1 2 183.58 182.35 30.36 30.23
5 1 2 3 2 816.21 802.05 9.12 9.02
6 0 2 1 1 400.51 421.01 12.00 12.16
7 1 1 2 1 503.22 500.12 11.29 11.25
8 1 2 1 1 532.38 514.27 15.66 15.57
9 1 0 1 0 216.42 200.11 7.71 7.50
10 0 1 1 1 286.80 300.02 12.58 12.75
11 2 0 1 0 596.72 582.36 16.46 16.28
12 0 1 2 2 400.66 437.63 12.00 12.19
13 0 1 0 1 183.43 165.72 27.34 25.57
14 1 3 3 3 933.04 951.90 8.33 8.38
15 1 0 4 0 403.28 417.64 11.02 11.09
16 0 4 0 4 816.57 834.28 16.17 16.34
17 1 1 0 0 219.39 212.35 9.74 9.65
18 1 0 0 0 380.31 382.25 17.80 17.82
19 0 1 0 1 183.43 165.72 12.83 12.66
3 “Note: For Network 1, 0-D 1, 2, 3 and 4 are 1-4, 1-5, 2-4 and 2-5, respectively.

For Network 2, O-D 1, 2, 3and 4 are 1-2, 1-3, 4-2 and 4-3, respectively.
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ABSTRACT

This paper studies the inventory management and routing problem in a two-level supply chain
where a single plant serves a set of warehouses, which in turn serve a set of customers with
stochastic demands. A set partitioning based probabilistic chance constrained nonlinear integer
program is provided for the combined continuous inventory control and multi-depot vehicle
routing problem while accounting for probability of inventory capacity violation, order quantity
capacity, service levels, vehicle capacity restrictions and route duration limits. Two tabu search
heuristics, differing in the way initial solutions are generated, are applied to solve the problem.
Computational tests on standard tests networks reveal that integrating the inventory management
and routing decisions by solving the combined inventory management and routing problem may
yield cost savings of up to 14% over the sequential approach where both problems are solved
separately. The best objective function value obtained by the tabu search heuristic was found to
increase with increase in customer demand variance but decrease with increase in order quantity
capacity and route duration limit. Variance of the customer demand was found to have
significant impact on the solution quality.
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INTRODUCTION

We consider a two-level supply chain, in which a single plant serves a set of warehouses, which
in turn serve a set of end customers with stochastic demands. Inventory control decisions and
vehicle routing decisions are made at the operational level for each warehouse. The inventory
control problem (ICP) determines optimal order quantity, reorder point and safety stock, so that
the total ordering and holding costs are minimal. The multi-depot vehicle routing problem
(MDVRP) determines an optimal set of vehicle routes for each depot to satisfy demands such
that the routing costs are minimal. Typically, these two problems are solved sequentially.
Indeed, ICP and MDVRP are interrelated. The inventory control decisions for a warehouse
depend on the demands incurred at this warehouse, which are determined from the demands of
customers assigned to this warehouse. The MDVRP decisions aim at minimizing routing costs
without considering the impact of the customer assignment on the ordering and holding costs at
warehouses. Therefore there is significant potential to optimize the supply chain costs by
solving ICP and MDVRP simultaneously (a.k.a. inventory routing problem: IRP).

(1) provides a detailed review of the IRP variants and their solution methods. Numerous
studies focus on IRP application in a Vendor Managed Inventory (VMI) setting where a single
vendor delivers goods to multiple customers and coordinates the routing and delivery decisions
so that the customer always has sufficient inventory. Depending on the nature of the time
horizon for the decision making — IRP can be classified into single day, multi-day or a long term
horizon operational problem. Normally the long term horizon problem use frequency as the
decision variable and the shorter duration studies are normally time based. This paper is
different from the past works as in our work the customers can be served by one among multiple
warehouses. Moreover we do not adopt a VMI approach. In our model, the inventories are
located at warehouses and not at the customers.

Similar to (2,3), we assume that each warehouse follows the continuous inventory control
policy, and we explicitly consider the probabilities of unfulfilled demands, the probabilities of
inventory capacity violation and the order quantity capacity. The considered policy does not
penalize unfulfilled demands. Rather, a reorder point is determined such that after order
submission to the plant the inventory level should cover the demand generated during the lead
time with probability. Since the cost of alternative storage space especially in the urban areas is
high, it is essential to control the level of service associated with the inventory capacity. The
probabilities of inventory capacity violation are employed in the chance constrained stochastic
programming framework. The vehicle capacity restrictions are common in the urban areas, and
this can be taken into account by setting order quantity capacity and through capacity constraints
in the routing problem. In MDVRP, we explicitly consider the route duration limit which arises
in a number of applications such as perishable goods delivery problems and time-critical delivery
problems.

The contributions of this study are three-fold. First, the model for the combined
continuous inventory control and MDVRP accounting for route duration limits and stochastic
inventory capacity constraints is formulated. Second, tabu search heuristics are developed.
Third, the performances of the proposed tabu search algorithms are compared against each other
and against the sequential approach on hypothetical test networks based on (4)’s test problems.
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FORMULATION

The inventory routing model is developed based on the works by (3) and (5). This combined
model is a set partitioning-based formulation that has the stochastic inventory capacity
constraints and the order quantity capacity constraints. Daily delivery demands of customers are
assumed independent and normally distributed. Each customer is served on exactly a route by a
warehouse, and a single commodity is considered. The proposed model embeds the continuous
inventory control policy, which is briefly reviewed here. At any warehouse i, we assume a
continuous inventory control policy (Q;, RP;) to meet normally distributed random demand D,
with the mean of ED; (product units per day) and the variance of VD; (squared product unit per
day). ED;and VD; are variables, since they depend on the customers assigned to each warehouse
i. Qjis the order quantity at warehouse i, and RP;j is the reorder point at warehouse i. The plant
takes a lead time LT; to fulfill an incoming order from warehouse i. When the inventory level
falls below RP;, an order of Q; units is triggered, which is received after LT; time units. When an
order is submitted to the plant, the inventory level should cover the demand generated during the
lead time LT;, with probability 1-a (called service level):

Prob(D, - LT, <RP)=1-« (1)

where I5i - LT, is the normally distributed random demand generated during the lead time at
warehouse i with the mean ED, - LT, and variance VD, - LT,. Eq.(1) can be standardized; then,
RP; can be determined:

RP = ED, LT, +2, /LT, \VD, @

z, . is assumed fixed for the entire network, determining a homogeneous service level for the

1-a

whole system. z, /LT, 1/\_/Di is the average safety stock. Given that HC; is the holding cost per

time unit for warehouse i ($/unit/day), and OC; is the fixed ordering cost ($/order), the expected
holding and ordering cost rate ($/day) is:

HC, -z, /LT, \VD, +%HCi Q +%EDi 3)

The first term in Eq.(3) is the average safety stock cost. The last two terms in Eq.(3) represent
the costs of the known Economic Order Quantity (EOQ) model. This is the average inventory
and ordering cost incurred due to the ordering process, if the order size is always Q;. The peak

inventory levels take place when the orders arrive at warehouse, and equal to RP, — |5i LT, + Q..

When setting maximum probability £ to violate the inventory capacity 1™ at peak levels, the
inventory capacity constraint can be written as chance constraints (3):

Prob(RP — D, - LT, +Q, < I™) >1— 8 VieV,, (4)

Eq.(4) can be rewritten as nonlinear inequalities (2,3), which are the stochastic inventory
capacity constraints:

123



o
P OWOo0 N OO o bhWwW N -

N N N DNREPE R P R R R
W N P O © 0N O O D WD

N NN
o 01~

N N DN
© 00

w ww
N~ O

w
w

34

35
36

Karoonsoontawong and Unnikrishnan

Q+(Ziy+2p) LT -y v D < 1™ VieVy, (5)

Sets
V.ys = set of customer locations

Vi, = set of warehouse locations
P. = set of all feasible routes (with respect to route duration limit and vehicle capacity
restriction) associated with warehouse i

Parameters

4; =mean of daily demand for customer j

GJ-Z = variance of daily demand for customer j

Ny = Number of warehouse locations

Neys = Number of customers to be served

RC, = transportation unit cost between the plant and warehouse i ($/unit/day)
Q™ = order quantity capacity for warehouse i

| ™= inventory capacity for warehouse i

LT, = lead time that the plant takes to fulfill an incoming order from warehouse i

OC, = fixed ordering cost at warehouse i ($/order)

HC, = holding cost per day per product unit at warehouse i ($/unit-day)

2, ,,2, = Vvalues of standard normal distribution that accumulates the probability 1-« and 1-3
a = 1 if route k associated with warehouse i visits customer j; 0 otherwise

d, = cost of route k associated with warehouse i

Decision Variables
y,. = 1 if route k associated with warehouse i is chosen; 0 otherwise.

Q, = order quantity for warehouse i

ED, = mean of served daily demand by warehouse i
VD, = variance of served daily demand by warehouse i
Z = total costs

Model

minZ = Z Zdik'yik"‘ z z zajik'RCi'ﬂj‘Yik"' Z [%EDJ

ieVyy keP, ieVyy jeVeys keP, ieVy i

+ Z(Hci%JrHCi-zla-\/L_'l'i-\/\/_Dij (6.1)

ieViy
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Subject to
Z Zajik Vi =1 Vj €Veys (6.2)
ieVyy keP,;
Q+(z,+ 217/3) LT -y v D <™ VieVy, (6.3)
Z Z/Uj - - Y = ED; VieViy, (6.4)
jeVeus keR;
> D ot-ay Y, =VD, VieV,, (6.5)
jeVeys keR
vy, €{0.} VieV,,,VkeP (6.6)
0<Q <Q™ Vi eV, (6.7)

(6.1) calculates the total costs Z composed four terms - total MDVRP costs, total direct
transportation costs between the plant and warehouses, total expected ordering costs and total
expected holding costs, respectively. Egs.(6.2) enforce that each customer is served on exactly a
route by a warehouse. Egs.(6.3) are non-linear constraints assuring that the inventory capacity
for each warehouse is satisfied at least with probability 1-4 and that the reorder point can cover
the stochastic demand during the lead time with probability 1-«. EQs.(6.4)-(6.5) determine the
mean and variance of the served demands assigned to each warehouse (assume that demands are
independent and normally distributed across the customers). EQqs.(6.7) constrain the order
quantity to be within the order quantity capacity, which is assumed homogeneous for each
warehouse, and can be set as the vehicle (from plant to warehouse) capacity.

The VRP is NP-hard, which is a special case of the IRP. Thus, IRP is also NP-hard. The
proposed formulation potentially contains an exponential number of variables (y, ), and there
exists nonlinearity in Eqgs.(6.1) and Egs.(6.3), yielding a non-convex non-linear mixed-integer
program. In effect, there is not an efficient solution method that guarantees an optimal solution,
and this essentially requires a metaheuristic approach. In this paper, we propose tabu search
heuristics.

TABU SEARCH HEURISTICS

In this paper, we modify the tabu search heuristic for MDVRP by (6) in order to incorporate the
continuous inventory control policy for warehouses in the two-level supply chain, accounting for
route duration limits and stochastic inventory capacity constraints. Let G =(V,A) be a directed

graph. V ={V,;,\Veys} is a vertex set where Vi, ={Vq;,Vgp,-Von,, } 15 the set of warehouse (or
depot) locations and Vs ={V;,V,,...,v,_ } is the set of customers. A={(v,,v;):i= j}is an arc
set. Vertexv,, €V,,, denotes a warehouse where m; identical vehicles are based. m; is assumed
unlimited. Vertexv; eV, denotes a customer. With every arc (v;,v;)is associated a fixed

nonnegative distance ¢;. V'={v;,v;,..,v,, } is the vertex set associated with warehouse i; v, a
CuUs
warehouse vertex; ng,s the number of customers assigned to warehouse i. Customer v; has an

independent and normally distributed demand with the mean x; and variance ajz. Each city
v; requires a fixed service time &;, and each warehouse v,; has no service time.
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A least cost solution is determined such that:

e Total cost is minimized, including direct transport cost between the plant and
warehouses, MDVRP costs from warehouses to customers, ordering costs, and inventory
holding costs.

e The order quantity from warehouse v,; to the plant may not exceed its maximum value

max
0i

e When an order is submitted to the plant by a warehouse, the reorder point can cover the
stochastic demand generated during the lead time with probability 1-a.

e For each warehouse, the inventory level at peak levels may violate the inventory capacity
with the maximum probability .

e A route starts and ends at a warehouse.

e Each Customer in V. is visited exactly once by exactly a vehicle based at a warehouse.

e The total average daily demands served by a vehicle based at warehouse v,, may not
exceed the vehicle capacity RD;™ .

e The duration (travel plus service times) of any route beginning at warehouse v, and
ending at the last customer visited on this route may not exceed the route duration limit

max
it

The tabu search algorithm consists of two phases: (1) construction of an initial solution and (2)
solution improvement as shown in Figure 1. Inspired by (7), we maintain the following
information in our implementation in order to save computational efforts:

e For every route r, and warehouse i, the sum of the average delivery quantities currently

assigned to this route is qji; the duration (travel plus service time) of round-trip route r,
beginning and ending at warehouse i, is rljli; the duration (travel plus service time) of
route r, beginning at warehouse i, and ending at the last customer visited in route r, is
plr:.

 For every warehouse i,, the sum of average currently served demands is ED, ; the sum of
currently served demand variances is VD, .

With such information maintained, it is easy to verify the route feasibility of inserting a customer
into route r, associated with warehouse i,; i.e., check whether plril1 <Lg™ and q:i < RDy™.

Heuristic Approximation for (Q;, RP;)

When the means and variances of currently served demands (ED; and VD;) for warehouses are
known, the continuous inventory control policies (Q;, RP;) with stochastic inventory capacity
constraints and order quantity capacity constraints can be heuristically approximated. In our
formulation, there are constraints on Q; (see constraints 6.3 and 6.7). Two decision variables for
the continuous ICP are order quantities (Q;) and reorder points (RP;). RP; can be determined by
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Eqg.(2) when ED; and VD; are known. The heuristic approximation of an optimal order quantity
for warehouse i (Q;") is described below.
If constraints (6.3) and (6.7) are removed, Q; can be approximated through the first order

optimality condition. When the constraints on Q; are taken into account, the first order
optimality conditions for a constrained minimum is employed to approximate Q.. Constraints

(6.3) and (6.7) can be written in the standard form as:

-Q 2(z, +2, ;)|/LT; VD, = ™ VieVy,: u; (7.2)
_Qi Z _Qimax VI EVWH U2i (72)
Q>0 VieVy,: Uy (7.3)

where u;, U, and u, are dual variables associated with Eq.(7.1)-(7.3).

The Karush-Kuhn-Tucker (KKT) conditions for the minimum program (6.1), (7.1)-(7.3) where
only Q, are decision variables, are:

%(?’) = —Uy; — Uy + Uy Vi eV, (8.1)
u; = 0;uy > 05Uy >0 Vi eV, (8.2)
U (Q (2, + 2 LT, VD - 1M)=0 vievy,, (83)
Uy (Q Q™) =0 Vi Vi (8.4)
Uy -Q =0 VieV,, (8.5)
Q' 2(z, + )W LT v D - I™ VieViy: Uy (8.6)
-Q'>-Q™ VieViy: Uy (8.7)
Q >0 Vi€V, Uy (8.8)

For any warehouse with served demands, the optimal order quantity is naturally greater than
zero. Then, Eq.(8.5) implies that u,, equal to 0. Then, Eq.(8.1) become:
%QQ) = Uy —Uy

This implies that the stationary point with the property % =0 can be either within the feasible

(8.1a)

range of Q; or greater than the feasible range of Q;. The stationary point cannot be less than the
3Z(Q)
0

feasible range of Q;; otherwise, becomes positive, given that Z(Q) is assumed convex

with respect to Q;. When the stationary point is within the feasible range of Q;, the minimal
point is the stationary point. EQ.(8.3) and (8.4) imply that u; =0 and u, =0, and Eq.(8.1)
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z@Q) _,
minimal point is not the stationary point. Eq.(8.1a) and the assumed convexity of Z(Q) imply
that the minimal point is at the boundary of either Eq.(8.6) or Eq.(8.7). Thus, Q can be

determined from the equation:

Q = min{ /—ZoﬁéiEDi ,min{Qimax’ ™= (Z,, + Zlﬂ)\/L_Ti\/V_Di}} ©)

Phase I: Construction of an initial solution

yields When the stationary point is greater than the feasible range of Q;, the

Step 1.1. Each customer is assigned to its nearest warehouse. Then, for each warehouse, sort
assigned customers in increasing order of the angle that they make with the warehouse and a
horizontal line.

Step 1.2. Create initial vehicle routes for each warehouse. This will be described in the next
subsections.

Step 1.3. Determine RP; and Q;, using Eq.(2) and (9), respectively.
Step 1.4. Determine the objective function value of the initial solution, using Eq.(6.1)

We consider two alternatives to create initial routes in Step 1.2: initial solution types 1
and 2 (based on (8) and (9), respectively).

Construction of Initial Solution Type 1

For each warehouse i=1,..., n,,, , do
(a) Let v‘j be a customer randomly chosen among those closest to warehouse i (vertex v; )
(b) Set m, =1

(c) Using the customer vertex sequence (v;,V, V!

e Vo,

Vi,V ,), perform the following steps
for every customer assigned to warehouse i to obtain an initial routing solution,
Swovre ={Ssovre Vi € Vi } :

e Insert each customer into the route m, based at warehouse i (vertex v,) using the

generalized insertion (GENI) algorithm by (10).
e |If the insertion of customer in the route m. would result in the violation of vehicle

capacity or route duration limit, set m;= m,+1.

Construction of Initial Solution Type 2
For each warehouse i=1,..., n,,, , do

(@) Let v‘j be a customer randomly chosen among those closest to the depot
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ri"icus RV
vertices assigned to warehouse i by means of GENI procedure and Unstringing and Stringing
(US) procedure (10).

(c) Start with warehouse i (vertex v, ), create m, vehicle routes by following the tour. The first

vehicle contains all customers starting from the first customer on the tour and up to, but
excluding, the first customer v whose inclusion in the route would cause a violation of the
capacity or route duration limit. This process is repeated, starting from the city v, and until all
customers have been included into routes. The initial MDVRP solution is

Syovee = {SéDVRPVi €V }-

(b) Using the customer vertex sequence (V),V,

LtV

vij_l), construct a tour on all

Phase I1: Solution Improvement

The initial solution is an input in Phase Il consisting of 3 sub-phases (see Figure 1). Three basic
procedures that are employed in these sub-phases are first described including one-route, two-
route and three-route procedures, followed by the descriptions of three sub-phases. Then, the
selection of routes for two-route and three route procedures in the three sub-phases is described.

One-Route Procedure

The one-route procedure is a post-optimizer on single-vehicle routes. In this study, the US
algorithm by (10) is employed while maintaining route duration feasibility and vehicle capacity
feasibility. Since the procedure improves the sequence of customers on a particular route
without reassigning any customer to different warehouses, ED, and VD,are unaffected. Thus,
the optimal order quantity and reorder point as well as ordering and holding costs are not
changed.

Two-Route Procedure
The two-route procedure moves vertices belonging to two different routes assigned to one or two
warehouses. Let (thVjquuVll) and (vhz,vjz,vkz,vlz) be two sequences of four consecutive

vertices (possibly including a warehouse) from route r; based at warehouse i; and route r, based
at warehouse iy, respectively. Similar to (6,11,12), the following 6 moves are attempted as long
as a warehouse is not moved, and vehicle capacity feasibility and route duration feasibility are

maintained. The six moves are described together with the calculation of changes in relevant g,
rl!, pl!, ED , and VD,.

(a)lnsert v i between Vi, and v i
The two vertex sequences become (v, ,v, ,v, ) and (v, ,v;,v; .V, ,V, ), respectively. The

changes in the round-trip lengths are A, =-c, ; —¢C; \ +¢C, , —J; and

Ay, =-C, ;. +C, ; +C; ;, + 0, . If v, isthe last customer visited on route ry,

Ay =-C, j, — 0, ;otherwise, A, =A, . If v, isthe last customer visited on route r,

Ay, =C, ; +0; ;otherwise, A =A, . The changes in the average delivery demands are
Aq; =—p; and Aq? = u; . If iy #i,, AED, =—u; , AED, =, , AVD, =-o; and

AVD, =2 . Otherwise, AED, = AED, =0and AVD, =AVD, =0.
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(b)Insert v; between v, and v,

The two vertex sequences become (v, ,v; ,v; Vv, ,v, ) and (v, ,v, ,v, ), respectively. The
changes in the round-trip lengths are A,, =-c, ; +¢, ; +¢; ; +0; and

A“z = _Cthjz - Cjzvkz + Chzxkz - 5]2

. If v, is the last customer visited onroute ry, A, =c¢, ;, +3; ;
otherwise, A, =A, . If v; is the last customer visited on route rz, A

12?
pl, = ~Cn,.j; ~ 9, 0
otherwise, A, =A, . The changes in the average delivery demands are Aqg = u;, and
Ag;? =—p; . If iy #i,, then AED, = u; , AED, =—u; , AVD, =o; and AVD, =—o7 .

2
Otherwise, AED, =AED, =0and AVD, =AVD, =0.

(c) Swap v; and v;

The two vertex sequences become (vhl,vj2 ,vkl,vll) and (vhz ViV, ,v,z). The changes in the

round-trip lengths are A, =-c, ; —¢; , +C, ; +C; , —J; +0; and

A”2 = _Cthjz - Cjzv

A, =-C, ; +C, ; —0, +0, ;otherwise, A, =A, . If v; isthe last customer visited on route
1 1, 01 1,12 h 12 ply rhy 12

r, A

+¢c. . +Cc., =0 +O. . If v. isthe last customer visited on route ry,
k, hy, s J1.Kz 12 Il Il

o, =—Cn,j, + Gy =06, +0, otherwise, A=A, . The changes in the average delivery
demands are Aqg =—p; +p;, and Aqg =u; —p;, - Wi =iy, then AED, =—p;, +4,
AED, =y, —u; . AVD, =-0} +0% and AVD, =0’ —o} . Otherwise,

AED, = AED, =0and AVD, =AVD, =0.

(d)Insert (vjl Vi, ) between (vhz Vi, )

The two vertex sequences become (v, ,v, ) and (v, ,v; Vv, ,V; .V, ,V, ). The changes in the
round-trip lengths are A, =-c, , —¢; , —C, , +C, , —J; — & and

Ay, =—Cp ;. *+Cp  +Cp\ +C ;. +0; +0 . If v isthe last customer visited on route ry,

Ay =-Cy; —Cjy — 0, — 9 Otherwise, A =A, . If v, isthe last customer visited on route
r2, A
demands are Aq; =—u; — and AQP = g, + g . Wiy #i,, AED, =—p; — 1,

AED, = u; + 4, AVD, =—0 /-0’ and AVD, =0} +o, . Otherwise, AED, = AED, =0and
AVD, =AVD, =0.

rl

o, =Ch, TCyx +0; +0; otherwise, A=A, . The changes in the average delivery

(e)Insert (v; ,v, ) between (v, ,v; )
The two vertex sequences become (vhl Vi Vi V0V ,vll) and (vhz ,vlz) . The changes in the
round-trip lengths are A, =-c, , +¢, ; +C; , +C ; +0; +9J_ and

Arl2 = _Cthjz - Cj2vk2 - Ck2v|2 + Ch2v|2 o 5

J2
A ,TCx, 0, +6 ;otherwise, A, =A, . If v, isthe last customer visited on route r,

—9,, . If v, is the last customer visited on route ry,

=C

ply by, j
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Ay, =—C,; —C d;, — o, otherwise, A, =A, . The changes in the average delivery

ik~ Yh

demands are Aq; =y + g, and AQ? =—p; —p . 1 i =i, AED, = u; + 4,
AED, =—p; -, AVD, =0 *+0,” and AVD, =-o; — o, . Otherwise,

AED, = AED, =0and AVD, =AVD, =0.

(HSwap (vjl kal) and (vjz Vi, )
The two vertex sequences become (v, ,v; .V, ,V, ) and (v, ,v;,v, ,v, ). The changes in the
round-trip lengths are A, =—c, ; —C;, —C,, +C, , +C; , +C , —J; —6 +J; +0, and

Ay, =—Cy i, —=Cix, —Ciy, +Ch tCik +Cy, — 05, — 0, +6, +J . If v isthe last customer

NP

=—Cy i ~Cik tChi T Cik, — 51.1 - 5k1 + 51.2 + 5,(2 : otherwise, Ap, =4y

, = Chjy 7 Ch, =Cr,j, =Chu, +0;, 0, —J;, =05

i ks
visited on route r;, A,
If v, is the last customer visited on route r, A,
otherwise, A, =A, . The changes in the average delivery demands are

Aqg == — M, + Hy, + g, and Aq:ﬁ = Wy, + ph — p, — - 12,

AED; =-p; —p + 4, + iy, AEDy = py + e —py, — i, AVD, = —O'jf—akf+0jf+0'k22 and
AVD, =o *+0,~0] —o, . Otherwise, AED, = AED, =0and AVD, =AVD, =0.

Three-Route Procedure
The three-route procedure is an exchange scheme involving three routes (6). Let
Vh, 0V Visn) s (Vi 00V, Vi e Vi o W,) and (v v, ) be three sequences of consecutive

vertices (possibly including a warehouse) from routes ry, r, and r; with at least 3, 4 and 3 vertices
respectively, based at warehouses iy, i; and is. For routes r, and rs, consider the sequences of two
vertices (v ,v, ) and (v, ,v, ) where v; #v, and v, =v, . Then the following combination

of moves is attempted as long as vehicle capacity feasibility and route duration feasibility are
maintained, and a warehouse is not moved: insert v, between v; and v, , and insert v,

between v, and v, . The move is described together with the calculation of changes in relevant
qi, rl', pl!, ED,, and VD,. After three-route exchange, the three vertex sequences become
Vi, 00V 1) s (Vi 00 Vi, e Vi, o Vi o Vi, ) @nd (v v, v, ). The changes in the round-trip lengths
are Ay =-Cy yn ~Cp nor t Craner 5h1 J

Ay, ==Cy 1, =Ch hsr  Chpoiysa —Sh, —Ci,k, +Cipn +Ch ok, TS, and

>

=—C;, . +C. , +C, , +0, . Ifv, isthe last customer visited on route ry,
3 J3.K3 J3.N2 2:K3 2 hy

rl

A, =—cC,. .. —0, ;otherwise, A, =A, . If v_ is the last customer visited on route r»,

ply =1y y ply rly h,
Ay, =—Cpap, —Oh, —Cik, TCin +Chi, T - TV, isthe last customer visited on route r,
Ay, ==Cy 1p, ~Crnua+Chap — Oy +Cpp +6, - Otherwise, A=A, . If v, is the last

customer visited on route rs, A, =c,; , +6, . Otherwise, A, =A, . The changes in the
average delivery demands are Aq; =—, , AQ) = g, —, and AgP = g, . If i #i, =iy, then
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AED, =-p, , AED; = p, —p, , AED; =, , AVD, = —th, AVD, = aé —ofz and

AVD, = ofz . If iy =i, =l,, then AED, =AED; =0and AVD, =AVD, =0. If i, =i, #1,,
AED, =AED, =-u, , AED, =4, , AVD;, =AVD, = —ofz and AVD, = ofz :

If i, =iy #i,, AED, =AED, =—-u, + 44, , AED, =1, —p1, ,AVD, =AVD, = -0 +c,’ and
AVD, = ofl —ofz i =i, =i, AED; =—p, , AED, =AED, =, , AVD, = —O'hf and
AVD, =AVD, =0y .

Sub-Phase 11.1: Fast Improvement
The algorithm attempts to improve upon the incumbent by repeatedly applying the following
three steps:

e Inter-warehouse: Apply two-route procedure between routes of two different warehouses.
¢ Intra-warehouse: Apply two-route procedure between routes of the same warehouse.
e Three-Route: Exchange vertices between three routes, using three-route procedure.

fast

These steps are repeated until the incumbent does not improve for n_> consecutive iterations.

For each of the three steps, any move that yields an improvement is immediately implemented.
Otherwise, the best non-tabu deteriorating move is implemented. Whenever a move is
implemented, the one-route procedure is applied to all routes involved in the move.

Sub-Phase 11.2: Intensification

This phase intensifies the search for better route, starting with the best known solution and
working on one warehouse at the time. It applies the intra-warehouse step to each warehouse in

turn until no improvement to the incumbent has been produced for n'™™ consecutive iterations.

max
Whenever a move is implemented, the one-route procedure is applied to all routes involved in
the move.

Sub-Phase 11.3: Diversification

The effect of the diversification phase is to perform a broader exploration of the solution space.
The following two steps are repeated 20 times.

o First, we seek the best reinsertion of a vertex from its current route into a route belonging
to a different warehouse; that is, apply the first move type of the two-route procedure
limiting to only two routes associated with different warehouses. Choosing the same
vertex for reinsertion is prohibited for the next 10 applications of this step. Whenever a
move is implemented, the one-route procedure is applied to all routes involved in the
move.

e Second, the inter-warehouse and intra-warehouse steps of the fast improvement sub-

phase are applied for n"®"" consecutive iterations without improvement to the solution

max

values obtained in the first step. Here the length of the interval during which a move is
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tabu is randomly chosen in [15,20] and no aspiration criterion is used. Whenever a move
is implemented, the one-route procedure is applied to all routes involved in the move.

Selection of Routes for Two-Route and Three-Route Procedures in the Three Sub-Phases

The selection of routes to which two-route and three-route procedures are applied is described
(6). To define the distance between a route and a warehouse or between two routes, each route is
represented by its center of gravity. In inter-warehouse, we consider exchanges between each

warehouse i and the PN_JJrl warehouses closest to it. For each pair of warehousesi, and i,,

H
2

. m; . .
we consider exchanges between the {Tﬂ routes of warehouse i, closest to warehouse i, and

m; . : : ,
the { 'Z—I routes of warehouse i, closest to warehouse i,. In intra-warehouse, we consider all

pairs of routes for each warehouse. In three-route procedure, the three routes ry, rz, and r3 are
selected as follows. All routes with at least 3 vertices are considered for route r;. Route r» is the
closest neighbor of route r; and has at least 4 vertices. Route rs is the closest neighbor of route r,
with r3 # r1, and route rs has at least 3 vertices.

Throughout Phase I, the incumbent and its value are recorded. The current solution is
not necessarily the best known because the deteriorations of the objective function are allowed.
Whenever a customer is moved from its current route, moving this customer back into the same

route is declared tabu for 6 iterations, where 6 is randomly chosen in [9F""°, 67" |=[4,10].

Random tabu durations help avoid cycling. A tabu status may be overridden if implementing the
corresponding move yields a better incumbent.

COMPUTATIONAL EXPERIENCES

The tabu search heuristics are implemented in C++. These run on a computer with 1.73 GHz
Intel Core i7 processor and 4 GB of RAM, running under Windows 7. The data are first
described. Then, the computational results of two experiments are discussed.

Data

For IRP, there is not the standard set of instances for testing algorithms. We generated instances
similar to the types used in VRP. The customer locations are generated from (4)’s VRP
instances, yielding only four sets of distinct customer locations: C1, C2, R1 and RC1. In C1 and
C2, the customer locations are clustered. In R1, the customer locations are randomly generated
from a uniform distribution. In RC1, the customer locations are a combination of randomly
generated and clustered points. In the same manner as (5), we create five instances
corresponding to each group of customer locations (denoted by 50a, 50b, 75a, 75b and 100): the
first 50 customers, the last 50 customers, the first 75 customers, the last 75 customers, and all
100 customers. Thus, there are 20 instances of customer locations. The service times are set at
10 time units for all customers. The average demands of customers are equal to the demands
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used in (4). The demand variances are based on the coefficients of variance randomly generated
from the range [0.45, 0.55].

For the warehouse locations, we created two sets of 4 warehouse locations for each
customer instance. The first and second sets of candidate warehouse locations are denoted by
whl and wh2, respectively. We randomly generated the warehouse locations from a uniform
distribution, so that two criteria are satisfied. First, each customer location could be reached by a
singleton route with the associated route duration to the last customer of at most 80 time units
(M=80) from at least one warehouse. Second, each warehouse location must be assigned at least
10, 15 and 20 customers for the 50, 75 and 100 customer instances, respectively, when assigning
customers to their nearest warehouse. For all warehouse instances, homogeneous unit holding
costs of the four warehouses are $0.3, $0.6, $0.9, $1.2 per product unit per day; the
homogeneous ordering costs $450, $900, $1350 and $1800 per order. For all warehouses, the
lead times are two days; inventory capacity 2000 product units; order quantity capacity 2000
product units; unit transport cost from the plant to warehouses is zero. The distance matrix is
determined based on Euclidean distance between all vertex pair. The traveling speed is assumed
1 distance unit per time unit, and routing cost is assumed $1 per travel time unit to cover variable
vehicle costs. Personnel costs and other vehicle related fixed costs are assumed to be considered
outside the inventory-routing decision. The route duration limits are 100 time units. The
number of available vehicles for each warehouse is unlimited with the homogeneous capacity of
100 product units, which are less constrained than the route duration limit constraints in all test
problems. We identify each instance by an ID. The first part of the ID specifies the problem
group (R1, C1, C2 or RC1). The second part specifies the customer subset (50a, 50b, 75a, 75b or
100). The third part specifies the set of warehouse locations (whl or wh2). Thus, there are 40
problem instances.

Computational Results

We calibrate the two tabu search algorithms by varying n!, n™* and nf*®"" on a test
problem, and found that the algorithm parameters suggested by (6) perform best (n =75, nie*

=300 and n"®®™“r=50), We conduct two experiments. The first experiment compares the

max
performances of the type-1 and type-2 tabu search heuristics in terms of computational time and
solution quality against the sequential approach. The sequential approach first solves MDVRP
with route duration limits, whose routing solutions are input to the continuous ICP with
stochastic inventory capacity constraints and order quantity capacity constraints. In the second
experiment, the sensitivity analysis is performed on problem instance RC1-100-whl by varying

the route duration limit (M=80 and 100), order quantity capacity (Q,"* =800, 1000 and 2000) and

demand variance (-30%, 0% and +30% changes). The demand variances are the product of the
original demand variance and demand variance factor (DVarF); thus, -30%, 0% and +30%
changes in demand variances correspond to DVarF values of 0.7, 1.0 and 1.3, respectively.

Table 1 shows the best objective values found and total computational time by type-1 and
type-2 tabu search algorithms and the sequential approach on the 40 problem instances. As
expected, the proposed tabu search algorithms outperform the sequential approach on all test
problem instances. The computational times of all runs are less than two minutes. On 50-
customer and 75-customer problem instances, the two tabu search algorithms perform
approximately equally well, since the type-1 tabu search outperform the type-2 tabu search on
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about 50 percent of problem instances. On 100-customer instances, the type-2 tabu search
outperforms the type-1 tabu search on almost all instances except an instance R1-100-wh2.

Next, the sensitivity analysis is performed to see how the solution changes with route
duration limit, order quantity capacity and demand variance on problem instance RC1-100-wh1.
We employ the type-2 tabu search in all runs as it performs best on this problem instance. Figure
2a shows the best objective value found when varying route duration limits, order quantity
capacity and demand variances. It can be seen that the best objective value increases with the
increase of demand variance, but decreases with the increase of order quantity capacity and route
duration limit. The best objective value is composed of three cost components: vehicle routing,
holding and ordering. Figures 2b-2d shows the three cost components when varying route
duration limit, order quantity capacity and/or demand variance. As can be seen from Figure 2b,
the total ordering costs increases with the decrease of the order quantity capacity, whereas the
total holding costs decreases with the decrease of the order quantity capacity. Intuitively, when
the order quantity is more constrained, the warehouse manager has to order more often and
ordering costs are higher. Meanwhile, the peak inventory levels are lower and the total holding
costs are less. Furthermore, Figure 2b shows that the routing costs increases with the decrease of
route duration limit. Once the longer route duration limit is allowed, each vehicle route may
serve more customers, and the routing costs is less. Figures 2c-2d show that the holding costs
increase with the increase of demand variance, but it is unclear how the routing and ordering
costs change with the demand variances. This is as expected as the demand variance is only
directly related to the holding costs (see Eq.(6.1)). The demand variance can influence the
customer assignments to different warehouses, resulting in different routing costs and ordering
costs.

Figure 3a shows the continuous inventory control policies at four warehouses in the best

solution when varying order quantity capacity at L;*=80 and DVarF=1.0. When the order

quantity capacity (Q™=2000) is equal to the inventory capacity, the optimal order quantity is

equal to the EOQ formula according to Eq.(9). When the order quantity capacity decreases to
1000 and 800, the customers as well as associated mean demands are reassigned between
warehouses 1002 and 1003. As such the reorder points and safety stocks of warehouses 1000
and 1001 are unaffected with the change of order quantity capacity, but those of warehouses

1002 and 1003 are affected. The optimal order quantities for the case Q™= 800 and

Q™ =1000 are equal to Q™ according to Eq.(9).

Figure 3b shows the continuous inventory control policies at four warehouses in the best
solution when varying demand variance at Ly =80 and Q™ =800. The customers as well as
associated mean demands assigned to the four warehouses are unaffected with the change of
demand variance. The safety stock levels and reorder points at the four warehouses increase
with the increase of demand variance, whereas the available inventory capacities at the four
warehouses decrease with the increase of demand variance. This is intuitive as the safety stock
is positively related to demand variance, and the reorder point includes the safety stock as shown
in Eq.(2). The available inventory capacity is negatively related to demand variance (available
inventory capacity = 1™ —(Z,_, +Z,_,){/LT, 1/\_/Di ). The optimal order quantities are equal to
the order quantity capacity according to Eq.(9). Table 2 shows the MDVRP policies for the four
warehouses when Lg™=80 and Ly =100. The number of routes is decreases with the increase

of route duration limits. This is because the available vehicle capacity in each route is large
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enough to serve additional customers. As can be noticed in Table 2, each route has the travel
time to last customer less than or equal to the route duration limit, and the mean demand of each
route is less than the vehicle capacity.

CONCLUSIONS
This paper studies a two-level supply chain where a single plant supplies a single commaodity to a
set of warehouses which in turn serve a set of customers with stochastic demands. This paper
provides a nonlinear integer programming formulation modeling the continuous inventory
control policies at the warehouses and the routing of goods from the warehouses to the customers
with route duration limits. The model accounts for the probability of available inventory
meeting the demand during the lead time, probability of violation of inventory capacity, and
restrictions on order quantity volume. Two tabu search heuristics — type 1 and type 2, differing
primarily in the way initial solutions are generated are developed to solve the combined model.
The optimal order quantity at each warehouse is approximated using the KKT conditions.
Computational runs are conducted on variations of the standard Solomon test instances.
Type-2 tabu search was found to outperform type-1 tabu search for the 100 customer instance.
For smaller customer instances, both the heuristics were found to perform equally well.
Integrating the inventory management and routing decisions by solving the combined inventory
management and routing problem was found to yield cost savings of up to 14% over the
sequential approach where both problems are solved separately. The best objective function
value obtained by the tabu search heuristic was found to increase with increase in customer
demand variance, decrease with increase in order quantity capacity and route duration limit.
Variance of the customer demand was found to have significant impact on the solution quality.
This paper can be extended in multiple directions. The immediate next step is to integrate
warehouse facility location problem into the combined inventory management and routing
model. Possible extensions include considering time-dependent travel times, stockout costs and
delivery time windows.
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Phase I: Construction of an Initial Solution
(Type I or Type 1)

.

Phase 11.1: Fast Improvement
Iteratively apply the three steps until the stopping criterion is met:
Inter-warehouse, Intra-warehouse, and Three-Route.

Y

Phase 11.2: Intensification
Starting with the best known solution, iteratively apply the
intra-warehouse step until the stopping criterion is met.

A 4

Phase 11.3: Diversification
Starting with the current solution, apply the two steps for 20
iterations: Vertex Reinsertion to Different Warehouse; Inter-
warehouse and Intra-warehouse Steps of Phase I1.1.

Figure 1. Flowchart of Proposed Tabu Search Heuristics
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a) Best Objective Values with Varying Route
Duration Limits, Order Quantity Capacity and
Demand Variances
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b) Three Component Costs With Varying Route Duration
Limits and Order Quantity Capacity (DVarF=1.0)

¢) Three Component Costs With Varying Demand
Variance (Order Quantity Capacity=2000 and Route
Duration Limit = 100)

d) Three Component Costs With Varying Demand
Variance (Order Quantity Capacity=800 and Route
Duration Limit = 100)

Figure 2. Best Objective Values and Three Cost Components
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2000
1800
1600
h5| 1400
=
S 1200
k=l 1000
3
S 800
o 600
400
200
0 | | | i i i i i
depot | depot | depot | depot | depot | depot | depot | depot | depot | depot | depot | depot
1000 | 1001 | 1002 | 1003 | 1000 | 1001 | 1002 | 1003 | 1000 | 1001 | 1002 | 1003
Qmax2000 Qmax1000 Qmax800
EMean Demand {unit/day)| 417 476 505 326 417 476 455 376 497 476 487 344
m 5D of Demand {unit/day) | 49 53 53 42 49 53 50 45 19 53 52 13
mOptimal Order Quantity | 1118 | 1195 | 1231 | 989 | 1000 | 1000 | 1000 | 1000 800 800 800 300
WEOQ 1118 | 1195 | 1231 | 989 | 1118 | 1195 | 1168 | 1062 | 1118 | 1195 | 1209 | 1016
mAvallcap 1731 | 1709 | 1708 | 1768 | 1731 | 1709 | 1722 | 1751 | 1731 | 1709 | 1711 | 1764
WReorder Point 969 | 1098 | 1156 | 768 969 | 1098 | 1049 877 969 | 1098 | 1118 306
mSafety Stock 125 146 146 116 125 146 129 125 135 146 144 118

a) With Varying Order Quantity Capacity (Route Duration Limit=80; DVarF=1.0)

2000
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1600 i i i i
1400
w
= 1200
=
o}
kel 1000
3
o
= 800
600
400
200
4]
1000 | 1001 1002 1002 1000 1001 1002 1003 1000 1001 1002 1003
DVarF=0.7 DvarF=1.0 DvarF=1.3
miMean Demand {unit/day)| 417 476 487 344 117 476 487 344 417 476 487 344
WSD of Demand {unit/day) 11 44 44 36 49 53 52 43 55 60 59 49
mOptimal Order Quantity 800 800 300 800 800 200 800 800 800 800 800 800
WEOQ 1118 | 1195 | 1209 | 1016 | 1118 | 1195 | 1209 | 1016 | 1118 | 1195 | 1209 | 1016
W Avail lcap 1775 | 1756 | 1758 | 1802 | 1731 | 1709 | 1711 | 1764 | 1693 | 16068 | 1671 | 1730
mReorder Point 947 1074 | 1095 787 960 1098 | 1118 806 987 1118 | 1139 822
mSafety Stock 113 122 121 99 135 146 144 118 153 166 165 135

b) With Varying Demand Variances (Route Duration Limit=80; Order Quantity Capacity=800)

Figure 3. Continuous Inventory Control Policies at Four Warehouses
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Table 1. Computational Results of Sequential MDVRP and ICP, and Combined ICP and MDVRP

Sequential MDVRP and

Combined MDVRP and ICP

ICP Init. Sol. Type 1 Init. Sol. Type 2
CPU

Best Obj. Time Best Obj. % CPU Time Best Obj. CPU Time
($/day) (min) ($/day) Improve. (min) ($/day) | % Improve. (min)

50-Customers Problems
C1-50a-whl 3,727.02 1.36 3,599.25 3.43% 1.96 3,619.87 2.87% 1.67
C1-50a-wh2 3,821.86 1.26 3,727.73 2.46% 0.89 3,747.72 1.94% 0.79
C1-50b-wh1 4,083.87 0.66 3,728.71 8.70% 0.61 3,795.24 7.07% 0.78
C1-50b-wh2 3,999.61 0.74 3,478.46 13.03% 0.85 3,823.94 4.39% 0.71
C2-50a-wh1l 3,840.98 0.98 3,550.59 7.56% 0.88 3,528.95 8.12% 1.02
C2-50a-wh2 3,514.08 0.94 3,223.65 8.26% 0.95 3,369.86 4.10% 0.96
C2-50b-wh1 4,211.79 0.79 3,956.97 6.05% 0.53 3,905.52 7.21% 0.62
C2-50b-wh2 4,108.18 0.58 3,627.97 11.69% 0.69 3,588.85 12.64% 0.64
R1-50a-wh1 3,570.89 0.76 3,367.28 5.70% 0.65 3,235.19 9.40% 0.83
R1-50a-wh2 3,693.61 0.74 3,584.06 2.97% 0.55 3,485.92 5.62% 0.71
R1-50b-whl 3,715.19 0.84 3,284.29 11.60% 0.80 3,190.68 14.12% 0.98
R1-50b-wh2 3,927.35 1.21 3,723.42 5.19% 0.65 3,588.96 8.62% 0.76
RC1-50a-whl 4,228.72 0.61 4,085.40 3.39% 0.53 4,029.67 4.71% 0.62
RC1-50a-wh2 4,414.56 1.12 3,844.28 12.92% 0.68 3,814.29 13.60% 0.53
RC1-50b-wh1 3,707.06 0.64 3,270.56 11.77% 0.74 3,284.03 11.41% 0.82
RC1-50b-wh2 3,623.14 0.74 3,320.46 8.35% 0.31 3,203.86 11.57% 0.63

75-Customers Problems
C1-75a-whl 4,966.38 1.80 4,839.85 2.55% 1.76 4,885.40 1.63% 1.49
C1-75a-wh2 5,152.99 1.35 5,152.99 0.00% 1.06 5,014.38 2.69% 0.99
C1-75b-wh1 5,545.76 1.09 5,393.16 2.75% 1.17 5,366.82 3.23% 1.23
C1-75b-wh2 5,375.33 1.03 5,249.51 2.34% 1.02 5,100.32 5.12% 0.78
C2-75a-wh1l 5,306.20 1.18 4,991.70 5.93% 1.05 5,022.92 5.34% 1.22
C2-75a-wh2 4,985.98 1.26 4,695.13 5.83% 1.19 4,834.15 3.05% 1.25
C2-75b-wh1 5,528.38 1.22 5,311.50 3.92% 0.96 5,330.93 3.57% 1.17
C2-75b-wh2 5,338.21 1.28 5,210.52 2.39% 1.06 5138.19 3.75% 1.01
R1-75a-wh1 4,703.12 0.95 4,632.99 1.49% 1.02 4,535.88 3.56% 1.29
R1-75a-wh2 4,593.40 0.93 4,412.45 3.94% 0.88 4,497.09 2.10% 1.14
R1-75b-whl 4,788.27 1.34 4,378.67 8.55% 1.07 4,523.30 5.53% 1.11
R1-75b-wh2 4,763.60 1.81 4,536.31 4.77% 1.19 4,490.63 5.73% 1.35
RC1-75a-wh1l 4,988.65 1.05 4,827.74 3.23% 0.61 4,815.07 3.48% 0.99
RC1-75a-wh2 5,236.32 1.07 5,104.13 2.52% 0.91 5,236.32 0.00% 0.88
RC1-75b-wh1 4,971.99 1.00 4,785.77 3.75% 0.68 4,760.34 4.26% 0.82
RC1-75b-wh2 4,987.55 1.03 4,745.55 4.85% 0.87 4,750.22 4.76% 1.02

100-Customers Problems
C1-100-wh1 6,061.05 171 5,815.44 4.05% 1.90 5,761.22 4.95% 1.75
C1-100-wh2 6,214.90 1.64 6,110.84 1.67% 1.42 6,005.50 3.37% 1.62
C2-100-wh1 6,142.82 1.50 5,872.85 4.39% 1.33 5,872.55 4.40% 1.25
C2-100-wh2 6,590.24 141 6,507.64 1.25% 1.28 6,380.97 3.18% 1.47
R1-100-whl 5,616.66 1.24 5,264.36 6.27% 1.23 5227.34 6.93% 1.82
R1-100-wh2 5,574.31 1.97 5,430.94 2.57% 1.70 5,471.92 1.84% 1.49
RC1-100-wh1l 6,112.11 1.43 6,016.59 1.56% 1.36 5,984.98 2.08% 1.47
RC1-100-wh2 6,324.67 1.32 6,258.55 1.05% 1.15 6,127.76 3.11% 1.39
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Table 2. Multi-Depot Vehicle Routing Policies for Four Warehouses with Varying Route Duration Limits (Order

Quantity Capacity =2000 and DVarF=1.0)

M80
depot 1000 depot 1001 depot 1002 depot 1003
No. of Routes 6 8 8 8
1000-98-55-69-82 1001-6-7-79-8 1002-65-90-96-94 1003-67-93-71
Routes 1000-88-60-78-73 1001-46-4-45-5-3 1002-95-92-91-80 1003-72-54-81
1000-14-47-17-16-15 1001-42-44 1002-66-56-84-64 1003-62

1000-59-97-75 1001-1-43-40 1002-83-57-24-22 1003-51-85-63

1000-9-13-87 1001-36-35-37 1002-20-49-19-18 1003-76-89

1000-10-11-12-53

1001-38-39-41

1002-48-21-23-25

1003-33-32-30-28-26

1001-70-61-68

1002-77-58

1003-27-29-31-34

1001-100-2

1002-74-86-52-99

1003-50

Mean Demands

61; 68; 80; 70; 43; 95

80; 90; 20; 70; 70; 60; 53; 33

71; 46; 70; 87; 80; 70; 27; 54

26; 34; 3; 27; 56; 70; 80; 30

Travel Times to
Last Customer

75.46; 77.83; 78.00;

73.52; 64.66; 55.24; 74.49;

76.91; 77.24; 76.56; 69.41;

57.10; 79.49; 15.83; 61.36;

76.68; 62.90; 72.08

79.54; 77.58; 62.61; 44.77

72.52; 78.78; 65.74; 78.36

52.26; 79.94; 75.18; 13.61

Travel Times
(begin and

end at depot)

81.78; 102.04; 97.65;

81.59; 73.66; 88.78; 113.54;

101.98; 93.52; 88.23; 90.99;

80.64; 112.91; 21.66; 74.36;

119.76; 85.75; 77.18

122.95; 113.60; 86.69; 45.77

104.80; 109.78; 98.55; 87.42

79.43; 105.02; 90.48; 17.21

M100
depot 1000 depot 1001 depot 1002 depot 1003
No. of Routes 6 6 6 6
1000-98-69-90-65-82 1001-2-6-7-8-46 1002-91-92-94-96-80 1003-67-93-71
1000-53-88-60-79-78 1001-4-45-5-3-1 1002-64-84-95-56-66 1003-85-62

Routes

1000-12-47-17-16-15-13

1001-42-44-43-40-39

1002-83-22-24-57

1003-51-76-89-63

1000-97-75-59

1001-36-35-37-38

1002-20-49-19-18-48-21

1003-33-32-34

1000-99-86-74-87-9

1001-81-54-72-41

1002-23-25-77-58

1003-31-29-27-26-28-30

1000-73-14-11-10

1001-70-61-68-55-100

1002-52

1003-50

Mean Demands

67, 98; 100; 70; 84; 85

90; 100; 80; 100; 54; 72

89; 76; 87, 100; 77; 3

26; 5; 81, 50; 100; 30

Travel Times
to last customer

87.24; 97.47; 93.83;

66.00; 64.47; 98.24,

92.71; 97.31; 76.47,

57.10; 43.57; 93.68;

90.76; 97.51; 87.34

93.14; 99.39; 99.68

96.52; 96.94; 21.66

57.32; 97.25; 13.61

Travel Times
(begin and
end at depot)

93.56; 114.50; 112.70;

71.66; 73.96; 136.45;

108.99; 103.39; 88.55;

80.64; 49.40; 106.68,;

118.07; 112.38; 99.42

133.34; 135.40; 112.41

127.92; 129.74, 33.32

72.62;115.36; 17.21
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ABSTRACT

Efficient loading of containers would raise current productivity for the shipment of mixed, boxed
cargo and this paper considers the knapsack container loading problem. Given a rectangular-
shaped container, rectangular-shaped boxes with different sizes are packed such that total loaded
volume is maximized. All boxes with the same origin-destination pair may be rotated in six
orthogonal directions without load-related and positioning constraints. The modified wall-
building based compound approach performs 36 modified wall-building heuristics based on three
existing ranking functions, two existing priority rules and six orthogonal rotations of containers,
while recording the best solution. The six orthogonal rotations of containers are equivalent to
filling the container in six ways (four wall building methods and two floor building methods).
Three weakly heterogeneous real-world test problems from a furniture company in Thailand are
employed. There is not a winning heuristic that performs best on the three test problems. The
typical wall-building approach (type-1 container rotation) does not perform well when compared
with considering all six orthogonal rotations of container. In terms of the number of containers,
the proposed compound approach can save up to 33% on the three test problems, and the highest
fill percentages in the best solution founds are improved by up to 36%, when compared with the
manual solutions. The proposed approach outperforms the existing tree heuristic. The highest
fill percentages by the proposed approach are up to 6% higher than those by the tree search
heuristic, whereas the CPU times by the proposed approach are up to 31% of those by the tree
search heuristic.

144



OO ~NOoO Ul WwWwNPEF-

Karoonsoontawong and Heepkoksoong 3

INTRODUCTION

Container loading is a crucial function for efficient supply chain (1). An inefficient container
loading may result in inevitably additional container costs as well as unsatisfactory customer
service level. The problem considered in this paper is the knapsack container loading problem.
Given a rectangular-shaped container and rectangular-shaped boxes with associated volumes, the
subset of boxes is selected to be packed in the container such that the total volume is maximized
(i.e. the wasted space in the container is minimized). The cargo boxes may be rotated in any
orthogonal directions without load-related and positioning constraints. It is noted that in
principle, the empty spaces could be filled out with foam rubber to ensure a proper support of the
boxes (2). All boxes have the same origin-destination pair. It is assumed that the cargo weights
are dominated by cargo volume in container packing, so box weights are not considered in the
algorithm. It is also assumed that the boxes are packed without overlapping, and the widths,
depths and heights of the boxes are integers. The modified wall-building based compound
approach is proposed in this paper. It considers six orthogonal rotations of container together
with three existing ranking functions and two existing priority rules for determining layer depths
and strip heights, resulting in 36 modified wall-building heuristics. The compound approach
performs the 36 heuristics while recording the best solution found.

In the next section, the literature review is provided, followed by the description of the
modified wall-building based compound approach. The computational results of the three real-
world case studies are discussed. The best solutions by the proposed approach are compared to
the manual solutions and the best solutions found by the tree search heuristic by (2). Then, the
summary and conclusions are provided.

LITERATURE REVIEW

The container loading problem was first studied by Gilmore and Gomory (3). Dyckhoff (4) and
Wascher et al. (5) proposed the general classification of cutting and packing problems. Pisinger
(2) categorized the packing and loading literature into four categories based on the objective
function and side constraints: strip packing, knapsack container loading, bin-packing and multi-
container loading. Firstly, in the strip packing problem (e.g. (6)), the container has known width
and height but unlimited depth, and the problem is to pack all boxes such that the container depth
is minimized. This problem category is applicable to multi-drop situations where the load should
be divided into different sections associated with different destinations (e.g. (7)). Secondly, in
the knapsack container loading problem (e.g. (2),(8)), we select a subset of boxes with associated
profits to be packed in a single container such that the total profit is maximized. If the box profit
is set to the box volume, this problem minimizes the wasted space in the container. Thirdly, in
the bin packing problem (e.g. (9),(25)-(27)), all boxes have to be packed into a minimum number
of containers with fixed dimensions. Lastly, in the multi-container loading problem (e.g.
(10),(28)), all boxes are packed into a minimum number of containers, which are chosen from
the containers with varying dimensions, such that the total shipping cost is minimized. In
addition, Bischoff and Ratcliff (7) and Bortfeldt and Wascher (1) provide the review of practical
requirements that may be incorporated into the problem: container-related, item-related, cargo-
related, positioning, and load-related constraints.

Since the container loading problem is an NP-hard problem (2), there does not exist an
efficient algorithm to obtain the exact solution in polynomial time. Christensen and Rousoe (11)
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provide the thorough review of heuristics for the container loading problem.  The heuristics for
the container loading problem can be categorized into three categories: construction algorithms,
tree search algorithms, and metaheuristic algorithms.

First, in the category of construction algorithms, a general solution strategy is to divide
the container into smaller pieces, and then each piece is separately packed. The three-
dimensional solution space is often reduced to one or two dimensions. The construction
algorithms can be further categorized into five subcategories: wall-building, layer-building,
stack-building, block-building, and guillotine-cuts. The most common dividing procedure is
wall-building first introduced by George and Robinson (12). A wall is constructed by making a
vertical strip through the container. The depth of a strip is defined by the depth of the first box
placed in the wall, and as the strip is filled, the boxes will create a wall-like formation. Bischoff
and Marriott (6) extended the wall building algorithm, and proposed a hybrid approach where 14
heuristics based on various ranking functions are performed to determine the best solution. The
second sub-category is the layer-building approach (e.g. (7)). It splits the container by horizontal
slices. When compared to the wall building approach, the layer building approach may produce
more stable loads. The third sub-category is the stack-building approach (e.g. (3)). It constructs
box stacks, so that the container loading problem becomes the two-dimensional problem of
arranging the stacks on the container floor. The fourth sub-category is the block-building
approach (e.g. (13)). It constructs blocks, and then, these blocks are placed in the container. A
block is composed of one or two types of boxes that are tightly packed. The fifth sub-category is
the guillotine-cut approach (14). It splits the container into smaller pieces by guillotine cuts.
The guillotine cut is a cut through an object until another guillotine cut is met or the object is cut
through.

Second, the tree search heuristic algorithms are developed based on dynamic
programming scheme and certain construction algorithm, employing upper and lower bounds.
Morabito and Arenales (14) proposed the tree search where a tree is created by guillotine cutting.
Eley (13) proposed the tree search method that is built upon the greedy block building procedure.
Pisinger (2) proposed the tree search heuristics based on the wall building procedure. The tree
search framework is used to determine the wall depths and strip widths, and only the most
promising nodes are kept in the tree. Third, the metaheuristic algorithms for container loading
problem include genetic algorithms (e.g. (15),(16)), GRASP algorithms (e.g. (17)), tabu search
algorithms (e.g. (18)) and hybrid algorithms (e.g. (19)).

The problem considered in this paper is the knapsack container loading problem. To fill
each container, the total loaded volume is maximized. In this study, we extend Bischoff and
Marriott (6)’s approach by considering various orthogonal rotations of container and
incorporating Pisinger (2)’s box pairing procedure and Pisinger (20)’s dynamic programming
algorithm for 0-1 knapsack problem. In the case studies, the proposed approach is compared to
the manual approach and the tree search heuristic (2).

MODIFIED WALL-BUILDING BASED COMPOUND APPROACH

George and Robinson (12)’s wall building algorithm fills the single container by building layers
(walls) across the container depth. The layer depth is selected based on the rationale that a box
with the largest size of the smallest dimension may be difficult to accommodate later in the
packing procedure. As such, the ranking rule is set the layer depth equal to the largest size of the
smallest dimensions of the unpacked boxes. Given a known layer depth, the horizontal strips are

146



00 No olTh WwWwN -

15
16

17
18
19

20
21

22
23
24
25
26

27

28
29
30
31

32
33
34
35
36

Karoonsoontawong and Heepkoksoong 5

built across the container height. To fill a horizontal strip, the algorithm inserts the box with the
largest size of the smallest dimension of an unpacked box. Bischoff and Marriott (6) proposed
the compound approach that performs the wall-building algorithms with various ranking rules
while recording the best solution found. In this paper, we modify the compound approach by
considering six orthogonal rotations of the container, Pisinger (2)’s three ranking functions and
two priority rules, Pisinger (2)’s box pairing procedure, and Pisinger (20)’s dynamic
programming based algorithm for the exact solution of the 0-1 knapsack strip packing problem.
The dimensions W, H , and D are referred to the typical width, height and depth of the
container, whereas the current width, height and depth of container (W, H and D) are referred to
the dimensions considered in the modified wall-building algorithm along the x-axis, y-axis and
z-axis, respectively, as shown in Figure 1.
t

Layer of Dimension

WxH xd’ = ﬁ
e

Figure 1. Three Dimensional Axes, Current Container Dimensions (W, H, D) and Current Layer Depth (d”) (2)

In the same way, the dimensions W, ﬁj and d_j are the initial width, height and depth of box j,
whereas the current dimensions of boxes (w;,h; and d;) are referred to the dimensions

considered in the algorithm along the three axes. All boxes can be rotated in six orthogonal
directions (or rotations) as illustrated in Figure 2. The modified wall building based compound
approach further considers six possible container rotations in the procedure. As shown in Table
1, the container rotation types 1, 2, 5, and 6 correspond to wall building approaches, whereas the
container rotation types 3 and 4 correspond to floor building approaches. Container rotation type

1 (i.e. typical container rotation) builds layers (walls) across the container depth D as shown in

Figure 1, and builds horizontal strips of length W across the container height H as shown in
Figure 3. For container rotation types 2-6, the procedure rotates the container in the other five
orthogonal directions, and performs the wall-building algorithm; these corresponds to either wall
or floor building and either horizontal or vertical strip building. Specifically, container rotation

type 2 corresponds to building layers (walls) across the container depth D and vertical strips of
length H across the container width W . Container rotation type 3 corresponds to building
layers (floors) across the container height H and horizontal strips of length D across the
container width W . Container rotation type 4 corresponds to building layers (floors) across the
container height H and horizontal strips of length W across the container depth D .
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e) Rotation Type 5 f) Rotation Type 6

Figure 2. Six Orthogonal Rotations

Table 1. Container Rotation Types and Associated Descriptions

Container W H D Description
Rotation Type
1 W H D Wall Building:
Layer building across the depth D
Horizontal strip (strip length = VV) building across the height H
2 H W D Wall Building:
Layer building across the depth D
Vertical strip (strip length = ﬁ) building across the width W
3 D W H Floor Building:
Layer building across the height H
Horizontal strip (strip length = 5) building across the width W
4 W D H Floor Building:
Layer building across the height H
Horizontal strip (strip length = VV) across the depth D
5 D H W Wall Building:
Layer building across the width W
Horizontal strip (strip length = 5) Across the height H
6 H D W Wall Building:
Layer building across the width W
Vertical strip (strip length = ﬁ) building across the depth D
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_______ I Strip

Figure 3. Current Strip Dimensions (sw”x sh”xd”)

Container rotation type 5 corresponds to building layers (walls) across the container width W
and horizontal strips of length D across the container height H . Container rotation type 6
corresponds to building layers (walls) across the container width W and vertical strips of length

O© oo ~NOo O WPNE

H across the container depth D .

The notations used in the proposed procedure including the parameters and variables are
first given. Then, the pseudo-code is described, followed by the descriptions of major

components in the pseudo-code.
Notations

Parameters

N ={1,...,n} = set of boxes
W = typical container width
H = typical container height
D = typical container depth
w; = initial width of box j
h; = initial height of box j
d, = initial depth of box j

Variables
N’= set of unloaded boxes

N" = set of unloaded boxes that are feasible to fill the current layer
N" = set of unloaded boxes that are feasible to fill the current strip

W = current container width in the algorithm
H = current container height in the algorithm
D = current container depth in the algorithm
w; = current width of box

149



OO ~NOOTh~,WwW N B

Karoonsoontawong and Heepkoksoong 8

h; = current height of box j
d; = current depth of box

D, = current residual container depth

H ; = current residual wall height

d" = current layer depth

sw' = current strip width

sh’= current strip height

strip_start_y = y-coordinate of the beginning of current strip

strip_end_y = y-coordinate of the ending of current strip

wall_start_z = z-coordinate of the beginning of current layer

wall_end_z = z-coordinate of the ending of current layer

(X;, Vi » zj) = (X,y,z)-coordinate of the referenced corner of loaded box j in the current solution
(dx; , dy;j, dz;) = (width, height, depth) of loaded box j in the current solution

(%, % » ) = (xy.2)-coordinate of the referenced comer of loaded box j in the best solution found
(dx; , dy; , dz; ) = (width, height, depth) of loaded box j in the best solution found

Pseudo-code

For each heuristic method c,u,v (i.e. container rotation type c, ranking function u and priority rule
v), the following steps are performed, given a rectangular-shaped container.

Step 0: Set con = 1.
Set N'=N.

Step 1: Initialize the following for the container con :

set the current residual container depth to the current container depth: set D,=D,
set the current strip width to the current container width: set sw'=W, and
Setwall end z=0

set (xj, ¥j, zj) = (0,0,0) for all boxes j in N’

set (dx; , dy; , dz)) = (W, h;,d, )for all boxes j in N’

ey

Step 2: Determine the current layer depth d’ based on the ranking function f " and the priority
rule vand D;. If d’ can be determined,
update the current residual container depth: set D,= D,—d’
set the current residual wall height to the current container height: set H=H
set wall_start z=wall_end_z
set wall_end z =wall_start z + d’
e setstrip end y=0
Otherwise, go to Step 7.

Step 3: Perform the box pairing procedure to obtain the set of feasible unloaded boxes (N") to
fill the current wall. Update (dx; , dy; , dz;) for all rotated boxes j.
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Step 4: Determine the current strip height (sh’) based on the ranking function ' and the priority
rule v, given H,. If sh’ can be determined,
e update the current residual wall height: set H, = H, —sh’

o determine the set of feasible unloaded boxes (N™) to fill the current strip, and update
(dx; , dy; , dz;) for all rotated boxes j.
e setstrip_start y =strip_end_y
e setstrip_end_y = strip_start_y + sh’
Otherwise, go to Step 2.

Step 5: Perform the strip packing procedure to select boxes from N" to fill the strip
(sw'x sh’x d") and update (xj, yj ,z;) and (dx; , dy; , dz;) of each loaded box j. Update the sets of
unloaded boxes N" and N" .

Step 6: If there is an unloaded box (i.e. N ={}), go to Step 4. Otherwise, go to Step 8.

Step 7: Calculate the fill percentage of the current container con: fill percentage = volume of
loaded boxes / volume of container. Set con = con + 1. Go to Step 1.

Step 8: Terminate with the empty set of unloaded boxes (N'=¢). Calculate the fill percentage
of the current container con.

Step 9: Update the best solution found:
e If the current solution is better in terms of the number of containers,
0 set best heuristic method (c”,u”,v") = current heuristic method (c,u,v)
o set (Xj*, y,-*, Zj*) = (X, ¥j,z;) and set (de*, dyj*, de*) = (dx; , dy;, dz;) for all j in N.
o If the current solution is as good as the best solution in terms of number of containers,
o If the higher fill% in the current solution is higher than that in the best solution,
= set best heuristic method (c",u”,v") = current heuristic method (c,u,v)
= set(x,Yi,z) = (X, Yj,z)andset (dx, dy;, dz) = (dx;, dy;, dz;) for all j in N.

Descriptions of Major Components

The major components of the proposed approach include the layer depth and strip height
determinations, the box pairing procedure, and the strip packing problem.

Layer Depth and Strip Height Determinations
In Step 2, we employ the ranking functions in (2), which are based on certain statistics of the

dimensions of the unloaded boxes. Denote by « and S the smallest dimension and the largest
dimension of the unloaded boxes, respectively. Three different ranking functions are considered:

fe = D> Jwcnokva o VK=a,@+1l., =10 (1.1)
i-1

sz = Zl(max{wivhivdi}:k) Vk =a,a +1""’ﬂ_1’ﬂ (12)
i-1
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n

= Lingwnaysy VK=a,a+L..,8-18 (1.3)

i=1

The type-1 ranking function, Eq.(1.1), determines the number of occurrences of each dimension
from all dimensions w., h and d, of the remaining boxes. The type-2 ranking function,

Eq.(1.2), determines the number of occurrences of each dimension from the largest dimensions
of the unloaded boxes. The type-3 ranking function, Eq.(1.3), determines the number of
occurrences of each dimension from the smallest dimensions of the unloaded boxes.

In Step 4, when the layer depth and the set of feasible unloaded boxes (N") to fill the
current wall have been determined, the ranking functions only consider the current width and the
current height of feasible unloaded boxes. Denote by « and £ the respective smallest dimension
and the largest dimension of the current widths and current heights of the feasible unloaded
boxes. Three different ranking functions are:

fklzzl(wi=kvhi=k) Vk=a,a+l,..,-1p (2.1)
i=1

=2 lowgn iy K=a,a+l..f-1p 22)
i1

fk3 = Zl(min{wi,hi}:k) vk = a,o +11"'UB_11,B (23)
i-1

The type-1 ranking function, Eq.(2.1), determines the number of occurrences of each dimension
from all dimensions w, and h, of the feasible unloaded boxes. The type-2 ranking function,

Eq.(2.2), determines the number of occurrences of each dimension from the largest dimensions
of w, and h, of the feasible unloaded boxes. The type-3 ranking function, Eq.(2.3), determines

the number of occurrences of each dimension from the smallest dimensions w, and h, of the

feasible unloaded boxes.
In Steps 2 and 4, we consider two priority rules (2):

Priority Rule 1: the largest dimension with positive ranking function value is selected; i.e. largest
dimension k with f, > 0.

Priority Rule 2: the most frequent dimension is selected; i.e. dimension k with the largest value
of .

The motivation of priority rule 1 is that the largest dimension should be loaded early in the
packing procedure; otherwise, it may be difficult to be packed later. The motivation of priority
rule 2 is that a homogeneous layer or strip with may tightly be packed. It is noted that the
procedure by (12) is equivalent to the type-3 ranking function and priority rule 1. Figure 4
illustrates the layer depth determination on a small problem by the three ranking functions and
the two priority rules.
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) , i \ . Dimension (k) fi

SO O {04050 ; é
5 4 5 4 3 3 5
a) Five-Box Example 4 3

5 3

Priority rule 1: d” =5
Priority rule 2: d”=3

b) First Ranking Function and Two Priority Rules

Dimension (k) f’ Dimension (k) f’
1 0 1 1
2 0 2 3
3 1 3 1
4 2 4 0
5 2 5 0
Priority rule 1: d”=5 Priority rule 1: d”=3
Priority rule 2: d”=5 Priority rule 2: d”=2
¢) Second Ranking Function and Two Priority Rules d) Third Ranking Function and Two Priority Rules

Figure 4. Examples of Layer Depth Determinations

Box Pairing Procedure

After the layer depth d’ is determined, in Step 3, we employ the box pairing procedure (2) to
determine the set of feasible unloaded boxes (N") to fill the current wall. (2) indicated that a
box pairing procedure can be used to achieve an improved solution in his tree search heuristic,
and this is also adopted in our proposed algorithm. The complexity of the box pairing procedure
is O(n?), and it is executed only once for each layer depth d’. The box pairing procedure is
described below:

Step 3.1: Set N"={}. If the smallest dimension of each box i in the set N’ is bigger than the
layer depth d’, box i is not inserted in N” and is not considered in the box pairing procedure.
Otherwise, Rotate each box i in the set N’ such that its depth d,is the largest dimension

satisfying the constraint d, <d’. The filling ratio to pack box i in the layer with depth d’ is
u(i):

(i) =whd, /whd =d, /d’ 3)

Step 3.2: Pairing box i with other box j in the set N’ where j = i. All orthogonal rotations of i
and j are considered such that d; +d; <d’ and the associated filling ratio, (i, j), is determined:

whd +w.h.d.

70, 1) = d'- maX'I{V:/i ,IWj}'JmJa)é{hi N3 i
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If n(i, j) < u(i) for all boxes j=i in N’ and all orthogonal rotations of boxes i and j, then box i

remains alone and is inserted in N”. Otherwise, box j and corresponding rotation with the
largest value of 7(i, j) is selected to pair with boxes i in order to form a new box k with the

following dimensions: w, = max{w,,w;}, h, =max{h,h;}, and d, =d;+d; as illustrated in
Figure 5. Then, box k is inserted in N".

Wj
P

hi | h=max{ hi, h}

hiI i 1‘/(1:
Wi d;A:: di +d;

wi=max{ wi , wj }

Figure 5. Paired Box Dimensions
Strip Packing Problem

In Step 5, strips are filled horizontally. The strip has the width equal to current container width
sw”=W, the depth equal to current layer depth d’ and the height sh’. The procedure first
determines the set of feasible unloaded boxes (N™) to fill the current strip as follows. Set
N"={}. Each box jin the set N" is rotated in one of six directions such that w; is minimized
subject to d; <d’ and h; <sh". Ifitis possible to fit box j in the current strip, box j is inserted

in the set N”. If it is not possible to fit box j within the current strip, then box j is not
considered for the current strip packing. The strip packing problem can be formulated as a 0-1
knapsack problem as shown below (2):

max ij -h;-d; -,
jeN™

Subject to

ij -5, <W

jeN"

s, {03 VjeN"

where s; is a binary decision variable; s;=1 if box j is chosen to fill the current strip, and 0

otherwise. The 0-1 knapsack problem is an NP-hard problem (21), so there does not exist an
efficient algorithm to solve for an exact solution in polynomial time. It can be solved in pseudo-
polynomial time by dynamic programming (22). In this study, we employ the effective dynamic
programming-based algorithm by (20).
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COMPUTATIONAL EXPERIENCES

The 36 modified wall building heuristics are implemented in C by modifying the callable C code
in (23,24). The box pairing procedure is taken from the callable C code by (23), and the
dynamic programming heuristic for 0-1 knapsack problem is taken from the callable C code by
(24). These heuristics run on a computer with 1.73 GHz Intel Core i7 processor and 4 GB of
RAM, running under Windows 7. We use three real-world test problems from a furniture
company in Thailand. The origin of the cargos is Thailand, and the destinations of the cargos in
the three test problems are Brunei, Vietnam and Japan, respectively. The initial dimensions of
boxes for the three test problems are shown in Tables 2a-2c. These three test problems are
weakly heterogeneous, since the numbers of box types are less than 20 (2). The standard
container types are 40 HQ', 40" and 20" as shown in Table 2d. In this experiment, we employ the
proposed algorithms to fill each container in the manual solutions in a descending order of the
container size. When one container has a higher fill rate, it is more possible to use a smaller
container (than that in the manual solutions) to pack the left boxes. As such, for the first test
problem, all heuristics employ 40 HQ' containers. For the second test problem, all heuristics
employ 40' containers. For the third test problem, all heuristics employ 40" container as the first
container and 20' container as the second container.

Tables 3-5 show the computational results for test problems 1, 2 and 3, respectively. Itis
noted that the cargo weights on each container in the solutions do not exceed the allowable
weight. The heuristic method c,u,v is referred to the container rotation type c, ranking function f
and priority rule v. Apparently, there is not a winning heuristic that performs best on the three
test problems. On the first test problem, there are 11 heuristics that yield two 40HQ' containers
and 25 heuristics that yield three 40HQ' containers. The heuristic method ¢=6,u=2,v=2 performs
best on the first test problem with two 40HQ' containers and the highest fill percentage (87.82%)
of container number 1. On the second test problem, there are 34 heuristics that yield two 40'-
containers and only 2 heuristics (c=3,u=2,v=1 and c=5,u=2,v=1) that yield three 40' containers.
The heuristic method c=6,u=3,v=1 performs best on the second test problem with two 40'-
containers and the highest fill percentage (80.75%) of container number 1. As can be seen in
Table 5, in the best solution found, the fill percentage (20.50%) of container number 2 is equal to
15,908,120 cm® which can fill a 20' container. Thus, the best solution found becomes a 40'-
container with 80.75% fill and a 20'-container with 41.03% fill. On the third test problem, there
are 33 heuristics that yield two containers (40" and 20"). The three heuristics (c=1,u=1,v=2;
c=3,u=1,v=2; and c=4,u=1,v=2) perform best on the third test problem, yielding a single 40'-
container with the highest fill percentage (68.42%). Interestingly, the typical wall building
algorithms that are associated with the container rotation type 1 (c=1) do not perform well; thus,
this reiterates the improvement by considering the six orthogonal rotations of container.

Subsequently, the best solutions found on the three test problem by the proposed
compound approach are compared to the manual solutions by the furniture company as well as
the best solution found by the tree search heuristic by (2) as shown in Table 6. The manual
solutions by the furniture company employ three 40HQ' containers for the first test problem, two
40'-containers for the second test problem and a 40'-container and a 20'-container for the third
test problem. In terms of the number of containers, the proposed compound approach can save
33.33%, 25% and 33.33% on the three test problems, respectively. The highest fill percentages
in the best solution founds are improved by 36.45%, 29.42% and 14.94% on test problems 1, 2
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and 3, respectively, when compared with the manual solutions. Figure 6 illustrates the box
layouts of manual solution and best solution found on test problem 3.

The tree search heuristic yields the same results in terms of number of containers as the
proposed compound approach. However, the proposed approach yields improvement in highest
fill percentage on test problems 1 and 2 by 6.52% and 1.31%, respectively. Especially, the total
CPU times by the proposed approach are only 20.30%, 3.35% and 31.34% of those by the tree
search heuristic.

Table 2. Initial Dimensions of Boxes for Three Test Problems and Dimensions of Standard Containers

a) Initial Dimensions (Centimeters) of Boxes for Test Problem 1 (223 Boxes and 16 Box Types)

Box Type 1| 2] 3] 4| s| 6| 7| 8| of 10| 11| 12| 13] 14| 15| 16

Width (W;) | 100 70| 96| 100/ 85| 85| 85| 102| 80| 212 80| 102| 102| 145 70| 69
Depth (d;) | 100 70| 70| 100 190| 148 195| 160 155 80| 170 102[ 102 67| 68| 69

Height () 80 | 80| 53| 60| 100[ 100[ 100( 90| 90| 90| 65| 77| 57| 83| 100 92
Number of 1) 3| 2| 3| 3| 4| 3| 3| 3| 4| 3| 6| 1| 16| 11| 157
Boxes

*Total Box VVolume = 129,402,900 Cubic Centimeters

b) Initial Dimensions (Centimeters) of Boxes for Test Problem 2 (113 Boxes and 14 Box Types)

Box Type 1 2 3 4 5| 6| 7| 8 9 10 11 | 12| 13 14

Width (W, ) 90| 92| 110 100, 80| 100/ 110 110, 110| 100 | 100 | 100 100| 70

Depth(aj) 100| 142| 110 100] 95| 195 110} 110f 110| 210| 210| 180, 180| 73

Height(ﬁj) 101| 101 75| 115 92| 70| 90| 55| 45| 55| 60 | 60| 26 | 92

Number of 12| 1 8 41 5] 3] 1| 1 1 1 9 1 1 65
boxes

* Total box volume = 78,578,264 cubic centimeters

¢) Initial Dimensions (Centimeters) of Boxes for Test Problem 3 (94 Boxes and 11 Box Types)

Box Type 1 2 3 4 5 6 7 8 9 10 11
Width (V_Vj) 120 120 120 91 130 90 130| 110| 80 | 110| 70
Depth (aj ) 120 120 190| 210 244 170 170| 190| 80 | 210| 73
Height (ﬁj ) 70 40 70 70 80 70 70 45 70 60 92

Number of 1 1 1 1 1 2 2 1 3 1 80

boxes

*Total Box Volume = 53,097,700 cubic centimeters

d) Typical Dimensions of Standard Container Types

Container Type W H D
40 HQ' 243 cm (8 ft) 292 cm (9.6 ft) 1219 cm (40 ft)
40' 243 cm (8 ft) 262 cm (8.6 ft) 1219 cm (40 ft)
20' 243 cm (8 ft) 262 cm (8.6 ft) 609 cm (20 ft)
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1  Table 3. Computational Results for Test Problem 1
2 (All Containers are 40 HQ' with 86,495,364 Cubic Centimeters)

3
Heuristic Cont. Fill Heuristic Cont. Fill Heuristic Cont. Fill
Method No. % Method No. % Method No. %
cuVv c,uVv IXTRY;
(CPU Time) (CPU Time) (CPU Time)
L11 1 77.03 Lot 1 77.03 1,31 1 78.24
1 1 & 1.58 sec
(3.8 5e0) 2 72.13 (0.48 sec) 2 72.13 ( ) 2 71.37
3 0.45 3 0.45 1 68.99
1 70.7 1 71.36 2,31 2 62.42
211 2 77.04 2,2,1 2 77.8 (0.6 sec) 3 18.19
(3.23 sec) ’ (0.55 sec) : :
3 1.87 3 0.45 3,31 1 79.66
a11 1 55.39 291 1 55.39 (0.36 sec) 2 69.95
(0.39 sec) 2 80.7 (0.23 sec) 2 80.7 431 1 7915
3 13.51 3 13.51 (2.39 sec) 2 70.46
4,1,1 1 76.97 4,21 1 76.97 53,1 1 86.5
(4.79 sec) 2 72.64 (6.19 sec) 2 72.64 (0.35 sec) 2 63.11
611 1 61.42 61 1 61.42 6,31 1 82.4
1 1 & 4,03 sec
(8.73 560) 2 53.81 (8.64 s60) 2 53.81 ( ) 2 67.21
3 34.37 3 34.37 1 73.21
1 | 675 1 | 5884 13,2 2 | 6815
611 2 | 66.69 62,1 2 | 7058 (089se)) — %25
(1.06 sec) : (0.27 sec) : :
3 15.42 3 20.19 1 80.21
1,12 1 81.11 1,22 1 79.51 (ozég'sgc) 2 66.83
(0.61 sec) 2 68.49 (0.45 sec) 2 70.1 ' 3 2.56
)10 1 72.95 2o 1 79.5 230 1 79.52
(0.46 sec) 2 73.67 (0.37 sec) 2 69.65 (0.12 sec) 2 66.06
3 2.99 3 0.45 3 4.02
519 1 79.04 500 1 78.17 3o 1 68.75
(0.10 sec) 2 67.24 (0.09 sec) 2 52.61 (0.57 sec) 2 n12
3 3.33 3 18.82 3 9.73
4,1,2 1 81.28 4o 1 77.99 630 1 79.92
0.39 sec 1 £ 19
( ) 2 68.33 (031 5ec) 2 24.86 (3.57 sec) 2 61.28
1 81.48 3 46.76 3 8.41
51,2 2 | 643 1 | 8613 1| 7801
(0-285e0) I——383 52,2 2 | 59.94 63,2 2 | 6383
’ (0.10 sec) i (15.85 sec) .
610 1 81.9 3 3.53 3 6.87
(1.38 sec) 2 63.88 6.2.2 1 87.82
3 3.83 (0.22 sec) 2 61.78
4 Note: c=container rotation type; u = ranking function; v = priority rule.
5 Total CPU time = 74.14 seconds
6 The best solution found is bold and underlined.
7
8
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Table 4. Computational Results for Test Problem 2
(All Containers are 40" with 77,608,854 Cubic Centimeters)

~N o o1&~

Heuristic Heuristic Heuristic
Method Cont. Fill Method Cont. Fill Method Cont. Fill
c,u,v No. % c,u,v No. % c,u,v No. %
(CPU Time) (CPU Time) (CPU Time)
1,11 1 77.62 1,21 1 73.42 1,31 1 70.61
(0.69 sec) 2 2362 (0.41 sec) 2 2782 (0.41 sec) 5 30.64
211 1 67.93 221 1 70.96 231 1 74.25
(0.53 sec) 2 3332 (0.24 sec) 2 30.29 (0.26 sec) 5 27
31,1 1 35.56 1 35.56 331 1 73.64
(0.13 sec) 32,1 (0.06 sec)
2 65.69 (0.10 sec) 2 63.99 2 27.61
41,1 1 64.85 3 1.7 431 1 79.48
(0.28 sec) 2 36.4 421 1 61.22 (0.16 sec) 2 21.77
511 1 36.25 (0.12 sec) 2 40.03 531 1 70.6
(0.12 sec) 2 65 1 34.85 (0.08 sec) 2 30.65
521
611 1 68.54 (0.08 sec) 2 59.32 6.3 1 1 80.75
(6.81 sec) 2 32.71 3 7.07 (0.11 sec) 2 20.50°
1,1,2 1 73.6 6,2, 1 1 68.54 1,3,2 1 80.74
(0.35 sec) 2 2765 (0.11 sec) 2 32.71 (0.31 sec) 5 2051
(0.33 sec) 5 29.56 (0.56 sec) 2 30.09 (0.36 sec) 2 36.82
(0.06 sec) 2 2357 (0.61 sec) 2 29.24 (0.08 sec) 5 33.07
4,1,2 1 76.79 3,2,2 1 78.43 4,32 1 77.18
(0.19 sec) 2 24.46 (0.16 sec) 2 2282 (0.19 sec) 5 24.07
51 2 1 69.42 4.2 9 1 71.26 532 1 68.27
(0.08 sec) 5 31.82 (0.55 sec) 2 29.99 (0.08 sec) 2 32,98
(0.19 sec) 2 2861 (0.07 sec) 2 3124 (0.18 sec) 5 30.64
6,2, 2 1 71.27
(0.33 sec) 2 29.98

Note: " 20.50% of 40' container = 15,908,120 cm?®; this can fill a 20' container (38,772,594 cm®)
c=container rotation type; u = ranking function; v = priority rule.
Total CPU time =15.38 seconds
The best solution found is bold and underlined.
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Table 5. Computational Results for Test Problem 3
(Container No.1 and No.2 are 40" and 20" with 77,608,854 and 38,772,594 cm?®, respectively)

Heuristic | Cont. Fill Heuristic | Cont. Fill Heuristic | Cont. Fill
Method No. % Method No. % Method No. %
c,uVv c,u,v c,uyv
(CPU Time) (CPU Time) (CPU Time)
1,11 1 67.26 1,21 1 63.6 1,31 1 65.15
(0.65 sec) 5 231 (0.66 sec) 2 9.64 (0.21 sec) 5 6.54
(0.8 sec) 2 5.05 (0.67 sec) 2 5.05 (0.28 sec) 5 6
31,1 1 30.34 321 1 30.34 331 1 65.5
(0.5 sec) 5 7620 (0.56 sec) 2 76.22 (0.17 sec) 5 534
411 1 58.2 421 1 58.2 431 1 62.76
(0.15 sec) 5 2044 (0.15 sec) 2 20.44 (0.10 sec) 5 1133
511 1 30.92 521 1 30.92 531 1 63.31
(0.8 sec) 2 75.06 (0.21 sec) 2 75.06 (0.08 sec) 5 1022
(0.14 sec) 5 19.29 (0.09 sec) 2 19.29 (0.11 sec) 5 3.06
1,1,2
(025 SeC) 1 68.42 1,2,2 1 64.57 1,32 1 63.85
212 1 62.72 (0.23 sec) 2 7.7 (0.21 sec) 2 9.14
(0.27 sec)
2 11.4 222 1 67.07 232 1 63.52
312 (0.67 sec) (0.31 sec)
(0.05 5e0) 1 68.42 2 2.7 2 9.8
4,12
(0Ollsec) | 1 | 842 3,2,2 I 63.09 3,32 1 63.52
1 63.42 (0.09 sec) 2 10.66 (0.31 sec) 2 9.8
5, 1, 2 K . .
(0.05 sec) 2 10.01 4,22 1 63.09 4,32 1 63.36
6.1 2 1 64.98 (0.12 sec) 2 10.66 (0.12 sec) 2 10.12
(0.13 sec) 2 6.88 52,2 1 63.04 53,2 1 63.42
(0.08 sec) 2 10.76 (0.04 sec) 5 10.01
6,2, 2 1 63.04 6,3,2 1 64.98
(0.22 sec) 2 1076 (0.06 sec) 2 6.88
Note: c=container rotation type; u = ranking function; v = priority rule.

Total CPU time = 9.65 seconds
The best solution found is bold and underlined.
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Table 6. Comparison of Manual Solutions, Best Solution Found by Tree Search Heuritic, and

Best Solution Found by Proposed Approach on Three Test Problems

Cont. Manual Solution Best Solution by Tree Best Solution Found by
No. Search Heuristic Modified Wall Building
(Pisinger, 2002) Based Compound Approach
Cont. No. of Boxes Cont. No. of Boxes Cont. No. of Boxes
Type Vol. of Boxes Type Vol. of Boxes Type Vol. of Boxes
%Fill %Fill %Fill
Test Problem 1
1 40 HQ' 82 40 HQ' 88 40 HQ' 162
44,440,856 cm® 70,317,292 cm® 75,962,452 cm®
51.37% 81.30% 87.82%
2 40 HQ' 94 40 HQ' 135 40 HQ' 61
41,173,128 cm® 59,085,608 cm® 53,440,448 cm®
47.60% 68.31% 61.78%
3 40 HQ' 47
43,788,916 cm® - -
50.63%
Total
CPU - 365.39 seconds 74.14 seconds
Time
Test Problem 2
1 40' 39 40 77 40' 98
39,838,464 cm® 61,653,944 cm® 62,670,144 cm®
51.33% 79.44% 80.75%
2 40' 74 20 36 20 15
38,739,800 cm® 16,454,200 cm’ 15,908,120 cm®
49.92% 42.44% 41.03%
Total
CPU - 459.28 seconds 15.38 seconds
Time
Test Problem 3
1 40' 85 40' 94 40' 94
41,508,600 cm® 53,097,700 cm® 53,097,700 cm®
53.48% 68.42% 68.42%
2 20' 9
11,589,100 cm? - -
29.89%
Total
CPU - 30.79 seconds 9.65 seconds
Time

Note: Volume of 40HQ' Container = 86,495,364 cm®
Volume of 40' Container = 77,608,854 cm?®
Volume of 20' Container = 38,772,594 cm?®
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Manual Solution Best Solution Found

Container 1 (40", 53.48% Fill) Container 1 (40", 68.42% Fill)

Container 1 (20', 29.89% Fill)

Figure 6. Comparison of Manual Solution and Best Solution Found on Test Problem 3

SUMMARY AND CONCLUSIONS

We consider the knapsack container loading problem where the rectangular-shaped cargo boxes
with various sizes are to be packed in a given rectangular-shzped containers. The container is to
be filled by selecting the best subset of boxes such that the total loaded volume is maximized.
The boxes may be rotated in any orthogonal directions without load-related and positioning
constraints. All boxes have the same origin-destination pair. The modified wall-building based
compound approach performs 36 modified wall-building heuristics resulted from three existing
ranking functions, two existing priority rules and six orthogonal rotations of container, while
recording the best solution found. The modified wall building heuristics fill the container in a
number of layers (wall) and fill the wall in a number of horizontal strips. The layer depths and
strip heights are determined based on the dimensions of the remaining boxes, using three existing
ranking functions(2) and two existing priority rules (2). The existing box pairing procedure (2)

161



O©CoOoO~NOoO Ul WwWN P

Karoonsoontawong and Heepkoksoong 20

is adopted in order to improve fill ratios of remaining boxes. The dynamic programming
algorithm (20) is also adopted to exactly solve the 0-1 knapsack problem in order to fill each
horizontal strip. We consider six orthogonal rotations of the container that correspond to the
following: i) building walls across the container depth, and for each wall, building horizontal
strips across the container height, ii) building walls across the container depth, and for each wall,
building vertical strips across the container width, iii) building floors across the container height,
and for each floor, building horizontal strips across the container width, iv) building floors across
the container height, and for each floor, building horizontal strips across the container depth, v)
building walls across the container width, and for each wall, building horizontal strips across the
container height, and vi) building walls across the container width, and for each wall, building
vertical strips across the container depth.

The proposed approach is performed on three real-world test problems, which are weakly
heterogeneous with less than 20 box types, from a furniture company in Thailand. In the
experiment, the proposed algorithms are employed to fill each container in the manual solutions
in a descending order of the container size. When one container has a higher fill rate, it is more
possible to use a smaller container (than that in the manual solutions) to pack the left boxes.
There is not a winning heuristic that performs best on the three test problems. For the first test
problem, the heuristic method with the container rotation type 6, ranking function f? and priority
rule 2 performs best. For the second test problem, the heuristic method with the container
rotation type 6, ranking function f* and priority rule 1 performs best. For the third test problem,
three heuristics perform best. The typical wall building algorithms associated with the container
rotation type 1 (c=1) do not perform well; thus, this shows significant improvement by
considering the six orthogonal rotations of container in the modified approach.

The best solutions found on the three test problems are compared to the manual solutions
by the furniture company. In terms of the number of containers, the proposed compound
approach can save up to 33% on the three test problems. The highest fill percentages in the best
solution founds are improved by up to 36% when compared with the manual solutions.

Moreover, the best solutions found by the proposed approach are compared to the best
solutions found by the existing tree search heuristic. The proposed approach and the tree search
heuristic yield the same results in terms of number of containers. However, the proposed
approach outperforms the tree search heuristic in terms of solution quality and computational
time. The best fill percentages by the proposed approach are up to 6% higher than those by the
tree search heuristic. The total computational times by the proposed approach on the three test
problems are up to 31% of those by the tree search heuristics. This paper may be extended to
incorporate practical constraints such as multi-drop situations.
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