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บทคดัย่อ 
 

งานวจิยัน้ีศกึษาปญัหาการจดัการสนิคา้คงคลงัและการจดัเสน้ทางขนสง่สนิคา้ ในโซ่อุปทานแบบ
สองระดบั ซึง่ประกอบดว้ยโรงงานหน่ึงแหง่ใหบ้รกิารกลุ่มคลงัสนิคา้ ซึง่ใหบ้รกิารกลุ่มลกูคา้ทีม่ี
ความตอ้งการสนิคา้ทีม่คีวามไมแ่น่นอน  งานวจิยัน้ีเสนอแบบจาํลองคณติศาสตรแ์บบจาํนวน
เตม็ไมเ่ชงิเสน้ฐานการแบ่งเซต สาํหรบัปญัหาเชงิบรูณาการของการควบคุมสนิคา้คงคลงั
แบบต่อเน่ืองและการจดัเสน้ทางขนสง่สนิคา้แบบหลายทา่รถ ซึง่คาํนึงถงึความน่าจะเป็นของการ
ละเมดิความจุสนิคา้คงคลงั  ความจุของปรมิาณการสัง่ซือ้ ระดบับรกิาร ขอ้จาํกดัความจุพาหนะ 
และขดีจาํกดัระยะเวลาของเสน้ทางขนสง่สนิคา้   งานวจิยัน้ีเสนอวธิฮีวิรสิตกิแบบทาบเูสริช์ 
จาํนวน 2 อลักอรธิมึ ซึง่แตกต่างกนัทีว่ธิกีารสรา้งคาํตอบตัง้ตน้  การทดสอบเชงิคาํนวณสาํหรบั
โครงขา่ยทดสอบมาตรฐาน แสดงใหเ้หน็วา่การบรูณาการการตดัสนิใจดา้นการจดัการสนิคา้คง
คลงัและการจดัเสน้ทางขนสง่สนิคา้ โดยการหาคาํตอบของปญัหาเชงิบรูณาการน้ี อาจใหก้าร
ประหยดัตน้ทนุสงูถงึ 14 เปอรเ์ซนต ์ เมือ่เทยีบกบัการหาคาํตอบแบบตามลาํดบั ซึง่ทาํการหา
คาํตอบของปญัหาแบบแยกกนั  คา่ฟงักช์นัวตัถุประสงคท์ีด่ทีีส่ดุทีห่าจากวธิฮีวิรสิตกิทาบเูสริช์ 
ถูกพบวา่จะมคีา่มากขึน้ เมือ่ความแปรปรวนของความตอ้งการสนิคา้ของลกูคา้มคีา่มากขึน้  แต่
มคีา่ลดลง เมือ่ความจุของปรมิาณการสัง่ซือ้ และ ขดีจาํกดัระยะเวลาของเสน้ทางขนสง่สนิคา้ มี
คา่มากขึน้   ระดบัสนิคา้คงคลงัปลอดภยั  ระดบัสนิคา้สัง่ซือ้ใหม ่และตน้ทุนถอืครองสนิคา้ ถูก
พบวา่จะมคีา่มากขึน้ เมือ่ความแปรปรวนของความตอ้งการสนิคา้มคีา่มากขึน้  ความจุสนิคา้คง
คลงัทีเ่หลอือยู ่ ถูกพบวา่จะมคีา่ลดลงเมือ่ความแปรปรวนความตอ้งการสนิคา้มคีา่มากขึน้  
ตน้ทุนการสัง่ซือ้จะมคีา่มากขึน้เมือ่ความจุของปรมิาณการสัง่ซือ้มคีา่ลดลง ตน้ทุนการถอืครอง
สนิคา้จะมคีา่ลดลงเมือ่ความจุของปรมิาณการสัง่ซือ้มคีา่ลดลง  ตน้ทุนการจดัเสน้ทางขนสง่
สนิคา้มคีา่เพิม่ขึน้เมือ่ขดีจาํกดัระยะเวลาของเสน้ทางมคีา่ลดลง 
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Abstract 
 

This research studies the inventory management and routing problem in a two-level 
supply chain where a single plant serves a set of warehouses, which in turn serve a set 
of customers with stochastic demands.  A set partitioning based probabilistic chance 
constrained nonlinear integer programming formulation is provided for the combined 
continuous inventory control and multi-depot vehicle routing problem while accounting 
for probability of inventory capacity violation, order quantity capacity, service levels, 
vehicle capacity restrictions and route duration limits.  Two tabu search heuristics, 
differing in the way initial solutions are generated, are applied to solve the problem. 
Computational tests on standard tests networks reveal that integrating the inventory 
management and routing decisions by solving the combined inventory management and 
routing problem may yield cost savings of up to 14% over the sequential approach 
where both problems are solved separately. The best objective function value obtained 
by the tabu search heuristic was found to increase with increase in customer demand 
variance but decrease with increase in order quantity capacity and route duration limit.  
The safety stock levels, the reorder points and total holding costs were found to 
increase with increase in customer demand variance. The available inventory capacity 
was found to decrease with increase in customer demand variance.  The total ordering 
costs in the best solution increases with the decrease of the order quantity capacity, 
whereas the total holding costs decreases with the decrease of the order quantity 
capacity.  The routing costs increases with the decrease of route duration limit. 
 
Keywords : Continuous Inventory Control, Multi-Depot Vehicle Routing Problem, 
Tabu Search 
 
 
 
 
 
 
 
 



 

EXECUTIVE SUMMARY 
 
This research studies a two-level supply chain where a single plant supplies a single 

commodity to a set of warehouses which in turn serve a set of customers with 

stochastic demands.  This research provides a combined stochastic chance constrained 

nonlinear integer programming formulation modeling the inventory management 

decisions at the warehouses and the routing of goods from the warehouses to the 

customers. The warehouses are assumed to manage the inventory using a continuous 

inventory policy. The model accounts for the service level at each warehouse which 

reflects the probability of available inventory meeting the demand during the lead 

time, probability of violation of inventory capacity, and restrictions on order quantity 

volume. The routing of goods from warehouse to customers is modeled as a route 

duration constrained capacitated multi-depot vehicle routing problem.  Two tabu 

search heuristics – type 1 and type 2, differing primarily in the way initial solutions 

are generated are developed to solve the combined model.  The optimal order quantity 

at each warehouse is approximated using the KKT conditions.  Computational runs 

are conducted on variations of the standard Solomon test instances available for 

vehicle routing problems with time windows. Type 2 tabu search was found to 

outperform type 1 tabu search for the 100 customer instance. For smaller customer 

instances, both the heuristics were found to perform equally well.   Integrating the 

inventory management and routing decisions by solving the combined inventory 

management and routing problem was found to yield cost savings of up to 14% over 

the sequential approach where both problems are solved separately.  The best 

objective function value obtained by the tabu search heuristic was found to increase 

with increase in customer demand variance, decrease with increase in order quantity 

capacity and route duration limit.  Variance of the customer demand was found to 

have significant impact on the solution quality.  The safety stock levels, the reorder 

points and the total holding costs were found to increase with increase in customer 

demand variance. As expected, the available inventory capacity was found to decrease 

with increase in customer demand variance.  It is unclear how the routing and 

ordering costs change with the demand variances.  This is because the demand 

variance can influence the customer assignments to different warehouses, resulting in 

different routing costs and ordering costs.  We found that the order quantity capacity 

and inventory capacity play a role in the trade-off between total holding costs and 



 

total ordering costs.  The total ordering costs in the best solution increases with the 

decrease of the order quantity capacity, whereas the total holding costs decreases with 

the decrease of the order quantity capacity.  The routing costs increase with the 

decrease of route duration limit.  Thus, the combined inventory management and 

routing model can be used to study the tradeoffs between inventory holding costs, 

ordering costs, and routing costs.   
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Chapter 1 Introduction 

 

Fierce competition in today’s global market together with the global economic 

recession and fuel-price fluctuation is forcing companies to better design and manage 

their supply chain networks.  An efficient supply chain design can decrease the 

system costs such as inventory control costs and transportation costs, and more 

importantly it helps save energy and reduce emissions.  In this report, we consider a 

two-level supply chain, in which a single plant serves a set of warehouses, which in 

turn serve a set of end customers with stochastic demands.  Inventory control 

decisions and vehicle routing decisions are made at the operational level for each 

warehouse.  The inventory control problem (ICP) determines optimal order quantity, 

reorder point and safety stock, so that the total ordering and holding costs are 

minimal.  The multi-depot vehicle routing problem (MDVRP) determines an optimal 

set of vehicle routes for each depot to satisfy demands such that the routing costs are 

minimal.  Typically, these two problems are solved sequentially.  Indeed, ICP and 

MDVRP are interrelated.  The inventory control decisions for a warehouse depend on 

the demands incurred at this warehouse, which are determined from the demands of 

customers assigned to this warehouse.  The MDVRP decisions aim at minimizing 

routing costs without considering the impact of the customer assignment on the 

ordering and holding costs at warehouses.  Therefore there is significant potential to 

optimize the supply chain costs by solving ICP and MDVRP simultaneously (a.k.a. 

inventory routing problem: IRP). 

 

1.1 Literature Review 

 

Depending on the nature of the application, several variants of IRPs have been 

studied in the literature.  Numerous studies focus on IRP application in a Vendor 

Managed Inventory (VMI) setting where a single vendor delivers goods to multiple 

customers and coordinates the routing and delivery decisions so that the customer 

always has sufficient inventory (Bertazzi et al., 2002; Campbell and Savelsbergh, 

2004).  Depending on the nature of the time horizon for the decision making – IRP 

can be classified into single day (Beltrami and Bodin, 1974; Federgruen and Zipkin, 

1984), multi-day (Dror et al., 1985; Dror and Ball, 1987) or an long term horizon 

operational problem (Anily and Federgruen, 1993; Bard et al., 1998; Jaillet et al., 
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2002; Gaur and Fisher, 2004).  Normally the long term horizon problem use 

frequency as the decision variable and the shorter duration studies are normally time 

based.  In the context of long term operational problem, several studies have evaluated 

the effectiveness of delivery policies using asymptotic analysis in an infinite time 

period (Anily and Federgruen, 1990; Gallego and Simchi-Levi, 1990; Bramel and 

Simchi-Levi, 1995).  Note that due to the complexities of the IRP and based on the 

nature of the application, several studies have focused on optimally timing the 

deliveries to a single customer (Dror et al., 1985; Dror and Ball, 1987; Bard et al., 

1998).  Savelsbergh and Song (2007, 2008) studied variants where the customers can 

be served by multiple facilities depending on product availability.  Federgruen and 

Simchi-Levi (1995), Campbell et al. (1998) and Bertazzi et al. (2008) provide a 

detailed review of the IRP variants and their solution methods.  This research is 

different from the past works as in our work the customers can be served by one 

among multiple warehouses.  Moreover we do not adopt a VMI approach. In our 

model, the inventories are located at warehouses and not at the customers.   

Similar to Miranda and Garrido (2004, 2006), we assume that each warehouse 

follows the continuous inventory control policy, and we explicitly consider the 

probabilities of unfulfilled demands, the probabilities of inventory capacity violation 

and the order quantity capacity.  The considered policy does not penalize unfulfilled 

demands.  Rather, a reorder point is determined such that after order submission to the 

plant the inventory level should cover the demand generated during the lead time with 

probability.  Since the cost of alternative storage space especially in the urban areas is 

high, it is essential to control the level of service associated with the inventory 

capacity.  The probabilities of inventory capacity violation are employed in the chance 

constrained stochastic programming framework.  The vehicle capacity restrictions are 

common in the urban areas, and this can be taken into account by setting order 

quantity capacity and through capacity constraints in the routing problem.  In 

MDVRP, we explicitly consider the route duration limit which arises in a number of 

applications such as perishable goods delivery problems (Gorr et al., 2001) and time-

critical delivery problems (Berger et al., 2007).   
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1.2 Objectives 

 

The objectives of this study are three-fold.  The first objective is to formulate 

the model for the combined continuous inventory control and MDVRP accounting for 

route duration limits and stochastic inventory capacity constraints.  The second 

objective is to develop tabu search heuristics to solve the problem.  The third 

objective is to compare the performances of the proposed tabu search algorithms with 

each other as well as against the sequential approach on hypothetical test networks 

based on Solomon (1987)’s test problems.   
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Chapter 2 Mathematical Formulation 

 

The inventory routing model is developed based on the works by Miranda and 

Garrido (2006) and Berger et al. (2007).  This combined model is a set partitioning-

based formulation that has the stochastic inventory capacity constraints and the order 

quantity capacity constraints.  Daily delivery demands of customers are assumed 

independent and normally distributed.  Each customer is served on exactly a route by 

a warehouse, and a single commodity is considered.   

 

2.1 Continuous Inventory Control Policy 

 

The proposed model embeds the continuous inventory control policy, which is briefly 

reviewed here.  At any warehouse i, we assume a continuous inventory control policy 

(Qi, RPi) to meet normally distributed random demand iD~  with the mean of EDi 

(product units per day) and the variance of VDi (squared product unit per day).  EDi 

and VDi are variables, since they depend on the customers assigned to each warehouse 

i.  Qi is the order quantity at warehouse i, and RPi is the reorder point at warehouse i.  

The plant takes a lead time LTi to fulfill an incoming order from warehouse i.  The 

evolution of the inventory level at warehouse i is shown in Figure 2.1.  When the 

inventory level falls below RPi, an order of Qi units is triggered, which is received 

after LTi time units.  When an order is submitted to the plant, the inventory level 

should cover the demand generated during the lead time LTi, with probability 1-α.  

This probability is known as the service level for the system Miranda and Garrido 

(2004). 

 

 

Figure 2.1. Continuous Inventory Control Policy with Stochastic Inventory Capacity 

Constraint (Miranda and Garrido, 2006) 
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The service-level constraint is: 

 

α−=≤ 1))(~(Prob iii RPLTD       (2.1) 

 

where ii LTD ⋅~  is the normally distributed random demand generated during the lead 

time at warehouse i with the mean of ii LTED ⋅  and the variance of ii LTVD ⋅ .  Eq.(2.1) 

can be standardized: 

αα −==
⋅
⋅−

≤
⋅

⋅−⋅
= − 1)

~
(Prob 1zLTVD

LTEDRP
LTVD

LTEDLTDz
ii

iii

ii

iiii    

where α−1z is the value of the standard normal distribution, which accumulates a 

probability of 1-α.  Then, RPi can be determined by the equation: 

 

iiiii VDLTzLTEDRP α−+⋅= 1      (2.2) 

 

The parameter α−1z  is assumed fixed for the entire network, determining a 

homogeneous service level for the whole system.  The first term in Eq.(2.2) is the 

average demand during the lead time, and the second term ( ii VDLTZ α−1 ) is the 

average safety stock.  Given that HCi is the holding cost per time unit for warehouse i 

($/unit/day), and OCi is the fixed ordering cost at warehouse i ($/order), the expected 

holding and ordering cost rate for each warehouse i ($/day) is: 

 

i
i

i
iiiii ED

Q
OCQHCVDLTzHC +⋅+⋅ − 2

1
1 α     (2.3) 

 

The first term in Eq.(2.3) is the average safety stock cost at warehouse i.  The last two 

terms in Eq.(2.3) represent the costs of the known Economic Order Quantity (EOQ) 

model (Erlenkotter, 1990).  This is the average inventory and ordering cost incurred 

due to the ordering process, if the order size is always Qi.  The peak inventory levels 

take place when the orders arrive at warehouse, and equal to iiii QLTDRP +⋅− ~ .  



6 
 

When setting maximum probability β to violate the inventory capacity max
iI  at peak 

levels, the inventory capacity constraint can be written as chance constraints (Miranda 

and Garrido, 2006):   

 

β−≥≤+⋅− 1)~(Prob max
iiiii IQLTDRP  WHVi∈∀    (2.4) 

 

Eq.(2.4) can be rewritten as nonlinear inequalities (Miranda and Garrido, 2004, 2006), 

which are the stochastic inventory capacity constraints: 

 

max
11 )( iiii IVDLTzzQ ≤⋅⋅++ −− βα  WHVi∈∀    (2.5) 

 

2.2 Proposed Mathematical Program 

 

The sets, parameters and decision variables are defined, followed by the proposed 

mathematical formulation. 

 

Sets 

CUSV  = set of customer locations = {1,2,…, CUSn } 

WHV  = set of warehouse locations = {1,2,…, WHn } 

iP  = set of all feasible routes (with respect to route duration limit and vehicle capacity  

         restriction) associated with warehouse i  

 

Parameters 

jμ  =mean of the daily demand for customer j 

2
jσ = variance of the daily demand for customer j 

WHn = number of warehouse locations 

CUSn  = number of customers to be served 

iRC = transportation unit cost between the plant and warehouse i ($/unit/day) 

max
iQ = maximum order quantity (order quantity capacity) for warehouse i 

max
iI = inventory capacity for warehouse i 
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iLT = lead time that the plant takes to fulfill an incoming order from warehouse i 

iOC = fixed ordering cost at warehouse i ($/order) 

iHC = holding cost per day per product unit at warehouse i ($/unit-day) 

α−1Z = value of standard normal distribution that accumulates the probability 1-α 

β−1Z = value of standard normal distribution that accumulates the probability 1-β 

jika = 1 if route k associated with warehouse i visits customer j; 0 otherwise 

ikd = cost of route k associated with warehouse i 

 

Decision Variables 

iky = 1 if route k associated with warehouse i is chosen; 0 otherwise. 

iQ = order quantity for warehouse i  

iED = mean of the served daily demand by warehouse i 

iVD = variance of the served daily demand by warehouse i 

Z = total costs 

 

Model 

∑∑ ∑ ∑∑ ∑
∈∈ ∈ ∈∈ ∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅⋅⋅+⋅=

WHWH CUS iWH i Vi
i

i

i

Vi Vj Pk
ikjijik

Vi Pk
ikik ED

Q
OCyRCaydZ μmin  

∑
∈

− ⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅⋅++

WHVi
iii

i
i VDLTZHCQHC α12

     (2.6.1) 

Subject to 

1=⋅∑ ∑
∈ ∈CWH iVi Pk

ikjik ya     CUSVj∈∀    (2.6.2) 

max
11 )( iiii IVDLTZZQ ≤⋅⋅++ −− βα  WHVi∈∀    (2.6.3) 

i
Vj Pk

ikjikj EDya
CUS i

=⋅⋅∑ ∑
∈ ∈

μ    WHVi∈∀    (2.6.4) 

i
Vj Pk

ikjikj VDya
CUS i

=⋅⋅∑ ∑
∈ ∈

2σ    WHVi∈∀    (2.6.5) 

}1,0{∈iky      iWH PkVi ∈∀∈∀ ,   (2.6.6) 

max0 ii QQ ≤≤      WHVi∈∀    (2.6.7) 
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Objective (2.6.1) calculates the total costs Z composed four terms - total MDVRP 

costs, total direct transportation costs between the plant and warehouses, total 

expected ordering costs and total expected holding costs, respectively.  Constraints 

(2.6.2) enforce that each customer is served on exactly a route by a warehouse.  

Constraints (2.6.3) are non-linear constraints assuring that the inventory capacity for 

each warehouse is satisfied at least with probability 1-β and that the reorder point can 

cover the stochastic demand during the lead time with probability 1-α.  Constraints 

(2.6.4) determine the mean of the served demands assigned to each warehouse.  

Constraints (2.6.5) determine the variance of the served demands assigned to each 

warehouse.  Constraints (2.6.4) and (2.6.5) result from the assumption that demands 

are independent and normally distributed across the customers; thus all the covariance 

terms are zero.  Constraints (2.6.7) constrain the order quantity to be within the order 

quantity capacity, which is assumed homogeneous for each warehouse, and can be set 

as the vehicle (from plant to warehouse) capacity. 

The VRP is NP-hard (Lenstra and Rinnooy Kan, 1981), which is a special case 

of the IRP.  Thus, IRP is also NP-hard.  The proposed formulation potentially contains 

an exponential number of variables ( iky ), and there exists nonlinearity in Eq.( 2.6.1) 

and Eq.( 2.6.3).  In effect, there is not an efficient solution method that guarantees an 

optimal solution, and this essentially requires a metaheuristic approach.  In this 

research, we propose tabu search heuristics.   
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Chapter 3 Tabu Search Heuristics 

 

The overview of tabu search can be found in Glover and Laguna (1997).  It integrates 

a hill-climbing search technique, which is based on a set of elementary moves, and a 

heuristic to avoid the stops at local optima and the occurrence of cycles.  The tabu 

search was initially created with constant tabu tenure by Glover (1989); then, the 

proper choice of tabu tenure is critical to the success of the algorithm.  The tabu 

tenure is the number of iterations that the algorithm prohibits past moves (a move is a 

process that the algorithm uses to change the current solution to the new solution), so 

that the algorithm will not visit the same past solutions (so a cycle is prevented) and 

will be able to depart from local optima.  The tabu tenure should be sufficiently long 

to prevent cycles but short enough such that the search is not overly constrained. 

In this report, we modify the tabu search heuristic for MDVRP by (Renaud et 

al., 1996) in order to incorporate the continuous inventory control policy for 

warehouses in the two-level supply chain, accounting for route duration limits and 

stochastic inventory capacity constraints.  Let ),( AVG =  be a directed graph.  

},{ CUSWH VVV =  is a vertex set where },...,,{ 00201 WHnWH vvvV =  is the set of warehouse 

(or depot) locations and },...,,{ 21 CUSnCUS vvvV =  is the set of customers.  

}:),{( jivvA ji ≠= is an arc set.  Vertex WHi Vv ∈0   denotes a warehouse where mi 

identical vehicles are based.  mi is assumed unlimited.  Vertex CUSj Vv ∈   denotes a 

customer.  With every arc ),( ji vv is associated a fixed nonnegative distance ijc .  

},...,,{ 10
i
n

iii
i
CUS

vvvV =  is the vertex set associated with warehouse i; iv0  a warehouse 

vertex; i
CUSn  the number of customers assigned to warehouse i.          

A least cost solution is determined such that: 

• Total cost is minimized, including direct transport cost between the plant and 

warehouses, MDVRP costs from warehouses to customers, ordering costs, and 

inventory holding costs.    

• The order quantity from warehouse iv0  to the plant may not exceed its 

maximum value max
0iQ . 
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• When an order is submitted to the plant by a warehouse, the reorder point can 

cover the stochastic demand generated during the lead time with probability 1-

α.  

• For each warehouse, the inventory level at peak levels may violate the 

inventory capacity with the maximum probability β. 

• A route starts and ends at a warehouse. 

• Each Customer in CUSV  is visited exactly once by exactly a vehicle based at a 

warehouse. 

• Customer jv  has an independent and normally distributed demand with the 

mean of jμ  and variance of 2
jσ , whereas each warehouse iv0  has a fixed zero 

demand.     

• The total average daily demands served by a vehicle based at warehouse iv0  

may not exceed the vehicle capacity max
0iRD . 

• Each city jv requires a fixed service time jδ , and each warehouse iv0  has no 

service time. 

• The duration (travel plus service times) of any route beginning at warehouse 

iv0  and ending at the last customer visited on this route may not exceed the 

route duration limit max
0iL . 

 

The tabu search algorithm consists of two phases: (1) construction of an initial 

solution and (2) solution improvement as shown in Figure 3.1.  Inspired by Campbell 

and Savelsbergh (2004), we maintain the following information in our implementation 

in order to save computational efforts: 

• For every route 1r  and warehouse 1i , the sum of the average delivery 

quantities currently assigned to this route is 1

1

i
rq ; the duration (travel plus 

service time) of round-trip route 1r  beginning and ending at warehouse 1i is 

1

1

i
rrl ; the duration (travel plus service time) of route 1r  beginning at warehouse 

1i  and ending at the last customer visited in route 1r  is 1

1

i
rpl . 
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• For every warehouse 1i , the sum of average currently served demands is 
1i

ED ; 

the sum of currently served demand variances is 
1i

VD . 

 

With such information maintained, it is easy to verify the route feasibility of inserting 

a customer into route 1r  associated with warehouse 1i ; i.e., check whether 1

1

i
rpl ≤ max

0iL  

and max
0

1

1 i
i
r RDq ≤ .   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Flowchart of Proposed Tabu Search Heuristics 

 

Before describing the two phases of tabu search algorithm, the heuristic 

approximation for the continuous ICP with order quantity capacity and stochastic 

inventory capacity constraints is described when the currently served average 

demands (EDi) and demand variances (VDi) at warehouses are known.   

 

3.1 Heuristic Approximation for (Qi, RPi)  

 

When the means and variances of currently served demands (EDi and VDi) for 

warehouses are known, the continuous inventory control policies (Qi, RPi) with 

Phase I: Construction of an Initial Solution 
(Type I or Type II) 

Phase II.1: Fast Improvement 
Iteratively apply the three steps until the stopping criterion is met: 

Inter-warehouse, Intra-warehouse, and Three-Route. 

Phase II.2: Intensification 
Starting with the best known solution, iteratively apply the 

intra-warehouse step until the stopping criterion is met. 

Phase II.3: Diversification 
Starting with the current solution, apply the two steps for 20 
iterations: Vertex Reinsertion to Different Warehouse; Inter-

warehouse and Intra-warehouse Steps of Phase II.1. 
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stochastic inventory capacity constraints and order quantity capacity constraints can 

be heuristically approximated.  In the inventory location models studied in Miranda 

and Garrido (2004) and Daskin et al. (2002), the order quantity (in the former) and the 

total orders (in the latter) are obtained through the first order optimality conditions of 

the objective function.  Thus, the outcome is analogous to the result of the EOQ 

model and the corresponding ordering decisions (Qi) are not variables and hence 

eliminated from the model.  However, in our formulation, there are constraints on Qi 

(see constraints 2.6.3 and 2.6.7). Two decision variables for the continuous ICP are 

order quantities (Qi) and reorder points (RPi).  RPi can be determined Eq.(2.2) when 

EDi and VDi are known.  The heuristic approximation of an optimal order quantity for 

warehouse i ( *
iQ ) is described below.   

If constraints (2.6.3) and (2.6.7) are removed, *
iQ  can be approximated 

through the first order optimality condition.  When the constraints on Qi are taken into 

account, the first order optimality conditions for a constrained minimum is employed 

to approximate *
iQ .  The standard form of a minimization program is 

 

    )(min xZ    

    subject to  jj bxg ≥)(   j∀   : ju  

 

where Z(x) is the objective function; x is the vector of decision variables; jb  is a 

constant; )(xg j  is the function of x in constraint j; ju  is the dual variable associated 

with constaint j.  Then, the first-order conditions (a.k.a. Karush-Kuhn-Tucker 

Conditions) (Luenberger, 1973) are: 

 ∑ ∂
∂

=
∂

∂

j i

j
j

i x
xg

u
x
xZ )()( **

  i∀          

 0≥ju    j∀          

 0))(( * =− xgbu jjj  j∀         

jj bxg ≥)( *   j∀          

 

The order quantity iQ correspond to x in the standard form.  Constraints (2.6.3) and 

(2.6.7) can be written in the standard form as: 
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max
11 )( iiii IVDLTzzQ −+≥− −− βα       WHVi∈∀ : iu1   (3.1.1) 

max
ii QQ −≥−       WHVi∈∀ : iu2   (3.1.2) 

0≥iQ        WHVi∈∀ : iu3   (3.1.3) 

 

where iu1 , iu2 and iu3 are dual variables associated with Eq.(3.1.1)-(3.1.3).  The 

Karush-Kuhn-Tucker  (KKT) conditions for the minimum program (2.6.1), (3.1.1)-

(3.1.3) where only iQ are decision variables, are: 

 iii
i

uuu
Q
QZ

321

*)(
+−−=

∂
∂      WHVi∈∀   (3.2.1)  

 0;0;0 321 ≥≥≥ iii uuu      WHVi∈∀   (3.2.2) 

 ( ) 0)( max
11

*
1 =−++⋅ −− iiiii IVDLTzzQu βα  WHVi∈∀   (3.2.3) 

 0)( max*
2 =−⋅ iii QQu     WHVi∈∀   (3.2.4) 

 0*
3 =⋅ ii Qu      WHVi∈∀   (3.2.5) 

max
11

* )( iiii IVDLTzzQ −+≥− −− βα       WHVi∈∀ : iu1   (3.2.6) 

max*
ii QQ −≥−       WHVi∈∀ : iu2   (3.2.7) 

0* ≥iQ       WHVi∈∀ : iu3   (3.2.8) 

 

For any warehouse with served demands, the optimal order quantity is naturally 

greater than zero.  Then, Eq.(3.2.5) implies that iu3 equal to 0.  Then, Eq.( 3.2.1) 

become:  

iQ
QZ

∂
∂ )( *

ii uu 21 −−=          (3.2.1a) 

This implies that the stationary point with the property 0=
∂
∂

iQ
Z  can be either within 

the feasible range of Qi or greater than the feasible range of Qi.  The stationary point 

cannot be less than the feasible range of Qi; otherwise, 
iQ

QZ
∂

∂ )( *

becomes positive, 

given that Z(Q) is assumed convex with respect to Qi.  When the stationary point
 
is 
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within the feasible range of Qi, the minimal point is the stationary point.  Eq.( 3.2.3) 

and (3.2.4) imply that 01 =iu  and 02 =iu , and Eq.( 3.2.1) yields 0)( *

=
∂

∂

iQ
QZ .  When 

the stationary point is greater than the feasible range of Qi, the minimal point is not 

the stationary point.  Eq.( 3.2.1a) and the assumed convexity of Z(Q) imply that the 

minimal point is at the boundary of either Eq.( 3.2.6) or Eq.( 3.2.7).  Thus, *
iQ  can be 

determined from the equation:  

  

{ }
⎭
⎬
⎫

⎩
⎨
⎧

+−
⋅

= −− iiii
i

ii
i VDLTZZIQ

HC
EDOCQ )(,min,2min 11

maxmax*
βα  (3.3) 

 

3.2 Phase I: Construction of an initial solution  

 

The first phase of the proposed tabu search constructs an initial solution as follows. 

 

Step I.1. Each customer is assigned to its nearest warehouse.  Then, for each 

warehouse, sort assigned customers in increasing order of the angle that they make 

with the warehouse and a horizontal line. 

 

Step I.2. Create initial vehicle routes for each warehouse.  This will be described in 

the next subsections.     

 

Step I.3. Determine RPi and Qi, using Eq.(2.2) and (3.3), respectively. 

 

Step I.4. Determine the objective function value of the initial solution, using 

Eq.(2.6.1) 

 

We consider two alternatives to create initial routes in Step I.2.  The initial 

solution type 1 is based on Cordeau et al. (1997) and the initial solution type 2 based 

on Gendreau et al. (1994).   
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Construction of Initial Solution Type 1  

For each warehouse i=1,…, WHn ,  do 

(a) Let  i
jv  be a customer randomly chosen among those closest to warehouse i 

(vertex iv0 ) 

(b) Set im  =1 

(c) Using the customer vertex sequence ),...,,,...,,( 111
i
j

ii
n

i
j

i
j vvvvv i

CUS
−+ , perform the 

following steps for every customer assigned to warehouse i to obtain an initial 

routing solution, }{ WH
i
SDVRPMDVRP ViSS ∈∀= : 

• Insert each customer into the route im  based at warehouse i (vertex iv0 ) using 

the generalized insertion (GENI) algorithm by Gendreau et al. (1992). 

• If the insertion of customer in the route im  would result in the violation of 

vehicle capacity or route duration limit, set im = im +1.  

 

Construction of Initial Solution Type 2  

For each warehouse i=1,…, WHn ,  do 

(a) Let  i
jv  be a customer randomly chosen among those closest to the depot 

(b) Using the customer vertex sequence ),...,,,...,,( 111
i
j

ii
n

i
j

i
j vvvvv i

CUS
−+ , construct a tour on 

all vertices assigned to warehouse i by means of GENI procedure  and Unstringing 

and Stringing (US) procedure Gendreau et al. (1992). 

(c) Start with warehouse i (vertex iv0 ), create im  vehicle routes by following the tour.  

The first vehicle contains all customers starting from the first customer on the tour 

and up to, but excluding, the first customer v whose inclusion in the route would 

cause a violation of the capacity or route duration limit.  This process is repeated, 

starting from the city v, and until all customers have been included into routes.  

The initial MDVRP solution is }{ WH
i
SDVRPMDVRP ViSS ∈∀= . 

 

3.3 Phase II: Solution Improvement  

 

The initial solution generated in Phase I is used as an input in Phase II, which consists 

of 3 sub-phases: fast improvement, intensification, and diversification.  Three basic 
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procedures that are employed in these sub-phases are first described including one-

route, two-route and three-route procedures, followed by the descriptions of three sub-

phases.  Then, the selection of routes for two-route and three route procedures in the 

three sub-phases is described.    

 

One-Route Procedure   

The one-route procedure is a post-optimizer on single-vehicle routes.  In this study, 

the US algorithm by Gendreau et al. (1992) is employed while maintaining route 

duration feasibility and vehicle capacity feasibility.  Since the procedure improves the 

sequence of customers on a particular route without reassigning any customer to 

different warehouses, iED  and iVD are unaffected.  Thus, the optimal order quantity 

and reorder point as well as ordering and holding costs are not changed.   

 

Two-Route Procedure  

The two-route procedure moves vertices belonging to two different routes assigned to 

one or two warehouses.  Let ),,,(
1111 lkjh vvvv  and ),,,(

2222 lkjh vvvv  be two sequences of 

four consecutive vertices (possibly including a warehouse) from route r1 based at 

warehouse i1 and route r2 based at warehouse i2, respectively.  Similar to Renaud et al. 

(1996), the following 6 moves are attempted as long as a warehouse is not moved, and 

vehicle capacity feasibility and route duration feasibility are maintained.  The six 

moves are described together with the calculation of changes in relevant i
rq ,  i

rrl , i
rpl , 

iED , and iVD . 

 

(a)Insert 
1j

v between 
2hv and 

2j
v   

The two vertex sequences become ),,(
111 lkh vvv  and ),,,,(

22212 lkjjh vvvvv , respectively.  

The changes in the round-trip lengths are 
11111111 ,,, jkhkjjhrl ccc δ−+−−=Δ  and 

12112222 ,,, jjjjhjhrl ccc δ+++−=Δ .  If 
1j

v is the last customer visited on route r1, 

1111 , jjhpl c δ−−=Δ ; otherwise, 
11 rlpl Δ=Δ .  If 

2hv is the last customer visited on route 

r2, 
1122 , jjhpl c δ+=Δ ; otherwise, 

22 rlpl Δ=Δ .  The changes in the average delivery 

demands are 
1

1

1 j
i
rq μ−=Δ  and 

1

2

2 j
i
rq μ=Δ .  If 21 ii ≠ , 

11 jiED μ−=Δ  , 
12 jiED μ=Δ , 
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2
11 jiVD σ−=Δ  and 2

12 jiVD σ=Δ .  Otherwise, 0
21
=Δ=Δ ii EDED and 

0
21
=Δ=Δ ii VDVD . 

 

(b)Insert 
2j

v  between 
1hv  and 

1j
v   

The two vertex sequences become ),,,,(
11121 lkjjh vvvvv  and ),,(

222 lkh vvv , respectively.  

The changes in the round-trip lengths are 
21221111 ,,, jjjjhjhrl ccc δ+++−=Δ  and 

22222222 ,,, jkhkjjhrl ccc δ−+−−=Δ .  If 
1hv is the last customer visited on route r1, 

2211 , jjhpl c δ+=Δ ; otherwise, 
11 rlpl Δ=Δ .  If 

2j
v is the last customer visited on route r2, 

2222 , jjhpl c δ−−=Δ ; otherwise, 
22 rlpl Δ=Δ .  The changes in the average delivery 

demands are 2

1

1 j
i
rq μ=Δ  and 

2

2

2 j
i
rq μ−=Δ .  If 21 ii ≠ , then 21 jiED μ=Δ ,  22 jiED μ−=Δ , 

2
21 jiVD σ=Δ  and 2

22 jiVD σ−=Δ .  Otherwise, 0
21
=Δ=Δ ii EDED and 

0
21
=Δ=Δ ii VDVD . 

 

(c) Swap 
1j

v  and 
2j

v  

The two vertex sequences become ),,,(
1121 lkjh vvvv  and ),,,(

2212 lkjh vvvv .  The changes 

in the round-trip lengths are 
21122111111 ,,,, jjkjjhkjjhrl cccc δδ +−++−−=Δ and 

12211222222 ,,,, jjkjjhkjjhrl cccc δδ +−++−−=Δ .  If 
1j

v is the last customer visited on 

route r1, 
2121111 ,, jjjhjhpl cc δδ +−+−=Δ ; otherwise, 

11 rlpl Δ=Δ .  If 
2j

v is the last 

customer visited on route r2, 
1212222 ,, jjjhjhpl cc δδ +−+−=Δ ; otherwise, 

22 rlpl Δ=Δ .  

The changes in the average delivery demands are 21

1

1 jj
i
rq μμ +−=Δ  and 

21

2

2 jj
i
rq μμ −=Δ .  If 21 ii ≠ , then 

211 jjiED μμ +−=Δ  , 
212 jjiED μμ −=Δ , 

22
211 jjiVD σσ +−=Δ  and 22

212 jjiVD σσ −=Δ .  Otherwise, 0
21
=Δ=Δ ii EDED and 

0
21
=Δ=Δ ii VDVD . 

 

(d)Insert (
11

, kj vv ) between (
22

, jh vv ) 

The two vertex sequences become ),(
11 lh vv  and ),,,,,(

222112 lkjkjh vvvvvv .  The changes 

in the round-trip lengths are 11111111111 ,,,, kjlhlkkjjhrl cccc δδ −−+−−−=Δ  and 
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11211112222 ,,,, kjjkkjjhjhrl cccc δδ +++++−=Δ .  If 
1kv is the last customer visited on 

route r1, 
1111111 ,, kjkjjhpl cc δδ −−−−=Δ ;  otherwise, 

11 rlpl Δ=Δ .  If 
2hv is the last 

customer visited on route r2, 
1111122 ,, kjkjjhpl cc δδ +++=Δ ; otherwise, 

22 rlpl Δ=Δ .  The 

changes in the average delivery demands are 11

1

1 kj
i
rq μμ −−=Δ  and 

11

2

2 kj
i
rq μμ +=Δ .  

If 21 ii ≠ , 
111 kjiED μμ −−=Δ  , 

112 kjiED μμ +=Δ , 22
111 kjiVD σσ −−=Δ  and 

22
112 kjiVD σσ +=Δ .  Otherwise, 0

21
=Δ=Δ ii EDED and 0

21
=Δ=Δ ii VDVD . 

 

(e)Insert (
22

, kj vv ) between (
11

, jh vv ) 

The two vertex sequences become ),,,,,(
111221 lkjkjh vvvvvv and ),(

22 lh vv .  The changes 

in the round-trip lengths are 22122221111 ,,,, kjjkkjjhjhrl cccc δδ +++++−=Δ  and 

22222222222 ,,,, kjlhlkkjjhrl cccc δδ −−+−−−=Δ .  If 
1hv is the last customer visited on 

route r1, 
2222211 ,, kjkjjhpl cc δδ +++=Δ ; otherwise, 

11 rlpl Δ=Δ .  If 
2kv is the last customer 

visited on route r2, 
2222222 ,, kjkjjhpl cc δδ −−−−=Δ ; otherwise, 

22 rlpl Δ=Δ .  The changes 

in the average delivery demands are 22

1

1 kj
i
rq μμ +=Δ  and 

22

2

2 kj
i
rq μμ −−=Δ .  If 21 ii ≠ , 

221 kjiED μμ +=Δ , 
222 kjiED μμ −−=Δ , 22

221 kjiVD σσ +=Δ  and 22
222 kjiVD σσ −−=Δ .  

Otherwise, 0
21
=Δ=Δ ii EDED and 0

21
=Δ=Δ ii VDVD . 

 

(f)Swap (
11

, kj vv ) and (
22

, kj vv ) 

The two vertex sequences become ),,,(
1221 lkjh vvvv  and ),,,(

2112 lkjh vvvv .  The changes 

in the round-trip lengths are 
22111222211111111 ,,,,,, kjkjlkkjjhlkkjjhrl cccccc δδδδ ++−−+++−−−=Δ  and 

11222111122222222 ,,,,,, kjkjlkkjjhlkkjjhrl cccccc δδδδ ++−−+++−−−=Δ .  If 
1kv is the last 

customer visited on route r1, 
2211222111111 ,,,, kjkjkjjhkjjhpl cccc δδδδ ++−−++−−=Δ ; 

otherwise, 
11 rlpl Δ=Δ .  If 

2kv is the last customer visited on route r2, 

2211222211122 ,,,, kjkjkjjhkjjhpl cccc δδδδ −−++−−+=Δ ;  otherwise, 
22 rlpl Δ=Δ .  The 

changes in the average delivery demands are 2211

1

1 kjkj
i
rq μμμμ ++−−=Δ  and 

2211

2

2 kjkj
i
rq μμμμ −−+=Δ .  If 21 ii ≠ , 

22111 kjkjiED μμμμ ++−−=Δ  , 
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22112 kjkjiED μμμμ −−+=Δ , 
2222
22111 kjkjiVD σσσσ ++−−=Δ  and 

2222
22112 kjkjiVD σσσσ −−+=Δ .  Otherwise, 0

21
=Δ=Δ ii EDED and 0

21
=Δ=Δ ii VDVD . 

These six moves are a subset of the larger family of moves considered within the λ -

interchange procedure by Osman (1993), and Renaud et al. (1996) indicated that very 

little quality is lost but much time is gained by concentrating on this restricted subset 

of six moves in multi-depot vehicle routing problem.  

 

Three-Route Procedure 

The three-route procedure is an exchange scheme involving three routes (Renaud et 

al., 1996).  Let ),,( 11 111 +− hhh ννν , ),,...,,,(
22222 11 kjhhh ννννν +−  and ),(

33 kj νν be three 

sequences of consecutive vertices (possibly including a warehouse) from routes r1, r2 

and r3 with at least 3, 4 and 3 vertices respectively, based at warehouses i1, i2 and i3.  

For routes r2 and r3, consider the sequences of two vertices ),(
22 kj vv   and ),(

33 kj vv  

where 
22 hj vv ≠  and 

22 hk vv ≠ .  Then the following combination of moves is attempted 

as long as vehicle capacity feasibility and route duration feasibility are maintained, 

and a warehouse is not moved:  insert 
1hv  between 

2j
v  and 

2kv  , and insert 
2hv  

between 
3j

v  and 
3kv .  The move is described together with the calculation of changes 

in relevant i
rq ,  i

rrl , i
rpl , iED , and iVD .  After three-route exchange, the three vertex 

sequences become ),( 11 11 +− hh νν , ),,,...,,(
21222 11 khjhh ννννν +− and ),,(

323 khj ννν .  The 

changes in the round-trip lengths are 
11111111 1,11,,1 hhhhhhhrl ccc δ−+−−=Δ +−+− , 

121122222222222 ,,,1,11,,1 hkhhjkjhhhhhhhrl cccccc δδ +++−−+−−=Δ +−+−  and 

23223333 ,,, hkhhjkjrl ccc δ+++−=Δ  .  If 
1hv is the last customer visited on route r1, 

1111 ,1 hhhpl c δ−−=Δ − ; otherwise, 
11 rlpl Δ=Δ .  If 

2hv is the last customer visited on route 

r2, 
12112222222 ,,,,1 hkhhjkjhhhpl cccc δδ +++−−−=Δ − .  If 

2j
v is the last customer visited on 

route r2, 

11222222222 ,1,11,,1 hhjhhhhhhhpl cccc δδ ++−+−−=Δ +−+− .  Otherwise, 
22 rlpl Δ=Δ .  If 

3j
v is the 

last customer visited on route r3, 
2233 , hhjpl c δ+=Δ .  Otherwise, 

33 rlpl Δ=Δ .  The 

changes in the average delivery demands are 
1

1

1 h
i
rq μ−=Δ  , 

21

2

2 hh
i
rq μμ −=Δ  and 

2

3

3 h
i
rq μ=Δ .  If 321 iii ≠≠ , then 
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11 hiED μ−=Δ  , 
212 hhiED μμ −=Δ , 

23 hiED μ=Δ , 
2
11 hiVD σ−=Δ , 22

212 hhiVD σσ −=Δ  and 

2
23 hiVD σ=Δ .  If 321 iii == , then 0

21
=Δ=Δ ii EDED and 0

21
=Δ=Δ ii VDVD .  If  

321 iii ≠= , 
221 hii EDED μ−=Δ=Δ , 

23 hiED μ=Δ , 
2
221 hii VDVD σ−=Δ=Δ  and 

2
23 hiVD σ=Δ . 

 If 231 iii ≠= , 
2131 hhii EDED μμ +−=Δ=Δ  , 

212 hhiED μμ −=Δ , 22
2131 hhii VDVD σσ +−=Δ=Δ  and 22

212 hhiVD σσ −=Δ .  If 321 iii =≠ , 

11 hiED μ−=Δ  , 
132 hii EDED μ=Δ=Δ , 2

11 hiVD σ−=Δ  and 2
132 hii VDVD σ=Δ=Δ . 

 

Sub-Phase II.1: Fast Improvement  

The algorithm attempts to improve upon the incumbent by repeatedly applying the 

following three steps: 

 

• Inter-warehouse: Apply two-route procedure between routes of two different 

warehouses. 

• Intra-warehouse: Apply two-route procedure between routes of the same 

warehouse. 

• Three-Route: Exchange vertices between three routes, using three-route 

procedure. 

 

These steps are repeated until the incumbent does not improve for fastnmax  consecutive 

iterations.  For each of the three steps, any move that yields an improvement is 

immediately implemented.  Otherwise, the best non-tabu deteriorating move is 

implemented.  Whenever a move is implemented, the one-route procedure is applied 

to all routes involved in the move. 

 

Sub-Phase II.2: Intensification 

This phase intensifies the search for better route, starting with the best known solution 

and working on one warehouse at the time.  It applies the intra-warehouse step to each 

warehouse in turn until no improvement to the incumbent has been produced for intens
maxn  

consecutive iterations.  Whenever a move is implemented, the one-route procedure is 

applied to all routes involved in the move. 



21 
 

 

Sub-Phase II.3: Diversification 

The effect of the diversification phase is to perform a broader exploration of the 

solution space.  The following two steps are repeated 20 times. 

• First, we seek the best reinsertion of a vertex from its current route into a route 

belonging to a different warehouse; that is, apply the first move type of the 

two-route procedure limiting to only two routes associated with different 

warehouses.  Choosing the same vertex for reinsertion is prohibited for the 

next 10 applications of this step.  Whenever a move is implemented, the one-

route procedure is applied to all routes involved in the move. 

• Second, the inter-warehouse and intra-warehouse steps of the fast 

improvement sub-phase are applied for FastDivernmax  consecutive iterations without 

improvement to the solution values obtained in the first step.  Here the length 

of the interval during which a move is tabu is randomly chosen in [15,20] and 

no aspiration criterion is used.  Whenever a move is implemented, the one-

route procedure is applied to all routes involved in the move. 

 

Selection of Routes for Two-Route and Three-Route Procedures in the Three Sub-

Phases 

The selection of routes to which two-route and three-route procedures are applied is 

described Renaud et al. (1996).  To define the distance between a route and a 

warehouse or between two routes, each route is represented by its center of gravity.  

In inter-warehouse, we consider exchanges between each warehouse i and the 

1
2

+⎥⎦
⎥

⎢⎣
⎢ WHn  warehouses closest to it.  For each pair of warehouses 1i  and 2i , we 

consider exchanges between the ⎥
⎥

⎤
⎢
⎢

⎡
2

1i
m

 
 routes of warehouse 1i  closest to warehouse 

2i  and the  ⎥
⎥

⎤
⎢
⎢

⎡
2

2i
m

 routes of warehouse 2i  closest to warehouse 1i .  In intra-warehouse, 

we consider all pairs of routes for each warehouse.  In three-route procedure, the three 

routes r1, r2, and r3 are selected as follows.  All routes with at least 3 vertices are 

considered for route r1.  Route r2 is the closest neighbor of route r1 and has at least 4 
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vertices.  Route r3 is the closest neighbor of route r2 with r3 ≠ r1, and route r3 has at 

least 3 vertices. 

Throughout Phase II, the incumbent and its value are recorded.  The current 

solution is not necessarily the best known because the deteriorations of the objective 

function are allowed.  Whenever a customer is moved from its current route, moving 

this customer back into the same route is declared tabu for θ  iterations, where θ  is 

randomly chosen in [ ] ]10,4[, maxmin =FINDFIND θθ .  Random tabu durations help avoid cycling.  

A tabu status may be overridden if implementing the corresponding move yields a 

better incumbent.   
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Chapter 4 Experimental Results 

 

The tabu search heuristics are implemented in C++.  These run on a computer with 

1.73 GHz Intel Core i7 processor and 4 GB of RAM, running under Windows 7.  The 

data are first described.  Then, the computational results of two experiments are 

discussed. 

 

4.1 Data 

 

For IRP, there is not the standard set of instances for testing algorithms.  We 

generated instances similar to the types used in VRP.  The customer locations are 

generated from Solomon (1987)’s VRP with time windows instances.  The Solomon 

instances are divided into six groups, denoted R1, R2, C1, C2, RC1 and RC2.  In R1 

and R2, the customer locations are randomly generated from a uniform distribution, 

and in C1 and C2, they are clustered.  In RC1 and RC2, the customer locations are a 

combination of randomly generated and clustered points.  Because the (x,y)-

coordinates of the customer locations are the same for R1 and R2 and for RC1 and 

RC2, the Solomon instances yield only four sets of distinct customer locations: C1, 

C2, R1, RC1.  In the same manner as Berger et al. (2007), we create five instances 

corresponding to each group of customer locations.  The first instance includes the 

first 50 customers, the second instance the last 50 customers, the third instance the 

first 75 customers, the fourth instance the last 75 customers, and the fifth instance all 

100 customers.  These are denoted by 50a, 50b, 75a, 75b and 100, respectively.  Thus, 

there are 20 instances of customer locations.  The service times are set at 10 time units 

for all customers.  The average demands of customers are equal to the demands used 

in Solomon (1987).  The demand variances are based on the coefficients of variance 

randomly generated from the range [0.45, 0.55].  The customer data for C1-100, C2-

100, R1-100 and RC1-100 are shown in Tables A1-A4, respectively, in Appendix A.   

For the warehouse locations, we created two sets of 4 warehouse locations for 

each customer instance.  The first and second sets of candidate warehouse locations 

are denoted by wh1 and wh2, respectively.  We randomly generated the warehouse 

locations from a uniform distribution, so that two criteria are satisfied.  First, each 

customer location could be reached by a singleton route with the associated route 

duration to the last customer of at most 80 time units (M=80) from at least one 
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warehouse.  Second, each warehouse location must be assigned at least 10, 15 and 20 

customers for the 50, 75 and 100 customer instances, respectively, when assigning 

customers to their nearest warehouse.  For all warehouse instances, homogeneous unit 

holding costs of the four warehouses are $0.3, $0.6, $0.9, $1.2 per product unit per 

day; the homogeneous ordering costs $450, $900, $1350 and $1800 per order.  For all 

warehouses, the lead times are two days; inventory capacity 2000 product units; order 

quantity capacity 2000 product units; unit transport cost from the plant to warehouses 

is zero.  The distance matrix is determined based on Euclidean distance between all 

vertex pair.  The traveling speed is assumed 1 distance unit per time unit, and routing 

cost is assumed $1 per travel time unit to cover variable vehicle costs.  Personnel 

costs and other vehicle related fixed costs are assumed to be considered outside the 

inventory-routing decision.  The route duration limits are 100 time units.  The number 

of available vehicles for each warehouse is unlimited with the homogeneous capacity 

of 100 product units, which are less constrained than the route duration limit 

constraints in all test problems.  We identify each instance by an ID.  The first part of 

the ID specifies the problem group (R1, C1, C2 or RC1).  The second part specifies 

the customer subset (50a, 50b, 75a, 75b or 100).  The third part specifies the set of 

warehouse locations (wh1 or wh2).  Thus, there are 40 problem instances.  The 

warehouse locations for the 40 problem instances are shown in Tables B1-B4 in 

Appendix B. 

 

4.2 Computational Results 

 

We calibrate the two tabu search algorithms by varying fastnmax , intens
maxn  and FastDivernmax  on a 

test problem, and found that the algorithm parameters suggested by Renaud et al. 

(1996) perform best ( fastnmax =75, intens
maxn   =300 and FastDivernmax =50).  We conduct two 

experiments.  The first experiment compares the performances of the type-1 and type-

2 tabu search heuristics in terms of computational time and solution quality against 

the sequential approach.  The sequential approach first solves MDVRP with route 

duration limits, whose routing solutions are input to the continuous ICP with 

stochastic inventory capacity constraints and order quantity capacity constraints.  In 

the second experiment, the sensitivity analysis is performed on problem instance 

RC1-100-wh1 by varying the route duration limit (M=80 and 100), order quantity 
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capacity ( max
0iQ =800, 1000 and 2000) and demand variance (-30%, 0% and +30% 

changes).  The demand variances are the product of the original demand variance and 

demand variance factor (DVarF); thus, -30%, 0% and +30% changes in demand 

variances correspond to DVarF values of 0.7, 1.0 and 1.3, respectively. 

 Table 4.1 shows the best objective values found and total computational time 

by type-1 and type-2 tabu search algorithms and the sequential approach on the 40 

problem instances.   

 

Table 4.1. Computational Results of Sequential ICP and SDVRP, Sequential MDVRP 

and ICP, and Combined ICP and MDVRP  

 

 

Sequential MDVRP and 
ICP 

Combined MDVRP and ICP 
Init. Sol. Type 1 Init. Sol. Type 2 

Best Obj. 
($/day) 

CPU 
Time 
(min) 

Best Obj. 
($/day) 

% 
Improve. 

CPU Time 
(min) 

Best Obj. 
($/day) % Improve. 

CPU Time 
(min) 

50-Customers Problems 
C1-50a-wh1 3,727.02 1.36 3,599.25 3.43% 1.96 3,619.87 2.87% 1.67 
C1-50a-wh2 3,821.86 1.26 3,727.73 2.46% 0.89 3,747.72 1.94% 0.79 
C1-50b-wh1 4,083.87 0.66 3,728.71 8.70% 0.61 3,795.24 7.07% 0.78 
C1-50b-wh2 3,999.61 0.74 3,478.46 13.03% 0.85 3,823.94 4.39% 0.71 
C2-50a-wh1 3,840.98 0.98 3,550.59 7.56% 0.88 3,528.95 8.12% 1.02 
C2-50a-wh2 3,514.08 0.94 3,223.65 8.26% 0.95 3,369.86 4.10% 0.96 
C2-50b-wh1 4,211.79 0.79 3,956.97 6.05% 0.53 3,905.52 7.27% 0.62 
C2-50b-wh2 4,108.18 0.58 3,627.97 11.69% 0.69 3,588.85 12.64% 0.64 
R1-50a-wh1 3,570.89 0.76 3,367.28 5.70% 0.65 3,235.19 9.40% 0.83 
R1-50a-wh2 3,693.61 0.74 3,584.06 2.97% 0.55 3,485.92 5.62% 0.71 
R1-50b-wh1 3,715.19 0.84 3,284.29 11.60% 0.80 3,190.68 14.12% 0.98 
R1-50b-wh2 3,927.35 1.21 3,723.42 5.19% 0.65 3,588.96 8.62% 0.76 
RC1-50a-wh1 4,228.72 0.61 4,085.40 3.39% 0.53 4,029.67 4.71% 0.62 
RC1-50a-wh2 4,414.56 1.12 3,844.28 12.92% 0.68 3,814.29 13.60% 0.53 
RC1-50b-wh1 3,707.06 0.64 3,270.56 11.77% 0.74 3,284.03 11.41% 0.82 
RC1-50b-wh2 3,623.14 0.74 3,320.46 8.35% 0.31 3,203.86 11.57% 0.63 

75-Customers Problems 
C1-75a-wh1 4,966.38 1.80 4,839.85 2.55% 1.76 4,885.40 1.63% 1.49 
C1-75a-wh2 5,152.99 1.35 5,152.99 0.00% 1.06 5,014.38 2.69% 0.99 
C1-75b-wh1 5,545.76 1.09 5,393.16 2.75% 1.17 5,366.82 3.23% 1.23 
C1-75b-wh2 5,375.33 1.03 5,249.51 2.34% 1.02 5,100.32 5.12% 0.78 
C2-75a-wh1 5,306.20 1.18 4,991.70 5.93% 1.05 5,022.92 5.34% 1.22 
C2-75a-wh2 4,985.98 1.26 4,695.13 5.83% 1.19 4,834.15 3.05% 1.25 
C2-75b-wh1 5,528.38 1.22 5,311.50 3.92% 0.96 5,330.93 3.57% 1.17 
C2-75b-wh2 5,338.21 1.28 5,210.52 2.39% 1.06 5,138.19 3.75% 1.01 
R1-75a-wh1 4,703.12 0.95 4,632.99 1.49% 1.02 4,535.88 3.56% 1.29 
R1-75a-wh2 4,593.40 0.93 4,412.45 3.94% 0.88 4,497.09 2.10% 1.14 
R1-75b-wh1 4,788.27 1.34 4,378.67 8.55% 1.07 4,523.30 5.53% 1.11 
R1-75b-wh2 4,763.60 1.81 4,536.31 4.77% 1.19 4,490.63 5.73% 1.35 
RC1-75a-wh1 4,988.65 1.05 4,827.74 3.23% 0.61 4,815.07 3.48% 0.99 
RC1-75a-wh2 5,236.32 1.07 5,104.13 2.52% 0.91 5,236.32 0.00% 0.88 
RC1-75b-wh1 4,971.99 1.00 4,785.77 3.75% 0.68 4,760.34 4.26% 0.82 
RC1-75b-wh2 4,987.55 1.03 4,745.55 4.85% 0.87 4,750.22 4.76% 1.02 

100-Customers Problems 
C1-100-wh1 6,061.05 1.71 5,815.44 4.05% 1.90 5,761.22 4.95% 1.75 
C1-100-wh2 6,214.90 1.64 6,110.84 1.67% 1.42 6,005.50 3.37% 1.62 
C2-100-wh1 6,142.82 1.50 5,872.85 4.39% 1.33 5,872.55 4.40% 1.25 
C2-100-wh2 6,590.24 1.41 6,507.64 1.25% 1.28 6,380.97 3.18% 1.47 
R1-100-wh1 5,616.66 1.24 5,264.36 6.27% 1.23 5,227.34 6.93% 1.82 
R1-100-wh2 5,574.31 1.97 5,430.94 2.57% 1.70 5,471.92 1.84% 1.49 
RC1-100-wh1 6,112.11 1.43 6,016.59 1.56% 1.36 5,984.98 2.08% 1.47 
RC1-100-wh2 6,324.67 1.32 6,258.55 1.05% 1.15 6,127.76 3.11% 1.39 
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As expected, the proposed tabu search algorithms outperform the sequential approach 

on all test problem instances.  The computational times of all runs are less than two 

minutes.  On 50-customer and 75-customer problem instances, the two tabu search 

algorithms perform approximately equally well, since the type-1 tabu search 

outperform the type-2 tabu search on about 50 percent of problem instances.  On 100-

customer instances, the type-2 tabu search outperforms the type-1 tabu search on 

almost all instances except an instance R1-100-wh2. 

 Next, the sensitivity analysis is performed to see how the solution changes 

with route duration limit, order quantity capacity and demand variance on problem 

instance RC1-100-wh1.  We employ the type-2 tabu search in all runs as it performs 

best on this problem instance.  Table 4.2 and Figure 4.1 show the best objective value 

found when varying route duration limits, order quantity capacity and demand 

variances.   

 

Table 4.2. Best Objective Values Found by Type-2 Tabu Search with Varying Route 

Duration Limits, Order Quantity Capacity and Demand Variances 

 

Route Duration Limit;  
Order Quantity Capacity 

Demand Variance Factor 
0.7 1 1.3 

M100; Qmax2000 5902.68 5984.98 6030.5 
M100; Qmax1000 5939.6 6003.1 6057.6 
M100; Qmax800 6087.56 6194.37 6249.35 
M80; Qmax2000 6328.16 6393.26 6449.12 
M80; Qmax1000 6345.43 6411.14 6459.52 
M80; Qmax800 6536.16 6601.42 6657.43 
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Figure 4.1. Best Objective Values Found by Type-2 Tabu Search with Varying 

Route Duration Limits, Order Quantity Capacity and Demand Variances 

 

It can be seen that the best objective value increases with the increase of demand 

variance, but decreases with the increase of order quantity capacity and route duration 

limit.  The best objective value is composed of three cost components: vehicle 

routing, holding and ordering.  Table 4.3 and Figure 4.2 show the three cost 

components when varying route duration limit and order quantity capacity at 

DVarF=1.0.  Table 4.4 and Figure 4.3 show the three cost components when varying 

route duration limit and demand variance at max
iQ =2000.  As can be seen from Table 

4.3 and Figure 4.2, the total ordering costs in the best solution increases with the 

decrease of the order quantity capacity, whereas the total holding costs decreases with 

the decrease of the order quantity capacity.  Evidently, the order quantity capacity as 

well as inventory capacity plays a role in the trade-off between total holding costs and 

total ordering costs.  Intuitively, when the order quantity is more constrained, the 

warehouse manager has to order more often and ordering costs are higher.  

Meanwhile, the peak inventory levels are lower and the total holding costs are less.  

Furthermore, Table 4.3 and Figure 4.2 show that the routing costs increases with the 

decrease of route duration limit.  Once the longer route duration limit is allowed, each 

vehicle route may serve more customers, and the routing costs is less.  Table 4.4 and 

Figure 4.3 show that the holding costs increase with the increase of demand variance, 

but it is unclear how the routing and ordering costs change with the demand variances.  
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This is as expected as the demand variance is only directly related to the holding costs 

as shown in Eq.(2.6.1).  The demand variance can influence the customer assignments 

to different warehouses, resulting in different routing costs and ordering costs.    

 
 
Table 4.3. Routing Costs, Holding Costs and Ordering Costs with Varying Route 
Duration Limits and Order Quantity Capacity (DVarF=1.0) 
 
Route Duration Limit;  
Order Quantity Capacity 

Demand Variance Factor = 1.0 
Ordering Costs Holding Costs Routing Costs 

M100; Qmax2000 1624.25 2013.05 2347.67 
M100; Qmax1000 1817.97 1850.37 2334.77 
M100; Qmax800 2266.31 1592.2 2335.85 
M80; Qmax2000 1673.52 2072.03 2647.71 
M80; Qmax1000 1907.1 1902.27 2601.77 
M80; Qmax800 2365.88 1599.55 2636 

 
 
 
 

 
 

Figure 4.2. Routing Costs, Holding Costs and Ordering Costs with Varying 

Route Duration Limits and Order Quantity Capacity (DVarF=1.0) 
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Table 4.4. Routing Costs, Holding Costs and Ordering Costs with Varying Demand 

Variances 

a) Order Quantity Capacity=2000 and Route Duration Limit = 100 

Route Duration Limit;  
Order Quantity Capacity; 
Demand Variance Factor Ordering Costs Holding Costs Routing Costs 
M100; Qmax2000; DVarF=0.7 1619.26 1943.43 2339.99
M100; Qmax2000; DVarF=1.0 1624.25 2013.05 2347.67
M100; Qmax2000; DVarF=1.3 1619.26 2061.02 2350.21

 

b) Order Quantity Capacity=800 and Route Duration Limit = 100 

Route Duration Limit;  
Order Quantity Capacity; 
Demand Variance Factor Ordering Costs Holding Costs Routing Costs 
M100; Qmax800; DVarF=0.7 2227.5 1525.29 2334.77
M100; Qmax800; DVarF=1.0 2266.31 1592.2 2335.85
M100; Qmax800; DVarF=1.3 2266.31 1647.18 2335.85

 

 
 
 
a)Order Quantity Capacity=2000 and Route 
Duration Limit = 100 

 

b) Order Quantity Capacity=800 and Route 
Duration Limit = 100 

Figure 4.3. Routing Costs, Holding Costs and Ordering Costs with Varying Demand 

Variances 

 

 Figure 4.4 shows the continuous inventory control policies at four warehouses 

in the best solution when varying order quantity capacity at max
0iL =80 and DVarF=1.0.  

When the order quantity capacity ( max
iQ =2000) is equal to the inventory capacity, the 

optimal order quantity is equal to the EOQ formula according to Eq.(3.3).  When the 

order quantity capacity decreases to 1000 and 800, the customers as well as associated 

mean demands are reassigned between warehouses 1002 and 1003.  As such the 
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reorder points and safety stocks of warehouses 1000 and 1001 are unaffected with the 

change of order quantity capacity, but those of warehouses 1002 and 1003 are 

affected.  The optimal order quantities for the case  max
iQ = 800 and max

iQ =1000 are 

equal to max
iQ  according to Eq.(3.3).   

 

 
 

Figure 4.4. Continuous Inventory Control Policies at Four Warehouses with Varying 

Order Quantity Capacity (Route Duration Limit=80; DVarF=1.0) 

 

Figure 4.5 shows the continuous inventory control policies at four warehouses in the 

best solution when varying demand variance at max
0iL =80 and max

iQ =800.  The 

customers as well as associated mean demands assigned to the four warehouses are 

unaffected with the change of demand variance.  The safety stock levels and reorder 

points at the four warehouses increase with the increase of demand variance, whereas 

the available inventory capacities at the four warehouses decrease with the increase of 

demand variance.  This is intuitive as the safety stock is positively related to demand 

variance, and the reorder point includes the safety stock as shown in Eq.(2.2).  The 

available inventory capacity is negatively related to demand variance (available 

inventory capacity = iii VDLTZZI )( 11
max

βα −− +− ).  The optimal order quantities are 
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equal to the order quantity capacity according to Eq.(3.3).  Table 4.5 shows the 

MDVRP policies for the four warehouses when max
0iL =80 and max

0iL =100.  The number 

of routes is decreases with the increase of route duration limits.  This is because the 

available vehicle capacity in each route is large enough to serve additional customers.  

As can be noticed in Table 4.5, each route has the travel time to last customer less 

than or equal to the route duration limit, and the mean demand of each route is less 

than the vehicle capacity. 

 

 
 

Figure 4.5. Continuous Inventory Control Policies at Four Warehouses with Varying 

Demand Variances (Route Duration Limit=80; Order Quantity Capacity=800) 
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Table 4.5. Multi-Depot Vehicle Routing Policies for Four Warehouses with Varying Route 

Duration Limits (Order Quantity Capacity =2000 and DVarF=1.0) 

 
 

M80 

depot 1000 depot 1001 depot 1002 depot 1003 

No. of Routes 6 8 8 8 

Routes 
 
 
 
 
 
 
 

1000-98-55-69-82 1001-6-7-79-8 1002-65-90-96-94 1003-67-93-71 

1000-88-60-78-73 1001-46-4-45-5-3 1002-95-92-91-80 1003-72-54-81 

1000-14-47-17-16-15 1001-42-44 1002-66-56-84-64 1003-62 

1000-59-97-75 1001-1-43-40 1002-83-57-24-22 1003-51-85-63 

1000-9-13-87 1001-36-35-37 1002-20-49-19-18 1003-76-89 

1000-10-11-12-53 1001-38-39-41 1002-48-21-23-25 1003-33-32-30-28-26 

1001-70-61-68 1002-77-58 1003-27-29-31-34 

1001-100-2 1002-74-86-52-99 1003-50 

Mean Demands 61; 68; 80; 70; 43; 95 80; 90; 20; 70; 70; 60; 53; 33 71; 46; 70; 87; 80; 70; 27; 54 26; 34; 3; 27; 56; 70; 80; 30 

Travel Times to 
Last Customer 

75.46; 77.83; 78.00; 73.52; 64.66; 55.24; 74.49; 76.91; 77.24; 76.56; 69.41; 57.10; 79.49; 15.83; 61.36; 

76.68; 62.90; 72.08 79.54; 77.58; 62.61; 44.77 72.52; 78.78; 65.74; 78.36 52.26; 79.94; 75.18; 13.61 

Travel Times 
(begin and 

end at depot) 

81.78; 102.04; 97.65; 81.59; 73.66; 88.78; 113.54; 101.98; 93.52; 88.23; 90.99; 80.64; 112.91; 21.66; 74.36; 

119.76; 85.75; 77.18 122.95; 113.60; 86.69; 45.77 104.80; 109.78; 98.55; 87.42 79.43; 105.02; 90.48; 17.21 

 

 

 
M100 

depot 1000 depot 1001 depot 1002 depot 1003 

No. of Routes 6 6 6 6 

Routes 

1000-98-69-90-65-82 1001-2-6-7-8-46 1002-91-92-94-96-80 1003-67-93-71 

1000-53-88-60-79-78 1001-4-45-5-3-1 1002-64-84-95-56-66 1003-85-62 

1000-12-47-17-16-15-13 1001-42-44-43-40-39 1002-83-22-24-57 1003-51-76-89-63 

1000-97-75-59 1001-36-35-37-38 1002-20-49-19-18-48-21 1003-33-32-34 

1000-99-86-74-87-9 1001-81-54-72-41 1002-23-25-77-58 1003-31-29-27-26-28-30 

1000-73-14-11-10 1001-70-61-68-55-100 1002-52 1003-50 

Mean Demands 67; 98; 100; 70; 84; 85 90; 100; 80; 100; 54; 72 89; 76; 87; 100; 77; 3 26; 5; 81; 50; 100; 30 

Travel Times 
to last customer 

87.24; 97.47; 93.83; 66.00; 64.47; 98.24; 92.71; 97.31; 76.47; 57.10; 43.57; 93.68; 

90.76; 97.51; 87.34 93.14; 99.39; 99.68 96.52; 96.94; 21.66 57.32; 97.25; 13.61 
Travel Times 

(begin and 
end at depot) 

93.56; 114.50; 112.70; 71.66; 73.96; 136.45; 108.99; 103.39; 88.55; 80.64; 49.40; 106.68; 

118.07; 112.38; 99.42 133.34; 135.40; 112.41 127.92; 129.74; 33.32 72.62; 115.36; 17.21 
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Chapter 5 Summary, Conclusions and Future Research 
 
This research studies a two-level supply chain where a single plant supplies a single 

commodity to a set of warehouses which in turn serve a set of customers with 

stochastic demands.  This research provides a combined stochastic chance constrained 

nonlinear integer programming formulation modeling the inventory management 

decisions at the warehouses and the routing of goods from the warehouses to the 

customers. The warehouses are assumed to manage the inventory using a continuous 

inventory policy. The model accounts for the service level at each warehouse which 

reflects the probability of available inventory meeting the demand during the lead 

time, probability of violation of inventory capacity, and restrictions on order quantity 

volume. The routing of goods from warehouse to customers is modeled as a route 

duration constrained capacitated multi-depot vehicle routing problem.  Two tabu 

search heuristics – type 1 and type 2, differing primarily in the way initial solutions 

are generated are developed to solve the combined model.  The optimal order quantity 

at each warehouse is approximated using the KKT conditions.  

Computational runs are conducted on variations of the standard Solomon test 

instances available for vehicle routing problems with time windows. Type 2 tabu 

search was found to outperform type 1 tabu search for the 100 customer instance. For 

smaller customer instances, both the heuristics were found to perform equally well.   

Integrating the inventory management and routing decisions by solving the combined 

inventory management and routing problem was found to yield cost savings of up to 

14% over the sequential approach where both problems are solved separately.   

The best objective function value obtained by the tabu search heuristic was found to 

increase with increase in customer demand variance, decrease with increase in order 

quantity capacity and route duration limit.  Variance of the customer demand was 

found to have significant impact on the solution quality.  The safety stock levels, the 

reorder points and the total holding costs were found to increase with increase in 

customer demand variance. As expected, the available inventory capacity was found 

to decrease with increase in customer demand variance.  It is unclear how the routing 

and ordering costs change with the demand variances.  This is because the demand 

variance can influence the customer assignments to different warehouses, resulting in 

different routing costs and ordering costs.  We found that the order quantity capacity 

and inventory capacity play a role in the trade-off between total holding costs and 
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total ordering costs.  The total ordering costs in the best solution increases with the 

decrease of the order quantity capacity, whereas the total holding costs decreases with 

the decrease of the order quantity capacity.  The routing costs increase with the 

decrease of route duration limit.  Thus, the combined inventory management and 

routing model can be used to study the tradeoffs between inventory holding costs, 

ordering costs, and routing costs.   

This research can be extended in multiple directions. The immediate next step 

is to integrate warehouse facility location problem into the combined inventory 

management and routing model.  
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APPENDIX A: Customer Data 

 

Table A1. Customer Data for Test Problem C1 

No x y 

Service  

Time 

Mean  

Demand

Demand  

Variance No x y 

Service  

Time 

Mean  

Demand

Demand  

Variance

1 45 68 10 10 23.89 26 25 55 10 10 29.28

2 45 70 10 30 208.21 27 23 52 10 10 27.51

3 42 66 10 10 25.79 28 23 55 10 20 113.51

4 42 68 10 10 26.12 29 20 50 10 10 22.02

5 42 65 10 10 25.40 30 20 55 10 10 27.36

6 40 69 10 20 116.36 31 10 35 10 20 98.89

7 40 66 10 20 119.04 32 10 40 10 30 205.09

8 38 68 10 20 89.28 33 8 40 10 40 389.72

9 38 70 10 10 21.88 34 8 45 10 20 114.96

10 35 66 10 10 20.76 35 5 35 10 10 21.47

11 35 69 10 10 27.29 36 5 45 10 10 23.09

12 25 85 10 20 105.87 37 2 40 10 20 91.40

13 22 75 10 30 271.78 38 0 40 10 30 236.99

14 22 85 10 10 26.84 39 0 45 10 20 91.27

15 20 80 10 40 473.91 40 35 30 10 10 27.85

16 20 85 10 40 480.16 41 35 32 10 10 21.22

17 18 75 10 20 85.74 42 33 32 10 20 85.88

18 15 75 10 20 96.22 43 33 35 10 10 27.76

19 15 80 10 10 21.45 44 32 30 10 10 27.21

20 30 50 10 10 22.60 45 30 30 10 10 20.87

21 30 52 10 20 120.47 46 30 32 10 30 183.66

22 28 52 10 20 102.68 47 30 35 10 10 24.88

23 28 55 10 10 21.77 48 28 30 10 10 28.14

24 25 50 10 10 28.53 49 28 35 10 10 22.43

25 25 52 10 40 468.31 50 26 32 10 10 20.38
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Table A1. Customer Data for Test Problem C1 (Continued) 

 

No x y 

Service  

Time 

Mean  

Demand

Demand  

Variance No x y 

Service  

Time 

Mean  

Demand

Demand  

Variance

51 25 30 10 10 22.76 76 90 35 10 10 27.31

52 25 35 10 10 30.19 77 88 30 10 10 25.93

53 44 5 10 20 93.77 78 88 35 10 20 85.06

54 42 10 10 40 467.78 79 87 30 10 10 24.83

55 42 15 10 10 22.75 80 85 25 10 10 20.69

56 40 5 10 30 199.65 81 85 35 10 30 271.79

57 40 15 10 40 389.95 82 75 55 10 20 93.05

58 38 5 10 30 219.18 83 72 55 10 10 29.86

59 38 15 10 10 28.52 84 70 58 10 20 90.26

60 35 5 10 20 86.43 85 68 60 10 30 211.05

61 50 30 10 10 23.27 86 66 55 10 10 27.20

62 50 35 10 20 94.10 87 65 55 10 20 97.58

63 50 40 10 50 520.50 88 65 60 10 30 197.78

64 48 30 10 10 23.64 89 63 58 10 10 29.07

65 48 40 10 10 24.62 90 60 55 10 10 23.16

66 47 35 10 10 20.40 91 60 60 10 10 20.57

67 47 40 10 10 21.07 92 67 85 10 20 102.76

68 45 30 10 10 25.61 93 65 85 10 40 398.67

69 45 35 10 10 21.01 94 65 82 10 10 21.74

70 95 30 10 30 230.62 95 62 80 10 30 220.45

71 95 35 10 20 98.61 96 60 80 10 10 21.76

72 53 30 10 10 28.84 97 60 85 10 30 229.54

73 92 30 10 10 25.69 98 58 75 10 20 83.39

74 53 35 10 50 534.26 99 55 80 10 10 29.73

75 45 65 10 20 102.65 100 55 85 10 20 84.91
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Table A2. Customer Data for Test Problem C2 

 

No x y 

Service  

Time 

Mean  

Demand

Demand  

Variance No x y 

Service  

Time 

Mean  

Demand

Demand  

Variance

1 52 75 10 10 21.09 26 8 62 10 10 20.38

2 45 70 10 30 237.69 27 23 52 10 10 29.42

3 62 69 10 10 27.18 28 4 55 10 20 94.88

4 60 66 10 10 24.63 29 20 50 10 10 24.64

5 42 65 10 10 25.56 30 20 55 10 10 21.55

6 16 42 10 20 85.37 31 10 35 10 20 103.10

7 58 70 10 20 94.75 32 10 40 10 30 268.15

8 34 60 10 20 92.42 33 8 40 10 40 333.34

9 28 70 10 10 28.19 34 8 45 10 20 110.83

10 35 66 10 10 21.73 35 5 35 10 10 24.31

11 35 69 10 10 25.45 36 5 45 10 10 20.32

12 25 85 10 20 93.10 37 2 40 10 20 110.00

13 22 75 10 30 187.07 38 0 40 10 30 184.39

14 22 85 10 10 23.68 39 0 45 10 20 98.24

15 20 80 10 40 387.23 40 36 18 10 10 28.34

16 20 85 10 40 335.03 41 35 32 10 10 24.98

17 18 75 10 20 83.61 42 33 32 10 20 115.04

18 15 75 10 20 86.02 43 33 35 10 10 24.34

19 15 80 10 10 25.98 44 32 20 10 10 20.74

20 30 50 10 10 23.51 45 30 30 10 10 20.47

21 30 56 10 20 106.98 46 34 25 10 30 240.94

22 28 52 10 20 120.07 47 30 35 10 10 21.22

23 14 66 10 10 26.43 48 36 40 10 10 27.16

24 25 50 10 10 22.43 49 48 20 10 10 29.41

25 22 66 10 40 463.58 50 26 32 10 10 20.94
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Table A2. Customer Data for Test Problem C2 (Continued) 

 

No x y 

Service  

Time 

Mean  

Demand

Demand  

Variance No x y 

Service  

Time 

Mean  

Demand

Demand  

Variance

51 25 30 10 10 27.00 76 90 35 10 10 20.47

52 25 35 10 10 25.13 77 72 45 10 10 20.39

53 44 5 10 20 93.80 78 78 40 10 20 103.12

54 42 10 10 40 438.08 79 87 30 10 10 28.01

55 42 15 10 10 20.96 80 85 25 10 10 26.53

56 40 5 10 30 238.24 81 85 35 10 30 185.14

57 38 15 10 40 471.20 82 75 55 10 20 120.81

58 38 5 10 30 259.84 83 72 55 10 10 23.47

59 38 10 10 10 29.01 84 70 58 10 20 96.64

60 35 5 10 20 108.91 85 86 46 10 30 233.96

61 50 30 10 10 21.30 86 66 55 10 10 25.41

62 50 35 10 20 81.04 87 64 46 10 20 90.23

63 50 40 10 50 555.76 88 65 60 10 30 232.82

64 48 30 10 10 23.85 89 56 64 10 10 28.91

65 44 25 10 10 21.69 90 60 55 10 10 24.60

66 47 35 10 10 29.84 91 60 60 10 10 21.88

67 47 40 10 10 24.79 92 67 85 10 20 85.50

68 42 30 10 10 22.68 93 42 58 10 40 454.05

69 45 35 10 10 25.21 94 65 82 10 10 28.60

70 95 30 10 30 236.35 95 62 80 10 30 209.66

71 95 35 10 20 94.66 96 62 40 10 10 27.69

72 53 30 10 10 26.86 97 60 85 10 30 219.15

73 92 30 10 10 20.61 98 58 75 10 20 96.59

74 53 35 10 50 539.30 99 55 80 10 10 23.91

75 45 65 10 20 117.35 100 55 85 10 20 96.42
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Table A3. Customer Data for Test Problem R1  

 

No x y 

Service  

Time 

Mean  

Demand

Demand  

Variance No x y 

Service  

Time 

Mean  

Demand

Demand  

Variance

1 41 49 10 10 23.69 26 45 30 10 17 60.20

2 35 17 10 7 13.82 27 35 40 10 16 67.54

3 55 45 10 13 40.99 28 41 37 10 16 52.17

4 55 20 10 19 74.25 29 64 42 10 9 17.46

5 15 30 10 26 201.42 30 40 60 10 21 90.58

6 25 30 10 3 2.20 31 31 52 10 27 206.49

7 20 50 10 5 5.12 32 35 69 10 23 130.94

8 10 43 10 9 16.66 33 53 52 10 11 29.53

9 55 60 10 16 62.70 34 65 55 10 14 40.20

10 30 60 10 16 60.62 35 63 65 10 8 17.26

11 20 65 10 12 34.39 36 2 60 10 5 5.75

12 50 35 10 19 96.60 37 20 20 10 8 16.53

13 30 25 10 23 118.13 38 5 5 10 16 63.45

14 15 10 10 20 106.09 39 60 12 10 31 208.85

15 30 5 10 8 18.07 40 40 25 10 9 22.02

16 10 20 10 19 104.45 41 42 7 10 5 7.23

17 5 30 10 2 0.98 42 24 12 10 5 6.29

18 20 40 10 12 34.01 43 23 3 10 7 11.22

19 15 60 10 17 65.32 44 11 14 10 18 95.57

20 45 65 10 9 23.76 45 6 38 10 16 65.61

21 45 20 10 11 34.50 46 2 48 10 1 0.27

22 45 10 10 18 97.68 47 8 56 10 27 208.38

23 55 5 10 29 200.13 48 13 52 10 36 272.63

24 65 35 10 3 2.16 49 6 68 10 30 257.56

25 65 20 10 6 10.43 50 47 47 10 13 47.35
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Table A3. Customer Data for Test Problem R1 (Continued) 

 

No x y 

Service  

Time 

Mean  

Demand

Demand  

Variance No x y 

Service  

Time 

Mean  

Demand

Demand  

Variance

51 49 58 10 10 24.22 76 49 42 10 13 39.75

52 27 43 10 9 17.45 77 53 43 10 14 43.11

53 37 31 10 14 57.45 78 61 52 10 3 2.49

54 57 29 10 18 72.48 79 57 48 10 23 158.76

55 63 23 10 2 0.86 80 56 37 10 6 9.95

56 53 12 10 6 8.51 81 55 54 10 26 182.44

57 32 12 10 7 13.43 82 15 47 10 16 57.02

58 36 26 10 18 69.42 83 14 37 10 11 32.81

59 21 24 10 28 215.24 84 11 31 10 7 11.91

60 17 34 10 3 2.54 85 16 22 10 41 347.89

61 12 24 10 13 38.12 86 4 18 10 35 327.76

62 24 58 10 19 101.27 87 28 18 10 26 163.37

63 27 69 10 10 20.45 88 26 52 10 9 21.71

64 15 77 10 9 23.90 89 26 35 10 15 59.41

65 62 77 10 20 103.50 90 31 67 10 3 1.92

66 49 73 10 25 173.11 91 15 19 10 1 0.26

67 67 5 10 25 142.39 92 22 22 10 2 1.19

68 56 39 10 36 323.61 93 18 24 10 22 129.86

69 37 47 10 6 8.74 94 26 27 10 27 190.10

70 37 56 10 5 7.16 95 25 24 10 20 102.09

71 57 68 10 15 62.41 96 22 27 10 11 34.27

72 47 16 10 25 127.88 97 25 21 10 12 35.56

73 44 17 10 9 18.03 98 19 21 10 10 22.27

74 46 13 10 8 18.94 99 20 26 10 9 19.34

75 49 11 10 18 89.38 100 18 18 10 17 72.62
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Table A4. Customer Data for Test Problem RC1  

 

No x y 

Service  

Time 

Mean  

Demand

Demand  

Variance No x y 

Service  

Time 

Mean  

Demand

Demand  

Variance

1 25 85 10 20 119.17 26 95 30 10 30 229.69

2 22 75 10 30 211.39 27 95 35 10 20 82.13

3 22 85 10 10 26.40 28 92 30 10 10 23.80

4 20 80 10 40 383.91 29 90 35 10 10 22.11

5 20 85 10 20 118.24 30 88 30 10 10 26.30

6 18 75 10 20 110.12 31 88 35 10 20 93.80

7 15 75 10 20 88.65 32 87 30 10 10 25.22

8 15 80 10 10 23.54 33 85 25 10 10 28.46

9 10 35 10 20 85.86 34 85 35 10 30 251.74

10 10 40 10 30 193.03 35 67 85 10 20 110.59

11 8 40 10 40 348.20 36 65 85 10 40 335.42

12 8 45 10 20 99.34 37 65 82 10 10 21.88

13 5 35 10 10 23.92 38 62 80 10 30 182.91

14 5 45 10 10 28.26 39 60 80 10 10 25.71

15 2 40 10 20 84.52 40 60 85 10 30 192.42

16 0 40 10 20 98.61 41 58 75 10 20 120.76

17 0 45 10 20 109.11 42 55 80 10 10 21.84

18 44 5 10 20 104.76 43 55 85 10 20 94.81

19 42 10 10 40 460.90 44 55 82 10 10 23.45

20 42 15 10 10 22.61 45 20 82 10 10 23.26

21 40 5 10 10 22.08 46 18 80 10 10 21.81

22 40 15 10 40 407.67 47 2 45 10 10 26.22

23 38 5 10 30 209.74 48 42 5 10 10 24.91

24 38 15 10 10 22.91 49 42 12 10 10 26.84

25 35 5 10 20 112.18 50 72 35 10 30 222.54
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Table A4. Customer Data for Test Problem RC1 (Continued) 

 

No x y 

Service  

Time 

Mean  

Demand

Demand  

Variance No x y 

Service  

Time 

Mean  

Demand

Demand  

Variance

51 55 20 10 19 90.90 76 60 12 10 31 279.89

52 25 30 10 3 2.40 77 23 3 10 7 11.95

53 20 50 10 5 5.53 78 8 56 10 27 216.47

54 55 60 10 16 65.85 79 6 68 10 30 210.17

55 30 60 10 16 69.27 80 47 47 10 13 50.26

56 50 35 10 19 85.23 81 49 58 10 10 28.62

57 30 25 10 23 107.39 82 27 43 10 9 23.98

58 15 10 10 20 85.21 83 37 31 10 14 48.15

59 10 20 10 19 101.73 84 57 29 10 18 66.70

60 15 60 10 17 85.55 85 63 23 10 2 0.86

61 45 65 10 9 22.70 86 21 24 10 28 213.91

62 65 35 10 3 2.14 87 12 24 10 13 39.19

63 65 20 10 6 10.58 88 24 58 10 19 86.34

64 45 30 10 17 61.25 89 67 5 10 25 175.88

65 35 40 10 16 74.73 90 37 47 10 6 8.16

66 41 37 10 16 66.18 91 49 42 10 13 35.91

67 64 42 10 9 17.50 92 53 43 10 14 48.08

68 40 60 10 21 111.88 93 61 52 10 3 2.39

69 31 52 10 27 207.31 94 57 48 10 23 137.42

70 35 69 10 23 153.42 95 56 37 10 6 8.92

71 65 55 10 14 55.13 96 55 54 10 26 190.91

72 63 65 10 8 16.26 97 4 18 10 35 339.80

73 2 60 10 5 6.26 98 26 52 10 9 22.46

74 20 20 10 8 19.13 99 26 35 10 15 46.14

75 5 5 10 16 56.66 100 31 67 10 3 2.29
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APPENDIX B: Warehouse Data 

 

Table B1. Warehouse Data for Test Problem C1 

 

a) C1-50a-wh1          b)C1-50a-wh2  c)C1-50b-wh1  d)C1-50b-wh2 

Vertice  x y  Vertice  x y  Vertice x y  Vertice  x y 

1000 41 59  1000 36 32 1000 50 63 1000 38 8

1001 9 48  1001 36 43 1001 63 14 1001 73 53

1002 41 51  1002 40 44 1002 48 52 1002 67 70

1003 16 63  1003 12 41 1003 81 55 1003 64 48

 

e) C1-75a-wh1          f)C1-75a-wh2  g)C1-75b-wh1  h)C1-75b-wh2 

Vertice  x y  Vertice  x y  Vertice x y  Vertice  x y 

1000 13 56  1000 54 57 1000 88 24 1000 65 29

1001 32 81  1001 38 6 1001 94 51 1001 40 10

1002 38 44  1002 47 82 1002 10 57 1002 91 59

1003 38 17  1003 58 45 1003 15 5 1003 14 75

 

i) C1-100-wh1          j)C1-100-wh2   

Vertice  x y  Vertice  x y 

1000 25 28  1000 12 10

1001 34 72  1001 74 46

1002 42 43  1002 57 81

1003 54 22  1003 6 75
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Table B2. Warehouse Data for Test Problem C2 

 

a) C2-50a-wh1          b)C2-50a-wh2  c)C2-50b-wh1  d)C2-50b-wh2 

Vertice  x y  Vertice  x y  Vertice x y  Vertice  x y 

1000 14 52  1000 27 41 1000 30 57 1000 74 10

1001 14 78  1001 3 58 1001 84 10 1001 55 40

1002 23 45  1002 48 71 1002 81 57 1002 48 51

1003 46 41  1003 32 38 1003 73 69 1003 48 42

 

e) C2-75a-wh1          f)C2-75a-wh2  g)C2-75b-wh1  h)C2-75b-wh2 

Vertice  x y  Vertice  x y  Vertice x y  Vertice  x y 

1000 27 49  1000 36 5 1000 67 9 1000 65 29

1001 37 69  1001 22 75 1001 17 7 1001 40 10

1002 68 36  1002 56 17 1002 91 53 1002 91 59

1003 9 33  1003 1 47 1003 32 71 1003 14 75

 

i) C2-100-wh1          j)C2-100-wh2   

Vertice  x y  Vertice  x y 

1000 48 53  1000 43 73

1001 18 27  1001 12 6

1002 62 58  1002 20 70

1003 55 33  1003 75 67
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Table B3. Warehouse Data for Test Problem R1 

 

a) R1-50a-wh1          b)R1-50a-wh2  c)R1-50b-wh1  d)R1-50b-wh2 

Vertice  x y  Vertice  x y  Vertice x y  Vertice  x y 

1000 43 19  1000 53 52 1000 38 37 1000 39 7

1001 48 59  1001 12 59 1001 29 26 1001 59 9

1002 12 52  1002 46 36 1002 33 41 1002 22 75

1003 29 29  1003 21 3 1003 13 28 1003 8 6

 

e) R1-75a-wh1          f)R1-75a-wh2  g)R1-75b-wh1  h)R1-75b-wh2 

Vertice  x y  Vertice  x y  Vertice x y  Vertice  x y 

1000 54 10  1000 47 25 1000 8 33 1000 55 46

1001 19 31  1001 29 8 1001 28 60 1001 14 16

1002 24 38  1002 64 53 1002 37 30 1002 55 38

1003 36 73  1003 11 67 1003 45 40 1003 12 40

 

i) R1-100-wh1          j)R1-100-wh2   

Vertice  x y  Vertice  x y 

1000 8 33  1000 47 25

1001 28 60  1001 29 8

1002 37 30  1002 64 53

1003 45 40  1003 11 67
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Table B4. Warehouse Data for Test Problem RC1 

 

a) RC1-50a-wh1       b)RC1-50a-wh2  c)RC1-50b-wh1 d)RC1-50b-wh2 

Vertice  x y  Vertice  x y  Vertice x y  Vertice  x y 

1000 21 49  1000 76 32 1000 3 51 1000 33 52

1001 12 17  1001 21 56 1001 63 28 1001 38 25

1002 86 30  1002 11 27 1002 55 50 1002 47 66

1003 4 55  1003 14 57 1003 27 62 1003 28 20

 

e) RC1-75a-wh1       f)RC1-75a-wh2  g)RC1-75b-wh1 h)RC1-75b-wh2 

Vertice x y  Vertice x y  Vertice x y  Vertice x y 

1000 2 50  1000 0 35  1000 10 37  1000 43 31

1001 49 56  1001 50 50  1001 39 67  1001 7 52

1002 68 35  1002 57 53  1002 52 33  1002 74 68

1003 36 7  1003 15 58  1003 63 44  1003 50 27

 

i) RC1-100-wh1        j)RC1-100-wh2   

Vertice  x y  Vertice  x y 

1000 21 45  1000 62 29

1001 22 76  1001 9 44

1002 35 36  1002 21 26

1003 70 32  1003 87 48
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Abstract: This article presents a new bi-level formu-
lation for time-varying lane-based capacity reversibility
problem for traffic management. The problem is for-
mulated as a bi-level program where the lower level is
the cell-transmission-based user-optimal dynamic traf-
fic assignment (UODTA). Due to its Non-deterministic
Polynomial-time hard (NP-hard) complexity, the genetic
algorithm (GA) with the simulation-based UODTA is
adopted to solve multiorigin multidestination problems.
Four GA variations are proposed. GA1 is a simple GA.
GA2, GA3, and GA4 with a jam-density factor parame-
ter (JDF) employ time-dependent congestion measures in
their decoding procedures. The four algorithms are em-
pirically tested on a grid network and compared based
on solution quality, convergence speed, and central pro-
cessing unit (CPU) time. GA3 with JDF of 0.6 appears
best on the three criteria. On the Sioux Falls network,
GA3 with JDF of 0.7 performs best. The GA with the ap-
propriate inclusion of problem-specific knowledge and
parameter calibration indeed provides excellent results
when compared with the simple GA.

1 INTRODUCTION

Nowadays, many metropolitan areas have adopted var-
ious traffic management techniques (Adeli and Samant,

∗
To whom correspondence should be addressed. E-mail:

ampol.kar@kmutt.ac.th.

2000; Samant and Adeli, 2000, 2001; Karim and Adeli,
2002a,b, 2003a,b,c; Ghosh-Dastidar and Adeli, 2003;
Adeli and Jiang, 2003; Jiang and Adeli, 2004a,b, 2005;
Liu and Danczyk, 2009; Hamad et al., 2009; Mirchan-
dani et al., 2010; Ng et al., 2010; Sun and Kondyli,
2010; Ye and Zhang, 2010) to maintain an efficient
flow of traffic. Capacity reversibility strategy (a.k.a.
contraflow) is a traffic management method, which
essentially accommodates the unbalanced traffic flows
between two driving directions on a congested roadway
section during daily peak periods (Tuydes, 2005). Over
the past years, the literature on contraflow emergency
evacuation has considerably increased, especially in the
United States, due to natural and man-made disasters.
Tuydes (2005), Shen et al. (2007), Kalafatas and Peeta
(2009), and Xie et al. (2010) provided comprehensive
reviews on this topic. Because the contraflow strat-
egy becomes more widely accepted mainly for the
emergency evacuation, the previously described imple-
mentation issues on costs, safety, and control should
be resolved. Thus, the contraflow for daily traffic man-
agement may be reconsidered as a workable option,
especially for the urban cities with available contraflow
emergency evacuation plans. The practicality assump-
tions are made in this article, including acceptable cost,
viable safety policy, sufficient manpower, signage, and
potential of blockage actions, which are required to
divide a multilane roadway segment.

This article proposes a time-varying lane-based ca-
pacity reversibility (TVLCR) model based on the

C© 2011 Computer-Aided Civil and Infrastructure Engineering.
DOI: 10.1111/j.1467-8667.2011.00722.x 52
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user-optimal dynamic traffic assignment (UODTA) for
peak-period traffic management on a daily basis. The
model embeds a traffic flow theoretical model, namely,
the cell transmission model (CTM, Daganzo, 1994) that
can capture traffic realisms such as shockwaves and
spillovers. It is noted that the CTM-based formula-
tions for traffic network design problem can be found
in Karoonsoontawong and Waller (2005, 2006, 2007,
2010), Kalafatas and Peeta (2009), and Ukkusuri and
Waller (2007). Because the proposed model is Non-
deterministic Polynomial-time hard (NP-hard), a global
optimization method that employs the simulation-based
UODTA is suitable for this problem because it can
overcome the local-optimum issue. A simple genetic al-
gorithm (GA) and three variations of problem-specific
knowledge-based GAs are proposed, and the perfor-
mances of these GA algorithms are compared on a test
problem. Then, the best performing algorithm and the
simple GA are applied to a larger size problem.

2 LITERATURE REVIEW

Due to the space limitation, only the most rele-
vant literature review is described here. The pro-
posed formulation is developed on the basis of the
works by Tuydes (2005) and Tuydes and Ziliaskopou-
los (2004, 2006). Tuydes and Ziliaskopoulos (2004) for-
mulated the system-optimal dynamic traffic assignment
(SODTA)-based capacity reversibility problem as a lin-
ear program (denoted by SODTA-CR), which prop-
agates traffic based on the CTM to better represent
vehicle-level movements, to capture spatiotemporal
changes in disaster conditions, and to enable op-
timal capacity reversibility calculation. SODTA-CR
has a major drawback on the continuous capac-
ity redistribution variables that allow an unrealistic
fraction-of-lane solution. Tuydes (2005) proposed three
extensions of SODTA-CR: lane-based capacity re-
versibility (SODTA-LCR), total-or-nothing capacity
reversibility (SODTA-TCR), and budgeted capacity
reversibility (SODTA-BCR). SODTA-LCR addresses
the drawback of SODTA-CR by using integer redis-
tribution variables (i.e., lane-based reversibility). The
deficiencies of lane-based capacity-reversibility models
(including our proposed formulation) are on the cost
of the street divisions and the risk in assigning contra-
dicting flows on the same highway. The SODTA-TCR
was developed to address these criticisms by allowing ei-
ther whole road segment reversibility or none. SODTA-
TCR is a restricted version of the SODTA-LCR,
which in turn is a restricted version of SODTA-CR.
SODTA-BCR accounts for the limited resources for the
operation and construction of the contraflow inter-

change segments such as the required number of police
patrol cars to block the intersections at the beginning,
end, and along the reversed segments.

SODTA-CR, SODTA-LCR, SODTA-TCR, and
SODTA-BCR have two major assumptions. First, these
models assume that drivers fully follow the central in-
structions on the system-optimal evacuation paths as-
signed to different drivers. Thus, these models can
be single-level because the drivers and the evacuation
manager share the same objective in minimizing to-
tal system travel time (TSTT). Second, the capacity
reversibility is unchanged (static) over the simulation
period, so the models cannot determine the optimal
starting time and duration of reversibility. Tuydes and
Ziliaskopoulos (2006) pointed out that a deficiency of
the SODTA-based formulations is high computational
cost due to their analytical nature, and proposed a tabu-
based heuristic to address this deficiency. Because prob-
lems of this type have complex solution space, a major-
ity of the research efforts have focused on tackling this
stream of problems using meta-heuristics (e.g., Sarma
and Adeli, 2001; Fan and Machemehl, 2008; Ng et al.,
2009; Unnikrishnan et al., 2009; Zeferino et al., 2009;
Kang et al., 2009; Yang et al., 2007; Kaveh and Sho-
jaee, 2007; Paya et al., 2008; Mohan Rao and Shyju,
2010). Among various streams of meta-heuristics, the
GA has been widely used, and it is recognized as an ef-
fective search procedure for these types of difficult op-
timization problems. Since 1993, GAs have been used
in various civil engineering fields, such as construction
engineering (e.g., Al-Bazi and Dawood, 2010; Cheng
and Yan, 2009), transportation engineering (e.g., Vla-
hogianni et al., 2007; Teklu et al., 2007; Lee and Wei,
2010), highway engineering (e.g., Kang et al., 2009), and
design optimization (e.g., Adeli and Cheng, 1994a,b;
Hung and Adeli, 1994; Adeli and Kumar, 1995a,b;
Sarma and Adeli, 2000a,b, 2001, 2002; Kim and Adeli,
2001; Mathakari et al., 2007; Dridi et al., 2008), struc-
tural control (e.g., Jiang and Adeli, 2008), and envi-
ronmental pollution (e.g., Martı́nez-Ballesteros et al.,
2010).

Xie et al. (2010) proposed a bi-level model for the
combined lane-based capacity reversibility and cross-
ing elimination problem. The model is bi-level to cap-
ture different objectives between the roadway manager
(minimize TSTT) and the drivers (minimize individual
travel time). In other words, Xie et al. (2010) assume
drivers do not receive instructions from the roadway
manager, and behave in a user-optimal manner. Xie
et al. (2010) also assume static reversibility, and devel-
oped a Lagrangian relaxation-based tabu search.

Our proposed model is bi-level and allows lane-based
capacity reversibility, similar to Xie et al. (2010). How-
ever, our model allows time-varying reversibility with
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different reversibility durations for various candidate
link pairs, so that the optimal starting times and the
optimal reversibility durations for candidate link pairs
can be determined for peak-period traffic management
on a daily basis. In our solution method, we employ the
dual analysis results from Tuydes and Ziliaskopoulos
(2004) in developing decoding procedures for the pro-
posed GAs.

3 PROPOSED FORMULATION

Tuydes (2005) formulated the SODTA-based static
lane-based capacity reversibility problem as a mixed
integer program (SODTA-LCR). We extend SODTA-
LCR to become a mixed-zero-one continuous bi-
level program (BLP) for the combined UODTA and
TVLCR problem. The proposed model is denoted
by BLP-TVLCR. The upper-level problem minimizes
TSTT subject to the TVLCR constraints and the
UODTA (the nested program). It is noted that differ-
ent specifications of UODTA produce slightly different
models; that is, using the linear programming formula-
tion of Ukkusuri (2002) creates a mixed 0–1 continu-
ous linear bi-level program, but is only suitable for a
single destination. On the other hand, using the Visual
Interactive System for Transport Algorithms (VISTA)
simulator allows solution with multiple destinations, but
destroys the linear structure of the lower level.

This formulation allows us to devise an approxima-
tion algorithm to estimate the dual variables of the
lower-level linear constraints with respect to the upper-
level linear objective function in our proposed solu-
tion method. It is assumed that possible lane rever-
sal strategies for all candidate link pairs are limitedly
enumerated, including starting times, reversibility dura-
tions, and numbers of reversed lanes. The lane-reversal
starting time for each candidate link pair is within its
allowable range, and the lane-reversal duration for each
candidate link pair is within a common feasible range.
We do not allow the total link reversibility by setting
the minimum number of lanes for each direction to
one, so that the network connectivity problem is not re-
sulted. Over the simulation period, the lane reversal is
allowed at most once for each candidate link pair. Two-
way streets are considered in the formulation. However,
for a one-way street, an artificial link with zero capac-
ity can be added in the opposite direction to represent
the reversibility potential (Tuydes, 2005). In this way,
the total network capacity remains the same although
the number of links in the augmented network may be
increased. The proposed formulation (BLP-TVLCR) is
shown below and the notations are given in Table 1.

min
z,p,v

∑
(i, j)∈ES

∑
t∈T

(
t · yt

i j

)
(1)

subject to
∑

φ∈�ξ−ξ∗

vξ−ξ∗,φ = 1 ∀ξ − ξ ∗ ∈ � (2)

pt
i−i∗ =

∑
φ∈�ξ−ξ∗ (t)

vξ−ξ∗,φ ∀i − i∗ ∈ �(ξ − ξ ∗),

∀t ∈ Tξ−ξ∗ ,∀ξ − ξ ∗ ∈ � (3)

∑
φ∈�ξ−ξ∗ (t)

vξ−ξ∗,φ =
∑

k∈�ξ−ξ∗

zt
ξ−ξ∗,k∀t ∈ Tξ−ξ∗ ,∀ξ − ξ ∗ ∈ �

(4)

vξ−ξ∗,φ ∈ {0, 1} ∀φ ∈ �ξ−ξ∗ ,∀ξ − ξ ∗ ∈ � (5)

zt
ξ−ξ∗,k ∈ {0, 1} ∀ k ∈ �ξ−ξ∗ ,∀ t ∈ Tξ−ξ∗ ,∀ ξ − ξ ∗ ∈ �

(6)

r t
i =

∑
k∈�ξ−ξ∗

(
k · zt

ξ−ξ∗,k
)

lξ−ξ∗ ; r t
i∗ = 1 − r t

i ∀ i − i∗ ∈�(ξ − ξ ∗),

∀ξ − ξ ∗ ∈ �,∀t ∈ T,
(7)

pt
i−i∗ = 0 ∀ i − i∗ ∈ �,∀ t ∈ T\Ti−i∗ (8)

zt
ξ−ξ∗,k = 0 ∀ k ∈ �ξ−ξ∗ ,∀ ξ − ξ ∗ ∈ �,∀ t ∈ T\Tξ−ξ∗

(9)

(x, y) ∈ UODTA( p, r) (10)

where
x = [

xt
i ∀ i ∈ C, t ∈ T

]
; y = [

yt
i j∀ (i, j) ∈ E, t ∈ T

]
;

p = [
pt

i−i∗∀i − i∗ ∈ �, t ∈ T
]
;

r = [
r t

i ; r t
i∗∀i − i∗ ∈ �, t ∈ T

]
.

The candidate roadway sections for capacity re-
versibility are contained in the set �. A candidate
link pair ξ − ξ ∗ has the total number of lanes of
lξ−ξ∗ , and the link pair ξ − ξ ∗ is broken down into
cell pairs contained in the set �(ξ − ξ ∗) according
to the CTM. The set of feasible numbers of lanes in
the redesigned network is �ξ−ξ∗ = {1, . . . , Iξ−ξ∗ − 1}
with the assumption that total capacity reversibility
is prohibited. The feasible capacity reversibility time
periods for link pair ξ − ξ ∗ are contained in the set
�ξ−ξ∗ . The set �ξ−ξ∗(t) contains the time period
φ ∈ �ξ−ξ∗ that includes time interval t. The leader’s
objective function (Equation (1)) minimizes TSTT
subject to a set of time-varying capacity reversibility
constraints (Equations (2)–(9)) and the UODTA
program (Equation (10)). TSTT basically equals the
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Table 1
Notations for proposed mathematical formulation

Sets

�= set of candidate link pairs (ξ − ξ ∗ ∈ �)
T = set of discrete time intervals

E; Es = set of cell connectors; set of sink cell connectors
F S(i)= set of cell connectors emanating from cell i
RS(i)= set of cell connectors emanating to cell i

� = set of candidate cell pairs for lane reversal implementation; � ⊆ C
�(ξ − ξ ∗)= set of candidate cell pairs corresponding to link pair ξ − ξ ∗;

(Based on CTM, a link pair ξ − ξ ∗ is broken down into several cell pairs i − i∗ ∈ �(ξ − ξ ∗))
�ξ−ξ∗ = set of feasible numbers of lanes corresponding to link pair ξ − ξ ∗ in the redesigned network;

�ξ−ξ∗ = {1, . . . , lξ−ξ∗ − 1}
�ξ−ξ∗ = set of feasible reversal time periods for link pair ξ − ξ ∗ (Note: �ξ−ξ∗ must be enumerated based on allowable

ranges of reversibility starting time and reversibility duration) (see Table 2 for an example)
�ξ−ξ∗ (t)= set of feasible reversal time periods covering time interval t for link pair ξ − ξ ∗

Tξ−ξ∗ = set of time intervals composing the time window for all feasible lane-reversal time periods for link pair ξ − ξ ∗

(Note: Tξ−ξ∗ ⊂ T) (see Table 2 for an example)
Ti−i∗ = set of time intervals composing the time window for all feasible lane-reversal time periods for cell pair

i − i∗ (Note : Ti−i∗ = Tξ−ξ∗ ∀i − i∗ ∈ �(ξ − ξ ∗))

Parameters

δt
i = ratio of link free flow speed and backward propagation speed for cell i and time interval t

Nt
i = maximum number of vehicles in cell i at time interval t

Nt
i−i∗ = maximum number of vehicles in cell pair i − i∗ at time interval t (Nt

i−i∗ = Nt
i + Nt

i∗ )
Qt

i = maximum number of vehicles that can flow into or out of cell i during time interval t
Qt

i−i∗ = max number of vehicles that can flow into or out of cell pair i − i∗ during time interval t; (Qt
i−i∗ = Qt

i + Qt
i∗ )

lξ−ξ∗ = total number of lanes corresponding to link pair ξ − ξ ∗

Variables

xt
i = number of vehicles in cell i at time interval t

yt
i j = number of vehicles moving from cell i to cell j at time interval t

zt
ξ−ξ∗,k = 1 if number of lanes corresponding to link ξ is equal to k and number of lanes corresponding to link ξ ∗ is equal to

lξ−ξ∗ − k in time interval t in the redesigned network; equal to 0 otherwise. ∀k ∈ �ξ−ξ∗ = {1, . . . , lξ−ξ∗ − 1}
pt

i−i∗ = 1 if the lane reversal is implemented in time interval t on cell pair i − i∗; 0 otherwise
vξ−ξ∗,φ = 1 if the lane-reversal time period φ for link pair ξ − ξ ∗ is selected; 0 otherwise. ∀φ ∈ �ξ−ξ∗

r t
i = ratio of redesigned capacity of cell i to the cell pair capacity in time interval t

difference between the summation of arrival times at
the sink cell (

∑
(i, j)∈ES

∑
t∈T (t · yt

i j )) and the summation
of departure times from the source cells (a constant due
to the fixed departure time OD demands assumption,
so it can be dropped from the model without affecting

the optimal solution). Equation (2) enforces that
only one capacity reversibility time period is chosen
for each candidate link pair; that is, vξ−ξ∗,φ′ = 1 and
vξ−ξ∗,φ = 0 ∀φ 	= φ′, φ ∈ �ξ−ξ∗ . Equation (3) deter-
mines the variable pt

i−i∗ , where pt
i−i∗ = 1 if the cell pair

Table 2
Illustration of sets �ξ−ξ∗ , �ξ−ξ∗ (t), and Tξ−ξ∗

t1 t2 t3 t4 t5 Link reversal
time period

1

2

3

4

Assume allowable range of reversibility starting time is [t2,t3] and
allowable range of reversibility duration is [1,2 time intervals].
�ξ−ξ∗ = {φ1, φ2, φ3, φ4}; Tξ−ξ∗ = {t2, t3, t4}
�ξ−ξ∗ (t1) = �ξ−ξ∗ (t5) = {}; �ξ−ξ∗ (t2) = {φ1, φ2};
�ξ−ξ∗ (t3) = {φ2, φ3, φ4}; �ξ−ξ∗ (t4) = {φ4}
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i − i∗ at time interval t adopts a capacity-reversibility
strategy, and pt

i−i∗ = 0 otherwise. Equation (3) guar-
antees that the cell pairs, belonging to the same link
pair, adopt the same capacity reversibility time period.
Equation (4) enforces zt

ξ−ξ∗,k ∀k ∈ �ξ−ξ∗ to be 0 if no
capacity reversibility strategy is adopted at time inter-
val t on link pair ξ − ξ ∗ (i.e.,

∑
φ∈�ξ−ξ∗ (t) vξ−ξ∗,φ = 0).

If a capacity reversibility strategy is adopted at time
interval t (i.e.,

∑
φ∈�ξ−ξ∗ (t) vξ−ξ∗,φ = 1), then Equa-

tion (4) redesigns the numbers of lanes for link
pair ξ − ξ ∗ at time interval t (e.g., zt

ξ−ξ∗,k′ = 1 and
zt
ξ−ξ∗,k = 0 ∀k 	= k′, k ∈ �ξ−ξ∗). Apparently, the original

numbers of lanes for each link pair can be chosen; then,
it implies that the formulation allows a do-nothing op-
tion on each candidate link pair. Equations (5) and (6)
enforce vξ−ξ∗,φ and zt

ξ−ξ∗,k to be binary variables. Equa-
tion (7) determines the ratio of the redesigned capacity
of each cell pair i − i∗. Equations (8) and (9) enforce the
variables pt

i−i∗ and zt
ξ−ξ∗,k to be 0 for the time intervals

outside the capacity-reversal time window Tξ−ξ∗ , where
Tξ−ξ∗ contains possible time intervals to adopt capacity
reversibility.

The nested UODTA linear program (10) makes all
vehicles behave in the user-optimal manner; that is,
UODTA returns user-optimal flows (x and y) given in-
put parameters p and r . The constraints include the cell
mass conservation. The traffic flow between two cells is
constrained by the number of vehicles occupying the up-
stream cell, the remaining capacity of the downstream
cell, and the maximum flow that can get out of the up-
stream cell and into the downstream cell. The specific
modifications to UODTA are on the following three
constraint sets:∑

( j,i)∈RS(i)

yt
ji ≤ δt

i

(
r t

i Nt
i−i∗ + (

1−pt
i−i∗

)
Nt

i − xt
i

)

∀i ∈ �, t ∈ T (11)

∑
( j,i)∈RS(i)

yt
ji ≤ r t

i Qt
i−i∗ + (1−pt

i−i∗)Qt
i ∀i ∈ �, t ∈ T

(12)

∑
(i, j)∈F S(i)

yt
i j ≤ r t

i Qt
i−i∗ + (1−pt

i−i∗)Qt
i ∀i ∈ �, t ∈ T

(13)

Equations (11–13) concern candidate cell pairs. For
candidate cell pair i – i∗, if the time interval t is contained
in T\Ti−i∗ , then pt

i−i∗ = 0 (see Equation (8)), r t
i = 0 (see

Equations (7) and (9)), and Equations (11–13) result in
the constraints with original values of Nt

i and Qt
i . If the

time interval t is contained in Ti−i∗ , then the upper-level
problem determines whether pt

i−i∗ = 1 or pt
i−i∗ = 0. If

pt
i−i∗ = 1, then Equations (3), (4), and (7) ensure that

r t
i > 0, and Equations (11–13) result in the constraints

with the associated redesigned values of Nt
i and Qt

i . If
pt

i−i∗ = 0, then Equations (3), (4), and (7) ensure that
r t

i = 0, and Equations (11–13) result in the constraints
with original values of Nt

i and Qt
i .

4 SOLUTION METHOD

A simulation-based heuristic approach is proposed in
this article. The lower-level program is replaced by the
simulation-based UODTA (Ziliaskopoulos and Waller,
2000), which uses a mesoscopic simulator based on
an extension of CTM, to propagate traffic and sat-
isfy capacity constraints as well as the first-in first-out
traffic property. The upper-level program (Equations
(1–9)) can be substituted by a metaheuristic algorithm.
In this article, the GA is adopted due to its evident
efficiency and effectiveness in literature (e.g., Lee and
Wei, 2010; Adeli and Cheng, 1994a,b; Sarma and Adeli,
2001; Mathakari et al., 2007; Teklu et al., 2007; Ng et
al., 2009; Unnikrishnan et al., 2009; Kang et al., 2009).
Because the proposed formulation is linear bi-level, the
dual variables of the lower-level constraints (Equations
(11–13)) with respect to the upper-level objective may
be approximated in a similar manner as Lin et al. (2008).
This inspires us to incorporate the approximated dual
variables in the decoding procedure of GA. Three de-
coding procedures are developed with the increasing
degree of randomness, yielding three problem-specific
GAs. These are tested against each other and the simple
GA in the next section. This study employs a C source
code named GENESIS Version 5.0 (Grefenstette, 1990)
for the GA implementation with major modifications
that will be described in the next subsections.

4.1 Decision variables and solution representations

There are three sets of decision variables for each
candidate link pair ξ − ξ ∗ in the proposed GA: re-
versibility starting times (STξ−ξ∗), reversibility du-
rations (RDξ−ξ∗), and the modified numbers of
lanes in both driving directions after reversibility
(MNLξ and MNLξ∗). Note that the reversibility ending
times (ETξ−ξ∗) is the summation of STξ−ξ∗ and RDξ−ξ∗ .
Based on our initial experimental results, the direct use
of these variables regarding the capacity reversibility
time period and the redesigned numbers of lanes for
all candidate link pairs indeed did not yield a signifi-
cant improvement in TSTT. This caused us to introduce
randomness to the incorporation of problem-specific
knowledge. An additional decision variable for each
candidate link pair ξ − ξ ∗ is created: the reversibility
indicator variable (RIVξ−ξ∗). The indicator variable
is equal to 1 if the reversibility is allowed for the
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candidate link pair, and equal to 0 if the reversibility
is prohibited. The reversibility indicator variable allows
randomness to play a role on the decision of capacity re-
versibility adoption for each candidate link pair. With-
out this variable, it is likely that the population would
be composed of similar chromosomes, and thus prema-
ture convergence of GA would result. The reversibility
indicator variable is employed to prevent the premature
convergence of GA.

The appropriate representation for RIVξ−ξ∗ is bi-
nary; those for STξ−ξ∗ and RDξ−ξ∗ are real-valued; and
those for MNLξ and MNLξ∗ are integers. That is, the
genetic structures are the vectors of mixed integers.
Because STξ−ξ∗ and RDξ−ξ∗ have to be within their
allowable ranges [lbST, ubST] and [lbRD, ubRD], respec-
tively; thus, the fractional variables (ranged between 0
and 1) can be employed instead of the real-valued vari-
ables. Also, RIVξ−ξ∗ , MNLξ , and MNLξ∗ can be deter-
mined by fractional variables. The fractional variables
can be translated into a binary string. Thus, the vec-
tors of mixed integers can be encoded into binary string
structures.

4.2 Computer programming implementation for the
TVLCR

In our implementation, duplicated links corresponding
to candidate links are added to the network, and time-
based capacity factors associated with these candidate
and duplicated links are employed to represent various
capacity reversibility strategies. For example, a candi-
date link pair is link (A,B) and link (B,A) (i.e., from
nodes A to B and from nodes B to A, respectively). The
duplicated links (A′,B′) and (B′,A′) are added to the
network such that (A′,B′) is a copy of (A,B) and (B′,A′)
is a copy of (B,A). To incorporate different TVLCR
strategies, a set of time-based capacity factors associ-
ated with each candidate link is employed. A capac-
ity factor, which is ranged between 0 and 1, indicates
the proportion of the original link capacity for a candi-
date link during a time period. To illustrate, links (A,B)
and (B,A) represent two-lane roadways, and a TVLCR
strategy states that the link (A,B) should have three
lanes during the second hour of the three-hour simu-
lation period (in other words, a lane should be reversed
from the second direction to the first direction during
the second hour). Then, from 0 to 3,600 seconds and
from 7,201 to 10,800 seconds (i.e., during the first hour
and the third hour), the capacity factors of the original
links (A,B) and (B,A) are equal to 1, and the capacity
factors of the duplicated links (A′,B′) and (B′,A′) are
equal to 0. This implies no capacity reversibility in the
first hour and the third hour. From 3,601 to 7,200 sec-
onds (i.e., during the second hour), the capacity factors

of (A,B) and (A′,B′) are equal to respective 1 and 0.5,
and those of (B,A) and (B′,A′) are equal to respective
0.5 and 0. This implies three lanes in the first direction
(i.e., an original two-lane roadway and a lane reversed
from the coupled link) and one lane in the second di-
rection (i.e., an original two-lane roadway becomes a
one-lane road). Formally, the capacity factors of link
pair ξ − ξ ∗ can be determined from the subprocedure
below.

Subprocedure DetermineCF (ξ − ξ ∗)
CFξ (t) = 1, CFξ∗(t) = 1, CFξ ′(t) = 0, CFξ∗′(t) = 0;

∀t ∈ [0, ST) ∪ (ET, SimDuration]
For t ∈ [ST, ET]

if MNLξ < ONLξ

CFξ (t) = MNLξ /ONLξ ; CFξ ′(t) = 0; CFξ∗(t) = 1;
CFξ∗′ = (MNLξ∗ − ONLξ∗)/ONLξ∗

else CFξ (t) = 1; CFξ ′(t) = (MNLξ − ONLξ )/ONLξ ;
CFξ∗(t) = MNLξ∗/ONLξ∗ ; CFξ∗′(t) = 0

where

CF ξ (t) and CF ξ∗(t) = capacity factor for the original
links ξ and ξ ∗ at time t;

CF ξ ′(t) and CF ξ∗′(t) = capacity factor for the dupli-
cated links ξ ′ and ξ ∗′ at time t;

MNLξ and MNLξ∗ = modified number of lanes after
reversibility for links ξ and ξ ∗

ONLξ and ONLξ∗ = original number of lanes of links
ξ and ξ ∗

4.3 Problem-specific knowledge for development of
GA2, GA3, and GA4

In the development of GA2, GA3, and GA4, the
problem-specific knowledge of BLP-TVLCR is heuristi-
cally taken from the dual variable analysis of the analyt-
ical SODTA-CR in Tuydes (2005), which was employed
in the tabu-based heuristic approach for the evacuation
contraflow problem (Tuydes and Ziliaskopoulos, 2006).
The relationship between the dual variable of the lower-
level program and the upper-level objective in BLP-
TVLCR is not known, but it may be approximated by
the analysis of the single-level system-optimal counter-
part. This approximation approach is in a similar man-
ner to Lin et al. (2008). The dual variable analysis of the
SODTA-CR is briefly described here. Over the analysis
period, the total marginal cost of reversing one more
unit of capacity in the direction of one cell will have
the same marginal cost as that of reversing in the di-
rection of the coupled cell (Tuydes and Ziliaskopoulos,
2004). The total marginal costs are the dual variables
associated with the constraints Equations (11–13) in the
proposed model. These dual variables are nonzero only
when the corresponding constraints are binding (i.e., the
storage or flow capacities are fully used). The marginal
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costs of reversing a unit capacity in a link can be
approximated by a congestion measure: the total num-
ber of times over the analysis period that link capacities
are used at the maximum levels.

In our work, the modified congestion measure is
determined as follows. To account for time-varying
reversibility, the simulation period (SimDuration) is
divided into many time slices where the duration of
time slice is called SecPerSlice. The congestion measure
of link ξ in time slice j is a binary variable RCξ j , which
equals to 1 if it is congested, and 0 otherwise. In time
slice j, the traffic count per lane on candidate link
ξ is calculated from the simulation-based UODTA
flows: link count per laneξ j = link countξ j +link countξ ′ j

(CFξ ( j)+CFξ ′ ( j))·ONLξ
,

where link countξ j and link countξ ′j = traffic counts
on original link ξ and duplicated link ξ ′ in time slice
j; CFξ ( j) and CFξ ′( j) = link capacity factors of link ξ

and ξ ′ during time interval j.
If the traffic count per lane on link ξ exceeds the fac-

tored jam density per lane during a time slice j, RCξ j

is set to 1, indicating the congestion on this link at this
time slice j. The jam density per lane is calculated from
the link length divided by the vehicle length, and the
factored jam density per lane is equal to the product of
common jam-density factor (JDF, an algorithm param-
eter) and the jam density per lane. Note that the fac-
tored jam density per lane is employed as a congestion
criterion on links, and this is not used in the proposed
math formulation. In our experiment, we use the vehi-
cle length of 20 feet, which is determined from the sum
of the default vehicle length and distance headway. The
JDF of 0.5 is initially employed in the experiment as we
assume that at 50% of the jam density, the traffic flow
reaches capacity.

For each candidate link pair, the difference in the
congestion measures over each time slice can be calcu-
lated, and this difference indicates the driving direction
that should be assigned more lanes reversed from its
coupled link during this time slice. For candidate link
pair (ξ, ξ ∗), if the direction of link ξ is the first direction
and that of link ξ ∗ is the second direction, then we define
	RCξ−ξ∗, j = RCξ j − RCξ∗ j . Then, 	RCξ−ξ∗, j equals to
1 (i.e., RCξ j = 1 and RCξ∗ j = 0), implying the link ξ

should receive more lane(s) reversed from the link ξ ∗

during time slice j. 	RCξ−ξ∗, j equals to –1 (i.e., RCξ j = 0
and RCξ∗ j = 1) implies the opposite. 	RCξ−ξ∗, j equals
to 0 (i.e., RCξ j = 0 and RCξ∗ j = 0; or RCξ j = 1 and
RCξ∗ j = 1), implying no reversibility should be adopted
in time slice j. FTSξ−ξ∗ is the first time slice j with
the nonzero value of 	RCξ−ξ∗, j and within the range
of allowable starting time [lbST, ubST]. FTSξ−ξ∗ is set
to –1 if there is not such time slice. If FTSξ−ξ∗ is
not equal to –1, 	RCξ−ξ∗ stores the nonzero value of

	RCξ−ξ∗, j LTSξ−ξ∗ is the last successive time slice that
has this same congestion-measure difference value; that
is, the time slices j + 1, j + 2, . . . , LTSξ−ξ∗ have the
same congestion-measure difference value (	RCξ−ξ∗)
value as the time slice j (	RCξ−ξ∗ = 	RCξ−ξ∗, j ).

4.4 Encoding procedure and decoding procedure

The lower bound, upper bound, and required preci-
sion of each decision variable must be specified. A de-
cision variable i (gene i) can be replaced by a frac-
tional variable fi . The decision variables share the
same lower bound ( f min

i = 0) and upper bound ( f max
i =

1). That is, the TVLCR constraints are replaced by
boundary constraints (because a decision variable is
determined by the corresponding fractional vari-
able and feasible range). The fractional variables
have the same required precision (prec after deci-
mal point). The required bits (m) for each decision
variable is determined from (Goldberg, 1989). 2m−1 <

(( f max
i − f min

i ) · 10prec + 1) ≤ 2m. We consider the re-
quired precision of 2 is sufficient (m = 7). The total
bits required to represent a solution (i.e., the length of
a chromosome) are Length = m · Nvar·|�|, where Nvar

is the number of variables per candidate link pair; |�|
the number of candidate link pairs. Nvar for GA1, GA2,
GA3, and GA4 are respective 4, 2, 2, and 3. |�| for the
grid and Sioux Falls networks are 12 and 14. Further,
the GA implementation translates the binary structures
into the packed bit arrays based on the octal number
representation to maximize both space and time effi-
ciency in manipulating structures (Grefenstette, 1990).
Figure 1 shows binary string structures as well as asso-
ciated decoded variables employed in four GA varia-
tions. In GA1, GA2, GA3, and GA4, we employ respec-
tive 4, 2, 2, and 3 fractional variables per candidate link
pair; for example, the fractional variables fξ−ξ∗,1, fξ−ξ∗,2,
fξ−ξ∗,3, fξ−ξ∗,4 are used to determine the decision vari-
ables RIVξ−ξ∗ ; STξ−ξ∗ ; RDξ−ξ∗ ; MNLξ ; and MNLξ∗ in
GA1.

The decoding procedure translates a binary string
into a set of real numbers (reali) corresponding to a
set of fractional variables (fi); then, fi is determined
from fi = reali

2m−1 ∀i = 1, 2, . . . , Nvar · |�|; where reali is a
real number corresponding to the binary string associ-
ated with the ith decision variable. For BLP-TVLCR,
there are only two constraint sets: TVLCR constraint
and UODTA conditions. Recall that the former con-
straint set is replaced by the boundary constraints. Be-
cause f min

i = 0 and f max
i = 1, this decoding procedure

always satisfies the boundary constraints. Also, because
the simulation-based UODTA is employed for func-
tional evaluation, the UODTA conditions are always
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Fig. 1. Illustration of binary string structures in proposed GA variations.

satisfied. Thus, the constraint handling mostly based on
the concept of penalty functions that penalize infeasible
solutions, is not required. The decoding procedures for
GA1 are shown below.

Decoding Procedure for Candidate Link Pair ξ − ξ ∗ in
GA1

RIVξ−ξ∗ = 0 if fξ−ξ∗,1 ∈ [0, 0.5) and 1 if fξ−ξ∗,1 ∈
[0.5, 1]
If RIVξ−ξ∗ = 1

STξ−ξ∗ = lbST + (ubST − lbST) · fξ−ξ∗,2; RDξ−ξ∗ = lbRD

+ (ubRD − lbRD) · fξ−ξ∗,3
ETξ−ξ∗ = STξ−ξ∗ + RDξ−ξ∗ ; MNLξ = 1 + �(ONLξ+

ONLξ∗ − 2 + 0.999999) · fξ−ξ∗,4

MNLξ∗ = ONLξ + ONLξ∗ − MNLξ

Call subprocedure DetermineCF(ξ − ξ ∗)
Else if RIVξ−ξ∗ = 0

RIVξ−ξ∗ = −1; STξ−ξ∗ = 0; RDξ−ξ∗ = SimDuration;
ETξ−ξ∗ = STξ−ξ∗ + RDξ−ξ∗

MNLξ = ONLξ ; MNLξ∗ = ONLξ∗

CFξ (t) = 1; CFξ∗(t) = 1; CFξ ′(t) = 0; CFξ∗′(t) = 0
∀t ∈ [0, SimDuration]

The decoding procedures in GA2, GA3, and GA4
are developed based on the described problem-
specific knowledge (specifically, FTSξ−ξ∗ , 	RCξ−ξ∗ , and
LTSξ−ξ∗). Apparently, these variables indicate the time
period that the unbalanced traffic densities takes place
and the driving direction with higher traffic density.
Based on our initial experimental results, the direct use
of these variables regarding the capacity reversibility
time period and the redesigned numbers of lanes did
not yield a significant improvement in TSTT. Thus, we
devise three decoding algorithms for GA that employ
some variables from FTSξ−ξ∗ , 	RCξ−ξ∗ , and LTSξ−ξ∗ to-
gether with the genes to determine the reversibility time
period and the redesigned numbers of lanes. These are
named GA2, GA3, and GA4 with the increasing degree
of randomness.

GA2, GA3, and GA4 determines the variable
RIVξ−ξ∗ from the corresponding gene in the chromo-
some for link pair ξ − ξ ∗. If FTSξ−ξ∗ is not equal to –1
(i.e., this link pair have unbalanced traffic densities,
and may have capacity reversibility), then the variable
RIVξ−ξ∗ is unchanged; otherwise, RIVξ−ξ∗ is set to 0.

GA2 determines the starting reversal time from FTSξ−ξ∗

GA2 employs 	RCξ−ξ∗ to indicate the driving direc-
tion to be improved; then, it deterministically adds a
lane in that direction and decreases a lane in the op-
posite direction. GA2 allows the corresponding gene in
the chromosome to determine the variable RDξ−ξ∗ (i.e.,
randomness plays a role here). GA3 is similar to GA2
except two points. First, the variable RDξ−ξ∗ is deter-
mined from LTSξ−ξ∗ , FTSξ−ξ∗ , and its lower and upper
limits. Second, the redesigned numbers of lanes are de-
termined from the corresponding genes in the chromo-
some for link pair ξ − ξ ∗. GA4 is the combination of
GA2 and GA3. GA4 determines the variable RDξ−ξ∗ in
the same way as GA2, but determines the redesigned
numbers of lanes in the same way as GA3. Formally,
the decoding procedures of GA2, GA3, and GA4 are
shown below.

Decoding Procedure for Candidate Link Pair ξ − ξ∗ in
GA2, GA3 and GA4

RIVξ−ξ∗ = 0 if fξ−ξ∗,1 ∈ [0, 0.5) and 1 if fξ−ξ∗,1 ∈
[0.5, 1]
If FTSξ−ξ∗ = −1 (i.e., the evidence shows that re-

versibility is not necessary), set RIVξ−ξ∗ = 0.
If RIVξ−ξ∗ = 1

STξ−ξ∗ = FTSξ−ξ∗ · SecPerSlice;

RDξ−ξ∗ =

⎧⎪⎪⎨
⎪⎪⎩

lbRD + (ubRD − lbRD) · fξ−ξ∗,2 for GA2
max(lbRD, min(ubRD, (LTSξ−ξ∗ − FTSξ−ξ∗

+1) · SecPerSlice)) for GA3
lbRD + (ubRD − lbRD) · fξ−ξ∗,3 for GA4

ETξ−ξ∗ = STξ−ξ∗ + RDξ−ξ∗

If 	RCξ−ξ∗ = 1,

MNLξ =

⎧⎪⎪⎨
⎪⎪⎩

min(MNLξ + 1, ONLξ + ONLξ∗ − 1)
for GA2

�( fξ−ξ∗,2 · (ONLξ + ONLξ∗ − 1 − MNLξ+
0.999999)
 + MNLξ for GA3 and GA4

MNLξ∗ = ONLξ + ONLξ∗ − MNLξ

Else if 	RCξ−ξ∗ = −1,

MNLξ∗ =

⎧⎪⎪⎨
⎪⎪⎩

min(MNLξ∗ + 1, ONLξ + ONLξ∗ − 1)
for GA2

� fξ−ξ∗,2 · (ONLξ∗ + ONLξ∗ − 1 − MNLξ∗+
0.999999)
 + MNLξ∗ for GA3 and GA4
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MNLξ = ONLξ + ONLξ∗ − MNLξ∗

Else if RIVξ−ξ∗ = 0, set RIVξ−ξ∗ , STξ−ξ∗ , RDξ−ξ∗ ,
ETξ−ξ∗ , MNLξ , MNLξ∗ to the incumbent.

Call subprocedure DetermineCF(ξ − ξ ∗)

4.5 Fitness evaluation

After converting the chromosomes to the vectors of de-
cision variables, the UODTA with the decoded TVLCR
strategy is solved by the simulation-based UODTA.
TSTT for each solution is used to calculate a fitness
measure. Because the objective of the problem mini-
mizes TSTT, the functional form shown in Step 2 is
adopted to ensure that the less TSTT corresponds to
the greater fitness value. TSTT is determined from the
UODTA flows. For GA2, GA3, and GA4, the con-
gestion measures (FTSξ−ξ∗ , 	RCξ−ξ∗ , and LTSξ−ξ∗) are
calculated from the UODTA flows. This study em-
ploys the UODTA module in the VISTA (Ziliaskopou-
los and Waller, 2000) to evaluate different TVLCR
strategies for larger-size problems. The UODTA mod-
ule in VISTA is a departure-time-based version of the
simulation-based UODTA approach using RouteSim
(Ziliaskopoulos and Lee, 1996), which is a mesoscopic
simulator based on an extension of CTM, to propa-
gate traffic and satisfy capacity constraints. The DTA
module iteratively employs the time-dependent shortest
path algorithm (Ziliaskopoulos and Mahmassani, 1994)
to generate vehicle paths, and the inner approximation
dynamic user equilibrium (IADUE) algorithm (Chang,
2004) for equilibration.

5 COMPUTATIONAL EXPERIENCE

We consider a grid network and the Sioux Falls net-
work. These test problems are first described. Then,
the performance comparisons of GA1, GA2, GA3, and
GA4 on the grid network are discussed. The sensitivity
analysis of JDF is performed. Subsequently, the iden-
tified best GA variation and the simple GA are ap-
plied to a Sioux Falls network. All experiments are per-
formed on a Linux machine with an Intel(R) 3.00 GHz
Xeon(TM) CPU and 32 GB memory, running under Fe-
dora Core 10.

5.1 Test problems

Figure 2 shows the grid network composed of 9 nodes,
24 links. All links are three-lane and 2-miles long with
the free flow speed of 49.5 miles per hour (mph) and
the capacity of 1,000 vehicles per hour per lane (vphpl).
The simulation period is 3 hours (6:00–9:00 AM). All
12 link pairs are candidates for TVLCR. We consider
20 O-D pairs (nodes 1, 3, 5, 7, and 9 are both sources

Fig. 2. Grid network (12 candidate link pairs).

and sinks). The O-D demands from node 5 to each of
the other four sinks are 500 vehicle trips. The O-D de-
mands from each of the other four sources to node 5 are
3,250 vehicle trips. The other O-D demands are 1,250
vehicle trips. Then, the total vehicle trips are 30,000.
The static demands are distributed over the first 12
10-minute time slices by the weights: 0.05, 0.05, 0.05,
0.1, 0.1, 0.15, 0.15, 0.1, 0.1, 0.05, 0.05, and 0.05, respec-
tively. Within each time slice, the demands are assumed
uniformly distributed. The allowable ranges of rever-
sal starting time and reversal duration are, respectively
[6:20 AM, 7:30 AM] and [30 minutes, 90 minutes]. The
TSTT of the original network is 2,035.12 hours.

Figure 3 shows a Sioux Falls network composed of
24 nodes and 76 arcs. Fourteen link pairs with dashed

Fig. 3. Sioux Falls (14 candidate link pairs).
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arrows are candidates for TVLCR. The network is the
aggregated network of the city of Sioux Falls, South
Dakota, used by many researchers in the literature. All
links are two-lane with the capacity of 1,200 vphpl and
the free flow speed of 49.5 mph. The link lengths can be
determined from the distance scale in Figure 3. We con-
sider 33 O-D pairs (see Karoonsoontawong and Waller,
2009) with 65,443 vehicle trips. The static demands are
distributed over the first 12 15-minute time slices (i.e.,
first 3 hours) by the following weights: 0.05, 0.05, 0.05,
0.1, 0.1, 0.15, 0.15, 0.1, 0.1, 0.05, 0.05, and 0.05, re-
spectively. The simulation period is 4 hours (6:00–10:00
AM). The allowable ranges of reversal starting time and
reversal duration are respective [6:20 AM, 8:30 AM]
and [30 minutes, 120 minutes]. The TSTT of the origi-
nal network is 20,313.30 hours.

5.2 Performance comparison of proposed GA
variations on grid test problem

The following GA parameters obtained from the
GA parameter calibration for dynamic network de-
sign problem in Karoonsoontawong and Waller (2006)
are employed for all GA runs: population size of 50,
crossover rate of 0.6, and mutation rate of 0.001. Given
the same parameter sets, the performance of the four
GA variations can fairly be compared in terms of so-
lution quality, convergence speed and computational
time. In the comparison of GA variations, JDF of 0.5

is employed. After identifying the best GA variation,
the sensitivity analysis of JDF will be performed. GA2,
GA3, and GA4 determine time-dependent congestion
measures, so GA2, GA3, and GA4 spend more CPU
time per functional evaluation (trial) than GA1. A gen-
eration of GA1, GA2, GA3, and GA4 may have differ-
ent numbers of trials, so we choose to compare the algo-
rithm performance by the number of trials. We run the
four GA variations for 1,000 trials. Figure 4 shows the
convergence characteristics of the four algorithms. Ta-
ble 3 presents the results of the best solutions obtained
from the four algorithms. Apparently, GA3 outper-
forms GA1, GA2, and GA4 in terms of solution quality,
CPU time found best and convergence speed; and GA1
appears second best. Interestingly, GA2 and GA4 yield
worse results. Thus, the problem-specific knowledge has
to be properly included to achieve excellent results.

Because GA3 is identified as the best GA varia-
tion, we then perform sensitivity analysis of JDF on
GA3. Each run is for 1,000 trials. Figure 5 shows the
convergence characteristics of GA3 with different JDF
values, and Table 4 shows best solutions found from
different JDF values. The JDF of 0.6 yields the much
improved best solution found with the percentage im-
provement of 45.22 (i.e., the best solution found yields
the improved TSTT that is 45.22% better than the ini-
tial TSTT), CPU time found best of 2.36 hours, and the
trial found of 91. This reiterates that GA with the appro-
priate incorporation of problem-specific knowledge and

Fig. 4. Convergence characteristics of four GA variations on grid network.

Table 3
Best solutions from GA1 to GA4 on grid network

Best obj. Percentage improvement Trial CPU time found Total CPU
Algorithm value (TSTT) from original TSTT found best (hours) time (hours)

GA1 1164.77 42.77 745 18.34 24.50
GA2 1176.18 42.21 779 24.32 31.56
GA3 1124.35 44.75 505 13.95 29.41
GA4 1280.47 37.08 867 24.01 27.48
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Fig. 5. Convergence characteristics of GA3 with different JDF values on grid network.

Table 4
Best solutions from GA3 with different JDF values on grid network

Best obj. Percentage improvement Trial CPU time found Total CPU
JDF value (TSTT) from original TSTT found best (hours) time (hours)

0.2 1252.36 38.46 977 28.95 29.60
0.3 1130.32 44.46 449 12.62 28.03
0.4 1248.78 38.64 896 21.21 23.52
0.5 1124.35 44.75 505 13.95 29.41
0.6 1114.79 45.22 91 2.42 25.97
0.7 1183.89 41.83 646 19.64 28.86
0.8 1194.70 41.30 446 13.20 29.23

Table 5
Best solution found on grid network

Link pair Capacity reversibility time period Duration (minutes) Number of lanes

(1,4) & (4,1) 6:00–7:00; 7:00–7:30; 7:30–9:00 60; 30; 90 3 & 3; 4 & 2; 3 & 3
(4,7) & (7,4) 6:00–6:50; 6:50–7:30; 7:30–9:00 50; 40; 90 3 & 3; 2 & 4; 3 & 3
(3,6) & (6,3) 6:00–7:20; 7:20–7:50; 7:50–9:00 80; 30; 70 3 & 3; 5 & 1; 3 & 3

with a parameter calibration (GA3 with JDF = 0.6) in-
deed provides much better results when compared with
simple GA (GA1). The best solution found is shown in
Table 5.

In the initial traffic condition, among the 12 can-
didate link pairs, there are four candidate link pairs
with unbalanced traffic densities; namely, link pairs (14,
41), (12,21), (23,32), and (36,63). The traffic on under-
lined links is congested (here defined as traffic den-
sity greater than 0.5 × jam density) and the other
link in the pair is not. The four link pairs have unbal-
anced traffic densities during the respective time peri-

ods 6:30–7:50, 6:50–7:50, 7:20–7:50, and 6:30–7:00. Af-
ter implementing the time-varying capacity reversibility
in Table 5, the number of link pairs with unbalanced
traffic densities is reduced to three link pairs, namely
(14,41), (36,63), and (78,87) during respective time pe-
riods 6:50–7:40, 6:50–7:20, and 7:00–7:10. The link pairs
with unbalanced traffic densities are more spread out
over the network and the durations of unbalanced
traffic densities are shorter than the initial traffic flow
condition. Although the initial traffic density condition
indicates that the four link pairs in the northern part of
the network have unbalanced traffic densities, the best
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Fig. 6. Convergence characteristics of GA3 with different JDF values on the Sioux Falls network.

Table 6
Results of sensitivity analysis of JDF for GA3 on the Sioux Falls network

Best obj. Percentage improvement Trial CPU time found Total CPU
JDF value (TSTT) from original TSTT found best (hours) time (hours)

0.2 19669.73 3.17 13 5.86 100.08
0.3 19752.94 2.76 5 2.76 95.02
0.4 19492.35 4.04 57 22.55 73.06
0.5 19905.42 2.01 36 14.89 74.06
0.6 19905.42 2.01 36 14.89 65.54
0.7 19106.19 5.94 82 31.45 78.16
0.8 19543.05 3.79 8 3.98 79.62

solution found does not simply adopt the capacity re-
versibility on these four link pairs. Only two of the four
link pairs and another link pair in the southern part of
the network implement the capacity reversibility strate-
gies. This is the nature of bi-level solution; the proposed
bi-level formulation accounts for the dynamic user equi-
librium behavior (the lower level) while the objective
minimizes TSTT (the upper level).

5.3 Application of GA3 on the Sioux Falls problem

The simple GA (GA1) and the best GA variation iden-
tified from the previous section (GA3) are applied to
the Sioux Falls network with the same set of GA pa-

rameters as that employed on the grid network. The
sensitivity analysis of the parameter JDF is conducted
for GA3 as shown in Figure 6 and Table 6. The stop-
ping criterion of 200 total trials is employed. GA1
finds its best objective value of 19,776.38 at trial 13,
whereas GA3 with the JDF of 0.6 does not yield a
better solution (its best objective value of 19,905.42
at trial 36). Apparently, the optimal JDF value of 0.6
found on the grid network no longer yields a best re-
sult on the Sioux Falls network, and GA3 with JDF of
0.7 yields a best solution (objective value of 19,106.19
at trial 87). This reiterates the fact that the param-
eter JDF should be calibrated on new problems to
achieve satisfactory results. Table 7 shows the best

Table 7
Best solution found on the Sioux Falls network

Link pair Capacity reversibility time periods Duration (minutes) Number of lanes

(10,11) & (11,10) 6:00–8:10; 8:10–9:20; 9:20–10:00 130; 70; 40 2 & 2; 3 & 1; 2 & 2
(15,19) & (19,15) 6:00–6:40; 6:40–8:40; 8:40–10:00 40; 120; 80 2 & 2; 3 & 1; 2 & 2
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solution found by GA3 on the Sioux Falls problem.
The best solution found yields the improved TSTT that
is 5.94% better than the initial TSTT. In the initial traf-
fic condition, among the 14 candidate link pairs, there
are 5 candidate link pairs with unbalanced traffic densi-
ties; namely, link pairs (1112,1211), (1011,1110), (1016,
1610), (1423,2314), and (1522,2215). The traffic on un-
derlined links is congested (here defined as traffic den-
sity greater than 0.5 × jam density) and the other link
in the pair is not. The five link pairs have unbalanced
traffic densities during the respective time periods 7:10–
7:50, 8:10–8:40, 7:20–7:30, 7:10–8:00, and 7:30–7:50. Af-
ter implementing the time-varying capacity reversibil-
ity in Table 7, the number of link pairs with unbal-
anced traffic densities is reduced to 3 link pairs, namely
(1112,1211), (1011,1110), and (1423,2314) with respec-
tive time periods 7:10–7:50, 7:30–8:00, and 7:10–8:20.

6 SUMMARY AND CONCLUSIONS

A new formulation for TVLCR for daily traffic man-
agement application is proposed. Due to the NP-hard
complexity of the formulation, the GAs with
simulation-based UODTA are developed to solve
multiorigin multidestination problems. The decision
variables are starting times, reversal durations, and
redesigned numbers of lanes for candidate link pairs
(instead of cell pairs in the analytical model). An
additional decision variable for a candidate link pair
is the capacity reversibility indicator variable, which is
added for the GA to prevent premature convergence.
Four GA variations are proposed. GA1 is a simple
GA. GA2, GA3, and GA4 are developed (with the
JDF) based on problem-specific knowledge with in-
creasing degrees of randomness. The problem-specific
knowledge is adapted from the dual variable analysis
of the analytical model, and involves the time-varying
congestion measures. The experiment is conducted to
compare the performances of the four GA variations
on a grid network. The performance comparison is
considered on three criteria: solution quality, conver-
gence speed, and CPU time found best. We find that
GA3 performs best on the three criteria on a grid test
problem, whereas the simple GA appears second. A
sensitivity analysis of JDF on GA3 shows that the
best solution found can much further be improved
when using the optimal JDF of 0.6. Furthermore, the
identified best GA variation (GA3) and GA1 are
performed on the Sioux Falls network where we found
that GA3 with JDF of 0.7 outperforms GA1 and GA3
with other JDF values on the three criteria. In the best
solution found on both networks, there is less number
of link pairs with unbalanced traffic densities and the

durations of unbalanced densities are also shorter when
compared with the initial condition. Based on our
computational experience, the GA with the appropri-
ate inclusion of problem-specific knowledge and with
a parameter (i.e., JDF) calibration indeed provides
excellent results when compared with simple GA. The
future research may extend the proposed formulation
to account for the limited resources (or budgets) for the
operation and construction of the lane-based capacity
reversibility.
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ABSTRACT:  

This paper proposes a mathematical formulation and a solution method to the enhanced 
combined trip distribution and traffic assignment.  The trip distribution is a doubly-constrained 
gravity model.  The traffic assignment is the paired-combinatorial-logit stochastic user equilibrium 
accounting for effects of congestion, stochastic perception error and path similarity.  This is an 
enhancement to existing multinomial-logit (MNL)-based model.   The proposed solution method 
is a disaggregate simplicial decomposition algorithm.  I find that the relationship of O-D flow 
difference and dispersion factor  is  unclear,  whereas  link  flow  patterns  from  the  two  models 
are  more  identical  at  higher dispersion factors.   The enhanced model assigns less flow to a 
path with higher average similarity index and higher path cost than MNL model.  The enhanced 
model generally assigns less flow to links with more paths passing through than MNL model.  The 
relationship between O-D flow allocation and the average similarity indices for O-D pairs is not 
obvious. 

Key Words: stochastic user equilibrium, gravity model, combined travel demand model

1. INTRODUCTION 

The combined distribution and assignment 
(CDA) problem is an instance of combined 
travel demand models. CDA simultaneously 
determines the distribution of trips between 
origins and destinations in a transportation 
network and the assignment of trips to routes 
in each origin-destination pair. The trip 
distribution is mostly assumed to be a gravity 
model with a negative exponential deterrence 
function. The static trip assignment is either 
user equilibrium model (UE) or stochastic 
user equilibrium model (SUE). UE assumes 
that drivers have complete and accurate 
information on the state of the network when 
they make their route choices, and drivers 

select optimal routes to benefit themselves the 
most. SUE assumes that trip assignment 
follows a probabilistic route choice model. 
The multinomial logit-based SUE model 
(MNL-SUE) is widely adopted in the 
literature. Evans (1976) formulated the CDA 
problem that integrates the gravity-model trip 
distribution and user-equilibrium trip 
assignment (CDA-UE). Erlander (1990) 
formulated the CDA that integrates the 
gravity-model trip distribution and 
multinomial-logit stochastic-user-equilibrium 
assignment (CDA-MNL-SUE). Lundgren and 
Patriksson (1998) outlined the solution 
algorithms for CDA-UE and CDA-MNL-
SUE.  
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With the property of independence of 
irrelevant alternatives (IIA) in the MNL 
model, the MNL-SUE has an infamous 
deficiency in the incapability to account for 
similarities between different routes. 
Although the multinomial probit-based SUE 
model by Daganzo and Sheffi (1977) can 
account for similarity between different 
routes, it is not attractive due to the lack of 
closed form of probability function. Over the 
past years, researchers adopted other discrete 
choice model structures to SUE in order to 
capture the similarity between routes on the 
perceptions and decisions of drivers while 
keeping the analytical tractability of the logit 
choice probability function. The SUE models 
based on the modifications of MNL are C-
logit model and path-size logit model. The 
SUE models based on the generalized 
extreme value theory are paired combinatorial 
logit model (Prashker and Bekhor, 2000), 
cross-nested logit model, logit kernel model, 
link-nested logit model, and generalized 
nested logit model. Chen et al. (2003) pointed 
out that among these extended logit models, 
the paired combinatorial logit model (PCL) is 
considered the most suitable for adaptation to 
the route choice problem due to two features 
that can be employed to address the IIA 
property in the MNL model. 

In this paper, I propose a combined gravity-
model distribution and pairedcombinatorial - 
logit stochastic-user-equilibrium assignment 
formulation (CDA-PCL-SUE) and develop a 
disaggregate simplicial decomposition 
algorithm. The trip distribution model is 
doubly constrained such that both the total  
flow generated at each origin node and the 
total flow attracted to each destination node 
are fixed and known. 

2. EQUIVALENT MATHEMATICAL
FORMULATION 

Denote by CDA-PCL-SUE the proposed 
combined distribution-assignment (CDA) 
equivalent mathematical model. The 
underlying route choice in CDA-PCL-SUE is 
a hierarchical route choice model that 
decomposes the choice probability into two 
levels. The upper level computes the marginal 
probabilities P(kj) of choosing an unordered 
route pair k and j, based on the similarity 
index and the systematic utility. 
The lower level is a binary logit model that 
computes the conditional probabilities of 
choosing a route given the chosen route pair: 
P(k|kj) and P(j|kj). The underlying trip 
distribution in CDA-PCL-SUE is a doubly 
constrained model that requires the O-D flows 
out of an origin node and into a destination 
node to be equal to the known origin demands 
and destination demands, respectively. 

The definitions of sets, parameters, decision 
variables and mathematical formulation are 
given below, followed by the first-order 
conditions that are shown to be identical to 
the PCL-SUE equations and gravity-model 
based trip distribution equations. 

Set 
K rs = set of routes between origin r and 

destination s 
Lrs  = set of unordered route pairs between 

origin r and destination s 
R  =  set of origins 
S   =  set of destinations 
RS =  set of origin-destination (O-D) pairs 
A   = set of arcs 
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Parameters 

rO  = total trips originated from origin r

sD = total trips destined to destination s

�   = dispersion coefficient 
rs
kj� = measure of dissimilarity index between  

         routes k and j connecting O-D r-s  
         ( rs

kj
rs
kj �� �� 1 ) 

rs
kj� = measure of similarity index between  

         routes k and j connecting O-D r-s

        
rs
ka� =1 if arc a is on route k connecting      

        origin r to destination s; 0 otherwise 

Decision Variables 

ax = flow on link a

at  = travel time on link a

rsq = demand between origin r  

         and destination s
rs

kjkf )( = flow on route k of route pair kj  

           between origin r and destination s

Mathematical Formulation 

321min zzzz ���     (Eq.1.1) 
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The objective function (Eq.1.1) is composed 
of three components, similar to the objective 
of the PCL-SUE model.  Eq.1.1a accounts for 
the congestion effects.  Eq.1.1b and 1.1c are 
two entropy terms that represent the marginal 
and conditional probabilities in a hierarchical 
route choice model.  Dissimilarity indices are 
incorporated into the objective function 
(Eq.1.1b and Eq.1.1c), allowing the model to 
capture the similarity effect and stochastic 
perception error effect in addition to the 
congestion effect (Eq.1.1a).  Eq.1.2 enforces 
the summation of all path flows connecting an 
O-D pair to be equal to the O-D flows ( rsq ) of 

this O-D pair.  Eq.1.3 and Eq.1.4 are the O-D 
flow balance constraints for the origin nodes 
and destination nodes, respectively.  Eq.1.5 
are the non-negativity constraints for all path 
flow variables.  Eq.1.6 determines the link 
flow variable from the summation of all path 
flows passing through this link.  It is easy to 
show that the optimality conditions of the 
proposed formulation equal to the PCL 
formula in Eq.5.7-5.8 and the gravity-model 
based trip distribution equation: 

)( rs
srsrrs cgDOBAq � Rr �
 , Ss�
       

          (Eq.2) 
Where 

rA =
� �

r

r

O

u 1exp ��
; sB =

s

s

D

v )exp(�
; 

rsc = vector of route travel times of O-D pair r,s;
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3. DISAGGREGATE SIMPLICIAL 
DECOMPOSITION ALGORITHM 

The proposed algorithm for CDA-PCL-SUE 
is based on the disaggregate simplicial 
decomposition algorithm by Lundgren and 
Patriksson (1998) and Larsson and Patriksson 
(1992).  The proposed algorithm alternates 
between two phases.  In phase I (the restricted 
master problem), given known subsets of 
routes between O-D pairs rsrs KK �ˆ

SsRr ��
 , , of the total sets of routes in the 
network, the corresponding restriction of 
CDA-PCL-SUE (denoted by CDA-PCL-SUE-
R) is solved approximately using a partial 
linearization descent algorithm, which is a 
descent algorithm for continuous optimization 
problems.  In phase 2 (the column generation 
problem), at the approximate solution to 
CDA-PCL-SUE-R, the subsets rsK̂  are 

augmented by the generation of new routes, 
through the solution of a set of shortest path 
problems, given appropriately chosen link 
costs.   

3.1. Phase I: Restricted Master Problem 

The problem CDA-PCL-SUE-R is solved by 
a partial linearization descent algorithm 
(Patriksson, 1993).  The projection of CDA-
PCL-SUE-R onto the set of feasible route 
flows is employed.  Given a feasible route 

flow vector }{ )(

nrs
kjk

n ff �  at some iteration n, 

an approximation of CDA-PCL-SUE-R is 
roughly solved in order to define an auxiliary 
feasible solution and a search direction.  The 
approximate problem is constructed by 

linearizing the first term (z1) of the objective 
function of CDA-PCL-SUE-R.  The effect of 
this linearization is that the link costs are 
fixed at their levels given the current flow nf

; i.e. 
nrs

krs
kjk

n

c
f

fz
�

�
�

)(

1 )(
.  The corresponding route 

costs are calculated as: 	
�

��
Aa

n
aa

rs
ka

rs
k xtc

n

)(�   

SsRrKk rs ���
 ,,ˆ , where n
ax  is the flow 

on arc a corresponding to the route flow nf .  
The partially linearized problem (denoted by 
CDA-PCL-SUE-R-PL) becomes: 

Formulation of CDA-PCL-SUE-R-PL     

(the solution is denoted by rs

kjk
f

)(
) 
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 ,,ˆ,ˆ (Eq.3.4) 

It is noted that in CDA-PCL-SUE-R-PL only 
rs

kjkf )( are decision variables, since rsq  are 

substituted by 	 	
�

�
�

�
rs rsKk

kj
Kj

rs
kjkrs fq

ˆ ˆ
)( .  I next 

consider the following equivalent formulation 
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to CDA-PCL-SUE-R-PL, which is the 
projection of CDA-PCL-SUE-R-PL onto the 
demand space, in order to solve the problem 
CDA-PCL-SUE-R-PL. 

Equivalent Formulation to CDA-PCL-SUE-
R-PL

)(min qU      (Eq.4.1) 
Subject to  

r
Ss

rs Oq �	
�

   Rr �
      (Eq.4.2) 

s
Rr

rs Dq �	
�

Ss�
     (Eq.4.3)

0�rsq SsRr ��
 ,    (Eq.4.4) 

Where 321
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0)( �rs
kjkf SsRrLkjKk rsrs ����
 ,,ˆ,ˆ (Eq.4.7) 

This equivalent formulation utilizes the fact 
that the solution to Eq.4.5-4.7 (i.e. the 
restricted PCL-SUE) is easily obtained by the 
use of the PCL formula: 

rs
rs

kjk qkjkPkjPf ��� )|()()( .  By performing 

the substitution of the PCL formula in Eq.4.5 
(i.e. �� n

rs
kjk kjPf )()( �nkjkP )|( rsq   and 

rsnn
rs

kjj qkjjPkjPf ��� )|()()(   are substituted 

in 321
~~~)( zzzqU ��� ), it can be proved that 

the implicit function U(q) actually has the 
explicit form of the entropy maximization 
problem (problem Eq.5.1-5.8 in Phase I.1).  
Hence, it is clear that CDA-PCL-SUE-R-PL 
is solved through the solution of the entropy 
maximization problem followed by the 
application of the PCL formula.  Specifically, 
an optimal solution to the equivalent 
formulation of CDA-PCL-SUE-R-PL is 
obtained by Phases I.1-I.3. 

Phase I.1 Entropy Maximization Problem (the 

solution is denoted by n

rs
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 , ) 
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The entropy maximization problem Eq.5.1-
5.8 can be solved by Bregman’s balancing 
method (Lamond and Stewart, 1981; 
Bregman, 1967), and the result is an auxiliary 
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demand }{ n

rs

n qq � .  The balancing method is 

briefly described below. 

Bregman’s Balancing Method
Initialization of Balancing Method:     
  )/1exp(0 n

rs
n
rsrsq �����   SsRr ��
 ,

(see (21) for the derivation of initial 
auxiliary O-D flows)

0+t    (t is iteration counter for the 
 balancing method) 

1+i   (i is the constraint counter of 
 the entropy maximization problem) 

General Step of Balancing Method 
(Balancing Constraint i): 
Find the unique solution 1�t

rsq  and ,  of: 

0lnln ,
1 ����
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         (Eq.6) 
and
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The derivation of Eq.6 and Eq.7 is referred to 
Bregman (1967).  Then, Eq.6 can be written 
as Eq.8.  
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which is then substitute into Eq.(7), yielding: 
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where if ii Ob �  and i�, � if  ||1 Ri --

ii Db � and i�, � if ||||1|| SRiR �--�

,  is determined by Newton’s method, since it 
cannot be solved analytically.
       
Then, determine 1�t

rsq  from Eq.8:  

1|))||(| modulo ( ��+ SRii
1�+ tt

For each pass of the algorithm (when all 
origins and destinations are balanced once), if  

t
rsq is converged, terminate the algorithm. 

Phase I.2 The solution (
nrs

kjk
f

)(
) of CDA-PCL-

SUE-R-PL is obtained by applying the PCL 
formula: 

n

rsn
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k
qkPf

n

�� )( SsRrKk rs ���
 ,,

Where 
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Phase I.3 (Line Search)
An approximate line search is then made with 
respect to 321 zzzz ���  (the objective 

function of CDA-PCL-SUE-R) in the 
(feasible) direction of nn ff �   and nn qq � , 

resulting in the new solution 1�nf  and 1�nq .  

Note that nf and nq are the auxiliary solutions 

to the auxiliary (partially linearized) problem 
CDA-PCL-SUE-R-PL; whereas nf  and nq
are the current solution to CDA-PCL-SUE-R 
at iteration n.  The process is repeated with 
n=n+1 until a convergence criterion 
terminates the solution of CDA-PCL-SUE-R.
  

3.2. Phase II: Column Generation Problem 

The partial linearization algorithm in Phase I 
solves the restricted master problem, given 
the subsets of routes between O-D pairs

rsrs KK �ˆ SsRr ��
 , .  The quality of travel 

pattern solution obtained from Phase I 
depends on the quality of rsK̂ in 

approximating rsK .  Damberg et al. (1996) 

suggested and evaluated two route generation 
strategies based on the calculation of shortest 
paths given the solution of the restricted 
master problem.  I adopt Damberg et al.’s first 
route generation strategy for Phase II.  Routes 
are generated from the solution of shortest 
path problems based on the deterministic 
travel times; i.e. random components of travel 
times are temporarily ignored.  At the solution 
to this restricted master problem, the link 
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travel times are updated accordingly, and the 
subsets rsrs KK �ˆ SsRr ��
 ,  are 

augmented by the generation of new routes 
using the shortest path algorithm. 

It is worth noting that the algorithm is not 
guaranteed to converge to the unique optimal 
solution of CDA-PCL-SUE.  However, it is 
guaranteed to solve the restriction of CDA-
PCL-SUE to any set of routes generated.  In 
the proposed algorithm, it terminates when 
the root mean square error of link flows and 
O-D flows from two successive iterations are 
within a user-specified tolerance. 

4. ILLUSTRATIVE EXAMPLES  

The test network is a simple network with 
five nodes, eight links and four O-D pairs as 
shown in Figure 1.  The Bureau Public Road 
link cost function is employed: 
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The parameters 0
at , as , a� and a� are also 

given in Table 1, and the length of link a is 
set to 0

at .  Two congestion levels are 

considered as follows.  For higher-congestion 
level (lower-congestion level), origin 
demands of origin nodes 1 and 2 are 45 and 
50 trips (22 and 25 trips), respectively; 
destination demands of destination nodes 4 
and 5 are 35 and 60 trips (17 and 30 trips), 
respectively.  The employed tolerances are 

Simplicial. = Bregman. = Newton. = LineSearch. =0.001. 

The CDA-MNL-SUE results are obtained 
from the algorithm in Lundgren and 
Patriksson (1998).  The algorithms for both 
CDA-PCL-SUE and CDA-MNL-SUE are 
implemented in C.  These run on a computer 
with 1.73 GHz Intel Core i7 processor and     
4 GB of RAM, running under Windows 7.  
The CPU times of all runs on the test network 

are within 1 minute.  I compare the results 
from CDA-PCL-SUE and CDA-PCL-MNL to 
examine the effects of congestion, travelers’ 
stochastic perception error and path similarity 
to simultaneously solve doubly-constrained 
trip distribution problem and stochastic user 
equilibrium problem.   

The dispersion parameters are set at various 
values for two congestion levels.  The 
differences in O-D flows and link flows from 
the two combined distribution and assignment 
solutions is measured by the root mean square 
errors:  
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Where *
,PCLax and *

,MNLax are the converged link 

flows in CDA-PCL-SUE and CDA-MNL-
SUE, respectively. 
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Where *
,PCLrsq and *

,MNLrsq are the converged   

O-D flows in CDA-PCL-SUE and CDA-
MNL-SUE, respectively.  Figure 2 shows the 
values of LRMSE and ODRMSE with various 

dispersion factors at two congestion levels.  

ODRMSE appears fluctuated at the higher-

congestion level, whereas at the lower-
congestion level ODRMSE appears smooth 

over the dispersion factors. At both 
congestion levels, LRMSE  decreases with the 
increase of the dispersion factor. The decrease 
rate of  LRMSE  is greater when the dispersion 
factor is close to 0, and the decrease rate at 
the higher-congestion level is greater than that 
of the lower-congestion level on both 
networks.  Based on the empirical results, the 
link flow patterns from CDA-PCL-SUE and 
CDA-MNL-SUE are closer as the dispersion 
factor increases on both congestion levels.  
The O-D flow patterns from both models 
differ in different degree over various 
dispersion factors.   

73



Journal of Society for Transportation and Traffic Studies (JSTS) Vol.2 No.4 

34 

Since the proposed algorithm employs the 
column generation phase to generate paths, it 
is possible that the generated paths from 
CDA-PCL-SUE are not the same as those 
from CDA-MNL-SUE.  Then, it may not be 
comparable in terms of route flows.  
However, I found that the dispersion factor of 
0.125 yields the same path set in both models.  
Thus, this is employed for path flow 
comparison.  Table 2 shows the path flow 
results obtained from CDA-PCL-SUE and 
CDA-MNL-SUE at the higher-congestion 
level.  As can be observed in Table 2, the path 
costs for each O-D pair in both CDA-PCL-
SUE and CDA-MNL-SUE are not equal, and 
both models disperse travel demands to many 
paths for each O-D pair.  These are the effects 
of travelers’ stochastic perception error 
captured by both models.  For each O-D pair, 
the similarity index is calculated for each 
route pair connecting this O-D pair.  The 
similarity index of each route pair is 
completely independent of that of other route 
pairs.  Prashker and Bekhor (2000) indicated 
that this property is highly desirable for route 
choice models.  Table 2 shows the average 
similarity index for each route, which is the 
mean value of all similarity indices involving 
this route.     

CDA-PCL-SUE generally considers a route 
with a high value of similarity as less 
attractive in route flow allocation.  CDA-
PCL-SUE accounts for the overlapping paths 
in route choice such that a path with a higher 
value of average similarity index and higher 
path cost will be assigned less flows.  As can 
be seen in Table 2, in the CDA-MNL-SUE 
model, the cost of path 3 is 7.76% and 5.83% 
higher than paths 1 and 2, and assigns less 
flows to paths 3 (85.05% and 88.34% of 
flows assigned to paths 1 and 2, respectively).  
In contrast, CDA-PCL-SUE accounts for the 
path overlapping effect.  The average 
similarity index of path 3 of O-D 1-4 is 
101.09% higher than paths 1 and 2 connecting 
this O-D pair, and in the CDA-PCL-SUE 
model the cost of path 3 is 4.09% and 2.68% 

higher than paths 1 and 2.  Then, CDA-PCL-
SUE assigns much less flows to path 3 
(51.82% and 53.24% of flows assigned to 
paths 1 and 2, respectively) than CDA-MNL-
SUE does.       

Table 3 shows the O-D flow results of the two 
models.  Apparently, the O-D flows are 
distributed differently in the two models.  As 
can be seen in Table 3, the total O-D flows 
out of each origin in both models are the 
same, and the total O-D flows into each 
destination in both models are equal.  These 
are due to the doubly constrained trip 
distribution embedded in the two models.  
Table 3 also shows the average similarity 
index for each O-D pair, which is the mean 
value of the average similarity indices for all 
paths connecting this O-D pair.  The weighted 
average path cost for each O-D pair is 
calculated by the summation of the products 
of path costs and route choice probabilities.    
I will explore the results to check whether      
I can relate the attractiveness of an O-D pair 
in doubly-constrained O-D trip distribution in 
CDA-PCL-SUE to the average similarity 
index for each O-D pair and the weighted 
average path cost of each O-D pair.                 
I consider the O-D flow distribution for origin 
node 1.  From Table 3, the weighted average 
path cost of O-D 1-4 in CDA-PCL-SUE is 
19.78% higher than that of O-D 1-5, whereas 
in CDA-MNL-SUE it is 23.09% higher.  The 
average similarity index of O-D 1-4 is 
31.26% higher than O-D 1-5.  The O-D flows 
allocated to O-D 1-5 is 14.00% higher than   
O-D 1-4 in CDA-PCL-SUE, whereas in 
CDA-MNL-SUE, it is 41.34% higher.  It 
seems that CDA-PCL-SUE may assign more 
flows to O-D 1-4 with higher similarity index 
than CDA-MNL-SUE does.  Next, I consider 
the O-D flow distribution for destination node 
5.  The weighted average path cost of O-D    
1-5 in CDA-PCL-SUE is 45.99% higher than 
that of O-D 2-5, whereas in CDA-MNL-SUE 
it is 50.06% higher.  The average similarity 
index of O-D 1-5 is 284.71% higher than O-D 
2-5.  The O-D flows allocated to O-D 2-5 is 
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50.29% higher than O-D 1-5 in CDA-PCL-
SUE, whereas in CDA-MNL-SUE, it is 
27.67% higher.  In this case, CDA-PCL-SUE 
assigns less flow to O-D 1-5 with higher 
similarity index than CDA-MNL-SUE does.  
Apparently, it cannot be concluded how 
CDA-PCL-SUE distributes O-D flows among 
different O-D pairs, given weighted average 
path cost and average similarity index.  This 
is because CDA-PCL-SUE also has the origin 
flow balance constraints and destination flow 
balance constraints that must be satisfied.  In 
fact, the trip distribution in CDA-PCL-SUE 
can be determined by Eq.(2); i.e. it is based 
on the path costs, dispersion factor, dual 
variables of origin and destination flow 
balance constraints, and similarity indices.  
The average similarity indices and weighted 
average path costs are not directly employed 
in determining the trip distribution.   

Table 4 shows the link flow results.  The 
traffic flow patterns are different as the two 
models have different objective functions 
used in the trip distribution and route choice 
to capture the effects of congestion, stochastic 
perception error and path overlapping.  Links 
with more paths passing through mostly have 
smaller flows assigned by CDA-PCL-SUE 
when compared with CDA-MNL-SUE such 
as links 1, 3, 4, 6 and 8.  CDA-PCL-SUE 
assigns less number of flows to these links 
than CDA-MNL-SUE does. 

5. SUMMARY AND CONCLUSIONS 

The enhanced combined trip distribution and 
traffic assignment formulation is proposed.    
It combines the doubly-constrained gravity-
model based trip distribution and the paired-
combinatorial-logit stochastic user 
equilibrium assignment.  The proposed 
solution method for CDA-PCL-SUE is a 
disaggregate simplicial decomposition 
algorithm. A test network with two 
congestion levels are employed.  The results 

from CDA-PCL-SUE are compared to those 
from CDA-MNL-SUE in order to illustrate 
how CDA-PCL-SUE distributes O-D flows 
and route flows when accounting for 
similarity effects in addition to the congestion 
effect and stochastic-perception-error effect.  
I found that the relationship of O-D flow 
difference and dispersion factor is unclear, 
whereas link flow patterns from the two 
models are more identical at higher dispersion 
factors.  CDA-PCL-SUE assigns less flow to 
a path with higher average similarity index 
and higher path cost than CDA-MNL-SUE.  
CDA-PCL-SUE generally assigns less flow to 
links with more paths passing through than 
CDA-MNL-SUE.  The relationship between 
O-D flow allocation and the average 
similarity indices for O-D pairs is not 
obvious. 
 The future research is to include the 
singly-constrained gravity-based trip 
distribution version and to incorporate trip 
generation and modal split.   
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Figure 1 Test Network

Table 1 Parameters of Test Network

Link 
as 0

at a� a�
(1,2) 25 4.0 0.15 4.0 
(1,3) 25 5.2 0.15 4.0 
(2,3) 30 1.0 0.15 4.0 
(2,4) 15 5.0 0.15 4.0 
(2,5) 15 5.0 0.15 4.0 
(3,4) 15 4.0 0.15 4.0 
(3,5) 15 4.0 0.15 4.0 
(4,5) 30 1.0 0.15 4.0 

Figure 2 Root Mean Square Errors 

Table 2 Path Flow Results of CDA-PCL-SUE 
and CDA-MNL-SUE (Total O-D Demand = 

90 Trips, Dispersion Factor = 0.125) 

O-D Link  
Seq 

Average 
Similarity 

Index 

Route Choice 
Probability 

PCL MNL 
1-4 1-4 0.2198 0.4014 0.3555 

 2-6 0.2198 0.3907 0.3422 
 1-3-6 0.4420 0.2079 0.3023 

1-5 1-5 0.2811 0.2984 0.3250 
 2-7 0.0000 0.4415 0.3632 
 1-3-6-8 0.3072 0.1231 0.1433 
 1-4-8 0.3072 0.1370 0.1685 

2-4 4 0.0000 0.5204 0.5404 
 3-6 0.0000 0.4796 0.4596 

2-5 5 0.0000 0.3600 0.3393 
 3-7 0.0609 0.3136 0.3350 
 3-6-8 0.1164 0.1455 0.1497 
 4-8 0.0556 0.1809 0.1760 

O-D Link  
Seq 

Path Flow Path Cost 
PCL MNL PCL MNL 

1-4 1-4 8.43 6.62 15.95 16.68 
 2-6 8.21 6.38 16.17 16.98 
 1-3-6 4.37 5.63 16.61 17.97 

1-5 1-5 7.17 8.56 12.17 12.45 
 2-7 10.59 9.57 12.18 11.56 
 1-3-6-8 2.93 3.77 17.63 19.00 
 1-4-8 3.26 4.44 16.97 17.70 

2-4 4 7.27 8.83 11.23 11.58 
 3-6 6.70 7.51 11.88 12.88 

2-5 5 12.99 11.41 7.45 7.36 
 3-7 11.31 11.27 7.89 7.46 
 3-6-8 5.22 5.03 12.90 13.90 
 4-8 6.49 5.92 12.25 12.61 

Table 3 O-D Flow Results of CDA-PCL-SUE 
and CDA-MNL-SUE (Total O-D Demand = 

90 Trips, Dispersion Factor = 0.125) 

O-D Average  
Similarity 

Index 

Weighted 
Average Path 

Cost 

O-D Flow 

PCL MNL PCL MNL 
1-4 0.2939 16.18 17.17 21.02 18.64 
1-5 0.2239 13.50 13.95 23.97 26.35 
2-4 0.0000 11.55 12.18 13.97 16.35 
2-5 0.0582 9.25 9.30 36.02 33.64 
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Table 4 Link Flow Results of CDA-PCL-SUE and CDA-MNL-SUE  
(Total O-D Demand = 90 Trips,  

Dispersion Factor = 0.125) 

Link Number of Paths Passing Through*

O-D 1 O-D 2 O-D 3 O-D 4 
1 2 3 0 0 
2 1 1 0 0 
3 1 1 1 2 
4 1 1 1 1 
5 0 1 0 1 
6 2 1 1 1 
7 0 1 0 1 
8 0 2 0 2 

  

Link Link Flow Link Cost 
PCL MNL PCL MNL 

1 26.19 29.04 4.72 5.09 
2 18.80 15.95 5.45 5.32 
3 30.55 33.24 1.16 1.22 
4 25.47 25.82 11.23 11.58 
5 20.16 19.98 7.45 7.36 
6 27.44 28.35 10.72 11.65 
7 21.91 20.84 6.73 6.23 
8 17.92 19.17 1.01 1.02 
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and long-lasting pavement markings. The ability to predict the service 
life of pavement markings is crucial for maintenance management 
and operations. Many researchers have studied the retroreflectivity 
properties to explain the causes of deterioration and suggest service 
life. Lee et al. (2) used the 15-m geometry device to collect retro
reflectivity data on 50 test sites and evaluated the performance of 
marking materials with linear regression analysis. The accuracy of 
the prediction models was relatively low with the R2 varying between 
.14 and .18. Snowplow activity was the most significant factor while 
annual average daily traffic (AADT), speed limit, and percentage 
of heavy vehicle traffic did not correlate with the retroreflectivity 
degradation. Abboud and Bowman (3) studied the service life, cost 
of application, and cost associated with crashes related to marking 
retroreflectivity and proposed logarithmic regression models to 
predict the degradation curves. The unique aspect of the model was 
the use of vehicle exposure variables, defined by AADT and age of 
markings. This model did not depend on types of road surfaces, which 
have been used as an independent variable by many researchers. In 
Sarasua et al. (4), the South Carolina Department of Transportation 
sponsored the joint research between Clemson University and the 
Citadel to study the effective life cycle of pavement marking retro-
reflectivity. The data were collected with the 30-m geometry on 
150 sites throughout the South Carolina interstate system. Traffic 
wearing was initially thought to cause degradation in retroreflectiv-
ity; however, the statistical test showed nonsignificance, so this vari-
able was dropped from the models. Their final degradation models 
were presented by the difference in retroreflectivity over time. In 
Kopf (5), Washington State Transportation Center used the mobile 
retroreflectometer with the 30-m geometry to collect field data of 
waterborne and solvent-based paints on 80 sites throughout the 
state. Data were categorized by marking materials, colors, levels of 
traffic, and geography into several groups and analyzed with linear 
or logarithm models. Some models showed poor prediction because 
of a large variation in data, whereas some models showed a high value 
of R2, but the data points were either too few or not well spread 
throughout the service lifetime. The recent study by Sitzabee (6) and 
Sitzabee et al. (7) provided a comprehensive degradation model for 
a variety of pavement markings. The project included data from 
30,000 mi (48,000 km) of road throughout the state of North Caro-
lina. A large number of data were categorized into several groups 
and the group that had complete information was analyzed by linear 
regression analysis. The degradation models for the paints depended 
on the initial value of retroreflectivity (RL,int) and time, whereas the 
models for thermoplastics depended on RL,int, time, AADT, lateral 
locations of markings, and colors. In addition to the pavement mark-
ing literature, a review was conducted on a related subject, state 
transition probabilities of bridge decks. Mishalani and Madanat (8) 
studied transition probabilities of infrastructures using stochastic 

Service Life Analysis and Maintenance 
Program of Pavement Markings in Thailand

Ponlathep Lertworawanich and Ampol Karoonsoontawong

Pavement markings are one of the most important highway assets. Good 
pavement markings provide good visibility for traffic, whereas poor pave­
ment markings can adversely affect traffic operations on highways. How­
ever, a limited amount of research has been conducted on the effects of 
working conditions on the service life of pavement markings. This 
paper presents duration models for retroreflectivity of thermoplastic 
pavement markings in Thailand. This approach allows the service life 
of pavement markings to follow probability distributions in which model 
parameters are assumed as a function of relevant independent variables 
such as traffic volumes. The maximum likelihood estimation technique 
was used to estimate means and standard errors of the model param­
eters. Retroreflectivity data of thermoplastic pavement markings were 
collected from the eastern highway network of Thailand, which con­
sists of more than 5,000 km of highways in various traffic conditions. 
The analysis results showed that traffic volumes had negative effects on 
the service life of the pavement markings. This paper proposes a pre­
emptive goal program for approximating required budgets to ensure the 
maintenance of the percentages of good condition pavement markings 
over the planning horizon. The first-priority goal is to maintain the per­
centage of control sections that are in good condition, and the second-
priority goal is to minimize total maintenance costs. In the illustrative 
example, the inconsistency between the Thailand Department of High­
ways’ specifications and field practices caused estimated required 
annual budgets and the deterioration of pavement markings to greatly 
fluctuate over the planning period. For more consistency between 
specification and field practice, the proposed models will be applied 
in a pavement marking management system.

Driving safely at night requires highway markings to be reflective to 
help drivers navigate in a low-visibility condition. Retroreflectivity is 
the property that measures the ability of the marking to reflect the light 
from the headlamp back toward the driver’s eyes. Good visibility of 
pavement markings is needed because it helps reduce the likelihood 
of traffic accidents, as discussed in Smadi et al. (1). Retroreflectivity 
is obtained by dropping glass beads on the top of marking materials. 
Good quality control in painting operations with the right proportion 
of painting materials and glass beads results in high retroreflective 

79



122� Transportation Research Record 2272

duration models. In their study, the distributions of time intervals 
between state transitions were computed. Assuming a Weibull dis­
tribution, relevant model parameters were estimated with maximum 
likelihood estimation (MLE) where the hazard rates were found to be 
an increasing function. This indicates that the aging process reduces 
the service life of bridge decks. Expectation of state transition time 
intervals can also be predicted from their model.

In summary, most studies use ordinary linear regression models 
to fit the relation between the retroreflectivity of pavement markings 
and the relevant independent variables. These models cannot provide 
good fits with data. The service life should itself be a prime factor of 
interest. If an ordinary regression model is fitted to the measured 
retroreflectivity of markings, pavement markings with the retro­
reflectivity below the minimum requirement are normally omitted 
from consideration. This omission leads to a truncation bias. There­
fore, a new modeling approach rather than ordinary regression models 
should be investigated. In recent years, the Department of Highways 
(DOH) in Thailand has increased awareness of pavement marking 
performance with the aim of improving road safety. The DOH has 
a specification on thermoplastic pavement markings that all yellow 
markings should have a minimum retroreflectivity (RL) of 100 milli­
candelas per lux per square meter (mcd/lx/m2) and all white markings 
should have a RL of 150 mcd/lx/m2 with the 15-m geometry measure­
ment, a former ASTM E1710 standard. The DOH also requires that all 
thermoplastic markings have at least 2 years of service life. In 2008, 
the DOH launched a pilot project to conduct a field survey of pave­
ment markings. The survey aimed at assessing marking conditions in 
the eastern part of Thailand and establishing a pavement marking 
database for future research. In this paper, the database from this 
pilot project is analyzed to examine the service life of thermoplastic 
pavement markings and to study the effects of traffic conditions on 
thermoplastic pavement markings. In addition, a pavement markings 
budgeting module is also developed to optimally approximate the 
required budget to maintain pavement markings in a good condition. 
As a result, the objectives of this study are

•• To collect the retroreflectivity of thermoplastic pavement 
markings in field conditions,

•• To develop a service life model of thermoplastic pavement 
markings based on the duration modeling, and

•• To develop a pavement markings budgeting module based on 
an optimization formulation.

In the remainder of this paper, the data collection scheme is pre­
sented followed by the proposed methodology to predict the ser­
vice life of the thermoplastic pavement markings based on duration 
models in which the MLE technique is utilized to estimate param­
eter values. These models can be used to predict the service life of the 
thermoplastic pavement markings. Next, an optimization formulation 
is proposed to approximate the required budget to optimally maintain 
pavement markings during the planning horizon and to search for an 
optimal maintenance pattern during the planning horizon. The paper 
closes with conclusions and recommendations for future research.

FIELD DATA COLLECTION

In this section, an outline of the field data collection scheme is 
briefly provided. The eastern highway network of Thailand consists 
of 5,000 km of highways, most of which are multilane highways. 

The study area consists of five provinces located east of Bangkok. 
Figure 1 shows the location of the study area in Thailand.

To collect data, this study employs a retroreflectometer, ZRM6013, 
capable of measuring RL and Qd (day visibility) with the 30-m geom­
etry according to the ASTM E1710-05 standard. However, for a com­
parison to be made with the DOH standard, which is based on the 
15-m geometry of measurement for RL, an experiment to find the 
relationship between the 15-m geometry and the 30-m geometry mea­
surements was set up. In this study, the DOH uses two devices: (a) the 
ZRM6013 for the 30-m geometry and (b) the Mirolux for the 15-m 
geometry, to measure several markings on the same locations. Then, a 
simple regression is conducted to find a relation as shown in Figure 2.
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FIGURE 2    Relationship between 15- 
and 30-m geometry measurements.

FIGURE 1    Location of study area.
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From Figure 2, it is found that the 15-m geometry measurement 
is approximately 1.53 times the 30-m geometry measurement. This 
number is used to convert the values of the 30-m geometry measure-
ments to the equivalent 15-m geometry ones so that the comparison 
to the DOH can be made. The ZRM6013 device can provide both 
15-m and 30-m geometry values of retroreflectivity. In the data col-
lection scheme, there must be at least one sampling for every 100 m2 
of the markings. In the case of two-lane highways, samples are col-
lected at an interval of 800 m, with RL of markings measured at two 
locations, the shoulder line (white line) and the direction-separating 
line (yellow lines), as shown in Figure 3a. For highways of four or 
more lanes, samples are collected at an interval of 400 m and RL of 
markings is measured at three locations, the shoulder line (white 

line), the lane-separating line (white dotted line), and the median 
line (yellow line), as shown in Figure 3b.

One measurement is the average of the five readings from the 
same location. In total, the number of measurements comes up to 
5,000 samples through the course of the data collection scheme. 
The geographic information system (GIS) coordinates of each 
location are also collected to represent the GIS map of the study 
area. In addition, other relevant prevailing information is col-
lected, such as AADT, percentage of heavy vehicles, and number 
of lanes at the measurement sites. This information will be used as 
explanatory variables in the service life models of the pavement 
markings. The data set consists of several variables as summarized 
in Table 1.

(a) 

(b) 

FIGURE 3    Data collection locations for (a) two-lane highways and (b) highways of four 
or more lanes.
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Pavement Marking Service Life 
Maintenance Models

In this section, the methodology to represent the service life of the 
thermoplastic pavement markings is presented based on the dura-
tion modeling analysis. The service life of the thermoplastic pave-
ment markings is assumed to follow a certain distribution in which 
the distribution parameters are a function of relevant field variables 
such as traffic volumes. The optimal parameters are estimated with 
the MLE. This section consists of two parts. The first part presents 
details of the MLE of the service life distribution parameters and the 
second part presents an application of the model to estimate the field 
data parameters.

MLE of Service Life Model

In this research, the service life of the pavement markings is 
assumed to follow a Weibull distribution in which the distribu-
tion parameters are a function of traffic volume per lane and 
other relevant variables at each site. The Weibull distribution is 
selected because it has widely been used to model service life 
distribution of pavements and bridges as mentioned in Mishalani 
and Madanat (8). The service life probability density function 
(pdf) can be expressed as
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where

	fT(t)	=	pdf of the service life of pavement markings;
	 λ	=	� eβ0+β1X1+β2X2+ . . . +βKXK, scale parameter of Weibull distribution;
	 βi	=	model parameters to be estimated;
	 Xi	=	exogenous variables; and
	 p	=	� shape parameter of Weibull distribution to be estimated.

The mean and the variance of the Weibull distribution can be 
expressed as
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where T is a random variable representing the service life of pavement 
markings and Γ(z) is the gamma function,
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∞
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0

When p = 1, the distribution becomes a negative exponential dis-
tribution. When 0 < p <1, the hazard rate is a decreasing function. 
When p > 1, the hazard rate is an increasing function. The hazard rate 
function is the conditional probability that a pavement marking will 
fail (its retroreflectivity is below the minimum requirement) between 
time t and t + dt, given that the pavement marking has not failed up 
to time t. The hazard rate function can be defined as follows:

h t
f t

F t
T

T

( ) =
( )

− ( )1
3( )

where h(t) is the hazard rate function of pavement markings, and FT (t) 
is the cumulative distribution function (cdf) of pavement markings.

Given the field data observations, there are two categories of data:

1.	 Data from the markings that have already failed at the time of 
data collection. This means that the retroreflectivity of the markings 
is below the minimum requirement at the time when the measurements 
were made. This type of data is called failed category.

2.	 Data from the markings that have not yet failed at the time of 
data collection. This means that the retroreflectivity of the markings is 
above the minimum requirement at the time when the measurements 
were made. This type of data is called the not failed category.

To use the MLE technique to estimate the model parameters for 
the retroreflectivity data from field collection, the likelihood func-
tion is specified. Because the data come from two categories, the 
likelihood of each observation can be expressed into two groups as 
shown in Equations 4 and 5.

Category 1 or failed category:
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Equation 4 represents the probability that the service life of the 
marking observation i is less than its age at the time of observation 
(P[T < ti]). In other words, it is the probability that the i observation 
is in the failed category at the time of observation.

Category 2 or not failed category:
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Equation 5 represents the probability that the service life of the 
marking observation i is more than its age at the time of observation 
(P[T > ti]). In other words, it is the probability that the i observation 
is in the not failed category at the time of observation.

As a result, the log-likelihood (LogL) function can be expressed 
as follows:
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TABLE 1    Analysis Variables

Variable Description

AADT_LANE Annual average daily traffic per lane (vehicles/day/lane)

PHV Percentage of heavy vehicles (percent)

RL15 Marking retroreflectivity measured with 15-m instrument 
(mcd/lx/m2)

Age Age of pavement marking at the time of observation 
(days)

Surf Wearing surface type: 1 = concrete, 0 = asphalt
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where

	LogL(β0, β1, β2, . . . , βK)	=	 log-likelihood function,
	 N1	=	�number of observations in failed 

category,
	 N2	=	� number of observations in not failed 

category,
	 βi	=	model parameter to be estimated,
	 ti	=	�age of the pavement marking obser-

vation i, and
	 Xi

j	=	� value of the j independent variable of 
the observation i.

To obtain the mean values of each parameter, the log function is 
differentiated with respect to each model parameter and is equated 
to zero. The covariance matrix of the model parameters is esti-
mated from the inverse of the negative of the Hessian matrix of the 
log-likelihood function.

Application of Service Life Model to Field Data

In this section, the proposed methodology is applied to the collected 
data to obtain the model parameters that can be used to estimate the 
mean service life of the thermoplastic pavement markings. There are 
three types of pavement markings investigated: (a) white shoulder 
(solid) lines, (b) white lane-separating (dotted) lines, and (c) yellow 
lines. On the application of the proposed MLE to estimate the service 
life, the following results are found.

The significant variables are shown in Table 2. The AADT per lane 
is the most important factor contributing to deterioration of pavement 
markings. Obviously, AADT per lane has a negative effect on the 
service life of pavement markings. As the traffic volume increases, 
the service life of pavement markings decreases as a result of wear 

and tear from traffic. The results indicate that the service life of yel-
low lines is not significantly affected by the amount of traffic. Yellow 
lines are used at medians to separate traffic directions and drivers in 
Thailand are required to drive on the shoulder lane except for pass-
ing maneuvers; therefore, traffic has no effect on the yellow lines. 
The mean service life can also be estimated from the MLE results. 
The mean of the Weibull distribution can be calculated with Equa-
tion 2. The average service lives of pavement markings are estimated 
by expressions in the following table and represented in Figure 4:

TABLE 2    MLE of Service Life of Thermoplastic Pavement Markings

Variable Coefficient
Standard 
Error t-Statistic p-Value

MLE Results for Thermoplastic White Shoulder (Solid) Linesa

Intercept 6.1534 0.1577 39.01 .000

AADT_LANE −2.38 × 10−4 0.13 × 10−4 −5.64 .000

p (shape) 0.3476 0.0431 8.06 .000

MLE Results for Thermoplastic White Lane-Separating (Dotted) Linesb

Intercept 5.8416 0.2781 21.01 .000

AADT_LANE −2.30 × 10−4 5.72 × 10−5 −4.01 .000

p (shape) 0.3309 0.0583 5.68 .000

MLE Results for Thermoplastic Yellow Median Linesc

Intercept 6.9740 1.040 6.71 .000

p (shape) 0.527593 0.0385 13.704 .000

aCensoring information: number in not failed state, 341; number in failed state, 
1,311; log-likelihood = −765.264.
bCensoring information: number in not failed state, 134; number in failed state, 
687; log-likelihood = −326.374.
cCensoring information: number in not failed state, 768; number in failed state, 
995; log-likelihood = −1,168.349.

FIGURE 4    Average service life of thermoplastic markings in Thailand (veh = vehicles).
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Marking Type Average Service Life (months)

White shoulder line (5.152 × e6.1534−2.38 × 10−4 AADT_LANE)/30
White lane-separating line (6.169 × e5.842−2.2951 × 10−4 AADT_LANE)/30
Yellow median line 65

For thermoplastic white shoulder (solid) lines, the average service 
life is less than 24 months in most traffic conditions, except for low-
AADT conditions [less than 5,100 vehicles per day per lane (vpdpl)]. 
Similarly for white lane-separating (dotted) lines, all of them have 
less than 24 months of service life by average, except for low AADT 
(less than 4,715 vpdpl). They also possess the lowest service life 
among the different marking types, because their installation location 
is subjected to lane-changing traffic. It is noteworthy that the service 
lives of white shoulder (solid) lines and white lane-separating (dotted) 
lines are almost alike for high traffic volumes (above 7,500 vpdpl). 
Yellow lines can provide an average service life of more than  
24 months, as required by the DOH specification, because their 
installation location near medians is away from traffic. In other words, 
the installation location of the markings has a significant effect on 
the service life of the markings. This finding is relevant to the find-
ings of Sitzabee (6) and Sitzabee et al. (7), which indicate that the 
lateral location of markings affects the service life of the markings. 
In addition, the DOH specification on yellow thermoplastic mark-
ings is less restrictive than that of white thermoplastic markings, 
which requires that yellow thermoplastic markings should have a 
minimum RL of 100 mcd/lx/m2 and white thermoplastic markings 
should have a minimum RL of 150 mcd/lx/m2 with the 15-m geometry 
measurement.

Pavement Marking Maintenance 
Optimization Model

Pavement marking maintenance is an important activity. Every year 
the DOH spends a lot of money on pavement markings. As a result, 
there is a need for an optimization program to estimate required 
annual budgets for a given percentage of control sections with retro
reflectivity above the minimum DOH specification and to optimally 
allocate budgets to each highway control section. The DOH uses the 
jurisdiction boundary to decide the extent of each control section 
and most of these sections are less than 10 km in length. The opti-
mization model is formulated as a mixed-integer program with the 
following model assumptions:

•• The planning horizon is 4 years in length. Each year consists 
of four periods or quarters as shown in Figure 5.

•• The maintenance decision is made at the beginning of each 
period and each period is 3 months in length (Δt).

•• The service lives and remaining lives are integral units of a 
period length. Remaining lives of pavement markings are known at 
the beginning of the planning horizon.

•• In the same control section, all markings are simultaneously 
repainted. Remaining lives and service lives of markings are 
determined from the minimum remaining lives and service lives of 
all markings in the same control section.

•• The warranty period of thermoplastic paints is 2 years. Pavement 
markings that are in the warranty period cannot be repainted.

The proposed pavement marking maintenance optimization model 
is described, followed by a case study.

Description of Proposed Budget Approximation 
Optimization Model

The budget approximation module is used to approximate required 
budgets in each year of the planning horizon. The module is for-
mulated as a preemptive goal program to minimize the total main-
tenance cost while maintaining percentage of control sections with 
retroreflectivity above the minimum DOH requirement. Gener-
ally, the approach of goal programming is to establish a specific 
numeric goal or an aspiration level for each of the objectives, to 
formulate an objective function for each objective, and then to 
seek a solution that minimizes the (weighted) sum of deviations of 
these objective functions from their respective goals. There are 
three possible types of goals:

1.	 A lower one-sided goal sets a lower limit that one does not 
want to fall below.

2.	 An upper one-sided goal sets an upper limit that one does not 
want to exceed.

3.	 A two-sided goal sets a specific target that one does not want 
to miss on either side.

Goal programs can be categorized according to how goals com-
pare in importance. In one case, called nonpreemptive goal program-
ming, all goals are roughly of comparable importance. In another 
case, called preemptive goal programming, there is a hierarchy of 
priority levels for the goals, so that the goal of primary importance 
receives first-priority attention, that of secondary importance receives 
second-priority attention, and so forth if there are more than two pri-
ority levels. For further information on goal programs, see Hillier 
and Lieberman (9) and Sherali and Soyster (10). The proposed goal 
program will provide a compromising solution of maintenance 
budget. The first-priority goal is to maintain the percentage of 
control sections that are in good condition and the second-priority 
goal is to minimize total maintenance cost. The parameters and deci-
sion variables are first defined, followed by the proposed budget 
approximation formulation.

Parameters

The parameters are defined as follows:

	 N	=	 total number of control sections;
	 T	=	 total number of time periods;

∆t 

1 2 3 4 

1 period (quarter) = 3 months 

5 6 

Planning horizon = 16 periods = 4 years 

15 16 17 

FIGURE 5    Planning horizon.
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	 Ci,t	=	� pavement marking maintenance cost of control section i 
in time period t;

	 Pcr	=	� percentage of control sections in good condition in each 
time period;

	 Si	=	� service life of new pavement marking of control section i;
	Warri,t	=	� 1 if control section i is still on a warranty in time period t, 

0 otherwise;
	 M	=	� sufficiently large positive number (e.g., 100); and
	 z0i	=	�initial remaining life (in time period unit) of control 

section i.

Decision Variables

The decision variables are defined as follows:

	d cos t−, d cos t+	=	� downside and upside deviation from the aspi-
ration target of zero maintenance cost;

	 dt
−, dt

+	=	� downside and upside deviation from the aspira-
tion target of proportion of control sections in 
good condition (i.e., with retroreflectivity above 
the minimum requirement) in time period t;

	 xi,t	=	� 1 if control section i is selected for maintenance 
in time period t, 0 otherwise;

	 yi,t	=	� 1 if control section i has its remaining life greater 
than or equal to 1 time period at time period t 
or control section i is selected for maintenance 
at time period t, 0 otherwise;

	 zi,t	=	� remaining life (in time period unit) of control 
section i at the beginning of time period t; and

	 δi,t	=	1 if zi,t ≤ 1 and 0 if zi,t ≤ 0.

Formulation

The proposed budget approximation formulation is

lex min ; ( )zz zz1 2 7{ }

where lex min is the lexicographic minimization and

zz dt
t

T

1
1
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The objective functions in Equations 7.1 and 7.2 are minimized in 
lexicographical order, yielding two optimization programs that are 
solved in a sequence. First, the objective (Equation 7.1) is minimized 
subject to constraints (Equations 8 to 25). The aspiration level in the 
first program is the specified percentage (Pcr) of control sections with 
retroreflectivity above the minimum requirement. After results are 
obtained from the first optimization program, the optimal downside 
deviations from the desired percentage of good condition control 
sections (dt

−* ) are then fixed in the second program. The second pro-
gram minimizes the objective (Equation 7.2) subject to constraints 
(Equations 8 to 25) and an additional constraint set (Equation 26):

d d t Tt t
− −≤ ∀ =

∗
1 2 26, , . . . , ( )

Constraint 26 implies that while minimizing total maintenance 
costs, no larger downside deviation from the aspiration level is 
retained. The aspiration level in the second program is the total 
cost of zero (see Constraint 14), which means that one wants to 
minimize the total maintenance costs. Constraints 8 to 9 enforce that 
δi,t = 1 when the remaining service life is at least one time period and 
δi,t = 0 otherwise (i.e., δi,t = 0 if and only if zi,t ≤ 0; otherwise δi,t = 1 
if and only if zi,t ≤ 1). Constraints 10 to 13 determine the remaining 
service life in the next time period based on the remaining service 
life and the maintenance decision at the current time period (i.e., 
zi,t+1 = zi,t − 1 if δi,t = 1, and zi,t+1 = xi,t Si − 1 if δi,t = 0).

Equation 14 implies that total maintenance cost is equal to  
d cos t+ − d cos t−. Because Constraint 25 indicates that d cos t+ 
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and d cos t− are nonnegative and the objective minimizes d cos t+, 
the optimal d cos t+ is the total maintenance cost, and d cos t− 
equals 0. That is, Equation 14 is an upper one-sided goal that sets 
an upper limit of zero maintenance cost that one does not want to 
exceed, and the upside deviation from this goal is total mainte-
nance cost. Equation 15 represents a lower one-sided goal constraint 
on percentage of control sections with retroreflectivity above the 
minimum requirement for each period. One does not want to fall 
under the desired percentage of control sections in good condition in 
each time period. Equation 16 guarantees that no control section is 
repainted within 2 years, which is a warranty period of thermoplas-
tic markings. Equation 17 and the objective (Equation 7) determine 
the variables yi,t as follows. If control section i is not selected for 
maintenance at time period t (i.e., xi,t = 0) and its remaining life is 
less than or equal to 0 (i.e., δi,t = 0), then Equation 17 forces yi,t to 0, 
implying that the control section i is not in good condition at time t. 
If control section i is selected for maintenance at time period t (i.e., 
xi,t = 1) or its remaining life is greater than 0 (i.e., δi,t = 1), then the 
model will force yi,t to 1, implying that the control section i is in 
good condition at time t. Equation 18 states that the maintenance of 
the control sections from time periods 1 to 7, which are under war-
ranty because of the repaint before the analysis period, is forbidden. 
Equation 19 set up the initial remaining service life for each control 
section. Constraint 20 is an integer constraint for variables zi,t. Equa-
tions 21 to 23 are binary constraints for variables yi,t, xi,t, and δi,t, 
respectively. Constraints 24 and 25 are nonnegativity constraints.

Budget Approximation Optimization Model

The proposed budget approximation optimization model is applied 
to estimate the required quarterly budget during the planning hori-

zon for the study area, which consists of 109 control sections. The 
aspiration level of the percentage of control sections with retrore-
flectivity above the minimum requirement is set at 100%. Solutions 
may not attain to the aspiration level because some control sections 
are still under warranty, even though their retroreflectivity is below 
the minimum requirement. Therefore, these control sections cannot 
be repainted. The result of the application of the proposed model to 
the study area is shown in Figure 6.

The result shows that the aspiration level of 100% is not attainable 
during the planning horizon because some control sections are still 
under warranty even though their retroreflectivity is below the mini-
mum requirement, which indicates an inconsistency between the 
DOH specification and the field practice in Thailand. The fifth quarter 
acquires the highest budget of 45.616 million bahts ($1.52 million; 
30 bahts = $1.00, 2011 U.S. dollars) and the third quarter acquires 
the lowest budget of 3.488 million bahts ($0.116 million) in the plan-
ning horizon. In Figure 6, the pavement marking system gradually 
deteriorates from 95.41% with the approximated annual budget of 
45.616 million bahts ($1.520 million) in Quarter 5 to 77.98% with the 
annual budget of 18.909 million bahts ($0.630 million) in Quarter 10 
before it is gradually improved to reach its new high percentage 
in Quarter 15. This phenomenon appears to cycle over the plan-
ning period mostly because of the inconsistency between the DOH 
specification and the field practice.

Alternatively, Table 3 shows an annual view of the approximated 
budget and associated average percentages as opposed to the quar-
terly view in Figure 6. The annual budget for Year 2 is 3.01, 1.52, 
and 1.78 times higher than those for Years 1, 3, and 4, respectively, 
whereas the annual average percentage of good condition control 
sections in Year 2 is 7.11% and 10.19% better than those in Years 1 
and 3, respectively, but 1.40% worse than that in Year 4. The annual 

FIGURE 6    Pavement marking maintenance budget approximation result at study area.
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average percentages in Table 3 are the best possible values without a 
budget constraint given the 2-year warranty specification of DOH. 
The approximated annual budgets are not uniform and greatly fluctu-
ated over the 4 years. The proposed budget approximation optimiza-
tion program can further be enhanced to smooth the annual budgets 
over the planning period by adding relevant constraints. For instance, 
the control sections belonging to certain areas and highway func-
tional classifications should be guaranteed to receive the minimal 
annual budgets. This can be incorporated in the proposed model.

Conclusions and Recommendations

In this study, field data collection on thermoplastic pavement marking 
retroreflectivity was conducted in Thailand to examine the service life 
distribution of thermoplastic pavement markings. Unlike most studies 
on pavement marking retroreflectivity, the duration model is employed 
instead of ordinary multiple regression models. This approach consid-
ers a probabilistic nature of the service life of the markings. The pro-
posed model is based on the MLE technique. The data are categorized 
into failed markings and not failed markings, depending on their ret-
roreflectivity, compared to the minimum requirements at the time of 
measurement. The likelihood function is developed from these two 
categories of data. On the completion of this research, it was found that 
AADT per lane has a significant negative effect on the service life of 
the thermoplastic white shoulder lines and the thermoplastic white 
lane-separating lines because it is an indicator of marking exposure. 
However, it does not have a significant effect on the deterioration of 
thermoplastic yellow median lines mainly because of Thailand’s 
requirement to drive on the shoulder lane except for passing maneu-
vers. The other variables, including percentage of heavy vehicles and 
wearing surface type, were not found to have a significant effect. In 
terms of estimated average service life, thermoplastic yellow median 
lines can provide an average service life of more than 24 months, as 
required by the DOH specifications. The thermoplastic white lines at 
shoulders and lane-separating lines mostly have less than 24 months 
of service life. The white lane-separating lines have the lowest service 
life among pavement marking lines because they are subjected to 
lane-changing activities.

Furthermore, the budget approximation optimization model was 
developed to determine required annual budgets in each year over 
the planning horizon such that the percentages of good condition 
control sections over various time periods are maintained. The pro-
posed model is a mixed-integer program based on the preemptive 
goal programming. The first-priority goal is to maintain percentage 
of control sections in a good condition and the second-priority goal 
is to minimize total maintenance cost. From the illustrative exam-
ple, it was found that the aspiration level of 100% is not attainable 

during the planning horizon because certain control sections are still 
in the warranty period of 2 years, even though their retroreflectivity 
is below the minimum requirement. This indicates the impact of the 
inconsistency between the DOH specification and the field practice. 
As such, the deterioration of pavement markings in the study area 
and the estimated quarterly budgets, as well as annual budgets, 
greatly fluctuate over the planning period.

In the future, the authors plan to collect more data to validate the 
estimated average service life of thermoplastic pavement markings. 
Furthermore, an asset management program for pavement markings 
will be developed from the findings from this research to financially 
plan an optimal maintenance schedule for pavement markings. The 
proposed budget approximation optimization model can incorporate 
additional constraints, such as the smoothness of estimated annual 
budgets and the minimum annual budgets for pavement markings in 
certain areas and highway functional classifications. Also, the budget 
allocation optimization model can be developed to help DOH opti-
mally allocate limited available budgets to the system of pavement 
markings.
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TABLE 3    Approximated Annual Budget and Average Percentage  
of Control Sections in Good Condition over Planning Period

Year
Approximated Annual Budget 
[million bahts (US$ millions)]

Annual Average Percentage 
of Control Sections in  
Good Condition

1 41.176 (1.373) 83.03

2 124.042 (4.135) 90.14

3 81.582 (2.719) 79.95

4 69.502 (2.317) 91.54
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ABSTRACT 1 
The equivalent mathematical formulation of the combined doubly-constrained gravity-based trip 2 
distribution and paired-combinatorial-logit stochastic user equilibrium assignment problem 3 
(CDA-PCL-SUE) is proposed.  Its first order conditions are shown to be equal to the gravity 4 
equations and PCL formula.  The proposed solution method is a disaggregate simplicial 5 
decomposition algorithm that iterates two phases.  Phase I employs the partial linearization 6 
descent algorithm to approximately solve the restricted CDA-PCL-SUE, and Phase II is the 7 
column generation phase.  In Phase I, the partially linearized problem is decomposed into an 8 
entropy maximization problem on O-D flow space that can be solved by Bregman’s balancing 9 
algorithm and a PCL SUE problem that can be solved by PCL formula.  CDA-PCL-SUE is 10 
compared with its multinomial-logit counterpart (CDA-MNL-SUE) on two test networks at two 11 
congestion levels.  We found that the relationship of O-D flow difference and dispersion factor is 12 
not necessarily clear, whereas the link flow patterns from the two models are more identical at 13 
higher dispersion factors on the two networks at two congestion levels.  At a fixed dispersion 14 
factor, CDA-PCL-SUE assigns less flow to a path with a higher average similarity index and 15 
higher path cost than CDA-MNL-SUE does.  CDA-PCL-SUE generally assigns less flow to links 16 
with more paths passing through than CDA-MNL-SUE does.  The relationship between O-D 17 
flow allocation and the average similarity indices for O-D pairs is not obvious, since the gravity-18 
based trip distribution equation is based on additional variables and the origin and destination 19 
demand constraints must be satisfied.       20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
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1. INTRODUCTION 1 
The well-known four-step transportation planning process consists of trip generation, trip 2 
distribution, modal split and traffic assignment.  These are typically solved in a fixed sequence.  3 
The output from one model is the input for the next.  This sequential approach has its inherent 4 
drawback such as the lack of a unifying rationale that would explain all aspects of demand 5 
jointly (1).  Furthermore, to achieve a consistent output from the process, the four steps have to 6 
be repeated with a feedback mechanism although the convergence cannot be guaranteed.  An 7 
alternative approach is to simultaneously consider certain steps in combined travel demand 8 
models.  A comprehensive review of combined travel demand models can be found in (1)-(2).  9 

The combined distribution and assignment (CDA) problem is an instance of such 10 
combined travel demand models.  CDA simultaneously determines the distribution of trips 11 
between origins and destinations in a transportation network and the assignment of trips to routes 12 
in each origin-destination pair.  The trip distribution is mostly assumed to be a gravity model 13 
with a negative exponential deterrence function.  The static trip assignment is either user 14 
equilibrium model (UE) or stochastic user equilibrium model (SUE).  UE assumes that drivers 15 
have complete and accurate information on the state of the network when they make their route 16 
choices, and drivers select optimal routes to benefit themselves the most.  SUE assumes that trip 17 
assignment follows a probabilistic route choice model.  The multinomial logit-based SUE model 18 
(MNL-SUE) is widely adopted in the literature.  Evans (3) formulated the CDA problem that 19 
integrates the gravity-model trip distribution and user-equilibrium trip assignment (CDA-UE).  20 
Erlander (4) formulated the CDA that integrates the gravity-model trip distribution and 21 
multinomial-logit stochastic-user-equilibrium assignment (CDA-MNL-SUE).  Lundgren and 22 
Patriksson (5) outlined the solution algorithms for CDA-UE and CDA-MNL-SUE.        23 

With the property of independence of irrelevant alternatives (IIA) in the MNL model, the 24 
MNL-SUE has an infamous deficiency in the incapability to account for similarities between 25 
different routes.  That is, in the MNL-SUE, overlapping routes are treated as uncorrelated, and 26 
this may cause counterintuitive assignment results.  Although the multinomial probit-based SUE 27 
model by (6) can account for similarity between different routes, it is not attractive due to the 28 
lack of closed form of probability function.  Over the past years, researchers adopted other 29 
discrete choice model structures (a.k.a. extended logit models) to SUE in order to capture the 30 
similarity between routes on the perceptions and decisions of drivers while keeping the analytical 31 
tractability of the logit choice probability function.  The SUE models based on the modifications 32 
of MNL are C-logit model (7) and path-size logit model (8).  The SUE models based on the 33 
generalized extreme value theory are paired combinatorial logit model (9,10,23), cross-nested 34 
logit model (11), logit kernel model (12), link-nested logit model (13), and generalized nested 35 
logit model (14).   36 

Chen et al. (10) pointed out that among these extended logit models, the paired 37 
combinatorial logit model (PCL) is considered the most suitable for adaptation to the route 38 
choice problem due to two features that can be employed to address the IIA property (i.e. the 39 
overlapping-route problem) in the MNL model.  The first feature is that each pair of routes can 40 
have a similarity relationship that is completely independent of the similarity relationship of 41 
other route pairs.  Second, the PCL model can be scaled to account for perception variance with 42 
respect to different trip lengths.  In this paper, we proposed a combined gravity-model 43 
distribution and paired-combinatorial-logit stochastic-user-equilibrium assignment formulation 44 
(CDA-PCL-SUE) and developed a disaggregate simplicial decomposition algorithm.  The trip 45 
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distribution model is doubly constrained such that both the total flow generated at each origin 1 
node and the total flow attracted to each destination node are fixed and known. 2 

The remainder of the paper is organized as follows.  Section 2 proposes the equivalent 3 
mathematical formulation of the CDA-PCL-SUE problem and derives the first-order conditions 4 
that can be used in algorithmic design.  Section 3 describes the solution algorithm and highlights 5 
the details of each algorithmic step.  Section 4 presents empirical analysis undertaken with two 6 
sample networks.  Section 5 concludes the paper. 7 
 8 
2. EQUIVALENT MATHEMATICAL FORMULATION 9 
We extend the paired combinatorial logit-based stochastic user equilibrium (PCL-SUE) 10 
equivalent mathematical program by (9,10) to account for doubly-constrained trip distribution.   11 
Denote by CDA-PCL-SUE the proposed combined distribution-assignment (CDA) equivalent 12 
mathematical model.  The underlying route choice in CDA-PCL-SUE is a hierarchical route 13 
choice model that decomposes the choice probability into two levels.  The upper level computes 14 
the marginal probabilities P(kj) of choosing an unordered route pair k and j, based on the 15 
similarity index and the systematic utility.  The lower level is a binary logit model that computes 16 
the conditional probabilities of choosing a route given the chosen route pair: P(k|kj) and P(j|kj).  17 
The underlying trip distribution in CDA-PCL-SUE is a doubly constrained model that requires 18 
the O-D flows out of an origin node and into a destination node to be equal to the known origin 19 
demands and destination demands, respectively.   20 

The definitions of sets, parameters, decision variables and mathematical formulation are 21 
given below, followed by the first-order conditions that are shown to be identical to the PCL-22 
SUE equations and gravity-model based trip distribution equations. 23 
 24 
2.1. Descriptions of Equivalent Mathematical Formulation 25 
Set 26 

rsK = set of routes between origin r and destination s 27 

rsL = set of unordered route pairs between origin r and destination s  28 
R = set of origins 29 
S = set of destinations 30 
RS  = set of origin-destination (O-D) pairs 31 
A = set of arcs 32 
 33 
Parameters 34 

rO = total trips originated from origin r 35 

sD = total trips destined to destination s 36 
 =dispersion coefficient 37 

rs
kj =measure of dissimilarity index between routes k and j connecting O-D r-s ( rs

kj
rs
kj  1 ) 38 

rs
kj =measure of similarity index between routes k and j connecting O-D r-s 39 
rs
ka =1 if arc a is on route k connecting origin r to destination s; 0 otherwise 40 

 41 
Decision Variables 42 

ax = flow on link a 43 
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at = travel time on link a 1 

rsq = demand between origin r and destination s 2 
rs

kjkf )( = flow on route k of route pair kj between origin r and destination s 3 
rs
kc = travel time on route k connecting O-D pair r,s. 4 

Note that rs
kjkf )( = rs

jkkf )( .  For instance, given }3,2,1{rsK , the expression rs
kjkf )( kjKk rs  ,  5 

includes six variables: rsf )12(1 , rsf )13(1 , rsf )21(2 , rsf )23(2 , rsf )31(3 , and rsf )32(3 .  The expression rs
kjkf )(   6 

||,...,1;1||,...,1 rsrs KkjKk   includes three variables: rsf )12(1 , rsf )13(1 , and rsf )23(2 . 7 
 8 
Mathematical Formulation 9 

321min zzzz            (1.1) 10 





Aa

x

a

a

dwwtz
0

1 )(           (1.1a) 11 

  
  





Rr Ss Kk

kj
Kj

rs
kj

rs
kjkrs

kjk
rs
kj

rs rs

f
fz





)(

)(2 ln1        (1.1b) 12 

  
 



 




Rr Ss

K

k

K

kj
rs
kj

rs
kjj

rs
kjkrs

kjj
rs

kjk
rs
kj

rs rs ff
ffz

1||

1

||

1

)()(
)()(3 ln))(1(1





     (1.1c) 13 

Subject to 14 
rs

Kk
kj
Kj

rs
kjk qf

rs rs

 





)(   SsRr  ,         (1.2) 15 

r
Ss

rs Oq 


   Rr           (1.3) 16 

s
Rr

rs Dq 


 Ss           (1.4) 17 

0)( rs
kjkf   SsRrLkjKk rsrs  ,,,        (1.5) 18 

  
  





Rr Ss Kk

kj
Kj

rs
kjk

rs
aka

rs rs

fx )(   Aa        (1.6) 19 

The objective function (1.1) is composed of three components, similar to the objective of the 20 
PCL-SUE model.  Eq.(1.1a) accounts for the congestion effects.  Eq.(1.1b) and (1.1c) are two 21 
entropy terms that represent the marginal and conditional probabilities in a hierarchical route 22 
choice model.  Dissimilarity indices are incorporated into the objective function (Eq.1.1b and Eq. 23 
1.1c), allowing the model to capture the similarity effect and stochastic perception error effect in 24 
addition to the congestion effect (Eq.1.1a).  Eq.1.2 enforces the summation of all path flows 25 
connecting an O-D pair to be equal to the O-D flows ( rsq ) of this O-D pair.  Eq.1.3 and Eq.1.4 26 
are the O-D flow balance constraints for the origin nodes and destination nodes, respectively.  27 
Eq.1.5 are the non-negativity constraints for all path flow variables.  Eq.1.6 determines the link 28 
flow variable from the summation of all path flows passing through this link.   29 
 30 
 31 
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2.1.2. First-Order Conditions 1 
 2 
We use the projection of CDA-PCL-SUE onto the set of route flows.  That is, Eq.(1.3) and 3 
Eq.(1.4) are substituted by Eq. (1.2), yielding Eq.(1.7) and Eq.(1.8): 4 
 5 

r
Ss Kk

kj
Kj

rs
kjk Of

rs rs

  
 




)(    Rr  : ru        (1.7) 6 

s
Rr Kk

kj
Kj

rs
kjk Df

rs rs

  
 




)(  Ss   : sv        (1.8) 7 

where ru and sv are the dual variables corresponding to Eq.(1.7) and Eq.(1.8), respectively.  The 8 
projected program consists of the objective (1.1), the nonnegativity constraints (1.5) and Eq.(1.7) 9 
and Eq.(1.8).  This is an equivalent CDA-PCL-SUE program, and its first-order conditions must 10 
be identical to the equilibrium equations and doubly-constrained gravity equations.  These 11 
conditions can be derived by forming and analyzing the Lagrangian, which, for this program, is 12 
given by 13 
 14 

54321),,,( zzzzzvuqfL          15 
where  16 

  
  





Rr Ss Kk

kj
Kj

rs
kjkrr

rs rs

fOuz )( )(4         17 

  
  





Ss Rr Kk

kj
Kj

rs
kjkss

rs rs

fDvz )( )(5  18 

The minimum of this Lagrangian with respect to the path flow variables has to be subject to the 19 
nonnegativity constraints Eq.(1.5).  The maximum of the Lagrangian with respect to u and v , is 20 
unconstrained.  The first-order conditions for a saddle point of this Lagrangian program are 21 
given by 22 

0)(

)(





rs

kjkf
L  SsRrLkjKk rsrs  ,,,         23 

0)(

)(
)( 



rs

kjk

rs
kjk f

Lf  SsRrLkjKk rsrs  ,,,   24 

0)( rs
kjkf   SsRrLkjKk rsrs  ,,,        25 

0)(





ru
L   Rr            26 

0)(





sv
L   Ss            27 

 
)(





rs
kjkf

L
rs

kjk
rs

kjk
rs

kjk
rs

kjk
rs

kjk f
z

f
z

f
z

f
z

f
z

)(

5

)(

4

)(

3

)(

2

)(

1


















  28 

 = rs
kc ru sv + 


1











rs
kj

rs
kjk

rs
kj f


 )(ln + 









 









 
rs
kj

rs
kjj

rs
kjk

rs
kj ff


 )()(ln

1
   29 
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If rs
kjkf )( >0, then 0

)(





rs
kjkf

L , yielding 1 






rs
kj

rs
kj

rs
kjkf









 )(ln +





rs
kj

rs
kj

rs
kjj

rs
kjk ff












 
1

)()(ln = ru sv rs
kc


1

  2 









rs
kj

rs
kj

rs
kj

rs
kjj

rs
kjk

rs
kj

rs
kjk fff












 










1

)()()( = 





 


1exp rs

ksr cvu  3 

Both sides are raised to the power of rs
kj
 : 4 

  rs
kj

rs
kj

rs
kjj

rs
kjk

rs
kjk fff 




1

)()()( = 




















 rs

kj

rs
k

rs
kj

rs
kj

s
rs
kj

rrs
kj

cvurs
kj








  exp1exp

1

    (2) 5 

 6 

If rs
kjjf )( >0, then 0

)(





rs
kjjf

L , yielding Eq.(3) 7 

  rs
kj

rs
kj

rs
kjj

rs
kjk

rs
kjj fff 




1

)()()( = 




















 rs

kj

rs
j

rs
kj

rs
kj

s
rs
kj

rrs
kj

cvurs
kj








  exp1exp

1

    (3) 8 

 9 
The summation of Equations (2) and (3) yields Eq.(4) and Eq.(5). 10 
 11 

  rs
kj

rs
kjj

rs
kjk ff 

1

)()(  = 









































 rs

kj

rs
j

rs
kj

rs
k

rs
kj

rs
kj

s
rs
kj

rrs
kj

ccvurs
kj











  expexp1exp

1

  (4)  12 

 rs
kjj

rs
kjk ff )()(  =  

rs
kj

rs
kj

rs
j

rs
kj

rs
k

sr
rs
kj

ccvu






 































 expexp1exp    (5) 13 

 14 
Substitute m and l for k and j in Equation (5) and add the summation operators: 15 
 16 

  


 


1||

1

||

1
)()(

rs rsK

m

K

ml

rs
mll

rs
mlm ff =   



 





























1||

1

||

1
expexp1exp

rs rs

rs
mlK

m

K

ml
rs
ml

rs
l

rs
ml

rs
mrs

mlsr
ccvu







  (6) 17 

 18 
Eq.(5) is divided by Eq.(6), yielding the marginal probability of choosing route pair k,j among all 19 
possible pairs m,l: 20 

 
)(1||

1

||

1
)()(

)()( kjP
ff

ff
rs rsK

m

K

ml

rs
mll
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mlm
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kjj
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  (7) 21 
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Substituting Eq.(4) in Eq.(2) yields: 1 

 
rs
kj
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kj

rs
j
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kj

rs
k

rs
kj

rs
k

sr
rs
kj

rs
kjk
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exp1exp
       (8) 2 

Equation (8) is divided by Equation (5), yielding Eq.(9) the conditional probability of choosing 3 
route k from route pair k,j: 4 



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 6 
Substituting (8) in (1.2) yields Eq.(10): 7 
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exp
)exp(1exp   SsRr  ,   (10) 8 

The O-D flow conservation constraints (Eq.1.3 and Eq.1.4) are substituted by Eq.(10), yielding 9 
Eq.11 and Eq.12: 10 
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  Rr      (11) 12 
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D

)(1exp 
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where )( rscg =  






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



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
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
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
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

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





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

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
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




rs rs
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kjKk

kj
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kj
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j
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kj
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k
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kj
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kj

cc

c












1

expexp

exp
     (13) 1 

 2 
To obtain the result in a more familiar form, we denote 3 

rA =  
r

r

O
u 1exp   4 

sB =
s

s

D
v )exp(  5 

Eq.(10) can now be written as a gravity-model based trip distribution model: 6 
 7 

)( rs
srsrrs cgDOBAq    Rr , Ss  8 

 9 
where )( rscg is the function defined in Eq.(13) and rsc is the vector of route travel times of O-D 10 
pair r,s. 11 
 12 
 13 
3. DISAGGREGATE SIMPLICIAL DECOMPOSITION ALGORITHM 14 
 15 
The proposed algorithm for CDA-PCL-SUE is based on the disaggregate simplicial 16 
decomposition algorithm by (5,22).  The proposed algorithm alternates between two phases.  In 17 
phase I (the restricted master problem), given known subsets of routes between O-D pairs 18 

rsrs KK ˆ SsRr  , , of the total sets of routes in the network, the corresponding restriction 19 
of CDA-PCL-SUE (denoted by CDA-PCL-SUE-R) is solved approximately using a partial 20 
linearization descent algorithm, which is a descent algorithm for continuous optimization 21 
problems (15).  Phase I is composed of three sub-phases: Phase I.1, Phase I.2 and Phase I.3.  22 
Phase I.1 is an entropy maximization problem that can be solved by Bregman’s balancing 23 
algorithm to determine the auxiliary O-D flows.  Phase I.2 applies the PCL formula to determine 24 
the auxiliary route flows.  Phase I.3 is the line search for the next solutions (route flows and O-D 25 
flows) to the CDA-PCL-SUE-R.  In phase 2 (the column generation problem), at the 26 
approximate solution to CDA-PCL-SUE-R, the subsets rsK̂  are augmented by the generation of 27 
new routes, through the solution of a set of shortest path problems, given appropriately chosen 28 
link costs.   29 
 30 
3.1. Phase I: Restricted Master Problem 31 
 32 
The problem CDA-PCL-SUE-R is solved by a partial linearization descent algorithm.  The 33 
projection of CDA-PCL-SUE-R onto the set of feasible route flows is employed.  Given a 34 
feasible route flow vector }{ )(

nrs
kjk

n ff   at some iteration n, an approximation of CDA-PCL-SUE-35 
R is roughly solved in order to define an auxiliary feasible solution and a search direction.  The 36 
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approximate problem is constructed by linearizing the first term (z1) of the objective function of 1 
CDA-PCL-SUE-R.  The effect of this linearization is that the link costs are fixed at their levels 2 

given the current flow nf ; i.e. 
nrs

krs
kjk

n

c
f

fz





)(

1 )( .  The corresponding route costs are calculated as:  3 





Aa

n
aa

rs
ka

rs
k xtc

n

)(   SsRrKk rs  ,,ˆ , where n
ax  is the flow on arc a corresponding to the 4 

route flow nf .  The partially linearized problem (denoted by CDA-PCL-SUE-R-PL) becomes: 5 
 6 
Formulation of CDA-PCL-SUE-R-PL   (the solution is denoted by rs

kjk
f

)(
) 7 

321
~~~~min zzzz            (14.1) 8 

  
  





Rr Ss Kk

kj
Kj

rs
kjk

rs
k

rs rs

n

fcz
ˆ ˆ

)(1
~          (14.1a) 9 

  
  





Rr Ss Kk

kj
Kj

rs
kj

rs
kjkrs

kjk
rs
kj

rs rs

f
fz

ˆ ˆ

)(
)(2 ln1~





       (14.1b) 10 

  
 



 




Rr Ss

K

k

K

kj
rs
kj

rs
kjj

rs
kjkrs

kjj
rs

kjk
rs
kj

rs rs ff
ffz

1|ˆ|

1

|ˆ|

1

)()(
)()(3 ln))(1(1~





     (14.1c) 11 

 12 
Subject to 13 

r
Ss Kk

kj
Kj

rs
kjk Of

rs rs

  
 


ˆ ˆ

)(   Rr         (14.2) 14 

s
Rr Kk

kj
Kj

rs
kjk Df

rs rs

  
 


ˆ ˆ

)(   Ss         (14.3) 15 

0)( rs
kjkf  SsRrLkjKk rsrs  ,,ˆ,ˆ        (14.4) 16 

It is noted that in CDA-PCL-SUE-R-PL only rs
kjkf )( are decision variables, since rsq  are 17 

substituted by  






rs rsKk

kj
Kj

rs
kjkrs fq

ˆ ˆ
)( .  We next consider the following equivalent formulation to 18 

CDA-PCL-SUE-R-PL, which is the projection of CDA-PCL-SUE-R-PL onto the demand space, 19 
in order to solve the problem CDA-PCL-SUE-R-PL. 20 
 21 
Equivalent Formulation to CDA-PCL-SUE-R-PL 22 

)(min qU            (15.1) 23 
Subject to  24 

r
Ss

rs Oq 


   Rr            (15.2) 25 

s
Rr

rs Dq 


 Ss            (15.3) 26 

0rsq SsRr  ,            (15.4) 27 
 28 
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where 321
~~~)( zzzqU            (15.5) 1 

Subject to  2 
rs

Kk
kj
Kj

rs
kjk qf

rs rs

 



ˆ ˆ

)( SsRr  ,           (15.6) 3 

0)( rs
kjkf   SsRrLkjKk rsrs  ,,ˆ,ˆ         (15.7) 4 

 5 
This equivalent formulation utilizes the fact that the solution to (15.5)-(15.7) (i.e. the restricted 6 
PCL-SUE) is easily obtained by the use of the PCL formula: rs

rs
kjk qkjkPkjPf  )|()()( .  By 7 

performing the substitution of the PCL formula in (15.5) (i.e.  n
rs

kjk kjPf )()( nkjkP )|(  rsq   and 8 

rsnn
rs

kjj qkjjPkjPf  )|()()(   are substituted in 321
~~~)( zzzqU  ), it can be proved that the 9 

implicit function U(q) actually has the explicit form of the entropy maximization problem 10 
(problem (16.1)-(16.8) in Phase I.1).  Hence, it is clear that CDA-PCL-SUE-R-PL is solved 11 
through the solution of the entropy maximization problem followed by the application of the 12 
PCL formula.  Specifically, an optimal solution to the equivalent formulation of CDA-PCL-13 
SUE-R-PL is obtained by Phases I.1-I.3. 14 
 15 
Phase I.1 Entropy Maximization Problem (the solution is denoted by n

rs
q SsRr  , ) 16 


 


Rr Ss

rsrs
n
rsrs

n
rs qqq lnmin          (16.1) 17 

Subject to 18 
r

Ss
rs Oq 



   Rr  r:          (16.2) 19 

s
Rr

rs Dq 


 Ss  s:          (16.3) 20 

0rsq SsRr  ,           (16.4) 21 
 22 
where 23 
 24 




























































 




 

 



 





1|ˆ|

1

|ˆ|

1

ˆ ˆ

)(ln)()1(1

)|()(ln1)|()(

rs rs

rs rs

n

K

k

K

kj
rs
kj

n
n

rs
kj

Kk
kj
Kj

rs
kj

nnrs
kj

rs
knn

n
rs

kjPkjP

kjkPkjPckjkPkjP










    (16.5) 25 

 26 































 

 



 





1|ˆ|

1

|ˆ|

1

ˆ ˆ

)()1(1

)|()(1

rs rs

rs rs

K

k

K

kj
n

rs
kj

Kk
kj
Kj

nn
rs
kj

n
rs

kjP

kjkPkjP







        (16.6)

 

27 

 28 
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 1 

 
  



 






1|ˆ|

1

|ˆ|

1

)/exp()/exp(

)/exp()/exp(
)(

rs rs rs
mlnn

rs
kjnn

K

m

K

ml

rs
ml

rs
l

rs
ml

rs
m

rs
ml

rs
kj

rs
j

rs
kj

rs
k

rs
kj

n

cc

cc
kjP








    (16.7) 2 

 3 

)/exp()/exp(
)/exp(

)|(
rs
kj

rs
j

rs
kj

rs
k

rs
kj

rs
k

n nn

n

cc
c

kjkP






       (16.8) 4 

 5 
The entropy maximization problem (16.1)-(16.8) can be solved by Bregman’s balancing method 6 
(16), and the result is an auxiliary demand }{ n

rs
n qq  .  The detailed development of Bregman’s 7 

balancing method for (16.1-16.8) is described in Appendix.  The balancing method is briefly 8 
described below. 9 
 10 
Bregman’s Balancing Method 11 
Initialization of Balancing Method:       12 

)/1exp(0 n
rs

n
rsrsq    SsRr  ,   13 

(see Appendix for the derivation of initial auxiliary O-D flows) 14 
 0t    (t is iteration counter for the balancing method) 15 
 1i   (i is the constraint counter of the entropy maximization problem) 16 
 17 
General Step of Balancing Method (Balancing Constraint i): 18 
Find the unique solution 1t

rsq  and   of: 19 

 0lnln ,
1 

rsi
t
rs

n
rs

t
rs

n
rs aqq   SsRr  ,        (17) 20 

and   i
RSrs

t
rsrsi bqa 



1
, .          (18) 21 

The derivation of Eq.(17) and Eq.(18) can be found in Appendix.  Then, Eq.(17) can be written 22 
as Eq.(19).  23 











n
rs

rsit
rs

t
rs

a
qq


 ,1 exp   SsRr  ,       (19)  24 

which is then substitute into Eq.(18), yielding Eq.(20): 25 

 









rs
in

rs

rsit
rsrsi b

a
qa


 ,

, exp         (20) 26 

where    ii Ob   and i   if  ||1 Ri   27 
   ii Db  and  i   if ||||1|| SRiR   28 
 29 

Determine   by Newton’s method (since it cannot be solved analytically): 30 

Let 0exp)( ,
, 








 

rs
in

rs

rsit
rsrsi O

a
qah




 
   and   










s
n
is

t
isn

is

qh




 
 exp1)(  if ||1 Ri  . 31 
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Let 0exp)( ,
, 








  




rs
in

rs

rsit
rsrsi D

a
qah




 
  and  













r
n
ir

t
irn

ir

qh




 
 exp1)(  , where 1 

|| Rii  , if  ||||1|| SRiR  . 2 
 3 
Initialization of Newton’s Method:  00   and 0  4 

General Step of Newton’s Method:  
)(
)(

1



 


h
h


   5 

      If    || 1 , stop and return 1  .  6 
      Otherwise, 1   7 

Then, determine 1t
rsq  from Eq.(19): 










n
rs

rsit
rs

t
rs

a
qq


 ,1 exp  SsRr  , . 8 

1|))||(| modulo (  SRii  9 
1 tt  10 

 11 
For each pass of the algorithm (when all origins and destinations are balanced once), if  t

rsq  is 12 
converged (see the employed convergence criterion in Section 3.3), terminate the algorithm. 13 
 14 
Phase I.2 The solution (

nrs
kjk

f
)(
) of CDA-PCL-SUE-R-PL  is obtained by applying the PCL 15 

formula: 16 
n
rsn

rs
k

qkPf
n

 )( SsRrKk rs  ,,  17 
 18 
where 19 







kj
Kj

nnn
rs

kjkPkjPkP
ˆ

)|()()(  20 

 21 
Phase I.3 (Line Search) 22 
An approximate line search is then made with respect to 321 zzzz   (the objective function of 23 
CDA-PCL-SUE-R) in the (feasible) direction of nn ff    and nn qq  , resulting in the new 24 

solution 1nf  and 1nq .  Note that nf and nq are the auxiliary solutions to the auxiliary (partially 25 

linearized) problem CDA-PCL-SUE-R-PL; whereas nf  and nq  are the current solution to CDA-26 
PCL-SUE-R at iteration n.  The process is repeated with n=n+1 until a convergence criterion (see 27 
the employed convergence criterion in Section 3.3) terminates the solution of CDA-PCL-SUE-R.  28 

It is noted that the algorithm described above is an instance of the partial linearization 29 
algorithm which is analyzed in (15,17).  According to Patriksson (17)’s Lemma 1 and Patriksson 30 
(15)’s Theorem 2.1, nn ff   holds if and only if nf  solves CDA-PCL-SUE-R; otherwise, the 31 

direction of nn ff    is a feasible descent direction with respect to the objective function ݖ of 32 

CDA-PCL-SUE-R.  Since ݖ is strictly convex in f, the sequence { nf } of route flows converges 33 
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to the unique solution of the restricted master problem from any feasible initial flow 0f ; see 1 
Patriksson (15)’s Theorem 2.2; the same property holds for the sequence { nq } of demands.   2 
 3 
3.2. Phase II: Column Generation Problem 4 
 5 
The partial linearization algorithm in Phase I solves the restricted master problem, given the 6 
subsets of routes between O-D pairs rsrs KK ˆ SsRr  , .  The quality of travel pattern 7 

solution obtained from Phase I depends on the quality of rsK̂ in approximating rsK .  Damberg et 8 
al. (18) suggested and evaluated two route generation strategies based on the calculation of 9 
shortest paths given the solution of the restricted master problem.  We adopt Damberg et al.’s 10 
first route generation strategy for Phase II.  Routes are generated from the solution of shortest 11 
path problems based on the deterministic travel times; i.e. random components of travel times are 12 
temporarily ignored.  At the solution to this restricted master problem, the link travel times are 13 
updated accordingly, and the subsets rsrs KK ˆ SsRr  ,  are augmented by the generation of 14 
new routes using the shortest path algorithm. 15 
 It is worth noting that the algorithm is not guaranteed to converge to the unique optimal 16 
solution of CDA-PCL-SUE.  However, it is guaranteed to solve the restriction of CDA-PCL-17 
SUE to any set of routes generated.  In the proposed algorithm, it terminates when the root mean 18 
square error of link flows and O-D flows from two successive iterations are within a user-19 
specified tolerance. 20 
 21 
3.3. Pseudocode of Proposed Simplicial Decomposition Algorithm 22 
 23 
Initialization 24 
Generate an initial path for each O-D pair 25 
Step 1. Set Aaxttx aaaa  ),(,0 000  and 0ˆ

rsK ∅ SsRr  , . 26 
Step 2. Set iteration counter: n=1. 27 
Step 3. Solve the shortest path problem for all origins n

rsk . 28 

     }{ˆˆ 1 n
rs

n
rs

n
rs kKK    SsRr  ,      29 

Step 4. Perform all-or-nothing traffic assignment: n
rs

rs
k qf

n

n
rs

  SsRr  ,  where 1
rs

n
rs qq   is an 30 

initial O-D demand obtained from input file such that it satisfies the origin flow constraints and 31 
the destination flow constraints. 32 
Step 5. Assign path flows to links:  

  


Rr Ss Kk

rs
ka

rs
k

n
a

n
rs

n

fx
ˆ

  Aa  33 

 34 
CDA-PCL-SUE Solver 35 
Step 6. Increase iteration counter: n=n+1 36 
Step 7. Update link travel time: )( 1 n

aa
n
a xtt  Aa   37 

Step 8. Solve a shortest path problem: n
rsk  SsRr  ,      38 

Step 9. Determine whether  n
rsk  exists in the path set 1n

rsK : 39 
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 If 1ˆ  n
rs

n
rs Kk , then }{ˆˆ 1 n

rs
n
rs

n
rs kKK   . 1 

 Otherwise, 1ˆˆ  n
rs

n
rs KK . 2 

Step 10. Update route costs: 



Aa

n
aa

rs
ka

rs
k xtc

n

)( 1  SsRrKk n
rs  ,,ˆ    3 

Step 11. Compute similarity index between routes k and j: 4 

 SsRrKjKk
LL

L n
rs

n
rsrs

j
rs
k

rs
kjrs

kj 


 ,|;ˆ|,...,1|;ˆ|,...,1  5 

Where rs
kjL  is the length of the common part of route k and j. 6 

Then, compute dissimilarity index between routes k and j: rs
kj

rs
kj  1  7 

Step 12. Compute n
rs  and  n

rs  for SsRr  ,  from Eq.(16.5)-(16.6): 8 
Step 13. Compute the auxiliary O-D flows by Bregman’s balancing method (the O-D trip-9 
demand solution n

rs
q  SsRr  ,  to CDA-PCL-SUE-R-PL):  10 

Initialization: )/1exp(0 n
rs

n
rsrsq    sr,  11 

   1t  (t is iteration counter for the balancing method) 12 
Do   13 
{ Repeat the following steps for each origin and destination i  14 
 { 1 , 00   and 1 tt  15 

Do        16 
  { 1  17 



























s
n
is

t
isn

is

rs
in

rs

rsit
rsrsi

q

O
a

qa
















exp1

exp ,
,

1  if i is an origin 18 



























r
n
ri

t
rin

ri

rs
in

rs

rsit
rsrsi

q

D
a

qa
















exp1

exp ,
,

1  if i is a destination 19 

}while( Newton






 
 || 1 ) 20 

1   and 









n
rs

rsit
rs

t
rs

a
qq


 ,1 exp   SsRr  , . 21 

} 22 

}while (   srqq
SR Bregman

Rr Ss

t
rs

t
rs ,,

||||
1 21 

 

  ) 23 

Set T
rs

n
rs

qq   SsRr  , , where T=number of iterations for Bregman’s balancing algorithm.  24 
 25 

103



Karoonsoontawong and Lin 16

Step 14. Compute auxiliary route flows (the route-flow solution ௞݂ሺ௞௝ሻ
௥௦೙  to CDA-PCL-SUE-R-PL): 1 

 n
rsn

rs
k

qkPf
n

 )(   SsRrKk rs  ,,ˆ  2 

where 





kj
Kj

nnn
rs

kjkPkjPkP
ˆ

)|()()( .

  

nkjP )(  and
 

nkjkP )|( are determined from Eq.(16.7)-(16.8). 3 

Step 15.Assign auxiliary path flows to auxiliary link flows:  4 

 
  


Rr Ss Kk

rs
k

rs
ak

n
a

rs

n

fx
ˆ
 	 Aa  5 

Step 16.Perform line search using the golden section algorithm: 6 
))(())(())((min 32110

nn
LS

nnn
LS

nnn
LS

n fffzfffzxxxz
LS

   7 
Step 17.Update path flow and demand:  8 

)(
11 


nnnn rs

k
rs
k

n
LS

rs
k

rs
k ffff   SsRrKk n

rs  ,,ˆ  9 

)( 11   n
rs

n
rs

n
LS

n
rs

n
rs qqqq    SsRr  ,  10 

Step 18.Assign route flows to links: 11 

 
  


Rr Ss Kk

rs
k

rs
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Step 19.Determine the root mean square error of the link and O-D flows: 13 
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Step 20.Check convergence: SimplicialRMSE  , then stop; otherwise go to Step 6.  15 
  16 
4. ILLUSTRATIVE EXAMPLES  17 
 18 
Two test networks with two congestion levels are first described.  Then, the results from CDA-19 
PCL-SUE are compared with those from CDA-MNL-SUE in order to see the effects of 20 
congestion, stochastic perception error and similarity in overlapping paths on the O-D flow, link 21 
flow and route flow allocations.   22 
 23 
4.1. Two Test Networks 24 
 25 
Network 1 26 
Network 1 is a simple network with five nodes, eight links and four O-D pairs as shown in 27 
Figure 1.  The Bureau Public Road link cost function is employed: 28 
 29 
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The parameters 0
at , as , a and a are also given in Figure 1, and the length of link a is set to 0

at .  31 
Two congestion levels are considered as follows.  For higher-congestion level (lower-congestion 32 
level), origin demands of origin nodes 1 and 2 are 45 and 50 trips (22 and 25 trips), respectively; 33 
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destination demands of destination nodes 4 and 5 are 35 and 60 trips (17 and 30 trips), 1 
respectively.  The employed tolerances are Simplicial = Bregman = Newton = LineSearch =0.001. 2 
 3 
Network 2 4 
Network 2 is a network used in (19) with 13 nodes, 19 links and four O-D pairs as shown in 5 
Figure 2.  The link cost functions are linear: 6 
 7 

aaaaa xxt  )(  8 
The parameters a and a are given in Figure 2, and the length of link a is set to a .  Two 9 
congestion levels are considered.  For higher-congestion level (lower-congestion level), origin 10 
demands of origin nodes 1 and 4 are 1,200 and 800 trips (600 and 400 trips), respectively; 11 
destination demands of destination nodes 2 and 3 are 1,000 and 1,000 trips (500 and 500 trips), 12 
respectively.  The employed tolerances are Simplicial = 0.01; Bregman = Newton = LineSearch =0.001. 13 
 14 
4.2. Comparison of CDA-PCL-SUE and CDA-MNL-SUE Results 15 
 16 
The CDA-MNL-SUE results are obtained from the algorithm in Lundgren and Patriksson (1998).  17 
The algorithms for both CDA-PCL-SUE and CDA-MNL-SUE are implemented in C.  These run 18 
on a computer with 1.73 GHz Intel Core i7 processor and 4 GB of RAM, running under 19 
Windows 7.  The CPU times of all runs on Networks 1 and 2 are within 1 minute.  We compare 20 
the results from CDA-PCL-SUE and CDA-PCL-MNL to examine the effects of congestion, 21 
travelers’ stochastic perception error and path similarity to simultaneously solve doubly-22 
constrained trip distribution problem and stochastic user equilibrium problem.   23 

The dispersion parameters are set at various values for two congestion levels on both 24 
networks.  The differences in O-D flows and link flows from the two combined distribution and 25 
assignment solutions is measured by the root mean square errors:  26 
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where *
,PCLax and *

,MNLax are the converged link flows in CDA-PCL-SUE and CDA-MNL-SUE, 28 
respectively. 29 
 30 
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where *
,PCLrsq and *

,MNLrsq are the converged O-D flows in CDA-PCL-SUE and CDA-MNL-SUE, 32 
respectively.  Figure 3 shows the values of LRMSE and ODRMSE with various dispersion factors 33 
at two congestion levels on Networks 1 and 2.  ODRMSE appears fluctuated at the higher-34 
congestion level on both networks, whereas at the lower-congestion level ODRMSE appears 35 
smooth over the dispersion factors.  At both congestion levels on both networks, LRMSE  36 
decreases with the increase of the dispersion factor.  The decrease rate of  LRMSE  is greater 37 
when the dispersion factor is close to 0, and the decrease rate at the higher-congestion level is 38 
greater than that of the lower-congestion level on both networks.  Based on our empirical results, 39 
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the link flow patterns from CDA-PCL-SUE and CDA-MNL-SUE are closer as the dispersion 1 
factor increases on both congestion levels.  The O-D flow patterns from both models differ in 2 
different degree over various dispersion factors.  Figure 4 shows the converged O-D flows of 3 
CDA-PCL-SUE and CDA-MNL-SUE models on Networks 1 at the higher congestion level.  4 
Figure 5 shows the converged link flows from CDA-PCL-SUE and CDA-MNL-SUE on 5 
Networks 1 at the higher congestion level.  This figure reiterates the findings that the link flow 6 
patterns from the two models are more identical at higher dispersion factors.  Note that the 7 
similar graphs for Network 2 are not shown due to the space limit.        8 
 Since the proposed algorithm employs the column generation phase to generate paths, it 9 
is possible that the generated paths from CDA-PCL-SUE are not the same as those from CDA-10 
MNL-SUE.  Then, it may not be comparable in terms of route flows.  However, we found that 11 
the dispersion factor of 0.125 yields the same path set in both models on both networks.  Thus, 12 
this is employed for path flow comparison on both networks.  Table 1 shows the path flow 13 
results obtained from CDA-PCL-SUE and CDA-MNL-SUE on Networks 1 and 2 at the higher-14 
congestion level.  As can be observed in Table 1, the path costs for each O-D pair in both CDA-15 
PCL-SUE and CDA-MNL-SUE on both networks are not equal, and both models disperse travel 16 
demands to many paths for each O-D pair on the two test networks.  These are the effects of 17 
travelers’ stochastic perception error captured by both models.  For each O-D pair, the similarity 18 
index is calculated for each route pair connecting this O-D pair.  The similarity index of each 19 
route pair is completely independent of that of other route pairs.  Prashker and Bekhor (9) 20 
indicated that this property is highly desirable for route choice models.  Table 1 shows the 21 
average similarity index for each route, which is the mean value of all similarity indices 22 
involving this route.  For example, on network 1, there are three routes in the generated path set 23 
for O-D 1-4, yielding three unordered route pairs.  The similarity index between routes 1 and 2 is 24 
0 and that between routes 1 and 3 is 0.4396.  The average similarity index of route 1 connecting 25 
O-D 1-4 is the mean value of 0 and 0.4396, yielding 0.2198.   26 

CDA-PCL-SUE generally considers a route with a high value of similarity as less 27 
attractive in route flow allocation.  CDA-PCL-SUE accounts for the overlapping paths in route 28 
choice such that a path with a higher value of average similarity index and higher path cost will 29 
be assigned less flows.  As can be seen in Table 1 for Network 1, in the CDA-MNL-SUE model, 30 
the cost of path 3 is 7.76% and 5.83% higher than paths 1 and 2, and assigns less flows to paths 3 31 
(85.05% and 88.34% of flows assigned to paths 1 and 2, respectively).  In contrast, CDA-PCL-32 
SUE accounts for the path overlapping effect.  The average similarity index of path 3 of O-D 1-4 33 
is 101.09% higher than paths 1 and 2 connecting this O-D pair, and in the CDA-PCL-SUE model 34 
the cost of path 3 is 4.09% and 2.68% higher than paths 1 and 2.  Then, CDA-PCL-SUE assigns 35 
much less flows to path 3 (51.82% and 53.24% of flows assigned to paths 1 and 2, respectively) 36 
than CDA-MNL-SUE does.  Similar results can be observed on Network 2 in Table 1.     37 

Table 2 shows the O-D flow results of the two models on Networks 1 and 2.  Apparently, 38 
the O-D flows are distributed differently in the two models on both networks.  As can be seen in 39 
Table 2, the total O-D flows out of each origin in both models are the same, and the total O-D 40 
flows into each destination in both models are equal.  These are due to the doubly constrained 41 
trip distribution embedded in the two models.  Table 2 also shows the average similarity index 42 
for each O-D pair, which is the mean value of the average similarity indices for all paths 43 
connecting this O-D pair.  The weighted average path cost for each O-D pair is calculated by the 44 
summation of the products of path costs and route choice probabilities.  We will explore the 45 
results to check whether we can relate the attractiveness of an O-D pair in doubly-constrained O-46 
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D trip distribution in CDA-PCL-SUE to the average similarity index for each O-D pair and the 1 
weighted average path cost of each O-D pair.  On Network 1, we consider the O-D flow 2 
distribution for origin node 1.  From Table 2, the weighted average path cost of O-D 1-4 in 3 
CDA-PCL-SUE is 19.78% higher than that of O-D 1-5, whereas in CDA-MNL-SUE it is 23.09% 4 
higher.  The average similarity index of O-D 1-4 is 31.26% higher than O-D 1-5.  The O-D flows 5 
allocated to O-D 1-5 is 14.00% higher than O-D 1-4 in CDA-PCL-SUE, whereas in CDA-MNL-6 
SUE, it is 41.34% higher.  It seems that CDA-PCL-SUE may assign more flows to O-D 1-4 with 7 
higher similarity index than CDA-MNL-SUE does.  Next, we consider the O-D flow distribution 8 
for destination node 5.  The weighted average path cost of O-D 1-5 in CDA-PCL-SUE is 45.99% 9 
higher than that of O-D 2-5, whereas in CDA-MNL-SUE it is 50.06% higher.  The average 10 
similarity index of O-D 1-5 is 284.71% higher than O-D 2-5.  The O-D flows allocated to O-D 2-11 
5 is 50.29% higher than O-D 1-5 in CDA-PCL-SUE, whereas in CDA-MNL-SUE, it is 27.67% 12 
higher.  In this case, CDA-PCL-SUE assigns less flow to O-D 1-5 with higher similarity index 13 
than CDA-MNL-SUE does.  Apparently, we cannot conclude how CDA-PCL-SUE distributes 14 
O-D flows among different O-D pairs, given weighted average path cost and average similarity 15 
index.  Similar observations can be found in Table 2 for Network 2.  This is because CDA-PCL-16 
SUE also has the origin flow balance constraints and destination flow balance constraints that 17 
must be satisfied.  In fact, the trip distribution in CDA-PCL-SUE can be determined by Eq.(10); 18 
i.e. it is based on the path costs, dispersion factor, dual variables of origin and destination flow 19 
balance constraints, and similarity indices.  The average similarity indices and weighted average 20 
path costs are not directly employed in determining the trip distribution.   21 
 Table 3 shows the link flow results on Networks 1 and 2.  The traffic flow patterns are 22 
different as the two models have different objective functions used in the trip distribution and 23 
route choice to capture the effects of congestion, stochastic perception error and path overlapping.  24 
Links with more paths passing through mostly have smaller flows assigned by CDA-PCL-SUE 25 
when compared with CDA-MNL-SUE such as links 1, 3, 4, 6 and 8 on Network 1; and links 1, 3, 26 
6, 10, 12, 14, 15, 16, and 18 on Network 2.  CDA-PCL-SUE assigns less number of flows to 27 
these links than CDA-MNL-SUE does. 28 
 29 
 30 
5. SUMMARY AND CONCLUSIONS 31 
 32 
We proposed the equivalent mathematical formulation (CDA-PCL-SUE) that combines the 33 
doubly-constrained gravity-model based trip distribution and the paired-combinatorial-logit 34 
stochastic user equilibrium assignment.  The first-order conditions were derived to show that 35 
these conditions are equivalent to the paired-combinatorial-logit stochastic user equilibrium 36 
equations and doubly-constrained gravity equations.  The proposed solution method for CDA-37 
PCL-SUE is a disaggregate simplicial decomposition algorithm that iterates between two phases 38 
until convergence.  Phase I approximately solves the restriction of CDA-PCL-SUE by the partial 39 
linearization descent algorithm.  Phase I iterates three sub-phases until convergence: Phases I.1, 40 
I.2 and I.3.  Phase I.1 is the entropy maximization problem that is solved by Bregman’s 41 
balancing algorithm to obtain the auxiliary O-D flows.  Phase I.2 applies the paired-42 
combinatorial-logit formula to determine the auxiliary route flows.  Phase I.3 performs the line 43 
search to obtain the next solution to the restriction of CDA-PCL-SUE.  After achieving an 44 
approximate solution to the restriction of CDA-PCL-SUE, Phase 2 generates a new set of 45 
shortest paths in order to augment the path set used in Phase 1 in the next iteration.   46 
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 In our illustrative example, two test networks with two congestion levels are employed.  1 
Network 1 is a simple network, and Network 2 is the network in (19).  The proposed algorithm is 2 
employed to determine the O-D flows, link flows and route flows on the two networks at two 3 
congestion levels.  The results from CDA-PCL-SUE are compared to those from CDA-MNL-4 
SUE in order to illustrate how CDA-PCL-SUE distributes O-D flows and route flows when 5 
accounting for similarity effects in addition to the congestion effect and stochastic-perception-6 
error effect.  When varying dispersion factors on the two test networks at two congestion levels, 7 
we found that the O-D flow patterns from CDA-PCL-SUE and CDA-MNL-SUE differ in 8 
different degree such that the relationship of O-D flow difference and dispersion factor cannot be 9 
concluded.  The link flow patterns from CDA-PCL-SUE and CDA-MNL-SUE are more identical 10 
at higher dispersion factors on the two test networks at both congestion levels. 11 
 At the dispersion factor of 0.125 where the generated path sets from CDA-PCL-SUE and 12 
CDA-MNL-SUE are the same, the path flow patterns from the two models on the two test 13 
networks at the higher congestion level are compared.  We illustrated that CDA-PCL-SUE 14 
assigns less flows to a path with a higher average similarity index and higher path cost than 15 
CDA-MNL-SUE does because CDA-PCL-SUE considers the similarity effect whereas CDA-16 
MNL-SUE does not.  That is, CDA-PCL-SUE generally considers a route with a high value of 17 
similarity as less attractive in route flow allocation, whereas CDA-MNL-SUE does not.   18 

Next, we cannot conclude the relationship between the O-D flow allocation and the 19 
average similarity indices and weighted average path costs for O-D pairs for CDA-PCL-SUE.  20 
This is because the average similarity indices and weighted average path costs for O-D pairs are 21 
not directly employed in the doubly-constrained gravity-based trip distribution equations.  In 22 
terms of link flow patterns, we found that CDA-PCL-SUE generally assigns less flows to links 23 
with more paths passing through than CDA-MNL-SUE.  This reiterates that CDA-PCL-SUE can 24 
account for similarity in path overlapping while CDA-MNL-SUE cannot.      25 
 The future research directions are the following.  The proposed CDA-PCL-SUE and 26 
solution method can be used to better represent the lower-level problem in modeling capacity 27 
flexibility of transport networks in (20) by substituting CDA-MNL-SUE with CDA-PCL-SUE so 28 
that it can account for similarity in path overlapping.  The model can be modified for the singly-29 
constrained gravity-based trip distribution version.  Furthermore, the proposed model can be 30 
extended to incorporate trip generation and modal split.  Other extended logit models such as 31 
cross-nested logit and generalized nested logit may be employed in the combined distribution 32 
and assignment.   33 
 34 
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APPENDIX: PROOF OF VALID APPLICATION OF BREGMAN’S BALANCING 1 
METHOD IN PHASE I.1 2 
 3 
The entropy maximization problem (16.1)-(16.8) can be rewritten as 4 
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  8 
where RS is the set of O-D pairs; m is the total number of origins and destinations (i.e. |S|+|R|).   9 

rsia , equals to 1 if ݅ is the origin of O-D pair r-s and equals to 0 otherwise for i=1,2,…,|S|;  rsia ,10 
equals to 1 if ݅ െ |ܵ| is the destination of O-D pair r-s and equals to 0 otherwise for i=|S|+1 ,…, 11 
|S|+|R|.  E is the set of real numbers.  Denote by ܵ  the set }0|{ ||  qEq RS  and 0,0  n
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n
rs v12 

RSrs .  The constraint set (A.2) can be written as bqA   where A is the coefficient matrix 13 
or ii bqA    mi ,...,2,1 , where iA is the ith-row of the coefficient matrix A.  14 
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over the convex set S.  Bregman (21) showed that if )(qf  is a strictly convex differentiable 16 

function over the convex set ||RSES  , the function )()()()(),( pqpfpfqfpqD 17 
satisfies conditions (i)-(iv) in (21).  Condition (vi) and condition 1 in (21) are satisfied if S is 18 
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(21) showed that 
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condition (v) in (21).  Thus, the function in (A.4) satisfies conditions (i)-(vi) and condition 1 in 24 
(21).  Bregman’s balancing method is valid for the function ),( pqD  defined over SS  and 25 

satisfying conditions (i)-(vi).  Condition 1 is satisfied; then, the relaxation sequence { tq } has a 26 
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Since )( tqf  and tt qqf  )(  are constant, they can be dropped from the objective function 4 
without affecting the optimal solution.  Lagrangian of this program is  5 
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The first-order conditions of the Lagrangian problem are: 8 
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From (A.5a) and (A.5b), if 1tq >0, then  14 
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The substitution of (A.7) into (A.8) yields 21 
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where ri Ob   and r   if constraint ݅ is associated with origin r; si Db   and s  if 23 
constraint ݅ is associated with destination s. 24 
 25 
As can be seen from (A.7), if Sqt

rs  , then also Sqt
rs 1   (recall }0|{ ||  qEqS RS ).  26 

Consequently, with a suitable relaxation control, the conditions of Theorem 3 in (21) are satisfied.  27 
Therefore, the relaxation sequence { tq } obtained from the balancing process will converge to 28 

the point *q , that is, to the solution of the entropy maximization problem in Phase I.1, if the 29 
point of absolute minimum of the function (11.1a), i.e. 0
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 1 
 
 
 
 
 
 
 
 
 
 

 

 
Link 

as 0
at a  a  

(1,2) 25 4.0 0.15 4.0 
(1,3) 25 5.2 0.15 4.0 
(2,3) 30 1.0 0.15 4.0 
(2,4) 15 5.0 0.15 4.0 
(2,5) 15 5.0 0.15 4.0 
(3,4) 15 4.0 0.15 4.0 
(3,5) 15 4.0 0.15 4.0 
(4,5) 30 1.0 0.15 4.0 

 
 

Figure 1 Test Network 1 2 
 3 
 4 
 5 
 6 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Link 

a a  Link 
a  a  

(1,5) 7 0.0125 (8,2) 9 0.0125
(1,12) 9 0.01 (9,10) 10 0.005
(4,5) 9 0.01 (9,13) 9 0.1 
(4,9) 12 0.1 (10,11) 6 0.0025
(5,6) 3 0.0075 (11,2) 9 0.005
(5,9) 9 0.0075 (11,3) 8 0.01 
(6,7) 5 0.0125 (12,6) 7 0.0125

(6,10) 13 0.005 (12,8) 14 0.01 
(7,8) 5 0.0125 (13,3) 11 0.01 

(7,11) 9 0.0125   
 

 

Figure 2 Test Network 2 7 
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 1 

 2 
Figure 3 Root Mean Square Errors on Two Test Networks  3 

 4 

 5 
Figure 4 O-D Demands on Network 1 (Higher-Congestion Level) 6 
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 1 
 2 

Figure 5 Link Flows on Network 1 (Higher-Congestion Level) 3 
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Table 1 Path Flow Results of CDA-PCL-SUE and CDA-MNL-SUE on Two Test Networks 1 
 2 
O-D 

 
Path 
No. 

Link 
Sequence 

Average 
Similarity 

Index 

Route Choice 
Probability 

Path Flow Path Cost 

PCL MNL PCL MNL PCL MNL 
 

Network 1 (Total O-D Demand = 90 Trips, Dispersion Factor = 0.125) 
1-4 1 1-4 0.2198 0.4014 0.3555 8.4398 6.6279 15.9593 16.6825

 2 2-6 0.2198 0.3907 0.3422 8.2145 6.3813 16.1777 16.9872
 3 1-3-6 0.4420 0.2079 0.3023 4.3734 5.6373 16.6120 17.9777

1-5 1 1-5 0.2811 0.2984 0.3250 7.1710 8.5644 12.1739 12.4549
 2 2-7 0.0000 0.4415 0.3632 10.5941 9.5702 12.1817 11.5661
 3 1-3-6-8 0.3072 0.1231 0.1433 2.9374 3.7782 17.6311 19.0027
 4 1-4-8 0.3072 0.1370 0.1685 3.2699 4.4407 16.9784 17.7075

2-4 1 4 0.0000 0.5204 0.5404 7.2707 8.8368 11.2365 11.5888
 2 3-6 0.0000 0.4796 0.4596 6.7017 7.5167 11.8892 12.8840

2-5 1 5 0.0000 0.3600 0.3393 12.9972 11.4164 7.4511 7.3613 
 2 3-7 0.0609 0.3136 0.3350 11.3171 11.2729 7.8932 7.4630 
 3 3-6-8 0.1164 0.1455 0.1497 5.2219 5.0370 12.9083 13.9091
 4 4-8 0.0556 0.1809 0.1760 6.4915 5.9201 12.2556 12.6139

 
Network 2 (Total O-D Demand = 2000 Trips, Dispersion Factor = 0.125) 

1-2 1 1-5-7-9-11 0.1477 0.1856 0.1928 103.55 115.60 59.08 58.62 
 2 2-17-8-14-15 0.1199 0.1806 0.1696 96.86 101.71 59.75 59.64 
 3 2-18-11 0.2676 0.6338 0.6376 380.31 382.25 49.26 49.05 

1-3 1 1-5-7-10-16 0.3411 0.2269 0.2079 173.32 124.86 63.67 63.93 
 2 2-17-8-14-16 0.3075 0.2089 0.1843 122.53 110.64 64.90 64.89 
 3 1-6-13-19 0.2049 0.1927 0.1830 115.41 109.83 66.68 64.95 
 4 1-5-8-14-16 0.4844 0.1640 0.2092 129.15 125.65 63.79 63.88 
 5 1-6-12-14-16 0.4311 0.2076 0.2156 78.87 129.47 63.01 63.64 

4-2 1 3-5-7-9-11 0.2758 0.2564 0.2110 112.87 84.51 59.74 59.23 
 2 3-6-12-14-15 0.4210 0.2021 0.2173 92.53 87.03 58.52 58.99 
 3 4-12-14-15 0.3167 0.1771 0.1513 79.57 60.58 61.71 61.89 
 4 3-5-8-14-15 0.4677 0.1756 0.2109 80.52 84.43 59.30 59.23 
 5 3-5-7-10-15 0.3899 0.1888 0.2095 53.79 83.89 59.18 59.28 

4-3 1 4-13-19 0.0884 0.1654 0.1399 68.02 55.89 70.53 68.46 
 2 3-6-12-14-16 0.4088 0.2320 0.2369 113.69 94.68 63.67 64.25 
 3 3-5-8-14-16 0.3728 0.2165 0.2299 103.32 91.85 64.45 64.49 
 4 3-5-7-10-16 0.3069 0.2496 0.2284 59.69 91.26 64.33 64.54 
 5 4-12-14-16 0.3933 0.1365 0.1649 35.99 65.87 66.86 67.14 

 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
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 1 
Table 2 O-D Flow Results of CDA-PCL-SUE and CDA-MNL-SUE on Two Test Networks 2 
 3 
O-D 
No. 

Origin 
Node 

Destination 
Node 

Average 
Similarity 

Index 

Weighted 
Average Path 

Cost 

O-D Flow 

PCL MNL PCL MNL 
 

Network 1 (Total O-D Demand = 90 Trips, Dispersion Factor = 0.125) 

1 1 4 0.2939 16.180 17.178 21.028 18.646

2 1 5 0.2239 13.508 13.956 23.972 26.354

3 2 4 0.0000 11.550 12.184 13.972 16.354

4 2 5 0.0582 9.253 9.300 36.028 33.646
 

Network 2 (Total O-D Demand = 2000 Trips, Dispersion Factor = 0.125) 

1 1 2 0.1784 52.977 52.689 580.71 599.56

2 1 3 0.3538 64.389 64.220 619.29 600.44

3 4 2 0.3742 59.658 59.591 419.29 400.44

4 4 3 0.3140 65.573 65.435 380.71 399.56
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
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 1 
Table 3 Link Flow Results of CDA-PCL-SUE and CDA-MNL-SUE on Two Test Networks 2 

Link Number of Paths Passing Through* Link Flow Link Cost 

O-D 1 O-D 2 O-D 3 O-D 4 PCL MNL PCL MNL 
 

Network 1 (Total O-D Demand = 90 Trips, Dispersion Factor = 0.125) 

1 2 3 0 0 26.191 29.04858 4.723 5.09364

2 1 1 0 0 18.809 15.95142 5.450 5.32929

3 1 1 1 2 30.551 33.24212 1.161 1.22616

4 1 1 1 1 25.472 25.82563 11.236 11.5888

5 0 1 0 1 20.168 19.98084 7.451 7.36131

6 2 1 1 1 27.449 28.3505 10.728 11.6579

7 0 1 0 1 21.911 20.84303 6.732 6.23683

8 0 2 0 2 17.921 19.17613 1.019 1.02504
 

Network 2 (Total O-D Demand = 2000 Trips, Dispersion Factor = 0.125) 

1 1 4 0 0 600.30 605.40 14.50 14.57 

2 2 1 0 0 599.70 594.60 15.00 14.95 

3 0 0 4 3 616.42 617.65 15.16 15.18 

4 0 0 1 2 183.58 182.35 30.36 30.23 

5 1 2 3 2 816.21 802.05 9.12 9.02 

6 0 2 1 1 400.51 421.01 12.00 12.16 

7 1 1 2 1 503.22 500.12 11.29 11.25 

8 1 2 1 1 532.38 514.27 15.66 15.57 

9 1 0 1 0 216.42 200.11 7.71 7.50 

10 0 1 1 1 286.80 300.02 12.58 12.75 

11 2 0 1 0 596.72 582.36 16.46 16.28 

12 0 1 2 2 400.66 437.63 12.00 12.19 

13 0 1 0 1 183.43 165.72 27.34 25.57 

14 1 3 3 3 933.04 951.90 8.33 8.38 

15 1 0 4 0 403.28 417.64 11.02 11.09 

16 0 4 0 4 816.57 834.28 16.17 16.34 

17 1 1 0 0 219.39 212.35 9.74 9.65 

18 1 0 0 0 380.31 382.25 17.80 17.82 

19 0 1 0 1 183.43 165.72 12.83 12.66 
* Note:  For Network 1, O-D 1, 2, 3 and 4 are 1-4, 1-5, 2-4 and 2-5, respectively.  3 
  For Network 2, O-D 1, 2, 3 and 4 are 1-2, 1-3, 4-2 and 4-3, respectively. 4 
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ABSTRACT 1 
 2 
This paper studies the inventory management and routing problem in a two-level supply chain 3 
where a single plant serves a set of warehouses, which in turn serve a set of customers with 4 
stochastic demands.  A set partitioning based probabilistic chance constrained nonlinear integer 5 
program is provided for the combined continuous inventory control and multi-depot vehicle 6 
routing problem while accounting for probability of inventory capacity violation, order quantity 7 
capacity, service levels, vehicle capacity restrictions and route duration limits.  Two tabu search 8 
heuristics, differing in the way initial solutions are generated, are applied to solve the problem. 9 
Computational tests on standard tests networks reveal that integrating the inventory management 10 
and routing decisions by solving the combined inventory management and routing problem may 11 
yield cost savings of up to 14% over the sequential approach where both problems are solved 12 
separately. The best objective function value obtained by the tabu search heuristic was found to 13 
increase with increase in customer demand variance but decrease with increase in order quantity 14 
capacity and route duration limit.  Variance of the customer demand was found to have 15 
significant impact on the solution quality.  16 
 17 
 18 
 19 
      20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 
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 1 
INTRODUCTION 2 
We consider a two-level supply chain, in which a single plant serves a set of warehouses, which 3 
in turn serve a set of end customers with stochastic demands.  Inventory control decisions and 4 
vehicle routing decisions are made at the operational level for each warehouse.  The inventory 5 
control problem (ICP) determines optimal order quantity, reorder point and safety stock, so that 6 
the total ordering and holding costs are minimal.  The multi-depot vehicle routing problem 7 
(MDVRP) determines an optimal set of vehicle routes for each depot to satisfy demands such 8 
that the routing costs are minimal.  Typically, these two problems are solved sequentially.  9 
Indeed, ICP and MDVRP are interrelated.  The inventory control decisions for a warehouse 10 
depend on the demands incurred at this warehouse, which are determined from the demands of 11 
customers assigned to this warehouse.  The MDVRP decisions aim at minimizing routing costs 12 
without considering the impact of the customer assignment on the ordering and holding costs at 13 
warehouses.  Therefore there is significant potential to optimize the supply chain costs by 14 
solving ICP and MDVRP simultaneously (a.k.a. inventory routing problem: IRP). 15 

(1) provides a detailed review of the IRP variants and their solution methods.  Numerous 16 
studies focus on IRP application in a Vendor Managed Inventory (VMI) setting where a single 17 
vendor delivers goods to multiple customers and coordinates the routing and delivery decisions 18 
so that the customer always has sufficient inventory.  Depending on the nature of the time 19 
horizon for the decision making – IRP can be classified into single day, multi-day or a long term 20 
horizon operational problem.  Normally the long term horizon problem use frequency as the 21 
decision variable and the shorter duration studies are normally time based.  This paper is 22 
different from the past works as in our work the customers can be served by one among multiple 23 
warehouses.  Moreover we do not adopt a VMI approach. In our model, the inventories are 24 
located at warehouses and not at the customers.   25 

Similar to (2,3), we assume that each warehouse follows the continuous inventory control 26 
policy, and we explicitly consider the probabilities of unfulfilled demands, the probabilities of 27 
inventory capacity violation and the order quantity capacity.  The considered policy does not 28 
penalize unfulfilled demands.  Rather, a reorder point is determined such that after order 29 
submission to the plant the inventory level should cover the demand generated during the lead 30 
time with probability.  Since the cost of alternative storage space especially in the urban areas is 31 
high, it is essential to control the level of service associated with the inventory capacity.  The 32 
probabilities of inventory capacity violation are employed in the chance constrained stochastic 33 
programming framework.  The vehicle capacity restrictions are common in the urban areas, and 34 
this can be taken into account by setting order quantity capacity and through capacity constraints 35 
in the routing problem.  In MDVRP, we explicitly consider the route duration limit which arises 36 
in a number of applications such as perishable goods delivery problems and time-critical delivery 37 
problems.   38 

The contributions of this study are three-fold.  First, the model for the combined 39 
continuous inventory control and MDVRP accounting for route duration limits and stochastic 40 
inventory capacity constraints is formulated.  Second, tabu search heuristics are developed.  41 
Third, the performances of the proposed tabu search algorithms are compared against each other 42 
and against the sequential approach on hypothetical test networks based on (4)’s test problems.   43 

 44 

 45 
 46 
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FORMULATION  1 
The inventory routing model is developed based on the works by (3) and (5).  This combined 2 
model is a set partitioning-based formulation that has the stochastic inventory capacity 3 
constraints and the order quantity capacity constraints.  Daily delivery demands of customers are 4 
assumed independent and normally distributed.  Each customer is served on exactly a route by a 5 
warehouse, and a single commodity is considered.  The proposed model embeds the continuous 6 
inventory control policy, which is briefly reviewed here.  At any warehouse i, we assume a 7 
continuous inventory control policy (Qi, RPi) to meet normally distributed random demand iD~  8 
with the mean of EDi (product units per day) and the variance of VDi (squared product unit per 9 
day).  EDi and VDi are variables, since they depend on the customers assigned to each warehouse 10 
i.  Qi is the order quantity at warehouse i, and RPi is the reorder point at warehouse i.  The plant 11 
takes a lead time LTi to fulfill an incoming order from warehouse i.  When the inventory level 12 
falls below RPi, an order of Qi units is triggered, which is received after LTi time units.  When an 13 
order is submitted to the plant, the inventory level should cover the demand generated during the 14 
lead time LTi, with probability 1-α (called service level): 15 
 16 

α−=≤⋅ 1)~(Prob iii RPLTD         (1) 17 
 18 

where ii LTD ⋅~  is the normally distributed random demand generated during the lead time at 19 
warehouse i with the mean ii LTED ⋅  and variance ii LTVD ⋅ .  Eq.(1) can be standardized; then, 20 
RPi can be determined:  21 
 22 

iiiii VDLTzLTEDRP α−+⋅= 1        (2) 23 
 24 

α−1z  is assumed fixed for the entire network, determining a homogeneous service level for the 25 

whole system.  ii VDLTz α−1  is the average safety stock.  Given that HCi is the holding cost per 26 
time unit for warehouse i ($/unit/day), and OCi is the fixed ordering cost ($/order), the expected 27 
holding and ordering cost rate ($/day) is: 28 
 29 

i
i

i
iiiii ED

Q
OCQHCVDLTzHC +⋅+⋅ − 2

1
1 α       (3) 30 

The first term in Eq.(3) is the average safety stock cost.  The last two terms in Eq.(3) represent 31 
the costs of the known Economic Order Quantity (EOQ) model.  This is the average inventory 32 
and ordering cost incurred due to the ordering process, if the order size is always Qi.  The peak 33 
inventory levels take place when the orders arrive at warehouse, and equal to iiii QLTDRP +⋅− ~ .  34 
When setting maximum probability β to violate the inventory capacity max

iI  at peak levels, the 35 
inventory capacity constraint can be written as chance constraints (3):   36 

 37 
β−≥≤+⋅− 1)~(Prob max

iiiii IQLTDRP  WHVi∈∀      (4) 38 
 39 
Eq.(4) can be rewritten as nonlinear inequalities (2,3), which are the stochastic inventory 40 
capacity constraints: 41 
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 1 
max

11 )( iiii IVDLTzzQ ≤⋅⋅++ −− βα  WHVi∈∀      (5) 2 
 3 
Sets 4 

CUSV  = set of customer locations  5 

WHV  = set of warehouse locations 6 

iP  = set of all feasible routes (with respect to route duration limit and vehicle capacity  7 
         restriction) associated with warehouse i  8 
 9 
Parameters 10 

jμ  =mean of daily demand for customer j 11 
2
jσ = variance of daily demand for customer j 12 

WHn = number of warehouse locations 13 

CUSn  = number of customers to be served 14 

iRC = transportation unit cost between the plant and warehouse i ($/unit/day) 15 
max
iQ = order quantity capacity for warehouse i 16 
max
iI = inventory capacity for warehouse i 17 

iLT = lead time that the plant takes to fulfill an incoming order from warehouse i 18 

iOC = fixed ordering cost at warehouse i ($/order) 19 

iHC = holding cost per day per product unit at warehouse i ($/unit-day) 20 

α−1z , β−1z = values of standard normal distribution that accumulates the probability 1-α and 1-β 21 

jika = 1 if route k associated with warehouse i visits customer j; 0 otherwise 22 

ikd = cost of route k associated with warehouse i 23 
 24 
Decision Variables 25 

iky = 1 if route k associated with warehouse i is chosen; 0 otherwise. 26 

iQ = order quantity for warehouse i  27 

iED = mean of served daily demand by warehouse i 28 

iVD = variance of served daily demand by warehouse i 29 
Z = total costs 30 
 31 
Model 32 

∑∑ ∑ ∑∑ ∑
∈∈ ∈ ∈∈ ∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅⋅⋅+⋅=

WHWH CUS iWH i Vi
i

i

i

Vi Vj Pk
ikjijik

Vi Pk
ikik ED

Q
OCyRCaydZ μmin  33 

∑
∈

− ⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅⋅++

WHVi
iii

i
i VDLTzHCQHC α12

       (6.1) 34 

 35 
 36 
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Subject to 1 
1=⋅∑ ∑

∈ ∈WH iVi Pk
ikjik ya     CUSVj∈∀      (6.2) 2 

max
11 )( iiii IVDLTzzQ ≤⋅⋅++ −− βα  WHVi∈∀      (6.3) 3 

i
Vj Pk

ikjikj EDya
CUS i

=⋅⋅∑ ∑
∈ ∈

μ    WHVi∈∀      (6.4) 4 

i
Vj Pk

ikjikj VDya
CUS i

=⋅⋅∑ ∑
∈ ∈

2σ    WHVi∈∀      (6.5) 5 

}1,0{∈iky      iWH PkVi ∈∀∈∀ ,     (6.6) 6 
max0 ii QQ ≤≤      WHVi∈∀      (6.7) 7 

 8 
(6.1) calculates the total costs Z composed four terms - total MDVRP costs, total direct 9 
transportation costs between the plant and warehouses, total expected ordering costs and total 10 
expected holding costs, respectively.  Eqs.(6.2) enforce that each customer is served on exactly a 11 
route by a warehouse.  Eqs.(6.3) are non-linear constraints assuring that the inventory capacity 12 
for each warehouse is satisfied at least with probability 1-β and that the reorder point can cover 13 
the stochastic demand during the lead time with probability 1-α.  Eqs.(6.4)-(6.5) determine the 14 
mean and variance of the served demands assigned to each warehouse (assume that demands are 15 
independent and normally distributed across the customers).  Eqs.(6.7) constrain the order 16 
quantity to be within the order quantity capacity, which is assumed homogeneous for each 17 
warehouse, and can be set as the vehicle (from plant to warehouse) capacity. 18 

The VRP is NP-hard, which is a special case of the IRP.  Thus, IRP is also NP-hard.  The 19 
proposed formulation potentially contains an exponential number of variables ( iky ), and there 20 
exists nonlinearity in Eqs.(6.1) and Eqs.(6.3), yielding a non-convex non-linear mixed-integer 21 
program.  In effect, there is not an efficient solution method that guarantees an optimal solution, 22 
and this essentially requires a metaheuristic approach.  In this paper, we propose tabu search 23 
heuristics.   24 
 25 
TABU SEARCH HEURISTICS  26 
 27 
In this paper, we modify the tabu search heuristic for MDVRP by (6) in order to incorporate the 28 
continuous inventory control policy for warehouses in the two-level supply chain, accounting for 29 
route duration limits and stochastic inventory capacity constraints.  Let ),( AVG =  be a directed 30 
graph.  },{ CUSWH VVV =  is a vertex set where },...,,{ 00201 WHnWH vvvV =  is the set of warehouse (or 31 
depot) locations and },...,,{ 21 CUSnCUS vvvV =  is the set of customers.  }:),{( jivvA ji ≠= is an arc 32 
set.  Vertex WHi Vv ∈0   denotes a warehouse where mi identical vehicles are based.  mi is assumed 33 
unlimited.  Vertex CUSj Vv ∈   denotes a customer.  With every arc ),( ji vv is associated a fixed 34 

nonnegative distance ijc .  },...,,{ 10
i
n

iii
i
CUS

vvvV =  is the vertex set associated with warehouse i; iv0  a 35 

warehouse vertex; i
CUSn  the number of customers assigned to warehouse i. Customer jv  has an 36 

independent and normally distributed demand with the mean jμ  and variance 2
jσ .  Each city 37 

jv requires a fixed service time jδ , and each warehouse iv0  has no service time.         38 
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A least cost solution is determined such that: 1 
• Total cost is minimized, including direct transport cost between the plant and 2 

warehouses, MDVRP costs from warehouses to customers, ordering costs, and inventory 3 
holding costs.    4 

• The order quantity from warehouse iv0  to the plant may not exceed its maximum value 5 
max
0iQ . 6 

• When an order is submitted to the plant by a warehouse, the reorder point can cover the 7 
stochastic demand generated during the lead time with probability 1-α.  8 

• For each warehouse, the inventory level at peak levels may violate the inventory capacity 9 
with the maximum probability β. 10 

• A route starts and ends at a warehouse. 11 
• Each Customer in CUSV  is visited exactly once by exactly a vehicle based at a warehouse. 12 
• The total average daily demands served by a vehicle based at warehouse iv0  may not 13 

exceed the vehicle capacity max
0iRD . 14 

• The duration (travel plus service times) of any route beginning at warehouse iv0  and 15 
ending at the last customer visited on this route may not exceed the route duration limit 16 

max
0iL . 17 

 18 
The tabu search algorithm consists of two phases: (1) construction of an initial solution and (2) 19 
solution improvement as shown in Figure 1.  Inspired by (7), we maintain the following 20 
information in our implementation in order to save computational efforts: 21 

• For every route 1r  and warehouse 1i , the sum of the average delivery quantities currently 22 
assigned to this route is 1

1

i
rq ; the duration (travel plus service time) of round-trip route 1r  23 

beginning and ending at warehouse 1i is 1

1

i
rrl ; the duration (travel plus service time) of 24 

route 1r  beginning at warehouse 1i  and ending at the last customer visited in route 1r  is 25 
1

1

i
rpl . 26 

• For every warehouse 1i , the sum of average currently served demands is 
1i

ED ; the sum of 27 
currently served demand variances is 

1i
VD . 28 

 29 
With such information maintained, it is easy to verify the route feasibility of inserting a customer 30 
into route 1r  associated with warehouse 1i ; i.e., check whether 1

1

i
rpl ≤ max

0iL  and max
0

1

1 i
i
r RDq ≤ .   31 

 32 
Heuristic Approximation for (Qi, RPi)  33 

 34 
When the means and variances of currently served demands (EDi and VDi) for warehouses are 35 
known, the continuous inventory control policies (Qi, RPi) with stochastic inventory capacity 36 
constraints and order quantity capacity constraints can be heuristically approximated.  In our 37 
formulation, there are constraints on Qi (see constraints 6.3 and 6.7). Two decision variables for 38 
the continuous ICP are order quantities (Qi) and reorder points (RPi).  RPi can be determined by 39 
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Eq.(2) when EDi and VDi are known.  The heuristic approximation of an optimal order quantity 1 
for warehouse i ( *

iQ ) is described below.   2 
If constraints (6.3) and (6.7) are removed, *

iQ  can be approximated through the first order 3 
optimality condition.  When the constraints on Qi are taken into account, the first order 4 
optimality conditions for a constrained minimum is employed to approximate *

iQ .  Constraints 5 
(6.3) and (6.7) can be written in the standard form as: 6 
 7 

max
11 )( iiii IVDLTzzQ −+≥− −− βα       WHVi∈∀ : iu1     (7.1) 8 

max
ii QQ −≥−       WHVi∈∀ : iu2     (7.2) 9 

0≥iQ        WHVi∈∀ : iu3     (7.3) 10 
 11 
where iu1 , iu2 and iu3 are dual variables associated with Eq.(7.1)-(7.3). 12 
 13 
The Karush-Kuhn-Tucker  (KKT) conditions for the minimum program (6.1), (7.1)-(7.3) where 14 
only iQ are decision variables, are: 15 

 iii
i

uuu
Q
QZ

321

*)(
+−−=

∂
∂      WHVi∈∀     (8.1)  16 

 0;0;0 321 ≥≥≥ iii uuu      WHVi∈∀     (8.2) 17 

 ( ) 0)( max
11

*
1 =−++⋅ −− iiiii IVDLTzzQu βα  WHVi∈∀     (8.3) 18 

 0)( max*
2 =−⋅ iii QQu     WHVi∈∀     (8.4) 19 

 0*
3 =⋅ ii Qu      WHVi∈∀     (8.5) 20 

max
11

* )( iiii IVDLTzzQ −+≥− −− βα       WHVi∈∀ : iu1     (8.6) 21 
max*
ii QQ −≥−       WHVi∈∀ : iu2     (8.7) 22 

0* ≥iQ       WHVi∈∀ : iu3     (8.8) 23 
 24 
  25 
For any warehouse with served demands, the optimal order quantity is naturally greater than 26 
zero.  Then, Eq.(8.5) implies that iu3 equal to 0.  Then, Eq.(8.1) become:  27 

iQ
QZ

∂
∂ )( *

ii uu 21 −−=            (8.1a) 28 

This implies that the stationary point with the property 0=
∂
∂

iQ
Z  can be either within the feasible 29 

range of Qi or greater than the feasible range of Qi.  The stationary point cannot be less than the 30 

feasible range of Qi; otherwise, 
iQ

QZ
∂

∂ )( *

becomes positive, given that Z(Q) is assumed convex 31 

with respect to Qi.  When the stationary point
 
is within the feasible range of Qi, the minimal 32 

point is the stationary point.  Eq.(8.3) and (8.4) imply that 01 =iu  and 02 =iu , and Eq.(8.1) 33 
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yields 0)( *

=
∂

∂

iQ
QZ .  When the stationary point is greater than the feasible range of Qi, the 1 

minimal point is not the stationary point.  Eq.(8.1a) and the assumed convexity of Z(Q) imply 2 
that the minimal point is at the boundary of either Eq.(8.6) or Eq.(8.7).  Thus, *

iQ  can be 3 
determined from the equation:  4 
  5 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

+−
⋅

= −− iiii
i

ii
i VDLTZZIQ

HC
EDOCQ )(,min,2min 11

maxmax*
βα    (9) 6 

 7 
Phase I: Construction of an initial solution  8 
 9 
Step I.1. Each customer is assigned to its nearest warehouse.  Then, for each warehouse, sort 10 
assigned customers in increasing order of the angle that they make with the warehouse and a 11 
horizontal line. 12 
 13 
Step I.2. Create initial vehicle routes for each warehouse.  This will be described in the next 14 
subsections.     15 
 16 
Step I.3. Determine RPi and Qi, using Eq.(2) and (9), respectively. 17 
 18 
Step I.4. Determine the objective function value of the initial solution, using Eq.(6.1) 19 
 20 

We consider two alternatives to create initial routes in Step I.2: initial solution types 1 21 
and 2 (based on (8) and (9), respectively).   22 
 23 
Construction of Initial Solution Type 1  24 
 25 
For each warehouse i=1,…, WHn ,  do 26 
(a) Let  i

jv  be a customer randomly chosen among those closest to warehouse i (vertex iv0 ) 27 
(b) Set im  =1 28 
(c) Using the customer vertex sequence ),...,,,...,,( 111

i
j

ii
n

i
j

i
j vvvvv i

CUS
−+ , perform the following steps 29 

for every customer assigned to warehouse i to obtain an initial routing solution, 30 
}{ WH

i
SDVRPMDVRP ViSS ∈∀= : 31 

• Insert each customer into the route im  based at warehouse i (vertex iv0 ) using the 32 
generalized insertion (GENI) algorithm by (10). 33 

• If the insertion of customer in the route im  would result in the violation of vehicle 34 
capacity or route duration limit, set im = im +1.  35 

 36 
Construction of Initial Solution Type 2  37 
For each warehouse i=1,…, WHn ,  do 38 
(a) Let  i

jv  be a customer randomly chosen among those closest to the depot 39 
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(b) Using the customer vertex sequence ),...,,,...,,( 111
i
j

ii
n

i
j

i
j vvvvv i

CUS
−+ , construct a tour on all 1 

vertices assigned to warehouse i by means of GENI procedure  and Unstringing and Stringing 2 
(US) procedure (10). 3 

(c) Start with warehouse i (vertex iv0 ), create im  vehicle routes by following the tour.  The first 4 
vehicle contains all customers starting from the first customer on the tour and up to, but 5 
excluding, the first customer v whose inclusion in the route would cause a violation of the 6 
capacity or route duration limit.  This process is repeated, starting from the city v, and until all 7 
customers have been included into routes.  The initial MDVRP solution is 8 

}{ WH
i
SDVRPMDVRP ViSS ∈∀= . 9 

 10 
Phase II: Solution Improvement  11 
The initial solution is an input in Phase II consisting of 3 sub-phases (see Figure 1).  Three basic 12 
procedures that are employed in these sub-phases are first described including one-route, two-13 
route and three-route procedures, followed by the descriptions of three sub-phases.  Then, the 14 
selection of routes for two-route and three route procedures in the three sub-phases is described.    15 
 16 
One-Route Procedure   17 
The one-route procedure is a post-optimizer on single-vehicle routes.  In this study, the US 18 
algorithm by (10) is employed while maintaining route duration feasibility and vehicle capacity 19 
feasibility.  Since the procedure improves the sequence of customers on a particular route 20 
without reassigning any customer to different warehouses, iED  and iVD are unaffected.  Thus, 21 
the optimal order quantity and reorder point as well as ordering and holding costs are not 22 
changed.   23 
 24 
Two-Route Procedure  25 
The two-route procedure moves vertices belonging to two different routes assigned to one or two 26 
warehouses.  Let ),,,(

1111 lkjh vvvv  and ),,,(
2222 lkjh vvvv  be two sequences of four consecutive 27 

vertices (possibly including a warehouse) from route r1 based at warehouse i1 and route r2 based 28 
at warehouse i2, respectively.  Similar to (6,11,12), the following 6 moves are attempted as long 29 
as a warehouse is not moved, and vehicle capacity feasibility and route duration feasibility are 30 
maintained.  The six moves are described together with the calculation of changes in relevant i

rq ,  31 
i
rrl , i

rpl , iED , and iVD . 32 
 33 
(a)Insert 

1j
v between 

2hv and 
2j

v   34 
The two vertex sequences become ),,(

111 lkh vvv  and ),,,,(
22212 lkjjh vvvvv , respectively.  The 35 

changes in the round-trip lengths are 
11111111 ,,, jkhkjjhrl ccc δ−+−−=Δ  and 36 

12112222 ,,, jjjjhjhrl ccc δ+++−=Δ .  If 
1j

v is the last customer visited on route r1, 37 

1111 , jjhpl c δ−−=Δ ; otherwise, 
11 rlpl Δ=Δ .  If 

2hv is the last customer visited on route r2, 38 

1122 , jjhpl c δ+=Δ ; otherwise, 
22 rlpl Δ=Δ .  The changes in the average delivery demands are 39 

1

1

1 j
i
rq μ−=Δ  and 

1

2

2 j
i
rq μ=Δ .  If 21 ii ≠ , 

11 jiED μ−=Δ  , 
12 jiED μ=Δ , 

2
11 jiVD σ−=Δ  and 40 

2
12 jiVD σ=Δ .  Otherwise, 0

21
=Δ=Δ ii EDED and 0

21
=Δ=Δ ii VDVD . 41 
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 1 
(b)Insert 

2j
v  between 

1hv  and 
1j

v   2 
The two vertex sequences become ),,,,(

11121 lkjjh vvvvv  and ),,(
222 lkh vvv , respectively.  The 3 

changes in the round-trip lengths are 
21221111 ,,, jjjjhjhrl ccc δ+++−=Δ  and 4 

22222222 ,,, jkhkjjhrl ccc δ−+−−=Δ .  If 
1hv is the last customer visited on route r1, 

2211 , jjhpl c δ+=Δ ; 5 
otherwise, 

11 rlpl Δ=Δ .  If 
2j

v is the last customer visited on route r2, 
2222 , jjhpl c δ−−=Δ ; 6 

otherwise, 
22 rlpl Δ=Δ .  The changes in the average delivery demands are 2

1

1 j
i
rq μ=Δ  and 7 

2

2

2 j
i
rq μ−=Δ .  If 21 ii ≠ , then 21 jiED μ=Δ ,  22 jiED μ−=Δ , 

2
21 jiVD σ=Δ  and 2

22 jiVD σ−=Δ .  8 
Otherwise, 0

21
=Δ=Δ ii EDED and 0

21
=Δ=Δ ii VDVD . 9 

 10 
(c) Swap 

1j
v  and 

2j
v  11 

The two vertex sequences become ),,,(
1121 lkjh vvvv  and ),,,(

2212 lkjh vvvv .  The changes in the 12 
round-trip lengths are 

21122111111 ,,,, jjkjjhkjjhrl cccc δδ +−++−−=Δ and 13 

12211222222 ,,,, jjkjjhkjjhrl cccc δδ +−++−−=Δ .  If 
1j

v is the last customer visited on route r1, 14 

2121111 ,, jjjhjhpl cc δδ +−+−=Δ ; otherwise, 
11 rlpl Δ=Δ .  If 

2j
v is the last customer visited on route 15 

r2, 
1212222 ,, jjjhjhpl cc δδ +−+−=Δ ; otherwise, 

22 rlpl Δ=Δ .  The changes in the average delivery 16 

demands are 21

1

1 jj
i
rq μμ +−=Δ  and 

21

2

2 jj
i
rq μμ −=Δ .  If 21 ii ≠ , then 

211 jjiED μμ +−=Δ  , 17 

212 jjiED μμ −=Δ , 
22

211 jjiVD σσ +−=Δ  and 22
212 jjiVD σσ −=Δ .  Otherwise, 18 

0
21
=Δ=Δ ii EDED and 0

21
=Δ=Δ ii VDVD . 19 

 20 
(d)Insert (

11
, kj vv ) between (

22
, jh vv ) 21 

The two vertex sequences become ),(
11 lh vv  and ),,,,,(

222112 lkjkjh vvvvvv .  The changes in the 22 
round-trip lengths are 11111111111 ,,,, kjlhlkkjjhrl cccc δδ −−+−−−=Δ  and 23 

11211112222 ,,,, kjjkkjjhjhrl cccc δδ +++++−=Δ .  If 
1kv is the last customer visited on route r1, 24 

1111111 ,, kjkjjhpl cc δδ −−−−=Δ ;  otherwise, 
11 rlpl Δ=Δ .  If 

2hv is the last customer visited on route 25 
r2, 

1111122 ,, kjkjjhpl cc δδ +++=Δ ; otherwise, 
22 rlpl Δ=Δ .  The changes in the average delivery 26 

demands are 11

1

1 kj
i
rq μμ −−=Δ  and 

11

2

2 kj
i
rq μμ +=Δ .  If 21 ii ≠ , 

111 kjiED μμ −−=Δ  , 27 

112 kjiED μμ +=Δ , 22
111 kjiVD σσ −−=Δ  and 22

112 kjiVD σσ +=Δ .  Otherwise, 0
21
=Δ=Δ ii EDED and 28 

0
21
=Δ=Δ ii VDVD . 29 

 30 
(e)Insert (

22
, kj vv ) between (

11
, jh vv ) 31 

The two vertex sequences become ),,,,,(
111221 lkjkjh vvvvvv and ),(

22 lh vv .  The changes in the 32 
round-trip lengths are 22122221111 ,,,, kjjkkjjhjhrl cccc δδ +++++−=Δ  and 33 

22222222222 ,,,, kjlhlkkjjhrl cccc δδ −−+−−−=Δ .  If 
1hv is the last customer visited on route r1, 34 

2222211 ,, kjkjjhpl cc δδ +++=Δ ; otherwise, 
11 rlpl Δ=Δ .  If 

2kv is the last customer visited on route r2, 35 
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2222222 ,, kjkjjhpl cc δδ −−−−=Δ ; otherwise, 
22 rlpl Δ=Δ .  The changes in the average delivery 1 

demands are 22

1

1 kj
i
rq μμ +=Δ  and 

22

2

2 kj
i
rq μμ −−=Δ .  If 21 ii ≠ , 

221 kjiED μμ +=Δ , 2 

222 kjiED μμ −−=Δ , 22
221 kjiVD σσ +=Δ  and 22

222 kjiVD σσ −−=Δ .  Otherwise, 3 
0

21
=Δ=Δ ii EDED and 0

21
=Δ=Δ ii VDVD . 4 

 5 
(f)Swap (

11
, kj vv ) and (

22
, kj vv ) 6 

The two vertex sequences become ),,,(
1221 lkjh vvvv  and ),,,(

2112 lkjh vvvv .  The changes in the 7 
round-trip lengths are 22111222211111111 ,,,,,, kjkjlkkjjhlkkjjhrl cccccc δδδδ ++−−+++−−−=Δ  and 8 

11222111122222222 ,,,,,, kjkjlkkjjhlkkjjhrl cccccc δδδδ ++−−+++−−−=Δ .  If 
1kv is the last customer 9 

visited on route r1, 
2211222111111 ,,,, kjkjkjjhkjjhpl cccc δδδδ ++−−++−−=Δ ; otherwise, 

11 rlpl Δ=Δ .  10 
If 

2kv is the last customer visited on route r2, 
2211222211122 ,,,, kjkjkjjhkjjhpl cccc δδδδ −−++−−+=Δ ;  11 

otherwise, 
22 rlpl Δ=Δ .  The changes in the average delivery demands are 12 

2211

1

1 kjkj
i
rq μμμμ ++−−=Δ  and 

2211

2

2 kjkj
i
rq μμμμ −−+=Δ .  If 21 ii ≠ , 13 

22111 kjkjiED μμμμ ++−−=Δ  , 
22112 kjkjiED μμμμ −−+=Δ , 

2222
22111 kjkjiVD σσσσ ++−−=Δ  and 14 

2222
22112 kjkjiVD σσσσ −−+=Δ .  Otherwise, 0

21
=Δ=Δ ii EDED and 0

21
=Δ=Δ ii VDVD . 15 

 16 
Three-Route Procedure 17 
The three-route procedure is an exchange scheme involving three routes (6).  Let 18 

),,( 11 111 +− hhh ννν , ),,...,,,(
22222 11 kjhhh ννννν +−  and ),(

33 kj νν be three sequences of consecutive 19 
vertices (possibly including a warehouse) from routes r1, r2 and r3 with at least 3, 4 and 3 vertices 20 
respectively, based at warehouses i1, i2 and i3.  For routes r2 and r3, consider the sequences of two 21 
vertices ),(

22 kj vv   and ),(
33 kj vv  where 

22 hj vv ≠  and 
22 hk vv ≠ .  Then the following combination 22 

of moves is attempted as long as vehicle capacity feasibility and route duration feasibility are 23 
maintained, and a warehouse is not moved:  insert 

1hv  between 
2j

v  and 
2kv  , and insert 

2hv  24 
between 

3j
v  and 

3kv .  The move is described together with the calculation of changes in relevant 25 
i
rq ,  i

rrl , i
rpl , iED , and iVD .  After three-route exchange, the three vertex sequences become 26 

),( 11 11 +− hh νν , ),,,...,,(
21222 11 khjhh ννννν +− and ),,(

323 khj ννν .  The changes in the round-trip lengths 27 
are

11111111 1,11,,1 hhhhhhhrl ccc δ−+−−=Δ +−+− , 28 

121122222222222 ,,,1,11,,1 hkhhjkjhhhhhhhrl cccccc δδ +++−−+−−=Δ +−+−  and 29 

23223333 ,,, hkhhjkjrl ccc δ+++−=Δ  .  If 
1hv is the last customer visited on route r1, 30 

1111 ,1 hhhpl c δ−−=Δ − ; otherwise, 
11 rlpl Δ=Δ .  If 

2hv is the last customer visited on route r2, 31 

12112222222 ,,,,1 hkhhjkjhhhpl cccc δδ +++−−−=Δ − .  If 
2j

v is the last customer visited on route r2, 32 

11222222222 ,1,11,,1 hhjhhhhhhhpl cccc δδ ++−+−−=Δ +−+− .  Otherwise, 
22 rlpl Δ=Δ .  If 

3j
v is the last 33 

customer visited on route r3, 
2233 , hhjpl c δ+=Δ .  Otherwise, 

33 rlpl Δ=Δ .  The changes in the 34 

average delivery demands are 
1

1

1 h
i
rq μ−=Δ  , 

21

2

2 hh
i
rq μμ −=Δ  and 

2

3

3 h
i
rq μ=Δ .  If 321 iii ≠≠ , then 35 
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11 hiED μ−=Δ  , 
212 hhiED μμ −=Δ , 

23 hiED μ=Δ ,
 

2
11 hiVD σ−=Δ ,  22

212 hhiVD σσ −=Δ  and 1 
2
23 hiVD σ=Δ .  If  321 iii == , then 0

21
=Δ=Δ ii EDED and  0

21
=Δ=Δ ii VDVD .  If   321 iii ≠= , 2 

221 hii EDED μ−=Δ=Δ , 
23 hiED μ=Δ ,
 

2
221 hii VDVD σ−=Δ=Δ  and  2

23 hiVD σ=Δ . 3 

 If 231 iii ≠= , 
2131 hhii EDED μμ +−=Δ=Δ  , 

212 hhiED μμ −=Δ , 22
2131 hhii VDVD σσ +−=Δ=Δ  and 4 

22
212 hhiVD σσ −=Δ .  If 321 iii =≠ , 

11 hiED μ−=Δ  , 
132 hii EDED μ=Δ=Δ , 2

11 hiVD σ−=Δ  and 5 
2
132 hii VDVD σ=Δ=Δ . 6 

 7 
Sub-Phase II.1: Fast Improvement  8 
The algorithm attempts to improve upon the incumbent by repeatedly applying the following 9 
three steps: 10 
 11 

• Inter-warehouse: Apply two-route procedure between routes of two different warehouses. 12 
• Intra-warehouse: Apply two-route procedure between routes of the same warehouse. 13 
• Three-Route: Exchange vertices between three routes, using three-route procedure. 14 

 15 
These steps are repeated until the incumbent does not improve for fastnmax  consecutive iterations.  16 
For each of the three steps, any move that yields an improvement is immediately implemented.  17 
Otherwise, the best non-tabu deteriorating move is implemented.  Whenever a move is 18 
implemented, the one-route procedure is applied to all routes involved in the move. 19 
 20 
Sub-Phase II.2: Intensification 21 
 22 
This phase intensifies the search for better route, starting with the best known solution and 23 
working on one warehouse at the time.  It applies the intra-warehouse step to each warehouse in 24 
turn until no improvement to the incumbent has been produced for intens

maxn  consecutive iterations.  25 
Whenever a move is implemented, the one-route procedure is applied to all routes involved in 26 
the move. 27 
 28 
Sub-Phase II.3: Diversification 29 
 30 
The effect of the diversification phase is to perform a broader exploration of the solution space.  31 
The following two steps are repeated 20 times. 32 

• First, we seek the best reinsertion of a vertex from its current route into a route belonging 33 
to a different warehouse; that is, apply the first move type of the two-route procedure 34 
limiting to only two routes associated with different warehouses.  Choosing the same 35 
vertex for reinsertion is prohibited for the next 10 applications of this step.  Whenever a 36 
move is implemented, the one-route procedure is applied to all routes involved in the 37 
move. 38 

• Second, the inter-warehouse and intra-warehouse steps of the fast improvement sub-39 
phase are applied for FastDivernmax  consecutive iterations without improvement to the solution 40 
values obtained in the first step.  Here the length of the interval during which a move is 41 

132



Karoonsoontawong and Unnikrishnan 14

tabu is randomly chosen in [15,20] and no aspiration criterion is used.  Whenever a move 1 
is implemented, the one-route procedure is applied to all routes involved in the move. 2 

 3 
Selection of Routes for Two-Route and Three-Route Procedures in the Three Sub-Phases 4 
 5 
The selection of routes to which two-route and three-route procedures are applied is described 6 
(6).  To define the distance between a route and a warehouse or between two routes, each route is 7 
represented by its center of gravity.  In inter-warehouse, we consider exchanges between each 8 

warehouse i and the 1
2

+⎥⎦
⎥

⎢⎣
⎢ WHn  warehouses closest to it.  For each pair of warehouses 1i  and 2i , 9 

we consider exchanges between the ⎥
⎥

⎤
⎢
⎢

⎡
2

1i
m

 
 routes of warehouse 1i  closest to warehouse 2i  and 10 

the  ⎥
⎥

⎤
⎢
⎢

⎡
2

2i
m

 routes of warehouse 2i  closest to warehouse 1i .  In intra-warehouse, we consider all 11 

pairs of routes for each warehouse.  In three-route procedure, the three routes r1, r2, and r3 are 12 
selected as follows.  All routes with at least 3 vertices are considered for route r1.  Route r2 is the 13 
closest neighbor of route r1 and has at least 4 vertices.  Route r3 is the closest neighbor of route r2 14 
with r3 ≠ r1, and route r3 has at least 3 vertices. 15 

Throughout Phase II, the incumbent and its value are recorded.  The current solution is 16 
not necessarily the best known because the deteriorations of the objective function are allowed.  17 
Whenever a customer is moved from its current route, moving this customer back into the same 18 
route is declared tabu for θ  iterations, where θ  is randomly chosen in [ ] ]10,4[, maxmin =FINDFIND θθ .  19 
Random tabu durations help avoid cycling.  A tabu status may be overridden if implementing the 20 
corresponding move yields a better incumbent.   21 
 22 
 23 
COMPUTATIONAL EXPERIENCES  24 
 25 
The tabu search heuristics are implemented in C++.  These run on a computer with 1.73 GHz 26 
Intel Core i7 processor and 4 GB of RAM, running under Windows 7.  The data are first 27 
described.  Then, the computational results of two experiments are discussed. 28 

 29 
Data 30 
 31 
For IRP, there is not the standard set of instances for testing algorithms.  We generated instances 32 
similar to the types used in VRP.  The customer locations are generated from (4)’s VRP 33 
instances, yielding only four sets of distinct customer locations: C1, C2, R1 and RC1.  In C1 and 34 
C2, the customer locations are clustered.  In R1, the customer locations are randomly generated 35 
from a uniform distribution.  In RC1, the customer locations are a combination of randomly 36 
generated and clustered points.  In the same manner as (5), we create five instances 37 
corresponding to each group of customer locations (denoted by 50a, 50b, 75a, 75b and 100): the 38 
first 50 customers, the last 50 customers, the first 75 customers, the last 75 customers, and all 39 
100 customers.  Thus, there are 20 instances of customer locations.  The service times are set at 40 
10 time units for all customers.  The average demands of customers are equal to the demands 41 
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used in (4).  The demand variances are based on the coefficients of variance randomly generated 1 
from the range [0.45, 0.55]. 2 

For the warehouse locations, we created two sets of 4 warehouse locations for each 3 
customer instance.  The first and second sets of candidate warehouse locations are denoted by 4 
wh1 and wh2, respectively.  We randomly generated the warehouse locations from a uniform 5 
distribution, so that two criteria are satisfied.  First, each customer location could be reached by a 6 
singleton route with the associated route duration to the last customer of at most 80 time units 7 
(M=80) from at least one warehouse.  Second, each warehouse location must be assigned at least 8 
10, 15 and 20 customers for the 50, 75 and 100 customer instances, respectively, when assigning 9 
customers to their nearest warehouse.  For all warehouse instances, homogeneous unit holding 10 
costs of the four warehouses are $0.3, $0.6, $0.9, $1.2 per product unit per day; the 11 
homogeneous ordering costs $450, $900, $1350 and $1800 per order.  For all warehouses, the 12 
lead times are two days; inventory capacity 2000 product units; order quantity capacity 2000 13 
product units; unit transport cost from the plant to warehouses is zero.  The distance matrix is 14 
determined based on Euclidean distance between all vertex pair.  The traveling speed is assumed 15 
1 distance unit per time unit, and routing cost is assumed $1 per travel time unit to cover variable 16 
vehicle costs.  Personnel costs and other vehicle related fixed costs are assumed to be considered 17 
outside the inventory-routing decision.  The route duration limits are 100 time units.  The 18 
number of available vehicles for each warehouse is unlimited with the homogeneous capacity of 19 
100 product units, which are less constrained than the route duration limit constraints in all test 20 
problems.  We identify each instance by an ID.  The first part of the ID specifies the problem 21 
group (R1, C1, C2 or RC1).  The second part specifies the customer subset (50a, 50b, 75a, 75b or 22 
100).  The third part specifies the set of warehouse locations (wh1 or wh2).  Thus, there are 40 23 
problem instances.  24 
 25 
Computational Results 26 
We calibrate the two tabu search algorithms by varying fastnmax , intens

maxn  and FastDivernmax  on a test 27 
problem, and found that the algorithm parameters suggested by (6) perform best ( fastnmax =75, intens

maxn   28 
=300 and FastDivernmax =50).  We conduct two experiments.  The first experiment compares the 29 
performances of the type-1 and type-2 tabu search heuristics in terms of computational time and 30 
solution quality against the sequential approach.  The sequential approach first solves MDVRP 31 
with route duration limits, whose routing solutions are input to the continuous ICP with 32 
stochastic inventory capacity constraints and order quantity capacity constraints.  In the second 33 
experiment, the sensitivity analysis is performed on problem instance RC1-100-wh1 by varying 34 
the route duration limit (M=80 and 100), order quantity capacity ( max

0iQ =800, 1000 and 2000) and 35 
demand variance (-30%, 0% and +30% changes).  The demand variances are the product of the 36 
original demand variance and demand variance factor (DVarF); thus, -30%, 0% and +30% 37 
changes in demand variances correspond to DVarF values of 0.7, 1.0 and 1.3, respectively. 38 

 Table 1 shows the best objective values found and total computational time by type-1 and 39 
type-2 tabu search algorithms and the sequential approach on the 40 problem instances.  As 40 
expected, the proposed tabu search algorithms outperform the sequential approach on all test 41 
problem instances.  The computational times of all runs are less than two minutes.  On 50-42 
customer and 75-customer problem instances, the two tabu search algorithms perform 43 
approximately equally well, since the type-1 tabu search outperform the type-2 tabu search on 44 
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about 50 percent of problem instances.  On 100-customer instances, the type-2 tabu search 1 
outperforms the type-1 tabu search on almost all instances except an instance R1-100-wh2. 2 
 Next, the sensitivity analysis is performed to see how the solution changes with route 3 
duration limit, order quantity capacity and demand variance on problem instance RC1-100-wh1.  4 
We employ the type-2 tabu search in all runs as it performs best on this problem instance.  Figure 5 
2a shows the best objective value found when varying route duration limits, order quantity 6 
capacity and demand variances.  It can be seen that the best objective value increases with the 7 
increase of demand variance, but decreases with the increase of order quantity capacity and route 8 
duration limit.  The best objective value is composed of three cost components: vehicle routing, 9 
holding and ordering.  Figures 2b-2d shows the three cost components when varying route 10 
duration limit, order quantity capacity and/or demand variance.  As can be seen from Figure 2b, 11 
the total ordering costs increases with the decrease of the order quantity capacity, whereas the 12 
total holding costs decreases with the decrease of the order quantity capacity.  Intuitively, when 13 
the order quantity is more constrained, the warehouse manager has to order more often and 14 
ordering costs are higher.  Meanwhile, the peak inventory levels are lower and the total holding 15 
costs are less.  Furthermore, Figure 2b shows that the routing costs increases with the decrease of 16 
route duration limit.  Once the longer route duration limit is allowed, each vehicle route may 17 
serve more customers, and the routing costs is less.  Figures 2c-2d show that the holding costs 18 
increase with the increase of demand variance, but it is unclear how the routing and ordering 19 
costs change with the demand variances.  This is as expected as the demand variance is only 20 
directly related to the holding costs (see Eq.(6.1)).  The demand variance can influence the 21 
customer assignments to different warehouses, resulting in different routing costs and ordering 22 
costs.    23 
 Figure 3a shows the continuous inventory control policies at four warehouses in the best 24 
solution when varying order quantity capacity at max

0iL =80 and DVarF=1.0.  When the order 25 
quantity capacity ( max

iQ =2000) is equal to the inventory capacity, the optimal order quantity is 26 
equal to the EOQ formula according to Eq.(9).  When the order quantity capacity decreases to 27 
1000 and 800, the customers as well as associated mean demands are reassigned between 28 
warehouses 1002 and 1003.  As such the reorder points and safety stocks of warehouses 1000 29 
and 1001 are unaffected with the change of order quantity capacity, but those of warehouses 30 
1002 and 1003 are affected.  The optimal order quantities for the case  max

iQ = 800 and 31 
max
iQ =1000 are equal to max

iQ  according to Eq.(9).   32 
Figure 3b shows the continuous inventory control policies at four warehouses in the best 33 

solution when varying demand variance at max
0iL =80 and max

iQ =800.  The customers as well as 34 
associated mean demands assigned to the four warehouses are unaffected with the change of 35 
demand variance.  The safety stock levels and reorder points at the four warehouses increase 36 
with the increase of demand variance, whereas the available inventory capacities at the four 37 
warehouses decrease with the increase of demand variance.  This is intuitive as the safety stock 38 
is positively related to demand variance, and the reorder point includes the safety stock as shown 39 
in Eq.(2).  The available inventory capacity is negatively related to demand variance (available 40 
inventory capacity = iii VDLTZZI )( 11

max
βα −− +− ).  The optimal order quantities are equal to 41 

the order quantity capacity according to Eq.(9).  Table 2 shows the MDVRP policies for the four 42 
warehouses when max

0iL =80 and max
0iL =100.  The number of routes is decreases with the increase 43 

of route duration limits.  This is because the available vehicle capacity in each route is large 44 
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enough to serve additional customers.  As can be noticed in Table 2, each route has the travel 1 
time to last customer less than or equal to the route duration limit, and the mean demand of each 2 
route is less than the vehicle capacity. 3 
 4 
CONCLUSIONS 5 
This paper studies a two-level supply chain where a single plant supplies a single commodity to a 6 
set of warehouses which in turn serve a set of customers with stochastic demands.  This paper 7 
provides a nonlinear integer programming formulation modeling the continuous inventory 8 
control policies at the warehouses and the routing of goods from the warehouses to the customers 9 
with route duration limits.  The model accounts for the probability of available inventory 10 
meeting the demand during the lead time, probability of violation of inventory capacity, and 11 
restrictions on order quantity volume.  Two tabu search heuristics – type 1 and type 2, differing 12 
primarily in the way initial solutions are generated are developed to solve the combined model.  13 
The optimal order quantity at each warehouse is approximated using the KKT conditions.  14 

Computational runs are conducted on variations of the standard Solomon test instances. 15 
Type-2 tabu search was found to outperform type-1 tabu search for the 100 customer instance. 16 
For smaller customer instances, both the heuristics were found to perform equally well.   17 
Integrating the inventory management and routing decisions by solving the combined inventory 18 
management and routing problem was found to yield cost savings of up to 14% over the 19 
sequential approach where both problems are solved separately.  The best objective function 20 
value obtained by the tabu search heuristic was found to increase with increase in customer 21 
demand variance, decrease with increase in order quantity capacity and route duration limit.  22 
Variance of the customer demand was found to have significant impact on the solution quality.   23 

This paper can be extended in multiple directions. The immediate next step is to integrate 24 
warehouse facility location problem into the combined inventory management and routing 25 
model.  Possible extensions include considering time-dependent travel times, stockout costs and 26 
delivery time windows.  27 
 28 
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Figure 1. Flowchart of Proposed Tabu Search Heuristics 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 

Phase I: Construction of an Initial Solution 
(Type I or Type II) 

Phase II.1: Fast Improvement 
Iteratively apply the three steps until the stopping criterion is met: 

Inter-warehouse, Intra-warehouse, and Three-Route. 

Phase II.2: Intensification 
Starting with the best known solution, iteratively apply the 

intra-warehouse step until the stopping criterion is met. 

Phase II.3: Diversification 
Starting with the current solution, apply the two steps for 20 
iterations: Vertex Reinsertion to Different Warehouse; Inter-

warehouse and Intra-warehouse Steps of Phase II.1. 
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a) Best Objective Values with Varying Route 
Duration Limits, Order Quantity Capacity and 
Demand Variances 

b) Three Component Costs With Varying Route Duration 
Limits and Order Quantity Capacity (DVarF=1.0) 

 1 
 

 
 
c) Three Component Costs With Varying Demand 
Variance (Order Quantity Capacity=2000 and Route 
Duration Limit = 100) 
 

 

 
 
d) Three Component Costs With Varying Demand 
Variance (Order Quantity Capacity=800 and Route 
Duration Limit = 100) 

 
Figure 2. Best Objective Values and Three Cost Components 2 
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 4 

 5 
 6 

 7 
 8 
 9 
 10 
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 1 
a) With Varying Order Quantity Capacity (Route Duration Limit=80; DVarF=1.0) 2 

 3 

 4 
 5 

b) With Varying Demand Variances (Route Duration Limit=80; Order Quantity Capacity=800) 6 
 7 

Figure 3. Continuous Inventory Control Policies at Four Warehouses  8 
 9 

 10 
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Table 1. Computational Results of Sequential MDVRP and ICP, and Combined ICP and MDVRP  1 
 2 

 

Sequential MDVRP and 
ICP 

Combined MDVRP and ICP 
Init. Sol. Type 1 Init. Sol. Type 2 

Best Obj. 
($/day) 

CPU 
Time 
(min) 

Best Obj. 
($/day) 

% 
Improve. 

CPU Time 
(min) 

Best Obj. 
($/day) % Improve. 

CPU Time 
(min) 

50-Customers Problems 
C1-50a-wh1 3,727.02 1.36 3,599.25 3.43% 1.96 3,619.87 2.87% 1.67
C1-50a-wh2 3,821.86 1.26 3,727.73 2.46% 0.89 3,747.72 1.94% 0.79
C1-50b-wh1 4,083.87 0.66 3,728.71 8.70% 0.61 3,795.24 7.07% 0.78
C1-50b-wh2 3,999.61 0.74 3,478.46 13.03% 0.85 3,823.94 4.39% 0.71
C2-50a-wh1 3,840.98 0.98 3,550.59 7.56% 0.88 3,528.95 8.12% 1.02
C2-50a-wh2 3,514.08 0.94 3,223.65 8.26% 0.95 3,369.86 4.10% 0.96
C2-50b-wh1 4,211.79 0.79 3,956.97 6.05% 0.53 3,905.52 7.27% 0.62
C2-50b-wh2 4,108.18 0.58 3,627.97 11.69% 0.69 3,588.85 12.64% 0.64
R1-50a-wh1 3,570.89 0.76 3,367.28 5.70% 0.65 3,235.19 9.40% 0.83
R1-50a-wh2 3,693.61 0.74 3,584.06 2.97% 0.55 3,485.92 5.62% 0.71
R1-50b-wh1 3,715.19 0.84 3,284.29 11.60% 0.80 3,190.68 14.12% 0.98
R1-50b-wh2 3,927.35 1.21 3,723.42 5.19% 0.65 3,588.96 8.62% 0.76
RC1-50a-wh1 4,228.72 0.61 4,085.40 3.39% 0.53 4,029.67 4.71% 0.62
RC1-50a-wh2 4,414.56 1.12 3,844.28 12.92% 0.68 3,814.29 13.60% 0.53
RC1-50b-wh1 3,707.06 0.64 3,270.56 11.77% 0.74 3,284.03 11.41% 0.82
RC1-50b-wh2 3,623.14 0.74 3,320.46 8.35% 0.31 3,203.86 11.57% 0.63

75-Customers Problems 
C1-75a-wh1 4,966.38 1.80 4,839.85 2.55% 1.76 4,885.40 1.63% 1.49
C1-75a-wh2 5,152.99 1.35 5,152.99 0.00% 1.06 5,014.38 2.69% 0.99
C1-75b-wh1 5,545.76 1.09 5,393.16 2.75% 1.17 5,366.82 3.23% 1.23
C1-75b-wh2 5,375.33 1.03 5,249.51 2.34% 1.02 5,100.32 5.12% 0.78
C2-75a-wh1 5,306.20 1.18 4,991.70 5.93% 1.05 5,022.92 5.34% 1.22
C2-75a-wh2 4,985.98 1.26 4,695.13 5.83% 1.19 4,834.15 3.05% 1.25
C2-75b-wh1 5,528.38 1.22 5,311.50 3.92% 0.96 5,330.93 3.57% 1.17
C2-75b-wh2 5,338.21 1.28 5,210.52 2.39% 1.06 5,138.19 3.75% 1.01
R1-75a-wh1 4,703.12 0.95 4,632.99 1.49% 1.02 4,535.88 3.56% 1.29
R1-75a-wh2 4,593.40 0.93 4,412.45 3.94% 0.88 4,497.09 2.10% 1.14
R1-75b-wh1 4,788.27 1.34 4,378.67 8.55% 1.07 4,523.30 5.53% 1.11
R1-75b-wh2 4,763.60 1.81 4,536.31 4.77% 1.19 4,490.63 5.73% 1.35
RC1-75a-wh1 4,988.65 1.05 4,827.74 3.23% 0.61 4,815.07 3.48% 0.99
RC1-75a-wh2 5,236.32 1.07 5,104.13 2.52% 0.91 5,236.32 0.00% 0.88
RC1-75b-wh1 4,971.99 1.00 4,785.77 3.75% 0.68 4,760.34 4.26% 0.82
RC1-75b-wh2 4,987.55 1.03 4,745.55 4.85% 0.87 4,750.22 4.76% 1.02

100-Customers Problems 
C1-100-wh1 6,061.05 1.71 5,815.44 4.05% 1.90 5,761.22 4.95% 1.75
C1-100-wh2 6,214.90 1.64 6,110.84 1.67% 1.42 6,005.50 3.37% 1.62
C2-100-wh1 6,142.82 1.50 5,872.85 4.39% 1.33 5,872.55 4.40% 1.25
C2-100-wh2 6,590.24 1.41 6,507.64 1.25% 1.28 6,380.97 3.18% 1.47
R1-100-wh1 5,616.66 1.24 5,264.36 6.27% 1.23 5,227.34 6.93% 1.82
R1-100-wh2 5,574.31 1.97 5,430.94 2.57% 1.70 5,471.92 1.84% 1.49
RC1-100-wh1 6,112.11 1.43 6,016.59 1.56% 1.36 5,984.98 2.08% 1.47
RC1-100-wh2 6,324.67 1.32 6,258.55 1.05% 1.15 6,127.76 3.11% 1.39

 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
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Table 2. Multi-Depot Vehicle Routing Policies for Four Warehouses with Varying Route Duration Limits (Order 1 
Quantity Capacity =2000 and DVarF=1.0) 2 

 
 

M80 

depot 1000 depot 1001 depot 1002 depot 1003 

No. of Routes 6 8 8 8 

Routes 
 
 
 
 
 
 
 

1000-98-55-69-82 1001-6-7-79-8 1002-65-90-96-94 1003-67-93-71 

1000-88-60-78-73 1001-46-4-45-5-3 1002-95-92-91-80 1003-72-54-81 

1000-14-47-17-16-15 1001-42-44 1002-66-56-84-64 1003-62 

1000-59-97-75 1001-1-43-40 1002-83-57-24-22 1003-51-85-63 

1000-9-13-87 1001-36-35-37 1002-20-49-19-18 1003-76-89 

1000-10-11-12-53 1001-38-39-41 1002-48-21-23-25 1003-33-32-30-28-26 

1001-70-61-68 1002-77-58 1003-27-29-31-34 

1001-100-2 1002-74-86-52-99 1003-50 

Mean Demands 61; 68; 80; 70; 43; 95 80; 90; 20; 70; 70; 60; 53; 33 71; 46; 70; 87; 80; 70; 27; 54 26; 34; 3; 27; 56; 70; 80; 30 

Travel Times to 
Last Customer 

75.46; 77.83; 78.00; 73.52; 64.66; 55.24; 74.49; 76.91; 77.24; 76.56; 69.41; 57.10; 79.49; 15.83; 61.36; 

76.68; 62.90; 72.08 79.54; 77.58; 62.61; 44.77 72.52; 78.78; 65.74; 78.36 52.26; 79.94; 75.18; 13.61 

Travel Times 
(begin and 

end at depot) 

81.78; 102.04; 97.65; 81.59; 73.66; 88.78; 113.54; 101.98; 93.52; 88.23; 90.99; 80.64; 112.91; 21.66; 74.36; 

119.76; 85.75; 77.18 122.95; 113.60; 86.69; 45.77 104.80; 109.78; 98.55; 87.42 79.43; 105.02; 90.48; 17.21 

 3 
 4 

 
M100 

depot 1000 depot 1001 depot 1002 depot 1003 

No. of Routes 6 6 6 6 

Routes 

1000-98-69-90-65-82 1001-2-6-7-8-46 1002-91-92-94-96-80 1003-67-93-71 

1000-53-88-60-79-78 1001-4-45-5-3-1 1002-64-84-95-56-66 1003-85-62 

1000-12-47-17-16-15-13 1001-42-44-43-40-39 1002-83-22-24-57 1003-51-76-89-63 

1000-97-75-59 1001-36-35-37-38 1002-20-49-19-18-48-21 1003-33-32-34 

1000-99-86-74-87-9 1001-81-54-72-41 1002-23-25-77-58 1003-31-29-27-26-28-30 

1000-73-14-11-10 1001-70-61-68-55-100 1002-52 1003-50 

Mean Demands 67; 98; 100; 70; 84; 85 90; 100; 80; 100; 54; 72 89; 76; 87; 100; 77; 3 26; 5; 81; 50; 100; 30 

Travel Times 
to last customer 

87.24; 97.47; 93.83; 66.00; 64.47; 98.24; 92.71; 97.31; 76.47; 57.10; 43.57; 93.68; 

90.76; 97.51; 87.34 93.14; 99.39; 99.68 96.52; 96.94; 21.66 57.32; 97.25; 13.61 
Travel Times 

(begin and 
end at depot) 

93.56; 114.50; 112.70; 71.66; 73.96; 136.45; 108.99; 103.39; 88.55; 80.64; 49.40; 106.68; 

118.07; 112.38; 99.42 133.34; 135.40; 112.41 127.92; 129.74; 33.32 72.62; 115.36; 17.21 

 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
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ABSTRACT 1 
 2 
Efficient loading of containers would raise current productivity for the shipment of mixed, boxed 3 
cargo and this paper considers the knapsack container loading problem.  Given a rectangular-4 
shaped container, rectangular-shaped boxes with different sizes are packed such that total loaded 5 
volume is maximized.  All boxes with the same origin-destination pair may be rotated in six 6 
orthogonal directions without load-related and positioning constraints.  The modified wall-7 
building based compound approach performs 36 modified wall-building heuristics based on three 8 
existing ranking functions, two existing priority rules and six orthogonal rotations of containers, 9 
while recording the best solution.  The six orthogonal rotations of containers are equivalent to 10 
filling the container in six ways (four wall building methods and two floor building methods).  11 
Three weakly heterogeneous real-world test problems from a furniture company in Thailand are 12 
employed.  There is not a winning heuristic that performs best on the three test problems.  The 13 
typical wall-building approach (type-1 container rotation) does not perform well when compared 14 
with considering all six orthogonal rotations of container.  In terms of the number of containers, 15 
the proposed compound approach can save up to 33% on the three test problems, and the highest 16 
fill percentages in the best solution founds are improved by up to 36%, when compared with the 17 
manual solutions.  The proposed approach outperforms the existing tree heuristic.  The highest 18 
fill percentages by the proposed approach are up to 6% higher than those by the tree search 19 
heuristic, whereas the CPU times by the proposed approach are up to 31% of those by the tree 20 
search heuristic.   21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
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INTRODUCTION 1 
 2 
Container loading is a crucial function for efficient supply chain (1).  An inefficient container 3 
loading may result in inevitably additional container costs as well as unsatisfactory customer 4 
service level.  The problem considered in this paper is the knapsack container loading problem.  5 
Given a rectangular-shaped container and rectangular-shaped boxes with associated volumes, the 6 
subset of boxes is selected to be packed in the container such that the total volume is maximized 7 
(i.e. the wasted space in the container is minimized).  The cargo boxes may be rotated in any 8 
orthogonal directions without load-related and positioning constraints.  It is noted that in 9 
principle, the empty spaces could be filled out with foam rubber to ensure a proper support of the 10 
boxes (2).  All boxes have the same origin-destination pair.  It is assumed that the cargo weights 11 
are dominated by cargo volume in container packing, so box weights are not considered in the 12 
algorithm.  It is also assumed that the boxes are packed without overlapping, and the widths, 13 
depths and heights of the boxes are integers.  The modified wall-building based compound 14 
approach is proposed in this paper.  It considers six orthogonal rotations of container together 15 
with three existing ranking functions and two existing priority rules for determining layer depths 16 
and strip heights, resulting in 36 modified wall-building heuristics.  The compound approach 17 
performs the 36 heuristics while recording the best solution found.   18 

In the next section, the literature review is provided, followed by the description of the 19 
modified wall-building based compound approach.  The computational results of the three real-20 
world case studies are discussed.  The best solutions by the proposed approach are compared to 21 
the manual solutions and the best solutions found by the tree search heuristic by (2).  Then, the 22 
summary and conclusions are provided.     23 
 24 
LITERATURE REVIEW 25 
 26 
The container loading problem was first studied by Gilmore and Gomory (3).  Dyckhoff (4) and 27 
Wascher et al. (5) proposed the general classification of cutting and packing problems.  Pisinger 28 
(2) categorized the packing and loading literature into four categories based on the objective 29 
function and side constraints: strip packing, knapsack container loading, bin-packing and multi-30 
container loading.  Firstly, in the strip packing problem (e.g. (6)), the container has known width 31 
and height but unlimited depth, and the problem is to pack all boxes such that the container depth 32 
is minimized.  This problem category is applicable to multi-drop situations where the load should 33 
be divided into different sections associated with different destinations (e.g. (7)).  Secondly, in 34 
the knapsack container loading problem (e.g. (2),(8)), we select a subset of boxes with associated 35 
profits to be packed in a single container such that the total profit is maximized.  If the box profit 36 
is set to the box volume, this problem minimizes the wasted space in the container.  Thirdly, in 37 
the bin packing problem (e.g. (9),(25)-(27)), all boxes have to be packed into a minimum number 38 
of containers with fixed dimensions.  Lastly, in the multi-container loading problem (e.g. 39 
(10),(28)), all boxes are packed into a minimum number of containers, which are chosen from 40 
the containers with varying dimensions, such that the total shipping cost is minimized.  In 41 
addition, Bischoff and Ratcliff (7) and Bortfeldt and Wascher (1) provide the review of practical 42 
requirements that may be incorporated into the problem: container-related, item-related, cargo-43 
related, positioning, and load-related constraints. 44 
 Since the container loading problem is an NP-hard problem (2), there does not exist an 45 
efficient algorithm to obtain the exact solution in polynomial time.  Christensen and Rousoe (11) 46 
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provide the thorough review of heuristics for the container loading problem.    The heuristics for 1 
the container loading problem can be categorized into three categories: construction algorithms, 2 
tree search algorithms, and metaheuristic algorithms.   3 

First, in the category of construction algorithms, a general solution strategy is to divide 4 
the container into smaller pieces, and then each piece is separately packed.  The three-5 
dimensional solution space is often reduced to one or two dimensions.  The construction 6 
algorithms can be further categorized into five subcategories: wall-building, layer-building, 7 
stack-building, block-building, and guillotine-cuts.  The most common dividing procedure is 8 
wall-building first introduced by George and Robinson (12).  A wall is constructed by making a 9 
vertical strip through the container.  The depth of a strip is defined by the depth of the first box 10 
placed in the wall, and as the strip is filled, the boxes will create a wall-like formation.  Bischoff 11 
and Marriott (6) extended the wall building algorithm, and proposed a hybrid approach where 14 12 
heuristics based on various ranking functions are performed to determine the best solution.  The 13 
second sub-category is the layer-building approach (e.g. (7)).  It splits the container by horizontal 14 
slices.  When compared to the wall building approach, the layer building approach may produce 15 
more stable loads.  The third sub-category is the stack-building approach (e.g. (3)).  It constructs 16 
box stacks, so that the container loading problem becomes the two-dimensional problem of 17 
arranging the stacks on the container floor.  The fourth sub-category is the block-building 18 
approach (e.g. (13)).  It constructs blocks, and then, these blocks are placed in the container.  A 19 
block is composed of one or two types of boxes that are tightly packed.  The fifth sub-category is 20 
the guillotine-cut approach (14).  It splits the container into smaller pieces by guillotine cuts.  21 
The guillotine cut is a cut through an object until another guillotine cut is met or the object is cut 22 
through. 23 

Second, the tree search heuristic algorithms are developed based on dynamic 24 
programming scheme and certain construction algorithm, employing upper and lower bounds.  25 
Morabito and Arenales (14) proposed the tree search where a tree is created by guillotine cutting.  26 
Eley (13) proposed the tree search method that is built upon the greedy block building procedure.  27 
Pisinger (2) proposed the tree search heuristics based on the wall building procedure.  The tree 28 
search framework is used to determine the wall depths and strip widths, and only the most 29 
promising nodes are kept in the tree.  Third, the metaheuristic algorithms for container loading 30 
problem include genetic algorithms (e.g. (15),(16)), GRASP algorithms (e.g. (17)), tabu search 31 
algorithms (e.g. (18)) and hybrid algorithms (e.g. (19)).   32 

The problem considered in this paper is the knapsack container loading problem.  To fill 33 
each container, the total loaded volume is maximized.  In this study, we extend Bischoff and 34 
Marriott (6)’s approach by considering various orthogonal rotations of container and 35 
incorporating Pisinger (2)’s box pairing procedure and Pisinger (20)’s dynamic programming 36 
algorithm for 0-1 knapsack problem.  In the case studies, the proposed approach is compared to 37 
the manual approach and the tree search heuristic (2). 38 
 39 
MODIFIED WALL-BUILDING BASED COMPOUND APPROACH 40 
 41 
George and Robinson (12)’s wall building algorithm fills the single container by building layers 42 
(walls) across the container depth.  The layer depth is selected based on the rationale that a box 43 
with the largest size of the smallest dimension may be difficult to accommodate later in the 44 
packing procedure.  As such, the ranking rule is set the layer depth equal to the largest size of the 45 
smallest dimensions of the unpacked boxes.  Given a known layer depth, the horizontal strips are 46 
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built across the container height.  To fill a horizontal strip, the algorithm inserts the box with the 1 
largest size of the smallest dimension of an unpacked box.  Bischoff and Marriott (6) proposed 2 
the compound approach that performs the wall-building algorithms with various ranking rules 3 
while recording the best solution found.  In this paper, we modify the compound approach by 4 
considering six orthogonal rotations of the container, Pisinger (2)’s three ranking functions and 5 
two priority rules, Pisinger (2)’s box pairing procedure, and Pisinger (20)’s dynamic 6 
programming based algorithm for the exact solution of the 0-1 knapsack strip packing problem.   7 
 The dimensions W , H , and D  are referred to the typical width, height and depth of the 8 
container, whereas the current width, height and depth of container (W, H and D) are referred to 9 
the dimensions considered in the modified wall-building algorithm along the x-axis, y-axis and 10 
z-axis, respectively, as shown in Figure 1.   11 
 12 
 13 
 14 

 15 
 16 
 17 

Figure 1. Three Dimensional Axes, Current Container Dimensions (W, H, D) and Current Layer Depth (d’) (2) 18 
 19 
In the same way, the dimensions jw , jh  and jd  are the initial width, height and depth of box j, 20 
whereas the current dimensions of boxes ( jw , jh  and jd ) are referred to the dimensions 21 
considered in the algorithm along the three axes.  All boxes can be rotated in six orthogonal 22 
directions (or rotations) as illustrated in Figure 2.  The modified wall building based compound 23 
approach further considers six possible container rotations in the procedure.  As shown in Table 24 
1, the container rotation types 1, 2, 5, and 6 correspond to wall building approaches, whereas the 25 
container rotation types 3 and 4 correspond to floor building approaches.  Container rotation type 26 
1 (i.e. typical container rotation) builds layers (walls) across the container depth D  as shown in 27 
Figure 1, and builds horizontal strips of length W  across the container height H  as shown in 28 
Figure 3.  For container rotation types 2-6, the procedure rotates the container in the other five 29 
orthogonal directions, and performs the wall-building algorithm; these corresponds to either wall 30 
or floor building and either horizontal or vertical strip building.  Specifically, container rotation 31 
type 2 corresponds to building layers (walls) across the container depth D  and vertical strips of 32 
length H  across the container width W .  Container rotation type 3 corresponds to building 33 
layers (floors) across the container height H  and horizontal strips of length D  across the 34 
container width W .  Container rotation type 4 corresponds to building layers (floors) across the 35 
container height H  and horizontal strips of length W  across the container depth D .   36 

d’ X

Y 

Z

Layer of Dimension 
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a) Rotation Type 1 b) Rotation Type 2 c) Rotation Type 3 
 

 
 

 
 
 

 

 

 
d) Rotation Type 4 e) Rotation Type 5 f) Rotation Type 6 

 1 
Figure 2. Six Orthogonal Rotations 2 

 3 
 4 
Table 1. Container Rotation Types and Associated Descriptions 5 
Container  
Rotation Type 

W  
 

H  D  Description 

1 W   H  
 

D   
 

Wall Building: 
Layer building across the depth D   
Horizontal strip (strip length = W ) building across the height H  

2 H  
 

W  D   
 

Wall Building: 
Layer building across the depth D   
Vertical strip (strip length = H ) building across the width W  

3 D   
 

W  H  
 

Floor Building: 
Layer building across the height H  
Horizontal strip (strip length = D ) building across the width W  

4 W  D   
 

H  
 

Floor Building: 
Layer building across the height H  
Horizontal strip (strip length = W ) across the depth D  

5 D   
 

H  
 

W  Wall Building: 
Layer building across the width W   
Horizontal strip (strip length = D ) Across the height H  

6 H  
 

D   
 

W  Wall Building: 
Layer building across the width W  
Vertical strip (strip length = H ) building across the depth D  

 6 
 7 
 8 

jj dd =  

jj hh =  

jj ww =  

jj wh =  

jj hw =  

jj dd =  

jj dw =  
jj wh =  

jj hd =  

jj dh =  

jj ww =  
jj hd =  

jj hh =  

jj dw =  
jj wd =  

jj wd =  jj hw =  

jj dh =  
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 1 
 2 

Figure 3. Current Strip Dimensions (sw’× sh’×d’) 3 
 4 
Container rotation type 5 corresponds to building layers (walls) across the container width W  5 
and horizontal strips of length D  across the container height H .  Container rotation type 6 6 
corresponds to building layers (walls) across the container width W  and vertical strips of length 7 
H  across the container depth D .   8 

The notations used in the proposed procedure including the parameters and variables are 9 
first given.  Then, the pseudo-code is described, followed by the descriptions of major 10 
components in the pseudo-code.     11 
 12 
Notations 13 
 14 
Parameters 15 
N = {1,…,n} = set of boxes 16 
W = typical container width 17 
H  = typical container height 18 
D  = typical container depth 19 

jw = initial width of box j 20 

jh = initial height of box j 21 

jd = initial depth of box j 22 
 23 
Variables 24 
N ′=  set of unloaded boxes 25 
 N ′′ = set of unloaded boxes that are feasible to fill the current layer 26 
N ′′′ = set of unloaded boxes that are feasible to fill the current strip 27 
W = current container width in the algorithm 28 
H = current container height in the algorithm 29 
D = current container depth in the algorithm 30 

jw = current width of box j 31 

sh’

sw’= 
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jh = current height of box j 1 

jd = current depth of box j 2 
Dr = current residual container depth 3 
H r = current residual wall height 4 
d ′ = current layer depth 5 
ws ′= current strip width 6 
hs ′= current strip height 7 

strip_start_y = y-coordinate of the beginning of current strip 8 
strip_end_y = y-coordinate of the ending of current strip 9 
wall_start_z = z-coordinate of the beginning of current layer  10 
wall_end_z = z-coordinate of the ending of current layer  11 
(xj, yj , zj ) = (x,y,z)-coordinate of the referenced corner of loaded box j in the current solution 12 
(dxj , dyj , dzj) = (width, height, depth) of loaded box j in the current solution 13 
(xj

*, yj
*, zj

*) = (x,y,z)-coordinate of the referenced corner of loaded box j in the best solution found 14 
(dxj

*, dyj
*, dzj

*) = (width, height, depth) of loaded box j in the best solution found 15 
 16 
Pseudo-code  17 

 18 
For each heuristic method c,u,v (i.e. container rotation type c, ranking function u and priority rule 19 
v), the following steps are performed, given a rectangular-shaped container. 20 
 21 
Step 0: Set con = 1. 22 

Set N ′= N. 23 
 24 
Step 1: Initialize the following for the container con : 25 

• set the current residual container depth to the current container depth: set Dr=D,  26 
• set the current strip width to the current container width: set ws ′= W, and   27 
• Set wall_end_z = 0 28 
• set (xj, yj , zj ) = (0,0,0) for all boxes j in N ′  29 
• set (dxj , dyj , dzj) = ( jw , jh , jd )for all boxes j in N ′  30 

 31 
Step 2: Determine the current layer depth d ′  based on the ranking function f u and the priority 32 
rule v and Dr.  If d ′  can be determined,  33 

• update the current residual container depth: set Dr= Dr d ′−   34 
• set the current residual wall height to the current container height: set Hr=H   35 
• set wall_start_z = wall_end_z 36 
• set wall_end_z = wall_start_z + d ′  37 
• set strip_end_y = 0 38 

Otherwise, go to Step 7. 39 
 40 
Step 3: Perform the box pairing procedure to obtain the set of feasible unloaded boxes ( N ′′ ) to 41 
fill the current wall.  Update (dxj , dyj , dzj) for all rotated boxes j. 42 
 43 
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Step 4: Determine the current strip height ( hs ′ ) based on the ranking function fu and the priority 1 
rule v, given Hr.  If hs ′  can be determined,  2 

• update the current residual wall height: set hsHH rr ′−=   3 
• determine the set of feasible unloaded boxes ( N ′′′ ) to fill the current strip, and update   4 

(dxj , dyj , dzj) for all rotated boxes j. 5 
• set strip_start_y = strip_end_y   6 
• set strip_end_y = strip_start_y + hs ′  7 

Otherwise, go to Step 2.   8 
 9 
Step 5: Perform the strip packing procedure to select boxes from N ′′′  to fill the strip 10 
( ×′ws ×′hs d ′ ) and update (xj, yj ,zj) and (dxj , dyj , dzj) of each loaded box j.  Update the sets of 11 
unloaded boxes N ′  and N ′′ .  12 
 13 
Step 6: If there is an unloaded box (i.e. {}≠′N ), go to Step 4.  Otherwise, go to Step 8. 14 
 15 
Step 7: Calculate the fill percentage of the current container con: fill percentage = volume of 16 
loaded boxes / volume of container.  Set con = con + 1.  Go to Step 1. 17 
 18 
Step 8: Terminate with the empty set of unloaded boxes ( φ=′N ).  Calculate the fill percentage 19 
of the current container con.   20 
 21 
Step 9: Update the best solution found: 22 

• If the current solution is better in terms of the number of containers,  23 
o set best heuristic method (c*,u*,v*) = current heuristic method (c,u,v) 24 
o set (xj

*, yj
*, zj

*) = (xj, yj , zj ) and set (dxj
*, dyj

*, dzj
*) = (dxj , dyj , dzj) for all j in N. 25 

• If the current solution is as good as the best solution in terms of number of containers,  26 
o If the higher fill% in the current solution is higher than that in the best solution,  27 

 set best heuristic method (c*,u*,v*) = current heuristic method (c,u,v) 28 
 set (xj

*, yj
*, zj

*) = (xj, yj , zj ) and set (dxj
*, dyj

*, dzj
*) = (dxj , dyj , dzj) for all j in N. 29 

 30 
Descriptions of Major Components 31 
 32 
The major components of the proposed approach include the layer depth and strip height 33 
determinations, the box pairing procedure, and the strip packing problem. 34 
 35 
Layer Depth and Strip Height Determinations 36 
 37 
In Step 2, we employ the ranking functions in (2), which are based on certain statistics of the 38 
dimensions of the unloaded boxes.  Denote by α and β  the smallest dimension and the largest 39 
dimension of the unloaded boxes, respectively.  Three different ranking functions are considered:   40 

∑
=

=∨=∨==
n

i
kdkhkwk iii

f
1

)(
1 1  ββαα ,1,...,1, −+=∀k       (1.1) 41 

∑
=

==
n

i
kdhwk iii

f
1

)},,(max{
2 1  ββαα ,1,...,1, −+=∀k       (1.2) 42 
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∑
=

==
n

i
kdhwk iii

f
1

)},,(min{
3 1  ββαα ,1,...,1, −+=∀k       (1.3) 1 

The type-1 ranking function, Eq.(1.1), determines the number of occurrences of each dimension 2 
from all dimensions iw , ih  and id  of the remaining boxes.  The type-2 ranking function, 3 
Eq.(1.2), determines the number of occurrences of each dimension from the largest dimensions 4 
of the unloaded boxes.  The type-3 ranking function, Eq.(1.3), determines the number of 5 
occurrences of each dimension from the smallest dimensions of the unloaded boxes. 6 

In Step 4, when the layer depth and the set of feasible unloaded boxes ( N ′′ ) to fill the 7 
current wall have been determined, the ranking functions only consider the current width and the 8 
current height of feasible unloaded boxes.  Denote by α and β  the respective smallest dimension 9 
and the largest dimension of the current widths and current heights of the feasible unloaded 10 
boxes.  Three different ranking functions are:   11 

∑
=

=∨==
n

i
khkwk ii

f
1

)(
1 1  ββαα ,1,...,1, −+=∀k        (2.1) 12 

∑
=

==
n

i
khwk ii

f
1

)},(max{
2 1  ββαα ,1,...,1, −+=∀k       (2.2) 13 

∑
=

==
n

i
khwk ii

f
1

)},(min{
3 1  ββαα ,1,...,1, −+=∀k       (2.3) 14 

 15 
The type-1 ranking function, Eq.(2.1), determines the number of occurrences of each dimension 16 
from all dimensions iw  and ih  of the feasible unloaded boxes.  The type-2 ranking function, 17 
Eq.(2.2), determines the number of occurrences of each dimension from the largest dimensions 18 
of iw  and ih  of the feasible unloaded boxes.  The type-3 ranking function, Eq.(2.3), determines 19 
the number of occurrences of each dimension from the smallest dimensions iw  and ih  of the 20 
feasible unloaded boxes.   21 

In Steps 2 and 4, we consider two priority rules (2): 22 
 23 
Priority Rule 1: the largest dimension with positive ranking function value is selected; i.e. largest 24 
dimension k with fk > 0. 25 
 26 
Priority Rule 2: the most frequent dimension is selected; i.e. dimension k with the largest value 27 
of fk. 28 
 29 
The motivation of priority rule 1 is that the largest dimension should be loaded early in the 30 
packing procedure; otherwise, it may be difficult to be packed later.  The motivation of priority 31 
rule 2 is that a homogeneous layer or strip with may tightly be packed.  It is noted that the 32 
procedure by (12) is equivalent to the type-3 ranking function and priority rule 1.  Figure 4 33 
illustrates the layer depth determination on a small problem by the three ranking functions and 34 
the two priority rules. 35 
 36 
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a) Five-Box Example 

Dimension (k) fk
1 

1 1 
2 3 
3 5 
4 3 
5 3 

Priority rule 1: d’=5 
Priority rule 2: d’=3 

 
b) First Ranking Function and Two Priority Rules

 
Dimension (k) fk

2 
1 0 
2 0 
3 1 
4 2 
5 2 

Priority rule 1: d’=5 
Priority rule 2: d’=5 

 
c) Second Ranking Function and Two Priority Rules 

 
Dimension (k) fk

3 
1 1 
2 3 
3 1 
4 0 
5 0 

Priority rule 1: d’=3 
Priority rule 2: d’=2 

 
d) Third Ranking Function and Two Priority Rules 

 1 
Figure 4. Examples of Layer Depth Determinations  2 

 3 
 4 
Box Pairing Procedure 5 
 6 
After the layer depth d ′  is determined, in Step 3, we employ the box pairing procedure (2) to 7 
determine the set of feasible unloaded boxes ( N ′′ ) to fill the current wall.  (2) indicated that a 8 
box pairing procedure can be used to achieve an improved solution in his tree search heuristic, 9 
and this is also adopted in our proposed algorithm.  The complexity of the box pairing procedure 10 
is O(n2), and it is executed only once for each layer depth d ′ .  The box pairing procedure is 11 
described below: 12 
 13 
Step 3.1: Set N ′′ ={}.  If the smallest dimension of each box i in the set N ′  is bigger than the 14 
layer depth d ′ , box i is not inserted in N ′′  and is not considered in the box pairing procedure.  15 
Otherwise, Rotate each box i in the set  N ′  such that its depth id is the largest dimension 16 
satisfying the constraint ddi ′≤ .  The filling ratio to pack box i in the layer with depth d ′  is 17 

)(iμ : 18 
 19 

dhwdhwi iiiii ′= /)(μ  ddi ′= /         (3) 20 
 21 
Step 3.2: Pairing box i with other box j in the set N ′  where j ≠ i.  All orthogonal rotations of i 22 
and j are considered such that ddd ji ′≤+  and the associated filling ratio, ),( jiη , is determined: 23 
 24 

   
},max{},max{

),(
jiji

jjjiii

hhwwd
dhwdhw

ji
⋅⋅′

+
=η        (4) 25 
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 1 
If )(),( iji μη ≤  for all boxes j≠i in N ′  and all orthogonal rotations of boxes i and j, then box i 2 
remains alone and is inserted in N ′′ .  Otherwise, box j and corresponding rotation with the 3 
largest value of ),( jiη is selected to pair with boxes i in order to form a new box k with the 4 
following dimensions: },max{ jik www = , },max{ jik hhh = , and jik ddd +=  as illustrated in 5 
Figure 5.  Then, box k is inserted in N ′′ .  6 
 7 

 8 
 9 
 10 

Figure 5. Paired Box Dimensions 11 
 12 
Strip Packing Problem 13 

 14 
In Step 5, strips are filled horizontally.  The strip has the width equal to current container width 15 
sw’=W, the depth equal to current layer depth d ′  and the height hs ′ .  The procedure first 16 
determines the set of feasible unloaded boxes ( N ′′′ ) to fill the current strip as follows.  Set 17 
N ′′′ ={}.  Each box j in the set N ′′  is rotated in one of six directions such that wj is minimized 18 
subject to dd j ′≤  and  hshj ′≤ .  If it is possible to fit box j in the current strip, box j is inserted 19 
in the set N ′′′ .   If it is not possible to fit box j within the current strip, then box j is not 20 
considered for the current strip packing.  The strip packing problem can be formulated as a 0-1 21 
knapsack problem as shown below (2): 22 
 23 

∑
′′′∈

⋅⋅⋅
Nj

jjjj sdhwmax      24 

Subject to 25 
Wsw

Nj
jj ≤⋅∑

′′′∈

     26 

}1,0{∈js  Nj ′′′∈∀  27 
 28 
where js is a binary decision variable; js =1 if box j is chosen to fill the current strip, and 0 29 
otherwise.  The 0-1 knapsack problem is an NP-hard problem (21), so there does not exist an 30 
efficient algorithm to solve for an exact solution in polynomial time.  It can be solved in pseudo-31 
polynomial time by dynamic programming (22).  In this study, we employ the effective dynamic 32 
programming-based algorithm by (20). 33 

 

wi 

j 

i 

wj 

hj 

dj 

wk=max{ wi , wj } 

hk=max{ hi , hj } 

dk= di +dj

hi 

di 
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COMPUTATIONAL EXPERIENCES 1 
 2 
The 36 modified wall building heuristics are implemented in C by modifying the callable C code 3 
in (23,24).  The box pairing procedure is taken from the callable C code by (23), and the 4 
dynamic programming heuristic for 0-1 knapsack problem is taken from the callable C code by 5 
(24).  These heuristics run on a computer with 1.73 GHz Intel Core i7 processor and 4 GB of 6 
RAM, running under Windows 7.  We use three real-world test problems from a furniture 7 
company in Thailand.  The origin of the cargos is Thailand, and the destinations of the cargos in 8 
the three test problems are Brunei, Vietnam and Japan, respectively.  The initial dimensions of 9 
boxes for the three test problems are shown in Tables 2a-2c.  These three test problems are 10 
weakly heterogeneous, since the numbers of box types are less than 20 (2).  The standard 11 
container types are 40 HQ', 40' and 20' as shown in Table 2d.  In this experiment, we employ the 12 
proposed algorithms to fill each container in the manual solutions in a descending order of the 13 
container size.  When one container has a higher fill rate, it is more possible to use a smaller 14 
container (than that in the manual solutions) to pack the left boxes.  As such, for the first test 15 
problem, all heuristics employ 40 HQ' containers.  For the second test problem, all heuristics 16 
employ 40' containers.  For the third test problem, all heuristics employ 40' container as the first 17 
container and 20' container as the second container.     18 

Tables 3-5 show the computational results for test problems 1, 2 and 3, respectively.  It is 19 
noted that the cargo weights on each container in the solutions do not exceed the allowable 20 
weight.  The heuristic method c,u,v is referred to the container rotation type c, ranking function fu 21 
and priority rule v.  Apparently, there is not a winning heuristic that performs best on the three 22 
test problems.  On the first test problem, there are 11 heuristics that yield two 40HQ' containers 23 
and 25 heuristics that yield three 40HQ' containers.  The heuristic method c=6,u=2,v=2  performs 24 
best on the first test problem with two 40HQ' containers and the highest fill percentage (87.82%) 25 
of container number 1.  On the second test problem, there are 34 heuristics that yield two 40'-26 
containers and only 2 heuristics (c=3,u=2,v=1  and c=5,u=2,v=1) that yield three 40' containers.  27 
The heuristic method c=6,u=3,v=1 performs best on the second test problem with two 40'-28 
containers and the highest fill percentage (80.75%) of container number 1.  As can be seen in 29 
Table 5, in the best solution found, the fill percentage (20.50%) of container number 2 is equal to 30 
15,908,120 cm3 which can fill a 20' container.  Thus, the best solution found becomes a 40'-31 
container with 80.75% fill and a 20'-container with 41.03% fill.  On the third test problem, there 32 
are 33 heuristics that yield two containers (40' and 20').  The three heuristics (c=1,u=1,v=2; 33 
c=3,u=1,v=2; and c=4,u=1,v=2) perform best on the third test problem, yielding a single 40'-34 
container with the highest fill percentage (68.42%).  Interestingly, the typical wall building 35 
algorithms that are associated with the container rotation type 1 (c=1) do not perform well; thus, 36 
this reiterates the improvement by considering the six orthogonal rotations of container. 37 
 Subsequently, the best solutions found on the three test problem by the proposed 38 
compound approach are compared to the manual solutions by the furniture company as well as 39 
the best solution found by the tree search heuristic by (2) as shown in Table 6.  The manual 40 
solutions by the furniture company employ three 40HQ' containers for the first test problem, two 41 
40'-containers for the second test problem and a 40'-container and a 20'-container for the third 42 
test problem.  In terms of the number of containers, the proposed compound approach can save 43 
33.33%, 25% and 33.33% on the three test problems, respectively.  The highest fill percentages 44 
in the best solution founds are improved by 36.45%, 29.42% and 14.94% on test problems 1, 2 45 
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and 3, respectively, when compared with the manual solutions.  Figure 6 illustrates the box 1 
layouts of manual solution and best solution found on test problem 3. 2 
 The tree search heuristic yields the same results in terms of number of containers as the 3 
proposed compound approach.  However, the proposed approach yields improvement in highest 4 
fill percentage on test problems 1 and 2 by 6.52% and 1.31%, respectively.  Especially, the total 5 
CPU times by the proposed approach are only 20.30%, 3.35% and 31.34% of those by the tree 6 
search heuristic.    7 
 8 
Table 2. Initial Dimensions of Boxes for Three Test Problems and Dimensions of Standard Containers 9 
 10 
a) Initial Dimensions (Centimeters) of Boxes for Test Problem 1 (223 Boxes and 16 Box Types)  11 

Box Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Width ( jw ) 100 70 96 100 85 85 85 102 80 212 80 102 102 145 70 69 
Depth ( jd ) 100 70 70 100 190 148 195 160 155 80 170 102 102 67 68 69 

Height ( jh ) 80 80 53 60 100 100 100 90 90 90 65 77 57 83 100 92 
Number of 

Boxes 
1 3 2 3 3 4 3 3 3 4 3 6 1 16 11 157 

*Total Box Volume = 129,402,900 Cubic Centimeters 12 
 13 
b) Initial Dimensions (Centimeters) of Boxes for Test Problem 2 (113 Boxes and 14 Box Types) 14 

Box Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Width ( jw ) 90 92 110 100 80 100 110 110 110 100 100 100 100 70 

Depth ( jd ) 100 142 110 100 95 195 110 110 110 210 210 180 180 73 

Height ( jh ) 101 101 75 115 92 70 90 55 45 55 60 60 26 92 

Number of 
boxes 

12 1 8 4 5 3 1 1 1 1 9 1 1 65 

* Total box volume = 78,578,264 cubic centimeters 15 
 16 
c) Initial Dimensions (Centimeters) of Boxes for Test Problem 3 (94 Boxes and 11 Box Types) 17 

Box Type 1 2 3 4 5 6 7 8 9 10 11 

Width ( jw ) 120 120 120 91 130 90 130 110 80 110 70 

Depth ( jd ) 120 120 190 210 244 170 170 190 80 210 73 

Height ( jh ) 70 40 70 70 80 70 70 45 70 60 92 

Number of 
boxes 

1 1 1 1 1 2 2 1 3 1 80 

*Total Box Volume =  53,097,700 cubic centimeters 18 
 19 
d) Typical Dimensions of Standard Container Types 20 

Container Type W  H   D  
40 HQ' 243 cm (8 ft) 292 cm (9.6 ft) 1219 cm (40 ft) 

40' 243 cm (8 ft) 262 cm (8.6 ft) 1219 cm (40 ft) 
20' 243 cm (8 ft) 262 cm (8.6 ft) 609 cm (20 ft) 

 21 
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Table 3. Computational Results for Test Problem 1  1 
(All Containers are 40 HQ' with 86,495,364 Cubic Centimeters) 2 
 3 

Heuristic 
Method 

c,u,v 
(CPU Time) 

Cont.  
No. 

Fill  
% 

Heuristic 
Method  

c,u,v 
(CPU Time)

Cont.  
No. 

Fill  
% 

Heuristic 
Method 

c,u,v 
(CPU Time) 

Cont.  
No. 

Fill  
% 

1, 1, 1 
(3.88 sec) 

1 77.03 
1, 2, 1 

(0.48 sec) 

1 77.03 1, 3, 1 
(1.58 sec) 

1 78.24 
2 72.13 2 72.13 2 71.37 
3 0.45 3 0.45 

2, 3, 1 
(0.63 sec) 

1 68.99 

2, 1, 1 
(3.23 sec) 

1 70.7 
2, 2, 1 

(0.55 sec) 

1 71.36 2 62.42 
2 77.04 2 77.8 3 18.19 
3 1.87 3 0.45 3, 3, 1 

(0.36 sec) 
1 79.66 

3, 1, 1 
(0.39 sec) 

1 55.39 
3, 2, 1 

(0.23 sec) 

1 55.39 2 69.95 
2 80.7 2 80.7 4, 3, 1 

(2.39 sec) 
1 79.15 

3 13.51 3 13.51 2 70.46 
4, 1, 1 

(4.79 sec) 
1 76.97 4, 2, 1 

(6.19 sec) 
1 76.97 5, 3, 1 

(0.35 sec) 
1 86.5 

2 72.64 2 72.64 2 63.11 

5, 1, 1 
(8.73 sec) 

1 61.42 
5, 2, 1 

(8.64 sec) 

1 61.42 6, 3, 1 
(4.03 sec) 

1 82.4 
2 53.81 2 53.81 2 67.21 
3 34.37 3 34.37 

1, 3, 2 
(0.89 sec) 

1 73.21 

6, 1, 1 
(1.06 sec) 

1 67.5 
6, 2, 1 

(0.27 sec) 

1 58.84 2 68.15 
2 66.69 2 70.58 3 8.25 
3 15.42 3 20.19 

2, 3, 2 
(0.60 sec) 

1 80.21 
1, 1, 2 

(0.61 sec) 
1 81.11 1, 2, 2 

(0.45 sec) 
1 79.51 2 66.83 

2 68.49 2 70.1 3 2.56 

2, 1, 2 
(0.46 sec) 

1 72.95 
2, 2, 2 

(0.37 sec) 

1 79.5 
3, 3, 2 

(0.12 sec) 

1 79.52 
2 73.67 2 69.65 2 66.06 
3 2.99 3 0.45 3 4.02 

3, 1, 2 
(0.10 sec) 

1 79.04 
3, 2, 2 

(0.09 sec) 

1 78.17 
4, 3, 2 

(0.57 sec) 

1 68.75 
2 67.24 2 52.61 2 71.12 
3 3.33 3 18.82 3 9.73 

4, 1, 2 
(0.39 sec) 

1 81.28 
4, 2, 2 

(0.31 sec) 

1 77.99 
5, 3, 2 

(3.57 sec) 

1 79.92 
2 68.33 2 24.86 2 61.28 

5, 1, 2 
(0.28 sec) 

1 81.48 3 46.76 3 8.41 
2 64.3 

5, 2, 2 
(0.10 sec) 

1 86.13 
6, 3, 2 

(15.85 sec) 

1 78.91 
3 3.83 2 59.94 2 63.83 

6, 1, 2 
(1.38 sec) 

1 81.9 3 3.53 3 6.87 
2 63.88 6, 2, 2 

(0.22 sec) 
1 87.82 

3 3.83 2 61.78 
Note:    c=container rotation type; u = ranking function; v = priority rule. 4 

Total CPU time = 74.14 seconds  5 
The best solution found is bold and underlined. 6 
 7 
 8 
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Table 4. Computational Results for Test Problem 2  1 
(All Containers are 40' with 77,608,854 Cubic Centimeters) 2 
 3 

Heuristic 
Method 

c,u,v 
(CPU Time) 

Cont. 
No. 

Fill 
%  

Heuristic 
Method 

c,u,v 
(CPU Time)

Cont. 
No. 

Fill 
%  

Heuristic 
Method 

c,u,v 
(CPU Time)

Cont. 
No. 

Fill 
% 

1, 1, 1 
(0.69 sec) 

1 77.62 1, 2, 1 
(0.41 sec) 

1 73.42 1, 3, 1 
(0.41 sec) 

1 70.61 

2 23.62 2 27.82 2 30.64 

2, 1, 1 
(0.53 sec) 

1 67.93 2, 2, 1 
(0.24 sec) 

1 70.96 2, 3, 1 
(0.26 sec) 

1 74.25 

2 33.32 2 30.29 2 27 

3, 1, 1 
(0.13 sec) 

1 35.56 
3, 2, 1 

(0.10 sec) 

1 35.56 3, 3, 1 
(0.06 sec) 

1 73.64 

2 65.69 2 63.99 2 27.61 

4, 1, 1 
(0.28 sec) 

1 64.85 3 1.7 4, 3, 1 
(0.16 sec) 

1 79.48 

2 36.4 4, 2, 1 
(0.12 sec) 

1 61.22 2 21.77 

5, 1, 1 
(0.12 sec) 

1 36.25 2 40.03 5, 3, 1 
(0.08 sec) 

1 70.6 

2 65 
5, 2, 1 

(0.08 sec) 

1 34.85 2 30.65 

6, 1, 1 
(6.81 sec) 

1 68.54 2 59.32 6, 3, 1 
(0.11 sec) 

1 80.75 

2 32.71 3 7.07 2 20.50* 

1, 1, 2 
(0.35 sec) 

1 73.6 6, 2, 1 
(0.11 sec) 

1 68.54 1, 3, 2 
(0.31 sec) 

1 80.74 

2 27.65 2 32.71 2 20.51 

2, 1, 2 
(0.33 sec) 

1 71.69 1, 2, 2 
(0.56 sec) 

1 71.16 2, 3, 2 
(0.36 sec) 

1 64.43 

2 29.56 2 30.09 2 36.82 

3, 1, 2 
(0.06 sec) 

1 77.68 2, 2, 2 
(0.61 sec) 

1 72.01 3, 3, 2 
(0.08 sec) 

1 68.18 

2 23.57 2 29.24 2 33.07 

4, 1, 2 
(0.19 sec) 

1 76.79 3, 2, 2 
(0.16 sec) 

1 78.43 4, 3, 2 
(0.19 sec) 

1 77.18 

2 24.46 2 22.82 2 24.07 

5, 1, 2 
(0.08 sec) 

1 69.42 4, 2, 2 
(0.55 sec) 

1 71.26 5, 3, 2 
(0.08 sec) 

1 68.27 

2 31.82 2 29.99 2 32.98 

6, 1, 2 
(0.19 sec) 

1 72.64 5, 2, 2 
(0.07 sec) 

1 70 6, 3, 2 
(0.18 sec) 

1 70.61 

2 28.61 2 31.24 2 30.64 

6, 2, 2 
(0.33 sec) 

1 71.27 

2 29.98 
Note:   * 20.50% of 40' container = 15,908,120 cm3; this can fill a 20' container (38,772,594 cm3) 4 

c=container rotation type; u = ranking function; v = priority rule. 5 
Total CPU time =15.38 seconds 6 
The best solution found is bold and underlined. 7 
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Table 5. Computational Results for Test Problem 3 1 
(Container No.1 and No.2 are 40' and 20' with 77,608,854 and 38,772,594 cm3, respectively) 2 
 3 

Heuristic 
Method 

c,u,v 
(CPU Time) 

Cont.  
No. 

Fill  
% 

Heuristic 
Method 

c,u,v 
(CPU Time)

Cont.  
No. 

Fill  
% 

Heuristic 
Method 

c,u,v 
(CPU Time)

Cont.  
No. 

Fill  
% 

1, 1, 1 
(0.65 sec) 

1 67.26 1, 2, 1 
(0.66 sec) 

1 63.6 1, 3, 1 
(0.21 sec) 

1 65.15 

2 2.31 2 9.64 2 6.54 

2, 1, 1 
(0.8 sec) 

1 65.45 2, 2, 1 
(0.67 sec) 

1 65.45 2, 3, 1 
(0.28 sec) 

1 65.42 

2 5.95 2 5.95 2 6 

3, 1, 1 
(0.5 sec) 

1 30.34 3, 2, 1 
(0.56 sec) 

1 30.34 3, 3, 1 
(0.17 sec) 

1 65.5 

2 76.22 2 76.22 2 5.84 

4, 1, 1 
(0.15 sec) 

1 58.2 4, 2, 1 
(0.15 sec) 

1 58.2 4, 3, 1 
(0.10 sec) 

1 62.76 

2 20.44 2 20.44 2 11.33 

5, 1, 1 
(0.8 sec) 

1 30.92 5, 2, 1 
(0.21 sec) 

1 30.92 5, 3, 1 
(0.08 sec) 

1 63.31 

2 75.06 2 75.06 2 10.22 

6, 1, 1 
(0.14 sec) 

1 58.78 6, 2, 1 
(0.09 sec) 

1 58.78 6, 3, 1 
(0.11 sec) 

1 66.89 

2 19.29 2 19.29 2 3.06 
1, 1, 2 

(0.25 sec) 1 68.42 
 1, 2, 2 

(0.23 sec) 
1 64.57 1, 3, 2 

(0.21 sec) 
1 63.85 

2, 1, 2 
(0.27 sec) 

1 62.72 2 7.7 2 9.14 

2 11.4 2, 2, 2 
(0.67 sec) 

1 67.07 2, 3, 2 
(0.31 sec) 

1 63.52 
3, 1, 2 

(0.05 sec) 1 68.42 
 

2 2.7 2 9.8 
4, 1, 2 

(0.11 sec) 1 68.42 
 3, 2, 2 

(0.09 sec) 
1 63.09 3, 3, 2 

(0.31 sec) 
1 63.52 

5, 1, 2 
(0.05 sec) 

1 63.42 2 10.66 2 9.8 

2 10.01 4, 2, 2 
(0.12 sec) 

1 63.09 4, 3, 2 
(0.12 sec) 

1 63.36 

6, 1, 2 
(0.13 sec) 

1 64.98 2 10.66 2 10.12 

2 6.88 5, 2, 2 
(0.08 sec) 

1 63.04 5, 3, 2 
(0.04 sec) 

1 63.42 

2 10.76 2 10.01 

6, 2, 2 
(0.22 sec) 

1 63.04 6, 3, 2 
(0.06 sec) 

1 64.98 

2 10.76 2 6.88 
 4 
Note:    c=container rotation type; u = ranking function; v = priority rule. 5 

Total CPU time = 9.65 seconds 6 
The best solution found is bold and underlined. 7 

 8 
 9 
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Table 6. Comparison of Manual Solutions, Best Solution Found by Tree Search Heuritic, and 1 
Best Solution Found by Proposed Approach on Three Test Problems 2 
Cont.  
No. 

Manual Solution Best Solution by Tree 
Search Heuristic 
(Pisinger, 2002) 

Best Solution Found by 
Modified Wall Building 

Based Compound Approach 
Cont.  
Type 

No. of Boxes  
Vol. of Boxes 

%Fill  

Cont. 
Type 

No. of Boxes  
Vol. of Boxes 

%Fill  

Cont.  
Type 

No. of Boxes  
Vol. of Boxes 

%Fill  
Test Problem 1 

1 40 HQ' 
 

82 
44,440,856 cm3 

51.37% 

40 HQ' 88 
70,317,292 cm3 

81.30% 

40 HQ' 162  
75,962,452 cm3 

87.82% 
2 40 HQ' 94 

41,173,128 cm3 
47.60%  

40 HQ' 135 
59,085,608 cm3 

68.31% 

40 HQ' 61  
53,440,448 cm3 

61.78% 
3 40 HQ' 47 

43,788,916 cm3 
 50.63% 

 
- 

 
- 

Total 
CPU 
Time 

 
- 

 
365.39 seconds 

 
74.14 seconds 

Test Problem 2 
1 40' 39  

39,838,464 cm3 
51.33% 

40' 77 
61,653,944 cm3 

79.44% 

40' 98  
62,670,144 cm3 

80.75% 
2 40' 74  

38,739,800 cm3 
49.92% 

20' 36 
16,454,200 cm3 

42.44% 

20' 15  
15,908,120 cm3 

41.03% 
Total 
CPU 
Time 

 
- 

 
459.28 seconds 

 
15.38 seconds 

Test Problem 3 
1 40' 85  

41,508,600 cm3 
53.48% 

40' 94  
53,097,700 cm3 

68.42% 

40' 94  
53,097,700 cm3 

68.42% 
2 20' 9  

11,589,100 cm3 
29.89% 

 
- 

 
- 

Total 
CPU 
Time 

 
- 

 
30.79 seconds 

 
9.65 seconds 

Note: Volume of 40HQ' Container = 86,495,364 cm3  3 
          Volume of 40' Container = 77,608,854 cm3 4 
          Volume of 20' Container = 38,772,594 cm3 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
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 1 
Manual Solution Best Solution Found 

 

 
 

Container 1 (40', 53.48% Fill) 

 

 
 
 

Container 1 (40', 68.42% Fill) 
 

 
 

Container 1 (20', 29.89% Fill) 

 
 

 2 
Figure 6. Comparison of Manual Solution and Best Solution Found on Test Problem 3 3 

 4 
 5 
SUMMARY AND CONCLUSIONS 6 
 7 
We consider the knapsack container loading problem where the rectangular-shaped cargo boxes 8 
with various sizes are to be packed in a given rectangular-shzped containers.  The container is to 9 
be filled by selecting the best subset of boxes such that the total loaded volume is maximized.  10 
The boxes may be rotated in any orthogonal directions without load-related and positioning 11 
constraints.  All boxes have the same origin-destination pair.  The modified wall-building based 12 
compound approach performs 36 modified wall-building heuristics resulted from three existing 13 
ranking functions, two existing priority rules and six orthogonal rotations of container, while 14 
recording the best solution found.  The modified wall building heuristics fill the container in a 15 
number of layers (wall) and fill the wall in a number of horizontal strips.  The layer depths and 16 
strip heights are determined based on the dimensions of the remaining boxes, using three existing 17 
ranking functions(2) and two existing priority rules (2).  The existing box pairing procedure (2) 18 
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is adopted in order to improve fill ratios of remaining boxes.  The dynamic programming 1 
algorithm (20) is also adopted to exactly solve the 0-1 knapsack problem in order to fill each 2 
horizontal strip.  We consider six orthogonal rotations of the container that correspond to the 3 
following: i) building walls across the container depth, and for each wall, building horizontal 4 
strips across the container height, ii) building walls across the container depth, and for each wall, 5 
building vertical strips across the container width, iii) building floors across the container height, 6 
and for each floor, building horizontal strips across the container width, iv) building floors across 7 
the container height, and for each floor, building horizontal strips across the container depth, v) 8 
building walls across the container width, and for each wall, building horizontal strips across the 9 
container height, and vi) building walls across the container width, and for each wall, building 10 
vertical strips across the container depth. 11 
 The proposed approach is performed on three real-world test problems, which are weakly 12 
heterogeneous with less than 20 box types, from a furniture company in Thailand.  In the 13 
experiment, the proposed algorithms are employed to fill each container in the manual solutions 14 
in a descending order of the container size.  When one container has a higher fill rate, it is more 15 
possible to use a smaller container (than that in the manual solutions) to pack the left boxes.  16 
There is not a winning heuristic that performs best on the three test problems.  For the first test 17 
problem, the heuristic method with the container rotation type  6, ranking function f 2 and priority 18 
rule 2  performs best.  For the second test problem, the heuristic method with the container 19 
rotation type  6, ranking function f 3 and priority rule 1  performs best.  For the third test problem, 20 
three heuristics perform best.  The typical wall building algorithms associated with the container 21 
rotation type 1 (c=1) do not perform well; thus, this shows significant improvement by 22 
considering the six orthogonal rotations of container in the modified approach. 23 

The best solutions found on the three test problems are compared to the manual solutions 24 
by the furniture company.  In terms of the number of containers, the proposed compound 25 
approach can save up to 33% on the three test problems.  The highest fill percentages in the best 26 
solution founds are improved by up to 36% when compared with the manual solutions.   27 
 Moreover, the best solutions found by the proposed approach are compared to the best 28 
solutions found by the existing tree search heuristic.  The proposed approach and the tree search 29 
heuristic yield the same results in terms of number of containers.  However, the proposed 30 
approach outperforms the tree search heuristic in terms of solution quality and computational 31 
time.  The best fill percentages by the proposed approach are up to 6% higher than those by the 32 
tree search heuristic.  The total computational times by the proposed approach on the three test 33 
problems are up to 31% of those by the tree search heuristics.  This paper may be extended to 34 
incorporate practical constraints such as multi-drop situations.   35 
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