## บทคัดย่อ

รหัสโครงการ: MRG5308080

ชื่อโครงการ: การศึกษาพิษและสารก่อภูมิแพ้ทั้งหมดของตัวต่อที่คนไทยแพ้

ชื่อนักวิจัย: ผู้ช่วยศาสตราจารย์ ดร. (นาย) นิทัศน์ สุขรุ่ง

หน่วยเครื่องมือพิเศษเพื่อการวิจัย สถานส่งเสริมการวิจัย คณะแพทยศาสตร์ศิริ

ราชพยาบาล มหาวิทยาลัยมหิดล

อีเมล์: nitat.soo@mahidol.ac.th

ระยะเวลาโครงการฯ: 2 ปี

โรคภูมิแพ้พิษตัวต่อจัดเป็นภาวะภูมิไวเกินชนิดที่ 1 ซึ่งเกิดจากอิมมิวโนกลอบูลิน อี สายพันธุ์ของต่อที่ พบมากในประเทศไทยคือต่อหัวเสือ หรือ Vespa affinis ซึ่งอาการของผู้ที่แพ้พิษของต่อหัวเสือ มีตั้งแต่ อาการเฉพาะที่ จนถึง เกิดอาการซ็อค ไตวาย บางรายอาจเสียชีวิตได้ในทันที ปัจจุบันข้อมูลทาง วิทยาศาสตร์พื้นฐานเกี่ยวกับสารก่อภูมิแพ้จากพิษของต่อหัวเสือมีน้อยมาก ดังนั้นการศึกษาถึงสารก่อ ภูมิแพ้ชนิดต่างๆจากพิษของต่อหัวเสือจึงจะเป็นข้อมูลที่มีประโยชน์อย่างยิ่งสำหรับนำไปใช้ในการบริหาร จัดการผู้ป่วย เช่นใช้คัดกรองผู้ป่วย ผลิตน้ำยาสำหรับประเมินสภาวะภูมิแพ้ ออกแบบวัคซีนต้นแบบ สำหรับใช้รักษา เป็นต้น

ในการศึกษานี้ได้ทำการเก็บรังต่อหัวเสือสายพันธุ์ Vespa affinis ที่ตัวต่อยังมีชีวิตอยู่จากแหล่งที่มีชุก ชุม นำมาแยกเก็บเอาเฉพาะตัวเต็มวัย จากนั้น เก็บต่อมพิษออกจากตัวต่อโดยใช้คีมคีบดึงออกมา แล้วทำ การแยกโปรตีนทั้งหมดจากต่อมพิษของต่อหัวเสือแบบสองมิติ (two dimensional gel electrophoresis; 2DE) พบว่ามีจุดโปรตีนจากต่อมพิษที่ย้อมติดสีย้อมโปรตีนทั้งหมด 94 จุด เมื่อนำไปวิเคราะห์ด้วยแอลซี-เอ็มเอสเอ็มเอส พบว่าสามารถบอกชนิดของโปรตีนใน 66 จุดได้ และไม่สามารถบอกชนิดได้ในอีก 28 จุด โปรตีน เนื่องจากยังขาดข้อมูลในฐานข้อมูลโปรตีน จากนั้นได้ดำเนินการศึกษาความเป็นสารก่อภูมิแพ้ ของโปรตีนเหล่านี้ โดยเก็บตัวอย่างซีรัมของผู้ป่วยโรคภูมิแพ้พิษต่อหัวเสือ และซีรัมของคนปกติ เพื่อใช้ ์ศึกษาโปรตีนจากต่อมพิษของต่อหัวเสือที่ทำปฏิกิริยากับอิมมิวโนกลอบูลิน อี ในซีรัมของผู้ป่วยโรค ภูมิแพัสารพิษจากต่อ โดยวิธี 2DE-IgE immunoblotting พบว่ามีโปรตีนจากต่อมพิษของต่อหัวเสือที่ ผู้ป่วยแพ้และเป็นสารก่อภูมิแพ้หลัก (major allergens) 4 ชนิดคือ Venom phospholipase A1 (PLA1) ซึ่งมีผู้ป่วยแพ้ร้อยละ 100 โปรตีน GB19860 transcription มีผู้ป่วยแพ้ร้อยละ 76.9, Enolase มีผู้ป่วยแพ้ allergen-5 มีผู้ป่วยแพ้ร้อยละ 61.5 และ สารก่อภูมิแพ้รอง (minor ร้อยละ 61.5 โปรตีน Venom allergens) คือ Hyaluronidase มีผู้ป่วยแพ้ร้อยละ 46.1 และ arginine kinase-like protein มีผู้ป่วยแพ้ ร้อยละ 46.1 จากผลการศึกษาดัวกล่าวทำให้ทราบถึงโปรตีนทั้งหมด (Proteome) และชนิดของสารก่อ ภูมิแพ้ทั้งหมด (Allergenome) จากต่อมพิษของต่อหัวเสือ นอกจากนี้ยังเป็นการศึกษาและรายงานความ เป็นสารก่อภูมิแพ้หลัก Venom phospholipase A1 ของต่อหัวเสือ สายพันธุ์ Vespa affinis เป็นครั้งแรก ด้วย ซึ่งข้อมูลเหล่านี้จะนำไปสู่การพัฒนาวัคซีนรักษา (therapeutic vaccine) เพื่อการลบล้างพิษของต่อ หัวเสืออย่างเฉพาะเจาะจงในผู้ป่วยต่อไป

**คำหลัก:** ต่อหัวเสือ เวนอมมิกส์ แอลเลอจีโนมิกส์ การแยกโปรตีนแบบสองทิศทาง ฟอสโฟไลเปส เอ หนึ่ง

## **Abstract**

Project Code: MRG5308080

Project Title: Allergenome of Vespa affinis

Investigator: Asst. Prof. Dr. (Mr.) Nitat Sookrung

Division of Instruments for Research, Office for Research and

Development, Faculty of Medicine Siriraj Hospital, Mahidol University

E-mail Address: nitat.soo@mahidol.ac.th

Project Period: 2 Years

Wasp venom allergy is an IgE-mediated- (type-1) hypersensitivity. In Thailand, the predominant wasp species causing the problem is *Vespa affinis* (Tor Hua Suea). The clinical patterns of the wasp sting may be either local or severe systemic reaction or both; the latter may lead to anaphylactic shock, acute renal failure and eventually death. Information on wasp venom allergy, including the venom biological nature, molecular structure and physiological functions as well as their role as allergens among patients, is relatively scarce.

This study aimed to identify all proteins (proteome) and proteins that cause human allergy (allergenome) in the holovenom of the V. affinis. The intact venom sacs were removed from the sting apparatus of fully mature insects by pulling them out of the bodies using forceps and small scissors. All proteins in the holovenom were verifiled by two dimensional gel electrophoresis (2DE) and mass spectrometry. Reactivities of the proteins to IgE in sera of patients allergic to the V. affinis venom were determined by 2DE-IgE immunoblotting. By 2DE based-proteomics, the venom of the adult V. affinis revealed 94 spots after staining for proteins. Among them, 66 protein spots could be identified by LC-MS/MS; however, no peptides of the database matched with peptides derived from the other 28 venom proteins. 2DE-IgE immunoblotting for studying wasp venom allergenome (wasp components bound by IgE in allergic patients' sera) showed that there were four components which may be regarded as major allergens as they were reactive to serum IgE of more than 50 % of the wasp allergic Thai patients. These components were phospholipase A1 (bound to IgE in sera of all patients tested; 100%), GB19860 transcription protein (bound to serum IgE of 76.9% of the patients tested), enolase (61.5%), and venom allergen-5 (61.5%). Some patients had specific IgE to wasp minor allergens including hyaluronidase (46.1%) and arginine kinase-like protein (46.1%). The major allergenic role of the wasp PLA1 was revealed for the first time. The results obtained from this study give insight into the venomics and the allergenic, both major and minor, components of V. affinis. The allergenic proteins reported in this study have clinical application as diagnostic reagents of wasp allergy and vaccine components for the venom specific immunotherapy.

**Keywords:** Vespa affinis, venomics, allergenomics, two dimensional gel electrophoresis, phospholipase A1