บทคัดย่อ

การศึกษาผลการเจือ Y₂O₃ ที่สัดส่วนการเจือร้อยละโดยน้ำหนักของ Y₂O₃ เท่ากับ 2 4 6 ที่มีต่อโครงสร้างผลึกและความเหนียวของเซรามิก (1-x)Al₂O₃-xZrO₂-Y₂O₃ (AZY) ที่ x เท่ากับ 0.15 0.25 0.35 0.45 และ 0.50 เซรามิก AZY ทุกสัดส่วนถูกให้ความร้อนในการซินเตอร์ อุณหภูมิ 1650 [°]ซ เซรามิกที่ได้ถูกนำมาศึกษาการก่อเกิดเฟสด้วยเทคนิคการเลี้ยวเบนรังสีเอกซ์ พบ เฟสหลัก คือ เฟสรอมโบฮีดรอลของ ${
m Al}_2{
m O}_3$ เฟสรองของ ${
m ZrO}_2$ ในรูปโมโนคลินิกและเตตระโกนอล และ เฟสโมโนคลินิกของ Y_2O_3 รูปแบบการเลี้ยวเบนซ์รังสีเอกซ์ที่ได้ แสดงให้เห็นเฟสของสารประกอบตาม สัดส่วนองค์ประกอบของเซรามิกนั้นๆ โครงสร้างจุลภาคของเซรามิก AZY จากกล้องจุลทรรศน์ อิเล็กตรอนแบบส่องกราด พบว่าเกรนมีลักษณะทรงกลมและรูปหลายเหลี่ยมปะปนกัน โดยรูปร่าง ของเกรนมีความกลมรีมากขึ้นตามสัดส่วน ZrO₂ ที่มากขึ้น โดยปริมาณของ Y₂O₃ ไม่มีผลต่อขนาด และรูปร่างของเกรนมากนัก โดยขนาดของเกรนเฉลี่ยของเซรามิกอยู่ในช่วง 0.97-2.10 ไมโครเมตร ค่าความเหนียวที่เป็นผลจากการคำนวณค่าความแข็งจุลภาคแบบนูปและวิกเกอร์ พบว่าเซรามิก AZY ที่มีโครงสร้างจุลภาคของเกรนขนาดเล็กมีแนวโน้มที่ให้ค่าความเหนียวที่สูง โดยพบว่า เซรามิก AZY ที่ให้ค่าความเหนียวสูงสุด คือ สัดส่วนของ ZrO_2 ที่ x เท่ากับ 0.35 ที่เจือด้วย Y_2O_3 ร้อยละ 4 โดย น้ำหนัก โดยให้ค่าเท่ากับ 2.827 เมกะปาสคาล.เมตร^{า/2} ผลจากการปรับค่าพารามิเตอร์ด้วย วิธีริท เวลด์ให้ค่าสัดส่วนร้อยละโดยน้ำหนักของเฟสองค์ประกอบของเซรามิก AZY คือ เฟสรอมโบฮีดรอล ของ ${\sf Al_2O_3}$ เฟสโมโนคลินิก และเตตระโกนอลของ ${\sf ZrO_2}$ และเฟสโมโนคลินิกของ ${\sf Y_2O_3}$ พบว่าเซรามิก ที่ให้ค่าความเหนียวที่ดีมีค่าร้อยละโดยน้ำหนักของเฟสองค์ประกอบของเซรามิกที่มีเฟสเตตระโกนอล ของ ZrO₂ ที่สูง

คำสำคัญ : Al₂O₃-ZrO₂-Y₂O₃; วิธีตกตะกอนร่วม; วิธีปฏิกิริยาสถานะของแข็ง

ABSTRACT

The investigation of effect of adding 1 to 8 wt.% Y₂O₃ on crystal structure and fracture toughness of $(1-x)Al_2O_3-xZrO_2-Y_2O_3$ (AZY) ceramics where x = 0.15, 0.25, 0.35,0.45 and 0.50. The AZY ceramics were sintered at 1650 °C. Phase formation of the samples was characterized by x-ray diffraction (XRD) technique. It was found that the major phase was the rhombohedral-Al₂O₃ structure. While the minor phase consisted of the monoclinic-ZrO₂, tetragonal-ZrO₂ and monoclinic-Y₂O₃ structures. In order to investigate the microstructure of AZY ceramics, they were studied by the scanning electron microscope (SEM) technique. These results revealed that grains had a mixing of circular and polygon shapes. It was found that the high contents of ZrO2 on AZY ceramic resulted in more circular grain shape. While the effect of the Y2O3 contents was not affected to grain shape of AZY ceramic. Moreover it found that the grain size was around between 0.97-2.10 µm. The hardness of the prepared sample was measured using the knoop and vicker microhardness test. Results obtained from the microhardness testing could be used to evaluate the fracture toughness. It found that the smaller grains gave the higher fracture toughness. The maximum fracture toughness of AZY was 2.827 MPa.m $^{1/2}$ at x = 0.35 of ZrO_2 and 4 wt.% Y_2O_3 . After adjusting the lattice parameters by Rietveld analysis, it revealed that the major phase of the AZY ceramics was the rhombohedral-Al₂O₃ structure and minor phases were the monoclinic-ZrO₂, tetragonal-ZrO₂ and monoclinic-Y2O3 phases. It was also found that the high fracture toughness of AZY ceramics corresponded to the high tetragonal-ZrO₂ phase.

Key Words: Al₂O₃-ZrO₂-Y₂O₃; Co-precipitation; Solid state reaction