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Abstract Gelatin (Ala-Gly-Pro-Arg-Gly-Glu-4Hyp-Gly-
Pro-) is a protein produced by the partial hydrolysis of a
collagen extracted from bones, connective tissues, organs,
and some intestines of animals. In this work, gelatin films
were prepared by the film casting method in an aqueous
solvent. The electromechanical properties, thermal proper-
ties, and the degree of swelling were investigated as a
function of gelatin crosslinking ratio or the gel strength,
temperature, frequency, and electric field strength. The high,
medium, low, and the 3% crosslinked high-gel-strength
gelatin films possess the storage modulus sensitivity values
of 2.30, 2.16, 1.26, and 0.49, respectively; these values are
much greater than those of other electroactive materials,
suggesting the gelatins studied as a potential artificial muscle
or actuator.

Keywords Gelatin - Gel strength - Electromechanical
properties - Actuator - Artificial muscle

Introduction

The exchange of electrical energy and mechanical energy
has been of scientific and technological interest for many
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decades. Electromechanical energy conversion has been
used in many applications, such as in muscle/insect-like
actuators, robotics, etc. [1]. The development of electro-
active materials for artificial muscle or actuators is sought
after because of their many advantages. First, electroactive
materials resemble natural living tissues more than any other
classes of synthetic biomaterials because of their high water
content, the soft consistency, and their high activation
modes. Second, they are biocompatible, but not biodegrad-
able. Third, their physical and chemical properties vary with
composition and can be tailored as desired. Fourth, they can
take various shapes and are low-cost material.

Gelatin is a protein biopolymer derived from the partial
hydrolysis of native collagens, which are the most abundant
structural proteins found in the animal body: skin, tendons,
cartilage, and bone [2]. Gelatin contains a large number of
glycine (almost 1 in 3 residues, arranged every third resi-
due), proline and 4-hydroxyproline residues. A typical
structure is: Ala-Gly-Pro-Arg-Gly-Glu-4Hyp-Gly-Pro; it is
unique in that it contains 14% hydroxyproline, 16% proline
and 26% glycine. The only other animal product containing
hydroxyproline is the elastin and then at a very much lower
concentration, so hydroxyproline is used to determine the
collagen or gelatin content of foods. It is a good film and
particle forming material [3]. Due to a wealth of merits, such
as biological origin, non-immunogenicity, biodegradability,
biocompatibility, and commercial availability at relatively
low cost, gelatin has been widely used in the pharmaceutical
and medical fields as sealants for vascular prostheses, as
carriers for drug delivery, as wound dressings, and as artifi-
cial muscle [4]. Nevertheless, gelatin exhibits poor mechan-
ical properties, which limits its possible application as a
biomaterial. The improvement of the mechanical properties
of drawn gelatin has been related to the renaturation level of
the protein, as evaluated through the differential scanning
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calorimetry [5]. The most interesting feature of gelatin is that it
can be used for the production of practical biocompatible
materials [6, 7]. Several physical and chemical methods have
been reported for crosslinking collagenous materials. Physical
methods include the dehydrothermal treatment and the UV
irradiation [8, 9]; however, they are generally less efficient.
Many chemicals—such as formaldehyde, glutaraldehyde, car-
bodiimide, and dextran dialdehyde—have been used to chem-
ically modify the gelatin towards biomedical applications.
Among them, glutaraldechyde (GTA) is by far the most widely
used, due to its high efficiency in stabilizing the collagenous
materials [10]. GTA—based crosslinking of collagenous mate-
rials significantly reduces biodegradation, making the materi-
als biocompatible and nonthrombogenic, while preserving
biological integrity, strength, and flexibility. GTA is also
casily available, inexpensive, and capable of allowing the
crosslinking in a relatively short time period.

In our work, we are interested in the development of gelatin
as a candidate of an artificial muscle or actuator. The electro-
mechanical properties, the thermal properties, and the degree
of swelling were investigated and are reported here as func-
tions of the gelatin strength, the crosslinking ratio, tempera-
ture, frequency, and electric field strength.

Experimental
Materials

Gelatin powder (high, medium, and low gel strengths; 250 g
bloom, 180 g bloom, and 80 g bloom, respectively) (AR
grade, Fluka). The Bloom value is proportional to the stor-
age modulus of the gelatin and it decreases with decreasing
Mn [11]., and glutaraldehyde (50% GTA solution) (AR
grade, Sigma-Aldrich) were used as the starting materials
for fabricating gelatin films. Table | shows data on charac-
terization of our samples.

Table 1 Data on characterization of gelatin

Preparation of gelatin films

Glutaraldehyde—gelatin crosslinked films (GTA—Ge) were pre-
pared by adding an appropriate volume of GTA solution into a
10 vol% gelatin solution with GTA concentrations varying
from 0.5 to 7 vol%. Non-crosslinked gelatin films (Ge) were
prepared from an aqueous gelatin solution (10%, v/v) at 50 °C
and under a continuous stirring for 40 min. The GTA-Ge and
Ge solutions were poured into plastic petri dishes (10 cm in
diameter). Crosslinked films were obtained after allowing
walter evaporating at a room temperature for a period of 4 days.
Figure 1 shows a schematic of the two proposed structures for
gelatin—GA complexes and Pristine gelatin films (Ge) were
prepared in a similar way, but without adding the crosslinking
agent.

Characterization and testing of gelatin samples
Crosslinking density determination

In order to estimate the network crosslinking density, the
number-average molecular weight of the chain segments
between two crosslinking points, M., was calculated from
equilibrium water uptake experiments performed at 20 °C,
according to the Flory—Rehner equation [12]:

pV1(0g'” — 26g/f)
298’ +In(1 — ¢g) +og’

(1)

where p is the density of the dry gelatin determined by
picnometry, ¥ is the molar volume of the solvent, x is the
polymer—solvent interaction parameter taken from the liter-
ature [12] (x=0.49=0.05), and ¢, is the volume fraction of
the swollen gelatin, which is estimated from the following
relation:

Wopw

= ) 2
Wpg — Wy(p — pw) )

g

Sample Non-crosslinked high

gel strength gelatin

Non=crosslinked low
gel strength gelatin

Non-crosslinked medium
gel strength gelatin

Gel strength 250 g bloom*

pH 7.7
Calcium(%) <0.2
Chloride(%) <0.2
% Moisture =20
Molecular weight 75,537

180 g bloom* 80 g bloom*

6.7 7.0
<0.2 <02
<0.2 <02
<20 <20
57,909 41,363

*Bloom is the weight in grams required to push a piston of a strictly defined shape 4 mm into a gelatin gel matured for 18 h at 10 C

*Molecular weight as measured by Ubblohde viscometer (K=1.66x1 07, a=0.855)
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Table 2 Comparison of storage modulus sensitivities of the gelatin films of various gel strengths

Storage modulus Storage modulus
modulus (G,) Pa (G') Pa

sensitivity (AG'/Go) Pa

Material Electric field Frequecy Temperature °C  Initial storage
(kv/mm) (rad/s)

Uncrosslinked High-gel-strength 1,000 100 27 1310 000
gelatin

Uncrosslinked Medium-gel- strength 1,000 100 892 000
gelatin

Uncrosslinked Low=gel=strength gelatin 1,000 100 129 000

3% crosslinked high-gel-strength gelatin 1,000 100 2 410 000

4 340 000

2 820 000

292 000
3 580 000

2.30

2.16

1.26
0.49

Effect of the operating temperature

The rheological properties under an electric field of the
uncrosslinked and the crosslinked gelatin films were inves-
tigated at operating temperatures of 300 to 380 K. In order
to exclude the effect of the gelatin samples, G'y, G'1kv/mm

and AG'/G' are plotted versus temperature as shown in
Fig. 5. Here we used one sample each for the G', and
G')ky/mm measurements. We can see that the storage moduli
decrease linearly with increasing temperature; the deviations
may originate from less of chain entanglements in certain
temperature ranges. G'1gymm 18 higher than that without

Table 3 Comparison of the storage modulus sensitivities of electroactive and dielectric elastomer materials

Materials

Acrylic elastomer 70
Acrylic elastomer 71

Acrylic elastomer 72

Styrene-acrylic copolymers
Styrene=isoprene=styrene triblock D1112P
Acrylic elastomer 71+PPP 10%(v/v)
Acrylic elastomer 71 +PPP 30%(v/v)

Styrene=isoprene=styrene triblock D1114P
Styrene-isoprene-styrene triblock D1164P

Styrene-isoprene-styrene triblock D1162P
D114P+PDPA 5%(v/v)

D114P+PDPA 10%(v/v)

D114P+PDPA 30%(v/v)

AR71/lead zirconate titanate Pb(Zr0.5Ti0.5)03 (0.000019%v/v)

AR71/lead zirconate titanate Pb(Zr0.5Ti0.5)03 (0.038%v/v)

poly (dimethyl siloxane) (PDMS)

poly (dimethyl siloxane) (PDMS)+PANi 20% (v/v)
poly (dimethyl siloxane) (PDMS)+PANi 2% (v/v)
PDMS_5%PEDOT/PSS/EG
PDMS_15%PEDOT/PSS/EG

Crosslinked Polyisoprene 3% + Polythiopene 5% (v/v)
Crosslinked Polyisoprene 3% + Polythiopene 10% (v/v)
Crosslinked Polyisoprene 3% + Polythiopene 30% (v/v)
Silicone gel

Silicone gel + PMACO 46%

Silicone gel + PMACO 46%

Silicone gel + PMACO 46%

Silicone gel + poly(p=phenylenes) 10%

Silicone gel + poly(p=phenylenes) 10%

Silicone gel + poly(p-phenylenes) 10%
Poly(3-hexylthiophene) doped iodine (amorphous)

Electric field Frequecy Temperature °C  Storage modulus Ref #
(kv/mm) (rad/s) sensitivity (AG'/Go) Pa
2,000 100 27 0.439 [22]
0.586
0.148
1.195
0.746
1 0.306
0.971
1,000 1 0.122 [23]
0.102
0.050
0.040
0.256
0.095
2,000 1 0.149 [24]
0.587
2,000 100 0.104 [25]
0.25
0.111
2,000 100 0.077 [26]
0.333
2,000 100 27 0.523 [27]
0.33
0.435
5,000 60 Not response |28, 29]
1,000 0.25
2,000 0.75
3,000 2
1,000 300 0.333
3,000 300 1.133
5,000 300 1.666
8.7 - 0.28
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particles. From the deflection measurement, the deflection
distances of the low-gel-strength and the high-gel-strength
gelatin films increase monotonically with increasing electric
field strength. The low=gel-strength gelatin film shows the
greatest deflection response.
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Preparation of PTh/PDMS blend

Polythiophene/Poly(dimethylsiloxane)
(PTh/PDMS) blend films were prepared
according to the method of Haimtup et.al [8].
Polythiphene particles were mixed with
HO-PDMS and TEOS at a crosslinking agent to
monomer ratio (C/M) of 0.053 (TEOS 0.17 and
PDMS 1.40 g), using 2EHSn as the catalyst. The
mixture was poured in a mold and allowed to
cure under vacuum for 24 hours. The volume
fraction of polythiophene particle was varied in
the range of 0 to 30 vol. %.

Electromechanical properties measurement

The electromechanical properties of
conductive PTh/PDMS blend were investigated
in the way of electrorheological test and bending
response test under the electric field. The effects
of polythiophene particle concentration and
electric filed strength were studied. .

For the electrorheological properties
study, PTh/PDMS blend samples with a
diameter of 25 mm and a thickness of 1 mm
were prepared. The sample was placed between
parallel plates (diameter of 25 mm) of a
modified melt rheometer (ARES, Rheometric
Scientific Inc.) which is attached to a DC power
supply.  The samples were first checked for
viscoelastic linearity by strain sweep tests.
Experiments were carried out in the frequency
sweep mode ranging from 0.1 to 100 rad/s to
investigate the effect of electric field strength on
the storage and loss moduli, G* and G”. All
experiments at each applied field strengths were
repeated twice to confirm reproducibility.

Finally, the bending response of the
conductive PTh/PDMS blend in an electric field
was investigated using the experimental set-up
as shown in Fig. 2.

onginal postion

* aeflectaa

B is measured as
shown (from the
deflected film)

Fig. 2: Schematic diagram of the apparatus used
to observe the bending response of the

74

PTW/PDMS blend [8].

The PTh/PDMS films were immersed
vertically in a silicon oil (viscosity=100 cSt)
bath, with a dc electric field applied horizontally
between two parallel flat copper electrodes. DC
electric field was applied with various strengths
in the range of 0-700 V/mm. The amount of
deflection at a specified field strength is defined
by the geometrical parameters A, B and 6. The
bend angle (8) was calculated from the
following equation,

6 = arctan (A/B) (2)

Results and Discussion

Characterization of polythiophene

The FT-IR spectrum of the synthesized
polythiophene is showed in Fig. 3. The spectrum
shows characteristic peaks at 787 cm?, 1219
cm’, 1367 cm™ and 1736 cm™ corresponding to
the C-C bending vibration, C-C stretching
vibration of a-coupled, C-H stretching vibration
and C=C stretching vibration of the thiophene
ring. respectively.

e

of
4000 s 0 000 [T o 00

memramisens fom-1|

Fig. 3: FT-IR spectrum of the synthesized
polythiophene

w0

The UV-Vis absorption spectrum of
synthesized polythiophene in DMF solution
shows absorption peak at 375 nm and 321 nm,
due to the n—m#* and m—m* transition of the
thiophene unit, respectively. Fig. 4 shows the
scanning electron microscopy of synthesized
polythiophene particles. It can be seen that the
shapes of the polythiophene particles and their
surfaces are quite irregular. The specific
conductivity of synthesized polythiophene was
measured using the two-point probe meter. It
was found that the specific conductivity of
polythiophene is 8.97 x 10™ S/cm.
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