

โครงการ

การตรวจสอบทางชีวเคมีเพื่อศึกษาผลกระทบด้านยาไฟริ่วรอยด์ของยุงลายในประเทศไทย

สัญญาเลขที่ MRG 5380102

ผู้รับทุน

นางสาววราภรณ์ จันทร์จำเนือง

บทคัดย่อ

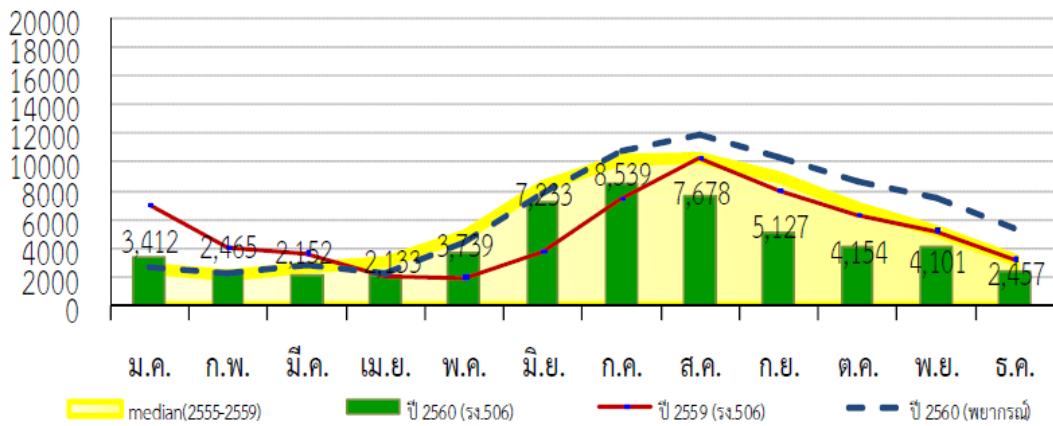
ยุงลายบ้านเป็นพาหะหลักในการนำโรคไข้เลือดออกที่พบรากระบาดทั่วโลก การป้องกันและควบคุมโรคส่วนใหญ่จะขึ้นอยู่กับการควบคุมพาหะนำโรคโดยใช้สารเเพร์โตรอยด์ ซึ่งการใช้สารเเพร์โตรอยด์เป็นเวลานานอาจเป็นสาเหตุสำคัญในการทำให้เกิดความต้านทานสารเเพร์โตรอยด์ ดังนั้นในงานวิจัยนี้จึงนำยุงลายบ้านจาก 7 จังหวัดทั้งในภาคเหนือ ภาคตะวันออกเฉียงเหนือ ภาคกลาง และภาคใต้ ซึ่งเป็นพื้นที่ที่พบรากระบาดของโรคไข้เลือดออกในประเทศไทย มาทดสอบความไวต่อสารเเพร์โตรอยด์ 6 ชนิด ที่ระดับความเข้มข้นนิจฉัยที่ได้พัฒนาขึ้นมาเพื่อใช้ในการตรวจทดสอบความไวต่อสารเเพร์โตรอยด์ ผลทดลองพบว่ายุงลายบ้านจากทุกพื้นที่มีความต้านทานต่อสารเเพร์โตริน เปอร์เมทริน และเดลต้าเมทริน ส่วนยุงลายบ้านจากจังหวัดกรุงเทพฯ พระนครศรีอยุธยา ศกลนคร และชุมพรมีแนวโน้มที่จะต้านทานสารเเพลฟ้าไซเปอร์เมทริน ในขณะที่ยุงลายบ้านจากจังหวัดอุตรดิตถ์ มุกดาหาร และพัทลุงยังคงมีความไวต่อสารเเพร์โตรอยด์ อีกทั้งยังพบว่ายุงลายบ้านจากจังหวัดกรุงเทพฯ พระนครศรีอยุธยา และอุตรดิตถ์มีแนวโน้มที่จะต้านทานสารไซเปอร์เมทริน ขณะที่ยุงลายบ้านจากจังหวัดมุกดาหาร ศกลนคร พัทลุง และชุมพร ยังคงมีความไวต่อสารไซเปอร์เมทรินนอกจานี้ยังพบว่าการกลายพันธุ์ของกรดอะมิโนที่ซ่องโขเดียมที่ตำแหน่ง F1239C ไม่มีความเกี่ยวข้องกับการต้านทานสารเเพร์โตรอยด์ของยุงลายในประเทศไทย เนื่องจากพบการกลายพันธุ์ในยุงที่ไวต่อสารเเพร์โตรอยด์ ในขณะที่การกลายพันธุ์ของกรดอะมิโนที่ซ่องโขเดียมที่ตำแหน่ง V1016G อาจมีความเกี่ยวข้องกับการต้านทานสารเเพร์โตรอยด์ของยุงจากจังหวัดพัทลุง

คำสำคัญ: ยุงลายบ้าน, การต้านทานสารเเพร์โตรอยด์, kdr, ประเทศไทย

ABSTRACT

Aedes aegypti is a primary vector of dengue fever. This disease has increased dramatically around the world in recent decades. At present, pyrethroids are the main insecticides used in controlling vector-borne diseases throughout the country. However, the long-term continuous use of insecticides has led in some cases to high levels of insecticide resistance which is one of the major factors influencing the success of vector control. In this study, *Aedes aegypti* from seven localities with a dengue outbreak in Thailand were subjected to synthetic pyrethroid insecticide susceptibility assays. The results revealed that *Ae. aegypti* from all localities were strongly resistant to bifenthrin, permethrin and deltamethrin. High resistance to lambda-cyhalothrin was detected from all localities with the exception of *Ae. aegypti* from Bangkok and Uttaradit which demonstrated incipient resistance. However, *Ae. aegypti* from Bangkok, Phra Nakhon Si Ayutthaya, Sakon Nakhon and Chumphon showed incipient resistance to alpha-cypermethrin whereas *Ae. aegypti* collected from Uttaradit, Mukdahan and Phatthalung were susceptible. In addition, *Ae. aegypti* from Bangkok, Phra Nakhon Si Ayutthaya and Uttaradit demonstrated incipient resistance to cypermethrin while

susceptibility of *Ae. aegypti* from Mukdahan, Sakon Nakhon, Phatthalung and Chumphon to cypermethrin was observed. Furthermore, kdr at position F1269C of *Ae. aegypti* was found in susceptible strain. It was implied that this mutation was not associated with pyrethroid resistance. However, kdr at position V1016G may play a role in pyrethroid resistance in Phatthalung.

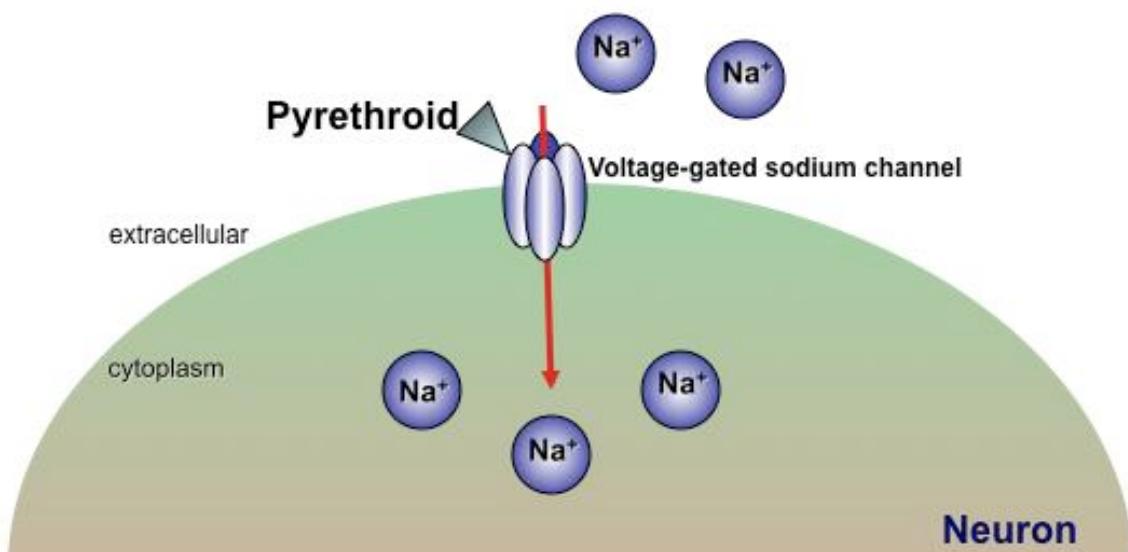

Key words: *Aedes aegypti*, pyrethroid resistance, kdr, Thailand

บทนำ

ไข้เด็ก (dengue fever) และไข้เลือดออกเด็ก (dengue hemorrhagic fever) เป็นโรคที่เป็นปัญหาสำคัญทางสาธารณสุขในหลาย ๆ ประเทศทั่วโลกรวมถึงประเทศไทย (Gubler, 1997) โดยมีแมลงนำโรค คือ ยุงลายบ้าน (*Aedes aegypti*) เป็นยุงพำนังหลักในประเทศไทย (Pethuan et al., 2007) ที่มีพฤติกรรมการเข้ากัดในเวลากลางวัน ตัวเต็มวัยมักอาศัยอยู่ภายในบ้านหรือรอบบ้าน บ้าน ส่วนใหญ่จะอาศัยในแหล่งน้ำขังตามที่อยู่อาศัยในชุมชน (Thanispong et al., 2008) ยุงชนิดนี้สามารถปรับเปลี่ยนพฤติกรรมให้เข้ากับสิ่งแวดล้อมทั้งในธรรมชาติและที่มนุษย์สร้างขึ้น ทำให้ยุงลายบ้านเป็นยุงที่มีศักยภาพในการเป็นแมลงพาหะนำโรคไข้เลือดออกได้ดี (Chareonviriyaphap et al., 2003a) สำหรับสถานการณ์โรคไข้เลือดออกของประเทศไทยระหว่างปี พ.ศ.2558-2562 นั้น ในแต่ละปีมีจำนวนผู้ป่วยไม่ต่ำกว่า 40,000 ราย และมีการระบาดของโรคเพิ่มสูงอย่างเห็นได้ชัด ในปี พ.ศ.2558 และ 2562 ซึ่งมีจำนวนผู้ป่วยมากกว่า 100,000 ราย (ตารางที่ 1) และเมื่อพิจารณาถึงจำนวนผู้ป่วยสะสมจำแนกตามรายเดือนของสถานการณ์ลายปีที่ผ่านมา จนถึงปี พ.ศ.2560 จะพบว่าช่วงฤดูฝนระหว่างเดือนพฤษภาคม-กันยายน จะมีผู้ป่วยจำนวนมากเมื่อเทียบกับฤดูอื่น (รูปที่ 1)

ตารางที่ 1 สถานการณ์โรคไข้เลือดออกระหว่างปี พ.ศ. 2556 – 2560 (ที่มา: <http://www.thaivbd.org/>)

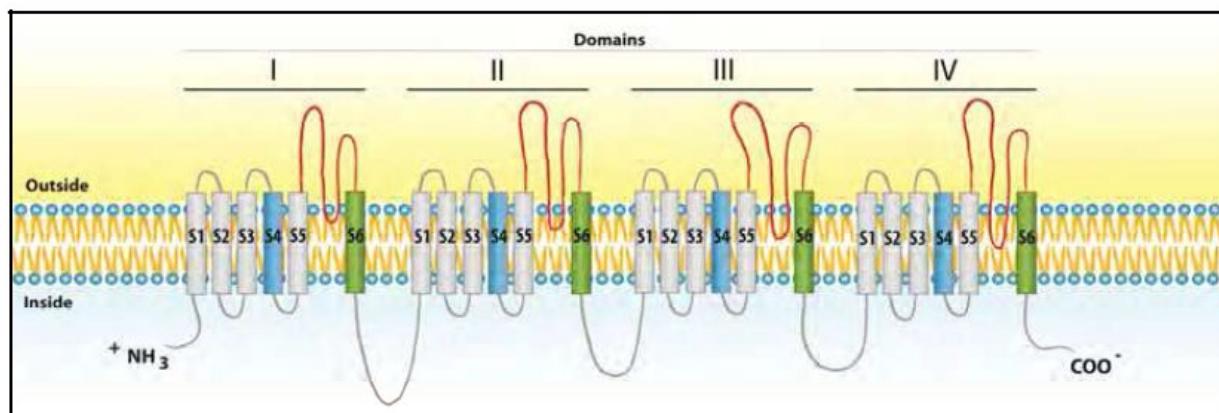
	ปี พ.ศ.				
	2562	2561	2560	2559	2558
จำนวนผู้ป่วย (ราย)	102,553	66,372	42,035	49,252	102,311
จำนวนผู้ป่วยราย (ราย)	110	84	56	42	95
อัตราป่วยต่อแสนประชากร (ราย)	154.68	100.47	64.25	75.28	157.10
อัตราป่วยราย (%)	0.11	0.13	0.13	0.09	0.09

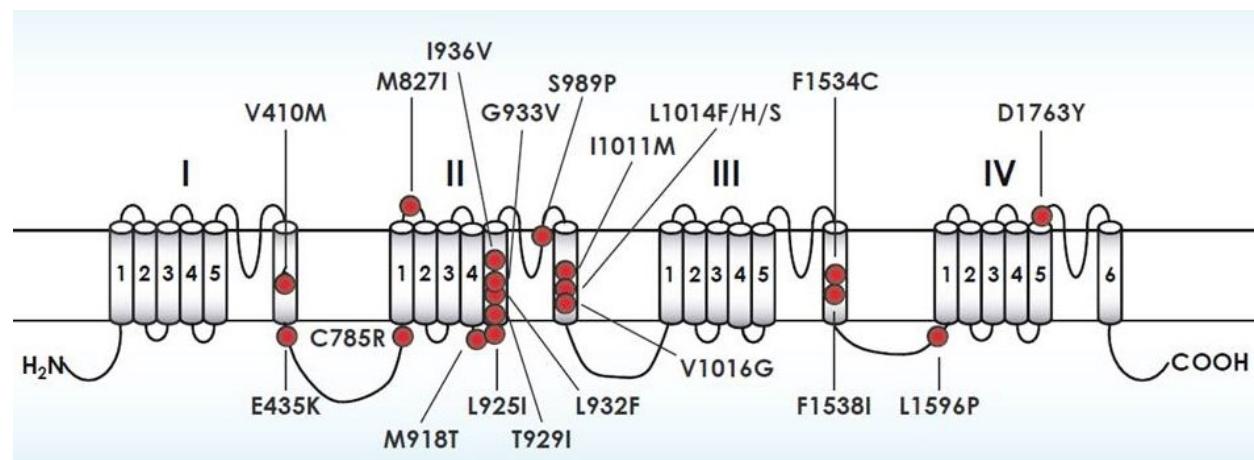


รูปที่ 1 จำนวนผู้ป่วยโรคไข้เลือดออกสะสมตามรายเดือน ปี พ.ศ.2560 (ที่มา: ระบบรายงานการเฝ้าระวังโรค 506 สำนักงานควบคุมโรค กระทรวงสาธารณสุข)

ดังนั้นการบังกันและควบคุมโรคไข้เลือดออกส่วนใหญ่มักจะรณรงค์ให้ทำในช่วงก่อนฤดูฝน โดยใช้วิธีการเฝ้าระวังการระบาดของโรค หรืออาจใช้การตรวจสอบจำนวนของลูกน้ำหรือตัวโน่งของยุงลายบ้านในภาคใต้ที่มีน้ำขัง นอกจากนั้นการลดปริมาณแหล่งเพาะพันธุ์ รวมถึงการใช้ทรายเคลือบสารเคมีฟอส (Temephos) ไส้ลงในภาชนะขังน้ำต่างๆ ยังเป็นวิธีที่สามารถใช้ในการควบคุมยุงลายบ้านในระยะลูกน้ำได้ แต่วิธีการนี้ค่อนข้างจะต้องเสียค่าใช้จ่ายในการเข้าถึงชุมชนอีกทั้งยังต้องการความร่วมมือของชุมชนเป็นอย่างมาก และผลที่ได้มักจะไม่ประสบความสำเร็จในการควบคุมมากนัก (Ahmad et al., 2007) ดังนั้นการควบคุมยุงลายในระยะตัวเต็มวัยด้วยการใช้สารเคมีจึงเป็นอีกวิธีที่สามารถทำได้อย่างรวดเร็ว อีกทั้งยังสามารถควบคุมการแพร่ระบาดของโรคหลังจากพบผู้ป่วยที่ติดเชื้อแล้วอย่างมีประสิทธิภาพ

โดยทั่วไปสารเคมีกำจัดแมลงทั้งในกลุ่มออร์แกโนคลอรีน (organochlorine) ออร์แกโนฟอสเฟต (organophosphate) คาร์บามे�ต (carbamate) และไพรีทรอยด์ (pyrethroid) สามารถใช้ในการควบคุมแมลงพาหะนำโรคไข้เลือดออก (Chareonviriyaphap et al., 1999) โดยดีดีที (DDT) เป็นสารในกลุ่มออร์แกโนคลอรีนที่ใช้กันอย่างแพร่หลายในการควบคุมยุงลายบ้าน หลังจากพบการระบาดของโรคครั้งแรกในประเทศไทย อย่างไรก็ตามผลการทดลองของสารดีดีทีก่อให้เกิดปัญหากับสิ่งแวดล้อม เช่น ทำให้เปลือกไข่ของนกบางชนิดบางลงเป็นเหตุให้สูญพันธุ์ อีกทั้งในปัจจุบันยังพบว่าดีดีทีที่ตอกค้างอยู่ในสิ่งแวดล้อมเป็นหนึ่งในปัจจัยที่ทำให้เกิดระเบิงบางชนิดในมนุษย์ เป็นต้น ดังนั้นสารในกลุ่มออร์แกโนฟอสเฟต เช่น มาลาไทคอน (malathion) เฟนิโตรไทคอน (finitrithion) และสารในกลุ่มคาร์บามे�ต เช่น โพรปอกเซอร์ (propoxur) จึงถูกนำมาใช้ทดแทนดีดีที ก่อนที่จะเปลี่ยนมาใช้สารในกลุ่มไพรีทรอยด์ในปี ค.ศ. 1992 ในที่สุด (Chareonviriyaphap et al., 2003b) อย่างไรก็ตามสารเคมีฟอส (temephos) ซึ่งเป็นสารในกลุ่มออร์แกโนฟอสเฟตยังคงใช้ในการควบคุมลูกน้ำยุงลายบ้านอย่างแพร่หลายจนถึงปัจจุบันตามคำแนะนำขององค์กรอนามัยโลก


ไฟว์ทรอยด์เป็นสารที่นิยมใช้ในการกำจัดแมลงในปัจจุบัน เนื่องจากเป็นสารที่มีพิษเฉียบพลันต่อสัตว์เลี้ยงลูกด้วยนม ดังนั้นจึงค่อนข้างมีความปลอดภัยต่อมนุษย์ อีกทั้งยังมีคุณสมบัติในการน็อกดาวน์ (knockdown) ทำให้แมลงสลบ โดยสารไฟว์ทรอยด์จะสามารถไปจับที่ช่องโซเดียม (sodium channel) บนเซลล์ประสาท ทำให้ช่องโซเดียมปิดช้าลงกว่าปกติ ผลให้การส่งกระแทกประสาทภายในเซลล์ผิดปกติ จนทำให้แมลงตายในที่สุด (http://cdn.intechopen.com/pdfs/27797/InTech-The_pyrethroid Knockdown_resistance.pdf.)


รูปที่ 2 กลไกการออกฤทธิ์ของสารไฟว์ทรอยด์ (ที่มา: <http://america.pink/images/3/6/2/4/0/9/4/en/3-pyrethroid.jpg>)

สารเคมีกลุ่มไฟว์ทรอยด์ เช่น เดลต้าเมทธрин (deltamethrin) เป็นสารเคมีกำจัดแมลงทางสาธารณสุขที่นิยมใช้ในปัจจุบันโดยสามารถใช้ควบคุมการแพร่ระบาดของยุงลายบ้านในประเทศไทยมาตั้งแต่ปี พ.ศ. 2537 (Chareonviriyaphap et al., 1999 และ Mouches et al., 1990) นอกจากนี้แล้วยังมีสารเรสเมทธрин (resmethrin) เตตรามีทธрин (tetramethrin) ไซเพอร์เมทธрин (cypermethrin) ไบเฟนทрин (bifenthrin) และไซฟลูทธрин (cyfluthrin) ที่มักนิยมใช้เพื่อควบคุมยุงและแมลงอื่นๆ ในบ้านเรือน ซึ่งการใช้สารกลุ่มเดียวยอย่างต่อเนื่องมาเป็นเวลานานทำให้ยุงลายบ้านเกิดการพัฒนาความต้านทานสารเคมีขึ้นมาได้ (Jirakanjanakit et al., 2007) ทำให้ยุงลายบ้านสามารถอดชีวิตรจากความเป็นพิษของสารเคมีโดยกลไกทางสรีรวิทยาในรูปแบบต่างๆ โดยเฉพาะอย่างยิ่งกลไกหลักในการต้านทานสารไฟว์ทรอยด์ คือ การเกิดการเปลี่ยนแปลงกรดอะมิโนบางตำแหน่งของช่องโซเดียมที่มีผลทำให้สารไฟว์ทรอยด์ไม่สามารถเข้าไปจับได้ ทำให้ไม่เกิดการออกฤทธิ์ของสารไฟว์ทรอยด์ (http://cdn.intechopen.com/pdfs/27797/InTech-The_pyrethroid Knockdown_resistance.pdf.)

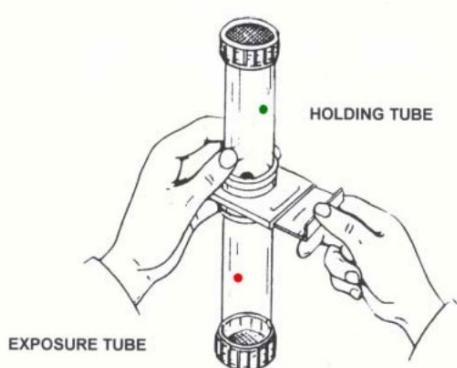
ช่องโซเดียมที่อยู่บริเวณเยื่อหุ้มเซลล์ประสาทของแมลงประกอบด้วย 4 โดเมน (domain) ตั้งแต่ I–IV โดยแต่ละโดเมนจะประกอบไปด้วย 6 hydrophobic segment (S1–S6) และมี P-loop ระหว่าง S5-S6 (รูปที่ 3) ดังนั้นหากเกิดเปลี่ยนแปลงกรดอะมิโนบางตำแหน่งในช่องโซเดียมที่เกิดขึ้นจากการกลายพันธุ์ (mutation) ของลำดับเบสบันดีเอ็นเอ อาจเกี่ยวข้องกับการออกฤทธิ์ของสารไฟว์ทรอยด์ (รูปที่ 4) โดยเฉพาะอย่างยิ่งหากเกิดการกลายพันธุ์ที่ตำแหน่ง I1011M และ V1016G ในโดเมน IIIS6 ซึ่งเป็นตำแหน่งที่เกี่ยวข้องกับการต้านสารไฟว์ทรอยด์ของยุงลายบ้านในทวีปะตินโเมริกาและทวีปแอเชียตะวันออกเฉียงใต้ รวมถึงตำแหน่ง F1269C ในโดเมน IIIS6 ซึ่งเป็นตำแหน่งที่เกี่ยวข้องกับการต้านสารไฟว์ทรอยด์ของยุงลายบ้านในแถบเวียดนามตอนใต้ (Kawada et al., 2009) จะทำให้เกิดความต้านทานสารไฟว์ทรอยด์ โดยมีกลไกการต้านทานแบบ kdr (knockdown resistance) ส่งผลให้สารไฟว์ทรอยด์ไม่สามารถใช้ในการกำจัดยุงลายบ้านได้อีกต่อไป ดังนั้น การตรวจสอบระดับความต้านทานและกลไกการต้านทานแบบ kdr ของยุงลายบ้านจากบางพื้นที่ในประเทศไทย จึงเป็นการเฝ้าระวัง เพื่อที่จะนำข้อมูลที่ได้ไปเป็นมาตรฐานหนึ่งในการป้องกันโรคไข้เลือดออกได้ (http://cdn.intechopen.com/pdfs/27797/InTech-The_pyrethroid_knockdown_resistance.pdf.)

รูปที่ 3 โครงสร้างของช่องโซเดียม (ที่มา: http://cdn.intechopen.com/pdfs/27797/InTech-The_pyrethroid_knockdown_resistance.pdf.)

รูปที่ 4 การเปลี่ยนแปลงตำแหน่งของกรดอะมิโนบนช่องโซเดียมที่เกี่ยวข้องกับการต้านทานสารไฟว์ทรอยด์ (ที่มา: <http://kedonglab.ent.msu.edu/projects/kdrmutations.jpg>)

อย่างไรก็ตามก่อนที่จะทำการทดสอบระดับความไวต่อสารไฟรีโทรอยด์ของบุกลายบ้านได้นั้น จะเป็นจะต้องทราบถึงระดับความเข้มข้นของสารเคมีที่จะใช้ในการทดสอบโดยใช้บุกลายบ้านสายพันธุ์ที่ไวต่อสารเคมี (susceptible strain) ถึงแม้มองค์กรอนามัยโลกจะกำหนดความเข้มข้นของสารไฟรีโทรอยด์บางชนิด เช่น เปอร์เมทริน (permethrin) และแอลเมปิดาไซยาโลทริน (lambda-cyhalothrin) ที่ใช้ในการทดสอบความต้านทานของบุกลายบ้านไว้แล้วนั้น (WHO; 1998, 2006) แต่สารเคมีที่ใช้ในประเทศไทยนั้นไม่ได้ใช้สารทั้งสองชนิดเพียงเท่านั้นแต่ยังรวมถึงเดลต้าเมทริน ไซเปอร์เมทริน และฟ้าไซเปอร์เมทริน ไบเฟนทริน อีกด้วย ทั้งนี้องค์กรอนามัยโลกยังไม่ได้กำหนดความเข้มข้นของสารเคมีอีก 4 ชนิดไว้ ดังนั้นในการทดสอบนี้จึงมุ่งที่จะหาความเข้มข้นของสารเดลต้าเมทริน ไซเปอร์เมทริน และฟ้าไซเปอร์เมทริน ไบเฟนทริน รวมทั้งเปอร์เมทรินและแอลเมปิดาไซยาโลทริน ซึ่งเป็นค่าระดับความเข้มข้นนิยมจัด เพื่อนำไปใช้ในการทดสอบความไวต่อสารไฟรีโทรอยด์ที่เกี่ยวข้องกับ kdr mutation เพื่อนำไปวางแผนในการใช้สารเคมีควบคุมบุกลายบ้านได้อย่างมีประสิทธิภาพมากยิ่งขึ้น

วิธีวิจัย


1. การหาค่าระดับความเข้มข้นนิยมจัดของสารไฟรีโทรอยด์ 6 ชนิด

1.1. เลี้ยงบุกลายบ้านสายพันธุ์ที่ไวต่อสารเคมี (สายพันธุ์ USDA)

นำไบยูงที่ได้จาก US Department of Agriculture laboratory แฟชั่นน้ำสะอาดเพื่อให้ลูกน้ำพักออกมายากไป จากนั้นเลี้ยงลูกน้ำด้วยอาหารปลาจนกระทั้งลูกน้ำกลายน้ำเป็นตัวโม่งและตัวเต็มวัยแยกตัวเต็มวัยเพศเมียอายุ 3-5 วัน ออกมาน้ำหัวน้ำเป็นอาหารและนำไปทดสอบต่อไป

1.2. เตรียมกระดาษซูบสารเคมีและการทดสอบ

ตัดกระดาษกรอง Whatman เปอร์ 1 ขนาด 12X15 ซม. และเตรียมสารเดลต้าเมทริน ไซเปอร์เมทริน และฟ้าไซเปอร์เมทริน ไบเฟนทริน เปอร์เมทรินและแอลเมปิดาไซยาโลทริน (Active Ingredient) โดยใช้ตัวทำละลายสารเคมีเป็นอะซีตออล (acetone) และใช้ซิลิโคนอยล์ (silicone oil) เป็นตัวพาสารเคมีให้เกิดการกระจายตัวบนกระดาษได้ดีขึ้น (carrier) จากนั้นทำการเจือจางความเข้มข้นของสารเคมีแบบ serial dilution ให้มีปริมาตร 2 มล. และนำสารไฟรีโทรอยด์แต่ละชนิดที่ความเข้มข้นต่างๆ ไปหยดบนกระดาษ 1 แผ่น ทิ้งไว้ให้ตัวทำละลายระเหยให้หมดแล้วจึงนำกระดาษที่ผ่านการหยดสารเคมีแล้วทดสอบกับบุกลายบ้านสายพันธุ์ USDA เพศเมียที่ได้จากข้อ 1.1 ตามมาตรฐานขององค์กรอนามัยโลกด้วย susceptible test kit (รูปที่ 5) โดยในการทดสอบจะใส่กระดาษที่ผ่านการหยดสารไฟรีโทรอยด์แต่ละชนิดเข้าไปในด้าน exposure tube โดยทำการทดสอบ 4 ชั้น (1 ชั้นใช้บุกลายเพศเมียในการทดสอบจำนวน 25 ตัว) และเปรียบเทียบผลการทดลองกับชุดการทดลองควบคุม (control) ซึ่งใช้กระดาษที่ไม่มีสารไฟรีโทรอยด์ มีเพียงแต่อะซีตออลและซิลิโคนอยล์ เพื่อหาค่า LC₉₉ (Lethal concentration) ของสารเคมีแต่ละชนิด

รูปที่ 5 WHO susceptible test kit

1.3. การคำนวณค่าระดับความเข้มข้นวินิจฉัยของสารไฟว์ทรอยด์

ค่า LC_{50} และ LC_{99} ของสารเคมีแต่ละชนิดจะถูกนำมาคำนวณโดยใช้การวิเคราะห์แบบโพรบิท (probit analysis) และนำค่า $LC_{99} \times 2$ จะได้เป็นค่าระดับความเข้มข้นวินิจฉัยของสารไฟว์ทรอยด์แต่ละชนิด เพื่อนำไปใช้ในการตรวจสอบความไวของยุงลายบ้านจากพื้นที่ต่างๆ ในประเทศไทย

2. ตรวจสอบความไวต่อสารไฟว์ทรอยด์ของยุงลายบ้านจากพื้นที่ต่างๆ ในประเทศไทย

2.1. เลี้ยงยุงลายบ้านจากพื้นที่ต่างๆ ในประเทศไทยเพื่อนำมาทดสอบค่าระดับความเข้มข้นวินิจฉัยของสารไฟว์ทรอยด์

เก็บลูกน้ำยุงจากจังหวัดกรุงเทพฯ พระนครศรีอยุธยา อุตรดิตถ์ มุกดาหาร สกลนคร พัทลุง ชุมพร และนำลูกน้ำยุงที่เก็บได้มาเลี้ยงในห้องปฏิบัติการโดยเลี้ยงแยกตามพื้นที่ที่เก็บได้ จนกว่าทั้งได้ตัวเต็มวัย จากนั้นคัดเลือกเฉพาะยุงลายบ้านมาเลี้ยงแยก ปล่อยให้ยุงลายบ้านเพศผู้และเพศเมียผสมพันธุ์ และปล่อยให้ยุงกินเลือดเพื่อผลิตยุงลายบ้านเพศเมียให้เพียงพอต่อการทดสอบ (ยุงลายบ้านที่ใช้ในการทดสอบจะต้องไม่เกิน F3) โดยใช้ระดับความเข้มข้นวินิจฉัยของสารไฟว์ทรอยด์ที่คำนวณได้จาก $LC_{99} \times 2$ สำหรับหยดกระดาษ บันทึกเปอร์เซ็นต์ความรบกวนเมื่อเวลาผ่านไป 1 ชั่วโมง และบันทึกเปอร์เซ็นต์การตายที่เวลา 24 ชั่วโมง หลังจากผ่านการทดสอบด้วย susceptibility test kit และทำการทดสอบเช่นเดียวกันกับยุงลายบ้านสายพันธุ์ที่梧州สารเคมี (USDA)

2.2. การวิเคราะห์ข้อมูล

นำค่าเปอร์เซ็นต์การตายของยุงลายบ้านที่เวลา 24 ชั่วโมง หลังจากผ่านการทดสอบด้วย susceptibility test kit มาวิเคราะห์ผลตามองค์กรอนามัยโลก โดยถ้าพบเปอร์เซ็นต์การตายมีค่าน้อยกว่า 80 แสดงว่ายุงลายบ้านมีความต้านทานสารเคมี ถ้าเปอร์เซ็นต์การตายมีค่าอยู่ระหว่าง 80-97 แสดงว่ายุงลายบ้านมีแนวโน้มที่จะต้านทานสารเคมี ถ้าเปอร์เซ็นต์การตายมีค่าอยู่ระหว่าง 98-100 แสดงว่ายุงลายบ้านไวต่อสารเคมี (WHO, 1998)

3. ศึกษากลไกการต้านทานสารไวรัสโดยดีกีเยว์ของกับ kdr ที่ตำแหน่ง I1011M, V1016G และ F1269C

นำตัวอย่างบุกลายปั๊นจากจังหวัดมุกดาหาร พัทลุง และ USDA ที่ไม่ได้สมผัสสามารถกัดสกัดดีเอ็นเอ (DNA) ด้วย FAVORPREP® DNA extraction kit (Favorgen Company) จากนั้นนำดีเอ็นเอที่สกัดได้มาตรวจสอบการกล่ายพันธุ์ของช่องโหวเดิมที่ตำแหน่ง I1011M, V1016G และ F1269C ด้วยวิธี PCR sequencing

สำหรับตรวจสอบการเกิดการกล่ายพันธุ์ที่ตำแหน่ง I1011M และ V1016G ทำได้โดยใช้ไฟร์เมอร์ (Forward) [5-AGA-CAA-TGT-GGA-TCG-CTT-CC-3] และไฟร์เมอร์ (Reverse) [5-GGA-CGC-AAT-CTG-GCT-TGT-TA-3] ส่วนการตรวจสอบการเกิดการกล่ายพันธุ์ที่ตำแหน่ง F1269C นั้นทำได้โดยใช้ไฟร์เมอร์ (Forward) [5-GAG-AAC-TCG-CCG-ATG-AAC-TT-3] และไฟร์เมอร์ (Reverse) [5- GAC-GAC-GAA-ATC-GAA-CAG-GT-3] และตั้งค่าเครื่อง PCR ดังนี้คือ pre-incubation ที่ 94 °C เป็นเวลา 3 นาที จากนั้น denaturation ที่ 94 °C เป็นเวลา 15 วินาที 40 รอบตามด้วย annealing 55 °C เป็นเวลา 30 วินาที และ elongation ที่ 72 °C เป็นเวลา 30 วินาที เมื่อได้ PCR product มาแล้ว จึงนำผ่านการทำบริสุทธิ์ แล้วจึงนำส่งไปหาลำดับเบสที่ตำแหน่ง I1011M และ V1016G โดยใช้ไฟร์เมอร์ (Forward) [5-GTG-GAA-CTT-CAC-CGA-CTT-CA-3] และไฟร์เมอร์ (Reverse) [5-CGA-CTT-GAT-CCA-GTT-GGA-GA-3] ส่วนการหาลำดับเบสที่ตำแหน่ง F1269C ทำได้โดยใช้ไฟร์เมอร์ (Forward) [5- GTG-GAA-CTT-CAC-CGA-CTT-CA-3] และไฟร์เมอร์ (Reverse) [5-TAG-CTT-TCA-GCG-GCT-TCT-TC-3] โดยบิชท์ BioDesign และนำผลลำดับเบสที่ได้มาวิเคราะห์ด้วยโปรแกรม BioEdit

ผลและวิจารณ์

1. การหาค่าระดับความเข้มข้นวินิจฉัยของสารไพรีทรอยด์ 6 ชนิด

เมื่อนำรุ่งลายบ้านสายพันธุ์ USDA มาทดสอบหาเปอร์เซ็นต์การตายที่ 10 และ 90 ที่ความเข้มข้นต่างๆ ของสารเคมีแต่ละชนิด พบร่วม chi-square มีค่าที่เข้ากับทฤษฎี linear model โดยสารเปอร์เมทринมีค่า LC_{50} มากที่สุด ส่วนสารเดลต้าเมทринมีค่า LC_{50} น้อยที่สุด และสารไบเปอร์เมทринมีค่า LC_{99} มากที่สุด ส่วนสารเดลต้าเมทринมีค่า LC_{99} น้อยที่สุด (ตารางที่ 2)

ตารางที่ 2 การวิเคราะห์แบบโพร์บิทของอัตราการตายและระดับความเข้มข้นวินิจฉัยของสารไพรีทรอยด์ทั้ง 6 ชนิดของรุ่งลายบ้านสายพันธุ์ USDA

Insecticide	No. tested	LC_{50} (%)	95% FL ²	LC_{99} (%)	95% FL	Diagnostic concentration (%) ³	$P > chi$ square
α -Cypermethrin	302	0.0009	0.0004–0.0013	0.043	0.0220–0.1449	0.0863	0.9419
Bifenthrin	282	0.0185	0.0171–0.0202	0.047	0.0396–0.0599	0.0938	0.3082
Cypermethrin	311	0.0052	0.0031–0.0072	0.111	0.0662–0.2760	0.2212	0.1333
Deltamethrin	297	0.0007	0.0006–0.0007	0.002	0.0020–0.0034	0.0049	0.8955
λ -Cyhalothrin	299	0.0012	0.0010–0.0014	0.006	0.0043–0.0087	0.0116	0.8633
Permethrin	275	0.0379	0.0354–0.0407	0.073	0.0632–0.0922	0.1466	0.9718

ผลการทดลองพบว่าสามารถคำนวณค่าระดับความเข้มข้นวินิจฉัยของสารไพรีทรอยด์ทั้ง 6 ชนิด เพื่อใช้ในการทดสอบความไวของรุ่งลายบ้านจากพื้นที่ต่างๆ ในประเทศไทยได้ อย่างไรก็ตามค่าระดับความเข้มข้นวินิจฉัยของสารเปอร์เมทрин (0.1466%) และแอลเมปิดาไซยาโลทрин (0.0116%) ที่ได้จากการทดลองมีค่าแตกต่างจากค่าที่องค์กรอนามัยโลกกำหนดไว้ที่ 0.03% สำหรับสารแอลเมปิดาไซยาโลทрин และ 0.25% สำหรับสารเปอร์เมทрин นี้ก็ตามที่ Jirakanjanakit et al. ได้ทดลองหาระดับความเข้มข้นวินิจฉัยของสารเปอร์เมทринและเดลต้าเมทринกับรุ่งลายบ้านสายพันธุ์ Bora Bora ซึ่งเป็นอีกหนึ่งสายพันธุ์ที่ไวต่อสารเคมี พบร่วมว่าระดับความเข้มข้นวินิจฉัยที่ได้มีค่าแตกต่างจากการทดลองนี้ อาจเป็นเพราะวิธีการวิเคราะห์ต่างกัน นี้ก็ตามที่ chi-square ของสารเปอร์เมทринและเดลต้าเมทринเมื่อทดสอบกับรุ่งลายบ้านสายพันธุ์ Bora Bora มีค่าสูงมากกว่า ทำให้ค่าระดับความเข้มข้นวินิจฉัยของสารทั้ง 2 ชนิดแตกต่างกัน อย่างไรก็ตามระดับความเข้มข้นวินิจฉัยที่ได้ของสารไพรีทรอยด์เหล่านี้จำเป็นต้องทดสอบกับรุ่งลายบ้านสายพันธุ์ USDA นี้ก็ตาม เพื่อให้แน่ใจว่า รุ่งลายสายพันธุ์ USDA ตาย 100 เปอร์เซ็นต์ รวมถึงนำไปทดสอบกับรุ่งลายบ้านจากพื้นที่ต่างๆ ในประเทศไทย เพื่อให้เกิดความเชื่อมั่นว่าค่าระดับความเข้มข้นวินิจฉัยที่ได้สามารถนำมาใช้ตรวจวัดความไวต่อสารไพรีทรอยด์ของรุ่งลายบ้านจากพื้นที่ต่างๆ ได้จริง

ดังนั้นเมื่อนำรุ่งลายบ้านจากจังหวัดกรุงเทพฯ พระนครศรีอยุธยา อุตรดิตถ์ มุกดาหาร ศกลนคร พัทลุง และชุมพร มาทดสอบความไวต่อสารไพรีทรอยด์ทั้ง 6 ชนิด โดยใช้ระดับความเข้มข้นวินิจฉัยที่หาได้ พบร่วมเมื่อ นำสารไพรีทรอยด์ที่มีระดับความเข้มข้นวินิจฉัยต่างๆ มาทดสอบกับรุ่งลายบ้านสายพันธุ์ USDA ยังคงมีเปอร์เซ็นต์การตายเป็น 100 และคงให้เห็นว่าระดับความเข้มข้นวินิจฉัยนี้น่าจะเป็นค่าที่เหมาะสมที่จะนำไป

ทดสอบความไวต่อสารไพรีทรอยด์ของยุงลายบ้านจากพื้นที่ต่างๆ ในประเทศไทย และผลการทดสอบยังพบว่า ยุงลายบ้านจากทุกพื้นที่มีความต้านทานสูงต่อสารไบเพนทริน เปอร์เมทริน และเดลต้าเมทริน นอกจานี้ยังพบว่า ยุงลายบ้านมีความต้านทานสูงต่อสารแอลเมปิดาไซยาโลทรินในเกือบทุกพื้นที่ยกเว้นยุงลายบ้านจากกรุงเทพมหานครและอุตตรดิตถ์ซึ่งมีแนวโน้มที่จะต้านทานสารแอลเมปิดาไซยาโลทรินอย่างไรก็ตามยังพบว่า ยุงลายบ้านจากกรุงเทพมหานคร พระนครศรีอยุธยา ศกลนคร และชุมพร มีแนวโน้มที่จะต้านทานสารแอลฟ้าไซเปอร์เมทริน ในขณะที่ยุงลายบ้านจากอุตตรดิตถ์ มุกดาหาร และพัทลุง ยังคงไวต่อสารแอลฟ้าไซเปอร์เมทริน ยิ่งไปกว่านั้นยุงลายบ้านจากกรุงเทพมหานคร พระนครศรีอยุธยา และอุตตรดิตถ์ มีแนวโน้มที่จะต้านทานต่อสารไซเปอร์เมทริน ในขณะที่ยุงลายบ้านจากมุกดาหาร ศกลนคร พัทลุง และชุมพร ยังคงไวต่อสารไซเปอร์เมทริน นอกจากนั้นยังพบว่า เปอร์เซ็นต์การติดเชื้อในกลุ่มที่ต้านทานมีค่าสูงมากเมื่อยุงลายบ้านสัมผัสสารแอลฟ้าไซเปอร์เมทรินและไซเปอร์เมทรินอีกด้วย (ตารางที่ 3) แสดงว่าทั้ง 2 สายยังคงมีประสิทธิภาพในการติดเชื้อยุงลายบ้านได้ดี ซึ่งคุณสมบัตินี้เป็นลักษณะเด่นของการออกแบบที่ของสารไวต่อสารไพรีทรอยด์

2. ศึกษาผลจากการต้านทานสารไพรีทรอยด์ที่เกี่ยวข้องกับ kdr ที่ตำแหน่ง I1011M, V1016G และ F1269C

ผลการทดลอง (ตารางที่ 4) แสดงให้เห็นว่าไม่พบการกลâyพันธุ์ที่ตำแหน่ง I1011M ในยุงจากจังหวัดมุกดาหาร พัทลุง และ USDA โดยมีเปอร์เซ็นต์ homozygous susceptible (SS) kdr genotypes เท่ากับ 100 ซึ่งสอดคล้องกับผลการศึกษาที่ผ่านมาว่า โดยส่วนใหญ่แล้วการกลâyพันธุ์ที่ตำแหน่ง I1011M มีความเกี่ยวข้องกับยุงลายบ้านที่ต้านทานสารไพรีทรอยด์ในแบบบราซิล (Brito et al., 2018) และไม่พบการกลâyพันธุ์ที่ตำแหน่ง V1016G ในยุงจากจังหวัดมุกดาหาร และ USDA อีกเช่นกัน โดยมีเปอร์เซ็นต์ homozygous susceptible (SS) kdr genotypes เท่ากับ 100 ซึ่งแตกต่างจากยุงจากจังหวัดพัทลุงที่มีเปอร์เซ็นต์ homozygous susceptible (SS) kdr genotype เท่ากับ 20 ส่วนเปอร์เซ็นต์ homozygous resistance (RR) เท่ากับ 20 และเปอร์เซ็นต์ heterozygous resistance (RS) เท่ากับ 60 ทั้งนี้อาจเกิดเนื่องจากยุงจากจังหวัดมุกดาหารและพัทลุงอยู่ในภูมิภาคที่แตกต่างกัน ทำให้ความเกี่ยวข้องของ V1016G กับการต้านทานสารไพรีทรอยด์เกิดได้ต่างกัน นอกจากนั้นยังพบว่า ยุงจากมุกดาหารไม่พบการกลâyพันธุ์ที่ตำแหน่ง F1269C โดยมีเปอร์เซ็นต์ homozygous susceptible (SS) เท่ากับ 100 ส่วนยุงจากพัทลุงพบการกลâyพันธุ์โดยมีเปอร์เซ็นต์ homozygous resistance (RR) และ heterozygous resistance (RS) เท่ากับ 50 ในขณะที่ยุง USDA พบการกลâyพันธุ์ที่ตำแหน่ง F1269C โดยมีเปอร์เซ็นต์ homozygous resistance (RR) เท่ากับ 100 ซึ่งให้เห็นว่าการกลâyพันธุ์ที่ตำแหน่ง F1269C ไม่น่าจะเกี่ยวข้องกับการต้านทานสารไพรีทรอยด์ เนื่องจากพบการกลâyพันธุ์ที่มีเปอร์เซ็นต์ homozygous resistance (RR) เท่ากับ 100 ในยุงลายบ้านที่ไวต่อสารไพรีทรอยด์ ซึ่งแตกต่างจากผลการทดลองของ Kawada et al., 2009 ที่พบกว่าการกลâyพันธุ์ที่ตำแหน่ง F1269C มีความเกี่ยวข้องกับการต้านทานสารไพรีทรอยด์ของยุงลายบ้านในประเทศไทย

ตารางที่ 3 ค่าเบปอร์ทีนต์นิโคคดาวน์และเบปอร์ทีนต์การตายของยุงลายบ้านจากพื้นที่ต่างๆ ในประเทศไทย เมื่อสัมผัสกับสารไฟรีทรอยด์ทั้ง 6 ชนิด

Area	Bifenthrin		Permethrin		Deltamethrin		λ -cyhalothrin		α -cypermethrin		Cypermethrin	
	% KD	% Mortality \pm SE	% KD	% Mortality \pm SE	% KD	% Mortality \pm SE	% KD	% Mortality \pm SE	% KD	% Mortality \pm SE	% KD	% Mortality \pm SE
USDA (Susceptible strain)	100	100	100	100	100	100	100	100	100	100	100	100
Bangkok (Prawet)	0	6	5	6 \pm 1.18	2	14 \pm 1.02	16	93 \pm 2.51	91	97 \pm 2.51	96	97 \pm 1.93
Phra Nakhon Si Ayutthaya (Ban Phraek)	0	4	9	23 \pm 6.15	2	16 \pm 5.01	1	26 \pm 7.39	89	91 \pm 3.53	89	97 \pm 1.99
Uttaradit (Tron)	3	18 \pm 6.00	4	10 \pm 4.49	7	14 \pm 7.75	17	96 \pm 2.36	98	99 \pm 1.00	82	89 \pm 5.59
Mukdahan (Mueang)	1	8 \pm 2.83	7	26 \pm 2.58	0	0	16	22 \pm 8.87	94	98 \pm 1.15	97	99 \pm 1.00
Sakon Nakhon (Mueang)	0	9 \pm 3.15	0	2 \pm 1.11	1	6 \pm 2.00	0	0	86	90 \pm 2.06	94	98 \pm 1.85
Phatthalung (Mueang)	20	39 \pm 3.32	30	55 \pm 9.04	25	37 \pm 0.91	24	57 \pm 5.68	99	100	100	98 \pm 1.85
Chumphon (Mueang)	1	5 \pm 1.88	1	4 \pm 1.57	1	2 \pm 2.00	1	7 \pm 3.28	85	95 \pm 3.00	92	100 \pm 1.00

ตารางที่ 4 ค่าเบอร์เซ็นต์ในไทยของช่องซีซีเดียมที่กรดอะมิโนตำแหน่ง 1011, 1016 และ 1269

Genotype	Mukdahan			Phatthalung			USDA		
	I1011M	V1016G	F1239C	I1011M	V1016G	F1239C	I1011M	V1016G	F1269C
SS	100	100	100	100	20	0	100	100	0
SR	0	0	0	0	60	50	0	0	0
RR	0	0	0	0	20	50	0	0	100

สรุปและเสนอแนะ

ยุ่งลายบ้านจาก 7 จังหวัดในประเทศไทยมีความต้านทานสารไพรีทรอยด์สังเคราะห์โดยเฉลี่ยอย่าง
ยิ่งสารไบเฟนทริน เปอร์เมทริน และเดลต้าเมทริน นอกจานนี้ยังพบว่าการกลายพันธุ์ที่ตำแหน่ง F1239C
ไม่มีความเกี่ยวข้องกับการต้านทานสารไพรีทรอยด์ของยุงลายในประเทศไทย ในขณะที่ตำแหน่ง V1016G
อาจมีความเกี่ยวข้องกับการต้านทานสารไพรีทรอยด์ของยุงจากจังหวัดพัทลุง

เอกสารอ้างอิง

Ahmad I, Astari S, Tan M. Resistance of *Aedes aegypti* (Diptera: Culicidae) in 2006 to pyrethroid insecticides in Indonesia and its association with oxidase and esterase levels. *Pakistan J Biol Sci* 2007; 10: 3688-3692.

Brito L.P., Carrara L., Maciel de Freitas R., Lima J.B.P., Martins A.J. Levels of resistance to pyrethroid among distinct *kdr* alleles in *Aedes aegypti* laboratory lines and frequency of *kdr* alleles in 27 natural populations from Rio de Janeiro, Brazil. *BioMed Research International* 2018; <https://doi.org/10.1155/2018/2410819>.

Chareonviriyaphap T, Aum-Aong B, Rattanathum S. Current resistance in mosquito vectors in Thailand. *Southeast Asian J Trop Med Public Health* 1999; 30: 131-141.

Chareonviriyaphap T, Prabaripai A, Bangs M.J, Aum-Aung B. Seasonal Abundance and Blood Feeding Activity of *Anopheles minimus* Theobald (Diptera: Culicidae) in Thailand. *J Med Entomol* 2003a; 40: 876-881.

Chareonviriyaphap T, Rongnoparut P, Chantarumporn P, Bangs M.J. Biochemical detection of pyrethroids resistance mechanisms in *Anopheles minimus*, a vector of malaria in Thailand. *J Vec Ecol* 2003b; 28: 108-116.

Gubler D.J (ed): "Dengue and dengue haemorrhagic fever" CAB International, Oxon, UK, and New York, USA 1997; 478 pp.

Jirakanjanakit N, Rongnparut P, Saengtharatip S, Chareonviriyaphap T, Duchon S, Bellec C, Yoksan S. Insecticide susceptible/resistance status in *Aedes (Stegomyia) aegypti* and *Aedes (Stegomyia) albopictus* (Diptera: Culicidae) in Thailand during 2003–2005. *J Econ Entomol* 2007; 100: 545–550.

Kawada H., Higa Y., Komagata O., Kasai S., Tomita T., Yen N.T., Loan L.L., Sa'nchez R.A.P., Takagi M. Widespread distribution of a newly found point mutation in voltage-gated sodium channel in pyrethroid-resistant *Aedes aegypti* populations in Vietnam. *PLOS NEGLECT TROP D* 2009; 3: e0000527.

Mouches C, Puaplin Y, Agarwa M, Lemieux L, Herzog M, Abadon M, Beyssat Arnaouty V, Hyrien O, deSaint Vincent B.R, Georgehiou GP, Pasteur N. Characterization of amplification care and esterase B1 gene responsible for insecticide resistance in *Culex*. *Proc Natl Acad Sci USA* 1990; 87: 2574-2578.

Pethuan S, Jirakanjanakit N, Saengtharatip S, Chareonviriyaphap T, Kaewpa D, Rongnparut P. Biochemical studies of insecticide resistance in *Aedes (Stegomyia) aegypti* and *Aedes (Stegomyia) albopictus* (Diptera: Culicidae) in Thailand. *Trop Biomed* 2007; 24: 7-15.

Thanispong K, Sathantriphop, Chareonviriyaphap T. 2008. Insecticide resistance of *Aedes aegypti* (Linnaeus) and *Culex quinquefasciatus* Say in Thailand. *J. Pestic Sci* 2008; 34: 351-356.

WHO [World Health Organization]. 1998. Test procedure for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. WHO/CDS/CPC/MAL/98.12. Geneva, Switzerland: World Health Organization.

WHO [World Health Organization]. 2006. Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets. WHO/CDS/ NTD/WHOPES/GCDPP /2006.3. Geneva, Switzerland: World Health Organization.

Discriminating Lethal Concentrations and Efficacy of Six Pyrethroids for Control of *Aedes aegypti* in Thailand

Author(s): Waraporn Juntarajumnong, Sunthorn Pimnon, Michael J. Bangs, Kanutcharee Thanispong, and Theeraphap Chareonviriyaphap

Source: Journal of the American Mosquito Control Association, 28(1):30-37. 2012.

Published By: The American Mosquito Control Association

DOI: <http://dx.doi.org/10.2987/11-6203.1>

URL: <http://www.bioone.org/doi/full/10.2987/11-6203.1>

BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/page/terms_of_use.

Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

DISCRIMINATING LETHAL CONCENTRATIONS AND EFFICACY OF SIX PYRETHROIDS FOR CONTROL OF *AEDES AEGYPTI* IN THAILAND

WARAPORN JUNTARAJUMNONG,¹ SUNTHORN PIMNON,¹ MICHAEL J. BANGS,²
KANUTCHARREE THANISPONG³ AND THEERAPHAP CHAREONVIRIYAPHAP^{1,4}

ABSTRACT. Establishing baseline insecticide discriminating doses is crucial in accurately determining susceptibility status and changing temporal patterns of physiological response in mosquito populations. Pyrethroids are the predominant chemicals used for controlling adult *Aedes aegypti* and *Ae. albopictus*, both vectors of dengue viruses, in Thailand. Presently, only 2 pyrethroids, permethrin and λ -cyhalothrin, have published diagnostic dose rates for monitoring *Ae. aegypti*. This study established the diagnostic lethal concentrations for 6 different pyrethroids available in Thailand for dengue vector control. United States Department of Agriculture insecticide-susceptible strain of *Ae. aegypti* was used to establish the baseline concentrations for subsequent susceptibility testing of field populations. Our findings showed lower discriminating concentrations for λ -cyhalothrin and permethrin than those recommended by the World Health Organization (WHO), at 2.5- and 1.7-fold lower dosing, respectively. The susceptibility status of 3 different geographical populations of field-collected *Ae. aegypti* were tested using the standard WHO procedures. All 3 field strains demonstrated varying levels of physiological resistance to each compound. We conclude that establishing the baseline diagnostic concentration of an insecticide is of paramount importance in accurately determining the susceptibility status in field-collected mosquitoes. If possible, discriminating doses should be established for all insecticides and test assays run concurrently with a known susceptible strain for more accurate monitoring of resistance in mosquito populations in Thailand.

KEY WORDS *Aedes aegypti*, pyrethroids, diagnostic concentration, Thailand

INTRODUCTION

Many tropical and subtropical countries around the world present risk for dengue fever and dengue hemorrhagic fever. Between 2.5 and 3 billion people (two-fifths of the world's population) are at risk of contracting dengue, many of whom live in the Southeast Asian region (WHO 2002). With an estimated 50–100 million people having symptomatic dengue infection each year, the majority of cases occur primarily in crowded, impoverished urban regions of the world (Gubler 1998, Gibbons and Vaughn 2002). In Southeast Asia, dengue hemorrhagic fever, a severe manifestation of dengue, has shown a disturbing increase from an annual rate of <10,000 in the 1960s to >200,000 in the 1990s (Gibbons and Vaughn 2002). In Thailand, there were 115,845 reported dengue cases and 141 deaths in 2010, which represented a small fraction of the actual number of mild and asymptomatic infections that same period (MOPH 2010). The 4 different virus serotypes (DEN-1, -2, -3, -4) are transmitted by mosquitoes, primarily *Aedes aegypti* (L.), a highly efficient vector mosquito because of its close association with humans and exploitation of

domestic and peri-domestic environments, most notably in dense urban areas. As yet, no commercial multivalent dengue vaccine is available; therefore, prevention of this disease remains almost entirely dependent on using methods of control that attack both adult and immature stages of the mosquito. Vector control remains the most effective means of reducing risk of virus transmission (Reiter and Gubler 1997, WHO 1999). Unfortunately, *Ae. aegypti* has confounded most organized control efforts to bring vector population densities below sustainable thresholds to eliminate transmission.

In Thailand, the standard vector control techniques are based on use of chemicals and source reduction of larval habitats. Many chemical compounds, including organophosphates, carbamates, pyrethroids, and so-called bio-rational pesticides (bacterial toxins and insect growth regulators) have been used in national public health vector control programs (Reiter and Gubler 1997, WHO 1999). In Thailand, pyrethroids, e.g., deltamethrin, cyfluthrin, and permethrin, are common AIs in many commercial products designed for controlling household adult *Ae. aegypti*. However, control efforts have been hampered by the development of resistance to many of these insecticides by *Ae. aegypti* throughout Thailand (Chareonviriyaphap et al. 1999; Somboon et al. 2003; Sathantriphop et al. 2006; Thanispong et al. 2008, 2010). The selection pressure for developing resistance to pyrethroids has largely been attributed to the frequent and pervasive use of the same chemical class of

¹ Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand.

² Public Health & Malaria Control Department, Jalan Kertajasa, Kuala Kencana, Papua 99920, Indonesia.

³ Department of Disease Control, Ministry of Public Health, Nonthaburi 10000, Thailand.

⁴ To whom correspondence should be addressed.

compounds and is believed to have a direct bearing on the effective management and prevention of vector-borne diseases in general (Hemingway and Ranson 2000). Although there are a number of reports that describe the status of pyrethroid resistance in *Ae. aegypti* populations in Thailand (Chadwick et al. 1977, Chareonviriyaphap et al. 1999, Paeporn et al. 2004, Yaicharoen et al. 2005, Sathantriphop et al. 2006, Jirakanjanakit et al. 2007, Thanispong et al. 2008), all reports were based on use of “diagnostic” doses established by the World Health Organization (WHO; 1998, 2006).

Pyrethroids are the predominant chemicals used for controlling adult *Ae. aegypti* and *Ae. albopictus* (Skuse), both vectors of dengue viruses in Thailand. Establishing a baseline insecticide discriminating dose is crucial for determining susceptibility status and changing temporal patterns of physiological response over time in mosquito populations. Most insecticides used for the control of anopheline malaria vectors have well-established and recommended discriminating (“diagnostic” doses) for routine monitoring of vector populations. However, currently very few insecticides have analogous discriminating doses by which to test the susceptibility of *Ae. aegypti*. Presently, only 2 pyrethroids (permethrin and λ -cyhalothrin) have published diagnostic dose rates for monitoring *Ae. aegypti*. The objective of this study was to establish the baseline diagnostic concentrations for 6 pyrethroids available in Thailand for dengue vector control. For purposes of accurate comparison, the baseline lethal concentrations derived from a fully insecticide-susceptible laboratory strain of *Ae. aegypti* were subsequently used to assess the susceptibility status of 3 field populations in Thailand.

MATERIALS AND METHODS

Mosquitoes

Four different cohorts of *Ae. aegypti* were used in this study. A susceptible strain of *Ae. aegypti* (US Department of Agriculture laboratory [USDA] strain) was used to establish the baseline 99% lethal concentration (LC₉₉) of 6 pyrethroids. The diagnostic percent concentration for each AI was then used to determine the susceptibility profile of 3 local Thai populations (a “deme,” individuals from a given locality that potentially form a single interbreeding community) of *Ae. aegypti*, concurrently with the USDA strain as follows: 1) USDA strain was provided by the Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL. This inbred strain has been maintained continuously in colony for >40 years and at the Department of Entomology, Kasetsart University (Bangkok) beginning in 2004. 2) Kanchanaburi population was obtained

in May 2010 as larvae from outdoor container habitats at Pu Teuy Village, Sai Yok District (14°20'12.1"N, 98°59'19"E), Kanchanaburi Province, an area approximately 150 km northwest of Bangkok. 3) Khon Kaen population was obtained in November 2010 as larvae from outdoor container habitats in Non Ton Village, Muang District (16°24'52"N, 102°51'05.5"E), Khon Kaen Province, northeastern Thailand. 4) Nong Khai population was obtained in November 2010 as larvae from outdoor container habitats in Pa Ngew Village, Tha Bo District (17°15'51.1"N, 102°34'30.5"E), Nong Khai Province, northeastern Thailand.

Mosquito rearing

All mosquito larvae and pupae collected from each site were placed in an environmentally controlled insectary located at Kasetsart University, Department of Entomology, Bangkok, and reared to the adult stage. Adult mosquitoes were identified to species and *Ae. aegypti* males and females were transferred to screened holding cages to allow free mating. Females were provided 10% sugar solution soaked on cotton as sustenance and permitted to feed on live guinea pig blood 3–4 days after emergence. Two days postbloodfeeding, oviposition dishes were placed in the cages with gravid females. Eggs were properly conditioned and larval pans set for the next generation and reared using standard techniques and diet established at Kasetsart University (Kongmee et al. 2004). All 4 cohorts were maintained separately and carefully segregated to avoid cross-genetic contamination and under identical laboratory controlled conditions (25 ± 3°C, 75 ± 5% RH, natural light:dark phase).

Insecticides

Six pyrethroid insecticides were used in this study as follows (including Chemical Abstracts name): 1) α -cypermethrin (Sherwood Chemicals Public Company Limited, Bangkok, Thailand, purity 97.05%); 2) deltamethrin (Sherwood Chemicals Public Company Limited, purity 98.46%); 3) permethrin (Sherwood Chemicals Public Company Limited, purity 97.6%); 4) bifenthrin (Sherwood Chemicals Public Company Limited, purity 95.12%); 5) cypermethrin (T.J.C. Chemical Company Limited, Bangkok, Thailand, purity 92%); and 6) λ -cyhalothrin (Syngenta Company, Bangkok, Thailand, purity 91.8%).

Insecticide-treated paper

Separate rectangular test papers (Whatman® No. 1, GE Healthcare UK Limited, Buckinghamshire, United Kingdom; 12 × 15 cm²) were impregnated with each chemical AI at a specified

Table 1. Mean percentage mortality of 4 strains of *Aedes aegypti* using an established diagnostic concentration of each insecticide.

Insecticide	USDA ¹			Kanchanaburi			Khon Kaen			Nong Khai		
	Diagnostic dose (%)	No. tested	Dead (%)	No. tested	Dead (%) \pm SE)	No. tested	Dead (%) \pm SE)	No. tested	Dead (%) \pm SE)	No. tested	Dead (%) \pm SE)	
α -Cypermethrin	0.086	100	100 (100)	92	90 (97.83 \pm 1.11)	104	92 (88.46 \pm 1.7)	98	96 (97.96 \pm 0.83)	98	96 (97.96 \pm 0.83)	
Bifenthrin	0.094	97	97 (100)	92	85 (92.39 \pm 1.92)	93	09 (9.68 \pm 0.33)	99	14 (14.14 \pm 1.81)	99	14 (14.14 \pm 1.81)	
Cypermethrin	0.221	99	99 (100)	99	97 (97.98 \pm 0.82)	96	96 (100)	98	61 (62.24 \pm 2.05)	98	61 (62.24 \pm 2.05)	
Deltamethrin	0.005	101	101 (100)	97	92 (94.85 \pm 0.84)	99	0 (0.0)	102	04 (3.92 \pm 0.62)	102	04 (3.92 \pm 0.62)	
λ -Cyhalothrin	0.012	103	103 (100)	94	92 (97.87 \pm 0.52)	85	11 (12.94 \pm 3.64)	99	11 (11.11 \pm 0.79)	98	11 (11.11 \pm 0.79)	
Permethrin	0.147	97	97 (100)	100	88 (88.00 \pm 1.46)	98	98 (100)	98	06 (6.12 \pm 0.51)	98	06 (6.12 \pm 0.51)	

¹ USDA, US Department of Agriculture.

serial dilution for use in establishing baseline diagnostic concentration for each insecticide and subsequently a single diagnostic concentration ($LC_{99} \times 2$) as determined from the USDA susceptible strain. All papers were prepared in the laboratory at the Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand (Table 1). Technical-grade AI was diluted with silicon oil (nonvolatile carrier) for uniform distribution of insecticide on papers. All papers were treated at the rate of 2 ml of the insecticide solution per 180 cm².

Establishing baseline diagnostic lethal concentrations

The USDA susceptible strain of *Ae. aegypti* was used in a series of dose-response tests to establish the lethal concentrations required to kill 50% and 99% of the test population using each of 6 AIs (WHO 1981). For all chemicals, excluding α -cypermethrin, 5 different percent concentrations produced in a range of 2-fold serial dilutions were initially tested to determine the range of the 3 final concentrations used for establishing the baseline 50% lethal concentration (LC_{50}) and LC_{99} values. For α -cypermethrin, only 3 initial concentrations in 10-fold serial dilutions were used to arrive at the final three used in establishing the baseline. The subsequent 3 final concentrations (produced as 2-, 3-, or 4-fold dilutions of AI) used in baseline assays and dose-response analysis are presented in Table 2. Twenty-five nonblooded female mosquitoes, approximately 3–5 days old, were tested per exposure tube. Treated papers were used only once and discarded. Four replicate assays were conducted for each dilution to derive a mean response and run concurrently with matching controls (without AI). To avoid spurious reporting of resistance in the field where none may exist, WHO routinely sets the diagnostic concentration at twice the minimum concentration that will kill 100% of susceptible mosquitoes (WHO 2006). The double concentration of the LC_{99} for each AI was designated the “diagnostic dose” or discriminating concentration and subsequently used for susceptibility tests using the *Ae. aegypti* field strains.

Susceptibility assays

The susceptibility level of each population to 6 pyrethroids was assessed by exposing 25 non-bloodfed 3- to 5-day-old female mosquitoes to a single established diagnostic dose established from the USDA standard strains. Mosquitoes were not deprived of nutritional sustenance (10% sugar solution) before testing. Standard testing procedures followed WHO recommendations (1998). After 60 min of exposure, test and control mosquitoes were transferred to separate holding

Table 2. Probit dose/mortality analysis of a laboratory susceptible strain of *Aedes aegypti* (US Department of Agriculture) exposed to 6 different pyrethroids using 3 different concentrations¹ establishing lethal concentrations (LC) for each AI.

Insecticide	No. tested	LC ₅₀ (%)	95% FL ²	LC ₉₉ (%)	95% FL	Diagnostic concentration (%) ³	P > chi square
α -Cypermethrin	302	0.0009	0.0004–0.0013	0.043	0.0220–0.1449	0.0863	0.9419
Bifenthrin	282	0.0185	0.0171–0.0202	0.047	0.0396–0.0599	0.0938	0.3082
Cypermethrin	311	0.0052	0.0031–0.0072	0.111	0.0662–0.2760	0.2212	0.1333
Deltamethrin	297	0.0007	0.0006–0.0007	0.002	0.0020–0.0034	0.0049	0.8955
λ -Cyhalothrin	299	0.0012	0.0010–0.0014	0.006	0.0043–0.0087	0.0116	0.8633
Permethrin	275	0.0379	0.0354–0.0407	0.073	0.0632–0.0922	0.1466	0.9718

¹ Percent concentrations used in dose-response assays as follows: α -cypermethrin (0.00125, 0.005, 0.02); bifenthrin (0.0125, 0.025, 0.05); cypermethrin (0.0077, 0.023, 0.07); deltamethrin (0.00031, 0.00125, 0.005); λ -cyhalothrin (0.00037, 0.0015, 0.006); permethrin (0.03125, 0.0625, 0.125).

² FL = fiducial limits at 95% confidence level.

³ Diagnostic concentration/discriminating dose calculation = $2 \times LC_{99}$.

containers and mortality was recorded after 24 h postexposure. Each trial design (population/chemical) was replicated 4 times using freshly treated papers no more than 3 times and discarded. Replicate trials were combined and a mean susceptibility level derived for each population tested as described by Chuaycharoensuk et al. (2011).

Data analysis

The LC₅₀ and LC₉₉ values were calculated from a derived dosage–mortality regression line (Finney 1971) using log-probit analysis (Proc Probit, SAS/STAT version 8; SAS Institute Inc., Cary, NC). Pearson chi-square analysis was used for goodness-of-fit tests. The estimate of LC₅₀ and LC₉₉ was determined from 4 test replicates per chemical concentration using the USDA susceptible strain of *Ae. aegypti*. Interpretation of resistance/susceptibility status followed standard WHO criteria (1998).

RESULTS

The baseline susceptibility levels of pyrethroids currently used in dengue vector control in Thailand were established from the standard susceptible strain (USDA). This establishment was based on the insecticide doses which gave the mortality ranging between 10% and 95% in the USDA susceptible strain. Chi-square values demonstrated that the response of *Ae. aegypti* to each AI fit the linear model ($P = 0.3191$). Individual chemical goodness-of-fit tests ranged from $P = 0.1333$ to 0.9718 (Table 2). The LC₅₀ and LC₉₉ values of 6 pyrethroids against *Ae. aegypti* (USDA) were determined using the log-probit analysis. Permethrin produced the highest LC₅₀ (0.0379%) value, whereas deltamethrin gave the lowest LC₅₀ value (0.0007%). At LC₉₉ values, cypermethrin had the greatest concentration (0.111%), whereas deltamethrin resulted in the lowest (0.002%). A single diagnostic concentra-

tion (double concentration of baseline LC₉₉) of α -cypermethrin (0.086%), bifenthrin (0.094%), cypermethrin (0.221%), deltamethrin (0.005%), λ -cyhalothrin (0.012%), and permethrin (0.147%) was subsequently used to determine the susceptibility of the 3 field populations of *Ae. aegypti* (Kanchanaburi, Khon Kaen, and Nong Khai) (Table 1).

Results of susceptibility tests of 3 field populations and the USDA strain with the established diagnostic dose of 6 pyrethroids showed the ability of mosquitoes to survive the diagnostic dose after 1-h exposure to chemical and 24-h holding period (Table 1). The interpretation and criteria of insecticide susceptibility results were as follows: mosquitoes regarded as fully “susceptible” to an insecticide if the mean percent mortality was between 98% and 100%, as showing “incipient” resistance if between 80% and 97%, and “resistant” in operational terms of effectiveness if <80% kill (WHO 1998, 2006).

In all trials, concurrent control (no insecticide, carrier compound only) mortality did not exceed 5%; therefore, final mean mortality did not require a correction factor. Complete mortality (100%) was observed in the USDA standard strain when exposed concurrently to the established discriminating doses of all 6 chemicals. The 3 field populations showed various levels of tolerance/resistance to the chemicals tested. Low to moderate incipient resistance (tolerance) to all 6 pyrethroids was seen in the Kanchanaburi population, with mortality ranging between 88% (permethrin) and 97.98% (cypermethrin). The Khon Kaen population was found completely susceptible (100%) to cypermethrin and permethrin; however, incipient resistance was detected against α -cypermethrin (88.46% mortality) and very strong resistance was seen with deltamethrin (0.0%), bifenthrin (9.7%), and λ -cyhalothrin (12.9%). The Nong Khai strain demonstrated strong resistance to deltamethrin (3.92%), λ -cyhalothrin (11.1%), permethrin (6.12%), bifenthrin (14.14%), and cypermethrin (62.24%). The only chemical showing a

high level of effectiveness with the Nong Khai population was α -cypermethrin (97.9% kill).

DISCUSSION

By applying new, revised diagnostic concentrations of 6 pyrethroids, 3 field-collected *Ae. aegypti* populations demonstrated varying physiological resistance-based origin (geography) and chemical tested. The population from Kanchanaburi proved reasonably susceptible to all 6 insecticides, with the lowest mean mortality against permethrin. These results are compatible with previous work from this same area of Kanchanaburi with only slightly lower levels of resistance to permethrin and deltamethrin reported previously (Thanispong et al. 2008, Chuaycharoensuk et al. 2011). However, the other 2 Thai populations, Khon Kaen and Nong Khai, displayed high levels of physiological resistance to bifenthrin, deltamethrin, and λ -cyhalothrin. Interestingly, the Nong Khai population was also found highly resistant to permethrin (6%) and significantly so (62%) with cypermethrin, while Khon Kaen was completely susceptible to both compounds. In general, these results are consistent with recent resistance patterns seen with *Ae. aegypti* elsewhere in Thailand (Chareonviriyaphap et al. 1999, Prapantanadara et al. 2002, Paeporn et al. 2005, Ponlawat et al. 2005, Jirakanjanakit et al. 2007). Comparing all 3 local populations, α -cypermethrin proved to be the one chemical that provided the best overall mortality (88.46–97.96%).

Aedes aegypti is both a common nuisance mosquito and a constant public health threat in Thailand, serving as the primary vector of dengue/dengue hemorrhagic fever (MOPH 2010). One of the very few methods to effectively curb dengue transmission is to reduce a human–vector contact using insecticides (Reiter and Gubler 1997, WHO 1999, Jacobs 2000). However, a major disadvantage with the routine long-term use of insecticides is the prospect that a vector population may develop resistance to the AI, rendering it operationally useless (WHO 1992, Roberts and Andre 1994, Brogdon and McAllister 1998, Hemingway and Ranson 2000, Thanispong et al. 2008).

In Thailand, information on insecticide resistance in *Ae. aegypti*, the primary vector of dengue/dengue haemorrhagic fever, is relatively limited due to a shortage of studies and comprehensive sustainable monitoring programs within the national public health vector control program. *Aedes aegypti* is one of the most efficient, well-adapted, and widely distributed mosquitoes in the tropical and subtropical zones, and has proven extremely recalcitrant to control (Gratz and Halstead 2008). Among the commonly available control techniques, chemical control remains the most effective method to curb dengue transmission. Of the chemical categories (classes),

pyrethroids are the most common and extensively used in both governmental and public sectors and still generally regarded as effective adulticides (Chareonviriyaphap et al. 1999, Kongmee et al. 2004, Jirakanjanakit et al. 2007, MOPH 2010). In Thailand, ultra-low volume application of deltamethrin has been used repeatedly to interrupt dengue transmission soon after the 1st dengue case has been reported. For general household use, a variety of low-concentration, combination pyrethroids are widely available for public to control household arthropod pests. Not unexpectedly, the continuous and repetitive contact with insecticides, especially pyrethroids, has resulted in various degrees of insecticide resistance in *Ae. aegypti* populations throughout Thailand. Admittedly, how resistance has impacted dengue control efforts in Thailand has not been adequately evaluated.

Insecticide resistance in mosquito populations is considered one of the major factors undermining the success and impact of vector control programs (Brogdon and McAllister 1998, Hemingway and Ranson 2000). For several decades, insecticide companies have continued to develop promising synthetic alternative compounds and formulations for public health use in private and governmental sectors to prevent dengue transmission (MOPH 2010). Among the compounds of greatest interest have been pyrethroids such as permethrin, cypermethrin, bifenthrin, deltamethrin, cyfluthrin, resmethrin, α -cypermethrin, and tetramethrin (Chareonviriyaphap et al. 1999, Somboon et al. 2003, Paeporn et al. 2005, Ponlawat et al. 2005, Thanispong et al. 2008). Pyrethroids have earned a more favorable acceptance for the control of mosquitoes primarily because of their inherent properties of relatively low toxicity to humans and being highly effective at low concentrations by quickly immobilizing (knockdown) and killing insects. However, it has been this overreliance on a single class of compounds that has contributed to widespread insecticide resistance in mosquito populations (Roberts and Andre 1994, Hemingway and Ranson 2000). In Thailand, insecticide resistance in *Ae. aegypti* was first reported against DDT (dichlorodiphenyl trichloroethane) in Bangkok and Nakhon Ratchasima (northeast Thailand) (Neely 1964). Subsequently, resistance to phosphorothioate (organophosphate) compounds was found present throughout the country before being reported in *Ae. aegypti* to pyrethroids (Chareonviriyaphap et al. 1999, Jirakanjanakit et al. 2007, Thanispong et al. 2008, Chuaycharoensuk et al. 2011).

Over the past 60+ years, *Ae. aegypti* and other dengue vectors in different countries have developed resistance to commonly used insecticides (Brown and Pal 1971, WHO 1999). Both baseline data (before the start of control operations), followed by routine or periodic insecticide susceptibility

assays to operational chemicals used in a vector control program are of paramount importance for monitoring vector response over time. Although a number of studies on pyrethroid resistance in *Ae. aegypti* have been published, many have relied on using WHO published diagnostic concentrations and conditions (e.g., exposure times) typically used for monitoring *Anopheles* mosquitoes (WHO 1981, 1998). Surprisingly, there is far less information or data supporting the standard diagnostic criteria for susceptibility testing of *Ae. aegypti* (WHO 1992, 1999, 2006). For pyrethroids, only λ -cyhalothrin (0.03%) and permethrin (0.25%) have recommended diagnostic doses provided by WHO for determining the resistant status of *Ae. aegypti* (WHO 1992, 1998).

Recently, the diagnostic doses of 2 commonly used synthetic pyrethroids, permethrin (0.9%) and deltamethrin (0.06%), were established using a reference susceptible strain (Bora Bora, French Polynesia) of *Ae. aegypti* (Jirakanjanakit et al. 2007). However, both diagnostic doses were derived from a log-probit analysis that had a very high chi-square and low *P*-value (<0.005), indicating a relatively poor goodness-of-fit of the data. In general, susceptibility baselines and diagnostic doses of various compounds used for the control of *Ae. aegypti* are lacking and thus information derived on pyrethroid susceptibility may not be completely accurate or operationally meaningful. Furthermore, the majority of data on insecticide susceptibility is limited to only a few areas in Thailand (Chareonviriyaphap et al. 1999, Prapanthadara et al. 2002, Ponlawat et al. 2005, Jirakanjanakit et al. 2007, Thanispong et al. 2008, Chuaycharoensuk et al. 2011). Therefore, WHO (1998) has repeatedly recommended that baseline data on insecticide susceptibility should be gathered on a reference strain of *Ae. aegypti* before performing tests on field-collected populations.

This study did not investigate the possible metabolic and target site mechanisms involved in the resistance detected in the populations tested. Of those mechanisms most likely to be involved with conferring reduced susceptibility to pyrethroids, elevated or modified activities of esterases and/or monooxygenases involved in metabolic detoxification of insecticides (Paeporn et al. 2004) and the possible presence of the *kdr* (knockdown resistance) mutation (Brogdon and McAllister 1998).

The susceptibility of adult *Ae. aegypti* to the 6 pyrethroids were selected, as these compounds currently represent the predominant chemical class utilized for space spray applications ("fogging") and treated materials (e.g., window curtains). Space spray ("fogging") application of pyrethroids remains the method and insecticides of choice for adult *Aedes* control in Thailand (MOPH 2010). However, this was not always the case in Thailand, as decades ago DDT (organo-

chlorine), dieldrin (cyclodiene), and malathion (phosphorothioate) had been extensively used to control vector mosquitoes (Bang et al. 1969, Gould et al. 1970, Lofgren et al. 1970, Chareonviriyaphap et al. 1999). At that time, DDT was also widely used to control *Aedes* mosquitoes in Thailand (Neely 1964, Ponlawat et al. 2005). The first reports of DDT resistance in *Ae. aegypti* in Thailand were published in the 1960s (Neely 1964, Bang et al. 1969). Thereafter, resistance to temephos (larvicide), malathion, and fenitrothion were reported as widespread in Thailand (Chareonviriyaphap et al. 1999), followed more recently by many reports of resistance to pyrethroids (Prapanthadara et al. 2002; Somboon et al. 2003; Paeporn et al. 2004, 2005; Ponlawat et al. 2005; Yaicharoen et al. 2005; Sathantriphop et al. 2006; Jirakanjanakit et al. 2007; Thanispong et al. 2008; Chuaycharoensuk et al. 2011). Although DDT was last used in Thailand in 2000, the current susceptibility status of *Ae. aegypti* to various pyrethroids may have been impacted by persistent cross-resistance mechanisms between the 2 chemicals (Chadwick et al. 1977) that still persist in Thailand (Prapanthadara et al. 2002).

The use of chemicals as contact residual insecticides on indoor walls of homes has not been routinely used to directly control adult *Aedes* mosquitoes, although there is strong enough evidence to show it would likely provide longer-lasting control in some situations (Giglioli 1948, Lien et al. 1992, Sulaiman et al. 1993, Reiter and Gubler 1997, Doke et al. 2000) and even eradication (Halcrow 1954, Brown and Pal 1971) when compared to the far more transient effects of space spray applications. The fact that many pyrethroids also perform as contact excitants and spatial repellents to *Ae. aegypti* (Kongmee et al. 2004, Thanispong et al. 2010), exclusive of direct toxic action, lends further support for use of residual insecticides inside homes to reduce human–vector contact and disease transmission. Whether realistic or cost-effective in control programs has yet to be fully explored.

A dengue control program can be seriously compromised and valuable resource squandered without accurate information on insecticide susceptibility status of local *Aedes* vector populations. As dengue remains a major disease problem throughout much of Thailand, the monitoring of insecticide resistance in *Ae. aegypti* and *Ae. albopictus* should be increased in periodicity, geographical coverage, and range of insecticides to assist vector control programs to anticipate and respond accordingly. Investigations of cross resistance to similar or closely related synthetic compounds and in-depth discovery of the actual mechanisms responsible for resistance are needed. Knowledge of vector/pest susceptibility to pesticides, changing trends of resistance, and their operational implications are basic requirements

to guide optimum chemical use. Insecticide resistance monitoring must be an integral part of a viable vector-borne disease and pest control program.

ACKNOWLEDGMENTS

The authors would like to thank John P. Grieco for critical review of this manuscript and are grateful to the Thailand Research Fund (TRF), Senior Research Scholar Program RTA5280007 for financial support for this study.

REFERENCES CITED

Bang YH, Tonn RJ, Panurai P. 1969. Insecticide susceptibility and resistance found in 14 strains of *Aedes aegypti* collected in Bangkok-Thonburi, Thailand. WHO/VBC/69.117 (unpublished document). Geneva, Switzerland: World Health Organization.

Brogdon WG, McAllister JC. 1998. Insecticide resistance and vector control. *Emerg Infect Dis* 4:605–613.

Brown AWA, Pal R. 1971. *Insecticide resistance in arthropods*. World Health Organization, Monograph Series 38. Geneva, Switzerland: World Health Organization. p 1–491.

Chadwick PR, Invest JF, Bowron MJ. 1977. An example of cross-resistance to pyrethroids in DDT-resistant *Aedes aegypti*. *Pestic Sci* 8:618–624.

Chareonviriyaphap T, Aum-Aung B, Ratanatham S. 1999. Current insecticide resistance patterns in mosquito vectors in Thailand. *Southeast Asian J Trop Med Public Health* 30:184–194.

Chuaycharoensuk T, Juntarajumnong W, Boonyuan W, Bangs MJ, Akratanakul P, Thummapalo S, Jirakanjanakul N, Tanasinchayakul S, Chareonviriyaphap T. 2011. Frequency of pyrethroid resistance in *Aedes aegypti* and *Aedes albopictus* (Diptera: Culicidae) in Thailand. *J Vector Ecol* 36:204–212.

Doke PP, Sathe RS, Chouhan SP, Bhosale AS. 2000. Impact of a single round of indoor residual spray with lambda-cyhalothrin 10% WP on *Plasmodium falciparum* infection in Akola District, Maharashtra State. *J Commun Dis* 32:190–200.

Finney JD. 1971. *Probit analysis*. 3rd edition. Cambridge, United Kingdom: Cambridge Univ. Press.

Gibbons RV, Vaughn DW. 2002. Dengue: an escalating problem. *BMJ* 324:1563–1566.

Giglioli G. 1948. An investigation of the house frequenting habits of mosquitoes of the British Guiana coastland in relation to the use of DDT. *Am J Trop Med Hyg* 28:43–70.

Gould DJ, Mount GA, Scanlon JE, Ford HR, Sullivan MF. 1970. Ecology and control of dengue vectors on an island in the Gulf of Thailand. *J Med Entomol* 7:499–508.

Gratz NG, Halstead SB. 2008. The control of dengue vectors. In: Halstead SB, ed. *Dengue. Tropical medicine: science and practice*. Volume 5. London, United Kingdom: Imperial College Press. p 361–387.

Gubler DJ. 1998. Dengue and dengue hemorrhagic fever. *Clin Microbiol Rev* 11:480–496.

Halcrow JG. 1954. Catalogue of the mosquitoes of Mauritius and Rodrigues. *Bull Mauritius Inst* 3:234–248.

Hemingway J, Ranson H. 2000. Insecticide resistance in insect vectors of human disease. *Annu Rev Entomol* 45:371–391.

Jacobs M. 2000. Dengue: emergence as a global public health problem and prospects for control. *Trans R Soc Trop Med Hyg* 94:7–8.

Jirakanjanakul N, Rongnoparut P, Saengtharatip S, Chareonviriyaphap T, Duchon S, Bellec C, Yoksan S. 2007. Insecticide susceptible/resistance status in *Aedes (Stegomyia) aegypti* and *Aedes (Stegomyia) albopictus* (Diptera: Culicidae) in Thailand during 2003–2005. *J Econ Entomol* 100:545–550.

Kongmee M, Prabaripai A, Akratanakul P, Bangs MJ, Chareonviriyaphap T. 2004. Behavioral responses of *Aedes aegypti* (Diptera: Culicidae) exposed to deltamethrin and possible implications for disease control. *J Med Entomol* 41:1055–1063.

Lien JC, Wu YC, Huang HM, Chung CL, Yueh IY, Lu LC. 1992. Survey and control of dengue fever vectors *Aedes aegypti* and *Aedes albopictus* in Taiwan during 1987–1992. In: Halstead SB, Gomez-Dantes H, eds. *Dengue: a worldwide problem, a common strategy*. Proceedings of the International Conference on Dengue and *Aedes aegypti* Community-based Control. 1992 July 11–19; Merida, Mexico. Mexico City, Mexico: Ministry of Health. p 185–195.

Lofgren CS, Ford HR, Tonn RJ, Jatansen S. 1970. The effectiveness of ultra-low-volume applications of malathion at a rate of 6 US fluid ounces per acre in controlling *Aedes aegypti* in a large test at Nakhon Sawan, Thailand. *Bull W H O* 42:15–25.

MOPH [Ministry of Public Health]. 2010. *Annual report on vector-borne disease*. Nonthaburi, Thailand: Department of Disease Control, Ministry of Public Health.

Neely MJ. 1964. Insecticide resistance studies on *Aedes aegypti* in Thailand. *Bull W H O* 35:91–92.

Paeporn P, Supaphathom K, Srisawat R, Komalamisra N, Deesin V, Ya-umphan P, Leeming Sawat S. 2004. Biochemical detection of pyrethroid resistance mechanism in *Aedes aegypti* in Ratchaburi Province, Thailand. *Trop Biomed* 21:145–151.

Paeporn P, Supaphathom K, Sathantriphop S, Muk-khun M, Sangkitporn S. 2005. Insecticide susceptibility of *Aedes aegypti* in tsunami affected areas in Thailand. *Dengue Bull* 29:210–213.

Ponlawat A, Scott JG, Harrington LC. 2005. Insecticide susceptibility of *Aedes aegypti* and *Aedes albopictus* across Thailand. *J Med Entomol* 42:821–825.

Prapanthadara L, Promt N, Koottathep S, Somboon P, Suwonkerd W, McCarroll L, Hemingway J. 2002. Mechanisms of DDT and permethrin resistance in *Aedes aegypti* from Chiang Mai, Thailand. *Dengue Bull* 26:185–189.

Reiter P, Gubler DJ. 1997. Surveillance and control of urban dengue vectors. In: Gubler DJ, Kuno G, eds. *Dengue and dengue hemorrhagic fever*. New York, NY: CAB International. p 425–462.

Roberts DR, Andre RG. 1994. Insecticide resistance issues in vector-borne disease control. *Am J Trop Med Hyg* 50(6)(Suppl):21–34.

Sathantriphop S, Paeporn P, Supaphathom K. 2006. Detection of insecticides resistance status in *Culex quinquefasciatus* and *Aedes aegypti* to four major groups of insecticides. *Trop Biomed* 23:97–101.

Somboon P, Prapanthadara L, Suwonkerd W. 2003. Insecticide susceptibility tests of *Anopheles minimus*, *Aedes aegypti*, *Aedes albopictus* and *Culex quinque-*

fasciatus in northern Thailand. *Southeast Asian J Trop Med Public Health* 34:87–93.

Sulaiman S, Karim MA, Omar B, Jeffery J, Mansor AF. 1993. The residual effects of the synthetic pyrethroids lambda-cyhalothrin and cyfluthrin against *Aedes aegypti* in wooden huts in Malaysia. *Mosq Borne Dis Bull* 10:128–131.

Thanispong K, Achee NL, Grieco JP, Bangs MJ, Suwonkerd W, Prabarpai A, Chauhan KR, Charoenviriyaphap T. 2010. A high throughput screening system for determining the three actions of insecticides against *Aedes aegypti* (Diptera: Culicidae) populations in Thailand. *J Med Entomol* 47:833–841.

Thanispong K, Sathantriphop S, Charoenviriyaphap T. 2008. Insecticide resistance of *Aedes aegypti* and *Culex quinquefasciatus* in Thailand. *J Pestic Sci* 33:351–356.

WHO [World Health Organization]. 1981. *Instructions for determining the susceptibility or resistance of adult mosquitos to organochlorine, organophosphate and carbamate insecticides establishment of the base-line*. WHO/VBC/81.805. Geneva, Switzerland: World Health Organization.

WHO [World Health Organization]. 1992. *Vector resistance to pesticides: fifteenth report of the WHO Expert Committee on Vector Biology and Control*.

Technical Report Series 818. Geneva, Switzerland: World Health Organization.

WHO [World Health Organization]. 1998. *Test procedure for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces*. WHO/CDS/CPC/MAL/98.12. Geneva, Switzerland: World Health Organization.

WHO [World Health Organization]. 1999. *Prevention and control of dengue and dengue haemorrhagic fever: comprehensive guidelines*. World Health Organization, Regional Publication SEARO 29. Geneva, Switzerland: World Health Organization. p 1–134.

WHO [World Health Organization]. 2002. *Report on dengue prevention and control*. 55th World Health Assembly. World Health Organization Document A55/19. Geneva, Switzerland: World Health Organization.

WHO [World Health Organization]. 2006. *Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets*. WHO/CDS/NTD/WHOPES/GCDPP/2006.3. Geneva, Switzerland: World Health Organization.

Yaicharoen R, Kiatfuengfoo R, Charoenviriyaphap T, Rongnparut P. 2005. Characterization of deltamethrin resistance in field populations of *Aedes aegypti* in Thailand. *J Vector Ecol* 30:144–150.

Resistance to Synthetic Pyrethroids in *Aedes aegypti* (Diptera: Culicidae) in Thailand

Patcharawan Sirisopa¹, Kanutcharee Thanispong²,
Theeraphap Chareonviriyaphap¹ and Waraporn Juntarajumnong^{1,*}

ABSTRACT

The insecticide susceptibility level of mosquito populations is one of the major factors influencing the success of vector control. In this study, *Aedes aegypti* from seven localities with a current dengue outbreak in Thailand were subjected to synthetic pyrethroid insecticide susceptibility assays. The results revealed that *Ae. aegypti* from all localities were strongly resistant to bifenthrin, permethrin and deltamethrin. High resistance to lambda-cyhalothrin was detected from all localities with the exception of *Ae. aegypti* from Bangkok and Uttaradit which demonstrated incipient resistance. However, *Ae. aegypti* from Bangkok, Phra Nakhon Si Ayutthaya, Sakon Nakhon and Chumphon showed incipient resistance to alpha-cypermethrin whereas *Ae. aegypti* collected from Uttaradit, Mukdahan and Phatthalung were susceptible. In addition, *Ae. aegypti* from Bangkok, Phra Nakhon Si Ayutthaya and Uttaradit demonstrated incipient resistance to cypermethrin while susceptibility of *Ae. aegypti* from Mukdahan, Sakon Nakhon, Phatthalung and Chumphon to cypermethrin was observed. It was concluded that field-collected *Ae. aegypti* from all localities had developed resistance to the synthetic pyrethroids, with the majority of these being to bifenthrin, permethrin and deltamethrin.

Keywords: *Aedes aegypti*, synthetic pyrethroid, resistance, Thailand

INTRODUCTION

The incidence of dengue fever and dengue hemorrhagic fever (DF/DHF) has increased dramatically around the world in recent decades, especially in tropical and subtropical regions; about 2.5 billion people—two fifths of the world's population—are now at risk from DF/DHF and it is estimated that there are 50 million dengue infections worldwide every year (World Health Organization, 2012, 2014). The incidence of DF/DHF is still consistently high with 153,765 reported cases in Thailand (Ministry of Public Health, 2013). The disease is transmitted by *Aedes*

aegypti, a primary vector of DF and DHF (Gubler, 1997).

Aedes aegypti, a day-biting mosquito, is highly anthropophilic and often rests and feeds in or near human dwellings (Christophers, 1960). This mosquito has been found to be highly adapted to all man-made and natural environments. The key to preventing dengue transmission relies mainly on vector control, the most effective method for reducing disease transmission (Pant, 1979; Reiter and Gubler, 1997). During the past decade, several synthetic pyrethroids—namely permethrin, deltamethrin, lambda-cyhalothrin and etofenprox—were

¹ Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand.

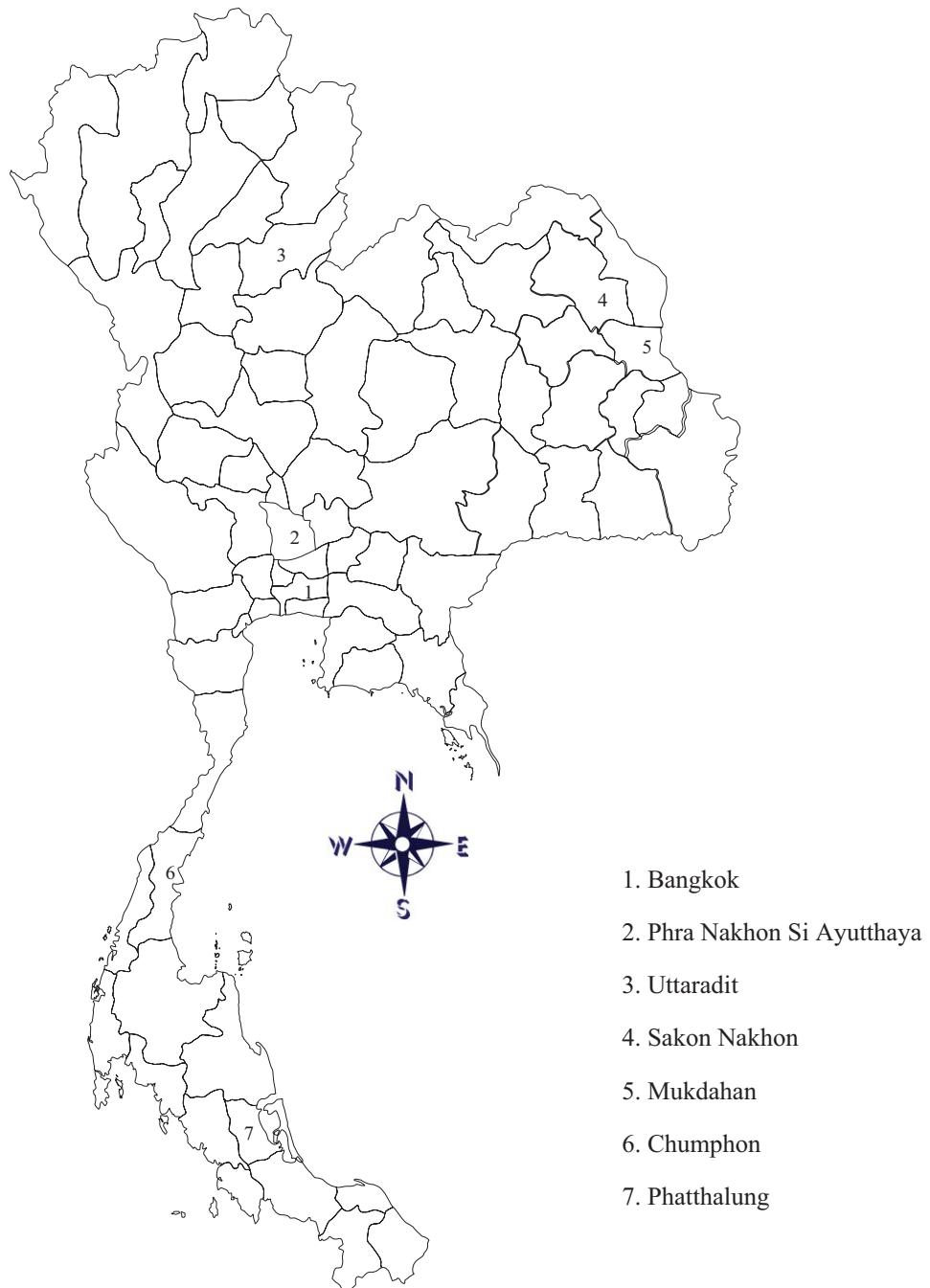
² Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand.

* Corresponding author, e-mail: agrwpj@ku.ac.th

introduced in the malaria and dengue control program, particularly with the impregnation of bed nets (permethrin) and indoor/outdoor sprays (deltamethrin) (Chareonviriyaphap *et al.*, 1999). At present, pyrethroids are the main insecticides used in controlling vector-borne diseases throughout the country. However, the long-term continuous use of insecticides has led in some cases to high levels of chemical resistance by certain pests and disease vectors (Chareonviriyaphap *et al.*, 1999). This is considered to be a major factor in the development of resistance in mosquitoes (Chareonviriyaphap *et al.*, 1999; Sathantriphop *et al.*, 2006; Chuaycharoensuk *et al.*, 2011). Previous studies have shown the occurrence of insecticide resistance in several populations and species of mosquitoes, including *Ae. aegypti* (Chareonviriyaphap *et al.*, 1999; Ponlawat *et al.*, 2005; Jirakanjanakit *et al.*, 2007; Chuaycharoensuk *et al.*, 2011).

According to World Health Organization (WHO) guidelines for insecticide susceptible tests on mosquito populations (World Health Organization, 1998, 2006), the insecticide discriminating dose is important for determining the susceptibility status in mosquito populations. However, few diagnostic doses are currently available for insecticide susceptible assays on *Ae. aegypti* mosquitoes. In 2007, diagnostic doses of two synthetic pyrethroids (permethrin and deltamethrin) were established for *Ae. aegypti* (Jirakanjanakit *et al.*, 2007). In recent years, diagnostic doses of six synthetic pyrethroids,

consisting of alpha-cypermethrin, bifenthrin, cypermethrin, deltamethrin, lambda-cyhalothrin and permethrin, were obtained for monitoring the insecticide susceptibility of *Ae. aegypti* (Juntarajumnong *et al.*, 2012). Therefore, the aim of this study was to determine the insecticide susceptibility levels to six synthetic pyrethroids diagnostic doses recently available for *Ae. aegypti* populations collected from seven outbreak localities in Thailand.


MATERIALS AND METHODS

Study sites

Aedes aegypti larvae and pupae were collected from containers located in and around houses in seven collection sites within Thailand, namely—Bangkok (Khet Prawet), Phra Nakhon Si Ayutthaya (Ban Phraek district), Uttaradit (Tron district), Mukdahan (Mueang district), Sakon Nakhon (Mueang district), Phatthalung (Mueang district) and Chumphon (Mueang district) as shown in Figure 1. The samples were collected between 2011 and 2012 and the geographical coordinates of the locations are provided in Table 1. Larvae and pupae collected from the study sites were then reared in the Department of Entomology, Faculty of Agriculture, Kasetsart University for morphological identification and colonization. The standard insecticide susceptible laboratory strain of *Ae. aegypti* was obtained from the United States Department of Agriculture (USDA), Gainesville, Florida, USA.

Table 1 Location and global positioning system (GPS) coordinates of *Ae. aegypti* collection sites.

Province	District	GPS coordinates	
Bangkok	Prawet	13°40'9.5"N	100°41'27.6"E
Phra Nakhon Si Ayutthaya	Ban Phraek	14°38'35.9"N	100°34'27.3"E
Uttaradit	Tron	17°29'3.1"N	100°6'23"E
Mukdahan	Mueang	16°32'30.25"N	104°43'1.1"E
Sakon Nakhon	Mueang	17°15'13.3"N	104°11'7.9"E
Phatthalung	Mueang	7°36'52.7"N	100°4'52.5"E
Chumphon	Mueang	10°30'34.4"N	99°6.5'25"E

Figure 1 *Aedes aegypti* collection sites in various parts of Thailand.

Mosquito rearing

All strains of *Ae. aegypti* were reared and kept separately to ensure no accidental cross-breeding (hybridization) between populations. All developmental stages were reared in a temperature-

controlled space at 25 ± 5 °C and $80 \pm 10\%$ relative humidity using a 12h:12h light:dark photoperiod according to the method of Kongmee *et al.* (2004). Immature stages were reared in plastic pans with identical physical and nutritional conditions

throughout the study. Pupae were transferred into cups with tap water and placed in screened cages (30 cm × 30 cm × 30 cm). Adult males and females were provided cotton pads soaked with 10% sugar solution. The resultant progeny and adults from the F₁ to F₃ generations were utilized for testing.

Insecticides

Six pyrethroid insecticides were used in this study: 1) alpha-cypermethrin (Sherwood Chemicals Public Company Limited, Bangkok, Thailand, purity 97.05%); 2) deltamethrin (Sherwood Chemicals Public Company Limited, purity 98.46%); 3) permethrin (Sherwood Chemicals Public Company Limited, purity 97.6%); 4) bifenthrin (Sherwood Chemicals Public Company Limited, purity 95.12%); 5) cypermethrin (T.J.C. Chemical Company Limited, Bangkok, Thailand, purity 92%); and 6) lambda-cyhalothrin (Syngenta Company, Bangkok, Thailand, purity 91.8%). Diagnostic concentrations for all test compounds are shown in Table 2 (Juntarajumnong *et al.*, 2012).

Insecticide-treated paper

Test papers (Whatman® No. 1 size 12 cm × 15 cm) were impregnated with diagnostic doses of synthetic pyrethroids, following the WHO standard protocol (World Health Organization, 1998). These synthetic pyrethroids (bifenthrin, permethrin, cypermethrin, alpha-cypermethrin, deltamethrin and lambda-cyhalothrin) were used for determining the susceptibility tests. All treated papers were treated at the rate of 2 mL of insecticide solution per paper. Control papers were impregnated with only carrier diluents (acetone and silicone oil).

Insecticide susceptibility test

Three to five day-old, non-blood fed adult females of *Ae. aegypti* were used for the susceptibility tests. Test procedures were obtained from the WHO, including analysis and

interpretation (World Health Organization, 1981a, b). Treated papers were prepared at the Department of Entomology, Faculty of Agriculture, Kasetsart University, according to WHO guidelines (World Health Organization, 1998). Each test was replicated four times. Twenty-five mosquitoes were carefully introduced into each holding tube lined with clean (untreated) paper for 1 hr to observe the health of the mosquitoes before insecticide exposure. Dead and moribund mosquitoes were removed before beginning the insecticide exposure. Mosquitoes from each holding tube were exposed for 1 hr to either insecticide-impregnated or control papers prepared in serial dilutions (determined from base-line findings). Knockdown mosquitoes were recorded after 1 hr. All mosquitoes were then carefully returned to separate clean holding tubes and provided with 10% sugar solution. Mortality was recorded at 24 hr post-exposure.

Data analysis

The mortality of *Ae. aegypti* at 24 hr was averaged for each test series. Interpretation and analysis of resistance/susceptibility status was determined according to WHO criteria (World Health Organization, 1998, 2006). If the percentage of mosquito mortality was between 98 and 100%, it was interpreted as completely susceptible. Mosquitoes were defined as incipiently resistant if the mortality rate was between 80 and 97% and were considered resistant if the mosquito mortality was less than 80%. If mortality of the control was between 5% and 20%, the test results were corrected using Abbott's formula (Abbott, 1925).

RESULTS

Diagnostic concentrations for six synthetic pyrethroids were established in previous work (Table 2). In this study, these "diagnostic doses" were used to determine the insecticide susceptibility level for eight populations of

Table 2 Diagnostic concentration of six synthetic pyrethroids based on dose/mortality relationships tested against *Ae. aegypti*, susceptible strain (US Department of Agriculture) (Juntarajumnong *et al.*, 2012).

Insecticide	No. tested	LC ₅₀ (%)	95% FL	LC ₉₉ (%)	95% FL	Diagnostic concentration (%)	P > Chi square
α-Cypermethrin	302	0.0009	0.0004-0.0013	0.043	0.0220-0.1449	0.0863	0.9419
Bifenthrin	282	0.0185	0.0171-0.0202	0.047	0.0396-0.0599	0.0938	0.3082
Cypermethrin	311	0.0052	0.0031-0.0072	0.111	0.0662-0.2760	0.2212	0.1333
Deltamethrin	297	0.0007	0.0006-0.0007	0.002	0.0020-0.0034	0.0049	0.8955
λ-Cyhalothrin	299	0.0012	0.0010-0.0014	0.006	0.0043-0.0087	0.0116	0.8633
Permethrin	275	0.0379	0.0345-0.0407	0.073	0.0632-0.0922	0.1466	0.9718

LC = Lethal concentration; FL = Fiducial limits at 95% confidence level; LC₅₀ = Lethal concentration required to kill 50% of the tested population; LC₉₉ = Lethal concentration required to kill 99% of the tested population; Diagnostic concentration/discriminating dose calculation = 2 × LC₉₉.

Ae. aegypti—one laboratory and seven field populations. The results of susceptibility tests using the single diagnostic dose of 0.147% permethrin, 0.094% bifenthrin, 0.005% deltamethrin, 0.221% cypermethrin, 0.086% alpha-cypermethrin and 0.012% lambda-cyhalothrin for different populations of *Ae. aegypti* are shown in Table 3. The ability of mosquitoes to survive the diagnostic dose after 24 hr is indicative of resistance in the population as defined by the percent mortality in mosquito test populations. The results from the current study indicated that the control population (USDA) was completely susceptible to all test compounds as evidenced by 100% mortality (Table 3). Based on the diagnostic doses established by Juntarajumnong *et al.* (2012), the USDA *Ae. aegypti* control population was found to be completely susceptible to all six synthetic pyrethroids along with 100% knockdown after 60 min. All seven populations of *Ae. aegypti* were highly resistant to deltamethrin (0–37% mortality), followed by bifenthrin (4–39% mortality) and permethrin (2–55% mortality). In addition, high resistance to lambda-cyhalothrin (0–57% mortality) was detected from all localities with the exception of *Ae. aegypti* from Bangkok and Uttaradit which demonstrated incipient resistance (93–96% mortality). Moreover, the two

populations from Bangkok and Phra Nakhon Si Ayutthaya were found to have evidence of incipient resistance to alpha-cypermethrin and cypermethrin (91–97% mortality) whereas the populations from Mukdahan and Phattalung were susceptible to both insecticides indicated by 98–100% mortality. The populations from Sakon Nakhon and Chumphon demonstrated incipient resistance to alpha-cypermethrin (90–95% mortality); however, the population from Uttaradit was susceptible. The populations from Sakon Nakhon and Chumphon demonstrated susceptibility to cypermethrin (98–100% mortality) but the population from Uttaradit was incipient resistant.

In general, higher levels of physiological tolerance/resistance to bifenthrin, permethrin and deltamethrin were seen in northeastern populations (Mukdahan and Sakon Nakhon) and one southern population (Chumphon) compared to other geographical regions in Thailand. The strongest resistance to permethrin and lambda-cyhalothrin was seen in the population from Sakon Nakhon (2% mortality for permethrin and 0% mortality for lambda-cyhalothrin) whereas the highest resistance to deltamethrin was observed in the population from Mukdahan (0% mortality), followed closely by Chumphon (2% mortality) and Sakon Nakhon (6% mortality). Interestingly, the population

Table 3 Percent knockdown (KD) following 60 min exposure and mortality rate at 24 hr of *Ae. aegypti* to diagnostic concentrations of six pyrethroid insecticides.

Area (susceptible strain)	Bifenthrin			Permethrin			Deltamethrin			λ -Cyhalothrin			α -Cypermethrin			Cypermethrin		
	% KD		% Mortality \pm SE	% KD		% Mortality \pm SE	% KD		% Mortality \pm SE	% KD		% Mortality \pm SE	% KD		% Mortality \pm SE	% KD		% Mortality \pm SE
	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
USDA																		
Bangkok (Prawet)	0	6	5	6 \pm 1.18	2	14 \pm 1.02	16	93 \pm 2.51	91	97 \pm 2.51	96	97 \pm 1.93						
Phra Nakhon Si Ayutthaya (Ban Phraek)	0	4	9	23 \pm 6.15	2	16 \pm 5.01	1	26 \pm 7.39	89	91 \pm 3.53	89	97 \pm 1.99						
Uttaradit (Tron)	3	18 \pm 6.00	4	10 \pm 4.49	7	14 \pm 7.75	17	96 \pm 2.36	98	99 \pm 1.00	82	89 \pm 5.59						
Mukdahan (Mueang)	1	8 \pm 2.83	7	26 \pm 2.58	0	0	16	22 \pm 8.87	94	98 \pm 1.15	97	99 \pm 1.00						
Sakon Nakhon (Mueang)	0	9 \pm 3.15	0	2 \pm 1.11	1	6 \pm 2.00	0	0	86	90 \pm 2.06	94	98 \pm 1.85						
Phatthalung (Mueang)	20	39 \pm 3.32	30	55 \pm 9.04	25	37 \pm 0.91	24	57 \pm 5.68	99	100	100	98 \pm 1.85						
Chumphon (Mueang)	1	5 \pm 1.88	1	4 \pm 1.57	1	2 \pm 2.00	1	7 \pm 3.28	85	95 \pm 3.00	92	100 \pm 1.00						

collected from Chumphon demonstrated very high resistance to four synthetic pyrethroids (5% mortality for bifenthrin, 4% mortality for permethrin, 2% mortality for deltamethrin and 7% mortality for lambda-cyhalothrin) and showed incipient resistance to alpha-cypermethrin (95% mortality) and no resistance to cypermethrin (100% mortality). In contrast, the population from Phatthalung showed higher resistance to bifenthrin (39% mortality) and deltamethrin (37% mortality) than from permethrin (55% mortality) and lambda-cyhalothrin (57% mortality) as shown in Table 3.

In this study, the population from Bangkok, Central Thailand was strongly resistant to bifenthrin (6% mortality), permethrin (6% mortality) and deltamethrin (14% mortality). However, it showed incipient resistance to the other three synthetic pyrethroids (93% for lambda-cyhalothrin, 97% for alpha-cypermethrin and 97% for cypermethrin). In addition, the population from Phra Nakhon Si Ayutthaya in central Thailand showed high resistance to bifenthrin (4% mortality), followed by deltamethrin (16 % mortality) and permethrin (23% mortality). In brief, strong resistance to bifenthrin, permethrin and deltamethrin was observed in all field test populations whereas alpha-cypermethrin and cypermethrin demonstrated incipient or no resistance.

DISCUSSION

Aedes aegypti (L.) is the primary vector of dengue viruses in Southeast Asia, a region which represents the epicenter of disease transmission (Gubler, 1998). This vector is primarily a day-biting mosquito and is more prevalent near and inside dwellings. In addition, *Ae. aegypti* is considered a secondary vector of the chikungunya virus, a disease that has recently emerged in a more frequent epidemic form in Asia, Indian Ocean countries and southern Europe (Charrel *et al.*, 2007). *Ae. aegypti* also prefers to

rest indoors in undisturbed places, complicating control of this vector (Reiter and Gubler, 1997). Despite some research progress, an effective and commercially acceptable dengue vaccine is not yet available; thus, the prevention and control of disease transmission relies almost entirely on vector control strategies using synthetic insecticides (Roberts and Andre, 1994; Reiter *et al.*, 1995; Chareonviriyaphap *et al.*, 2004).

Synthetic compounds, including organophosphates, carbamates and pyrethroids have long been used with varying levels of success in national control programs to control dengue vectors (Reiter and Gubler, 1997). Since 1994, the Ministry of Public Health in Thailand has recommended the use of deltamethrin for emergency vector control and adulticide during dengue outbreaks and this latter chemical remains the only compound used in dengue control programs (Chareonviriyaphap *et al.*, 1999; Kongmee *et al.*, 2004). Recent studies have reported that there has been an increased deltamethrin resistance in several field populations of *Ae. aegypti* in Thailand (Jirakanjanakit *et al.*, 2007; Thanispong *et al.*, 2008; Chuaycharoensuk *et al.*, 2011). The increased incidence of resistance is raising awareness of the need for alternative insecticides or newer, more innovative methods of controlling mosquito vectors. Alpha-cypermethrin, another synthetic pyrethroid, is being used in Thai homes for protection against indoor biting mosquitoes and other arthropod pests.

Numerous synthetic pyrethroids, such as permethrin, resmethrin, cypermethrin, cyfluthrin, lambda-cyhalothrin and bifenthrin-based formulations (for example, aerosols, coils and gels), are commercially available to the general public (Paeporn *et al.*, 1996; Chareonviriyaphap *et al.*, 1999; Jirakanjanakit *et al.*, 2007). The selection for resistance to pyrethroids by mosquitoes is largely attributed to frequent exposure to sub-lethal concentrations of commonly applied chemicals and has a direct bearing on the effective management and

prevention of vector-borne diseases (Hemingway and Ranson, 2000). Many studies have reported mosquito resistance to synthetic pyrethroids in Thailand (Chareonviriyaphap *et al.*, 1999; Prapanthadara *et al.*, 2002; Somboon *et al.*, 2003; Paeporn *et al.*, 2004; Ponlawat *et al.*, 2005; Yaicharoen *et al.*, 2005; Sathantriphop *et al.*, 2006; Jirakanjanakit *et al.*, 2007; Thanispong *et al.*, 2008; Chuaycharoensuk *et al.*, 2011). However, the majority of published reports on pyrethroid resistance in *Ae. aegypti* have been restricted in their geographical scope with the susceptibility level of the insecticides needing updating frequently (Chadwick *et al.*, 1977; Chareonviriyaphap *et al.*, 1999; Paeporn *et al.*, 2004; Yaicharoen *et al.*, 2005; Sathantriphop *et al.*, 2006; Jirakanjanakit *et al.*, 2007; Thanispong *et al.*, 2008; Chuaycharoensuk *et al.*, 2011). Without a better understanding of the temporal effects and outcomes of the insecticides used to determine mosquito susceptibility, sustainable and successful vector control activities will never be positive.

As noted, WHO has established only two diagnostic doses for synthetic pyrethroids—permethrin and lambda-cyhalothrin (World Health Organization, 1998, 2006). Therefore, estimation of the resistance status of *Ae. aegypti* to pyrethroid compounds is incomplete. Recently, Juntarajumnong *et al.* (2012) developed diagnostic doses for six synthetic pyrethroids from the standard susceptible strain of *Ae. aegypti* from the USDA. These compounds currently represent the predominant chemical classes utilized for space spray applications and treated materials (for example, window curtains) in Thailand (Juntarajumnong *et al.*, 2012). In the current study, diagnostic doses were used for these compounds to investigate mosquito resistance. This study was consistent with the results from previous studies (Juntarajumnong *et al.*, 2012). It was found that there was a clear development of mosquito resistance to synthetic pyrethroids in the collected areas. In addition, incipient resistant was found to alpha-cypermethrin in some populations of *Ae.*

aegypti which were similar to those reported by Thanispong *et al.*, 2008. In the current study, five populations of *Ae. aegypti* demonstrated moderate to high resistance to lambda-cyhalothrin which had not been detected in any previous studies (Chuaycharoensuk *et al.*, 2011).

In summary, *Ae. aegypti* from several localities were resistant to bifenthrin, permethrin, deltamethrin and lambda-cyhalothrin as indicated by the low percentage mortality. Monitoring insecticide resistance should be carried out more frequently and should be increased in geographical coverage to include as many known vectors as possible. Further steps should include the identification of biochemical mechanisms responsible for resistance and should be an integral part of insecticide evaluation programs for effective integrated vector management practices.

CONCLUSION

Aedes aegypti were collected from seven localities in Thailand where there had been a dengue outbreak between 2011 and 2012. Susceptibility or resistance of mosquitoes to the synthetic pyrethroids, bifenthrin, permethrin, deltamethrin, lambda-cyhalothrin, alpha-cypermethrin and cypermethrin were determined using the WHO susceptibility test and the diagnostic doses determined by Juntarajumnong *et al.*, 2012. The results from the susceptibility tests revealed that *Ae. aegypti* from all localities were extremely resistant to bifenthrin, permethrin and deltamethrin. *Ae. aegypti* from most localities were also resistant to lambda-cyhalothrin with the exception of *Ae. aegypti* from Bangkok and Uttaradit which were incipient resistant. *Ae. aegypti* from Bangkok, Phra Nakhon Si Ayutthaya, Sakon Nakhon and Chumphon had incipient resistance to alpha-cypermethrin whereas *Ae. aegypti* collected from Uttaradit, Mukdahan and Phatthalung were still susceptible. Mosquitoes collected from all areas were found to be susceptible to cypermethrin except for Bangkok, Phra Nakhon Si Ayutthaya and Uttaradit which showed incipient

resistance.

ACKNOWLEDGEMENTS

The authors would like to thank the Office of the Higher Education Commission, Ministry of Education, Thailand Research Fund (TRF) Grant for New Researchers (MRG 5380102), the Kasetsart University Research and Development Institute (KURDI) and the TRF Senior Research Scholar funding (RTA5558002) for financial support for this study.

LITERATURE CITED

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. **J. Econ. Entomol.** 18: 265–267.

Chadwick, P.R., J.F. Invest and M.J. Bowron. 1977. An example of cross-resistance to pyrethroids in DDT-resistant *Aedes aegypti*. **Pestic Sci.** 8: 618–624.

Charrel, R.N., A. Izri, S. Temmam and P. Delaunay. 2007. Cocirculation of 2 genotypes of Toscana virus, southeastern France. **Emerg. Infect. Dis.** 13: 465–468.

Chareonviriyaphap, T., B. Aum-Aong and S. Rattanathum. 1999. Current resistance in mosquito vectors in Thailand. **Southeast Asian J. Trop. Med. Public Health** 30: 131–141.

Chareonviriyaphap, T., A. Prabaripai and M.J. Bangs. 2004. Excito-repellency of deltamethrin on the malaria vectors, *Anopheles minimus*, *Anopheles dirus*, *Anopheles sawadwongporni*, and *Anopheles maculatus* in Thailand. **J. Am. Mosq. Control Assoc.** 20: 45–54.

Chuaycharoensuk, T., W. Juntarajumnong, W. Boonyuan, M.J. Bangs, P. Akratanakul, S. Thummapalo, N. Jirakanjanakit, S. Tanasinchayakul and T. Chareonviriyaphap. 2011. Frequency of pyrethroid resistance in *Aedes aegypti* and *Aedes albopictus* (Diptera: Culicidae) in Thailand. **J. Vector Ecol.** 36: 204–212.

Christophers, S.R. 1960. *Aedes aegypti* (L.), the Yellow Fever Mosquito. Its Life History, Bionomics and Structure. Cambridge University Press. Cambridge, UK. 752 pp.

Gubler, D.J. 1997. Dengue and dengue hemorrhagic fever: Its history and resurgence as a global public health problem, pp.1–22. In D.J. Gubler and G. Kuno, (eds.). **Dengue and Dengue Hemorrhagic Fever**. CAB International, New York, NY, USA.

Gubler, D.J. 1998. Dengue and dengue hemorrhagic fever. **Clin. Microbiol Rev.** 11(3): 480–96.

Hemingway, J. and H. Ranson. 2000. Insecticide resistance in insect vectors of human disease. **Annu. Rev. Entomol.** 45: 371–391.

Jirakanjanakit, N., P. Rongnopharut, S. Saengtharatip, T. Chareonviriyaphap, S. Dunchon and L. Bellec. 2007. Insecticide susceptible/resistance status in *Aedes* (Stegomyia) *aegypti* and *Aedes* (Stegomyia) *albopictus* (Diptera: Culicidae) in Thailand during 2003–2005. **J. Econ. Entomol.** 100: 545–550.

Juntarajumnong, W., S. Pimnon, M.J. Bangs, K. Thanispong and T. Chareonviriyaphap. 2012. Discriminating lethal concentrations and efficacy of six pyrethroids for control of *Aedes aegypti* in Thailand. **J. Am. Mosq. Control Assoc.** 28(1): 30–37.

Kongmee, M., A. Prabaripai, P. Akratanakul, M.J. Bangs and T. Chareonviriyaphap. 2004. Behavioral responses of *Aedes aegypti* (Diptera: Culicidae) exposed to deltamethrin and possible implications for disease control. **J. Med. Entomol.** 41: 1055–1063.

Ministry of Public Health [MOPH]. 2013. **Annual Report on Vector-borne Disease 2013**. Department of Disease Control, Ministry of Public Health. Bangkok, Thailand. 148 pp.

Paeporn, P., K. Suphaphathom, S. Boonyabancha and P. Phan-Urai. 1996. Efficacy of aerosol insecticide products. **Bull. Dept. Med. Sci.** 38: 37–43.

Paeporn, P., K. Supaphathom, R. Srisawat, N. Komalamisra, V. Deesin, P. Ya-umphan and S. Leeming Sawat. 2004. Biochemical detection of pyrethroid resistance mechanism in *Aedes aegypti* in Ratchaburi Province, Thailand. **Trop. Biomed.** 21: 145–151.

Pant, C.P. 1979. Vectors of Japanese encephalitis and their bionomics. **WHO/VBC/79.** 732: 1–18.

Ponlawat, A., J.G. Scott and L.C. Harrington. 2005. Insecticide Susceptibility of *Aedes aegypti* and *Aedes albopictus* across Thailand. **J. Med. Entomol.** 42(5): 821–825.

Prapanthadara, L., N. Promtet, S. Koottathep, P. Somboon, W. Suwonkerd, L. McCarroll and J. Hemingway. 2002. Mechanisms of DDT and permethrin resistance in *Aedes aegypti* from Chiang Mai, Thailand. **Dengue Bull.** 26: 185–189.

Reiter, P. and D.J. Gubler. 1997. Surveillance and control of urban dengue vectors, pp. 425–462. In Gubler, D.J. and Kuno, G. (eds.). **Dengue and Dengue Hemorrhagic Fever.** CAB International. London, UK.

Reiter, P., M.A. Amador, R.A. Anderson and G.G. Clark. 1995. Dispersal of *Aedes aegypti* in an urban area after blood feeding as demonstrated by Rubidium-marked eggs. **Am. J. Trop. Med. Hyg.** 52: 177–179.

Roberts, D.R. and R.G. Andre. 1994. Insecticide resistance issues in vectors. **Am. J. Trop. Med. Hyg.** 50 (Suppl): 21–34.

Sathantriphop, S., C. Ketavan, A. Prabaripai, S. Visetson, M.J. Bangs, P. Akratanakul and T. Chareonviriyaphap. 2006. Susceptibility and avoidance behavior by *Culex quinquefasciatus* Say to three classes of residual insecticides. **J. Vector Ecol.** 31: 266–274.

Somboon, P., L. Prapanthadara and W. Suwankerd. 2003. Insecticide susceptibility tests of *Anopheles minimus*, *Aedes aegypti*, *Aedes albopictus*, and *Culex quinquefasciatus* in northern Thailand. **Southeast Asian J. Trop. Med. Public Health** 34: 87–93.

Thanispong, K., S. Sathantriphop and T. Chareonviriyaphap. 2008. Insecticide resistance of *Aedes aegypti* and *Culex quinquefasciatus* in Thailand. **J. Pestic. Sci.** 33: 351–356.

World Health Organization. 1981a. **Instructions for Determining the Susceptibility or Resistance or Adult Mosquitoes to Organochlorine, Organophosphate and Carbamate Insecticides, Establishment of the Base-line.** WHO/VBC/81.805. World Health Organization. Geneva, Switzerland.

World Health Organization. 1981b. **Instructions for Determining the Susceptibility or Resistance or Adult Mosquitoes to Organochlorine, Organophosphate and Carbamate Insecticides—Diagnostic Test.** WHO/VBC/81.806. World Health Organization. Geneva, Switzerland.

World Health Organization. 1998. **Test Procedures for Insecticide Resistance Monitoring in Malaria Vectors, Bio-efficacy and Persistence of Insecticides on Treated Surfaces. Report of WHO Informal Consultation, WHO/CDS/CPC/MAL/98.12.** World Health Organization. Geneva, Switzerland.

World Health Organization. 2006. **Guidelines for Testing Mosquito Adulticides for Indoor Residual Spraying and Treatment of Mosquito Nets.** WHO/CDS/NTD/WHOPES/GCDPP/2006.3. World Health Organization. Geneva, Switzerland.

World Health Organization. 2012. **Global Strategy for Dengue Prevention and Control 2012–2020.** World Health Organization, Geneva. 1–34.

World Health Organization. 2014. **Dengue and severe dengue.** [Available Source: <http://www.who.int/mediacentre/factsheets/fs117/en/>] [Sourced: 16 December 2012].

Yaicharoen, R., R. Kiatfuengfoo, T. Chareonviriyaphap and P. Rongnparut. 2005. Characterization of deltamethrin resistance in field populations of *Aedes aegypti* in Thailand. **J. Vector Ecol.** 30: 144–150.